
DEGENERATION OF THE STRANGE DUALITY MAP
FOR SYMPLECTIC BUNDLES

TAKESHI ABE

1. Introduction

Global sections of the line bundles on a moduli space of vector bundles (or, more
generally, principal G-bundles) are called generalized theta functions. The dimen-
sion of the vector spaces of generalized theta functions is given by the celebrated
Verlinde formula. If you compute several Verlinde numbers, you will find that some
of them coincide unexpectedly. Behind the coincidence, there is often geometric
meaning.

Let SU(r) be the moduli space of rank r bundles with trivial determinant on
a smooth projective curve C of genus g, and let L be the ample generator of
PicSU(r). Let U(n) be the moduli space of rank n bundles of slope g − 1 on C,
and let U(n) ⊃ Θ be the locus of E ∈ U(n) such that H0(C,E) 6= 0. Then by the
Verlinde formula, you see that the dimensions of the vector spaces H0(SU(r),L⊗n)
and H0(U(n),O(Θ)⊗r) are equal. There is a strange duality map (cf. [B1])

H0(SU(r),L⊗n)∗ → H0(U(n),O(Θ)⊗r),

and Belkale [Bel], Marian and Oprea [MO] have proved that it is an isomorphism.
Beauville [B3] formulated a strange duality for symplectic bundles as follows. Let

M2r(C;L) be the moduli space of rank 2r vector bundles E with a non-degenerate
alternate bilinear form E ⊗ E → L, where L is a line bundle on C. Let

τ : M2r(C;OC)×M2s(C;ωC)→ N4rs(C;ωC)

be the tensor product map, where N4rs(C;ωC) is the moduli space of rank 4rs
vector bundles F with a non-degenerate symmetric bilinear form F ⊗ F → ωC . If
P is the pfaffian line bundle on N4rs(C;ωC), then

τ∗P ' Ξ⊗s
2r � Ξ⊗r

2s ,

where Ξ2r and Ξ2s are the ample generators of the Picard groups of M2r(C;OC)
and M2s(C;ωC). The pfaffian line bundle has a canonical section called the pfaffian
divisor, which gives rise to the duality map

(1.1) H0
(
M2r(C;OC),Ξ⊗s

2r

)∗ → H0
(
M2s(C;ωC),Ξ⊗r

2s

)
.

The equality of the dimensions of these two vector spaces has been proved by
Oxbury and Wilson [O-W]. The strange duality conjecture for symplectic bundles
claims that (1.1) is an isomorphism.

The purpose of this paper is to describe how the map (1.1) degenerates as the
curve C degenerates to a nodal curve C0.

Suppose that C0 is an irreducible nodal curve with only one singular point Q.
Let n : C̃0 → C0 be the normalization, and set {Q1, Q2} := n−1(Q). Let M̃2r :=
M2r(C̃0, {Q1, Q2};OC) and M̃2s := M2s(C̃0, {Q1, Q2};ωC(Q1 +Q2)) be the moduli
of parabolic symplectic bundles on the pointed curve (C̃0;Q1, Q2) (See Definition
4.1.1).
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By the factorization theorem, there are natural isomorphisms

H0
(
M2r(C0,O),Ξ⊗s

)
'

⊕
Λ=(s≥λ1≥···≥λs≥0)

H0
(
M̃2r,Ξ(s;Λ,Λ)

)
,(1.2)

H0
(
M2s(C0, ωC0),Ξ

⊗r
)
'

⊕
N=(r≥µ1≥···≥µs≥0)

H0
(
M̃2s,Ξ(r;N,N)

)
,(1.3)

where Ξ(s;Λ,Λ) and Ξ(r;N,N) are certain line bundles on the moduli of parabolic
symplectic bundles (See Definition 4.1.2).

Consider the composite of morphisms⊕
Λ

H0
(
M̃2r,Ξ(s;Λ,Λ)

)∗ dual of (1.2)−−−−−−−−→ H0
(
M2r(C0,O),Ξ⊗s

)∗
strange duality map−−−−−−−−−−−−→ H0

(
M2s(C0, ωC0),Ξ

⊗r
) (1.3)−−−→

⊕
N

H0
(
M̃2s,Ξ(r;N,N)

)(1.4)

Note that there is a one-to-one correspondence between the set of Λ’s and N ’s;
Λ = (s ≥ λ1 ≥ · · · ≥ λs ≥ 0) and N = (r ≥ µ1 ≥ · · · ≥ µs ≥ 0) correspond if and
only if

{λ1 + r, λ2 + r − 1, . . . λr + 1} ∪ {µ1 + s, µ2 + s− 1, . . . , µs + 1} = {1, 2, . . . , r + s}.

When Λ and N correspond, we can define a strange duality map (See Section 4.2)

(1.5) H0
(
M̃2r,Ξ(s;Λ,Λ)

)∗
→ H0

(
M̃2s,Ξ(r;N,N)

)
.

The main theorem (Theorem 4.3.1) says that the composed morphism (1.4) is
a direct sum of strange duality maps (1.5) for parabolic symplectic bundles on
(C̃0;Q1, Q2). This implies the following corollary:

Corollary 1.0.1. If the strange duality for parabolic bundles holds true for P1 with
three points, then it holds true for generic pointed curves.

The organization of this paper is as follows. In Section 2 we introduce notation
about Young diagrams and symplectic flag varieties. In Section 3 we collect some
results of representation theory. The key ingredient of the proof of the main theorem
is the Howe’s skew (Sp2r,Sp2s)-duality. In Section 3.3 we recall the Howe’s skew
(Sp2r,Sp2s)-duality, and reformulate it in a geometric setting. In Section 3.4 we
consider a key commutative diagram (3.10), and prove an important proposition
(Proposition 3.4.2), which is essential to the proof of the main theorem. In Section
4.1 we introduce the moduli of parabolic symplectic bundles. In Section 4.2 we
define the strange duality map for parabolic symplectic bundles. In Section 4.3 we
state the main theorem. Section 5 is devoted to its proof. As evidence in support
of the strange duality conjecture for parabolic symplectic bundles, in Section 6
we prove that the source and the target of the strange duality map for parabolic
symplectic bundles have the same dimension.

Notation and Convention. • We shall use moduli stacks of bundles, not coarse
moduli spaces.
• Let S be a scheme and ∗ be an object (such as a sheaf, a scheme, a morphism

etc.) over S. For an S-scheme T , we denote by (∗)T or ∗T the base-change of ∗ by
T → S.

2. Preliminaries

2.1. Young diagrams. We gather here the terminology on Young diagrams used
in this paper.
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For positive integers r and s, a Young diagram Λ is said to be of type ≤(r, s) if
the number of rows of Λ is less than or equal to r and that of columns of Λ is less
than or equal to s.

By associating to a non-increasing sequence s ≥ λ1 ≥ · · · ≥ λr ≥ 0 of non-
negative integers the Young diagram whose i-th row has λi boxes, we obtain a one-
to-one correspondence between the set of all r-term non-increasing sequences λ1 ≥
· · · ≥ λr ≥ 0 of non-negative integers with λ1 ≤ s and the set of all Young diagrams
of type ≤(r, s). By this correspondence, we use the terms “Young diagram” and
“non-increasing sequence of integers” interchangeably.

For a Young diagram Λ = (λ1 ≥ · · · ≥ λr) of type ≤(r, s), we denote by Λ̃ the
Young diagram of type ≤(s, r) that is obtained from Λ by interchanging rows and
columns. For example, if Λ is the Young diagram (4, 2, 1) of type ≤(3, 4), then Λ̃ is
the Young diagram (3, 2, 1, 1) of type ≤(4, 3).

For a Young diagram Λ = (λ1 ≥ · · · ≥ λr) of type ≤(r, s), we denote by cΛ
the Young diagram (s − λr ≥ s − λr−1 ≥ · · · ≥ s − λ1) of type ≤ (r, s). The
Young diagram Λ∗ of type ≤ (s, r) is defined to be c̃Λ. It is easy to see that if
Λ = (λ1 ≥ · · · ≥ λr) and Λ∗ = (µ1 ≥ · · · ≥ µs), then

{λ1 + r, λ2 + r − 1, . . . λr + 1} ∪ {µ1 + s, µ2 + s− 1, . . . , µs + 1} = {1, 2, . . . , r + s}.

For a Young diagram Λ, we denote by |Λ| the number of boxes in Λ.

2.2. Symplectic flag varieties. Let S be a scheme, P a line bundle on S, E
a vector bundle of rank 2r on S, and π : E ⊗ E → P a non-degenerate alternate
bilinear form. A full flag of E by isotropic subbundles means a filtration by isotropic
subbundles E ⊃ Er ⊃ · · · ⊃ E1 ⊃ E0 = 0 with rank Ei = i. (Here by “isotropic” we
mean that the restriction of π to Ei ⊗ Ei is zero.)

Let Fl(E) → S be the flag variety parametrizing full flags of E by isotropic
subbundles. Let

(E)Fl(E) ⊃ Er ⊃ Er−1 ⊃ · · · ⊃ E1 ⊃ E0 = 0

be the universal full flag by isotropic bundles. Given a tuple of integers −→q =
(q1, . . . , qr), we denote byOFl(E)(

−→q ) (or simplyO(−→q )) the line bundle
⊗r

i=1

(
E⊥i−1/E⊥i

)⊗qi

on Fl(E).
Let Sp(E) be the group scheme over S, which parametrizes symplectic automor-

phisms of E . If E ⊃ Er ⊃ . . . E1 ⊃ E0 = 0 is a full flag by isotropic subbundles
and α : E → E is a symplectic automorphism, then E ⊃ α(Er) ⊃ · · · ⊃ α(E1) ⊃
α(E0) = 0 is again a full flag by isotropic subbundles. This gives rises to a left
action of Sp(E) on Fl(E). The action lifts to the action of each filter Ei of the
universal full flag by isotropic subbundles. Hence the vector bundle pr∗OFl(E)(

−→q )
on S becomes a (left) Sp(E)-module, where pr : Fl(E) → S is the projection. The
following proposition is well-known.

Proposition 2.2.1. Assume that S = Spec k with k an algebraically closed field of
characteristic zero. The k-vector space H0 (Fl(E),O(−→q )) is non-zero if and only if
q1 ≥ · · · ≥ qr ≥ 0. By the correspondence

(q1, . . . , qr)↔ H0 (Fl(E),O(−→q )) ,

there is a one-to-one correspondence between the set of all finite dimensional ir-
reducible representations of the symplectic group Sp(E) and the set of all −→q =
(q1, . . . , qr) with q1 ≥ · · · ≥ qr ≥ 0.

If Λ = (λ1 ≥ · · · ≥ λr ≥ 0) is a Young diagram having r rows, the finite
dimensional irreducible representation of the symplectic group Sp(E)(= Sp2r) cor-
responding to Λ by the above correspondence is denoted by ρΛ

2r.
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For later use, it would be convenient to prepare here numbering of the filters of
a full flag by isotropic subbundles with respect to a Young diagram.

Notation 2.2.2. Let Λ = (s ≥ λ1 ≥ · · · ≥ λr ≥ 0) be a Young diagram of type
≤(r, s). Given a full flag of E by isotropic subbundles

E• : E ⊃ Er ⊃ · · · ⊃ E1 ⊃ E0 = 0,

we put FΛ
i (E•) := El for s + l − λl ≤ i < s + l + 1− λl+1 for 0 ≤ i ≤ r + s.

