COMPACTIFICATION OF THE SYMPLECTIC GROUP
VIA GENERALIZED SYMPLECTIC ISOMORPHISMS

TAKESHI ABE

1. INTRODUCTION

Let G be a connected reductive algebraic group over an algebraically closed field
k of characteristic zero. We have a left (G x G)-action on G defined as (g1, g2) -« :=
g9y "

A (G x G)-equivariant embedding G — X is said to be regular (cf. [BDP], [Br,
§1.4)) if the following conditions are satisfied:

(i) X is smooth and the complement X \ G is a normal crossing divisor D U
..U D,,.
(ii) Each D; is smooth.
(iii) Every (G x G)-orbit closure in X is a certain intersection of Dy,..., Dy,.
(iv) For every point € X, the normal space T, X/T,(Gz) contains a dense
orbit of the isotropy group G, .

If G — X is a (G x G)-equivariant regular compactification of G, then a sum
>~ a;D; of the boundary divisors is (G x G)-stable. Let G — G be a finite covering.
If the line bundle O(Y a;D;) has a (G x G)-linearization, then the vector space
HO(X,O(X. a;D;)) of global sections of O(3a;D;) becomes a (G x G)-module.
Kato [Ka] and Tchoudjem [T] described the decomposition of this (G x G)-module
into irreducible (G x G)-modules.

Kausz constructed a regular compactification K GL,, of the general linear group
GL, in [Kauszl]. In [Kausz2] he described the structure of the (GL, x GL,)-
modules of global sections of line bundles associated to boundary divisors. Al-
though he dealt with only the very special regular compactification KGL,,, a good
thing is that his description of the (GL,, x GL,)-modules is canonical. More pre-
cisely, he constructed a canonical isomorphism between the (GL,, x GL,,)-modules
of global sections of line bundles associated to boundary divisors on KGL,, and the
(GL,, x GL,)-modules of global sections of line bundles on a product of flag vari-
eties. The fact that the decomposition is canonical is important when we apply the
compactification of G to the study of the moduli of G-bundles. In fact, Kausz used
the canonical decomposition of the above (GL,, x GL;,)-modules, and proved the
factorization theorem ([Kausz3]) of generalized theta functions on the moduli stack
of vector bundles on a curve. (The factorization theorem has also been obtained
by Narasimhan-Ramadas [N-Rd] and Sun [S1], [S2].)

The purpose of this paper is to establish an analogue of the Kausz’s results to
the symplectic group.

If V is a finite dimensional vector space, the general linear group GL(V) is
regarded as a moduli space of isomorphisms V' — V. In [Kauszl], Kausz introduced
a generalized isomorphism. The compactification KGL(V') of GL(V) is the moduli
space of generalized isomorphisms from V to V.

Now suppose that V' is endowed with a non-degenerate alternate bilinear form.
The symplectic group Sp(V) is regarded as a moduli space of symplectic isomor-
phisms V' — V. As a symplectic analogue, we introduce a generalized symplectic
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isomorphism (Definition 3.1). The regular compactification KSp(V) of Sp(V) is
defined to be the moduli space of generalized symplectic isomorphisms from V to
V. At first glance, it is not clear whether or not KSp(V) is a closed subvariety of
KGL(V), but a posteriori we know that it is (Corollary 3.16).

If dimV = 2r, then the complement KSp(V) \ Sp(V) is a union of smooth
divisors Dy, ..., D,_1 intersecting transeversely.

In Section 5 we describe the strata N;e;D; for I C {0,...,r — 1}. In particular,
we shall obtain a natural isomorphism

DO N---N Dr—l ~ SpFl X SpFl,
where SpF1 is a symplectic flag variety parametrizing filtrations VD> F{(V) D --- D
F,. (V) D Fry1(V) = 0 such that F;(V) is isotropic of dimension r + 1 — 4.
In Section 6 we study Sp(V) x Sp(V)-modules H*(KSp(V),O(>_ a;D;)). The

argument here is the same as [Kausz2]. We shall prove, for example, that there is
a natural isomorphism

H° (KSp(V), O(z_: n(r — i)Di)>

=0
1

®q; ®q;
r fﬂ_ —1i r fr —1
~ P = |SpFLael, (ﬂz ) ® H | SpFl, ®]_, <fj2 )

n2q122¢,20 rl—i r+l—i

where V ® Ogpr1 D F1 D -+ D Fpr D Fry1 = 0 is the universal filtration.

In Section 7 we shall apply the results about KSp(V') to the study of symplectic
bundles on a curve. We shall prove the factorization theorem (Theorem 7.3) of
generalized theta functions on the moduli stack of symplectic bundles.

The reason why we develop a symplectic analogue of the Kausz’s results is that
it has an application to the study of the strange duality for symplectic bundles. In
Section 8 we prove a proposition which will be used in a forthcoming paper [A].

Notation and Convention. e We denote by Jy the matrix
0 1
-1 0/
e For a 2r x 2r matrix A = (a;j)1<i j<2r, Wwe denote by Ay ) the 2 x 2 minor
a21-1,2m—-1 a21—1,2m
a2],2m—1 ast2m )
e The 2r x 2r matrix Jo, is defined by
JQ ifl=m
Jor =
(J2r)(t,m) {o if 1 # m.
e For a commutative ring R we denote by Sp,,.(R) the subgroup

{X € Maty,wor(R) | "X 2, X = Joy }

of the group Matg, «2,(R) of 2r x 2r matrices with entries in R.
e The subgroup U3, (R) of Sp,,.(R) consists of such X € Sp,,.(R) that X, is of

* oK\ . 1 =\ . 0 =\ .
the form (O O) ifl <m, (O 1) if I =m, and <0 *> if I > m. The subgroup

Us,.(R) of Sp,,.(R) is defined as X € Sp,,.(R) is in Us,.(R) iff *X € U3 (R).

e Let S be a scheme and * be an object (such as a sheaf, a scheme, a morphism
etc.) over S. For an S-scheme T', we denote by (%) or #7 the base-change of * by
T—S.
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e Let f: & — F be a morphism of sheaves on a scheme. If £ is a line bundle,
the morphism id® f : L& E — LK® F is often denoted by f in this paper. When we
make use of this abuse of notation, we shall make clear the source and the target
of the morphism so that no confusion arises.

e For a product X xY x Z x ..., prx denotes the projection to X.

2. REVIEW ON KAUSZ’S GENERALIZED ISOMORPHISMS

Here we recall Kausz’s result [Kauszl] on the compactification of the general
linear group. Most part of this section is copied from [Kauszl].

Definition 2.1. Let £ and F be locally free sheaves on a scheme S. A bf-morphism
from &€ to F is a tuple

g* g’
g= (M,u,5—>f,/\/l®5<—f,r),

where M is a line bundle on S, and p is a global section of M such that the
following holds:

1. The composed morphism g¥ o ¢” and ¢° o ¢f are both induced by the morphism
w:0g — M.

2. For every point « € S with u(z) = 0, the complex

5|m _"7:|x - (M®g)|w - (M®'7:)|z
is exact and the rank of the morphism &|, — F|, is r.

Definition 2.2. Let £ and F be locally free sheaves of rank n on a scheme S. A
generalized isomorphism from € to F is a tuple

D =(Li, Niy M, 15, E — M @ Ei1,E; + Eiqa,
fi+1—>f¢,£i®fi+1<—fi (OSZSTL—I),}LEH:;?"),

where € = &y, &1,...,En, Fn, - ., F1,Fg = F are locally free sheaves of rank n, and
the tuples

(M, iy Eir1 — &, M @ Eipr — &;,9)
(L, Miy Fig1 — Fi, Li @ Fir — Fiyh)

are bf-morphisms of rank i for 0 < i < n —1, such that for each = € S the following
holds:
1. If pi(z) = 0 and (f, g) is one of the following two pairs of morphisms:

Ela b (@126M;) @ &) | & ((8j=oM;) ® Ei1) |,
gz|:v £ i+1|z i gn|:m

then Im(g o f) = Img. Likewise, if A\;(z) = 0 and (f, g) is one of the following two
pairs of morphisms:

Fnle 4 i1z 2 Files
((®i—0L)) @ Fiy1) o < (®120L5) © Fi) |« L Fla,

then Im(g o f) = Img.
2. We have (h|,,) (Ker(E,le — &olz)) NKer(Fple — Folz) = {0}
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Definition 2.3. A quasi-equivalence between two generalized isomorphisms
D =(Li, \iy My pi, & — My @ Ei1, & = Eiyas
fi+1ﬂfi,ﬁi®ﬁ+1<*fi (nggnfl),hé'n:%fn),
@' :(’C/i, )‘;a M;a /1';7 gz/ - M; ® Ei/+17 51/ — 51‘/+17
Fipn— FLLi@Fiy—F (0<i<n-1),h: € = F)
from & to F consists of isomorphisms £; ~ £} and M; ~ M/ for 0 <i <n-—1, and
isomorphisms &; ~ &/ and F; ~ F/ for 0 < i < n, such that all the obvious diagrams
are commutative. A quasi-equivalence between ® and @’ is called an equivalence
if the isomorphisms & ~ &) and Fy ~ F| are in fact the identity on £ and F
respectively.

Remark 2.4. In [Kauszl, Page 579], Kausz proved that there is at most one
equivalence between ® an ®’.

Let S be a scheme, £ and F locally free sheaves on S. We denote by KGL(E, F)
the functor from the category of S-schemes to the category of sets that associates
to an S-scheme T the set of equivalence classes of generalized isomorphisms from
Er to Fr. Then [Kauszl, Theorem 5.5] says:

Theorem 2.5. The functor KGL(E,F) is represented by a scheme KGL(E,F)
which is smooth and projective over S.

Kausz also considered a compactification of PGL,,.

Definition 2.6. Let S be a scheme and &, F locally free Og-modules of rank n.
A complete collineation from &£ to F is a tuple

U= (L N;Fir1 =>Fi, LioFipi—F (0<i<n-—-1),)

where € = F,, Fn_1,...,F1,Fg = F are locally free Og-modules of rank n, the
tuples

(Lis Niy Figr — Fiy Li @ Figr «— Fi i)
are bf-morphisms of rank ¢ for 0 <7 <n — 1 and Ay = 0, such that for each point
x € S and index i € {0,...,n — 1} with the property that A;(z) = 0, the following
holds:
If (f,g) is one of the following two pairs of morphisms:

/
]:n|w — i+1|1‘ i}fl|l?

((®§-:0£i) ® Fis1) lo < ((®§‘;%)£i) ® Fi) lo L Folz,

then Im(g o f) = Im(g).

Two complete collineations ¥ and @’ from & to F are called equivalent if there
are isomorphisms £; ~ £}, F; ~ F/ such that all the obvious diagrams commute
and such that F,, ~ F, and Fy ~ F| are the identity on & and F respectively.

Let S be a scheme, and &, F locally free Og-modules of rank n. We denote by
PGI(E,F) the functor from the category of S-schemes to the category of sets that
associates to an S-scheme T the set of equivalence classes of complete collineations
from & to Fr. Then [Kauszl, Corollary 8.2] says:

Theorem 2.7. The functor PGI(E, F) is represented by a scheme PGI(E, F) which
is smooth and projective over S.

In fact, PGI(E,F) is a closed subscheme of KGL(E,F).
The following lemma is an easy consequence of [Kauszl, Lemma 6.1 and Propo-
sition 6.2].
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Lemma 2.8. Let A, B be vector bundles of rank m, and let

b
(LAAL B LoAL B

be a bf-morphism of rank i.
(1) There is a natural isomorphism

L£20m=) @ det A ~ det .

(2) If A =0, then Im(A — B) = Ker(B — L ® A) and Ker(A — B) = Im(LV ®
B — A), and they are subbundles of rank i and of rank m—i of B and A respectively.

3. GENERALIZED SYMPLECTIC ISOMORPHISM

As a symplectic analogue of generalized isomorphisms, we first introduce gen-
eralized symplectic isomorphisms (Definition 3.1). Then we shall prove that the
moduli space of generalized symplectic isomorphisms gives a compactification of
the symplectic group.

Definition 3.1. Let S be a scheme, £ and F locally free Og-modules of rank 27,
P a line bundle on S, and ¢ : ERE — P and 7r : F ® F — P non-degenerate
alternate bilinear forms.

