
COMPACTIFICATION OF THE SYMPLECTIC GROUP
VIA GENERALIZED SYMPLECTIC ISOMORPHISMS

TAKESHI ABE

1. Introduction

Let G be a connected reductive algebraic group over an algebraically closed field
k of characteristic zero. We have a left (G×G)-action on G defined as (g1, g2) ·x :=
g1xg

−1
2 .

A (G×G)-equivariant embedding G ↪→ X is said to be regular (cf. [BDP], [Br,
§1.4]) if the following conditions are satisfied:

(i) X is smooth and the complement X \G is a normal crossing divisor D1 ∪
· · · ∪Dn.

(ii) Each Di is smooth.
(iii) Every (G×G)-orbit closure in X is a certain intersection of D1, . . . , Dn.
(iv) For every point x ∈ X, the normal space TxX/Tx(Gx) contains a dense

orbit of the isotropy group Gx.
If G ↪→ X is a (G × G)-equivariant regular compactification of G, then a sum∑
aiDi of the boundary divisors is (G×G)-stable. Let G̃→ G be a finite covering.

If the line bundle O(
∑
aiDi) has a (G̃ × G̃)-linearization, then the vector space

H0(X,O(
∑
aiDi)) of global sections of O(

∑
aiDi) becomes a (G̃ × G̃)-module.

Kato [Ka] and Tchoudjem [T] described the decomposition of this (G̃× G̃)-module
into irreducible (G̃× G̃)-modules.

Kausz constructed a regular compactification KGLn of the general linear group
GLn in [Kausz1]. In [Kausz2] he described the structure of the (GLn × GLn)-
modules of global sections of line bundles associated to boundary divisors. Al-
though he dealt with only the very special regular compactification KGLn, a good
thing is that his description of the (GLn × GLn)-modules is canonical. More pre-
cisely, he constructed a canonical isomorphism between the (GLn ×GLn)-modules
of global sections of line bundles associated to boundary divisors on KGLn and the
(GLn ×GLn)-modules of global sections of line bundles on a product of flag vari-
eties. The fact that the decomposition is canonical is important when we apply the
compactification of G to the study of the moduli of G-bundles. In fact, Kausz used
the canonical decomposition of the above (GLn × GLn)-modules, and proved the
factorization theorem ([Kausz3]) of generalized theta functions on the moduli stack
of vector bundles on a curve. (The factorization theorem has also been obtained
by Narasimhan-Ramadas [N-Rd] and Sun [S1], [S2].)

The purpose of this paper is to establish an analogue of the Kausz’s results to
the symplectic group.

If V is a finite dimensional vector space, the general linear group GL(V ) is
regarded as a moduli space of isomorphisms V → V . In [Kausz1], Kausz introduced
a generalized isomorphism. The compactification KGL(V ) of GL(V ) is the moduli
space of generalized isomorphisms from V to V .

Now suppose that V is endowed with a non-degenerate alternate bilinear form.
The symplectic group Sp(V ) is regarded as a moduli space of symplectic isomor-
phisms V → V . As a symplectic analogue, we introduce a generalized symplectic
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isomorphism (Definition 3.1). The regular compactification KSp(V ) of Sp(V ) is
defined to be the moduli space of generalized symplectic isomorphisms from V to
V . At first glance, it is not clear whether or not KSp(V ) is a closed subvariety of
KGL(V ), but a posteriori we know that it is (Corollary 3.16).

If dimV = 2r, then the complement KSp(V ) \ Sp(V ) is a union of smooth
divisors D0, . . . , Dr−1 intersecting transeversely.

In Section 5 we describe the strata ∩i∈IDi for I ⊂ {0, . . . , r − 1}. In particular,
we shall obtain a natural isomorphism

D0 ∩ · · · ∩Dr−1 ' SpFl× SpFl,

where SpFl is a symplectic flag variety parametrizing filtrations V ⊃ F1(V ) ⊃ · · · ⊃
Fr(V ) ⊃ Fr+1(V ) = 0 such that Fi(V ) is isotropic of dimension r + 1− i.

In Section 6 we study Sp(V ) × Sp(V )-modules H0(KSp(V ),O(
∑
aiDi)). The

argument here is the same as [Kausz2]. We shall prove, for example, that there is
a natural isomorphism

H0

(
KSp(V ),O(

r−1∑
i=0

n(r − i)Di)

)

'
⊕

n≥q1≥···≥qr≥0

H0

SpFl,⊗r
i=1

(
F⊥r+2−i

F⊥r+1−i

)⊗qi
⊗H0

SpFl,⊗r
i=1

(
F⊥r+2−i

F⊥r+1−i

)⊗qi
 ,

where V ⊗OSpFl ⊃ F1 ⊃ · · · ⊃ Fr ⊃ Fr+1 = 0 is the universal filtration.
In Section 7 we shall apply the results about KSp(V ) to the study of symplectic

bundles on a curve. We shall prove the factorization theorem (Theorem 7.3) of
generalized theta functions on the moduli stack of symplectic bundles.

The reason why we develop a symplectic analogue of the Kausz’s results is that
it has an application to the study of the strange duality for symplectic bundles. In
Section 8 we prove a proposition which will be used in a forthcoming paper [A].

Notation and Convention. • We denote by J2 the matrix(
0 1
−1 0

)
.

• For a 2r × 2r matrix A = (aij)1≤i,j≤2r, we denote by A[l,m] the 2× 2 minor(
a2l−1,2m−1 a2l−1,2m

a2l,2m−1 a2l,2m

)
.

• The 2r × 2r matrix J2r is defined by

(J2r)[l,m] =

{
J2 if l = m

O if l 6= m.

• For a commutative ring R we denote by Sp2r(R) the subgroup{
X ∈ Mat2r×2r(R)

∣∣ tXJ2rX = J2r

}
of the group Mat2r×2r(R) of 2r × 2r matrices with entries in R.
• The subgroup U+

2r(R) of Sp2r(R) consists of such X ∈ Sp2r(R) that X[l,m] is of

the form
(
∗ ∗
0 0

)
if l < m,

(
1 ∗
0 1

)
if l = m, and

(
0 ∗
0 ∗

)
if l > m. The subgroup

U−2r(R) of Sp2r(R) is defined as X ∈ Sp2r(R) is in U−2r(R) iff tX ∈ U+
2r(R).

• Let S be a scheme and ∗ be an object (such as a sheaf, a scheme, a morphism
etc.) over S. For an S-scheme T , we denote by (∗)T or ∗T the base-change of ∗ by
T → S.
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• Let f : E → F be a morphism of sheaves on a scheme. If L is a line bundle,
the morphism id⊗f : L⊗E → L⊗F is often denoted by f in this paper. When we
make use of this abuse of notation, we shall make clear the source and the target
of the morphism so that no confusion arises.
• For a product X × Y × Z × . . . , prX denotes the projection to X.

2. Review on Kausz’s generalized isomorphisms

Here we recall Kausz’s result [Kausz1] on the compactification of the general
linear group. Most part of this section is copied from [Kausz1].

Definition 2.1. Let E and F be locally free sheaves on a scheme S. A bf-morphism
from E to F is a tuple

g =
(
M, µ, E g]

−→ F ,M⊗E g[

←− F , r
)
,

where M is a line bundle on S, and µ is a global section of M such that the
following holds:

1. The composed morphism g] ◦g[ and g[ ◦g] are both induced by the morphism
µ : OS →M.

2. For every point x ∈ S with µ(x) = 0, the complex

E|x → F|x → (M⊗E)|x → (M⊗F)|x

is exact and the rank of the morphism E|x → F|x is r.

Definition 2.2. Let E and F be locally free sheaves of rank n on a scheme S. A
generalized isomorphism from E to F is a tuple

Φ =(Li, λi,Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), h : En
∼−→ Fn),

where E = E0, E1, . . . , En,Fn, . . . ,F1,F0 = F are locally free sheaves of rank n, and
the tuples

(Mi, µi, Ei+1 → Ei,Mi ⊗ Ei+1 ← Ei, i)
(Li, λi,Fi+1 → Fi,Li ⊗Fi+1 ← Fi, i)

are bf-morphisms of rank i for 0 ≤ i ≤ n−1, such that for each x ∈ S the following
holds:

1. If µi(x) = 0 and (f, g) is one of the following two pairs of morphisms:

E|x
f−→
((
⊗i−1

j=0Mj

)
⊗ Ei

)
|x

g−→
((
⊗i

j=0Mj

)
⊗ Ei+1

)
|x,

Ei|x
g←− Ei+1|x

f←− En|x,

then Im(g ◦ f) = Img. Likewise, if λi(x) = 0 and (f, g) is one of the following two
pairs of morphisms:

Fn|x
f−→ Fi+1|x

g−→ Fi|x,((
⊗i

j=0Lj

)
⊗Fi+1

)
|x

g←−
((
⊗i−1

j=0Lj

)
⊗Fi

)
|x

f←− F|x,

then Im(g ◦ f) = Img.
2. We have (h|x) (Ker(En|x → E0|x)) ∩Ker(Fn|x → F0|x) = {0}.
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Definition 2.3. A quasi-equivalence between two generalized isomorphisms
Φ =(Li, λi,Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), h : En
∼−→ Fn),

Φ′ =(L′i, λ′i,M′
i, µ

′
i, E ′i →M′

i ⊗ E ′i+1, E ′i ← E ′i+1,

F ′i+1 → F ′i ,L′i ⊗F ′i+1 ← F ′i (0 ≤ i ≤ n− 1), h′ : E ′n
∼−→ F ′n)

from E to F consists of isomorphisms Li ' L′i andMi 'M′
i for 0 ≤ i ≤ n−1, and

isomorphisms Ei ' E ′i and Fi ' F ′i for 0 ≤ i ≤ n, such that all the obvious diagrams
are commutative. A quasi-equivalence between Φ and Φ′ is called an equivalence
if the isomorphisms E0 ' E ′0 and F0 ' F ′0 are in fact the identity on E and F
respectively.

Remark 2.4. In [Kausz1, Page 579], Kausz proved that there is at most one
equivalence between Φ an Φ′.

Let S be a scheme, E and F locally free sheaves on S. We denote by KGL(E ,F)
the functor from the category of S-schemes to the category of sets that associates
to an S-scheme T the set of equivalence classes of generalized isomorphisms from
ET to FT . Then [Kausz1, Theorem 5.5] says:

Theorem 2.5. The functor KGL(E ,F) is represented by a scheme KGL(E ,F)
which is smooth and projective over S.

Kausz also considered a compactification of PGLn.

Definition 2.6. Let S be a scheme and E , F locally free OS-modules of rank n.
A complete collineation from E to F is a tuple

Ψ = (Li, λi;Fi+1 → Fi,Li ⊗Fi+1 ← Fi (0 ≤ i ≤ n− 1), )

where E = Fn,Fn−1, . . . ,F1,F0 = F are locally free OS-modules of rank n, the
tuples

(Li, λi,Fi+1 → Fi,Li ⊗Fi+1 ← Fi, i)
are bf-morphisms of rank i for 0 ≤ i ≤ n− 1 and λ0 = 0, such that for each point
x ∈ S and index i ∈ {0, . . . , n− 1} with the property that λi(x) = 0, the following
holds:
If (f, g) is one of the following two pairs of morphisms:

Fn|x
f−→ Fi+1|x

g−→ Fi|x,((
⊗i

j=0Li

)
⊗Fi+1

)
|x

g←−
((
⊗i−1

j=0Li

)
⊗Fi

)
|x

f←− F0|x,

then Im(g ◦ f) = Im(g).
Two complete collineations Ψ and Φ′ from E to F are called equivalent if there

are isomorphisms Li ' L′i, Fi ' F ′i such that all the obvious diagrams commute
and such that Fn ' F ′n and F0 ' F ′0 are the identity on E and F respectively.

Let S be a scheme, and E , F locally free OS-modules of rank n. We denote by
PGl(E ,F) the functor from the category of S-schemes to the category of sets that
associates to an S-scheme T the set of equivalence classes of complete collineations
from ET to FT . Then [Kausz1, Corollary 8.2] says:

Theorem 2.7. The functor PGl(E ,F) is represented by a scheme PGl(E ,F) which
is smooth and projective over S.

In fact, PGl(E ,F) is a closed subscheme of KGL(E ,F).
The following lemma is an easy consequence of [Kausz1, Lemma 6.1 and Propo-

sition 6.2].
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Lemma 2.8. Let A, B be vector bundles of rank m, and let

(L, λ,A g]

−→ B,L ⊗A g[

←− B, i)

be a bf-morphism of rank i.
(1) There is a natural isomorphism

L⊗(m−i) ⊗ detA ' detB.

(2) If λ = 0, then Im(A → B) = Ker(B → L⊗A) and Ker(A → B) = Im(L∨ ⊗
B → A), and they are subbundles of rank i and of rank m−i of B and A respectively.

3. generalized symplectic isomorphism

As a symplectic analogue of generalized isomorphisms, we first introduce gen-
eralized symplectic isomorphisms (Definition 3.1). Then we shall prove that the
moduli space of generalized symplectic isomorphisms gives a compactification of
the symplectic group.

Definition 3.1. Let S be a scheme, E and F locally free OS-modules of rank 2r,
P a line bundle on S, and πE : E ⊗ E → P and πF : F ⊗ F → P non-degenerate
alternate bilinear forms.

A generalized symplectic isomorphism from E to F is a tuple

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr),

(3.1)

where E = E0, E1, . . . , Er,Fr, . . . ,F1,F0 = F are locally free OS-modules of rank 2r
and the tuples

(Mi, µi, Ei+1
e]

i−→ Ei,Mi ⊗ Ei+1
e[

i←− Ei, r + i)

and (Mi, µi,Fi+1
f]

i−→ Fi,Mi ⊗Fi+1
f[

i←− Fi, r + i)

are bf-morphisms of rank r + i for 0 ≤ i ≤ r − 1 such that for each x ∈ S the
following holds:

1. If µi(x) = 0 and (f, g) is one of the following pairs of morphisms

Er|x
f−→ Ei+1|x

g−→ Ei|x,

E|x
f−→
((
⊗i−1

j=0Mj

)
⊗ Ei

)
|x,

g−→
((
⊗i

j=0Mj

)
⊗ Ei+1

)
|x,

Fr|x
f−→ Fi+1|x

g−→ Fi|x,

F|x
f−→
((
⊗i−1

j=0Mj

)
⊗Fi

)
|x

g−→
((
⊗i

j=0Mj

)
⊗Fi+1

)
|x,

then Im(g ◦ f) = Im(g).
2. (h|x) (Ker (Er|x → E0|x)) ∩Ker (Fr|x → F0|x) = {0} .
3. The following diagram is commutative:{(

⊗k−1
j=0M

∨
j ⊗ E0

)
×Ek
Er
}
⊗
{(
⊗k−1

j=0M
∨
j ⊗F0

)
×Fk

Fr

}
α↙ ↘ β(

⊗k−1
j=0M

∨
j ⊗ E0

)
⊗ E0 F0 ⊗

(
⊗k−1

j=0M
∨
j ⊗F0

)
γ ↘ ↙ δ(
⊗k−1

j=0M
∨
j

)
⊗ P,

(3.2)
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where γ and δ are induced by πE and πF respectively, and

α = qEk ⊗ (e]
0 ◦ · · · ◦ e

]
r−1 ◦ h−1 ◦ pFk )

β = (f ]
0 ◦ · · · ◦ f

]
r−1 ◦ h ◦ pEk)⊗ qFk ,

where pEk , qEk , pFk and qFk are defined by

(3.3)

(⊗k−1
j=0M∨

j ⊗ E0
)
×Ek
Er

pEk−→ Er
qEk ↓ � ↓ e]

k ◦ · · · ◦ e
]
r−1⊗k−1

j=0M∨
j ⊗ E0 −−−−−−−→

e[
k−1◦···◦e

[
0

Ek

and

(3.4)

(⊗k−1
j=0M∨

j ⊗F0

)
×Fk

Fr
pFk−−→ Fr

qFk ↓ � ↓ f ]
k ◦ · · · ◦ f

]
r−1⊗k−1

j=0M∨
j ⊗F0 −−−−−−−→

f[
k−1◦···◦f

[
0

Fk.