2.3. A compactification of the symplectic group. Let S be a scheme, P a
line bundle on S, E and F locally free OS-modules of rank 2r, 〈−,−〉E : E ⊗E → P
and 〈−,−〉F : F ⊗ F → P non-degenerate alternate bilinear forms. We define
the non-degenerate alternate bilinear form 〈−,−〉E⊕F : (E ⊕ F) ⊗ (E ⊕ F) → P
by 〈(e, f), (e′, f ′)〉E⊕F := 〈e, e′〉E − 〈f, f ′〉F . Let LGr(E ⊕ F) be the symplectic
Grassmannian parametrizing rank 2r isotropic subbundles of E ⊕ F .

Giving a symplectic isomorphism E α−→ F is equivalent to giving a rank 2r
isotropic subbundle H ⊂ E ⊕ F which projects isomorphically to both E and F
(Consider the graph of α). Therefore LGr(E⊕F) is a compactification of Sp(E ,F),
the S-scheme parametrizing symplectic isomorphisms from E to F .

Let 0 → U → (E ⊕ F)LGr → Q → 0 be the universal sequence on LGr :=
LGr(E ⊕ F). The action of Sp(E)×S Sp(F) on LGr lifts naturally to an action of
the universal quotient bundle Q. So the vector bundle pr∗(detQ)⊗n on S becomes
a (left) Sp(E) ×S Sp(F)-module, where pr : LGr → S is the projection. In [A,
Corollary 6.5], we described how this Sp(E) ×S Sp(F)-module decomposes into
irreducible modules.

Proposition 2.3.1. Let n be a positive integer. There is a canonical isomorphism

(2.1) pr∗(detQ)⊗n '
⊕

−→q =(q1,...,qr)

pr∗
(
OFl(E)(

−→q ) �OFl(F)(
−→q )
)
⊗ P⊗(nr−|−→q |)

of Sp(E) ×S Sp(F)-modules, where −→q runs through all tuples of integers with n ≥
q1 ≥ · · · ≥ qr ≥ 0. Here “pr” on the left-hand side is LGr → S and “pr” on the
right-hand side is Fl(E)×S Fl(F)→ S.

3. Representation theoretic results

In this section we collect some representation theoretic results. Although the
results are used later in the paper in a relative setting (that is, for vector bundles
on a scheme or a stack), for simplicity of notation we state and prove propositions for
vector spaces in this section. We fix an algebraically closed field k of characteristic
zero.

3.1. Orthogonal Grassmannian. Let (V, (−,−)V ) be a 2n-dimensional k-vector
space with a non-degenerate symmetric bilinear form. Let OGrn(V ) be the or-
thogonal Grassmannian parametrizing isotropic subspaces of V of dimension n.
Then OGrn(V ) has two connected components OGr+

n (V ) and OGr−2n(V ); U and
U ′ ∈ OGrn(V ) lie in the same connected component if and only if dim U ∩ U ′ is
even.

On OGrn(V ), there is a short exact sequence

0→ U → V ⊗OOGrn(V ) → Q→ 0

given by the universal subbundle U and the universal quotient bundle Q. There is
a unique square root of the line bundle detQ, which we denote by (detQ)⊗

1
2 . The

action of SO(V ) on OGrn(V ) naturally lifts to an action on the universal quotient
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bundle Q. Hence SO(V ) acts on the line bundle detQ. But SO(V ) does not act on
(detQ)⊗

1
2 . Instead the spin group Spin(V ) acts on (detQ)⊗

1
2 . So the vector space

H0
(
OGrn(V ), (detQ)⊗

1
2

)
= H0

(
OGr+

n (V ), (detQ)⊗
1
2

)
⊕H0

(
OGr−n (V ), (detQ)⊗

1
2

)
is a representation of Spin(V ), which is called the spin representation. The direct
summands are irreducilble representations of Spin(V ), which are called the half-spin
representations. Each of them has dimension 2n−1 (cf. [FH, §20]).

Notation 3.1.1. For • ∈ {+,−} and [U ⊂ V ] ∈ OGr•n(V ), the closed subset

OGr•n(V ) ⊃ {W ⊂ V |W ∩ U 6= 0}

with the reduced scheme structure is a divisor of OGr•n(V ). This divisor is the
zero-divisor of some section of (detQ)⊗

1
2 , which we denote by σU (It is determined

up to scalar).

3.1.1. Let (V1, (−,−)V1) and (V2, (−,−)V2) be 2n-dimensional k-vector spaces with
a non-degenerate symmetric bilinear form. We endow the direct sum V1 ⊕ V2 with
the non-degenerate symmetric bilinear form (−,−)V1⊕V2 given by (v1 + v2, v

′
1 +

v′2)V1⊕V2 := (v1, v
′
1)V1 − (v2, v

′
2)V2 . If Ui ∈ OGrn(Vi) (i = 1, 2), then we have

U1 ⊕ U2 ∈ OGr2n(V1 ⊕ V2). So we have a morphism

j : OGrn(V1)×OGrn(V2)→ OGr2n(V1 ⊕ V2)

(U1, U2) 7→ U1 ⊕ U2.

We name the connected components of OGrn(Vi) and OGr2n(V1 ⊕ V2) so that

j
(
OGr+

n (V1)×OGr+
n (V2)

)
⊂ OGr+

2n(V1 ⊕ V2).

Then we have

j
(
OGr−n (V1)×OGr−n (V2)

)
⊂ OGr+

2n(V1 ⊕ V2).

Lemma 3.1.2. Let U be the universal quotient bundle on OGr2n (V1 ⊕ V2). Then
the morphim

H0
(
OGr+

2n (V1 ⊕ V2) , (detQ)⊗
1
2

)
j∗−→H0

(
OGr+

n (V1)×OGr+
n (V2) , j∗ (detQ)⊗

1
2

)
⊕H0

(
OGr−n (V1)×OGr−n (V2) , j∗ (detQ)⊗

1
2

)
is an isomorphism.

Proof. The source of j∗ is a half-spin representation of Spin4n, hence it has di-
mension 22n−1. If Qi denotes the universal quotient bundle on OGr(Vi), then
j∗(detQ)⊗

1
2 ' (detQ1)⊗

1
2 � (detQ2)⊗

1
2 . So each direct summand of the target of

j∗ is a tensor product of half-spin representations of Spin2n, hence it has dimension
22n−2. Thus the source and the target of j∗ have the same dimension.

Let us prove the surjectivity of j∗. For (U1 ⊂ V2, U2 ⊂ V2) ∈ OGr+
n (V1) ×

OGr+
n (V2), the restriction of the section σU1⊕U2 ∈ (detQ)⊗

1
2 (cf. Notation 3.1.1) to

OGr+
n (V1)×OGr+

n (V2) is σU1 �σU2 , and its restriction to OGr−n (V1)×OGr−n (V2)
is zero. This implies that Imj∗ contains the first direct summand because it is
an irreducible Spin2n × Spin2n-module. Likewise Imj∗ contains the second direct
summand. �
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3.2. The morphism µΛ. Let (E, (−,−)E) and (G, (−,−)G) be k-vector spaces
with a non-degenerate alternate bilinear form of dimension 2r and 2s respectively.
We endow the tensor product E ⊗ G with the non-degenerate symmetric bilinear
form (−,−)E⊗G given by (e⊗g, e′⊗g′)E⊗G := (e, e′)E ·(g, g′)G. Let OGr2rs(E⊗G)
be the orthogonal Grassmannian parametrizing isotropic subspaces of E ⊗ G of
dimension 2rs. We name the connected components of OGr2rs(E ⊗G) such that
OGr+

2rs(E ⊗G) 3 E ⊗ U for an s-dimensional isotropic subspace U of G.
Let Λ be a Young diagram of type ≤(r, s). For full flags by isotropic subspaces

E• : E ⊃ Er ⊃ . . . E1 ⊃ E0 = 0 and G• : G ⊃ Gs ⊃ . . . G1 ⊃ G0 = 0,

we put

µΛ (E•, G•) :=
r+s∑
i=0

(
FΛ

i (E•)⊥ ⊗ FΛ∗

i (G•) + FΛ
i (E•)⊗ FΛ∗

i (G•)⊥
)
⊂ E ⊗G,

where we used Notation 2.2.2. You can easily check that µΛ(E•, G•) is a 2rs-
dimensional isotropic subspace of E ⊗ G. So associating µΛ(E•, G•) to (E•, G•),
we obtain a morphism

µΛ : Fl(E)× Fl(G)→ OGr2rs(E ⊗G).

Lemma 3.2.1. We have ImµΛ ⊂ OGr+
2rs(E ⊗ G) if |Λ| is even, and ImµΛ ⊂

OGr−2rs(E ⊗G) if |Λ| is odd.

Proof. Let (e1, . . . , e2r) and (g1, . . . ,g2s) be symplectic bases of E and G respec-
tively, i.e., (ei, er+j)E = δi,j (1 ≤ i, j ≤ r) and (gi,gs+j)G = δi,j (1 ≤ i, j ≤ s).
Let G ⊃ U be the s-dimensional isotropic subspace 〈g1, . . . ,gs〉. If E• and G• are
full flags by isotropic subspaces such that

Ei = 〈e1, . . . , ei〉 and Gj = 〈g1, . . . ,gj〉,

then dim ((E ⊗ U) ∩ µΛ(E•, G•)) = 2rs− |Λ|. �

3.3. Howe’s skew (Sp2r,Sp2s)-duality. We retain the notation in Subsection 3.2.
Let c : Spin(E ⊗G)→ SO(E ⊗G) be the canonical covering map. For symplectic
automorphisms α : E → E and β : G→ G, the tensor product α⊗β : E⊗G→ E⊗G
is an element of SO(E⊗G). This defines a morphism t : Sp(E)×Sp(G)→ SO(E⊗G)
of algebraic groups. Since the symplectic group is symply-connected, there is a
unique morphism t̃ : Sp(E) × Sp(G) → Spin(E ⊗ G) of algebraic groups such
that c ◦ t̃ = t. By the morphism t̃, we can regard a Spin(E ⊗ G)-module as a
Sp(E) × Sp(G)-module. Howe’s skew (Sp2r,Sp2s)-duality ([H, Theorem 3.8.9.3])
describes how the spin-representation of Spin(E ⊗ G) decomposes into irreducible
Sp(E)× Sp(G)-modules:

Theorem 3.3.1. Let S be the spin-representation of Spin(E ⊗G) (cf. Subsection
3.1). Then there is an isomorphism

(3.1) S '
∑
Λ

ρΛ
2r ⊗ ρΛ∗

2s

of Sp(E)×Sp(G)-modules, where Λ runs through all Young diagrams of type ≤(r, s).

The following geometric form of Howe’s skew (Sp2r,Sp2s)-duality will be useful
in the sequel.
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Corollary 3.3.2. Let Q be the universal quotient bundle on OGr2rs(E⊗G). The
morphisms induced by µΛ

H0
(
OGr+

2rs(E ⊗G), (detQ)⊗
1
2

) ⊕µ∗Λ−−−→
⊕

Λ:|Λ| even

H0
(
Fl(E)× Fl(G), µ∗Λ (detQ)⊗

1
2

)
,

(3.2)

H0
(
OGr−2rs(E ⊗G), (detQ)⊗

1
2

) ⊕µ∗Λ−−−→
⊕

Λ:|Λ| odd

H0
(
Fl(E)× Fl(G), µ∗Λ (detQ)⊗

1
2

)(3.3)

are isomorphisms, where Λ runs through all Young diagrams of type ≤(r, s) with
|Λ| even in (3.2), and with |Λ| odd in (3.3).