A generalized symplectic isomorphism from £ to F is a tuple

S =(Mi, p1i, & — M; @ Ei1,E — Eiga,s
3.1 ~
( ) fi+1—>.7:i,/\/l¢®fi+1<—fi (0§i§r—1),h:5T—>FT),

where £ = &y, &1, ..., &0, Fry ..., F1, Fo = F are locally free Og-modules of rank 2r
and the tuples
ef b X
(M, piy Eigr — Ei, Mi ® Eir «— Eiyr +14)
] ,
and (Ml, Wiy Fit1 f—” Fi,M; ® Fit1 L Fi,r+ Z)

are bf-morphisms of rank r + ¢ for 0 < ¢ < r — 1 such that for each x € S the
following holds:
1. If pi(z) = 0 and (f, g) is one of the following pairs of morphisms

Erle L Eials 2 Eila,

Ele & (@14M;) @ &) o L ((95-0M;) © Eita) Loy
Fole L Fisile 2 Fila,

Fl. L ((@52oM;) ® F) o % ((®5oM;) ® Fis1) las

then Im(g o f) = Im(g).
2. (hl|z) (Ker (Er]z — &olz)) N Ker (Frlz — Folz) = {0}
3. The following diagram is commutative:

{(&hM ® &) xe, &} @ { (MY ® Fo) x5, Fr}

a/ N\ B
(3.2) (RIZgM] ® &) ® & Fo® (®YZg M @ Fo)
TN\ /6

(M) @ P,
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where v and § are induced by 7¢ and 7 respectively, and
a=q;@(cho---ock_;oh op])

B=(flooff_ohopf)®df,

where p? q,‘f, pf and q,“;c are defined by

(®§;§ M) @ 50) xe & Mg

(3.3) g | O lefooel
®§;01M]V®50 — &
e} _,0--0€}
and

k=1, 4y 74
(R M @ R) xm 7 R

(34) ai | O R
R’y M) ® Fo Fi.

fiflo'"Ofé

3.2. We can consider the composition of a generalized symplectic morphism with
symplectic isomorphisms as follows. Let a: &€ — £ and § : F — F be symplectic

# b b
isomorphisms. Replacing the morphisms &; <, Eo, Mo®&Er & &, Mo®F, i Fo

# ocoeu e"oa71 "o -1
and 7y 25 Fy with & 2% £, Mo @ & <% &, Mo ® Fy << £, and

oft
F1 Foks, Fo respectively, we obtain another generalized symplectic isomorphism

from € to F, which we denote by S0 ®oa™!.

Definition 3.3. Let S be a scheme, £ and F rank 2r locally free Og-modules, P
a line bundle on S, ¢ : EQ E — P and 7r : F ® F — P non-degenerate alternate
bilinear forms.
A quasi-equivalence between two generalized symplectic isomorphisms
O =(Mi, pi, & — M; @ Ei1, &+ Eiya,
Firi = FiMi@F1«—F (0<i<r—1),h:& — F)
g :(M;Mu;vgi/ - M; ® gz(+17gz( — z(+17
Flo = FLM @ F, —F 0<i<r—1)0 & —F)
from &€ to F consists of isomorphisms M; ~ M/ (0 < i < r —1) by which p; maps
to p, and isomorphisms & ~ &/ and F; ~ F] (0 < ¢ < r) such that & ~ &) and
Fo ~ F| are symplectic and the obvious diagrams are commutative.
A quasi-equivalence between ® and ®’ is called an equivalence if the isomor-
phisms & ~ &) and Fy ~ F| are in fact the identity on £ and F respectively.

Definition 3.4. Let S be a scheme. Let £ = F = O?% be given the non-
degenerate alternate bilinear form by the matrix Js,.. To a tuple (mq, ..., m,_1) of
regular functions on S, we associate the following generalized symplectic isomor-
phisms from & to F:
®(mo, ..., my—1) :==(Mi, 15, & — M; ® i1, & — Eiya,

Fiv1 = Fi, M; @ Fiy — Fih 1 & 5 F),

where M; = Og, u; = m; for 0 < i <r —1, and&-:fiz(’)gzr for 0 <i < r;
the morphisms & — M; ® &1 and & « &1 (both are from OF*" to OF*") are
described by the 2r x 2r diagonal matrices

(3.5)

2¢ times

(36) diag(l,mi,1,mi,...,1,mi,mi,...,mi)
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and
27 times
——
(3.7) diag(mg;, 1,m;, 1,...,m;, 1,1,...,1)

respectively; the morphisms F,.; — F; and M; ® F;41 < F; by the matrices

2% times

—
(3.8) diag(1,m;, 1,m;, ..., 1,m;,1,...,1)
and

24 times
(39) diag(mi,l,mi,l,...,mi,l,mi,...,mi)

respectively; and the isomorphism h : £, — F,. is the identity.

Notation 3.5. We define the subgroup Ws, of Matg, 2, as follows. A matrix
A € Maty, o, is in Wa, iff there exists a o € &, such that A ;) = O if i # o(j),

and
A L0y (0 1y (=1 0 (0 -1
[o(4),4] o 1/)°’\=1 0/’ 0 -1/°'\1 0 .

Definition 3.6. Let S, £ and F as in Definition 3.4. Let
O =(Mj, pi, & — Mi ® Ei1,E; — Eiya,
Fit1 —>.7:i,./\/li®fi+1 — F; (0 < <r-— 1)7h 2 & ;fr)

be a generalized symplectic isomorphism from £ to F. A diagonalization of ® with
respect to (a, ) € Wa, x Wy, is a tuple (u;,v; (0 < i < 7);1; (0 < i <r—1)) of
isomorphisms, where u; : O?ZT =&, v Ogazr = Fpand ¢ - Og = M, such
that (u;,v; (0 <7 <7);9; (0 <i<r—1)) establishes a quasi-equivalence between
D (g (po)s - - - (ftr—1)) and @ such that o™ oug : O — 092" = £ is in

U3, (Og) and B~ owg : 092" — 092" = F is in Uy, (Og).

Remark 3.7. Clearly ® has a diagonalization with respect to (o, 3) € Wa, x W,
if and only if 37! o ® o« has a diagonalization with respect to (id, id) € Wa, x Wh,..

Proposition 3.8. Let S be a scheme and let £ = F = ngr be given the non-
degenerate alternate bilinear forms by the matriz Jo,.. Let
( ) O =(M;, 15, & = M; @ Eip1,E — Eiga,
3.10 ~
Firi = Fi,Mi@Fip <« F (0<i<r—1),h:& — F),

be a generalized symplectic isomorphism from £ to F.

(1) For every point s € S, there exists an open neighborhood U of s such that
®|y has a diagonalization with respect to some (a, 8) € Wo,. X Wo,..

(2) Assume moreover that S = SpecK with K the quotient field of a valuation
ring R. Then the above diagonalization is chosen such that a=! owugy € UQ";,(R),
Bt owvy € Uy, (R) and ;' (11;) € R.

Proof. (1) We proceed by induction on r. Let ey, ..., es. be the standard basis of
E=0%* and fi,...,fo, that of F = OF*".
By the conditions 1 an 2 of Definition 3.1,

g:= f§o~~~off_1ohoe?_lo-uoeg:EOH (®;;8Mj) ® Fo
is nonzero at every point of S. We can find (o, 8') € Wa,. x Wa,. such that
(3.11) g:=(F"""ogoa(er) fz) € ®j5M,



8 TAKESHI ABE

is nowhere vanishing in a neighborhood of s. Replacing S by this neighborhood, we
may assume that o is nowhere vanishing on S. Then the composite of morphisms

, e o-0eh

Oe; C 0% =, 0% = ¢ (@ZM;) ® &

induces a line subbundle ®§;%)M}’ — &;. By the condition 3 of Definition 3.1, we
have (e, "t o g o B'(fy)) = o, where

g i=eho-oel_johTlof jo-o fg i Fo— ()Z4M;) ® &
Thus the composite of morphisms

, b oot
ot, c 0% 2, o - g IR (gl vy o

also induces a line subbundle ®§;%M}/ — F

For 0 <1 <r, we put

1

Fiofy = fflﬁ0-~-0ff_1OhoeLlo~-~oe%oo/(e1)
o

(3.12) 4

E1oey = —e?o---oeﬁ_l oh™! ofﬁ_1 o-~-ofg o 5 (fy).
o

Then you can check that & D (®§;%JM]V) @ Oeqyy and F; D Of; | @ (®§;%M}/) are
subbundles.

Let v : F = 092" — O be given by 2 + (z,3'(f2)), and § : € = O%?" — O by
y— (d/(e1),y). Put

(3.13)
51DE::Ker(’yofgo---ofﬁ_lohoei_lo---oelb)ﬂKer((Soego-uoe?A)

flDfl::Ker(fyoego'uoefﬂfloh’lofrb_lo~~~oflb)ﬁKer(fyof§o~~oflﬁ_1).

Then & and F; are vector subbundles of & and F; respectively, and we have the
direct sum decompositons

(3.14) & = (M) @ Oeg @&, Fi=0f,8 (@ 4M))eF
for 0 <1 < r. Moreover the rank r + [ bf-morphism
My, 141 = E, M@ Ep1 — &, + 1)

is a direct sum of the bf-morphisms

(Ml,m,@;_wy) © Oesii1 — (@125 MY) & Oen),

(®§;5M;/) ©® Mlez,lJrl — (®§;BM;/) @ 06271, 1)

and
(M, &40 = E M@ Epr — E,r+1—1).
Likewise (M, i, Fi41 — Fi, M; & Fipq1 «— Fi,r +1) is a direct sum of the bf-

morphisms

(Ml7 /*Ll70f1,l+1 2] (®§:(]M5/) - Ofl’l & (®§;BM;/)’

Mifi 141 @ (®é;BM;/) — Of1,® (®§_:%]M;/), 1)

and
(Ml7/'6l7]:1+1 _)]:hMl@j:H»l <_]:l,’l"+l—1>.
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S S A — =
Note that & — &,_; and F, —— F,_; are isomorphisms. Let h be the

composed isomorphism ff_l oho 63:11 :E€r_1 — Fr_1. Then the bf-morphisms

(Mum,fiﬂ - E,Ei — M; ®?i+1,r —-1- z)

(3.15) - T o '
(Miaﬂiyfi-i-l - Fi,Fi > M;@Fip1,7m—1— z)

(0 < i < r—2), and the isomorphism h : £,_1 — F,_; give an generalized
symplectic isomorphism ® from £y to Fo.

Since (ﬁlil(fl,o), fg) =1, we have ﬂlil(fLo) =t (1, Co,y ... 7027«_1,CQ7~). Slmllarly
we have 01/71(8270) =t (dl, 1, dg, ey dgr).

Let 0% and 0/ be the isomorphisms OF*" — OF*" defined by the matrices

1 d1 —d4 d3 Ce —dgr dgr_l
1
ds 1
(3.16) dy 1
dor—1 1
doy 1
and
1
C2 1 Cq4 —C3 | ... Copr —Cop_1
C3 1
(3.17) ¢4 1
Cor_1 1
Copr 1

respectively, where no entry is understood to be zero.

Restricting the symplectic isomorphisms o’ 0 : O%2" — 092" = &; and /00y :
0% — 092" = F to the last (2r — 2) direct summands 09?72 ¢ O%?" we have
symplectic isomorphisms O%?7~2 ~ £; and O9?"=2 ~ F,. We regard £, and Fj as
equal to O®2"~2 by these isomorphisms. By induction hypothesis, the generalized
isomorphism ® has a diagonalization with respect to (@, B) € Wo,_o X Wa,_o in
a neighborhood of 5. Replacing S by this neighborhood, we may assume that ®
has a diagonalization with respect to (e, B) € Waor_o X Wo,_9 on S. So we have
isomorphisms

1,/}i:OS:—>Mi (O§i§T72),
(3.18) Ty : OP=2 , 09r=2~ g, Tp: O92r=2 , 0922 ~ F

up 0%r-2 _, gl, I OPr=2 _, F 1<i<r-1)

such that @~ oy € Uj,_,(Og) and B 0T € Uz,_,(Os). Since o € ®E_gM;
is nowhere vanishing, there is a unique isomorphism ,._1 : Og — M,._; such that
(®5Z55) (1) = 0.