3.2. We can consider the composition of a generalized symplectic morphism with
symplectic isomorphisms as follows. Let α : E → E and β : F → F be symplectic

isomorphisms. Replacing the morphisms E1
e]
0−→ E0,M0⊗E1

e[
0←− E0,M0⊗F1

f[
0←− F0

and F1
f]
0−→ F0 with E1

α◦e]
0−−−→ E0, M0 ⊗ E1

e[
0◦α

−1

←−−−−− E0, M0 ⊗ F1
f[
0◦β

−1

←−−−−− F0 and

F1
β◦f]

0−−−→ F0 respectively, we obtain another generalized symplectic isomorphism
from E to F , which we denote by β ◦ Φ ◦ α−1.

Definition 3.3. Let S be a scheme, E and F rank 2r locally free OS-modules, P
a line bundle on S, πE : E ⊗ E → P and πF : F ⊗F → P non-degenerate alternate
bilinear forms.

A quasi-equivalence between two generalized symplectic isomorphisms

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er → Fr)

Φ′ =(M′
i, µ

′
i, E ′i →M′

i ⊗ E ′i+1, E ′i ← E ′i+1,

F ′i+1 → F ′i ,M′
i ⊗F ′i+1 ← F ′i (0 ≤ i ≤ r − 1), h′ : E ′r → F ′r)

from E to F consists of isomorphismsMi 'M′
i (0 ≤ i ≤ r − 1) by which µi maps

to µ′i, and isomorphisms Ei ' E ′i and Fi ' F ′i (0 ≤ i ≤ r) such that E0 ' E ′0 and
F0 ' F ′0 are symplectic and the obvious diagrams are commutative.

A quasi-equivalence between Φ and Φ′ is called an equivalence if the isomor-
phisms E0 ' E ′0 and F0 ' F ′0 are in fact the identity on E and F respectively.

Definition 3.4. Let S be a scheme. Let E = F = O⊕2r
S be given the non-

degenerate alternate bilinear form by the matrix J2r. To a tuple (m0, . . . ,mr−1) of
regular functions on S, we associate the following generalized symplectic isomor-
phisms from E to F :

Φ(m0, . . . ,mr−1) :=(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi, h : Er
∼−→ Fr),

(3.5)

where Mi = OS , µi = mi for 0 ≤ i ≤ r − 1, and Ei = Fi = O⊕2r
S for 0 ≤ i ≤ r;

the morphisms Ei →Mi ⊗ Ei+1 and Ei ← Ei+1 (both are from O⊕2r
S to O⊕2r

S ) are
described by the 2r × 2r diagonal matrices

diag(1,mi, 1,mi, . . . , 1,mi,

2i times︷ ︸︸ ︷
mi, . . . ,mi)(3.6)
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and

diag(mi, 1,mi, 1, . . . ,mi, 1,

2i times︷ ︸︸ ︷
1, . . . , 1)(3.7)

respectively; the morphisms Fi+1 → Fi andMi ⊗Fi+1 ← Fi by the matrices

diag(1,mi, 1,mi, . . . , 1,mi,

2i times︷ ︸︸ ︷
1, . . . , 1)(3.8)

and

diag(mi, 1,mi, 1, . . . ,mi, 1,
2i times︷ ︸︸ ︷

mi, . . . ,mi)(3.9)

respectively; and the isomorphism h : Er → Fr is the identity.

Notation 3.5. We define the subgroup W2r of Mat2r×2r as follows. A matrix
A ∈ Mat2r×2r is in W2r iff there exists a σ ∈ Sr such that A[i,j] = O if i 6= σ(j),
and

A[σ(j),j] ∈
{(

1 0
0 1

)
,

(
0 1
−1 0

)
,

(
−1 0
0 −1

)
,

(
0 −1
1 0

)}
.

Definition 3.6. Let S, E and F as in Definition 3.4. Let

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr)

be a generalized symplectic isomorphism from E to F . A diagonalization of Φ with
respect to (α, β) ∈ W2r ×W2r is a tuple (ui, vi (0 ≤ i ≤ r);ψi (0 ≤ i ≤ r − 1)) of
isomorphisms, where ui : O⊕2r

S
∼−→ Ei, vi : O⊕2r

S
∼−→ Fi and ψi : OS

∼−→ Mi such
that (ui, vi (0 ≤ i ≤ r);ψi (0 ≤ i ≤ r − 1)) establishes a quasi-equivalence between
Φ(ψ−1

0 (µ0), . . . , ψ−1
r−1(µr−1)) and Φ such that α−1 ◦ u0 : O⊕2r → O⊕2r = E is in

U+
2r(OS) and β−1 ◦ v0 : O⊕2r → O⊕2r = F is in U−2r(OS).

Remark 3.7. Clearly Φ has a diagonalization with respect to (α, β) ∈W2r ×W2r

if and only if β−1 ◦Φ◦α has a diagonalization with respect to (id, id) ∈W2r×W2r.

Proposition 3.8. Let S be a scheme and let E = F = O⊕2r
S be given the non-

degenerate alternate bilinear forms by the matrix J2r. Let

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr),

(3.10)

be a generalized symplectic isomorphism from E to F .
(1) For every point s ∈ S, there exists an open neighborhood U of s such that

Φ|U has a diagonalization with respect to some (α, β) ∈W2r ×W2r.
(2) Assume moreover that S = SpecK with K the quotient field of a valuation

ring R. Then the above diagonalization is chosen such that α−1 ◦ u0 ∈ U+
2r(R),

β−1 ◦ v0 ∈ U−2r(R) and ψ−1
i (µi) ∈ R.

Proof. (1) We proceed by induction on r. Let e1, . . . , e2r be the standard basis of
E = O⊕2r

S , and f1, . . . , f2r that of F = O⊕2r
S .

By the conditions 1 an 2 of Definition 3.1,

g := f ]
0 ◦ · · · ◦ f

]
r−1 ◦ h ◦ e[

r−1 ◦ · · · ◦ e[
0 : E0 →

(
⊗r−1

j=0Mj

)
⊗F0

is nonzero at every point of S. We can find (α′, β′) ∈W2r ×W2r such that

(3.11) σ := (β′−1 ◦ g ◦ α′(e1), f2) ∈ ⊗r−1
j=0Mj
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is nowhere vanishing in a neighborhood of s. Replacing S by this neighborhood, we
may assume that σ is nowhere vanishing on S. Then the composite of morphisms

Oe1 ⊂ O⊕2r α′−→ O⊕2r = E
e[

l−1◦···◦e
[
0−−−−−−−→
(
⊗l−1

j=0Mj

)
⊗ El

induces a line subbundle ⊗l−1
j=0M∨

j ↪→ El. By the condition 3 of Definition 3.1, we
have (e1, α

′−1 ◦ g′ ◦ β′(f2)) = σ, where

g′ := e]
0 ◦ · · · ◦ e

]
r−1 ◦ h−1 ◦ f [

r−1 ◦ · · · ◦ f [
0 : F0 →

(
⊗r−1

j=0Mj

)
⊗ E0.

Thus the composite of morphisms

Of2 ⊂ O⊕2r β′−→ O⊕2r = F
f[

l−1◦···◦f
[
0−−−−−−−→
(
⊗l−1

j=0Mj

)
⊗Fl

also induces a line subbundle ⊗l−1
j=0M∨

j ↪→ Fl

For 0 ≤ l ≤ r, we put

Fl 3 f1,l :=
1
σ
f ]

l ◦ · · · ◦ f
]
r−1 ◦ h ◦ e[

r−1 ◦ · · · ◦ e[
0 ◦ α′(e1)

El 3 e2,l :=
1
σ
e]
l ◦ · · · ◦ e

]
r−1 ◦ h−1 ◦ f [

r−1 ◦ · · · ◦ f [
0 ◦ β′(f2).

(3.12)

Then you can check that El ⊃
(
⊗l−1

j=0M∨
j

)
⊕Oe2,l and Fl ⊃ Of1,l⊕

(
⊗l−1

j=0M∨
j

)
are

subbundles.
Let γ : F = O⊕2r → O be given by x 7→ (x, β′(f2)), and δ : E = O⊕2r → O by

y 7→ (α′(e1), y). Put

El ⊃ El := Ker(γ ◦ f ]
0 ◦ · · · ◦ f

]
r−1 ◦ h ◦ e[

r−1 ◦ · · · ◦ e[
l ) ∩Ker(δ ◦ e]

0 ◦ · · · ◦ e
]
l−1)

Fl ⊃ Fl := Ker(γ ◦ e]
0 ◦ · · · ◦ e

]
r−1 ◦ h−1 ◦ f [

r−1 ◦ · · · ◦ f [
l ) ∩Ker(γ ◦ f ]

0 ◦ · · · ◦ f
]
l−1).

(3.13)

Then El and Fl are vector subbundles of El and Fl respectively, and we have the
direct sum decompositons

(3.14) El =
(
⊗l−1

j=0M
∨
j

)
⊕Oe2,l ⊕ El, Fl = Of1,l ⊕

(
⊗l−1

j=0M
∨
j

)
⊕Fl

for 0 ≤ l ≤ r. Moreover the rank r + l bf-morphism

(Ml, µl, El+1 → El,Ml ⊗ El+1 ← El, r + l)

is a direct sum of the bf-morphisms(
Ml, µl,(⊗l

j=0M∨
j )⊕Oe2,l+1 → (⊗l−1

j=0M
∨
j )⊕Oe2,l),

(⊗l−1
j=0M

∨
j )⊕Mle2,l+1 ← (⊗l−1

j=0M
∨
j )⊕Oe2,l, 1

)
and (

Ml, µl, E l+1 → El,Ml ⊗ E l+1 ← El, r + l − 1
)
.

Likewise (Ml, µl,Fl+1 → Fl,Ml ⊗ Fl+1 ← Fl, r + l) is a direct sum of the bf-
morphisms (

Ml, µl,Of1,l+1 ⊕ (⊗k
j=0M∨

j )→ Of1,l ⊕ (⊗l−1
j=0M

∨
j ),

Mlf1,l+1 ⊕ (⊗l−1
j=0M

∨
j )← Of1,l ⊕ (⊗l−1

j=0M
∨
j ), 1

)

and (
Ml, µl,F l+1 → Fl,Ml ⊗F l+1 ← Fl, r + l − 1

)
.
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Note that Er
e]

r−1−−−→ Er−1 and Fr

f]
r−1−−−→ Fr−1 are isomorphisms. Let h be the

composed isomorphism f ]
r−1 ◦ h ◦ e

]−1
r−1 : Er−1 → Fr−1. Then the bf-morphisms(

Mi, µi, E i+1 → E i, E i →Mi ⊗ E i+1, r − 1− i
)(

Mi, µi,F i+1 → F i,F i →Mi ⊗F i+1, r − 1− i
)(3.15)

(0 ≤ i ≤ r − 2), and the isomorphism h : Er−1 → Fr−1 give an generalized
symplectic isomorphism Φ from E0 to F0.

Since (β′−1(f1,0), f2) = 1, we have β′−1(f1,0) =t (1, c2, . . . , c2r−1, c2r). Similarly
we have α′−1(e2,0) =t (d1, 1, d3, . . . , d2r).

Let θ′E and θ′F be the isomorphisms O⊕2r
S → O⊕2r

S defined by the matrices

1 d1 −d4 d3 . . . −d2r d2r−1

1
d3 1
d4 1
...

. . .
d2r−1 1
d2r 1


(3.16)

and 

1
c2 1 c4 −c3 . . . c2r −c2r−1

c3 1
c4 1
...

. . .
c2r−1 1
c2r 1


(3.17)

respectively, where no entry is understood to be zero.
Restricting the symplectic isomorphisms α′◦θ′E : O⊕2r → O⊕2r = E0 and β′◦θ′F :

O⊕2r → O⊕2r = F0 to the last (2r− 2) direct summands O⊕2r−2 ⊂ O⊕2r, we have
symplectic isomorphisms O⊕2r−2 ' E0 and O⊕2r−2 ' F0. We regard E0 and F0 as
equal to O⊕2r−2 by these isomorphisms. By induction hypothesis, the generalized
isomorphism Φ has a diagonalization with respect to (α, β) ∈ W2r−2 ×W2r−2 in
a neighborhood of s. Replacing S by this neighborhood, we may assume that Φ
has a diagonalization with respect to (α, β) ∈ W2r−2 ×W2r−2 on S. So we have
isomorphisms

ψi : OS
∼−→Mi (0 ≤ i ≤ r − 2),

u0 : O⊕2r−2 → O⊕2r−2 ' E0, v0 : O⊕2r−2 → O⊕2r−2 ' F0,

ul : O⊕2r−2 → E l, vl : O⊕2r−2 → F l (1 ≤ l ≤ r − 1)

(3.18)

such that α−1 ◦ u0 ∈ U+
2r−2(OS) and β

−1 ◦ v0 ∈ U−2r−2(OS). Since σ ∈ ⊗r−1
j=0Mj

is nowhere vanishing, there is a unique isomorphism ψr−1 : OS →Mr−1 such that(
⊗r−1

j=0ψj

)
(1) = σ.

For 1 ≤ l ≤ r − 1, let

ul :=
((
⊗l−1

j=0ψ
∨
j

)
⊕ id

)
⊕ ul :O⊕2 ⊕O⊕2r−2 →

(
⊗l−1

j=0M
∨
j ⊕O

)
⊕ E l = El

vl :=
(
id⊕

(
⊗l−1

j=0ψ
∨
j

))
⊕ vl :O⊕2 ⊕O⊕2r−2 →

(
O ⊕⊗l−1

j=0M
∨
j

)
⊕F l = Fl

(3.19)
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and let

ur :=
((
⊗r−1

j=0ψ
∨
j

)
⊕ id

)
⊕
(
(e]

r−1)
−1 ◦ ur−1

)
:O⊕2 ⊕O⊕2r−2

→
(
⊗r−1

j=0M
∨
j ⊕O

)
⊕ Er = Er

vr :=
(
id⊕

(
⊗r−1

j=0ψ
∨
j

))
⊕
(
(f ]

r−1)
−1 ◦ vr−1

)
:O⊕2 ⊕O⊕2r−2

→
(
O ⊕⊗r−1

j=0M
∨
j

)
⊕Fr = Fr.

(3.20)

Let u0 : O⊕2⊕O⊕2r−2 = O⊕2r → O⊕2r = E0 be the morphism α′◦θ′E ◦(id⊕u0) and
let v0 : O⊕2 ⊕O⊕2r−2 = O⊕2r → O⊕2r = F0 be the morphism β′ ◦ θ′F ◦ (id⊕ v0).
We have

α′ ◦ θ′E ◦ (id⊕ u0) = α′ ◦ (id⊕ α) ◦
{
(id⊕ α)−1 ◦ θ′E ◦ (id⊕ α)

}
◦ (id⊕ (α−1 ◦ u0)),

and we have α := α′ ◦ (id⊕α) ∈W2r and
{
(id⊕ α)−1 ◦ θ′E ◦ (id⊕ α)

}
◦ (id⊕ (α−1 ◦

u0)) ∈ U+
2r(OS). Similarly, if we put β := β′ ◦ (id ⊕ β), then β−1 ◦ v0 ∈ U−2r(OS).

Therefore these data give a diagonalization of Φ with respect to (α, β) ∈W2r×W2r.
(2) Again we proceed by induction on r. We follow closely the argument in (1)

and use the same notation. Let υ : K \ {0} → Γ be the valuation, where Γ is the
valuation group of R. (By convention υ(0) = +∞.) When V is a one-dimensional
K-vector space, we denote υ(x) ≤ υ(y) for x, y ∈ V if for one (and all) K -linear
isomorphism ι : V → K, we have υ(ι(x)) ≤ υ(ι(y)).