Proof. We shall prove that the direct sum of (3.2) and (3.3)
(3.4)

H0
(
OGr2rs(E ⊗G), (detQ)⊗

1
2

) ⊕µ∗Λ−−−→
⊕

Λ of type ≤(r, s)

H0
(
Fl(E)× Fl(G), µ∗Λ (detQ)⊗

1
2

)
is an isomorphism. Since the source and the target of (3.4) have the same dimension
by Theorem 3.3.1, we have only to prove the surjectivity of (3.4). By the lemma
below, the direct summands of the target of the morphism (3.4) are distinct irre-
ducible Sp(E)× Sp(F )-modules. Therefore it suffices to prove that for each Young
diagram Λ of type ≤(r, s), the morphism

(3.5) H0
(
OGr2rs(E ⊗G), (detQ)⊗

1
2

)
µ∗Λ−−→ H0

(
Fl(E)× Fl(G), µ∗Λ (detQ)⊗

1
2

)
is non-zero. Let (e1, . . . , e2r) and (g1, . . . ,g2s) be symplectic bases of E and G (i.e.
(ei, er+j) = δij and (gi,gs+j) = δij). Let

E• : E ⊃ Er ⊃ . . . E1 ⊃ E0 = 0 and G• : G ⊃ Gs ⊃ . . . G1 ⊃ G0 = 0

be the full flags by isotropic subspaces given by Ei = 〈e1, . . . , ei〉 and Gj =
〈g1, . . . ,gj〉. Let

E′
• : E ⊃ E′

r ⊃ . . . E′
1 ⊃ E′

0 = 0 and G′
• : G ⊃ G′

s ⊃ . . . G′
1 ⊃ G′

0 = 0

be the full flags by isotropic subspaces given by E′
i = 〈er+1, . . . , er+i〉 and G′

j =
〈gs+1, . . . ,gs+j〉. Then you can easily check that µΛ(E•, G•) ∩ µΛ(E′

•, G
′
•) = 0.

This means that if we put V := µΛ(E′
•, G

′
•) ⊂ E ⊗ G, then the section µ∗Λ(σV ) of

µ∗Λ(detQ)⊗
1
2 does not vanish at the point (E•, G•) ∈ Fl(E) × Fl(G). Hence the

morphism (3.5) is non-zero. �

Lemma 3.3.3. For a Young diagram Λ of type ≤(r, s), there is a canonical iso-
morphism

(3.6) µ∗Λ (detQ) '
(
OFl(E)(Λ) �OFl(G)(Λ∗)

)⊗2

of line bundles on Fl(E)× Fl(G).

Proof. Put (λ1 ≥ · · · ≥ λr) := Λ and (µ1 ≥ · · · ≥ µs) := Λ∗. For full flags by
isotropic subspaces

E• : E ⊃ Er ⊃ . . . E1 ⊃ E0 = 0 and G• : G ⊃ Gs ⊃ . . . G1 ⊃ G0 = 0,
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there are natural isomorphisms

det
(

E ⊗G

µΛ(E•, G•)

)
'

r+s⊗
i=1

det
(

FΛ
i (E•)

FΛ
i−1(E•)

⊗ G

FΛ∗
i (G•)⊥

)
⊗

r+s⊗
i=1

det

(
FΛ

i−1(E•)⊥

FΛ
i (E•)⊥

⊗ G

FΛ∗
i (G)

)

'
r+s⊗
i=1

{(
FΛ

i (E•)
FΛ

i−1(E•)

)⊗ dim FΛ∗
i (G•)

⊗

(
FΛ

i−1(E•)⊥

FΛ
i (E•)⊥

)⊗2s−dim FΛ∗
i (G•)

⊗
(

det
(

G

FΛ
i (G•)⊥

)
⊗ det

(
G

FΛ∗
i (G•)

))⊗ dim FΛ
i (E•)−dim FΛ

i−1(E•)
}

'
r+s⊗
i=1


(

FΛ
i−1(E•)⊥

FΛ
i (E•)⊥

)⊗2s−2 dim FΛ∗
i (G•)

⊗
(

G

FΛ
i (G•)⊥

)⊗2(dim FΛ
i (E•)−dim FΛ

i−1(E•))


'


r⊗

i=1

(
E⊥

i−1

E⊥
i

)λi

⊗
s⊗

j=1

(
G⊥

j−1

G⊥
j

)µj


⊗2

.

Hence we have the isomorphism (3.6). �

3.4. The multiplication map m. Let (Ei, (−,−)Ei) and (Gi, (−,−)Gi) (i = 1, 2)
be vector spaces with a non-degenerate alternate bilinear form. For symplectic iso-
morphisms α : E1 → E2 and β : G1 → G2, the tensor product α ⊗ β : E1 ⊗G1 →
E2 ⊗ G2 preserves the symmetric bilinear forms of E1 ⊗ G1 and E2 ⊗ G2. We
denote by SO(E1⊗G1, E2⊗G2) the connected component of O(E1⊗G1, E2⊗G2)
(:= {γ : E1 ⊗ G1 → E2 ⊗ G2|γ preserves the symmetric bilinear forms}) contain-
ing α ⊗ β. Let OGr+

4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)) be the connected component of
OGr4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)) containing W1 ⊕W2 for Wi ∈ OGr+

2rs (Ei ⊗Gi).
For γ ∈ SO(E1 ⊗G1, E2 ⊗G2), the graph of γ

Γγ := {(x, γ(x)) |x ∈ E1 ⊗G1 } ⊂ (E1 ⊗G1)⊕ (E2 ⊗G2)

determines a point of OGr+
4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)). So we have a morphism

SO(E1 ⊗ G1, E2 ⊗ G2) → OGr+
4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)), which is an open im-

mersion.
By associating Γα⊗β to (α, β), we have a morphism

(3.7) m : Sp(E1, E2)× Sp(G1, G2)→ OGr+
4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)) .

Let (LGr(E1 ⊕ E2)× LGr(G1 ⊕G2))
◦ be the open subset

(LGr(E1 ⊕ E2)× Sp(G1, G2)) ∪ (Sp(E1, E2)× LGr(G1 ⊕G2))

of LGr(E1 ⊕ E2)× LGr(G1 ⊕G2).
We claim that m extends as a morphism

(3.8)
m̃ : (LGr(E1 ⊕ E2)× LGr(G1 ⊕G2))

◦ → OGr+
4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)) .

In fact, for isotropic subspaces U ⊂ E1⊕E2 and V ⊂ G1⊕G2 of dimension 2r and
2s respectively, the morphism

U ⊗ V → (E1 ⊗G1)⊕ (E2 ⊗G2)

is injective if either (U ⊂ E1 ⊕ E2) ∈ Sp(E1, E2) or (V ⊂ G1 ⊕G2) ∈ Sp(G1, G2).
Hence we have a morphism m̃, which is an extension of m.

Lemma 3.4.1. Let Q be the universal quotient bundle on OGr+
4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)).

Let QE and QG be the universal quotient bundles on LGr(E1⊕E2) and LGr(G1⊕
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G2) respectively. Then there is an isomorphism

(3.9) m̃∗ (detQ)⊗
1
2 ' (detQE)⊗s � (detQG)⊗r

∣∣
(LGr(E1⊕E2)×LGr(G1⊕G2))

◦

of line bundles on (LGr(E1 ⊕ E2)× LGr(G1 ⊕G2))
◦.

Proof. Let
U ⊂ E1 ⊕ E2 andV ⊂ G1 ⊕G2

be isotropic subspaces of dimension 2r and 2s respectively such that the morphism
U ⊗ V → (E1 ⊗G1)⊕ (E2 ⊗G2) is injective. Then there are natural isomorphisms

det
(E1 ⊗G1)⊕ (E2 ⊗G2)

U ⊗ V
' det(U ⊗ V )∨

'
{
(detU)⊗2s ⊗ (detV )⊗2r

}∨ ' det
(

E1 ⊕ E2

U

)⊗2s

⊗ det
(

G1 ⊕G2

V

)⊗2r

.

Hence we have a natural isomorphism

m̃∗ (detQ) ' (detQE)⊗2s � (detQG)⊗2r
∣∣
(LGr(E1⊕E2)×LGr(G1⊕G2))

◦ .

By taking the square root, we obtain (3.9). �

Let Qi be the universal quotient bundle on OGr2rs(Ei ⊗Gi).
We have the following commutative diagram (the orthogonal Grassmannians

OGr+
4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)), OGr+

2rs(E1⊗G1)×OGr+
2rs(E2⊗G2) and OGr−2rs(E1⊗

G1)×OGr−2rs(E2 ⊗G2) are abbreviated to OGr+
4rs, OGr+

2rs and OGr−2rs respec-
tively):
(3.10)

H0 (LGr(E1 ⊕ E2), (detQE)⊗s)
⊗

H0 (LGr(G1 ⊕G2), (detQG)⊗r)

χ'
��

H0
(
OGr+

4rs, (detQ)⊗
1
2

)
m̃∗

oo

(♣)'

��

⊕
M H0 (Fl(E1)× Fl(E2),O(M) �O(M))

⊗⊕
N H0 (Fl(G1)× Fl(G2),O(N) �O(N))

⊕
|Λ1|,|Λ2|:even

H0 (Fl(E1)× Fl(G1),O(Λ1) �O(Λ∗1))
⊗

H0 (Fl(E2)× Fl(G2),O(Λ2) �O(Λ∗2))


⊕⊕

|Λ1|,|Λ2|:odd

H0 (Fl(E1)× Fl(G1),O(Λ1) �O(Λ∗1))
⊗

H0 (Fl(E2)× Fl(G2),O(Λ2) �O(Λ∗2))



φ

OO

H0
(
OGr+

2rs, (detQ1)
1
2 � (detQ2)

1
2

)
⊗

H0
(
OGr−2rs, (detQ1)

1
2 � (detQ2)

1
2

)(♠)

'oo

where M and Λi run through Young diagrams of type ≤(r, s), and N runs through
those of type ≤(s, r). Here (♣) is the isomorphism in Lemma 3.1.2; the isomorphism
χ is a tensor product of the isomorphisms in Proposition 2.3.1; the isomorphism(♠)
is the one in Corollary 3.3.2; and the morphism φ is defined such that the above
diagram is commutative. Note that all the morphisms are Sp(E1) × Sp(E2) ×
Sp(G1)× Sp(G2)-equivariant.

The source of the morphism φ is a direct sum of
(3.11)
H0 (Fl(E1),O(Λ1))⊗H0 (Fl(E2),O(Λ2))⊗H0 (Fl(G1),O(Λ∗1))⊗H0 (Fl(G1),O(Λ∗2)) ,
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such that |Λ1| ≡ |Λ2|(mod 2), and the target of φ is a direct sum of
(3.12)
H0 (Fl(E1),O(M))⊗H0 (Fl(E2),O(M))⊗H0 (Fl(G1),O(N))⊗H0 (Fl(G2),O(N)) .

We express φ as
(
φ(M,N),(Λ1,Λ2)

)
in a matrix form, where φ(M,N),(Λ1,Λ2) is a mor-

phism from the direct summand (3.11) to the direct summand (3.12).

Proposition 3.4.2. The morphism φ(M,N),(Λ1,Λ2) is zero unless Λ1 = Λ2 = M =
N∗. If Λ1 = Λ2 = M = N∗, then the morphism is a non-zero scalar multiplication.

Proof. The Sp(E1) × Sp(E2) × Sp(G1) × Sp(G2)-modules (3.11) and (3.12) are
irreducible, and they are isomorphic if and only if Λ1 = Λ2 = M = N∗. Therefore
φ(M,N),(Λ1,Λ2) is zero unless Λ1 = Λ2 = M = N∗. When Λ1 = Λ2 = M = N∗,
it is a scalar multiplication by the Schur’s Lemma. It remains to be proved that
the scalar is non-zero. For this, it suffices to prove that the composed morphism
πM,M∗ ◦ χ ◦ m̃∗ is non-zero, where πM,M∗ is the projection⊕

M,N

H0 (Fl(E1)× Fl(E2),O(M) �O(M))⊗H0 (Fl(G1)× Fl(G2),O(N) �O(N))

→ H0 (Fl(E1)× Fl(E2),O(M) �O(M))⊗H0 (Fl(G1)× Fl(G2),O(M∗) �O(M∗)) .