For1 <l <r—1,let
w = (@) @id) @m :09° 6 0972 — (/M) @ 0) 8 & =&

3.19 _
(3.19) o= (id e (1)) @1 :02 0 092 5 (O &I IM)) e Fi = F
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and let
(3.20)
Uy = ((@?;31/13/) o) id) &) ((6371)’1 oﬁr,1> 092 g 022
— (VM @ O) B E, =&,
o= (id @ (@5540)) @ ((FF-) 7 0Trr ) 1092 @ 0P~
— (08 M) e F, = F,.
Let ug : OP2p0%272 = 092" — 0% = £, be the morphism o’ 06} o (id® ) and
let v : OF2 @ 0272 = 092" — 092" = F; be the morphism 3’ o 6’z o (id & ).
We have
o/ obzo(id@T) =/ o(id@a)o{(idea) ' obso(id®a)}o(ide (@ ' omp)),
and we have o := o/ o (id®@) € Wa, and {(id®da) oo (idda)}o(ida (@ to
o)) € UZ (Og). Similarly, if we put 3 := 3" o (id @ 3), then 3~ o vy € U;,.(Og).
Therefore these data give a diagonalization of ® with respect to («, 3) € Wa,. x Wa,..
(2) Again we proceed by induction on r. We follow closely the argument in (1)
and use the same notation. Let v : K \ {0} — T be the valuation, where I" is the
valuation group of R. (By convention v(0) = +00.) When V is a one-dimensional
K-vector space, we denote v(z) < v(y) for z,y € V if for one (and all) K -linear

isomorphism ¢ : V — K, we have v(¢(z)) < v(e(y)).
In the proof of (1), we can choose (o, ") € Wa, x Wa,. such that
(3.21) v((Btogod(er),fr)) <v((B ' ogod(e)f)))
for 1 < 4,7 < 2r. Then for any x € R € K = andy € R C K*" = F,
we have (g(z),y)/o € R. Therefore we have d;,¢c; € R in (3.16) and (3.17). By
induction hypothesis, we can choose the diagonalization (3.18) of ® in (1) such that
Y7 () ER(0<i<r—2)anda ot € U, ,(R) and ﬁ_l 0Ty € Us,._5(R).
Therefore arguing as in (1), we obtain a diagonalization of ® with respect to
(o, B) € Wa, x Wa,. such that a=' oug € U3, (R), 7 owg € Uy, (R), ¥; (1) € R
(0 <i <r—2), and that

(3.22) E(g(x)) e R C K" = F

for any z € R*" C K?" = &, where ¢ is the inverse of the morphism (®§;é@/}j) ®
id].'o . .7:0 — (®;;(1)Mj) ®.7:0.

It remains to show that ¥, (u,—1) € R. If r = 1, then (€ o goug)(*(0,1)) =
vo (1(0, 95 ' (110)?)). Hence we have ¢ (o) € R by (3.22). If 7 > 2, then consid-
ering (3.22) for 2 = u(%0,0,1,0,...,0)), we know that ¥, ', (1) € R. O

Proposition 3.9. Let S, £, F and ® as in Proposition 3.8. For a given pair
(a, B) € Wa,. x Wha,., there exists at most one diagonalization of ® with respect to

CHOR

Proof. This proposition follows from the fact that the construction of the diago-
nalization of ® given in the proof of Proposition 3.8 is the unique way. A rigorous
proof is as follows.

Let eq,...,es,. be the standard basis of £ = O?QT, and fy,...,f. that of F =
O%*". By Remark 3.7, we may assume that (a,3) = (id,id). Let us be given two
diagonalization of ® with respect to (id,id):

W™ 0% g WML 082 L (0<i<r),

? K2

™ 0s s M; (0<i<r—1)
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(m

with the entries of ) and v(()m)

(m)  (m)
Tav' Yab ) ipg <
0 0
(m)
m 1 .
(u(() )) = Yab ifa=0b
[a,0] 0 1
(m)
0
y%) ifa>b
0 wgy,
0 0
Zab Wap
1 0
[a,b] Zab 1
(m) 0
x?ﬁl) if a > b,
Zop 0

(m=1,2).
Both ®;;éw§_1) :0g — ®;;(1)/\/1j and ®§;(l)wj(_2) :0g — ®;;3Mj are induced by

fﬂuo~~ofﬁilohoe?,7lo~»oeg

Oe, C ®¥ ,0e; =& (®5ZM;) ® F

= o7 (@]2M;) i — (2o My) fi,

hence we have ®;;é%('l) = ®;;3,¢)J('2)'

it Lysr wli, i w) (resp.

corresponds to the morphism

t(l’ ZET)’ 'Ig,ln)7 Zg,ln)7 Tt 7I’E‘T)’ Z’E"’ln)))

# #

—1 b b
epo---oer_ ohT of’ jo---0ff

Ofy C @Ellofz =F (®;;3MJ) ®E&

(it

£ — O®2r
(resp.
Oe; @?Ll(’)ei . flooff ohoe _o--o0eh (®;;6Mj) o F
(R F= 0%,
therefore x((lll) = I[(fl), y((lll) = y((fl), z((lll) = zfl), wéll) = w((121) From this we know
that the restrictions of uz(»l) and u§2) (resp. vEl) and vz@)) to the first two factors

092 Cc 092 greequalfor0 <i<r. Lety: F=0%" - Oand§: =097 - 0O
be given by = — (z,f3) and y — (e, y) respectively.
Let & and F; (0 <i <) be as in (3.13). In particular we have
Eo=(1(1,0,...,0), (™ 1,y WL
Fo= (1,2, 2l 2™y t0,1,0,...,0))".

As in the proof of Proposition 3.8, ® induces a generalized symplectic isomorphism
® from 50 to .7:0.
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Choose

—wi\ ([ VRN TR
0 0 0 0
1 0 0 0
0 1 0 0 ,
0 0 1 0
0 0 0 1

and
0 0 0 0
| (=] () [t

1 0 0 0
0 1 0 0 ,
0 0 1 0
0 0 0 1

as bases of £y and F respectively. Then with respect to these bases,
ﬂgm): 0?27“—2 N 572'7 5’E’m): 0‘65927"—2 - 71 (O <i<r— 1)7
l[}gm)IOS—)Mi (OS’LSsz)

(m)

%

give diagonalizations of ® (with respect to (id,id)), where ;" and Egm) are the
restrictions of ugm) and vgm) to the last (2r — 2) factors. By induction hypothesis

we have
vl =g (0<i<r-2),
o) =u? and 3V =3 (0<i<r-1).

Since the restrictions of eg_l and fﬁ_l respectively to £, and F, induce isomor-

phisms &, = £,_; and F, = F,_, the equality ﬂf}_)l = ﬂ,(?_)land @(})1 =72

— r
implies that ﬂg}) = Hg)and 551) = 5&2). All together we have 90(1) = gagz) (0<i

r—1), ugl) = ugz) and vgl) = vfz) (0<i<r).

Remark 3.10. By Proposition 3.9 we know that given two generalized symplectic
isomorphisms ®; and @, from £ to F, there exists at most one equivalence between
®; and ®,. (cf. [Kauszl, the proof of Theorem 5.5 in page 579].)

Proposition 3.11. Let ® be as in Proposition 3.8. For a point s € S, if ®®gk(s),

the pull-back of ® to Speck(s), has a diagonalization with respect to (a, ) € Wa,. x
Wa,., then ® has a diagonalization in a neighborhood of s € S.

Proof. We may assume that (o, 8) = (id,id). Let ey, ..., e, be the standard basis
of £ = O?QT, and fy, ..., fy. that of F = Og%. Since P®gk(s) has a diagonalization
with respect to (id,id), the morphism

f # b b
foor-of,_,ohoe;] _jo---0€]

Oe; C O =¢ (RIZM;) ® F
— (®2oM;) fi
is nonzero at s, hence nonzero in a neighborhood of s. If we define subbundles

E C & and F; C F as in the7pr00f7()f Proposition 3.8, we obtain a generalized
symplectic isomorphism ® from £j to F( that has a diagonalization with respect to
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(id,id) at Speck(s). By induction hypothesis, it has a diagonalizaiton with respect
to (id,id) in a neighborhood of s € S. So ® has a diagonalization with respect to
(id, id). O

Definition 3.12. Let S be a scheme, P a line bundle on S, £ and F locally free
Og-modules of rank 2r, £ ® &€ — P and F ® F — P non-degenerate alternate
bilinear forms.

The functor XSp(E, F) from the category of S-schemes to the category of sets is
defined to associate to an S-scheme T the set of equivalence classes of generalized
symplectic isomorphisms from Ep to Fr.

Proposition 3.13. The functor KSp(E,F) is represented by a scheme which is
smooth and of finite presentation over S.

Proof. 1f we prove the representability locally on S, then by Remark 3.10 we can
glue together locally-constructed unversal families. So we may assume that £ =
F = 0?2” and the symplectic bilinear forms are given by the matrix J,..

For a pair (a,) € Wa,. x Wa,, we define the subfunctor KSp(E, F)(*# c
KSp(€, F) to associate to an S-scheme T the set of equivalence classes of generalized
symplectic isomorphisms from & to Fp that have a diagonalization with respect
to (a, 3). By Proposition 3.11, KSp(&, F)(*A) is an open subfunctor of XSp(&, F).
Since Remark 3.10 guarantees that the universal families glue together, it suffices to
prove that KSp(&, F)(*F) is represented by a smooth scheme of finite presentation
over S.

For an S-scheme T, let us given a generalized symplectic isomorphism

O =(Mi, pi, & — M; @ Ei1, &+ Eiya,
Fit1 _’fi7Mi®Fi+1 — F; (0 < <r-— 1),h pon —>fr),
from Er to Fr with its unique diagonalization with respect to («, 3)
uisog‘éwﬂa, vi;O?”%ﬁ 0<i<r)
Vi Op — M, (Og’iﬁT—l)
with a™t oug € U3, (Or) and 71 ovg € Uy, (Or).

The global sections ¢; *(11;) (0 < i < r—1) give rise to a morphism g; : T — A%,
The matrices a~! oug € U, (Or) and 871 o vy € U, (Or) give rise to morphisms
g2 : T — Ug (Og) and g3 : T — U, (Og). Conversely, given g1 : T — A%, g :
T — Uj.(0s) and g3 : T — U, (Og), we can recover an object of KSp(E, F)(@r).
Therefore the functor KSp(&, F)(*?) is representable by a scheme K Sp(&, F)(F),
and we have an isomorphism
(3.23) KSp(&,F) P ~ Uf (0g) x5 A x5 Uy, (Og).

O

Definition 3.14. We denote by K.Sp(&, F) the S-scheme that represents the func-
tor KSp(E, F).

In order to prove the projectivity of KSp(E,F), we shall construct a closed
immersion of KSp(€, F) to KGL(E,F).

Let S be a scheme, P a line bundle on S, £ and F rank 2r locally free Og-
modules, £ ® £ — P and F ® F — P non-degenerate alternate bilinear forms.

We compare the scheme KSp(€,F) and KGL(E, F).

Let

S =(M;, 13, & = M; @ Eip1, & — Eia,
‘7:1‘_._1%.71',./\/[1'@.7:@4_1(*‘71‘ (OSiST*l),hZST:%]:T),
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be a generalized symplectic isomorphism from & to F. If we let

5{::50, ]:ilI:]'—Q (OSiST‘—l),
E =&, Fl=F._i (r <i<2r),

Li=M;:=0g, N,=upu;,:=1 0<i<r-—1),
Li=M =M, No=ph=pi, (r<i<2r—1),
then
\I/ :(‘c;a)‘gaMgvl”';agzl - M; ®gz(+lagi/ — z{+17

3.24
(3.24) Fign = FLLiQF L —F(0<i<2r—1),h:E&, — Fy,)

K2

is a generalized isomorphism from £ to F. By this correspondence, we have a
natural transformation

T:KSp(€,F) — KGL(E, F).

Proposition 3.15. For any S-scheme T, the morphism KSp(E, F)(T) — KGL(E, F)(T)
of sets is injective.