In the proof of (1), we can choose (α′, β′) ∈W2r ×W2r such that

(3.21) v
(
(β′−1 ◦ g ◦ α′(e1), f2)

)
≤ v

(
(β′−1 ◦ g ◦ α′(ei), fj)

)
for 1 ≤ i, j ≤ 2r. Then for any x ∈ R2r ⊂ K2r = E and y ∈ R2r ⊂ K2r = F ,
we have (g(x), y)/σ ∈ R. Therefore we have di, cj ∈ R in (3.16) and (3.17). By
induction hypothesis, we can choose the diagonalization (3.18) of Φ in (1) such that
ψ−1

i (µi) ∈ R (0 ≤ i ≤ r − 2) and α−1 ◦ u0 ∈ U+
2r−2(R) and β

−1 ◦ v0 ∈ U−2r−2(R).
Therefore arguing as in (1), we obtain a diagonalization of Φ with respect to

(α, β) ∈ W2r ×W2r such that α−1 ◦ u0 ∈ U+
2r(R), β−1 ◦ v0 ∈ U−2r(R), ψ−1

i (µi) ∈ R
(0 ≤ i ≤ r − 2), and that

(3.22) ξ(g(x)) ∈ R2r ⊂ K2r = F0

for any x ∈ R2r ⊂ K2r = E0, where ξ is the inverse of the morphism
(
⊗r−1

j=0ψj

)
⊗

idF0 : F0 →
(
⊗r−1

j=0Mj

)
⊗F0.

It remains to show that ψ−1
r−1(µr−1) ∈ R. If r = 1, then (ξ ◦ g ◦ u0)(t(0, 1)) =

v0
(
t(0, ψ−1

0 (µ0)2)
)
. Hence we have ψ−1

0 (µ0) ∈ R by (3.22). If r ≥ 2, then consid-
ering (3.22) for x = u0(t(0, 0, 1, 0, . . . , 0)), we know that ψ−1

r−1(µr−1) ∈ R. �

Proposition 3.9. Let S, E, F and Φ as in Proposition 3.8. For a given pair
(α, β) ∈ W2r ×W2r, there exists at most one diagonalization of Φ with respect to
(α, β).

Proof. This proposition follows from the fact that the construction of the diago-
nalization of Φ given in the proof of Proposition 3.8 is the unique way. A rigorous
proof is as follows.

Let e1, . . . , e2r be the standard basis of E = O⊕2r
S , and f1, . . . , f2r that of F =

O⊕2r
S . By Remark 3.7, we may assume that (α, β) = (id, id). Let us be given two

diagonalization of Φ with respect to (id, id):

u
(m)
i : O⊕2r → Ei, v

(m)
i : O⊕2r → Fi (0 ≤ i ≤ r),

ψ
(m)
i : OS →Mi (0 ≤ i ≤ r − 1)
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with the entries of u(m)
0 and v(m)

0

(
u

(m)
0

)
[a,b]

=



(
x

(m)
ab y

(m)
ab

0 0

)
if a < b(

1 y
(m)
ab

0 1

)
if a = b(

0 y
(m)
ab

0 w
(m)
ab

)
if a > b

(
v
(m)
0

)
[a,b]

=



(
0 0

z
(m)
ab w

(m)
ab

)
if a < b(

1 0
z
(m)
ab 1

)
if a = b(

x
(m)
ab 0
z
(m)
ab 0

)
if a > b,

(m = 1, 2).
Both ⊗r−1

j=0ψ
(1)
j : OS → ⊗r−1

j=0Mj and ⊗r−1
j=0ψ

(2)
j : OS → ⊗r−1

j=0Mj are induced by

Oe1 ⊂ ⊕2r
i=1Oei = E

f]
0◦···◦f

]
r−1◦h◦e

[
r−1◦···◦e

[
0−−−−−−−−−−−−−−−−−→
(
⊗r−1

j=0Mj

)
⊗F

= ⊕2r
i=1

(
⊗r−1

j=0Mj

)
fi →

(
⊗r−1

j=0Mj

)
f1,

hence we have ⊗r−1
j=0ψ

(1)
j = ⊗r−1

j=0ψ
(2)
j .

t(y(m)
11 , 1, y(m)

21 , w
(m)
21 , . . . , y

(m)
r1 , w

(m)
r1 ) (resp. t(1, z(m)

11 , x
(m)
21 , z

(m)
21 , . . . , x

(m)
r1 , z

(m)
r1 ))

corresponds to the morphism

Of2 ⊂ ⊕2r
i=1Ofi = F

e]
0◦···◦e

]
r−1◦h

−1◦f[
r−1◦···◦f

[
0−−−−−−−−−−−−−−−−−−→
(
⊗r−1

j=0Mj

)
⊗ E

(ϕ
(m)
r−1)

−1

−−−−−−→ E = O⊕2r

(resp.

Oe1 ⊂ ⊕2r
i=1Oei = E

f]
0◦···◦f

]
r−1◦h◦e

[
r−1◦···◦e

[
0−−−−−−−−−−−−−−−−−→
(
⊗r−1

j=0Mj

)
⊗F

(ϕ
(m)
r−1)

−1

−−−−−−→ F = O⊕2r),

therefore x(1)
a1 = x

(2)
a1 , y(1)

a1 = y
(2)
a1 , z(1)

a1 = z
(2)
a1 , w(1)

a1 = w
(2)
a1 . From this we know

that the restrictions of u(1)
i and u

(2)
i (resp. v(1)

i and v
(2)
i ) to the first two factors

O⊕2 ⊂ O⊕2r are equal for 0 ≤ i ≤ r. Let γ : F = O⊕2r → O and δ : E = O⊕2r → O
be given by x 7→ (x, f2) and y 7→ (e1, y) respectively.

Let E i and F i (0 ≤ i ≤ r) be as in (3.13). In particular we have

E0 = 〈t(1, 0, . . . , 0),t(y(m)
11 , 1, . . . , y(m)

r1 , w
(m)
r1 )〉⊥,

F0 = 〈t(1, z(m)
11 , . . . , x

(m)
r1 , z

(m)
r1 ),t(0, 1, 0, . . . , 0)〉⊥.

As in the proof of Proposition 3.8, Φ induces a generalized symplectic isomorphism
Φ from E0 to F0.
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Choose 

−w(m)
21

0
1
0
...
0
0





y
(m)
21

0
0
1
...
0
0


. . .



−w(m)
r1

0
0
0
...
1
0





y
(m)
r1

0
0
0
...
0
1


,

and 

0
z
(m)
21

1
0
...
0
0





0
−x(m)

21

0
1
...
0
0


. . .



0
z
(m)
r1

0
0
...
1
0





0
−x(m)

r1

0
0
...
0
1


,

as bases of E0 and F0 respectively. Then with respect to these bases,

u
(m)
i : O⊕2r−2

S → Ei, v
(m)
i : O⊕2r−2

S → Fi (0 ≤ i ≤ r − 1),

ψ
(m)
i : OS →Mi (0 ≤ i ≤ r − 2)

give diagonalizations of Φ (with respect to (id, id)), where u(m)
i and v

(m)
i are the

restrictions of u(m)
i and v

(m)
i to the last (2r − 2) factors. By induction hypothesis

we have

ψ
(1)
i = ψ

(2)
i (0 ≤ i ≤ r − 2),

u
(1)
i = u

(2)
i and v

(1)
i = v

(2)
i (0 ≤ i ≤ r − 1).

Since the restrictions of e]
r−1 and f ]

r−1 respectively to Er and Fr induce isomor-
phisms Er

∼−→ Er−1 and Fr
∼−→ Fr−1, the equality u

(1)
r−1 = u

(2)
r−1and v

(1)
r−1 = v

(2)
r−1

implies that u(1)
r = u

(2)
r and v

(1)
r = v

(2)
r . All together we have ϕ(1)

i = ϕ
(2)
i (0 ≤ i ≤

r − 1), u(1)
i = u

(2)
i and v(1)

i = v
(2)
i (0 ≤ i ≤ r). �

Remark 3.10. By Proposition 3.9 we know that given two generalized symplectic
isomorphisms Φ1 and Φ2 from E to F , there exists at most one equivalence between
Φ1 and Φ2. (cf. [Kausz1, the proof of Theorem 5.5 in page 579].)

Proposition 3.11. Let Φ be as in Proposition 3.8. For a point s ∈ S, if Φ⊗S k(s),
the pull-back of Φ to Speck(s), has a diagonalization with respect to (α, β) ∈W2r×
W2r, then Φ has a diagonalization in a neighborhood of s ∈ S.

Proof. We may assume that (α, β) = (id, id). Let e1, . . . , e2r be the standard basis
of E = O⊕2r

S , and f1, . . . , f2r that of F = O⊕2r
S . Since Φ⊗Sk(s) has a diagonalization

with respect to (id, id), the morphism

Oe1 ⊂ O⊕2r = E
f]
0◦···◦f

]
r−1◦h◦e

[
r−1◦···◦e

[
0−−−−−−−−−−−−−−−−−→
(
⊗r−1

j=0Mj

)
⊗F

→
(
⊗r−1

j=0Mj

)
f1

is nonzero at s, hence nonzero in a neighborhood of s. If we define subbundles
E l ⊂ El and F l ⊂ Fl as in the proof of Proposition 3.8, we obtain a generalized
symplectic isomorphism Φ from E0 to F0 that has a diagonalization with respect to
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(id, id) at Speck(s). By induction hypothesis, it has a diagonalizaiton with respect
to (id, id) in a neighborhood of s ∈ S. So Φ has a diagonalization with respect to
(id, id). �

Definition 3.12. Let S be a scheme, P a line bundle on S, E and F locally free
OS-modules of rank 2r, E ⊗ E → P and F ⊗ F → P non-degenerate alternate
bilinear forms.

The functor KSp(E ,F) from the category of S-schemes to the category of sets is
defined to associate to an S-scheme T the set of equivalence classes of generalized
symplectic isomorphisms from ET to FT .

Proposition 3.13. The functor KSp(E ,F) is represented by a scheme which is
smooth and of finite presentation over S.

Proof. If we prove the representability locally on S, then by Remark 3.10 we can
glue together locally-constructed unversal families. So we may assume that E =
F = O⊕2r

S and the symplectic bilinear forms are given by the matrix J2r.
For a pair (α, β) ∈ W2r × W2r, we define the subfunctor KSp(E ,F)(α,β) ⊂

KSp(E ,F) to associate to an S-scheme T the set of equivalence classes of generalized
symplectic isomorphisms from ET to FT that have a diagonalization with respect
to (α, β). By Proposition 3.11, KSp(E ,F)(α,β) is an open subfunctor of KSp(E ,F).
Since Remark 3.10 guarantees that the universal families glue together, it suffices to
prove that KSp(E ,F)(α,β) is represented by a smooth scheme of finite presentation
over S.

For an S-scheme T , let us given a generalized symplectic isomorphism

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er → Fr),

from ET to FT with its unique diagonalization with respect to (α, β)

ui : O⊕2r
T → Ei, vi : O⊕2r

T → Fi (0 ≤ i ≤ r)
ψi : OT →Mi (0 ≤ i ≤ r − 1)

with α−1 ◦ u0 ∈ U+
2r(OT ) and β−1 ◦ v0 ∈ U−2r(OT ).

The global sections ψ−1
i (µi) (0 ≤ i ≤ r−1) give rise to a morphism g1 : T → Ar

S .
The matrices α−1 ◦ u0 ∈ U+

2r(OT ) and β−1 ◦ v0 ∈ U−2r(OT ) give rise to morphisms
g2 : T → U+

2r(OS) and g3 : T → U−2r(OS). Conversely, given g1 : T → Ar
S , g2 :

T → U+
2r(OS) and g3 : T → U−2r(OS), we can recover an object of KSp(E ,F)(α,β).

Therefore the functor KSp(E ,F)(α,β) is representable by a scheme KSp(E ,F)(α,β),
and we have an isomorphism

(3.23) KSp(E ,F)(α,β) ' U+
2r(OS)×S Ar

S ×S U−2r(OS).

�

Definition 3.14. We denote by KSp(E ,F) the S-scheme that represents the func-
tor KSp(E ,F).

In order to prove the projectivity of KSp(E ,F), we shall construct a closed
immersion of KSp(E ,F) to KGL(E ,F).

Let S be a scheme, P a line bundle on S, E and F rank 2r locally free OS-
modules, E ⊗ E → P and F ⊗ F → P non-degenerate alternate bilinear forms.

We compare the scheme KSp(E ,F) and KGL(E ,F).
Let

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr),
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be a generalized symplectic isomorphism from E to F . If we let

E ′i := E0, F ′i := F0 (0 ≤ i ≤ r − 1),

E ′i := Er−i, F ′i := Fr−i (r ≤ i ≤ 2r),

L′i =M′
i := OS , λ′i = µ′i := 1 (0 ≤ i ≤ r − 1),

L′i =M′
i :=Mi−r, λ′i = µ′i := µi−r (r ≤ i ≤ 2r − 1),

then

Ψ =(L′i, λ′i,M′
i, µ

′
i, E ′i →M′

i ⊗ E ′i+1, E ′i ← E ′i+1,

F ′i+1 → F ′i ,L′i ⊗F ′i+1 ← F ′i (0 ≤ i ≤ 2r − 1), h : E ′2r → F ′2r)
(3.24)

is a generalized isomorphism from E to F . By this correspondence, we have a
natural transformation

τ : KSp(E ,F)→ KGL(E ,F).

Proposition 3.15. For any S-scheme T , the morphism KSp(E ,F)(T )→ KGL(E ,F)(T )
of sets is injective.

Proof. For l = 1, 2, let

Φ(l) =(M(l)
i , µ

(l)
i , E(l)

i

e
[(l)
i−−−→M(l)

i ⊗ E
(l)
i+1, E

(l)
i

e
](l)
i←−−− E(l)

i+1,

F (l)
i+1

f
](l)
i−−−→ F (l)

i ,M(l)
i ⊗F

(l)
i+1

f
[(l)
i←−−− F (l)

i (0 ≤ i ≤ r − 1),

h(l) : E(l)
r → F (l)

r ),

(3.25)

be a generalized symplectic isomorphisms from ET to FT . Let sE,i :M(1)
i →M(2)

i

and sF,i :M(1)
i →M(2)

i (0 ≤ i ≤ r−1) be isomorphisms such that sE,i(µ
(1)
i ) = µ

(2)
i

and sF,i(µ
(1)
i ) = µ

(2)
i . Let tE,i : E(1)

i → E(2)
i and tF,i : F (1)

i → F (2)
i be isomorphisms

such that tE,0 = idE and tF,0 = idF , and that

tE,i ◦ e](1)
i = e

](2)
i ◦ tE,i+1, (sE,i ⊗ tE,i+1) ◦ e[(1)

i = e
(2)[
i ◦ tE,i

tF,i ◦ f ](1)
i = f

](2)
i ◦ tF,i+1, (sF,i ⊗ tF,i+1) ◦ f [(1)

i = f
(2)[
i ◦ tF,i (0 ≤ i ≤ r − 1)

tF,r ◦ h(1) = h(2) ◦ tE,r.

(3.26)

Then sE,i, sF,i, tE,j and tF,j (0 ≤ i ≤ r−1, 0 ≤ j ≤ r) give an equivalence between
Φ(1) and Φ(2) as generalized isomorphisms. If sE,i = sF,i (0 ≤ i ≤ r− 1), then they
give an equivalence between Φ(1) and Φ(2) as generalized symplectic isomorphisms.
Therefore the proposition follows from the next claim.

Claim. sE,i = sF,i (0 ≤ i ≤ r − 1).