This has been proved in [A, §8].
�

3.4.1. The relative version of Proposition 3.4.2. For brevity of notation we have
stated the results in the absolute case, that is, for vector spaces. Later in this
paper, however, we shall use Proposition 3.4.2 in a relative setting, that is, for vector
bundles. In the relative setting we have to be a little careful because we cannot
choose canonically a square root (detQ)⊗

1
2 of the determinant of the universal

quotient bundle on an orthogonal Grassmannian. Here we formulate the relative
version of Proposition 3.4.2.

This time we let (Ei, (−,−)Ei) and (Gi, (−,−)Gi) (i = 1, 2) be vector bundles
with a non-degenerate alternate bilinear forms on an algebraic stack S, which is
over an algebraically closed field of characteristic zero. We assume that the Picard
group of S is torsion-free.

By straghtforward generalization, we can consider the morphism j in Section
3.1.1, the morphism µΛ in Section 3.2 and the morphism m̃ in Section 3.4 in this
relative situation. We denote them as

j :OGr+
2rs tOGr−2rs → OGr+

4rs,

µ
(i)
Λ :Fl(Ei)×S Fl(Gi)→ OGr2rs(Ei ⊗Gi),

m̃ : (LGr(E1 ⊕ E2)×S LGr(G1 ⊕G2))
◦ → OGr+

4rs.

(We retain the abbreviation OGr+
4rs := OGr+

4rs ((E1 ⊗G1)⊕ (E2 ⊗G2)) and OGr•2rs :=
OGr•2rs(E1 ⊗G1)×S OGr•2rs(E2 ⊗G2) (• ∈ {+,−}). )

Let f : OGr+
4rs → S and f• : OGr•2rs → S (• ∈ {+,−}) be projections.

Let L be a line bundle on OGr+
4rs such that there exist a line bundle A on S

and an isomorphism L⊗2 ' (detQ)⊗ f∗A⊗2 of line bundles on OGr+
4rs.

Considering Lemma 3.4.1 relatively, we have an isomorphism
(3.13)

m̃∗L⊗2 '
{
(detQE)⊗s � (detQG)⊗r

}⊗2 ⊗ d∗A⊗2
∣∣∣
(LGr(E1⊕E2)×SLGr(G1⊕G2))

◦

of line bundles on (LGr(E1 ⊕ E2)×S LGr(G1 ⊕G2))
◦, where d is the projection

LGr(E1⊕E2)×S LGr(G1⊕G2)→ S. The torsion-freeness of the Picard group of S
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implies the torsion-freeness of the Picard group of LGr(E1⊕E2)×S LGr(G1⊕G2).
So we can take the square root of (3.13):

(3.14) m̃∗L '
{
(detQE)⊗s � (detQG)⊗r

}
⊗ d∗A

∣∣
(LGr(E1⊕E2)×SLGr(G1⊕G2))

◦ .

Let bi : Fl(Ei) → S and ci : Fl(Gi) → S be projections. Combining Proposition
2.3.1 and the isomorphism (3.14), we obtain an isomorphism
(3.15)
d∗m̃

∗L '
⊕
M,N

b1∗OFl(E1)(M)⊗b2∗OFl(E2)(M)⊗c1∗OFl(G1)(N)⊗c2∗OFl(G2)(N)⊗A,

where M,N run through all Young diagrams of type ≤(r, s).
Considering Lemma 3.1.2 relatively, we have an isomorphism

(3.16) f∗L ' f+
∗ (j|OGr+

2rs
)∗L ⊕ f−∗ (j|OGr−2rs

)∗L

of vector bundles on S.
If Λ1 and Λ2 are Young diagrams of type ≤(r, s) with both |Λ1| and |Λ2| even,

then by Lemma 3.3.3 there is an isomorphism

(µ(1)
Λ1
⊗ µ

(2)
Λ2

)∗(j|OGr+
2rs

)∗L⊗2

'
(
OFl(E1)(Λ1) �OFl(G1)(Λ

∗
1) �OFl(E2)(Λ2) �OFl(G2)(Λ

∗
2)
)⊗2 ⊗ pr∗A⊗2,

where pr : Fl(E1) ×S Fl(G1) ×S Fl(E2) ×S Fl(G2) → S is the projection. Again
by the torsion-freeness of the Picard group, we can take the square root of this:

(µ(1)
Λ1
⊗ µ

(2)
Λ2

)∗(j|OGr+
2rs

)∗L

'
(
OFl(E1)(Λ1) �OFl(G1)(Λ

∗
1) �OFl(E2)(Λ2) �OFl(G2)(Λ

∗
2)
)
⊗ pr∗A.

(3.17)

Likewise, if both |Λ1| and |Λ2| are odd, we have an isomorphism

(µ(1)
Λ1
⊗ µ

(2)
Λ2

)∗(j|OGr−2rs
)∗L

'
(
OFl(E1)(Λ1) �OFl(G1)(Λ

∗
1) �OFl(E2)(Λ2) �OFl(G2)(Λ

∗
2)
)
⊗ pr∗A.

(3.18)

From Corollary 3.3.2 and the isomorphisms (3.17) and (3.18), we obtain isomor-
phisms

f+
∗ (j|OGr+

2rs
)∗L

'
⊕

|Λ1|,|Λ2|:even

b1∗OFl(E1)(Λ1)⊗ c1∗OFl(G1)(Λ
∗
1)⊗ b2∗OFl(E2)(Λ2)⊗ c2∗OFl(G2)(Λ

∗
2)⊗A

and

f−∗ (j|OGr−2rs
)∗L

'
⊕

|Λ1|,|Λ2|:odd

b1∗OFl(E1)(Λ1)⊗ c1∗OFl(G1)(Λ
∗
1)⊗ b2∗OFl(E2)(Λ2)⊗ c2∗OFl(G2)(Λ

∗
2)⊗A.

(3.19)

Now considering the commutative diagram (3.10) for vector bundles, we obtain the
following commutative diagram (***):
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⊕
|Λ1|,|Λ2|:even

{
b1∗OFl(E1)(Λ1)⊗ c1∗OFl(G1)(Λ

∗
1)

⊗b2∗OFl(E2)(Λ2)⊗ c2∗OFl(G2)(Λ
∗
2)⊗A

}
⊕

⊕
|Λ1|,|Λ2|:odd

{
b1∗OFl(E1)(Λ1)⊗ c1∗OFl(G1)(Λ

∗
1)

⊗b2∗OFl(E2)(Λ2)⊗ c2∗OFl(G2)(Λ
∗
2)⊗A

} (3.19)

'
�

f+
∗ (j|OGr+

2rs
)∗L⊕

f−∗ (j|OGr−2rs
)∗L.

⊕
M,N

{
b1∗OFl(E1)(M)⊗ b2∗OFl(E2)(M)

⊗c1∗OFl(G1)(N)⊗ c2∗OFl(G2)(N)⊗A

}
6
φ

d∗m̃
∗L

?

(3.15)'

f∗L� m̃∗

?

(3.16)'

As in (3.10), the morphism φ in the above is defined to make the above diagram
commute. We express φ as

(
φ(M,N),(Λ1,Λ2)

)
in a matrix form. Note that the target

and source of the morphism φ have natural Sp(E1)×S Sp(E2)×S Sp(G1)×S Sp(G2)-
action. The following is the relative version of Proposition 3.4.2, which we state as
a corollary of Proposition 3.4.2.

Corollary 3.4.3. The morphism φ is Sp(E1) ×S Sp(E2) ×S Sp(G1) ×S Sp(G2)-
equivariant. The morphism φ(M,N),(Λ1,Λ2) is zero unless Λ1 = Λ2 = M = N∗. If
Λ1 = Λ2 = M = N∗, then the morphism is a multiplication map by a nowhere-
vanishing function on S.

Proof. We have only to check the corollary locally on S. But locally, the situation
is just the base-change of the absolute case. �

4. Main Theorem

4.1. The moduli stack of parabolic symplectic bundles. In this section we
shall define a moduli stack of parabolic symplectic bundles, and introduce notation
for line bundles on the moduli stack. We shall work over an algebraically closed
field k of characteristic zero.

Let C be a connected projective nodal curve of arithmetic genus g, P (1), . . . , P (m)

be distinct smooth points of C, and L a line bundle on C. Put
−→
P := (P (1), . . . , P (m)).

Definition 4.1.1. We define the moduli stack M2r(C,
−→
P ;L) as follows. For an

affine k-scheme T , an object of the groupoid M2r(C,
−→
P ;L)(T ) is the following

data:
• a T -flat coherent OC×T -module E whose restriction to every geometric fiber

C × Spec k(t) (t ∈ T ) is a rank 2r torsion-free sheaf,
• a non-degenerate alternate bilinear form G ⊗ G → pr∗CL,
• for every point P (j) (1 ≤ j ≤ m), a full flag of E by isotropic subbundles

E(j)
• : E(j) ⊃ E(j)

r ⊃ · · · ⊃ E(j)
1 ⊃ E(j)

0 = 0,

where E(j) = E|P (j)×T .

Isomorphisms of the groupoid M2r(C,
−→
P ;L)(T ) are defined obviously.
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An object of M2r(C,
−→
P ;L)(T ) is called a symplectic parabolic bundle on C

parametrized by T , and an object of M2r(C,
−→
P ;L)(Spec k) is simply called a sym-

plectic parabolic bundle on C.
(2) The substack M2r(C,

−→
P ;L) of M2r(C,

−→
P ;L) is defined such that an object

of M2r(C,
−→
P ;L)(T ) is in M2r(C,

−→
P ;L)(T ) if and only if the OC×T -module E above

is locally free.

Let (
Euniv, Euniv ⊗ Euniv → pr∗CL, Euniv(j)

• (1 ≤ j ≤ m)
)

be the universal object of the moduli stack M(C,
−→
P ;L).

Definition 4.1.2. Let n be an integer. Let each point P (j) (1 ≤ j ≤ m) be given a
tuple of integers Λ(j) = (λ(j)

1 , . . . , λ
(j)
r ), and put

−→
Λ := (Λ(1), . . . ,Λ(m)). We denote

by Ξ(n;
−→
Λ)

M2r(C,
−→
P ;L)

, or simply Ξ(n;
−→
Λ), the line bundle

(
det Rpr∗Euniv

)⊗(−n) ⊗
m⊗

j=1

r⊗
i=1

(
Euniv(j)⊥

i−1

Euniv(j)⊥
i

)⊗λ
(j)
i

on M2r(C,
−→
P ;L), where pr is the projection C ×M2r(C,

−→
P ;L)→M2r(C,

−→
P ;L).

For later use, we introduce notation for orthogonal bundles as well.

Definition 4.1.3. An orthogonal sheaf with values in L on C is a torsion-free sheaf
F on C together with a non-degenerate symmetric bilinear form F ⊗ F → L. If F
is a vector bundle, it is called an orthogonal bundle with values in L on C.

We denote by N2t(C;L) the moduli stack of rank 2t orthogonal sheaves with
values in L on C. The open substack of N2t(C;L) consisting of orthogonal bundles
is denoted by N2t(C;L).

Consider the special case where L = ωC . The moduli stack N2t(C;ωC) is a
disjoint union of the open and closed substacks N

+

2t(C;ωC) and N
−
2t(C;ωC). Here

an orthogonal sheaf F with values in ωC lies in the component N
+

2t(C;ωC) if and
only if dim H0(C,F ) is even.