Proof. For | =1,2, let

b(1) #(1)
o0 =M, w0 “m MP @ ), £ S— £,

tig )

b(1)
(3.25) i

1O
FO L FO MO oD L 7D 0<i<r—1),

WO 60 - FY),

be a generalized symplectic isomorphisms from £ to Fr. Let s¢; : /\/lz(-l) — MZ@)

and sF; : /\/lz(»l) — MZ(»Z) (0 <i < r—1) be isomorphisms such that Sgyi(/tl(ll)) = MEZ)

and 5_7-"71'(/,651)) = u§2). Let tg; : Ei(l) — 52-(2) and tx; : fi(l) — fi(z) be isomorphisms

such that tg o = idg and tr g = idr, and that

(3.26)
e s 0 M) — O

trio ff(l) = fiW) otriti, (87i®@tFip1)o fib(l) = fi(Q)b otr; (0<i<r—1)
trro D = h® o te r-

QW @ oy

i

oteit1, (86, @tesiq1)o

Then s¢;, sF;, tejand tr; (0 <i<r—1,0<j <r) give an equivalence between
®M) and &) as generalized isomorphisms. If s¢ ; = s7; (0 < i <7 — 1), then they
give an equivalence between ®(1) and ®@ as generalized symplectic isomorphisms.
Therefore the proposition follows from the next claim.

Claim. sg; =sr; (0<i<r-—1).
Proof of Claim. By the commutativity of the diagram (3.2), we have

(1) (1)
Q@) o ((fiPo o fH O o n®opf™y @ ¢f ")

(3.27)
=(l®mg)o (q,f(l) ® (eg(l) 0---0 ei(_l)l o ph—1 opf(l)))

as morphisms from {(®f;é Mgl)v ® Sél)) X g N e {(®f;é Mél)v ® fél)) X F )
}'ﬁl)} to ®;:é M;})v ®@P for 1 <k <randl=1,2. Using the equalities in (3.26)
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we know that
- 1) (1)
(@55 @) 0 (tems)o (Moo il on®opf™) @ ol ")

(2 (2)
=(@ng)o ((ffP oo ff W oh®opf™)@ql™)

o (((®?;555,j ®teo) X ter) ® ((®§;35f,j Qtro) X tr,))

and

(®—jse; ®1)o(1@me)o (q,f(” ® (P o 0el® opM-1 Opkf<1>)>
=(1®mg)o (q?m ® (eg@) 0---0 eg(fi o p2)—1 opf@)))
o (((®5Zyse; ®teo) X ter) @ (REZ)sF; @tro) X try))
. k—1 1 1 1 k—1 1 1
as morphisms from {(®;_, Mg Vel X g &t )}®{(®j:0 Mg Ve FY) X )

]—'ﬁl)} to ®§:& M;mv ® P. From these equalities, we know that if we denote the
morphism in (3.27) by b; (I =1,2), then we have

(®)=0se.4 @1) ob1 = (@557, ©1) 0 by
Using diagonalization locally, you can check that b; is surjective. So we have

®;:Ol sgj = ®5;3 sFp; (1 <k <r). Hence sg; = sr; (0 <j<r—1). This
completes the proof of the claim. O

This is the end of the proof of Proposition 3.15. O

The natural transformation 7 : KSp(€,F) — KGL(E,F) induces a morphism
v: KSp(€,F) - KGL(E,F) of S-schemes.

Corollary 3.16. The morphism ¢ is a closed immersion.

Proof. We can check this locally on S, so we may assume that S is an affine scheme,
and that P = Og, £ = F = 0", and that £ ® £ — P and F ® F — P are given
by the matrix Js,..

Let R be a valuation ring over Og, and K the quotient field of R. In the
commutative diagram

KSp(&, F)(SpecR) 2 KGL(E, F)(SpecR)

(3.28) e @
KSp(E, F)(SpecK) L KGL(E, F)(Speck),
(a) and (c) are injective by Proposition 3.15.

If we are given an element ® of KSp(&, F)(SpecK ), we know that it extends
over SpecR by choosing a diagonalization as in (2) of Proposition 3.8. Hence (b)
is surjective. By [Kauszl|, KGL(&,F) is a projective S-scheme, so (d) is bijective
by the valuative criterion. Therefore (b) is also bijective. Then KSp(€,F) is a
proper S-scheme by the valuative criterion. By Proposition 3.15, the morphism ¢
is a closed immersion. O

4. RELATION WITH THE SYMPLECTIC GRASSMANNIAN

Let £, F be locally free sheaves of rank 2r on a scheme S, and 7¢ : E R & — P,
nr : F®F — P be non-degenerate alternate bilinear forms with values in a line
bundle P. We define the non-degenerate alternate bilinear form megr : (€@ F) ®
(EBF) — Pasmear ((e,f) @ (¢, ) = me(e®e)—mr(fRf"). Let LGr(E®F) be
the symplectic Grassmannian parametrizing rank 2r isotropic subbundles of £ ® F.
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Giving a symplectic isomorphism £ < F is equivalent to giving a rank 2r
isotropic subbundle H C & & F which projects isomorphically to both £ and F
(Consider the graph of «). Therefore LGr(E @ F) is also a compactification of
Sp(E, F).

The relation of the two compactifications KSp(E,F) and LGr(€ & F) is as
follows.

Proposition 4.1. There is a natural morphism g : KSp(€,F) — LGr(€ @ F).

Proof. Let
O =(Mi, pi, & — M; @ i1, & Eiya,s
Firi = F Mi@Fg1«—F (0<i<r—1),h:E = F)
be the universal generalized symplectic isomorphism from & = Exsp to Fo = Frsp-
Then by the condition 2 of Definition 3.1, the morphism
Bi=(eforoei 1 fio- o ff joh): & — Exsy® Ficsp

is injective, and its image is a subbundle of x5, ® Fisp. By the condition 3 of
Definition 3.1, this subbundle is isotropic. Hence 8(&,) C Exsp ® Frsp gives us a
morphism KSp(&,F) — LGr(E ® F). O

For later use, we prepare some easy lemmas concerning LGr(E @ F).

Lemma 4.2. Let 0 - U — pri(EBF) — Q — 0 be the universal sequence on
LGr(E ® F). Then there is a natural isormorphism

r—1
(4.1) g*det Q = prsP® @ R MY,
i=0
Proof. Let ® be as in the proof of the above proposition. By the construction of g,
we have an isomorphism
g* det Q ~ det(E ® F)rsp @ (det £,)" .

By Lemma 2.8 (1), there is a natural isomorphism

r—1
det & ~det & ® ® M?(i_r).
=0
Combining these isomorphism together with the isomorphim det £ ~ det F ~ P®",
we obtain (4.1). O

Lemma 4.3. Let V and W be vector spaces of dimension 2r over a field K with
non-degenerate alternate forms (—, —)y and (—, —)w. Endow V & W with the non-
degenerate alternate form (—,—)vew gwen by ((v,w), (v, w))vew = (v,v")y —
(’LU, w/)W'

IfU C V@ W is an isotropic subspace of dimension 2r, then we have dimU N
(V& 0)=dimUn (0 W).

Proof. Easy. O

We denote by ¢(U) the number dimU N (V & 0)(= dimU N (0® W)), and call it
the type of U. We say that U is of type < n if t(U) < n.

Notation 4.4. We denote by LGr(E & F)<,, the open subscheme of LGr(E & F)
parametrizing rank 2r isotropic subbundles of type <n of £ & F.

Lemma 4.5. For 0 < n < r, the codimension of LGr(€ & F)\ LGr(€ & F)<pn in
LGr(E & F) is greater than or equal to (n + 1)2.

Proof. Easy dimension counting. O
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5. GEOMETRY OF STRATA

If @ :(M27/'I”L7EZ —- M, ®gi+17gi — (C/’i+1’
Fipr—= FiMi@Fip1 —F (0<i<r—1),h:& =S F)

with & = Ekspe,7) and Fo = Fispe, ) is the universal family on KSp(E,F),
then vanishing loci of some p;’s are closed subschemes of K.Sp(€, F). In this section
we study the closed subschemes just as Kausz did for KGL(E, F) in [Kauszl, §9)].

When Kausz studied the strata of KGL(E,F), the scheme PGl appeared nat-
urally. The scheme PGI also appears in our study of strata of K.Sp(€,F), but in
disguise.

Let S be a scheme, P a line bundle on S. Let A, A’, B and B’ be locally free Og-
modules of rank m, and 74 5 : AQB’ — P and 75 4 : B® A" — P non-degenerate
pairings.

The S-groupoid Q(ma p/, 7B, 4/) is defined as follows. For an S-scheme T, an
object of Q(ma.p,mB,.4)(T) is a pair of tuples

a# a/?-
Oy = (Mmui,AiH - A, M, 0A 11— A (0<i<m-— 1))
(5.1) ) )
Pp = (Mm,uz‘,BiH — B, M; @ Biy1 <= B; (0<i<m-— 1))

such that ® 4 and ®p are complete collineations from (A" )y = A, to (A)r = Ay
and from (B')r = B, to (B)r = By respectively, and such that the following
diagram is commutative:

((@A2IMY © Ao) xa, An} © {(S5Z4MY © Bo) x5, Br)

ek / N pit ® df
(5.2) (REZ M) ® Ag) ® B, Am ® (525 MY ® By)
TA,B \4 / TB,A

(M) @ (P)r,

where p;f, qkA, pf and qE are defined by

A
(®f;§ MY ® AO) o Am T AL
(5.3) q;:‘ 1 1 aio~~oa§n71

b b
aj,_,0--0ay

MY Ay STy,
and
(@M ©B) x5, B, 5 B
(5.4) a | Lbhoobf |
®§;3 M;/ © Bo M B
Isomorphisms are defined obviously.

Proposition 5.1. For any S-scheme T, the functor
(5.5) Q(rap, w4 )(T) — PGLIA', A)(T)

which associates ® 4 to an object (P4, Pp) € Q(rap, 8.4 )(T) is an equivalence.
In particular, the functor Q(wa g, 7B, 1) is represented by a scheme which is smooth
and projective over S by Theorem 2.7.
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Proof. We shall construct the inverse of the functor (5.5).
Given an object

ag a[?
Py = (Mz’;,uimAi—&-l — A, M @ A1 — A (0<i<m— 1))
of PGL(A', A)(T), let By be
{(@52IMY ® Ao) xa, Ao} @ @EZIMY ® (P)r (0 <k <m),
and we identify (B)r and (B')r with
{Ao x40 A}’ ® (P)r(= Ay, @ (P)r = (A © P)r)

and
m—1 v m—1
QM @Ay | xa, Amp ©@ R M) @ (P)r(=Af @ (P)r = (A @ P)r)
j=0 j=0

respectively by 7 4/ and 7m4 5. We have natural morphisms
(D520 MY @ Ao) xa, Am = { (B0 MY © Ao) Xarya, (MY @ An) | & My

M) {(®?ZOM}/ & AO) X A1 Am} ® My,

and

k)(id

(RF_ oMY @ Ao) X 4y Am 255
The duals of these morphisms induce

Bi+1 — By, and By, — My ® By1.

(®§;3M;/ & Ao) X A, A,

To complete the proof, we need to verify that

e & = (M, pi,Biy1 — BiyuM; ® Biy1 (0 < i < m — 1)) is an object of
PGL(B',B)(T),

e The diagram (5.2) commutes for (® 4, Pg),

e This construction gives the inverse of (5.5).

Here we shall just check that if a pair of tuples

! a .
by = <Mi7,uiw4i+l &, A M@ A «— A (0<i<m-— 1))
(5.6) " ”
Pp = (Mm,uz‘,BiH — Bi, M; @ Biy1 — B (0<i<m-— 1))
is an object of Q(ma g, 75 4/)(T), then there is an isomorphism

_ v _

(5.7) By ~ {(5Zg M) ® Ag) xa, A} @ Y IMY @ (P)r,
leaving other verification to the reader.