Proof of Claim. By the commutativity of the diagram (3.2), we have

(1⊗ πF ) ◦ ((f ](l)
0 ◦ · · · ◦ f ](l)

r−1 ◦ h(l) ◦ pE
(l)

k )⊗ qF
(l)

k )

= (1⊗ πE) ◦ (qE
(l)

k ⊗ (e](l)
0 ◦ · · · ◦ e](l)

r−1 ◦ h(l)−1 ◦ pF
(l)

k ))
(3.27)

as morphisms from {(
⊗k−1

j=0M
(l)∨
j ⊗E(l)

0 )×E(l)
k

E(l)
r } ⊗ {(

⊗k−1
j=0M

(l)∨
j ⊗F (l)

0 )×F(l)
k

F (l)
r } to

⊗k−1
j=0M

(l)∨
j ⊗P for 1 ≤ k ≤ r and l = 1, 2. Using the equalities in (3.26)
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we know that(
⊗k−1

j=0sF,j ⊗ 1
)
◦ (1⊗ πF ) ◦

(
(f ](1)

0 ◦ · · · ◦ f ](1)
r−1 ◦ h(1) ◦ pE

(1)

k )⊗ qF
(1)

k

)
= (1⊗ πF ) ◦

(
(f ](2)

0 ◦ · · · ◦ f ](2)
r−1 ◦ h(2) ◦ pE

(2)

k )⊗ qF
(2)

k

)
◦
((

(⊗k−1
j=0sE,j ⊗ tE,0)× tE,r

)
⊗
(
(⊗k−1

j=0sF,j ⊗ tF,0)× tF,r

))
and (

⊗k−1
j=0sE,j ⊗ 1

)
◦ (1⊗ πE) ◦

(
qE

(1)

k ⊗ (e](2)
0 ◦ · · · ◦ e](2)

r−1 ◦ h(1)−1 ◦ pF
(1)

k )
)

= (1⊗ πE) ◦
(
qE

(2)

k ⊗ (e](2)
0 ◦ · · · ◦ e](2)

r−1 ◦ h(2)−1 ◦ pF
(2)

k )
)

◦
((

(⊗k−1
j=0sE,j ⊗ tE,0)× tE,r

)
⊗
(
(⊗k−1

j=0sF,j ⊗ tF,0)× tF,r

))
as morphisms from {(

⊗k−1
j=0M

(1)∨
j ⊗E(1)

0 )×E(1)
k

E(1)
r }⊗{(

⊗k−1
j=0M

(1)∨
j ⊗F (1)

0 )×F(1)
k

F (1)
r } to

⊗k−1
j=0M

(2)∨
j ⊗ P. From these equalities, we know that if we denote the

morphism in (3.27) by bl (l = 1, 2), then we have(
⊗k−1

j=0sE,j ⊗ 1
)
◦ b1 =

(
⊗k−1

j=0sF,j ⊗ 1
)
◦ b1.

Using diagonalization locally, you can check that b1 is surjective. So we have⊗k−1
j=0 sE,j =

⊗k−1
j=0 sF,j (1 ≤ k ≤ r). Hence sE,j = sF,j (0 ≤ j ≤ r − 1). This

completes the proof of the claim. �

This is the end of the proof of Proposition 3.15. �

The natural transformation τ : KSp(E ,F) → KGL(E ,F) induces a morphism
ι : KSp(E ,F)→ KGL(E ,F) of S-schemes.

Corollary 3.16. The morphism ι is a closed immersion.

Proof. We can check this locally on S, so we may assume that S is an affine scheme,
and that P = OS , E = F = O⊕2r

S , and that E ⊗ E → P and F ⊗ F → P are given
by the matrix J2r.

Let R be a valuation ring over OS , and K the quotient field of R. In the
commutative diagram

(3.28)
KSp(E ,F)(SpecR)

(a)−−→ KGL(E ,F)(SpecR)
↓ (b) ↓ (d)

KSp(E ,F)(SpecK)
(c)−−→ KGL(E ,F)(SpecK),

(a) and (c) are injective by Proposition 3.15.
If we are given an element Φ of KSp(E ,F)(SpecK), we know that it extends

over SpecR by choosing a diagonalization as in (2) of Proposition 3.8. Hence (b)
is surjective. By [Kausz1], KGL(E ,F) is a projective S-scheme, so (d) is bijective
by the valuative criterion. Therefore (b) is also bijective. Then KSp(E ,F) is a
proper S-scheme by the valuative criterion. By Proposition 3.15, the morphism ι
is a closed immersion. �

4. Relation with the symplectic Grassmannian

Let E , F be locally free sheaves of rank 2r on a scheme S, and πE : E ⊗ E → P,
πF : F ⊗ F → P be non-degenerate alternate bilinear forms with values in a line
bundle P. We define the non-degenerate alternate bilinear form πE⊕F : (E ⊕ F)⊗
(E⊕F)→ P as πE⊕F ((e, f)⊗ (e′, f ′)) := πE(e⊗e′)−πF (f⊗f ′). Let LGr(E⊕F) be
the symplectic Grassmannian parametrizing rank 2r isotropic subbundles of E ⊕F .
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Giving a symplectic isomorphism E α−→ F is equivalent to giving a rank 2r
isotropic subbundle H ⊂ E ⊕ F which projects isomorphically to both E and F
(Consider the graph of α). Therefore LGr(E ⊕ F) is also a compactification of
Sp(E ,F).

The relation of the two compactifications KSp(E ,F) and LGr(E ⊕ F) is as
follows.

Proposition 4.1. There is a natural morphism g : KSp(E ,F)→ LGr(E ⊕ F).

Proof. Let
Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr)

be the universal generalized symplectic isomorphism from E0 = EKSp to F0 = FKSp.
Then by the condition 2 of Definition 3.1, the morphism

β := (e]
0 ◦ · · · ◦ e

]
r−1, f

]
0 ◦ · · · ◦ f

]
r−1 ◦ h) : Er → EKSp ⊕FKSp

is injective, and its image is a subbundle of EKSp ⊕ FKSp. By the condition 3 of
Definition 3.1, this subbundle is isotropic. Hence β(Er) ⊂ EKSp ⊕ FKSp gives us a
morphism KSp(E ,F)→ LGr(E ⊕ F). �

For later use, we prepare some easy lemmas concerning LGr(E ⊕ F).

Lemma 4.2. Let 0 → U → pr∗S (E ⊕ F) → Q → 0 be the universal sequence on
LGr(E ⊕ F). Then there is a natural isormorphism

(4.1) g∗ detQ ' pr∗SP⊗r ⊗
r−1⊗
i=0

M⊗(r−i)
i .

Proof. Let Φ be as in the proof of the above proposition. By the construction of g,
we have an isomorphism

g∗ detQ ' det(E ⊕ F)KSp ⊗ (det Er)∨ .
By Lemma 2.8 (1), there is a natural isomorphism

det Er ' det E0 ⊗
r−1⊗
i=0

M⊗(i−r)
i .

Combining these isomorphism together with the isomorphim det E ' detF ' P⊗r,
we obtain (4.1). �

Lemma 4.3. Let V and W be vector spaces of dimension 2r over a field K with
non-degenerate alternate forms (−,−)V and (−,−)W . Endow V ⊕W with the non-
degenerate alternate form (−,−)V⊕W given by ((v, w), (v′, w′))V⊕W = (v, v′)V −
(w,w′)W .

If U ⊂ V ⊕W is an isotropic subspace of dimension 2r, then we have dimU ∩
(V ⊕ 0) = dimU ∩ (0⊕W ).

Proof. Easy. �

We denote by t(U) the number dimU ∩ (V ⊕ 0)(= dimU ∩ (0⊕W )), and call it
the type of U . We say that U is of type ≤ n if t(U) ≤ n.

Notation 4.4. We denote by LGr(E ⊕ F)≤n the open subscheme of LGr(E ⊕ F)
parametrizing rank 2r isotropic subbundles of type ≤n of E ⊕ F .

Lemma 4.5. For 0 ≤ n < r, the codimension of LGr(E ⊕ F) \ LGr(E ⊕ F)≤n in
LGr(E ⊕ F) is greater than or equal to (n+ 1)2.

Proof. Easy dimension counting. �
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5. Geometry of Strata

If Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr)

with E0 = EKSp(E,F) and F0 = FKSp(E,F) is the universal family on KSp(E ,F),
then vanishing loci of some µi’s are closed subschemes of KSp(E ,F). In this section
we study the closed subschemes just as Kausz did for KGL(E ,F) in [Kausz1, §9].

When Kausz studied the strata of KGL(E ,F), the scheme PGl appeared nat-
urally. The scheme PGl also appears in our study of strata of KSp(E ,F), but in
disguise.

Let S be a scheme, P a line bundle on S. Let A, A′, B and B′ be locally free OS-
modules of rank m, and πA,B′ : A⊗B′ → P and πB,A′ : B⊗A′ → P non-degenerate
pairings.

The S-groupoid Q(πA,B′ , πB,A′) is defined as follows. For an S-scheme T , an
object of Q(πA,B′ , πB,A′)(T ) is a pair of tuples

ΦA =
(
Mi, µi,Ai+1

a]
i−→ Ai,Mi ⊗Ai+1

a[
i←− Ai (0 ≤ i ≤ m− 1)

)
ΦB =

(
Mi, µi,Bi+1

b]
i−→ Bi,Mi ⊗ Bi+1

b[
i←− Bi (0 ≤ i ≤ m− 1)

)(5.1)

such that ΦA and ΦB are complete collineations from (A′)T = Am to (A)T = A0

and from (B′)T = Bm to (B)T = B0 respectively, and such that the following
diagram is commutative:{(

⊗k−1
j=0M

∨
j ⊗A0

)
×Ak

Am

}
⊗
{(
⊗k−1

j=0M
∨
j ⊗ B0

)
×Bk

Bm

}
q
A
k ⊗ p

B
k ↙ ↘ p

A
k ⊗ q

B
k(

⊗k−1
j=0M

∨
j ⊗A0

)
⊗ Bm Am ⊗

(
⊗k−1

j=0M
∨
j ⊗ B0

)
πA,B′ ↘ ↙ πB,A′(

⊗k−1
j=0M

∨
j

)
⊗ (P)T ,

(5.2)

where pAk , qAk , pBk and qBk are defined by

(5.3)

(⊗k−1
j=0M∨

j ⊗A0

)
×Ak

Am
pAk−−→ Am

qAk ↓ ↓ a]
k ◦ · · · ◦ a

]
m−1⊗k−1

j=0M∨
j ⊗A0

a[
k−1◦···◦a

[
0−−−−−−−→ Ak

and

(5.4)

(⊗k−1
j=0M∨

j ⊗ B0

)
×Bk

Bm
pBk−−→ Bm

qBk ↓ ↓ b]k ◦ · · · ◦ b
]
m−1⊗k−1

j=0M∨
j ⊗ B0

b[
k−1◦···◦b

[
0−−−−−−−→ Bk.

Isomorphisms are defined obviously.

Proposition 5.1. For any S-scheme T , the functor

(5.5) Q(πA,B′ , πB,A′)(T )→ PGL(A′,A)(T )

which associates ΦA to an object (ΦA,ΦB) ∈ Q(πA,B′ , πB,A′)(T ) is an equivalence.
In particular, the functor Q(πA,B′ , πB,A′) is represented by a scheme which is smooth
and projective over S by Theorem 2.7.
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Proof. We shall construct the inverse of the functor (5.5).
Given an object

ΦA =
(
Mi, µi,Ai+1

a]
i−→ Ai,Mi ⊗Ai+1

a[
i←− Ai (0 ≤ i ≤ m− 1)

)
of PGL(A′,A)(T ), let Bk be{(

⊗k−1
j=0M

∨
j ⊗A0

)
×Ak

A0

}∨ ⊗⊗k−1
j=0M

∨
j ⊗ (P)T (0 ≤ k ≤ m),

and we identify (B)T and (B′)T with

{A0 ×A0 Am}∨ ⊗ (P)T (= A∨m ⊗ (P)T = (A′∨ ⊗ P)T )

and
m−1⊗

j=0

M∨
j ⊗A0

×Am Am


∨

⊗
m−1⊗
j=0

M∨
j ⊗ (P)T (= A∨0 ⊗ (P)T = (A∨ ⊗ P)T )

respectively by πB,A′ and πA,B′ . We have natural morphisms(
⊗k−1

j=0M
∨
j ⊗A0

)
×Ak

Am '
{(
⊗k

j=0M∨
j ⊗A0

)
×M∨

k⊗Ak
(M∨

k ⊗Am)
}
⊗Mk

(id×µk)⊗id−−−−−−−→
{(
⊗k

j=0M∨
j ⊗A0

)
×Ak+1 Am

}
⊗Mk

and(
⊗k

j=0M∨
j ⊗A0

)
×Ak+1 Am

µk×id−−−−→
(
⊗k−1

j=0M
∨
j ⊗A0

)
×Ak

Am.

The duals of these morphisms induce

Bk+1 → Bk and Bk →Mk ⊗ Bk+1.

To complete the proof, we need to verify that
• Φ := (Mi, µi,Bi+1 → Bi,Mi ⊗ Bi+1 (0 ≤ i ≤ m − 1)) is an object of

PGL(B′,B)(T ),
• The diagram (5.2) commutes for (ΦA,ΦB),
• This construction gives the inverse of (5.5).

Here we shall just check that if a pair of tuples

ΦA =
(
Mi, µi,Ai+1

a]
i−→ Ai,Mi ⊗Ai+1

a[
i←− Ai (0 ≤ i ≤ m− 1)

)
ΦB =

(
Mi, µi,Bi+1

b]
i−→ Bi,Mi ⊗ Bi+1

b[
i←− Bi (0 ≤ i ≤ m− 1)

)(5.6)

is an object of Q(πA,B′ , πB,A′)(T ), then there is an isomorphism

(5.7) Bk '
{(
⊗k−1

j=0M
∨
j ⊗A0

)
×Ak

Am

}∨ ⊗⊗k−1
j=0M

∨
j ⊗ (P)T ,

leaving other verification to the reader.
Let β :

(⊗k−1
j=0M∨

j ⊗ B0

)
× Bm → Bk be the morphism which sends (y0, ym) ∈(⊗k−1

j=0M∨
j ⊗ B0

)
× Bm to (b[k−1 ◦ · · · ◦ b[0)(y0) + (b]k ◦ · · · ◦ b

]
m−1)(ym) ∈ Bk. By

the definition of collineation, β is surjective. We define a bilinear form

(5.8)
{(
⊗k−1

j=0M
∨
j ⊗A0

)
×Ak

Am

}
⊗ Bk → ⊗k−1

j=0M
∨
j ⊗ (P)T

by (x0, xm)⊗β(y0, ym) 7→ πA,B′(x0, ym)+πB,A′(y0, xm). Note that if β(y0, ym) = 0,

then (y0,−ym) ∈
(⊗k−1

j=0M∨
j ⊗ B0

)
×Bk
Bm so we have πA,B′(x0, ym) = −πB,A′(y0, xm)

by the commutativity of (5.2). Therefore (5.8) is well-defined. Since πA,B′ and πBA′
are non-degenerate, (5.8) is also non-degenerate. Hence we have the isomorphim
(5.7). �
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Definition 5.2. Let

Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr),

(5.9)

be the universal generalized symplectic isomorphism from E0 = (E)KSp(E,F) to
F0 = (F)KSp(E,F). For a subset I ⊂ {0, . . . , r−1}, we denote by XI the subscheme⋂

i∈I{µi = 0} ⊂ KSp(E ,F).

Definition 5.3. For a subset I = {i1 < · · · < il} ⊂ {0, . . . , r− 1}, let SpF lI(E) be
the functor from the category of S-schemes to the category of sets that associates
to an S-scheme T the set of filtrations

0 ⊂ Fl(ET ) ⊂ Fl−1(ET ) ⊂ · · · ⊂ F1(ET ) ⊂ ET

of isotropic subbundles with rank Fj(ET ) = r− ij . We understand that Fl+1(ET ) =
0.

We denote by SpFlI(E) the S-scheme that represents SpF l(E).

Put SpFlI := SpFlI(E) ×S SpFlI(F), Ẽ := (E)SpFlI , F̃ := (F)SpFlI and P̃ :=
(P)SpFlI . Let

0 ⊂ Fl(Ẽ) ⊂ · · · ⊂ F1(Ẽ) ⊂ Ẽ ,

0 ⊂ Fl(F̃) ⊂ · · · ⊂ F1(F̃) ⊂ F̃
(5.10)

be the pull-backs to SpFlI of the universal filtrations of E and F on SpFlI(E) and
SpFlI(F) respectively. The non-degenerate alternate bilinear forms πE : E ⊗E → P
and πF : F ⊗ F → P induce nondegenerate alternate bilinear forms

π̃E : F1(Ẽ)⊥/F1(Ẽ)⊗ F1(Ẽ)⊥/F1(Ẽ)→ P̃,

π̃F : F1(F̃)⊥/F1(F̃)⊗ F1(F̃)⊥/F1(F̃)→ P̃

and non-degenerate bilinear forms

π̃E,i : Fi+1(Ẽ)⊥/Fi(Ẽ)⊥ ⊗ Fi(Ẽ)/Fi+1(Ẽ)→ P̃,

π̃F,i : Fi+1(F̃)⊥/Fi(F̃)⊥ ⊗ Fi(F̃)/Fi+1(F̃)→ P̃ (1 ≤ i ≤ l).