If Funiv is the universal orhogonal sheaf on C×N2t(C;ωC), then the line bundle
D :=

(
det Rpr∗Funiv

)∨ on N2t(C;ωC) is called the determinant bundle, where
pr : C ×N2t(C;ωC)→ N2t(C;ωC) is the projection. The determinant line bundle
D has a canonical square root P, the pfaffian bundle (cf. [L-S, Proposition 7.9]).
Moreover the pfaffian bundle P has a canonical section Θ called the pfaffian divisor
whose square Θ⊗2 is the canonical section of the determinant bundle (cf. [L-S,
Section 7.10]).

4.2. Strange duality for parabolic symplectic bundles. In this subsection we
formulate the strange duality for parabolic symplectic bundles.

Let C and P (1), . . . , P (m) be as in Section 4.1. Assume that each point P (j)

(1 ≤ j ≤ m) is given a Young diagram Λ(j) of type ≤(r, s).
For a rank 2r parabolic symplectic bundle

E :=
(
E,E ⊗ E → OC , E

(j)
• : E(j) ⊃ E(j)

r ⊃ · · · ⊃ E
(j)
1 ⊃ E

(j)
0 = 0 (1 ≤ j ≤ m)

)
and a rank 2s parabolic symplectic bundle

G :=
(
G, G⊗G→ ωC(

−→
P ), G(j)

• : G(j) ⊃ G(j)
s ⊃ · · · ⊃ G

(j)
1 ⊃ G

(j)
0 = 0 (1 ≤ j ≤ m)

)
,
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let K be the kernel of the morphism

(4.1) E ⊗G→
m⊕

j=1

E(j) ⊗G(j)

µΛ(j)(E(j)
• , G

(j)
• )

,

where the vector space
(
E(j) ⊗G(j)

)
/µΛ(j)(E(j)

• , G
(j)
• ) is considered to be a skyscraper

sheaf at P (j). (Recall that E(j) := E|P (j) and G(j) := G|P (j) , and see Section 3.2
for the definition of µΛ .)

The alternate bilinear forms of E and G determine a symmetric bilinear form
(E⊗G)⊗(E⊗G)→ ω(

−→
P ) of E⊗G. You can check easily that the restriction to K

of this symmetric bilinear form gives rise to a symmetric bilinear form K⊗K → ωC .
Since deg K = 4rs(g − 1), it is non-degenerate. Thus K is an orthogonal bundle
with values in ωC on C. We define the morphism

τ
(C;

−→
Λ)

: M2r(C,
−→
P ;OC)×M2s(C,

−→
P ;ωC(

−→
P ))→ N4rs(C;ωC)

by (E, G) 7→ K.

Lemma 4.2.1. If
∑m

j=1 |Λ(j)| is even, then Imτ
(C;

−→
Λ)
⊂ N+

4rs(C;ωC). If
∑m

j=1 |Λ(j)|
is odd, then Imτ

(C;
−→
Λ)
⊂ N−

4rs(C;ωC).

Proof. Let E =
⊕2r

i=1Oei and G =
⊕s

l=1Ogl ⊕
⊕2s

l=s+1 ωC(
−→
P )gl. Give E and G

the non-degenerate alternate bilinear forms given by the matrices

(
1r

−1r

)
and

(
1s

−1s

)
.

For 1 ≤ j ≤ m, let E
(j)
• and G

(j)
• be the full flags by isotropic subspaces of E(j)(:=

E|P (j)) and G(j)(:= G|P (j)) such that E
(j)
a = 〈e1, . . . , ea〉 (0 ≤ a ≤ r) and G

(j)
b =

〈g1, . . . ,gb〉 (0 ≤ b ≤ s). For these parabolic symplectic bundles E and G, the
kernel K of the morphism (4.1) is

⊕
1≤r≤r, 1≤l≤s

Oei ⊗ gl ⊕
⊕

1≤r≤r, 1≤l≤s

ωC

 ∑
j s.t. l≤λ

(j)
i

P (j)

 ei ⊗ g2s+1−l

⊕
⊕

1≤r≤r, 1≤l≤s

O

− ∑
j s.t. l≤λ

(j)
i

P (j)

 er+i ⊗ gs+1−l ⊕
⊕

1≤r≤r, 1≤l≤s

ωCer+i ⊗ g2s+1−l.
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We have

h0(K) = rs +
∑

1≤i≤r, 1≤l≤s

{
h0

ωC

 ∑
j s.t. l≤λ

(j)
i

P (j)




+ h0

O
− ∑

j s.t. l≤λ
(j)
i

P (j)


}+ rsg

≡ rs(1− g) +
∑

1≤i≤r, 1≤l≤s

χ

O
− ∑

j s.t. l≤λ
(j)
i

P (j)


 (mod 2)

= rs(1− g) +
∑

1≤i≤r, 1≤l≤s

(
−]
{

j
∣∣∣l ≤ λ

(j)
i

}
+ 1− g

)
= 2rs(1− g)−

m∑
j=1

]
{

(i, l)
∣∣∣l ≤ λ

(j)
i

}
= 2rs(1− g)−

m∑
j=1

|Λ(m)|

≡
m∑

j=1

|Λ(m)| (mod 2).

Since the moduli stack of symplectic bundles is connected, this proves the lemma.
�

Lemma 4.2.2. Let P be the pfaffian bundle on N4rs(C;ωC). Then we have an
isomorphism

(4.2) τ∗
(C;

−→
Λ)
P ' Ξ(s;

−→
Λ)

M2r(C,
−→
P ;OC)

� Ξ(r;
−→
Λ∗)

M2s(C,
−→
P ;ωC(

−→
P ))

of line bundles on M2r(C,
−→
P ;OC)×M2s(C,

−→
P ;ωC(

−→
P )), where

−→
Λ∗ = (Λ(1)∗, . . . ,Λ(m)∗).

Proof. Put (µ(j)
1 ≥ · · · ≥ µ

(j)
s ) := Λ(j)∗. Fix a point E = (E,E ⊗ E → OC , E

(j)
• ) ∈

M2r(C,
−→
P ;OC) such that E = O⊕2r. For G = (G, G ⊗ G → ωC(

−→
P ), G(j)

• ) ∈
M2s(C,

−→
P ;ωC(

−→
P )), if K is the kernel of the morphism (4.1), then there are canon-

ical isomorphims

det Rpr∗(K)∨ ' det Rpr∗(E ⊗G)∨ ⊗
m⊗

j=1

det
E(j) ⊗G(j)

µΛ(j)(E(j)
• , G

(j)
• )

' det Rpr∗(G)⊗(−2r) ⊗
m∑

j=1

|Λ(m)|
m⊗

j=1

s⊗
i=

(
G

(j)⊥
i−1

G
(j)⊥
i

)⊗2µ
(j)
i

.

Here the latter isomorphism follows fram the isomorphism E ⊗ G ' G⊕2r and
Lemma 3.3.3. Therefore we have an isomorphism

(4.3) τ∗
(C;

−→
Λ)
D
∣∣∣
{E}×M2s(C,

−→
P ;ωC(

−→
P ))
' Ξ(r;

−→
Λ∗)⊗2

M2s(C,
−→
P ;ωC(

−→
P ))

,

where D is the determinant line bundle on N4rs(C;ωC). Similarly for a fixed point
G ∈M2s(C,

−→
P ;ωC(

−→
P )), we have an isomorphism

(4.4) τ∗
(C;

−→
Λ)
D
∣∣∣
M2r(C,

−→
P ;OC)×{G}

' Ξ(s;
−→
Λ)⊗2

M2r(C,
−→
P ;OC)

.

Case (1). C is smooth. In this case, in order to complete the proof, we use the
following claim.
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Claim 4.2.2.1. If X1, . . . ,Xa are moduli stacks of symplectic bundles on a smooth
curve, Then Pic(

∏a
i=1 Xi) is a rank a free abelian group generated by (the pull-backs

of) the determinant line bundles on X1, . . . ,Xa.

Proof of Claim 4.2.2.1. If a = 1, then this is proved in [K-N-R] and [L-S]. Their
argument was as follows: There is a quotient morphism π : Q→ X from an infinite
Grassmannian to a moduli stack X of symplectic bundles and π∗ : Pic(X)→ Pic(Q)
is injective. The infinite Grassmannian is an inductive limit lim−→Qw of projective

varieties such that Pic(Qw) ∼→ Pic(Qv) ' Z for v ≤ w. This implies that Pic(Q) '
Z. The pull-back of the determinant line bundle on X by π is a generator of Pic(Q).
Hence Pic(X) is a rank one free abelian group generated by the determinat line
bundle.

For a ≥ 1, this argument applies as well if we verify that Pic(
∏a

i=1 Qi) '∏a
i=1 Pic(Qi). But this holds true because

∏a
i=1 Qi ' lim−→ (Q1,w1 × · · · × Qa,wa)

and Pic(
∏a

i=1 Qi,wi) '
∏a

i=1 Pic(Qi,wi) ' Za (Qi,wi being a projective variety with
Pic(Qi,wi) ' Z).

This is the end of the proof of Claim 4.2.2.1. �

By the above claim, we have

Pic(M2r(C,
−→
P ;OC)×M2s(C,

−→
P ;ωC(

−→
P )) ' Pic(M2r(C,

−→
P ;OC))×Pic(M2s(C,

−→
P ;ωC(

−→
P )).

From (4.3) and (4.4), we obtain an isomorphism

τ∗(C;Λ)D '
(

Ξ(s;
−→
Λ)

M2r(C,
−→
P ;OC)

� Ξ(r;
−→
Λ∗)

M2s(C,
−→
P ;ωC(

−→
P ))

)⊗2

.

By the torsion-freeness of the Picard group, we can take the square root of this,
and we obtain the isomorphism (4.2).

Case (2). C: general nodal curve.
In this case we need more argument. We omit the proof, but just mention that

when C is an irreducible nodal curve with only one singular point and
−→
P = ∅, you

can find a complete proof in the next section: Restrict (5.6) to SpE × SpG .

This is the end of the proof of Lemma 4.2.2. �

If Θ is the canonical section of the pfaffian bundle P (cf. Section 4.1), then
τ∗
(C;

−→
Λ)

Θ induces the duality map

(4.5)

H0

(
M2r(C,

−→
P ;OC),Ξ(s;

−→
Λ)

M2r(C,
−→
P ;OC)

)∗
→ H0

(
M2s(C,

−→
P ;ωC(

−→
P )),Ξ(r;

−→
Λ∗)

M2s(C,
−→
P ;ωC(

−→
P ))

)
of vector spaces of global sections.

The following is the strange duality for parabolic symplectic bundles.

Conjecture 4.1. The morphism (4.5) is an isomorphism.

Remark 4.2.3. The (−1)-multiplication is an automorphism of parabolic symplec-
tic bundles. It induces the multiplication by (−1)

∑
|Λ(j)| on the fibers of the line

bundles Ξ(s;
−→
Λ)

M2r(C,
−→
P ;OC)

and Ξ(r;
−→
Λ∗)

M2s(C,
−→
P ;ωC(

−→
P ))

. Thus if
∑m

j=1 |Λ(j)| is odd, then the

vector spaces H0
(
M2r(C,

−→
P ;OC),Ξ(s;

−→
Λ)
)

and H0
(
M2s(C,

−→
P ;ωC(

−→
P )),Ξ(r;

−→
Λ∗)
)

are
zero. So the conjecture is trivially true.
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4.3. Compatibility with factorization. The main theorem (Theorem 4.3.1) of
this paper claims that the morphism (4.5) is “compatible with the factorzation
morphism”. Let us make this meaning precise.

For simplicity of nontation, we assume that C is an irreducible nodal curve
with only one singular point Q. Let n : C̃ → C be the normalization, and put
{Q(1), Q(2)} := n−1(Q).