Let 3 : (@;:é /\/l;/ ® BO) X B, — By be the morphism which sends (yo, ym) €
(®§;§ MY ®Bo> X By to (B,_y 0+ 0 b3)(yo) + (b}, 0 -+ 0 b%_1)(ym) € By. By
the definition of collineation, (3 is surjective. We define a bilinear form
(5.8) {(@EZg MY ® Ag) X, Am} @ By — @53 MY @ (P)r
by (an xm)®/6(y07 ym) = WA,B’(an ym)+7TB,A’ (yO, xm)' Note that if B(y()v ym) = Oa
then (yo, —ym) € (®;:é M ® BO) X g, Bm 50 we have 74 g/ (20, Ym) = =784/ (Y0, Trm)
by the commutativity of (5.2). Therefore (5.8) is well-defined. Since w4 5 and w4

are non-degenerate, (5.8) is also non-degenerate. Hence we have the isomorphim
(5.7). O
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Definition 5.2. Let
S =M, 15, & = M; @ Ei1, & — Eigas

5.9 ~
( ) fi+1—>.7:i,/\/l¢®fi+1<—fi (Ogiﬁr—l),higrﬂfﬂ,

be the universal generalized symplectic isomorphism from & = (£)xspe,7) to
Fo = (F)ksp(e,7)- Forasubset I C {0,...,r—1}, we denote by X; the subscheme

Nicrimi =0} C KSp(E, F).

Definition 5.3. For a subset I = {i; < --- <i;} C {0,...,r—1}, let SpFl;(E) be
the functor from the category of S-schemes to the category of sets that associates
to an S-scheme T the set of filtrations

0CF (&) CFiq1(Er)C - CFi(&Er) Cér

of isotropic subbundles with rank F;(Er) = r —i;. We understand that F;11(Ep) =
0.
We denote by SpF1;(€) the S-scheme that represents SpFi(E).

Put SpFl; := SpF1;(€) xs SpFI(F), € = (E)spr1,s F = (Fspri, and P :=
(P)SpFlI~ Let

0CF(E)c---CFi(€)Cé,
(5.10) - [
OCF(F)C---CF(F)CF

be the pull-backs to SpF1; of the universal filtrations of £ and F on SpFl;(£) and
SpF1; (F) respectively. The non-degenerate alternate bilinear forms 7¢ : EQE — P
and 7x : F ® F — P induce nondegenerate alternate bilinear forms

g 1 F1(E)L/F1(E) @ F1(E)* /F1(E) — P,
Tr  Fo(F)HFUF) @ Fo(F)/F(F) — P
and non-degenerate bilinear forms
e Fiy1 (&) /Fi(€)F @ Fi(€)/Fira(E) — P,
TF;: Fi—!—l(ﬁ)L/Fi(ﬁ)L ®E(.7?)/IFZ+1(.7?) ~ P (1<i<li).

Then the stratum X; is described as follows. This is a symplectic analogue of
[Kausz1, Themorem 9.3]:

Proposition 5.4. There is an isomorphism
(5.11) X1 — KSp(F1(E)1/F1(€), F1(F)L /F1(F)) xspri, Q
of S-schemes, where Q = Q(Tg 1,77 1) XspF1, - XspFl, (T, Tr,1).

Proof. For an S-scheme T, we shall give a bijective correspondence between the
sets of T-valued points of both sides of (5.11). For simplicity of notation we assume
that T=S.

An S-valued point of X is a generalized symplectic isomorphism £ to F

4 ef
O =(Mj, i, &~ M; @ Ei1, & = Eita,
(5.12) (Mg +1 +1

' :
Fin I P M@ Fn Lo R (0<i<r—1),h:& 5 F),
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such that p; =0 for ¢ € I. For ¢ < j, we put

, S
51[]} = Ker(&- % ®Mk ® gj),

k=i
il f_somof! Yo
Fi = Ker(F; ®Mk®fj),
k=i
i efo-oef_, 5 flooft_
5}[] 1= Ker(€; — &), .7'-][-] = Ker(F, ———— F;).
For i < k < j, we put
513 £{1) = 6111 gl ana I = 70 7

Claim 5.4.1. &, D &Lik] and F,. D fr[i’“] are subbundles of rank r — i (1 < k <1).
eg

Proof of Claim 5.4.1. By Lemma 2.8 (2), Im(&;, 1 —= &, ) is a rank r + i}, sub-

bundle of &;,. By the condition 1 of Definition 3.1,

f o...0ef #
€, 0 0en g e

57« _— Im(EikH —1—k—> Eik)
is surjective. Hence 57[7’“] is a subbundle of rank r — iy of &,. O

Put & O (FM s == (el o--ioéf o h " )FY) and F o (M) ops =
(ffo---off  oh)&Y). By the condition 2 of Definition 3.1, (F*) ¢ and
(&L““])<0> are subbundles of rank r — 4, of £ and F respectively. By the same

reasoning in the proof of Claim 5.4.1, £ and FI* ! are subbundles of rank
r 41, of £ and F respectively. So we obtained filtrations

gD oo gl s (FlM) o o D (A <05 D0,

Fo R o o 7 5 (el om0 (€M) o5 D 0.

Claim 5.4.2. (F*)L,_ =gl ana (gL = 7ivH 1<k <),

Proof of Claim 5.4.2. We shall check that the morphism

(875 M) & €5 ) & (Ft) <o — 5 MY

induced by 7g is zero. Take sections x € ®;’;1 M ® 5([)i’°+1] and (el o---0€l o
iv] i) OO i)
() € (F*)<o> with y € F'™. Since &, —= EFT is surjective,

1k

we can find ' € &, such that (z,2') € (®3’;_11 MY ®50) xg,;, &Er. Since y' €

}'T[i’“], we have (0,y') € (®;’”:711 MY ® f0> x 7, Fr. By the commutativity of the

diagram 3.2, we have 7¢(x ® (eg o---0el_ oh™l(y)) = mr(z’ ©0) = 0. Therefore
(FIEh L. o el Both (FM) L. and €% are subbundles of rank r + iy,

hence (FEH)L,. = g+, O

In particular £ D (fr[ik])<0> and F D (5T[ik])<0> are isotropic subbundles, there-
fore the filtrations

ED(Fih s DD (Fl) s D 0,

T

(5.14) | .
FoEM) s DD ()= D0
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determine an S-valued point of SpF1;, and induce non-degenerate pairings
Tk g(gik+1+1]/g([)ik+l} ® (}—yk])<0>/(f7[ik+l])<0> N 7),

mrg s Py T F @ () <o /() <05 — P

The bf-morphisms of rank j + i1

(MJ7MJ7 gﬁr”/(}-[ll J<jti> — 5[““]/( Fi) s,

(5.15)

M; @ ERTY/(F) <> S}iﬁ”/(fi“]kp),
(Mj’ﬂj’]-‘][if”/(gy )<jri> — ]'—[“H]/(&[«il])q%

My & FEHE ey = FE) 0
(0 < j <i; —1) together with the isomorphism
5'i[i1+1]/(f7[“])<1 o~ &, / ( 21] +h (‘7:121])) ~ -7:7”/ (h((c/‘[zﬂ) +_7.'[21])
~ F T E <

determine an S-valued point of KSp(&* T /(FI oo, AT /(g o). For
i < j <iks1 (1 <k <Iland iy =r by convention), we can see that the induced
tuples

(./\/l], J757[:1i1[1k+1+1 Ej[ik][ik+1+1]7M ) ®£[ik][ik+1+1] - gj[ik][ik+1+1]) 7

(5.16) ( My, g, Flsllentll | pliltientll vg g gl fj[_iknmﬁu)
are bf-morphisms of rank j — ix. The isomorphisms
e o MY © -0 MY © My o~ PHfli
(]_.(gik+1+1]/]_-(gik+1]) ®Mz\‘/k ® MY @MY ~ ]_-Z[lzcﬂlzkﬂﬂ}
induce bf-morphisms of rank 0

(@ik:oMa, 0 g%[;}ifk+1+l g(gik+1+1]/6([)ik+1]’

et Mo S g,

(5.17)
(S0 Ma D o g e,

it Mo Flrer ) o),

We also have isomorphisms

(5.18) gl 1) o glindjglinn o (£lid) o f(EF4]) <o,
. ]_.[zk][z;c+1+1] ~ ]_-[zk /]_- lik+1] ~ (j:r[zk ><0 /(fr[1k+1])<0>'

Tk+1
The data (5.16), (5.17) and (5.18) determine an S-valued point of Q(7g 1,77 1) XspF1,
- xspr1, Q(me 1, mF). This defines the morphism (5.11).
Now we shall construct the inverse of (5.11). An S-valued point of

KSp(F1 (&)L /F1(E),F1(F)*/Fy(F)) XspF1, Q

is data:
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¢ EDF(E) D DF(E) D0, FOF(F)D--- DIF(F) D0, where F;(£) and
F,(F) are isotropic subbundles of rank r — i, of £ and F respectively,
e a generalized symplectic isomorphism from Fy(£)*/F1 (&) to Fy(F)*/Fi(F)

gt g’
(M;,M;,gjﬂ - gj,M; ®Gjt1 — Gj,
nt h° _
Hj+1 — H]aMS ®Hj+1 — Hjah : gil - Hil (0 S] <11 — 1))3
e an object of Q(mg p,mr i) (1 <k <)
k k k k
(58 0.0 68, 51,
H = M Mo 1D — 1 (i < < - 1))

with G = Fyy1 (€)1 /Fr(E), Y = Frpa (F)L/Fu(F)L, GF) | = Fi(F) [Fiia ()
and H" = Fr(&)/Fri1(E), where

Tk+1
Tek: Frp1 () /Fe(E)F @ Frpn1 (E)/Fr(E) — P,
7k Frgp1 (F)LFe(F)E @ P (F)/Fie(F) — P.

Then we put M; := M}, u; := pl fori ¢ I. Fori =iy, M;, = M;k®®;":_01 M
and p;, = 0. For 0 < j <4, put QNj =TF1(E)t xg, G; and ’I-Nlj =TF(F)t xu, H;.
Then for 0 < j <i; — 1, we have bf-morphisms of rank r + j

(ijﬂjvngrl — G M @G0 — gj) ;
(ijﬂjvﬁj-&-l — Hj, M; @ Hjpr — ﬁj) :
For 0 < j <4y, we define &; and F; so that the diagrams
Go — GO®_ M. Ho — Ho@,_ M.
! ] ! ol
£ - @oMwE, F - @ gM.0F

are cocartesian.
Then for 0 < j <4y — 1, we have bf-morphisms of rank r + j

(Mjaﬂj7€j+1 - gij] ®(€j+1 — 51) s
(M, g, Fjpr — Fj, My @ Fjr — Fj) .
We define &, = F,. by the cartesian diagram:

8r:~7:r i gil
! !

Hi,  — Giy @Hi,.
Then we have
Ker(€, — G;,) ~ Fy(F) and Ker(F, — H;,) ~ F1(€).