Then the stratum XI is described as follows. This is a symplectic analogue of
[Kausz1, Themorem 9.3]:

Proposition 5.4. There is an isomorphism

(5.11) XI → KSp(F1(Ẽ)⊥/F1(Ẽ),F1(F̃)⊥/F1(F̃))×SpFlI Q

of S-schemes, where Q = Q(π̃E,1, π̃F,1)×SpFlI · · · ×SpFlI Q(π̃E,l, π̃F,l).

Proof. For an S-scheme T , we shall give a bijective correspondence between the
sets of T -valued points of both sides of (5.11). For simplicity of notation we assume
that T=S.

An S-valued point of XI is a generalized symplectic isomorphism E to F

Φ =(Mi, µi, Ei
e[

i−→Mi ⊗ Ei+1, Ei
e]

i←− Ei+1,

Fi+1
f]

i−→ Fi,Mi ⊗Fi+1
f[

i←− Fi (0 ≤ i ≤ r − 1), h : Er
∼−→ Fr),

(5.12)
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such that µi = 0 for i ∈ I. For i < j, we put

E [j]
i := Ker(Ei

e[
j−1◦···◦e

[
i−−−−−−−→

j−1⊗
k=i

Mk ⊗ Ej),

F [j]
i := Ker(Fi

f[
j−1◦···◦f

[
i−−−−−−−→

j−1⊗
k=i

Mk ⊗Fj),

E [i]
j := Ker(Ej

e]
i◦···◦e

]
j−1−−−−−−−→ Ei), F [i]

j := Ker(Fj

f]
i ◦···◦f

]
j−1−−−−−−−→ Fi).

For i < k < j, we put

(5.13) E [i][j]
k := E [i]

k ∩ E
[j]
k and F [i][j]

k := F [i]
k ∩ F

[j]
k .

Claim 5.4.1. Er ⊃ E [ik]
r and Fr ⊃ F [ik]

r are subbundles of rank r − ik (1 ≤ k ≤ l).

Proof of Claim 5.4.1. By Lemma 2.8 (2), Im(Eik+1

e]
ik−−→ Eik

) is a rank r + ik sub-
bundle of Eik

. By the condition 1 of Definition 3.1,

Er
e]

ik
◦···◦e]

r−1−−−−−−−−→ Im(Eik+1

e]
ik−−→ Eik

)

is surjective. Hence E [ik]
r is a subbundle of rank r − ik of Er. �

Put Ek ⊃ (F [j]
r )<k> := (e]

k ◦ · · · ◦ e
]
r−1 ◦ h−1)(F [j]

r ) and Fk ⊃ (E [j]
r )<k> :=

(f ]
k ◦ · · · ◦ f

]
r−1 ◦ h)(E

[j]
r ). By the condition 2 of Definition 3.1, (F [ik]

r )<0> and
(E [ik]

r )<0> are subbundles of rank r − ik of E and F respectively. By the same
reasoning in the proof of Claim 5.4.1, E [ik+1]

0 and F [ik+1]
0 are subbundles of rank

r + ik of E and F respectively. So we obtained filtrations

E ⊃ E [il+1]
0 ⊃ · · · ⊃ E [i1+1]

0 ⊃ (F [i1]
r )<0> ⊃ · · · ⊃ (F [il]

r )<0> ⊃ 0,

F ⊃ F [il+1]
0 ⊃ · · · ⊃ F [i1+1]

0 ⊃ (E [i1]
r )<0> ⊃ · · · ⊃ (E [il]

r )<0> ⊃ 0.

Claim 5.4.2. (F [ik]
r )⊥<0> = E [ik+1]

0 and (E [ik]
r )⊥<0> = F [ik+1]

0 (1 ≤ k ≤ l).

Proof of Claim 5.4.2. We shall check that the morphism(
⊗ik−1

j=1 M
∨
j ⊗ E

[ik+1]
0

)
⊗ (F [ik]

r )<0> → ⊗ik−1
j=1 M

∨
j

induced by πE is zero. Take sections x ∈
⊗ik−1

j=1 M∨
j ⊗ E

[ik+1]
0 and (e]

0 ◦ · · · ◦ e
]
r−1 ◦

h−1)(y′) ∈ (F [ik]
r )<0> with y′ ∈ F [ik]

r . Since Er
e]

ik
◦···◦e]

r−1−−−−−−−−→ E [ik+1]
ik

is surjective,

we can find x′ ∈ Er such that (x, x′) ∈
(⊗ik−1

j=1 M∨
j ⊗ E0

)
×Eik

Er. Since y′ ∈

F [ik]
r , we have (0, y′) ∈

(⊗ik−1
j=1 M∨

j ⊗F0

)
×Fik

Fr. By the commutativity of the

diagram 3.2, we have πE(x⊗ (e]
0 ◦ · · · ◦ e

]
r−1 ◦ h−1(y′)) = πF (x′ ⊗ 0) = 0. Therefore

(F [ik]
r )⊥<0> ⊃ E

[ik+1]
0 . Both (F [ik]

r )⊥<0> and E [ik+1]
0 are subbundles of rank r + ik,

hence (F [ik]
r )⊥<0> = E [ik+1]

0 . �

In particular E ⊃ (F [ik]
r )<0> and F ⊃ (E [ik]

r )<0> are isotropic subbundles, there-
fore the filtrations

E ⊃ (F [i1]
r )<0> ⊃ · · · ⊃ (F [il]

r )<0> ⊃ 0,

F ⊃ (E [i1]
r )<0> ⊃ · · · ⊃ (E [il]

r )<0> ⊃ 0
(5.14)
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determine an S-valued point of SpFlI , and induce non-degenerate pairings

πE,k : E [ik+1+1]
0 /E [ik+1]

0 ⊗ (F [ik]
r )<0>/(F [ik+1]

r )<0> → P,

πF,k : F [ik+1+1]
0 /F [ik+1]

0 ⊗ (E [ik]
r )<0>/(E [ik+1]

r )<0> → P.
(5.15)

The bf-morphisms of rank j + i1(
Mj , µj ,E [i1+1]

j+1 /(F [i1]
r )<j+1> → E [i1+1]

j /(F [i1]
r )<j>,

Mj ⊗ E [i1+1]
j+1 /(F [i1]

r )<j+1> ← E [i1+1]
j /(F [i1]

r )<j>

)
,(

Mj , µj ,F [i1+1]
j+1 /(E [i1]

r )<j+1> → F [i1+1]
j /(E [i1]

r )<j>,

Mj ⊗F [i1+1]
j+1 /(E [i1]

r )<j+1> ← F [i1+1]
j /(E [i1]

r )<j>

)
(0 ≤ j ≤ i1 − 1) together with the isomorphism

E [i1+1]
i1

/(F [i1]
r )<i1> ' Er/

(
E [i1]

r + h−1(F [i1]
r )

)
' Fr/

(
h(E [i1]

r ) + F [i1]
r

)
' F [i1+1]

i1
/(E [i1]

r )<i1>

determine an S-valued point of KSp(E [i1+1]
0 /(F [i1]

r )<0>,F [i1+1]
0 /(E [i1]

r )<0>). For
ik < j < ik+1 (1 ≤ k ≤ l and il+1 = r by convention), we can see that the induced
tuples (

Mj , µj , E
[ik][ik+1+1]
j+1 → E [ik][ik+1+1]

j ,Mj ⊗ E
[ik][ik+1+1]
j+1 ← E [ik][ik+1+1]

j

)
,(

Mj , µj ,F
[ik][ik+1+1]
j+1 → F [ik][ik+1+1]

j ,Mj ⊗F
[ik][ik+1+1]
j+1 ← F [ik][ik+1+1]

j

)(5.16)

are bf-morphisms of rank j − ik. The isomorphisms

(E [ik+1+1]
0 /E [ik+1]

0 )⊗M∨
ik
⊗ · · · ⊗M∨

1 ⊗M∨
0 ' E

[ik][ik+1+1]
ik+1 ,

(F [ik+1+1]
0 /F [ik+1]

0 )⊗M∨
ik
⊗ · · · ⊗M∨

1 ⊗M∨
0 ' F

[ik][ik+1+1]
ik+1

induce bf-morphisms of rank 0(
⊗ik

a=0Ma, 0,E
[ik][ik+1+1]
ik+1 → E [ik+1+1]

0 /E [ik+1]
0 ,

⊗ik
a=0Ma ⊗ E

[ik][ik+1+1]
ik+1 ← E [ik+1+1]

0 /E [ik+1]
0

)
,(

⊗ik
a=0Ma, 0,F

[ik][ik+1+1]
ik+1 → F [ik+1+1]

0 /F [ik+1]
0 ,

⊗ik
a=0Ma ⊗F

[ik][ik+1+1]
ik+1 ← F [ik+1+1]

0 /F [ik+1]
0

)
.

(5.17)

We also have isomorphisms

E [ik][ik+1+1]
ik+1

' E [ik]
r /E [ik+1]

r ' (E [ik]
r )<0>/(E [ik+1]

r )<0>,

F [ik][ik+1+1]
ik+1

' F [ik]
r /F [ik+1]

r ' (F [ik]
r )<0>/(F [ik+1]

r )<0>.
(5.18)

The data (5.16), (5.17) and (5.18) determine an S-valued point ofQ(πE,1, πF,1)×SpFlI
· · · ×SpFlI Q(πE,l, πF,l). This defines the morphism (5.11).

Now we shall construct the inverse of (5.11). An S-valued point of

KSp(F1(Ẽ)⊥/F1(Ẽ),F1(F̃)⊥/F1(F̃))×SpFlI Q
is data:
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• E ⊃ F1(E) ⊃ · · · ⊃ Fl(E) ⊃ 0, F ⊃ F1(F) ⊃ · · · ⊃ Fl(F) ⊃ 0, where Fj(E) and
Fj(F) are isotropic subbundles of rank r − ij of E and F respectively,
• a generalized symplectic isomorphism from F1(E)⊥/F1(E) to F1(F)⊥/F1(F)(
M′

j , µ
′
j ,Gj+1

g]
j−→ Gj ,M′

j ⊗ Gj+1

g[
j←− Gj ,

Hj+1

h]
j−→ Hj ,M′

j ⊗Hj+1

h[
j←− Hj , h : Gi1 → Hi1 (0 ≤ j ≤ i1 − 1)

)
,

• an object of Q(πE,k, πF,k) (1 ≤ k ≤ l)(
M′

j , µ
′
j ,G

(k)
j+1 → G

(k)
j ,M′

j ⊗ G
(k)
j+1 ← G

(k)
j ,

H(k)
j+1 → H

(k)
j ,M′

j ⊗H
(k)
j+1 ← H

(k)
j (ik ≤ j ≤ ik+1 − 1)

)
with G(k)

ik
= Fk+1(E)⊥/Fk(E)⊥,H(k)

ik
= Fk+1(F)⊥/Fk(F)⊥, G(k)

ik+1
= Fk(F)/Fk+1(F)

and H(k)
ik+1

= Fk(E)/Fk+1(E), where

πE,k : Fk+1(E)⊥/Fk(E)⊥ ⊗ Fk+1(E)/Fk(E)→ P,

πF,k : Fk+1(F)⊥/Fk(F)⊥ ⊗ Fk+1(F)/Fk(F)→ P.

Then we putMi :=M′
i, µi := µ′i for i /∈ I. For i = ik,Mik

:=M′
ik
⊗
⊗ik−1

j=0 M∨
j

and µik
= 0. For 0 ≤ j ≤ i1, put G̃j := F1(E)⊥ ×G0 Gj and H̃j := F1(F)⊥ ×H0 Hj .

Then for 0 ≤ j ≤ i1 − 1, we have bf-morphisms of rank r + j(
Mj , µj , G̃j+1 → G̃j ,Mj ⊗ G̃j+1 ← G̃j

)
,(

Mj , µj , H̃j+1 → H̃j ,Mj ⊗ H̃j+1 ← H̃j

)
.

For 0 ≤ j ≤ i1, we define Ej and Fj so that the diagrams

G̃0 → G̃j ⊗
⊗j−1

a=0Ma

↓ ↓
E →

⊗j−1
a=0Ma ⊗ Ej ,

H̃0 → H̃j ⊗
⊗j−1

a=0Ma

↓ ↓
F →

⊗j−1
a=0Ma ⊗Fj

are cocartesian.
Then for 0 ≤ j ≤ i1 − 1, we have bf-morphisms of rank r + j

(Mj , µj , Ej+1 → Ej ,Mj ⊗ Ej+1 ← Ej) ,
(Mj , µj ,Fj+1 → Fj ,Mj ⊗Fj+1 ← Fj) .

We define Er = Fr by the cartesian diagram:

Er = Fr → G̃i1

↓ ↓
H̃i1 → Gi1 ' Hi1 .

Then we have

Ker(Er → G̃i1) ' F1(F) and Ker(Fr → H̃i1) ' F1(E).

By this we can consider F1(F) ⊃ · · · ⊃ Fl(F) ⊃ 0 and F1(E) ⊃ · · · ⊃ Fl(E) ⊃ 0 as
filtrations of Er and Fr respectively.
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For ik < p ≤ ik+1 (1 ≤ k ≤ l), we define G?
p , H?

p, G◦p and H◦p by the cocartesian
diagrams:

G(k)
ik+1

= Fk(F)/Fk+1(F) ↪→ Er/Fk+1(F)
↓ ↓
G(k)

p → G?
p ,

H(k)
ik+1

= Fk(E)/Fk+1(E) ↪→ Fr/Fk+1(E)
↓ ↓
H(k)

p → H?
p,

G(k)
ik+1 ⊗

⊗p−1
a=ik+1M∨

a ↪→
(
E/Fk(E)⊥ ⊗

⊗p−1
a=0M∨

a

)
↓ ↓
G(k)

p → G◦p ,

H(k)
ik+1 ⊗

⊗p−1
a=ik+1M∨

a ↪→
(
F/Fk(F)⊥ ⊗

⊗p−1
a=0M∨

a

)
↓ ↓
H(k)

p → H◦p,

and Ep and Fp by the cocartesian diagrams:

G(k)
p → G◦p
↓ ↓
G?

p → Ep,

H(k)
p → H◦p
↓ ↓
H?

p → Fp.

Then for ik < p ≤ ik+1 − 1, we have bf-morphisms of rank r + p

(Mp, µp, Ep+1 → Ep,Mp ⊗ Ep+1 ← Ep) ,
(Mp, µp,Fp+1 → Fp,Mp ⊗Fp+1 ← Fp) .

(5.19)

Moreover for 1 ≤ k < l we have morphisms

Eik+1 → Eik+1/G?
ik+1
' G◦ik+1

/G(k)
ik+1

' (E/Fk+1(E)⊥)⊗⊗ik+1−1
a=0 M∨

a

' {(E/Fk+1(E)⊥)⊗⊗ik+1
a=0M∨

a } ⊗Mik+1

' G◦ik+1+1 ⊗Mik+1 ↪→ Eik+1+1 ⊗Mik+1

and

Eik+1+1 → Eik+1+1/G◦ik+1+1 ' G?
ik+1+1/G

(k+1)
ik+1+1

' Er/Fk+1(F) = G?
ik+1

↪→ Eik+1 .

So we have bf-morphism of r + ik+1

(
Mik+1 , µik+1 = 0, Eik+1+1 → Eik+1 ,Mik+1 ⊗ Eik+1+1 ← Eik+1

)(
Mik+1 , µik+1 = 0,Fik+1+1 → Fik+1 ,Mik+1 ⊗Fik+1+1 ← Fik+1

)
(1 ≤ k < l).

(5.20)

We also have morphisms

Ei1 → Ei1/G̃i1 ' E/F1(E)⊥ ⊗⊗i1−1
a=0M∨

a ' Ei1+1 ⊗Mi1

Ei1+1 → Ei1+1/G◦i1+1 ' G?
i1+1/G

(1)
i1+1 ' Er/F1(F) ' G̃i1 ↪→ Ei1 .