For brevity, we abbreviate M2r(C,
−→
P ;OC), M2s(C,

−→
P ;ωC(

−→
P )), M2r(C̃, {Q(1), Q(2)}∪

−→
P ;OC) and M2s(C̃, {Q(1), Q(2)}∪

−→
P ;ωC(Q(1) + Q(2) +

−→
P )) to M2r, M2s, M̃2r and

M̃2s respectively.
The factorization theorem ([A, Theorem 7.3]) says that there is a canonical

isomorphism

(4.6) H0
(
M2r,Ξ(s;

−→
Λ)
)
'

⊕
M=(µ1≥···≥µr)

H0
(
M̃2r,Ξ(s;M,M,

−→
Λ)
)

,

where M runs through all Young diagrams of type ≤(r, s).
Likewise, there is a canonical isomorphism

(4.7)

H0
(
M2s,Ξ(r;

−→
Λ∗)
)
'

⊕
N=(ν1≥···≥νs)

H0
(
M̃2s,Ξ(r;N,N,

−→
Λ∗)
)
⊗k

(
ωC(
−→
P )
∣∣∣
Q

)⊗(rs−|N |)

,

where N runs through all Young diagrams of type ≤(s, r). We fix an isomorphism
of vector spaces ωC(

−→
P )|Q ' k, and ignore the term (ωC(

−→
P )|Q) from now on.

Let

(4.8) τ∗
(C;

−→
Λ)

: H0 (N4rs(C;ωC),P)→ H0
(
M2r,Ξ(s;

−→
Λ)
)
⊗H0

(
M2s,Ξ(r;

−→
Λ∗)
)

be the morphism between vector spaces of global sections induced by τ
(C;

−→
Λ)

. Com-
posing (4.8) with the tensor product of the morphisms (4.6) and (4.7), we obtain
the morphism
(4.9)

Φ : H0 (N4rs(C;ωC),P)→
⊕
M,N

H0
(
M̃2r,Ξ(s;M,M,

−→
Λ)
)
⊗H0

(
M̃2s,Ξ(r;N,N,

−→
Λ∗)
)

.

Now we come to the main theorem of this paper.

Theorem 4.3.1. Let Θ be the canonical section of the pfaffian bundle P on N4rs(C;ωC).
Then for Φ(Θ) = (Φ(Θ)M,N )M,N , the following holds:

If M∗ 6= N , then Φ(Θ)M,N = 0. If M∗ = N , then (up to non-zero scalar)
Φ(Θ)M,N is the image of the canonical section Θ̃ of the pfaffian bundle P̃ on
N4rs(C̃;ωC̃) by the morphism

τ∗
(C̃;M,M,

−→
Λ)

: H0
(
N4rs(C̃;ωC̃), P̃

)
→ H0

(
M̃2r,Ξ(s;M,M,

−→
Λ)
)
⊗H0

(
M̃2s,Ξ(r;M∗,M∗,

−→
Λ∗)
)

.

Remark 4.3.2. If
∑m

j=1 |Λ(j)| is odd, the target of Φ is zero, thus the above
theorem becomes trivial.

Theorem 4.3.1 is equivalent to the commutativity of the following diagram:

(4.10) H0
(
M2r,Ξ(s;

−→
Λ)
)∗

//

'
��

H0
(
M2s,Ξ(r;

−→
Λ∗)
)

'
��⊕

M H0
(
M̃2r,Ξ(s;M,M,

−→
Λ)
)∗

// ⊕
N H0

(
M̃2s,Ξ(r;N,N,

−→
Λ∗)
)

,
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where the upper horizontal arrow is the strange duality map induced by τ∗
(C;

−→
Λ)

Θ;
the lower horizontal arrow is the direct sum of the strange duality maps induced
by τ∗

(C;M,M,
−→
Λ)

Θ̃; the right vertical arrow is (4.7); and the left vertical arrow is the

dual of (4.6).
Therefore, if the strange duality for parabolic symplectic bundles on (C̃;

−→
P ∪

{Q(1), Q(2)}) holds true, then so does it for those on (C;
−→
P ).

By degeneration argument (we need not only irreducible degeneration but also
reducible one explained in the next subsection), Theorem 4.3.1 implies the following
corollary.

Corollary 4.3.3. If the strange duality for parabolic symplectic bundles holds true
for P1 with three points, then it holds true for generic pointed curves.

4.4. The reducible case. Here we indicate how to modify the theorem when C
is reducible.

For simplicity of notation, we treat the case when C is a union of two smooth
irreducible components C1 and C2 intersecting at only one point Q. Moreover we
assume that

−→
P = ∅ for simplicity. The points of n−1(Q) = {Q(1), Q(2)} are named

such that Q(i) ∈ Ci.
Put

M2r := M2r(C,OC), M2s := M2s(C,ωC),

M̃
(i)
2r := M2r(Ci, Q

(i);OCi), M̃
(i)
2s := M2s(Ci, Q

(i);ωCi(Q
(i))).

By the factorization theorem ([A, Theorem???]) for a reducible curve, we have

(4.11) H0(M2r,Ξ(s)) '
⊕
M

H0
(
M̃

(1)
2r ,Ξ(s,M)

)
⊗H0

(
M̃

(2)
2r ,Ξ(s,M)

)
and

(4.12) H0(M2s,Ξ(r)) '
⊕
N

H0
(
M̃

(1)
2s ,Ξ(r,N)

)
⊗H0

(
M̃

(2)
2s ,Ξ(r,N)

)
,

where M and N run through all Young diagrams of type ≤ (r, s) and ≤ (s, r)
respectively.

Composing τ∗C with the tensor product of (4.11) and (4.12), we obtain

Φ : H0(N4rs(C;ωC),P)→
⊕
M,N

H0(M̃ (1)
2r ,Ξ(s,M))
⊗

H0(M̃ (2)
2r ,Ξ(s,M))

⊗
H0(M̃ (1)

2s ,Ξ(r,N))
⊗

H0(M̃ (2)
2s ,Ξ(r,N))

 .

Put (Φ(Θ)M,N )M,N := Φ(Θ).
Then the counterpart of Theorem 4.3.1 is:
If M∗ 6= N , then Φ(Θ)M,N = 0. If M∗ = N , then (up to non-zero scalar)

Φ(Θ)M,N is the image of Θ1 ⊗Θ2 by the morphism τ∗(C1;M) ⊗ τ∗(C2;M)

H0(N4rs(C1, ωC1),P1)
⊗

H0(N4rs(C2, ωC2),P2)
→

H0(M̃ (1)
2r ,Ξ(s,M))⊗H0(M̃ (1)

2s ,Ξ(r,M∗))
⊗

H0(M̃ (2)
2r ,Ξ(s,M))⊗H0(M̃ (2)

2s ,Ξ(r,M∗))
,

where Θi is the canonical section of the pfaffian bundle Pi on N4rs(Ci, ωCi).

5. Proof of the main theorem

In this section we give a proof of Theorem 4.3.1.
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For simplicity of notation, we assume that
−→
P = ∅. Recall the abbreviation:

M2r := M2r(C;OC), M̃2r := M2r(C̃, {Q(1), Q(2)};OC),

M2s := M2s(C;ωC), M̃2s := M2s(C̃, {Q(1), Q(2)};ωC̃(Q(1) + Q(2))).

For short, the moduli stacks M2r(C̃;OC̃), M2s(C̃;ωC̃(Q(1)+Q(2))) and N4rs

(
C̃, ωC̃(Q(1) + Q(2))

)
are written as M \

2r, M \
2s and N \

4rs. (Don’t confuse M2r(C̃;OC̃) and M2r(C̃, {Q(1), Q(2)};OC̃).
The former is a moduli stack of (ordinary) symplectic bundles, and the latter is a
moduli stack of parabolic symplectic bundles.)

Let h : M \
2r ×M \

2s → N \
4rs be the tensor product morphism.

We also abbreviate N4rs(C;ωC), N4rs(C;ωC) and N4rs(C̃;ωC̃) to N4rs, N4rs

and Ñ4rs respectively.
Let E , G be the universal symplectic bundles on C̃ ×M \

2r and C̃ ×M \
2s. Let H

be the universal orthogonal bundle on C̃ × N \
4rs. Put E(i) := E|Q(i)×M\

2r
, G(i) :=

G|Q(i)×M\
2s

and H(i) := H|Q(i)×N\
4rs

We denote by E(i)
and G(i)

the pull-backs of

E(i) and G(i) to M \
2r ×M \

2s (i = 1, 2).
We introduce the following abbreviation:

SpE := Sp(E(1), E(2)), SpG := Sp(G(1),G(2)),

LGrE := LGr(E(1) ⊕ E(2)), LGrG := LGr(G(1) ⊕ G(2)),

SO := SO(E(1) ⊗ G(1)
, E(2) ⊗ G(2)

), OGr+
4rs := OGr+

4rs

(
(E(1) ⊗ G(1)

)⊕ (E(2) ⊗ G(2)
)
)

,

O′′ := O(E(1) ⊗ G(1)
, E(2) ⊗ G(2)

), OGr′′4rs := OGr4rs

(
(E(1) ⊗ G(1)

)⊕ (E(2) ⊗ G(2)
)
)

,

O′ := O
(
h∗H(1), h∗H(2)

)
, OGr′4rs := OGr4rs

(
h∗H(1) ⊕ h∗H(2)

)
,

O := O
(
H(1),H(2)

)
, OGr4rs := OGr4rs

(
H(1) ⊕H(2)

)
.

We have the following commutative diagram:
(5.1)

M2r ×M2s

∼=
��

τC

,,SpE × SpG
m //

� _

��

SO
� � //

� _

��

O′′ ' //
� _

��

O′ //
� _

��

O //
� _

��

N4rs� _

��
(LGrE × LGrG)◦ m̃ //

� _

��

OGr+
4rs

� � //

f

��

OGr′′4rs
' //

����
��

��
��

��
��

��
��

�
OGr′4rs

//

yyrrrrrrrrrrrrrrrrrrrrrrrrr
OGr4rs

w //

q

��

N4rs

LGrE × LGrG

d ((QQQQQQQQQQQQ

M \
2r ×M \

2s

h // N \
4rs

where the morphisms d, f and q are natural projections to M \
2r × M \

2s, and m

and m̃ are those explained in Section 3.4. The morphism w : OGr4rs → N4rs is
constructed as follows:
Let H be a rank 4rs orthogonal bundle with values in ωC̃

(
Q(1) + Q(2)

)
on C̃, and

V an isotropic subspace of dimension 4rs of H|Q(1) ⊕ H|Q(2) . The morphism w



20 TAKESHI ABE

associates to (H,V ) the kernel of the mophism

n∗H →
H|Q(1) ⊕H|Q(2)

V
,

where (H|Q(1) ⊕H|Q(2))/V is a skyscraper sheaf at Q.
We denote by n the composed morphism OGr+

4rs → N4rs. The natural projec-
tions LGrE → M \

2r and LGrG → M \
2s are denoted by d′ and d′′ respectively. (So

d = d′ × d′′.)

Lemma 5.0.1. There is an isomrphism

(5.2) n∗D ' (detQ)⊗ f∗
(
Ξ(s)

M\
2r

� Ξ(r)

M\
2s

)⊗2

,

where D is the determinant bundle on N4rs and Q is the universal quotient bundle
on OGr+

4rs.

Proof. Let R be the universal quotient bundle on OGr4rs. Let p1, p2 and p3 be
the projections C̃ ×M \

2r →M \
2r, C̃ ×M \

2s →M \
2s and C̃ ×N \

4rs → N \
4rs.

Claim 5.0.1.1. We have

(5.3) h∗(det Rp3∗H) ' (det Rp1∗E)⊗2s � (det Rp2∗G)⊗2r.