By this we can consider F1(F) D --- DF(F) D 0and F1(€) D --- DF(E) DO as
filtrations of &, and F,. respectively.
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For i, < p <ipy1 (1 < k <), we define G5, Hy, Gy and 'H; by the cocartesian
diagrams:

G =Fu(F)/Fria(F) = & /Frpa(F)
l l
GiM - -
HE = Fu(&)/Frya(E) = Fof/Fra(€)
! l
Hé’“) -,
zk+1 ®a zk+1 — (5/F1€((S)L ® ®Z;(1) MZ)
. !
G — ge,
HOL QT MY = (F/RF) @ @z MY)
l
My ~ s,

and &, and F,, by the cocartesian diagrams:

G W ow
! ! ! |
g, — &, Hy — Fp

Then for iy, < p <ig41 — 1, we have bf-morphisms of rank r + p
(M pip, Epr1 — Epy My @ Ep1 — &p)
(Mpaﬂpv}—p-&-l — Fp, My @ Fppi1 -7:;0)'

Moreover for 1 < k < [ we have morphisms

Eiir = Einin /G5y = G50 90
~ (E/Fri1(E)F )®®lk+l 1./\/1\/
~ {(€/Fr ()Y @ @G MY} & My, ,,

~ o . . .
- gik+1+1 ® M“H—l T Cigya+1 ® M1k+1

(5.19)

and

Eiprt1 = Einor 41/ G 1 = Gl 11 /O
>~ & [Frq1(F) = gz*Hl Eiria-
So we have bf-morphism of r + iy
(5.20)
(/\/li,c+1 Wi, = 0,8 11— &y M, @& 11— 5z'k+1)
(Miirs i =0, Fiii1 = Finor s Mioy @ Finoii1 < Finyy) 1<k <.
We also have morphisms
&y = & /Giy = EJF1(E)F @ @G MY ~ & 11 © M,
Eivir = En1/G5 41 = Gl /Giy = E/FL(F) = Gy — &
Hence we have bf-morphisms of rank r + i
(Mg, iy = 0,841 — &), My, & 41 — &4y)

5.21
( ) (Milvl’Lh:O?ﬂl-ﬁ-l*}fil?Mil ®‘7:i1+1<;~7:i1)'
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Then the data (5.19), (5.20), (5.21) and &, = F, determine an S-valued point of
Xi. U

We denote by ¢; the inclusion X; < KSp(&,F). We denote the set{0,1,...,7—
1} by [0,7 — 1]. When I = [0,r — 1], the isomorphism (5.11) is

(522) X[O,'r—l] ~ SpFl[O,T‘*l]?

and for the universal filtrations (5.10) on SpFly, .}, we have [ = r and rankF;(€) =

rankF;(F) = r +1— j.
Notation 5.5. For tuples (a,...,a,) and (by,...,b,.) of integers, we denote by
O(a1,...,ar;b1,...,b.) the line bundle
" ~ ~ ®aj T ~ ~ &b

R (Friz5 (&) /Frins(©)) 7 @@ (Froas (B /Friny(F)*)

Jj=1 j=1
on SpFl[o,rq](: SpFlg .y (€) xs SpFlig, 1) (F))-

We often identify X{o, 1) with SpFl,,_) by the isomorphism (5.22).

Lemma 5.6. Let
O =(M;, i, & = My @ Eit1, & — Eigas

5.23
( ) fi+1*>ﬁ,Mi®fi+1<*fi (OSiST*l),hif/‘rﬂfr),

be the universal generalized symplectic isomorphism from & = (£) ksp(e,7) to Fo =

(F)kspe.7)-
There are natural tsomorphisms

oMo = Olerie,) @ priPY,
and for 1 <j<r-—1

oM = Oler—j —er_jir;€r—j —€r_ji1)
of line bundles on Xo 1) =~ SpFljy ,_y), where
i-th
e;:=(0,...,0, 1,0,...,0).
Proof. This lemma follows from the correspondence of scheme-valued points of
Xo,r—1) and SpFly, ._,; given in Proposition 5.4:
Using the notation of the proof of Proposition 5.4, we have

j

Fjt2(E)* i+2 o Fi+1(F)
5.24 ®MZ® (” ~ VT o I L
(529 Pt Fji(E)* I Fjy2(F)

6. GLOBAL SECTIONS

Let S be a scheme over Spec k with k an algebraically closed field of characteristic
zero. Let P be a line bundle on S, and &, F locally free Og-modules of rank 2r
with non-degenerate alternate bilinear forms ¢ : E®E - P and 7 : FRQF — P.

If g : £ — F is a symplectic isomorphism, then composing it with symplectic
isomorphisms v : £ — £ and § : F — F, we obtain a symplectic isomorphism
§ogo~y~1:& — F. This induces a left action on Sp(€,F) of the group S-scheme
Sp(€) x5 Sp(F).

For a generalized symplectic isomorphism ® from £ to F, we can also consider
the composition § o ® o y~1 (See Paragraph 3.2). So the action of Sp(£) x5 Sp(F)
extends to KSp(£,F). Moreover the action naturally lifts to the line bundles
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®!Zg ME% (¢; € Z). The subschemes X; C KSp(E,F) (I C [0,r — 1]) are stable
under the action. Thus vector bundles prg,t7 ®:;3 ME% (¢; € Z) on S have action
of Sp(€) xs Sp(F) (Here we consider left action). The goal of this section is to
describe this action.

The arguments in this section are straightforwad translation of the corresponding
arguments in [Kausz2] to the symplectic case.

We shall use the following well-known theorem in the sequel.

Theorem 6.1. If S = SpecK with K a field of characteristic zero, then for tuples
. — -
of integers @ = (ay,...,a,) and b = (by,...,b.),
H (SpFlg 1), O(@5 b)) #0
if and only if a1 > -+ > a, >0 and by > --- > b, > 0. When it is nonzero, it is an
irreducible Sp(€) xg Sp(F) -module.

Definition 6.2. For a tuple of integers (g, . ..,¢,—1) € Z%" and a subset I C [0,7—
1], the set A(co, - . ., cr—1)7 is defined to consist of tuples of integers ¢ = (q1,...,¢)
such that

i)g>->¢q >0,

(i) Zézlqi <c_yifr—1¢17Iand Zi:lqi =c_ifr—1lel.

For ¢ = (qi,...,qr), we denote by | ¢| the sum Y_;_, ¢;.

Theorem 6.3. (1) Let (co,...,cr—1) be a tuple of integers. There is a unique direct
sum decomposition of the vector bundle prg.t} ®::_01 M?Ci indezxed by A(cg, ..., cr—1)1
r—1
@M= @) Ve
=0 G EA(co,sCro1)r
such that

(a) V%;"""’Cr_l) is a Sp(€)x s Sp(F)-stable vector subbundle of prg..} ®:01 ME

(b) For every ¢ € A(co,...,cr—1)1, the direct summand V%O"”’C""l) is included
in the subbundle prg.t} ®:;é /\/l;@ = pro«ty ®:;3 ME

(¢) The composite of Sp(E) x s Sp(F)-equivariant morphisms

r—1 . r—1 )
@iy, O Tig;
(Corer) Prs«ty ®M1 Xt PTS*LFO,T—H ®Mi it
i=0 1=0
is an isomorphism.
(2) For two tuples (co, ..., cr—1) and (¢, ..., ¢,_1) with c; > ¢ for 0 < j <r—1,
the subbundle

r—1
COyenny Cp— (s P Cpr—
D Lomerd o @y V) < gy Q@ ME
G EA(chy vl )1 T EA(co,.sCro1)T i=0

is equal to the subbundle pre.; @'—g ML C pre.; @i—g ME. The direct sum

decomposition @ ¥ V%O’“"CT"I) gives the direct sum decomposition of

7€A(c6,...,c;71
proctt @—y MP satisfying (a), (b), (¢) in (1), that is, V%O""’Cr’l) = %O"”’CT’l)
for @ € Alch,....c_1)r.

Before starting the proof of the theorem, we present two corollaries.
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Corollary 6.4. There is a natural isomorphism

prs. ®1Zg MEY N@pTS* 7;q) P17
7
of Sp(€) x s Sp(F)-equivariant vector bundles on S, where ¢ = (qi,...,q) varies
through all tuples of integers with n > ¢ > --- > q. > 0, and prg on the left
is the projection of KSp(E,F) to S, and prs on the right is the projection of
SpFl[O,T*l] (5) xXg SpFl[O,T*l] (f) to S.

Proof. Take I = () in the above theorem, and use Lemma, 5.6. O

Corollary 6.5. Let 0 - U — pri(E @& F) — Q — 0 be the universal sequence on
LGr(E ® F). Then there is a natural isomorphism

prs«(det Q)% @prs* 7;q) @ Per-lah

of Sp(&) x s Sp(F)-equivariant vector bundles on S, where ¢ = (qi,...,q.) varies
through all tuples of integers withn > ¢ > --- > q. > 0, and prg on the left
is the projection of LGr(E & F) to S, and prg on the right is the projection of
SpFl[O,T*]] (5) Xg SpFl[O,rfl] (f) to S

Proof. Let g : KSp(E,F) — LGr(£@®F) be the morphism in Proposition 4.1. Since
g is birational, the pull-back morphism
9" pre«(det Q)®" — prs.g*(det Q)®"

is an isomorphism, where prg on the right-hand side is the projection of K.Sp(&, F).
By Lemma 4.2, we have a natural isomorphism

r—1
g* (det Q)@n ~ prgpébm" ® ®Ml®n(7'—1).
i=0
Now the corollary follows from Corollary 6.4. O

Now we move on to the proof of Theorem 6.3. Since locally on S, the bundles
&, F, P and the bilinear forms are pull-backs of those on Spec k, we have only to
prove the theorem for S = Speck. We may assume that £ = F = k92" and the
nondegenerate bilinear forms of £ and F are given by the matrix Js,.. In the rest
of this section, we write E and F instead of £ and F.

Let Tsp, C Spo.(k) be the subgroup of consisting of diagonal matrices in

Spo, (k). Put By := UJ Ts,, C Sp(E) = Spy, (k) and Bp := U;, Tsp, C Sp(F) =
Sps,. (k). Let

(6.1) Ul x A™ x Uy, ~ KSp(E, F)(idid)

be the isomorphism (3.23). The restriction of (6.1) to the open subscheme Sp(FE, F)(4id) .=
KSp(E, F)(i4id) 1 Sp(E, F) gives an isomorphism

U2+r X (A\ {O})T x U, >~ Sp(E7F)(id,id)7
which is given by U x (A\ {0})" x Uy, 2 (2,y,2) — 20 Dy oz} where y =
(y(); sy y'f—l) a,nd

r—1 r—1 r—2 r—2
Dy = dlag <(H yi)_lv H Yiy (H yi)_la H Yiy- oy y()_lay0> .
=0 =0 =0 =0

For P = diag(plapflv"'vprvp;1)7 T = diag(Tl_17T17"'7Tr 57_7“) € TSPQM and
up € Ug, and ur € Uy, we have

(uFT)oxoDyoz_lo(uEp)_1 = (uFoToxoT_l)o(ToDyop_l)o(poz_lop_lou]}l)
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with upoToxror™ € Uy, and poz~top~touy' € Uj,. We have ToDyop~! = Dy,
with
(62) y/ = diag(TryOprv s 7Tr7j7—;_1j+1yjpr7jp;_1j+1» s )
By this we know that KSp(E, F)(did) ¢ KSp(E,F) is a Bg x Bp-stable open
subscheme such that under the isomorphism (6.1), the action of (ugp,upr7) on
KSp(E, F)(419) is expressed by
(63) (Zava) = (uEprilaylquTxTil)
with y’ as in (6.2).
Corollary 6.6. For I C [0,r — 1], the scheme X; N KSp(E, F)1%Y has an open
dense Bg x Br-orbit.
Proof. Under the isomorphism (6.1), a point (z,y,z) € Uj. x A" x U, lies in
X; N KSp(E, F)(419 if and only if y; = 0 for i € I, where y = (yo,...,%,—1). By
the description (6.3) of B x Bp-action, the open dense subset

X;NnSp(E, F)i4id) « X, N KSp(E, F)
is a Bg x Bp-orbit. U

Proposition 6.7. If W is a finite dimensional irreducible Sp(E)xSp(F)-representation,
then dim Hom (W, HO(X 1, 1} @—y MP)) < 1.

Proof. If B x Bp acts on nonzero sections sq,s2 € HO(Xy, ¢} ®:;3 ME) by the
same character, then s1/s9 is a Bg x Bp-invariant meromorphic function of Xj.
Since X has an open dense Bg x Bp-orbit, s1/s2 is a constant. O

Proposition 6.8. If W c HO(X;,t ®/— M®%) is an irreducible Sp(E) x Sp(F)-

submodule, then for some ¢ € A(co, . ..,cr—1)1, we have W C HO(Xp, 1} ®::_01 M?Zj:l qJ)
and the composite of morphisms

r—1 - r—1 r—i
W 1 (Xh GEM qﬁ) — (X[o,rl]a ooy @M qﬁ)

i=0 i=0
is an isomorphism.