Hence we have bf-morphisms of rank r + i1

(Mi1 , µi1 = 0, Ei1+1 → Ei1 ,Mi1 ⊗ Ei1+1 ← Ei1) ,
(Mi1 , µi1 = 0,Fi1+1 → Fi1 ,Mi1 ⊗Fi1+1 ← Fi1) .

(5.21)



24 TAKESHI ABE

Then the data (5.19), (5.20), (5.21) and Er = Fr determine an S-valued point of
XI . �

We denote by ιI the inclusion XI ↪→ KSp(E ,F). We denote the set{0, 1, . . . , r−
1} by [0, r − 1]. When I = [0, r − 1], the isomorphism (5.11) is

(5.22) X[0,r−1] ' SpFl[0,r−1],

and for the universal filtrations (5.10) on SpFl[0,r−1], we have l = r and rankFj(Ẽ) =
rankFj(F̃) = r + 1− j.

Notation 5.5. For tuples (a1, . . . , ar) and (b1, . . . , br) of integers, we denote by
O(a1, . . . , ar; b1, . . . , br) the line bundle

r⊗
j=1

(
Fr+2−j(Ẽ)⊥/Fr+1−j(Ẽ)⊥

)⊗aj

⊗
r⊗

j=1

(
Fr+2−j(F̃)⊥/Fr+1−j(F̃)⊥

)⊗bj

on SpFl[0,r−1](= SpFl[0,r−1](E)×S SpFl[0,r−1](F)).

We often identify X[0,r−1] with SpFl[0,r−1] by the isomorphism (5.22).

Lemma 5.6. Let
Φ =(Mi, µi, Ei →Mi ⊗ Ei+1, Ei ← Ei+1,

Fi+1 → Fi,Mi ⊗Fi+1 ← Fi (0 ≤ i ≤ r − 1), h : Er → Fr),
(5.23)

be the universal generalized symplectic isomorphism from E0 = (E)KSp(E,F) to F0 =
(F)KSp(E,F).

There are natural isomorphisms

ι∗[0,r−1]M0 ' O(er; er)⊗ pr∗SP∨,

and for 1 ≤ j ≤ r − 1

ι∗[0,r−1]Mj ' O(er−j − er−j+1; er−j − er−j+1)

of line bundles on X[0,r−1] ' SpFl[0,r−1], where

ei := (0, . . . , 0,
i-th
1 , 0, . . . , 0).

Proof. This lemma follows from the correspondence of scheme-valued points of
X[0,r−1] and SpFl[0,r−1] given in Proposition 5.4:

Using the notation of the proof of Proposition 5.4, we have

(5.24)
j⊗

a=0

M∨
a ⊗

(
Fj+2(E)⊥

Fj+1(E)⊥

)
' E [j][j+2]

j+1 ' Fj+1(F)
Fj+2(F)

.

�

6. Global sections

Let S be a scheme over Spec k with k an algebraically closed field of characteristic
zero. Let P be a line bundle on S, and E , F locally free OS-modules of rank 2r
with non-degenerate alternate bilinear forms πE : E ⊗E → P and πF : F ⊗F → P.

If g : E → F is a symplectic isomorphism, then composing it with symplectic
isomorphisms γ : E → E and δ : F → F , we obtain a symplectic isomorphism
δ ◦ g ◦ γ−1 : E → F . This induces a left action on Sp(E ,F) of the group S-scheme
Sp(E)×S Sp(F).

For a generalized symplectic isomorphism Φ from E to F , we can also consider
the composition δ ◦Φ ◦ γ−1 (See Paragraph 3.2). So the action of Sp(E)×S Sp(F)
extends to KSp(E ,F). Moreover the action naturally lifts to the line bundles
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i=0 M

⊗ci
i (ci ∈ Z). The subschemes XI ⊂ KSp(E ,F) (I ⊂ [0, r − 1]) are stable

under the action. Thus vector bundles prS∗ι∗I
⊗r−1

i=0 M
⊗ci
i (ci ∈ Z) on S have action

of Sp(E) ×S Sp(F) (Here we consider left action). The goal of this section is to
describe this action.

The arguments in this section are straightforwad translation of the corresponding
arguments in [Kausz2] to the symplectic case.

We shall use the following well-known theorem in the sequel.

Theorem 6.1. If S = SpecK with K a field of characteristic zero, then for tuples
of integers −→a = (a1, . . . , ar) and

−→
b = (b1, . . . , br),

H0
(
SpFl[0,r−1],O(−→a ;

−→
b )
)
6= 0

if and only if a1 ≥ · · · ≥ ar ≥ 0 and b1 ≥ · · · ≥ br ≥ 0. When it is nonzero, it is an
irreducible Sp(E)×S Sp(F) -module.

Definition 6.2. For a tuple of integers (c0, . . . , cr−1) ∈ Z⊕r and a subset I ⊂ [0, r−
1], the set A(c0, . . . , cr−1)I is defined to consist of tuples of integers −→q = (q1, . . . , qr)
such that

(i) q1 ≥ · · · ≥ qr ≥ 0,
(ii)

∑l
i=1 qi ≤ cr−l if r − l /∈ I and

∑l
i=1 qi = cr−l if r − l ∈ I.

For −→q = (q1, . . . , qr), we denote by |−→q | the sum
∑r

i=1 qi.

Theorem 6.3. (1) Let (c0, . . . , cr−1) be a tuple of integers. There is a unique direct
sum decomposition of the vector bundle prS∗ι∗I

⊗r−1
i=0 M

⊗ci
i indexed by A(c0, . . . , cr−1)I

prS∗ι
∗
I

r−1⊗
i=0

M⊗ci
i =

⊕
−→q ∈A(c0,...,cr−1)I

V(c0,...,cr−1)
−→q

such that
(a) V(c0,...,cr−1)

−→q is a Sp(E)×SSp(F)-stable vector subbundle of prS∗ι∗I
⊗r−1

i=0 M
⊗ci
i ,

(b) For every −→q ∈ A(c0, . . . , cr−1)I , the direct summand V(c0,...,cr−1)
−→q is included

in the subbundle prS∗ι∗I
⊗r−1

i=0 M
⊗
∑r−i

j=1 qj

i ⊂ prS∗ι∗I
⊗r−1

i=0 M
⊗ci
i ,

(c) The composite of Sp(E)×S Sp(F)-equivariant morphisms

V(c0,...,cr−1)
−→q ↪→ prS∗ι

∗
I

r−1⊗
i=0

M⊗
∑r−i

j=1 qj

i → prS∗ι
∗
[0,r−1]

r−1⊗
i=0

M⊗
∑r−i

j=1 qj

i

is an isomorphism.
(2) For two tuples (c0, . . . , cr−1) and (c′0, . . . , c

′
r−1) with cj ≥ c′j for 0 ≤ j ≤ r − 1,

the subbundle⊕
−→q ∈A(c′0,...,c′r−1)I

V(c0,...,cr−1)
−→q ⊂

⊕
−→q ∈A(c0,...,cr−1)I

V(c0,...,cr−1)
−→q = prS∗ι

∗
I

r−1⊗
i=0

M⊗ci
i

is equal to the subbundle prS∗ι∗I
⊗r−1

i=0 M
⊗c′i
i ⊂ prS∗ι∗I

⊗r−1
i=0 M

⊗ci
i . The direct sum

decomposition
⊕

−→q ∈A(c′0,...,c′r−1)I
V(c0,...,cr−1)
−→q gives the direct sum decomposition of

prS∗ι
∗
I

⊗r−1
i=0 M

⊗c′i
i satisfying (a), (b), (c) in (1), that is, V(c0,...,cr−1)

−→q = V(c′0,...,c′r−1)
−→q

for −→q ∈ A(c′0, . . . , c
′
r−1)I .

Before starting the proof of the theorem, we present two corollaries.
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Corollary 6.4. There is a natural isomorphism

prS∗ ⊗r−1
i=0 M

⊗n(r−i)
i '

⊕
−→q

prS∗O(−→q ;−→q )⊗ P−|
−→q |

of Sp(E)×S Sp(F)-equivariant vector bundles on S, where −→q = (q1, . . . , qr) varies
through all tuples of integers with n ≥ q1 ≥ · · · ≥ qr ≥ 0, and prS on the left
is the projection of KSp(E ,F) to S, and prS on the right is the projection of
SpFl[0,r−1](E)×S SpFl[0,r−1](F) to S.

Proof. Take I = ∅ in the above theorem, and use Lemma 5.6. �

Corollary 6.5. Let 0 → U → pr∗S(E ⊕ F) → Q → 0 be the universal sequence on
LGr(E ⊕ F). Then there is a natural isomorphism

prS∗(detQ)⊗n '
⊕
−→q

prS∗O(−→q ;−→q )⊗ P⊗(nr−|−→q |)

of Sp(E)×S Sp(F)-equivariant vector bundles on S, where −→q = (q1, . . . , qr) varies
through all tuples of integers with n ≥ q1 ≥ · · · ≥ qr ≥ 0, and prS on the left
is the projection of LGr(E ⊕ F) to S, and prS on the right is the projection of
SpFl[0,r−1](E)×S SpFl[0,r−1](F) to S.

Proof. Let g : KSp(E ,F)→ LGr(E⊕F) be the morphism in Proposition 4.1. Since
g is birational, the pull-back morphism

g∗ : prS∗(detQ)⊗n → prS∗g
∗(detQ)⊗n

is an isomorphism, where prS on the right-hand side is the projection of KSp(E ,F).
By Lemma 4.2, we have a natural isomorphism

g∗(detQ)⊗n ' pr∗SP⊗nr ⊗
r−1⊗
i=0

M⊗n(r−i)
i .

Now the corollary follows from Corollary 6.4. �

Now we move on to the proof of Theorem 6.3. Since locally on S, the bundles
E , F , P and the bilinear forms are pull-backs of those on Spec k, we have only to
prove the theorem for S = Spec k. We may assume that E = F = k⊕2r and the
nondegenerate bilinear forms of E and F are given by the matrix J2r. In the rest
of this section, we write E and F instead of E and F .

Let TSp2r
⊂ Sp2r(k) be the subgroup of consisting of diagonal matrices in

Sp2r(k). Put BE := U+
2rTSp2r

⊂ Sp(E) = Sp2r(k) and BF := U−2rTSp2r
⊂ Sp(F ) =

Sp2r(k). Let

(6.1) U+
2r × Ar ×U−2r ' KSp(E,F )(id,id)

be the isomorphism (3.23). The restriction of (6.1) to the open subscheme Sp(E,F )(id,id) :=
KSp(E,F )(id,id) ∩ Sp(E,F ) gives an isomorphism

U+
2r × (A \ {0})r ×U−2r ' Sp(E,F )(id,id),

which is given by U+
2r × (A \ {0})r × U−2r 3 (z,y, x) 7→ x ◦ Dy ◦ z−1, where y =

(y0, . . . , yr−1) and

Dy = diag

(
(
r−1∏
i=0

yi)−1,

r−1∏
i=0

yi, (
r−2∏
i=0

yi)−1,

r−2∏
i=0

yi, . . . , y
−1
0 , y0

)
.

For ρ = diag(ρ1, ρ
−1
1 , . . . , ρr, ρ

−1
r ), τ = diag(τ−1

1 , τ1, . . . , τ
−1
r , τr) ∈ TSp2r

, and
uE ∈ U+

2r and uF ∈ U−2r, we have

(uF τ)◦x◦Dy ◦z−1 ◦(uEρ)−1 = (uF ◦τ ◦x◦τ−1)◦(τ ◦Dy ◦ρ−1)◦(ρ◦z−1 ◦ρ−1 ◦u−1
E )
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with uF ◦τ ◦x◦τ−1 ∈ U−2r and ρ◦z−1◦ρ−1◦u−1
E ∈ U+

2r. We have τ ◦Dy ◦ρ−1 = Dy′

with

(6.2) y′ = diag(τry0ρr, . . . , τr−jτ
−1
r−j+1yjρr−jρ

−1
r−j+1, . . . ).

By this we know that KSp(E,F )(id,id) ⊂ KSp(E,F ) is a BE × BF -stable open
subscheme such that under the isomorphism (6.1), the action of (uEρ, uF τ) on
KSp(E,F )(id,id) is expressed by

(6.3) (z,y, x) 7→ (uEρzρ
−1,y′, uF τxτ

−1)

with y′ as in (6.2).

Corollary 6.6. For I ⊂ [0, r − 1], the scheme XI ∩KSp(E,F )(id,id) has an open
dense BE × BF -orbit.

Proof. Under the isomorphism (6.1), a point (z,y, x) ∈ U+
2r × Ar × U−2r lies in

XI ∩KSp(E,F )(id,id) if and only if yi = 0 for i ∈ I, where y = (y0, . . . , yr−1). By
the description (6.3) of BE × BF -action, the open dense subset

XI ∩ Sp(E,F )(id,id) ⊂ XI ∩KSp(E,F )

is a BE × BF -orbit. �

Proposition 6.7. If W is a finite dimensional irreducible Sp(E)×Sp(F )-representation,
then dim Hom(W,H0(XI , ι

∗
I

⊗r−1
i=0 M

⊗ci
i )) ≤ 1.

Proof. If BE × BF acts on nonzero sections s1, s2 ∈ H0(XI , ι
∗
I

⊗r−1
i=0 M

⊗ci
i ) by the

same character, then s1/s2 is a BE × BF -invariant meromorphic function of XI .
Since XI has an open dense BE × BF -orbit, s1/s2 is a constant. �

Proposition 6.8. If W ⊂ H0(XI , ι
∗
I

⊗r−1
i=0 M

⊗ci
i ) is an irreducible Sp(E)×Sp(F )-

submodule, then for some −→q ∈ A(c0, . . . , cr−1)I , we have W ⊂ H0(XI , ι
∗
i

⊗r−1
i=0 M

⊗
∑r−i

j=1 qj

i )
and the composite of morphisms

W ↪→ H0

(
XI , ι

∗
I

r−1⊗
i=0

M⊗
∑r−i

j=1 qj

i

)
→ H0

(
X[0,r−1], ι

∗
[0,r−1]

r−1⊗
i=0

M⊗
∑r−i

j=1 qj

i

)
is an isomorphism.

Proof. The restriction of the isomorphism (6.1) induces an isomorphism

U+
2r × Ar−|I| ×U−2r ' XI ∩KSp(E,F )(id,id) =: X(id,id)

I ,

where Ar ⊃ Ar−|I| = {yi = 0; i ∈ I}.
Since a line bundle on AN is trivial, we can find a nowhere vanishing section

s0 ∈ ι∗I
⊗r−1

i=0 M
⊗ci
i |

X
(id,id)
I

. The section s0 is unique up to scalar, so BE × BF acts
on s0 as a character. Since BE × BF acts on a highest weight vector s ∈ W as a
character, it acts on the algebraic function (s|

X
(id,id)
I

)/s0 on X(id,id)
I as a character.

Hence we find that (s|
X

(id,id)
I

)/s0 =
∏

i∈[0,r−1]\I y
αi
i with αi ≥ 0. For i ∈ I we put

αi = 0. Then s is a global section of ι∗I
⊗r−1

i=0 M
⊗ci−αi
i which is nowhere vanishing

on X(id,id)
I . Thus the composite of morphisms

W → H0

(
XI , ι

∗
I

r−1⊗
i=0

M⊗ci−αi
i

)
→ H0

(
X[0,r−1], ι

∗
[0,r−1]

r−1⊗
i=0

M⊗ci−αi
i

)

is nonzero, hence an isomorphism because bothW and H0
(
X[0,r−1], ι

∗
[0,r−1]

⊗r−1
i=0 M

⊗ci−αi
i

)
are irreducible Sp(E)× Sp(F )-modules.
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It remains to show that if we define −→q = (q1, . . . , qr) by the equation ci − αi =∑r−i
j=1 qj , then −→q ∈ A(c0, . . . , cr−1)I . Since

H0

(
X[0,r−1], ι

∗
[0,r−1]

r−1⊗
i=0

Mci−αi
i

)
' H0

(
SpFl[0,r−1],O(−→q ;−→q )

)
is nonzero, (i) of Definition 6.2 is satisfied. Since αi ≥ 0 and αi = 0 for i ∈ I, (ii)
of Definition 6.2 is satisfied. �

Proposition 6.9. For integers q1 ≥ · · · ≥ qr ≥ 0, the morphism
(6.4)

H0

(
KSp(E,F ),

r−1⊗
i=0

M⊗
∑r−i

j=1 qj

i

)
→ H0

(
X[0,r−1], ι

∗
[0,r−1]

r−1⊗
i=0

M⊗
∑r−i

j=1 qj

i

)
is surjective.