Proof of Claim 5.0.1.1. By Claim 4.2.2.1, line bundles on M \
2r ×M \

2s are tensor
products of line bundles on the factors. But for fixed E ∈ M \

2r and G ∈ M \
2s, the

isomorphisms

h∗(det Rp3∗H)|{E}×M\
2s
' (det Rp2∗G)⊗2r,

h∗(det Rp3∗H)|M\
2r×{G}

' (det Rp1∗E)⊗2s

are easy to check (cf. the proof Lemma 4.2.2). This completes the proof of Claim
5.0.1.1. �

By the definition of w, we have a natural isomorphism

(5.4) w∗D ' q∗(det Rp3H)∨ ⊗ detR.

The pull-back of detR to OGr+
4rs is clearly isomorphic to detQ. Thus by pulling

back the isomorphism (5.4) to OGr+
4rs and using (5.3), we obtain (5.2). �

Let QE and QG be the universal quotient bundles on LGrE and LGrG respec-
tively.

Then by Lemma 3.4.1, we have an isomorphism of line bundles on (LGrE ×
LGrG)◦

(5.5) m̃∗ (detQ) '
{
(detQE)⊗s � (detQG)⊗r

}⊗2
∣∣∣
(LGrE×LGrG)◦

.

Put L := n∗P, where P is the pfaffian bundle. Then from the isomorphism (5.2) and
(5.5), by taking the square root ( this is possible because LGrE×LGrG →M \

2r×M \
2s

is a (product of) flag-variety bundle, hence Pic(LGrE×LGrG)◦ = Pic(LGrE×LGrG)
is an free abelian group, in particular torsion-free), we have an isomorphism

(5.6) m̃∗L '
{
(detQE)⊗s � (detQG)⊗r

}
⊗ d∗

(
Ξ(s)

M\
2r

� Ξ(r)

M\
2s

)∣∣∣
(LGrE×LGrG)◦

.
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Corresponding to the commutative diagram (5.1) of stacks, we have the following
commutative diagram of vector spaces of global sections:

(5.7) H0
(
M2r,Ξ

(s)
M2r

)
⊗H0

(
M2s,Ξ

(r)
M2s

)
H0(N4rs,P)

β(:=τ∗C)oo

H0(N4rs,P)

restr.

OO

α(:=n∗)

��H0
(
LGrE , d

′∗Ξ(s)

M\
2r

⊗ (detQE)⊗s
)

⊗
H0
(
LGrG , d′′∗Ξ(s)

M\
2s

⊗ (detQG)⊗r
)

γ:restr.

OO

H0
(
OGr+

4rs,L
)
,

m̃∗
oo

where the map γ is bijective because of [A, Lemma 7.4].
Let bi : Fl(E(i)

)→M \
2r ×M \

2s, ci : Fl(G(i)
)→M \

2s ×M \
2s be projections. Put

OGr•2rs := OGr•2rs

(
E(1) ⊗ G(1)

)
×M\

2r×M\
2s

OGr•2rs

(
E(2) ⊗ G(2)

)
,

and let f• : OGr•2rs →M \
2r ×M \

2s be the projection (• ∈ {−,+}).
We have the morphism j : OGr+

2rs tOGr−2rs → OGr+
4rs (see Section 3.1.1).

As in Section 3.4.1, we have the following diagram of vector bundles on M \
2r ×

M \
2s:

(5.8)

⊕
|Λ1|,|Λ2|:even

{
b1∗O(Λ1)⊗ c1∗O(Λ∗1)⊗ b2∗O(Λ2)
⊗c2∗O(Λ∗2)⊗

(
Ξ(s)

M\
2r

� Ξ(r)

M\
2s

) }
⊕

⊕
|Λ1|,|Λ2|:odd

{
b1∗O(Λ1)⊗ c1∗O(Λ∗1)⊗ b2∗O(Λ2)
⊗c2∗O(Λ∗2)⊗

(
Ξ(s)

M\
2r

� Ξ(r)

M\
2s

) } η
'

�

f+
∗ (j|OGr+

2rs
)∗L⊕

f−∗ (j|OGr−2rs
)∗L.

⊕
M,N

{
b1∗O(M)⊗ b2∗O(M)⊗ c1∗O(N)
⊗c2∗O(N)⊗

(
Ξ(s)

M\
2r

� Ξ(r)

M\
2s

) }
6
φ

d∗m̃
∗L

?

ε'

f∗L� ζ(:= m̃∗)

?

δ'

If we take global sections, then (using projection formula) from ε we obtain the
isomorphism

ε‡ : H0
(
LGrE , d

′∗Ξ(s)

M\
2r

⊗ (detQE)⊗s
)
⊗H0

(
LGrG , d′′∗Ξ(r)

M\
2s

⊗ (detQG)⊗r
)

→
⊕
M,N

H0
(
M̃2r,Ξ(s;M,M)

)
⊗H0

(
M̃2s,Ξ(r;N,N)

)
.

(5.9)

Here we used the isomorphisms

Fl(E(1))×M\
2r

Fl(E(2)) ' M̃2r, Fl(G(1))×M\
2s

Fl(G(2)) ' M̃2s.
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The morphism Φ in (4.9) is nothing but the composed morphism ε‡ ◦ (γ−1) ◦ β

(recall that we are assuming
−→
Λ = ∅ for simplicity). Thus by the commutativity

of the diagram (5.7), we have Φ(Θ) = (ε‡ ◦ m̃∗ ◦ α)(Θ), where Θ is the canonical
section of the pfaffian bundle P.

Now we shall analyze the composed morphism ε‡ ◦ m̃∗ ◦ α. In the same way as
we obtained the morphism ε‡ from ε, we obtain from δ, η and φ in the diagram
(5.8) the morphisms

H0
(
OGr+

4rs,L
)

δ‡−→ H0
(
OGr+

2rs,
(
j|OGr+

2rs

)∗
L
)
⊕H0

(
OGr−2rs,

(
j|OGr+

2rs

)∗
L
)

η‡−→
⊕

|Λ1|,|Λ2|: even

H0
(
M̃2r,Ξ

(s;Λ1,Λ2)

M̃2r

)
⊗H0

(
M̃2s,Ξ

(r;Λ∗1 ,Λ∗2)

M̃2s

)
⊕

⊕
|Λ1|,|Λ2|: odd

H0
(
M̃2r,Ξ

(s;Λ1,Λ2)

M̃2r

)
⊗H0

(
M̃2s,Ξ

(r;Λ∗1 ,Λ∗2)

M̃2s

)
φ‡−→

⊕
M,N

H0
(
M̃2r,Ξ(s;M,M)

)
⊗H0

(
M̃2s,Ξ(r;N,N)

)
,

by taking global sections (and using projection formula). We put (δ‡+, δ‡−) := δ‡.
Since the morphism m̃∗ in (5.7) is also obtained from ζ in (5.8) by taking global

section, we have ε‡ ◦ m̃∗ = φ‡ ◦ η‡ ◦ δ‡ by the commutativity of the diagram (5.8).
Therefore Φ(Θ) = (φ‡ ◦ η‡ ◦ δ‡ ◦ α)(Θ).

The following two lemmas complete the proof of Theorem 4.3.1.

Lemma 5.0.2. The (Λ1,Λ2)-th component of (η‡◦δ‡◦α)(Θ) is equal to τ∗
(C̃;Λ1,Λ2)

Θ̃

(up to non-zero scalar), where Θ̃ is the canonical section of the pfaffian line bundle
P̃ on Ñ4rs (see (4.8) for τ∗

(C̃;Λ1,Λ2)
).

Lemma 5.0.3. If we express φ‡ as
(
φ‡(M,N)(Λ1,Λ2)

)
in a matrix form, we have

φ‡(M,N)(Λ1,Λ2)
= 0 unless Λ1 = Λ2 = M = N∗. If Λ1 = Λ2 = M = N∗, then

φ‡(M,N)(Λ1,Λ2)
is a non-zero scalar multiplication.

Proof of Lemma 5.0.2 . Let H be a rank 4rs orthogonal bundle with values in
ωC̃(Q(1) + Q(2)) on C̃, and V1, V2 be 2rs-dimensional isotropic linear subspaces
of H|Q(1) and H|Q(2) respectively. Let K be the kernel of the morphism H →
⊕i=1,2(H|Q(i)/Vi), where (H|Q(i)/Vi) is a skyscraper sheaf at Q(i). Then you can
easily check that K is an orthogonal bundle with values in ωC̃ . This defines a
morphism

ν : OGr2rs(H(1))×N\
4rs

OGr2rs(H(2))→ Ñ4rs.

By the canonical isomorphism h∗H(i) ' E(i)⊗G(i)
, we have a natural isomorphism

ξ• : OGr•2rs → OGr2rs(H(1))×N\
4rs

OGr2rs(H(2)),

where • ∈ {−,+}.

Claim 5.0.3.1. For • ∈ {−,+}, we have an isomorphism of line bundles on OGr•2rs

(5.10) (ν ◦ ξ•)∗P̃ '
(
n ◦
(
j|OGr•2rs

))∗ P.

Moreover, by this isomrphism, the global section (ν ◦ ξ•)∗Θ̃ of the left-hand side
corresponds to

(
n ◦
(
j|OGr•2rs

))∗ Θ of the right-hand side.
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Proof of Claim 5.0.3.1. For an orthogonal bundle F = (F, F ⊗ F → ωC̃) ∈ Ñ4rs,

(n∗F, n∗F ⊗ n∗F → n∗ωC̃

trace−−−→ ωC)

is an orthogonal sheaf with values in ωC on C.
This defines a morphism t : Ñ4rs → N4rs. Then t ◦ ν ◦ ξ• = n ◦ (j|OGr•2rs

). From
this the claim follows. �

By Claim 5.0.3.1, we have (η‡ ◦ δ‡ ◦ α)(Θ) = η‡
(
(ν ◦ ξ+)∗Θ̃, (ν ◦ ξ−)∗Θ̃

)
.

The composite of morphisms

M̃2r × M̃2s '
(
Fl(E(1))×M\

2r
Fl(E(2))

)
×
(
Fl(G(1))×M\

2s
Fl(G(2))

)
'
(
Fl(E(1)

)×M\
2r×M\

2s
Fl(E(2)

)
)
×M\

2r×M\
2s

(
Fl(G(1)

)×M\
2r×M\

2s
Fl(G(2)

)
)

'
(
Fl(E(1)

)×M\
2r×M\

2s
Fl(G(1)

)
)
×M\

2r×M\
2s

(
Fl(E(2)

)×M\
2r×M\

2s
Fl(G(2)

)
)

µΛ1×µΛ2−−−−−−→ OGr•2rs
ν◦ξ−−→ Ñ4rs

is, by construction, nothing but the morphism τ(C̃;Λ1,Λ2)
(cf. Section 4.2), where

• = + or − depending on the parity of |Λi|.
Therefore (Λ1,Λ2)-component of η‡

(
(ν ◦ ξ+)∗Θ̃, (ν ◦ ξ−)∗Θ̃

)
is τ∗

(C̃;Λ1,Λ2)
Θ̃. This

completes the proof of Lemma 5.0.2. �

Proof of Lemma 5.0.3. By Proposition 3.4.2, we have φ‡(M,N)(Λ1,Λ2)
= 0 unless

Λ1 = Λ2 = M = N∗. If Λ1 = Λ2 = M = N∗, then again by Proposition 3.4.2 we
know that φ‡(M,N)(Λ1,Λ2)

is a multiplication map by a nowhere vanishing function

on M \
2r ×M \

2s. But H0
(
M \

2r ×M \
2s,O

)
∼←− k. This completes the proof of Lemma

5.0.3. �

6. Equality of Verlinde numbers

The goal of this section is to prove the following theorem.

Theorem 6.0.4. The source and the target of the strange duality map (4.5) have
the same dimension.