Proof. The restriction of the isomorphism (6.1) induces an isomorphism
UL x A" x Uy ~ X; N KSp(E, F)idid) = x(idid)
where A” D A"l = {y, = 0;i € I}

Since a line bundle on AV is trivial, we can find a nowhere vanishing section
S0 €L} ®Z:—01 M?C" |X§id,id). The section sg is unique up to scalar, so Bg x Br acts
on sy as a character. Since Bg x Br acts on a highest weight vector s € W as a
character, it acts on the algebraic function (s X§id,id)) /S0 on X§id’id) as a character.
Hence we find that (S|X§id,id))/80 = [Licjo.r—1p s %" with o; > 0. For i € I we put
a; = 0. Then s is a global section of ¢} ®7T;01 M?C"_O‘i which is nowhere vanishing

on X}id’id). Thus the composite of morphisms
r—1 r—1
W — H° (le v ®Mz®cim> — HO <X[o,r1}>Lro,r1] ®Mz®ciai>
i=0 =0

is nonzero, hence an isomorphism because both W and H° (X[07T,1], Yor—1] ®::_01 M;@cﬁai>
are irreducible Sp(E) x Sp(F)-modules.
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It remains to show that if we define § = (g1,-..,g-) by the equation ¢; — o; =
> i1, then q € Alcg,...,cr—1)1. Since

r—1
H° (X[O,rlwfo,ru ®Mfa> ~ H° (SPFl[o,rﬂ]’ o(q; _>))

i=0
is nonzero, (i) of Definition 6.2 is satisfied. Since o; > 0 and a; = 0 for i € I, (ii)

of Definition 6.2 is satisfied. O
Proposition 6.9. For integers q1 > --- > q, > 0, the morphism
(6.4)
r—1 ®Zr7i ) r—1 ®Zr7i A
° (KSzo(E, F),QM; =~ q]) — H (X[o,r_l], o1y @ M; 7 C”)
i=0 1=0

s surjective.

Proof. Since H° <X[O r—1]> Lo,r—1] Rz (}M@ZJ ! q’) is an irreducible Sp(E) x Sp(F)-

representation, it suffices to prove that (6.4) is nonzero. It suffices to prove that

for
! times
—
(¢1,---,q-)=(1,...,1,0,...,0) (1<i<r),
(6.4) is nonzero.

Let ~; : OKS o(E.F) OK?ZJ(E F) = = Exsp(p,r) be the inclusion of direct sum of

(23 — 1)-th component for 1 <7 <[, and 0; : Fxgpp,r) = O;‘?zsrp(EF) —» O;‘?lsp(EF)
the projection to the direct sum of (2i — 1)-th component for 1 < ¢ < [. The

determinant of the morphism of rank [ vector bundles
# # b b @l 1 @l
5lof0 o---of._johoe._jo---0ejoy: OKSpEF) — (®§:0Mi)

defines a section o; € ®:701 M®l. By using diagonalization, you can see that

O’l|KSp(E F)Gd,id) vanishes along the divisor Zj 41 X{j}7 and that o; gives a sec-

tion of @) _ (l) MEPoQI_ g MET Wthh is nowhere vanishing on K Sp(E, F)(id:id),
So the section 0, € @)_ é./\/l®l ® ®Z 141 MP"™"" induces a nonzero section of

Lo.r—1) <®: é/\/l@’l ® ®l 41 ME™™ 1). This completes the proof of the propo-
sition. 0

7. FACTORIZATION OF GENERALIZED THETA FUNCTIONS

In this section we shall apply the results about the compactification KSp ob-
tained in the previous sections to the study of the generalized theta functions on
the moduli of (parabolic) symplectic bundles on an algebraic curve. More precisely,
we shall prove the so-called factorization theorem of generalized theta functions
on the moduli of stack of symplectic bundles. For ordinary vector bundles, the
factorization theorem has been proved by Narasimhan-Ramadas, Sun and Kausz
(IN-Rd], [S1], [S2], [Kausz3]).

Let us start with the definition of the moduli stack of (parabolic) symplectic
bundles.

Let C' be a connected projective nodal curve over an algebraically closed field
k, P ... P(™ distinct smooth points of C', and L a line bundle on C. Put
P =(PD,... P

gee ey

Definition 7.1. (1) We define the moduli stack M(C,?;L) as follows. For an
_ —
affine k-scheme T, an object of the groupoid M (C, P; L)(T) is the following data:
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e a T-flat coherent Oy r-module G whose restriction to every geometric fiber

C x Speck(t) (t € T) is a rank 2r torsion-free sheaf,
e a non-degenerate bilinear alternate form GG — prg L, (Here "non-degenerate”
means that the induced morphism G — Hom(G,pr§ L) is an isomorphism.)
o for every point PU) (1 < j < m), a filtration
Glpirxr D F1(Glpirxr) 2 - DFr(Glpeirxr) DO
of isotropic vector subbundles with rankF;(G|pu) ) =7+ 1 —i.
Isomorphisms of the groupoid M (C, ]_3; L)(T) are defined obviously.
— P —
(2) The substack M(C, P;L) of M(C, P;L) is defined such that an object of
— — —
M(C, P; L)(T) described above is in M (C, P; L)(T) if and only if G is locally free.
— — —
Clearly if C' is smooth, then M (C, P;L) = M(C, P;L).

Let

(gum’v’guniv ® gunw N p?‘éL,
gunw|p(1‘)xﬁ(c71_3;[,) o Fl(gumv‘P(i)xﬁ(C,J_ﬁ;L)) D (1 <J< m))

be the universal object of the moduli stack M (C, 1_3); L).

Definition 7.2. Let n be an integer. If each point P) (1 <j < m)is given a

. ; ; T Y m)
tuple of integers NG = ()\gj), .. .,)\5/)), we denote by = * Do X

=0 or simpl
M(C,P,L) ’ by

(xR .
2 AT AT Cthe line bundle

N2
T

) UNv
Frio—; (g ‘P(j)XM(CyP7L)>

(det Rpr*guniv)‘g(*") ® ®

_ T
j=11i=1 F7‘+1—i (gunw‘P(j)xﬁ(C,]_D)’L)>
T = . . . v = w3 -
on M(C, P; L), where pr is the projection C x M(C, P;L) — M(C, P; L).

In this paper, for simplicity of notation, we restrict ourselves to the case of
a nodal curve with only one singular point. In this case, C is either irreducible
or having two irreducible components. We first state and prove the factorization
theorem for the irreducible case, and later we shall comment on how to modify the
argument for the reducible case.

Let C be an irreducible projective nodal curve with only one singular point P,
and n: C — C' the normalization. Put {P;, P,} := n"1(P). Let Ps,..., P, € C'\
{P} be distinct points. We denote by the same letters Ps, ..., P, the corresponding
points of C. Put L := n*L and P= (Ps,...,Py).

Theorem 7.3. Let X0 = (/\ﬁj), cee /\9)) (3 <j < m) be tuples of integers. Then
we have a canonical isomorphism

O (M(C, Py L), X 0 X0
T T MO P

N 0 ~ B. 7y 2@ 7X@, X)) ®(rn—[7)
—_) (@ )H <M(C’{P17P2}UP’L)’HM(G,{Pl,Pz}U?;i) Ok (L|P)
q =\q1;---,9r

where ¢ = (qu,...,q,) varies through all tuples of integers with n > ¢ > --- >
qr > 0.
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For simplicity of notation, we shall deal with the case P = 0. Let
(guniv7 %univ . guniv ® guniv _ pT%L)

be the universal object of the stack M(C;L). Let o; be the section (P;,id) :
M(C;L) — C x M(C;L) (i = 1,2). There is a non-degenerate alternate bilinear
form Jjé“m” ® af&“”i“ — ijr’féz induced by 7. Since there are natural
isormorphisms

oiprsL ~ Llp, @ Om@iy = Lip® Oy ™ Lip, ® On@ ™= osprgL,

we can consider the stacks Sp := Sp(atG ", 635G ") and LGr := LGr(o7 G &
3G“Y). Let ¢’ : LGr — M(C, L) be the projection.
Let
Uc gl* (O,Tguniv o) U;guniv)

be the universal isotropic rank 2r subbundle. We denote by Gv’inw the vector
bundles (idz x ¢')*G*“** on C' x LGr. Put o} := (P;,id) : LGr — C x LGr.
We define a sheaf H on C' x LGr to be the kernel of the composite of morphisms

univ univ univ U’*é’unw D U’*é’unw
) - - 1 2
)G =g @G ) = U ;

where n = (P,idpg,) : LGr — C x LGr and n' ;= nxidpg, : Cx LGr — C x LGr.
Then H is flat over LG and the restriction to every geometric fiber is torsion-free of
rank 2r. You can easily see that there is a unique non-degenerate altenate bilinear
form H ® H — pri L such that the diagram

. N
~ univ ~ univ n, ((dg x g)"7)

W (@ @@ W, (prs )
HeoH pr&L

commutes. Then (H, H®H — pr§L) is an object of M(C; L). This gives rise to a
morphism f : LGr — M(C; L). We have a commutative diagram:

M(C;L)
g1 -
er L ML)
U U

where f, the restriction of f, is an isomorphism of stacks.

Lemma 7.4. If A is a line bundle on M(C; L), then we have isomorphisms
HO (LGr, ?*A) =, HO (sp, T‘A) WO (ML), A)

of vector spaces.

Proof. Since f is an isomorphism, f* is clearly bijective. Let us prove that the
restriction map

(7.1) HO <LGr, ?*A) ~HO (Spj*A)

is an isomorphism.
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If H is a rank 2r torsion-free sheaf with a non-degenerate alternate bilinear form
H®H — L on C, then by [Fal] we know that Hp, the stalk of H at P, is isomorphic
to m2iH) g (’)?;(}_i(H)) for some 0 < i(H) < r, where m is the maximal ideal of
Oc.p. We denote by M(C; L)<, the open substack of M(C; L) parametrizing H’s
with i(H) < n. We put LGr<, := LGr(c:G""" @ 05G""")<,, (See Notation 4.4).
We have a commutative diagram:

LGr<, L BI(C: L)<
U U
s

Sp - M(C;L),
here by abuse of notation, the restriction of f to LGr<; is also denoted by f.
Correspondingly we have a commutative diagram of vector spaces

HO(LGr<i, T A) <— HOMI(C;L)<1, A)
(7.2) @] Lo
HO(Sp, f*A) <=  HO(M(C;L),A).
By Lemma 4.5, the restriction map H°(LGr, A — HO(LGrgl,?*A) is an iso-
morphism. Therefore in order to prove the bijectivity of (7.1), it suffices to prove
that the morphism (a) in the diagram (7.2) is an isomorphism.

By [Fal], the singularity of M(C;L)<; is of the form xy — zw = 0 for a local
coordinate (z,y, z,w,...). In particular M (C; L)< is normal. Hence the map (b)
in the diagram (7.2) is an isomorphism. This and the bijectivity of f* imply that
the map (a) is surjective. Since (a) is clearly injective, it is bijective. O

Lemma 7.5. We have a natural isomorphism

(7.3) 7 5%”(% ~ g/*EE\Z)(aZ) ® (det Q)"

of line bundles on LGr, where Q := (0% G ® o ~'“"”)/u.

Proof. We have isomorphisms

(7.4)

T*=(n) ~ ®(=n)
—M(C,L) — (det RprLG’T*H)

~ i ~ uni ®n
univ univ
o g’ @ olbrg’

u ’

I Suniv ®(—n)
~g (det RprM(az)*g ) ® det

®(—n)
~ =™ by definition. (]

and we have (det RPTM(G;E)*Q“"”) .

Proof of Theorem 7.3. We put
SPF1:= SpFlig . _1(01G""") X .1y SPFlig 1) (03G"™™),

and let ¢” : SpF1 — M(é, E) be the projection.
Applying Corollary 6.5, we have a canonical isomorphism

(7.5) g(det Q" ~ P glO(T; ) @k (Llp)® 7D,
?:(QIv--wQT)

wheren > ¢ > --- > ¢ > 0.
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We have isomorphisms

1 (M(C:1),E e,y ) =0 (LG T2 ) by Lemma 7.4

~ H® (LGr,¢"=™ . - © (det Q)®”) by (7.3)

( M(GL)
(

M(C;L), =M ® g. (det Q)®n) by projection formula

~ 170
~H M(C,L)

~ @R (ML), L ©gl0(T: 7)) @ (Lp)* 77! by (7.5)

M(C,L)
~Pn’ (M (€ AP, P} L), H(n}g{g,&};i)) @ (L]p)= 1,
where ¢ = (q1,...,q,) varies through all tuples of integers with n > ¢ > --- >
qr > 0. O

Reducible case. Let C' be a connected reducible nodal curve with only one singular
point P. Then C is a union of smooth curves C; and Cy intersecting at P. Let
n:C = C1 U Cy — C be the normalization. Put L; :=
{Ql,Rl} = n_l(P) such that Ql € C1 and Ry € (5. Let QQ, . .,Qm ey \ {Ql}
and Ra,...,R; € Cy\ {R;} be distinct points. Put Zj = (Q2,...,Qm) and R =
(Ray ..., R). Let XD = (A9, . A9y 2 <j<m)and B0 = (1, ..., 1)
(2 < j <) be tuples of integers.