Proof. Since H0

(
X[0,r−1], ι

∗
[0,r−1]

⊗r−1
i=0 M

⊗
∑r−i

j=1 qj

i

)
is an irreducible Sp(E)×Sp(F )-

representation, it suffices to prove that (6.4) is nonzero. It suffices to prove that
for

(q1, . . . , qr) = (

l times︷ ︸︸ ︷
1, . . . , 1, 0, . . . , 0) (1 ≤ l ≤ r),

(6.4) is nonzero.
Let γl : O⊕l

KSp(E,F ) ↪→ O
⊕2r
KSp(E,F ) = EKSp(E,F ) be the inclusion of direct sum of

(2i− 1)-th component for 1 ≤ i ≤ l, and δl : FKSp(E,F ) = O⊕2r
KSp(E,F ) � O⊕l

KSp(E,F )

the projection to the direct sum of (2i − 1)-th component for 1 ≤ i ≤ l. The
determinant of the morphism of rank l vector bundles

δl ◦ f ]
0 ◦ · · · ◦ f

]
r−1 ◦ h ◦ e[

r−1 ◦ · · · ◦ e[
0 ◦ γl : O⊕l

KSp(E,F ) →
(
⊗r−1

i=0Mi

)⊕l

defines a section σl ∈
⊗r−1

i=0 M
⊗l
i . By using diagonalization, you can see that

σl|KSp(E,F )(id,id) vanishes along the divisor
∑r−1

j=r−l+1X{j}, and that σl gives a sec-

tion of
⊗r−l

i=0M
⊗l
i ⊗

⊗r−1
i=r−l+1M

⊗r−i
i which is nowhere vanishing onKSp(E,F )(id,id).

So the section σl ∈
⊗r−l

i=0M
⊗l
i ⊗

⊗r−1
i=r−l+1M

⊗r−i
i induces a nonzero section of

ι∗[0,r−1]

(⊗r−l
i=0M

⊗l
i ⊗

⊗r−1
i=r−l+1M

⊗r−i
i

)
. This completes the proof of the propo-

sition. �

7. Factorization of generalized theta functions

In this section we shall apply the results about the compactification KSp ob-
tained in the previous sections to the study of the generalized theta functions on
the moduli of (parabolic) symplectic bundles on an algebraic curve. More precisely,
we shall prove the so-called factorization theorem of generalized theta functions
on the moduli of stack of symplectic bundles. For ordinary vector bundles, the
factorization theorem has been proved by Narasimhan-Ramadas, Sun and Kausz
([N-Rd], [S1], [S2], [Kausz3]).

Let us start with the definition of the moduli stack of (parabolic) symplectic
bundles.

Let C be a connected projective nodal curve over an algebraically closed field
k, P (1), . . . , P (m) distinct smooth points of C, and L a line bundle on C. Put−→
P = (P (1), . . . , P (m)).

Definition 7.1. (1) We define the moduli stack M(C,
−→
P ;L) as follows. For an

affine k-scheme T , an object of the groupoid M(C,
−→
P ;L)(T ) is the following data:
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• a T -flat coherent OC×T -module G whose restriction to every geometric fiber
C × Spec k(t) (t ∈ T ) is a rank 2r torsion-free sheaf,
• a non-degenerate bilinear alternate form G⊗G → pr∗CL, (Here ”non-degenerate”

means that the induced morphism G → Hom(G, pr∗CL) is an isomorphism.)
• for every point P (j) (1 ≤ j ≤ m), a filtration

G|P (j)×T ⊃ F1(G|P (j)×T ) ⊃ · · · ⊃ Fr(G|P (j)×T ) ⊃ 0

of isotropic vector subbundles with rankFi(G|P (j)×T ) = r + 1− i.

Isomorphisms of the groupoid M(C,
−→
P ;L)(T ) are defined obviously.

(2) The substack M(C,
−→
P ;L) of M(C,

−→
P ;L) is defined such that an object of

M(C,
−→
P ;L)(T ) described above is in M(C,

−→
P ;L)(T ) if and only if G is locally free.

Clearly if C is smooth, then M(C,
−→
P ;L) = M(C,

−→
P ;L).

Let(
Guniv,Guniv ⊗ Guniv → pr∗CL,

Guniv|
P (j)×M(C,

−→
P ;L)

⊃ F1(Guniv|
P (j)×M(C,

−→
P ;L)

) ⊃ . . . (1 ≤ j ≤ m)
)

be the universal object of the moduli stack M(C,
−→
P ;L).

Definition 7.2. Let n be an integer. If each point P (j) (1 ≤ j ≤ m) is given a

tuple of integers
−→
λ (j) = (λ(j)

1 , . . . , λ
(j)
r ), we denote by Ξ(n;

−→
λ (1),...,

−→
λ (m))

M(C,
−→
P ,L)

, or simply

Ξ(n;
−→
λ (1),...,

−→
λ (m)), the line bundle

(
det Rpr∗Guniv

)⊗(−n) ⊗
m⊗

j=1

r⊗
i=1

Fr+2−i

(
Guniv|

P (j)×M(C,
−→
P ,L)

)⊥
Fr+1−i

(
Guniv|

P (j)×M(C,
−→
P ,L)

)⊥

⊗λ

(j)
i

on M(C,
−→
P ;L), where pr is the projection C ×M(C,

−→
P ;L)→M(C,

−→
P ;L).

In this paper, for simplicity of notation, we restrict ourselves to the case of
a nodal curve with only one singular point. In this case, C is either irreducible
or having two irreducible components. We first state and prove the factorization
theorem for the irreducible case, and later we shall comment on how to modify the
argument for the reducible case.

Let C be an irreducible projective nodal curve with only one singular point P ,
and n : C̃ → C the normalization. Put {P1, P2} := n−1(P ). Let P3, . . . , Pm ∈ C \
{P} be distinct points. We denote by the same letters P3, . . . , Pm the corresponding
points of C̃. Put L̃ := n∗L and

−→
P = (P3, . . . , Pm).

Theorem 7.3. Let
−→
λ (j) = (λ(j)

1 , . . . , λ
(j)
r ) (3 ≤ j ≤ m) be tuples of integers. Then

we have a canonical isomorphism

H0

(
M(C,

−→
P ;L),Ξ(n;

−→
λ (3),...,

−→
λ (m))

M(C,
−→
P ;L)

)
'

⊕
−→q =(q1,...,qr)

H0

(
M(C̃, {P1, P2} ∪

−→
P ; L̃),Ξ(n;−→q ,−→q ,

−→
λ (3),...,

−→
λ (m))

M(C̃,{P1,P2}∪
−→
P ;L̃)

)
⊗k (L|P )⊗(rn−|−→q |)

,

where −→q = (q1, . . . , qr) varies through all tuples of integers with n ≥ q1 ≥ · · · ≥
qr ≥ 0.
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For simplicity of notation, we shall deal with the case
−→
P = ∅. Let

(G̃univ, π̃univ : G̃univ ⊗ G̃univ → pr∗
C̃
L̃)

be the universal object of the stack M(C̃; L̃). Let σi be the section (Pi, id) :
M(C̃; L̃) → C̃ ×M(C̃; L̃) (i = 1, 2). There is a non-degenerate alternate bilinear
form σ∗i G̃univ ⊗ σ∗i G̃univ → σ∗i pr

∗
C̃
L̃ induced by π̃univ. Since there are natural

isormorphisms

σ∗1pr
∗
C̃
L̃ ' L̃|P1 ⊗OM(C̃;L̃) ' L|P ⊗OM(C̃;L̃) ' L̃|P2 ⊗OM(C̃;L̃) ' σ

∗
2pr

∗
C̃
L̃,

we can consider the stacks Sp := Sp(σ∗1 G̃univ, σ∗2 G̃univ) and LGr := LGr(σ∗1 G̃univ⊕
σ∗2 G̃univ). Let g′ : LGr →M(C̃, L̃) be the projection.

Let
U ⊂ g′∗

(
σ∗1 G̃univ ⊕ σ∗2 G̃univ

)
be the universal isotropic rank 2r subbundle. We denote by G̃′

univ
the vector

bundles (idC̃ × g
′)∗G̃univ on C̃ × LGr. Put σ′i := (Pi, id) : LGr → C̃ × LGr.

We define a sheaf H on C×LGr to be the kernel of the composite of morphisms

(n′)∗G̃′
univ

→ η∗(σ′∗1 G̃′
univ
⊕ σ′∗2 G̃′

univ
)→ η∗

(
σ′∗1 G̃′

univ
⊕ σ′∗2 G̃′

univ

U

)
,

where η = (P, idLGr) : LGr → C×LGr and n′ := n× idLGr : C̃×LGr → C×LGr.
ThenH is flat over LGr and the restriction to every geometric fiber is torsion-free of
rank 2r. You can easily see that there is a unique non-degenerate altenate bilinear
form H⊗H → pr∗CL such that the diagram

n′∗(G̃′
univ

)⊗ n′∗(G̃′
univ

)
n′∗((idC̃

× g′)∗π̃)
// n′∗(pr

∗
C̃
L̃)

H⊗H //

OO

pr∗CL
?�

OO

commutes. Then (H,H⊗H → pr∗CL) is an object of M(C;L). This gives rise to a
morphism f : LGr →M(C;L). We have a commutative diagram:

M(C̃; L̃)
g′ ↑

LGr
f−→ M(C;L)

∪ ∪
Sp

f−→ M(C;L),

where f , the restriction of f , is an isomorphism of stacks.

Lemma 7.4. If A is a line bundle on M(C;L), then we have isomorphisms

H0
(
LGr, f

∗A
)

∼−→ H0
(
Sp, f

∗A
)

f∗←− H0 (M(C;L),A)

of vector spaces.

Proof. Since f is an isomorphism, f∗ is clearly bijective. Let us prove that the
restriction map

(7.1) H0
(
LGr, f

∗A
)
→ H0

(
Sp, f

∗A
)

is an isomorphism.
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If H is a rank 2r torsion-free sheaf with a non-degenerate alternate bilinear form
H⊗H → L on C, then by [Fal] we know that HP , the stalk of H at P , is isomorphic
to m2i(H) ⊕ O2(r−i(H))

C,P for some 0 ≤ i(H) ≤ r, where m is the maximal ideal of
OC,P . We denote by M(C;L)≤n the open substack of M(C;L) parametrizing H’s
with i(H) ≤ n. We put LGr≤n := LGr(σ∗1 G̃univ ⊕ σ∗2 G̃univ)≤n (See Notation 4.4).
We have a commutative diagram:

LGr≤1
f−→ M(C;L)≤1

∪ ∪
Sp

f−→ M(C;L),

here by abuse of notation, the restriction of f to LGr≤1 is also denoted by f .
Correspondingly we have a commutative diagram of vector spaces

(7.2)
H0(LGr≤1, f

∗A)
f ′′∗←−− H0(M(C;L)≤1,A)

(a)↓ ↓ (b)

H0(Sp, f∗A)
f∗←− H0(M(C;L),A).

By Lemma 4.5, the restriction map H0(LGr, f
∗A) → H0(LGr≤1, f

∗A) is an iso-
morphism. Therefore in order to prove the bijectivity of (7.1), it suffices to prove
that the morphism (a) in the diagram (7.2) is an isomorphism.

By [Fal], the singularity of M(C;L)≤1 is of the form xy − zw = 0 for a local
coordinate (x, y, z, w, . . . ). In particular M(C;L)≤1 is normal. Hence the map (b)
in the diagram (7.2) is an isomorphism. This and the bijectivity of f∗ imply that
the map (a) is surjective. Since (a) is clearly injective, it is bijective. �

Lemma 7.5. We have a natural isomorphism

(7.3) f
∗
Ξ(n)

M(C,L)
' g′∗Ξ(n)

M(C̃,L̃)
⊗ (detQ)⊗n

of line bundles on LGr, where Q := (σ′∗1 G̃′
univ
⊕ σ′∗2 G̃′

univ
)/U .

Proof. We have isomorphisms

f
∗
Ξ(n)

M(C,L)
' (det RprLGr∗H)⊗(−n)

' g′∗
(
det RprM(C̃,L̃)∗G̃

univ
)⊗(−n)

⊗ det

(
σ′∗1 G̃′

univ
⊕ σ′∗2 G̃′

univ

U

)⊗n

,

(7.4)

and we have
(
det RprM(C̃;L̃)∗G̃

univ
)⊗(−n)

' Ξ(n)

M(C̃,L̃)
by definition. �

Proof of Theorem 7.3. We put

SpFl := SpFl[0,r−1](σ
∗
1 G̃univ)×M(C̃;L̃) SpFl[0,r−1](σ

∗
2 G̃univ),

and let g′′ : SpFl→M(C̃; L̃) be the projection.
Applying Corollary 6.5, we have a canonical isomorphism

(7.5) g′∗(detQ)⊗n '
⊕

−→q =(q1,...,qr)

g′′∗O(−→q ;−→q )⊗k (L|P )⊗(nr−|−→q |),

where n ≥ q1 ≥ · · · ≥ qr ≥ 0.
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We have isomorphisms

H0
(
M(C;L),Ξ(n)

M(C;L)

)
' H0

(
LGr, f

∗
Ξ(n)

M(C;L)

)
by Lemma 7.4

' H0
(
LGr, g′∗Ξ(n)

M(C̃;L̃)
⊗ (detQ)⊗n

)
by (7.3)

' H0
(
M(C̃; L̃),Ξ(n)

M(C̃,L̃)
⊗ g′∗(detQ)⊗n

)
by projection formula

'
⊕
−→q

H0
(
M(C̃; L̃),Ξ(n)

M(C̃,L̃)
⊗ g′′∗O(−→q ;−→q )

)
⊗k (L|P )⊗nr−|−→q | by (7.5)

'
⊕
−→q

H0
(
M(C̃, {P1, P2}; L̃),Ξ(n;−→q ,−→q )

M(C̃,{P1,P2};L̃)

)
⊗k (L|P )⊗nr−|−→q |,

where −→q = (q1, . . . , qr) varies through all tuples of integers with n ≥ q1 ≥ · · · ≥
qr ≥ 0. �

Reducible case. Let C be a connected reducible nodal curve with only one singular
point P . Then C is a union of smooth curves C1 and C2 intersecting at P . Let
n : C̃ = C1 t C2 → C be the normalization. Put Li := L|Ci

for i = 1, 2. Put
{Q1, R1} := n−1(P ) such that Q1 ∈ C1 and R1 ∈ C2. Let Q2, . . . , Qm ∈ C1 \ {Q1}
and R2, . . . , Rl ∈ C2 \ {R1} be distinct points. Put

−→
Q := (Q2, . . . , Qm) and

−→
R :=

(R2, . . . , Rl). Let
−→
λ (j) = (λ(j)

1 , . . . , λ
(j)
r ) (2 ≤ j ≤ m) and −→µ (j) := (µ(j)

1 , . . . , µ
(j)
r )

(2 ≤ j ≤ l) be tuples of integers.
With these notations prepared, in the reducible case, the counterpart of Theorem

7.3 is the following:

Theorem 7.6. There is a canonical isomorphism

H0

(
M(C,

−→
Q ∪

−→
R ;L),Ξ(n;

−→
λ (2),...,

−→
λ (m),−→µ (2),...,−→µ (l))

M(C,
−→
Q∪

−→
R ;L)

)
'

⊕
−→q =(q1,...,qr)

H0

(
M(C1, {Q1} ∪

−→
Q ;L1),Ξ

(n;−→q ,
−→
λ (2),...,

−→
λ (m))

M(C1,{Q1}∪
−→
Q ;L1)

)
⊗H0

(
M(C2, {R1} ∪

−→
R ;L2),Ξ

(n;−→q ,−→µ (2),...,−→µ (l))

M(C2,{R1}∪
−→
R ;L2)

)
⊗ (L|P )(⊗rn−|−→q |)

,

where −→q = (q1, . . . , qr) varies through all the tuples of integers with n ≥ q1 ≥ · · · ≥
qr ≥ 0.

You can prove the above theorem by similar argument as in the proof of Theorem
7.3. Let us mention how to modify the argument. For simplicity, we assume that−→
Q = ∅ and

−→
R = ∅. Let(

G̃univ
i , π̃univ

i : G̃univ
i ⊗ G̃univ

i → pr∗Ci
Li

)
be the universal object of the stack M(Ci;Li). Let σ1 and σ2 be the morphisms

(Q1, id) : M(C1;L1)→ C1 ×M(C1;L1),

(R1, id) : M(C2;L2)→ C2 ×M(C2;L2)

respectively. Let φi : M(C1;L1)×M(C2;L2)→M(Ci;Li) be the projection.
Then we can consider the stacks

Sp := Sp
(
φ∗1σ

∗
1 G̃univ

1 , φ∗2σ
∗
2 G̃univ

2

)
,

LGr := LGr
(
φ∗1σ

∗
1 G̃univ

1 ⊕ φ∗2σ∗2 G̃univ
2

)
,

(7.6)
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which are stacks over M(C1;L1)×M(C2;L2).
If in the proof of Theorem 7.3, you substituteM(C1;L1)×M(C2;L2) forM(C̃; L̃)

and understand that Sp and LGr are given by (7.6), then you will obtain a proof
of Theorem 7.6.

8. A result on the multiplication pull-back

The purpose of this section is to prove Proposition 8.1. Its importance might
not be clear at the moment. But it will be used in [A] at a crucial point.

Let E(1) = E(2) = ⊕2r
i=1kei and G(1) = G(2) = ⊕2s

j=1kgj be k-vector spaces
endowed with the symplectic forms 〈−,−〉E(i) and 〈−,−〉G(i) given by the matrices
J2r and J2s. We give the tensor product E(i) ⊗ G(i) the symmetric bilinear form
〈−,−〉E(i)⊗G(i) determined by 〈e ⊗ g, e′ ⊗ g′〉E(i)⊗G(i) := 〈e, e′〉E(i)〈g, g′〉G(i) . We
give the vector space (E(1) ⊗ G(1)) ⊕ (E(2) ⊗ G(2)) the symmetric bilinear form
〈−,−〉(E(1)⊗G(1))⊕(E(2)⊗G(2)) determined by

〈(a1, a2), (a′1, a
′
2)〉(E(1)⊗G(1))⊕(E(2)⊗G(2)) = 〈a1, a

′
1〉E(1)⊗G(1) − 〈a2, a

′
2〉E(2)⊗G(2)

for ai, a
′
i ∈ E(i) ⊗G(i).

Let OGr4rs := OGr4rs

(
(E(1) ⊗G(1))⊕ (E(2) ⊗G(2))

)
be the orthogonal Grass-

mannian parametrizing 4rs-dimensional isotropic subspaces of (E(1)⊗G(1))⊕(E(2)⊗
G(2)).

For symplectic isomorphisms α : E(1) → E(2) and β : G(1) → G(2), the tensor
product α ⊗ β : E(1) ⊗ G(1) → E(2) ⊗ G(2) is an isomorphism preserving the
symmetric bilinear forms of E(1)⊗G(1) and E(2)⊗G(2). The graph Γα⊗β of α⊗ β
determines a point of OGr4rs. We denote by m the morphism

Sp(E(1), E(2))× Sp(G(1), G(2))→ OGr+
4rs ⊂ OGr4rs

given by (α, β) 7→ Γα,β , where OGr+
4rs is the one of the two components of OGr4rs

that contains the image of Sp(E(1), E(2))× Sp(G(1), G(2)).
We denote by LGr◦ the open subset

(LGr(E(1) ⊕ E(2))× Sp(G(1), G(2))) ∪ (Sp(E(1), E(2))× LGr(G(1) ⊕G(2)))

of LGr := LGr(E(1) ⊕ E(2)) × LGr(G(1) ⊕ G(2)). The morphism m extends to a
morphism

m̃ : LGr◦ → OGr+
4rs.

In fact, for maximal isotropic subspaces U ⊂ E(1) ⊕E(2) and V ⊂ G(1) ⊕G(2), the
map

U ⊗ V → (E(1) ⊗G(1))⊕ (E(2) ⊗G(2))
is injective if either [U ⊂ E(1) ⊕ E(2)] ∈ Sp(E(1), E(2)) or [V ⊂ G(1) ⊕ G(2)] ∈
Sp(G(1), G(2)).

Let

0→ U →
{(
E(1) ⊗G(1)

)
⊕
(
E(2) ⊗G(2)

)}
⊗OOGr+

4rs
→ Q→ 0

be the universal sequence on OGr+
4rs. Let QE and QG be the universal quotient

bundles on LGr(E(1) ⊕ E(2)) and LGr(G(1) ⊕ G(2)) respectively. The line bundle
detQ is a square of a line bundle, which we denote by (detQ)⊗

1
2 . You can easily

obtain an isomorphism

m̃∗(detQ)⊗
1
2 ' (detQE)⊗s � (detQG)⊗r

∣∣
LGr◦

.

So we have morphisms of vector spaces

H0(OGr+
4rs, (detQ)⊗

1
2 ) m̃∗

−−→ H0(LGr◦, (detQE)⊗s � (detQG)⊗r)

' H0(LGr(E(1) ⊕ E(2)), (detQE)⊗s)⊗H0(LGr(G(1) ⊕G(2)), (detQG)⊗r).
(8.1)
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By Corollary 6.5, there are natural isomorphisms

H0(LGr(E(1) ⊕ E(2)), (detQE)⊗s)

'
⊕
−→
λ

H0
(
SpFl[0,r−1](E

(1))× SpFl[0,r−1](E
(2)),O(

−→
λ ,
−→
λ )
)

(8.2)

and

H0(LGr(G(1) ⊕G(2)), (detQG)⊗r)

'
⊕
−→µ

H0
(
SpFl[0,s−1](G

(1))× SpFl[0,s−1](G
(2)),O(−→µ ,−→µ )

)
,(8.3)

where
−→
λ = (λ1, . . . , λr) runs through all tuples of integers with s ≥ λ1 ≥ · · · ≥

λr ≥ 0, and −→µ = (µ1, . . . , µs) with r ≥ µ1 ≥ · · · ≥ µs ≥ 0. Composing (8.1) with
the tensor product of (8.2) and (8.3), we have a morphism

ϕ :H0
(
OGr+

4rs, (detQ)⊗
1
2

)
→
⊕
−→
λ ,−→µ

{
H0
(
SpFl[0,r−1](E

(1))× SpFl[0,r−1](E
(2)),O(

−→
λ ;
−→
λ )
)

⊗H0
(
SpFl[0,s−1](G

(1))× SpFl[0,s−1](G
(2))O(−→µ ;−→µ )

)}
.

We denote by π−→
λ ,−→µ the projection of the target of ϕ to the (

−→
λ ,−→µ )-component.

For
−→
λ = (λ1, . . . , λr) with s ≥ λ1 ≥ · · · ≥ λr ≥ 0, we denote by

−→
λ∗ the tuple

(λ∗1, . . . , λ
∗
s) of integers such that r ≥ λ∗1 ≥ · · · ≥ λ∗s ≥ 0 and

{λ∗1 + s, λ∗2 + s− 1, . . . , λ∗s + 1} ∪ {λ1 + r, λ2 + r − 1, λr + 1} = [1, r + s].

Proposition 8.1. For
−→
λ = (λ1, . . . , λr) with s ≥ λ1 ≥ · · · ≥ λr ≥ 0, the composed

morphism π−→
λ ,
−→
λ∗
◦ ϕ is non-zero.

Proof. We shall find explicitly an element of H0(OGr+
4rs, (detQ)⊗

1
2 ) the image of

which by π−→
λ ,
−→
λ∗
◦ ϕ is non-zero.

Let L be the subset of [1, 2r]× [1, 2s] consisting of all pairs (a, b) satisfying one
of the following conditions.

• Both a and b are odd.
• a is odd, and b is even, and s+ 1− (b/2) ≤ λ(a+1)/2.
• b is odd, and a is even, and r + 1− (a/2) ≤ λ∗(b+1)/2.

Let V1 ⊂ E(1) ⊗ G(1) be the 2rs-dimensional subspace spanned by ea ⊗ gb with
(a, b) ∈ L. Let V2 ⊂ E(2)⊗G(2) be the 2rs-dimensional subspace spanned by ea⊗gb

with (a, b) ∈ [1, 2r]× [1, 2s] \ L. You can check easily that V1 and V2 are isotropic.
The subset of OGr+

4rs{
W ⊂ (E(1) ⊗G(1))⊕ (E(2) ⊗G(2))

∣∣∣W ∩ (V1 ⊕ V2) 6= 0
}

with the reduced scheme structure is a zero-divisor of some section of (detQ)⊗
1
2 ,

which we denote by σV1⊕V2 . We shall check that (π−→
λ ,
−→
λ∗
◦ϕ)(σV1⊕V2) 6= 0. For this,

we need to recall the construction of the isomorphisms (8.2) and (8.3).
We denote by KSp◦ the open subset

(KSp(E(1), E(2))× Sp(G(1), G(2))) ∪ (Sp(E(1), E(2))×KSp(G(1), G(2)))

of KSp := KSp(E(1), E(2))×KSp(G(1), G(2)).
By Proposition 4.1, there is a morphism KSp◦ → LGr◦, which we denote by g̃.
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Let

(Mi, µi, E(1)
i →Mi ⊗ E(1)

i+1, E
(1)
i ← E(1)

i+1,

E(2)
i+1 → E

(2)
i ,Mi ⊗ E(2)

i+1 ← E
(2)
i (0 ≤ i ≤ r − 1), E(1)

r
∼−→ E(2)

r )

and

(Ni, νi,G(1)
i → Ni ⊗ G(1)

i+1,G
(1)
i ← G(1)

i+1,

G(2)
i+1 → G

(2)
i ,Ni ⊗ G(2)

i+1 ← G
(2)
i (0 ≤ i ≤ s− 1),G(1)

r
∼−→ G(2)

r )

be the universal generalized symplectic isomorphims onKSp(E(1), E(2)) andKSp(G(1), G(2))
respectively. By Lemma 4.2, we have

g̃∗
(
(detQE)⊗s � (detQG)⊗r

)
'

(
r−1⊗
i=0

M⊗s(r−i)
i

)
�

s−1⊗
j=0

N⊗r(s−j)
j

 .

Put m̃′ := m̃ ◦ g̃. In order to compute (π−→
λ ,
−→
λ∗
◦ϕ)(σV1⊕V2), we first determine with

how many orders the section m̃′∗(σV1⊕V2) vanishes along divisors {µi = 0} and
{νj = 0}.

Let us see how the morphism m̃′ is expressed in the open subsetKSp(E(1), E(2))(id,id)×
KSp(G(1), G(2))(id,id) ∩KSp◦.

Let
U+

2r × Ar ×U−2r ' KSp(E(1), E(2))(id,id)

and
U+

2s × As ×U−2s ' KSp(G(1), G(2))(id,id)

be the chart given in (3.23). For yE = (yE,1, . . . , yE,r) ∈ Ar, we define the 2r × 2r
matrices (yE)′ and (yE)′′ as follows:

(yE)′ := diag

(
r−1∏
i=0

yE,i, 1,
r−2∏
i=0

yE,i, 1, . . . , yE,0, 1

)

(yE)′′ := diag

(
1,

r−1∏
i=0

yE,i, 1,
r−2∏
i=0

yE,i, . . . , 1, yE,0

)
.

We define (yG)′ and (yG)′′ for yG = (yG,1, . . . , yG,s) ∈ As similarly.
Recall that the point (zE ,yE ,xE) ∈ U+

2r × (A \ {0})r × U−2r = Sp(E(1), E(2))
corresponds to the symplectic isomorphism xE ◦ (yE)′′ ◦ (yE)′−1 ◦ z−1

E .
For ((zE ,yE ,xE), (zG,yG,xG)) ∈ Sp(E(1), E(2)) × Sp(G(1), G(2)), consider the

tensored morphism

(xE⊗xG)◦((yE)′′⊗(yG)′′)◦((yE)′⊗(yG)′)−1◦(zE⊗zG)−1 : E(1)⊗G(1) → E(2)⊗G(2).

Its graph is equal to the image of

ζ := ((zE ⊗ zG) ◦ ((yE)′ ⊗ (yG)′), (xE ⊗ xG) ◦ ((yE)′′ ⊗ (yG)′′))

: E(1) ⊗G(1) →
(
E(1) ⊗G(1)

)
⊕
(
E(2) ⊗G(2)

)
.

Now let us calculate the zero-divisor of the section m̃′∗(σV1⊕V2) .
Let V c

1 ⊂ E(1) ⊗G(1) be the 2rs-dimensional subspace spanned by ea ⊗ gb with
(a, b) ∈ [1, 2r]× [1, 2s] \ L. Let V c

2 ⊂ E(2) ⊗G(2) be the 2rs-dimensional subspace
spanned by ea ⊗ gb with (a, b) ∈ L (“c” means the complement). Let τ be the
projection (

E(1) ⊗G(1)
)
⊕
(
E(2) ⊗G(2)

)
→ V c

1 ⊕ V c
2 .
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The intersection of the image of ζ and V1⊕V2 is non-zero if and only if the composed
morphism τ ◦ζ is not an isomorphism. The zero-divisor defined by the determinant
of τ ◦ ζ is the twice of the zero-divisor defined by m̃′∗(σV1⊕V2).

Since V1 ⊕ V2 is U+
2r × U−2r × U+

2s × U−2s-invariant (easily checked), the zero-
divisor of m̃′∗(σV1⊕V2) is a pull-back of some divisor on Ar × As by the projection
(U+

2r × Ar × U−2r) × (U+
2s × As × U−2s) → Ar × As. When zE = xE = id2r and

zG = xG = id2s, the morphism τ ◦ ζ is expressed by a diagonal matrix with respect
to the basis {ea ⊗ gb}, and its determinant is easily computed to ber−1∏

i=0

y
(r−i)s−

∑r−i
l=1 λl

E,i ×
s−1∏
j=0

y
(s−j)r−

∑s−j
m=1 λ∗m

G,j

2

.

Therefore onKSp(E(1), E(2))(id,id)×KSp(G(1), G(2))(id,id), the zero-divisor of m̃′∗(σV1⊕V2)
is defined by

r−1∏
i=0

y
(r−i)s−

∑r−i
l=1 λl

E,i ×
s−1∏
j=0

y
(s−j)r−

∑s−j
m=1 λ∗m

G,j = 0.

This implies that on KSp(E(1), E(2))(id,id) × KSp(G(1), G(2))(id,id), m̃′∗(σV1⊕V2)
becomes a nowhere vanishing section of the line bundle

r−1⊗
i=1

M⊗
∑r−i

l=1 λl

i �
s−1⊗
j=1

N⊗
∑s−j

m=1 λ∗m
j .

Since (π−→
λ ,
−→
λ∗
◦ ϕ)(σV1⊕V2) is nothing but the restriction of

m̃′∗(σV1⊕V2) ∈
r−1⊗
i=1

M⊗
∑r−i

l=1 λl

i �
s−1⊗
j=1

N⊗
∑s−j

m=1 λ∗m
j

to

SpFl[0,r−1](E
(1))× SpFl[0,r−1](E

(2))× SpFl[0,s−1](G
(1))× SpFl[0,s−1](G

(2)),

it is non-zero. �
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réductifs, Ann. Sci. Ecole Norm. Sup. (4) 37 (2004), no. 3, 415–448.

Research Institute for Mathematical Sciences, Kyoto University, Kitashirakawa,
Sakyo-ku, Kyoto, 606-8502, Japan

E-mail address: abeken@kurims.kyoto-u.ac.jp