With these notations prepared, in the reducible case, the counterpart of Theorem
7.3 is the following:

Theorem 7.6. There is a canonical isomorphism

ORI COR{C {0
( (CQUR L)’“M(CQURL) )

@ ( (C17{Q1}UQ, 1), E (T A A<m>)>

— M(C1,{Q1}UQ;L1)
q=(q15---,qr)

0 (T ED ;7<l>>>
®H ( (Co, {R1}UR; Lo), = SRR

® (L|P)(®rn*\ ql) ’

1R

where ¢ = (qu,...,q,) varies through all the tuples of integers with n > g > --- >

You can prove the above theorem by similar argument as in the proof of Theorem
7.3. Let us mention how to modify the argument. For simplicity, we assume that

5:®and R =10. Let
(gunzv’ Funiv gunw ® gumv — pre, Li )

be the universal object of the stack M (C;; L;). Let o1 and o3 be the morphisms
(Q1,id) : M(Cy; L) — Cy x M(Ch; Ly),
(R1,id) : M(Cy;La) — Co x M(Cy; L)

respectively. Let ¢; : M(Cy; Ly) x M(Cy; Ly) — M(C;; L;) be the projection.
Then we can consider the stacks

Sp = Sp (610761 030305

(7.6)
LGr := LGr (d)lal univ @ groh 5‘"“’) ,
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which are stacks over M (Cy;L1) x M(Cs; Ly).
If in the proof of Theorem 7.3, you substitute M (Cy; L1) x M (Cs; Lo) for M(C'; L)

and understand that Sp and LGr are given by (7.6), then you will obtain a proof
of Theorem 7.6.

8. A RESULT ON THE MULTIPLICATION PULL-BACK

The purpose of this section is to prove Proposition 8.1. Its importance might
not be clear at the moment. But it will be used in [A] at a crucial point.
Let EM) = E®) = @2 ke; and GV = G® = &% kg; be k-vector spaces

endowed with the symplectic forms (—, =) gy and (—, =)@ given by the matrices
Jor and Jog. We give the tensor product E® @ G the symmetric bilinear form
(— —)pegm determined by (e ® g,€’ ® ¢')pivgaw = (&.€)pw (9,9 )gw. We

give the vector space (EM) @ GM) @ (E®? ® GP)) the symmetric bilinear form
(= =) (EOacm)a(E@ec@) determined by

((a1,az), (a/pa’z»(};m@g(l))@(E<2>®G<2>) = <a17a/1>E‘(1)®G(1) - <a2,a/2>E<2>®G(2>
for a;,a}, € E® @ GW.

Let OGry,s := OGrys (B @ GY) & (E? @ G?)) be the orthogonal Grass-
mannian parametrizing 4rs-dimensional isotropic subspaces of (E(l) oG )@(E(2)®
G®@).

For symplectic isomorphisms a : EV) — E®) and 3 : G — G@),| the tensor
product a ® 3 : E® @ GV — E@ @ G®? is an isomorphism preserving the
symmetric bilinear forms of EM @ GM) and E® @ G®?). The graph Tygs of a ® 8
determines a point of OGry,s. We denote by m the morphism

Sp(EM, E@) x Sp(GY, G?) — OGr},, € OGry,,
given by («, 3) — T4 5, where OGrj, , is the one of the two components of OGry,
that contains the image of Sp(E™, E®?)) x Sp(GM, GP).

We denote by LGr® the open subset

(LGr(EM @ E@) x Sp(GM, ) U (Sp(EW, E®) x LGr(GY & G?))

of LGr := LGr(EW @ E?) x LGr(GY @ G®?). The morphism m extends to a
morphism
m: LGr® — OGr} .

In fact, for maximal isotropic subspaces U ¢ E® & E® and V. c GV ¢ G?)| the
map
is injective if either [U ¢ EM @ E®] € Sp(EW,E@) or [V c GV @ G?)] €
Sp(GM, G2,

Let

0—u—{(EYec) e (B 26} @0gg: —Q—0

be the universal sequence on OGrj, .. Let Qp and Qg be the universal quotient
bundles on LGr(E®M @ E®)) and LGr(GM @ G®?) respectively. The line bundle
det Q is a square of a line bundle, which we denote by (det Q)@’%. You can easily
obtain an isomorphism

" (det Q)®% =~ (det Qp)®* B (det Qc)®" | .o -
So we have morphisms of vector spaces
HY(OGr],, (det Q)®%) ™ HO(LGr®, (det Op)®* K (det Qg)®")

8.1
(51 ~ HY(LGr(EW @ E®), (det Qp)®*) @ HY(LGr(GY @ G?), (det Qi) ®7).
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By Corollary 6.5, there are natural isomorphisms
HY(LGr(EW @ E®), (det Q) ®*)

(8:2) ~Pr (SpFl[O,T_l] (ED) x SpFly,_(E?),0(X, A ))
X

and
HO(LGr(GM & G?), (det Qc)®")

(83) = @HO (SPFI[O,sfl](G(l)) X SpFl[O,sfl] (G(2))7 O(ﬁa ﬁ))) ’
w

where T = (A1,..., ) runs through all tuples of integers with s > Ay > -+ >
Ar >0, and @ = (p1,...,1s) with 7 > py > --- > p, > 0. Composing (8.1) with
the tensor product of (8.2) and (8.3), we have a morphism

@ :H (OGrLS7 (det Q)®%)

— —
- D {HO (SpFl[O,r—l](E(l)) X SpFlg 1) (E®), O(X; A ))
X

SH® (SpFlyp oy (G1) x SpFlp .y (GD)O(T: 7)) }

—

We denote by - the projection of the target of ¢ to the (\, /' )-component.

For T = (A,..-,A) with s > Ay > -+ > A\ > 0, we denote by )7‘) the tuple
(AT, ..., A%) of integers such that 7 > A} > --- > \* > 0 and

AN+, M +s=1,... A4+ U{M+r+r—1 A +1}=[1,7+s].

_
Proposition 8.1. For A\ = (\,...,\.) withs > Xy > --- > ). > 0, the composed
morphism T2 320 18 Mon-zero.

Proof. We shall find explicitly an element of H*(OGr}, ., (det Q)@%) the image of
which by T 3# © ¢ is non-zero.
Let L be the subset of [1,2r] x [1,2s] consisting of all pairs (a,b) satisfying one

of the following conditions.

e Both a and b are odd.

e ais odd, and b is even, and s + 1 — (b/2) < A(q11)/2-

e bisodd, and a is even, and r + 1 — (a/2) < Af. ) /o
Let Vi ¢ EM @ GM be the 2rs-dimensional subspace spanned by e, ® g with
(a,b) € L. Let V5 C E® @G® be the 2rs-dimensional subspace spanned by e, @gj
with (a,b) € [1,2r] x [1,2s] \ L. You can check easily that V; and V5 are isotropic.

The subset of OGr}, ,
{W c(EW @MW) g (E® @ G?)|Wn (W aV,) 0}

with the reduced scheme structure is a zero-divisor of some section of (det Q)®%,
which we denote by ov,@v,. We shall check that (7 = 0¢)(0view) # 0. For this,

we need to recall the construction of the isomorphisms (8.2) and (8.3).
We denote by KSp° the open subset

(KSp(EW,E®) x Sp(GY, ) u (Sp(EW, E®) x KSp(GM,G?))

of KSp := KSp(EW, E?) x KSp(GM,G?).
By Proposition 4.1, there is a morphism KSp° — LGr°, which we denote by g.
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Let
(M 1, €Y = M; 0 €9, €0 — €1,
ED S P M0 e® — P (0<i<r—1),eM @)
and
N3y v, 6 = N 0 6 60— 6l
g2 =GP N oGl —6? (0<i<s—1),1) = g?)

be the universal generalized symplectic isomorphims on K Sp(EM, E®?)) and K Sp(G™M), G())
respectively. By Lemma 4.2, we have

s—1
g* ((det Qp)®* X (det Qc)®") <® ./\/l®8 e > X ®/\[j®r<s*j)
=0

Put m' := mog. In order to compute (WT’)T; op)(ov, v, ), we first determine with
how many orders the section m™*(ov,v,) vanishes along divisors {u; = 0} and
{v; = 0}.
Let us see how the morphism 7’ is expressed in the open subset KSp(E(l), E(Q))(id’id) X
KSp(GM, G2))(did) n KSp°,
Let
U x A" x Uy, ~ KSp(EW, (®)(idid)
and
Uf, x A® x Uy, ~ KSp(GW, G?)(did)

be the chart given in (3.23). For yg = (yg1,...,ye,r) € A7, we define the 2r x 2r
matrices (yg) and (yg)” as follows:

r—1 r—2
(yE)/ = dlag (H YE iy 1u H YE iy 17 -y YE, 05 1)
(yE _dlag< HyE1717HyE 2RI yE,O) .

We define (yg)' and (yg)” for yo = (yg.1,---,¥a,s) € A® similarly.

Recall that the point (zp,yz,xg) € Us x (A\ {0})" x Uy, = Sp(EMW E®)
corresponds to the symplectic isomorphism xz o (yg)” o (yg)' ™! o zgl.

For ((zg,yE5,XE), (2a,¥6,%xa)) € Sp(EM, E®) x Sp(GM),G?), consider the
tensored morphism

(xp@xc)o((yr)"@(ye))o((yr) ®(ye))  o(zr®2e) " : EVeGW — EPeG?.
Its graph is equal to the image of
(:=((ze®20) o ((ye) @ (yo)), (xe @ xc) o ((yr)" © (va)"))
CEW oaqW (E(l) ® G(1)> o (E(z) ® G(z)) .
Now let us calculate the zero-divisor of the section m*(ov,av;) -
Let VI C EM © GM be the 2rs-dimensional subspace spanned by e, ® g, with
(a,b) € [1,2r] x [1,2s] \ L. Let Vi ¢ E® ® G? be the 2rs-dimensional subspace

spanned by e, ® g, with (a,b) € L (“¢” means the complement). Let 7 be the
projection

(E(l) ® G(1)> - (E<2> ® G(2>) — Ve Vs
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The intersection of the image of ¢ and V3 @ V5 is non-zero if and only if the composed
morphism 7o is not an isomorphism. The zero-divisor defined by the determinant
of 7 o ¢ is the twice of the zero-divisor defined by m'*(ov, gv,)-

Since Vi @ Vo is Uj, x U, x Uf, x U, -invariant (easily checked), the zero-
divisor of m"™*(ov, gv,) is a pull-back of some divisor on A” x A® by the projection
(Ug,. x A" x Uy ) x (Uf, x A® x Uy,) — A" x A*>. When zg = xg = idy, and
zc = X = idss, the morphism 7 o ( is expressed by a diagonal matrix with respect
to the basis {e, ® gy}, and its determinant is easily computed to be

2
T ree-Xiia L T (s—iyr—3n
TS T 2= N s—)r=320 21 A,
[Tvs. x [T ve, "
i=0 =0

Therefore on K Sp(EM, B?)(did) ¢ 61 G2))(did) the zero-divisor of m'* (av; g, )
is defined by

r—1 )
[T oh: == H )
=0

This implies that on KSp(EM, E? ))(ld"d) x KSp(GW G2 did) @ gy 2vn)
becomes a nowhere vanishing section of the line bundle

®M®Zl IAZIX@N@Z —J >\*

i=1 Jj=1

Since (71'7 — o )(ov,@v,) is nothing but the restriction of

' (oviev;) € ®M®El X &®N®Ze 4

i=1 j=1
to
SpFlig,,— 1) (EWM) x SpFlg .y (E®) x SpFlg ,_y(G™) x SpFlyy 1) (G*)),
it is non-zero. O
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