6.1. The Verlinde formula. We use the following usual notations for Lie algebras.
• g is a simple Lie algebra, and h is a fixed Cartan subalgebra.
• G and T are the corresponding simple, simply-connected Lie group ant its

maximal torus.
• h∗ ⊃ R(g, h) is the root symtem, and we fix a basis {α1, . . . , αn}.
• Q is the root lattice, and Qlong is the sublattice generated by the long roots.
• h∗ ⊃ P is the weight lattice, and P+ is the set of dominant weights.
• (−,−) is the normalized Killing form (i.e. (Hβ ,Hβ) = 2 for long roots β).

By this we identify h and h∗.
• θ is the highest root of R(g, h), and ρ is the half-sum of the positive roots.
• For l ∈ N, Pl := {λ ∈ P+|λ(Hθ) ≤ l}.
• h := (ρ, θ) + 1.

Let C be a connected smooth projective curve of genus g over an algebraically
closed field of characteristic zero. Let

−→
P = (P (1), . . . , P (m)) be a set of closed

points of C. Fix l ∈ N. Suppose that each point P (j) is labeled by Λ(j) ∈ Pl. Put−→
Λ := (Λ(1), . . . ,Λ(m)). Denote by VC(

−→
P ,
−→
Λ , l) the conformal block associated to

the data (C,
−→
P ,
−→
Λ , l) (cf. [T-U-Y]).

The following is the celebrated Verlinde formula (cf. [B2]).
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Theorem 6.1.1. The dimension of the vector space VC(
−→
P ,
−→
Λ , l) is

(6.1){
(l + h)rankg |P/Qlong|

}g−1 ∑
µ∈Pl

TrV−→Λ

(
exp 2π

√
−1

µ + ρ

l + h

)∏
α>0

∣∣∣∣2 sinπ
(α, µ + ρ)

l + h

∣∣∣∣2−2g

,

where V−→
Λ

is the tensor product
∏m

q=1 VΛ(q) of the irreducible representations of g

corresponding to Λ(q).

6.2. Sp2n case. In this section we shall write down the formula (6.1) more explicitly
for the symplectic group. As in [O-W], for a positive integer p and a finite set
U = {u1, . . . , ur} of rational numbers, we set

∆p(U) :=
∏

1≤i<j≤r

(
4 sin

(
(ui − uj)π

p

)
sin
(

(ui + uj)π
p

))2 r∏
i=1

4 sin2(2ui/p).

Let g := sp2n, and h the diagonal Cartan subalgebra. Fix the basis {Hi := Ei,i − En+1,n+1| 1 ≤
i ≤ n} of the vector space h, and let {Li} ⊂ h∗ be the dual basis. As a basis
of the root system, we choose {L1 − L2, . . . , Ln−1 − Ln, 2Ln}. Then θ = 2L1,
ρ = nL1 +(n− 1)L2 + · · ·+Ln and h = n+1. We have |P/Qlong| = 2n. For l ∈ N,

Pl =

{
n∑

i=1

aiLi

∣∣∣∣∣ l ≥ a1 ≥ a2 ≥ · · · ≥ an ≥ 0

}
.

Thus Pl can be regarded as the set of Young diagrams of type ≤(n, l). If we write
µ + ρ = u1L1 + · · ·+ unLn, then we have{
(l + h)rankg |P/Qlong|

}g−1 ∏
α>0

∣∣∣∣2 sinπ
(α, µ + ρ)

l + h

∣∣∣∣2−2g

=
(

2(n + l + 1)n

∆2(n+l+1)({u1, . . . , un})

)g−1

(see [O-W, page 2700] for details). By the Weyl character formula (cf. [FH, §24.2]),
we have

TrV−→Λ

(
exp 2π

√
−1

µ + ρ

l + h

)
=

m∏
q=1

det
(
ζuj(λ

(q)
i +n+1−i) − ζ−uj(λ

(q)
i +n+1−i)

)
det
(
ζuj(n+1−i) − ζ−uj(n+1−i)

) ,

where Λ(q) = (λ(q)
1 ≥ · · · ≥ λ

(q)
n ) and ζ = exp(π

√
−1/(n + l + 1)). Thus, in the

symplectic group case, the Verlinde number (6.1) is equal to

∑
n+l≥u1>···>un≥1

(
(2(n + l + 1))n

∆2(n+l+1)({u1, . . . , un})

)g−1 m∏
q=1

det
(
ζuj(λ

(q)
i +n+1−i) − ζ−uj(λ

(q)
i +n+1−i)

)
det
(
ζuj(n+1−i) − ζ−uj(n+1−i)

) .

6.3. Proof of the theorem. Before starting the proof of Theorem 6.0.4, we pre-
pare lemmas on matrices.

If A = (ai,j) is an N ×N matrix, and S = (s1, . . . , sn) and T = (t1, . . . , tn) are
two sequences of n distinct integers {1, . . . , N}, we denote by AS,T the n×n matrix
whose (i, j)-entry is asi,tj .

In the rest of this section we set ζ := exp(π
√
−1/(r + s + 1)). Let W be the

(r + s)× (r + s) symmetric matrix whose (i, j)-entry is ζij − ζ−ij .

Lemma 6.3.1. (1) W 2 = −2(r + s + 1)Ir+s.
(2) If (u1, . . . , ur) is a sequence of r distinct integers from {1, . . . , r+s}, we have

det W(r,r−1,...,1)(u1,...,ur) = (−1)
∑r

i=1(ui+1) det W(s+1,s+2,...,s+r)(u1,...,ur).



DEGENERATION OF THE STRANGE DUALITY MAP FOR SYMPLECTIC BUNDLES 25

Proof. (1) For l ∈ N with l 6≡ 0 (mod 2(r + s + 1)),

(6.2)
r+s∑
i=1

ζli =
1− (ζl)r+s+1

1− ζl
− 1 =

ζl − (−1)l

1− ζl
=

{
−1 if l is even ,
1+ζl

1−ζl if l is odd.

If l ≡ 0 (mod 2(r + s + 1)), then
∑r+s

i=1 ζli = r + s.
The (a, b)-entry of the matrix W 2 is

r+s∑
l=1

(ζai − ζ−ai)(ζib − ζ−ib) =
r+s∑
l=1

(
ζ(a+b)i − ζ(a−b)i + ζ−(a+b)i − ζ−(a−b)i

)
(6.2)
=

{
−2(r + s + 1)δa,b if a + b is even,

0 if a + b is odd.

(2) This follows from the equality

ζ(s+r+1−i)j − ζ−(s+r+1−i)j = (−1)j+1(ζij − ζ−ij).

�

In the proof of Theorem 6.0.4, we shall use the following lemma ([FH, Lemma
A.42]).

Lemma 6.3.2. Let A and B be N ×N matrices such that AB = c · IN . Let (S, S′)
and (T, T ′) be permutations of the sequence (1, . . . , N), where S and T consist of n
integers, S′ and T ′ of N − n. Then

cN−n · det AS,T = sgn(S, S′) · sgn(T, T ′) · det A · det BT ′,S′ .

Now we start the proof of Theorem 6.0.4.

Proof of Theorem 6.0.4. We may assume that C is smooth, for the dimension of
the vector spaces of the source and the target of the strange duality map (4.5)
follows the fusion rule. If

∑m
q=1 |Λ(q)| is odd, then the source and the target of (4.5)

are zero. Thus we assume that
∑m

q=1 |Λ(q)| is even.
Moreover we may assume m (the number of points) is even. In fact, if m is odd,

we take an extra point P (m+1) ∈ C \ {P (1), . . . , P (m)} and label it by the empty
Young diagram Λ(m+1) = (0, . . . , 0). Then clearly

H0
(
M2r(C,

−→
P ;OC),Ξ(s;

−→
Λ)
)
' H0

(
M2r(C,

−→
P + P (m+1);OC),Ξ(s;

−→
Λ+Λ(m+1))

)
.

Claim 6.3.2.1. There is an isomorphism
(6.3)

H0
(
M2s(C,

−→
P ;ωC(

−→
P )),Ξ(r;

−→
Λ∗)
)
' H0

(
M2s(C,

−→
P + P (m+1);ωC(

−→
P + P (m+1))),Ξ(r;

−→
Λ∗+Λ(m+1)∗)

)
.

Proof of Claim 6.3.2.1. If

G =
(
G, G⊗G→ ωC(

−→
P + P (m+1)), G(q) ⊃ G(q)

s ⊃ · · · ⊃ G
(q)
0 = 0 (0 ≤ q ≤ m + 1)

)
is a point of M2s(C,

−→
P + P (m+1);ωC(

−→
P + P (m+1))), then put

G′ = Ker
(
G→ G(m+1)/G(m+1)

s

)
,

where G(m+1)/G
(m+1)
s is a sky-scraper sheaf at P (m+1). By assoicating to G the

point (
G′, G′ ⊗G′ → ωC(

−→
P ), G′(q) ⊃ G(q)

s ⊃ · · · ⊃ G
(q)
0 = 0 (0 ≤ q ≤ m)

)
,

of M2s(C,
−→
P ;ωC(

−→
P )), we have a morphism

f : M2s(C,
−→
P + P (m+1);ωC(

−→
P + P (m+1)))→M2s(C,

−→
P ;ωC(

−→
P )).
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By construction, we have f∗Ξ(r;
−→
Λ∗) ' Ξ(r;

−→
Λ∗+Λ(m+1)∗). Since f is a flag-variety

bundle, we have the isomorphism (6.3). This completes the proof of Claim 6.3.2.1.
�

In the rest of the proof, we assume that m is even.
By [L-S], there is an isomorphism of vector spaces

H0

(
M2r(C,

−→
P ;OC),Ξ(s;

−→
Λ)

M2r(C,
−→
P ;OC)

)
' VC(

−→
P ,
−→
Λ , s).

Fix a line bundle L with L⊗2 ' ωC(
−→
P ). By applying ⊗L−1, we have an isomor-

phism M2s(C,
−→
P ;ωC(

−→
P )) 'M2s(C,

−→
P ;OC), so we obtain isomophisms

H0
(
M2s(C,

−→
P ;ωC(

−→
P )),Ξ(r;

−→
Λ∗)
)
' H0

(
M2s(C,

−→
P ;OC),Ξ(r;

−→
Λ∗)
)
' VC(

−→
P ,
−→
Λ∗, r).

Thus what we should prove is the equality of the two numbers
(6.4) ∑

r+s≥u1>···>ur≥1

(
(2(r + s + 1))r

∆2(r+s+1)({u1, . . . , ur})

)g−1 m∏
q=1

det W
(α

(q)
1 ,...,α

(q)
r )(u1,...,ur)

det W(r,r−1,...,1)(u1,...,ur)
,

and
(6.5) ∑

r+s≥v1>···>vs≥1

(
(2(r + s + 1))s

∆2(r+s+1)({v1, . . . , vs})

)g−1 m∏
q=1

det W
(β

(q)
1 ,...,β

(q)
s )(v1,...,vs)

det W(s,s−1,...,1)(v1,...,vs)
,

where α
(q)
i := λ

(q)
i +r+1−i and β

(q)
j := ν

(q)
j +s+1−j for (λ(q)

1 ≥ · · · ≥ λ
(q)
r ) = Λ(q)

and (ν(q)
1 ≥ · · · ≥ ν

(q)
s ) := Λ(q)∗.

The mapping {u1, . . . , ur} 7→ {1, . . . , r + s} \ {u1, . . . , ur} gives a one-to-one
correspondence between the index sets of the summations (6.4) and (6.5). We shall
prove that if

(6.6) {v1, . . . , vs} = {1, . . . , r + s} \ {u1, . . . , ur},

then the terms in the above summations indexed by (u1, . . . , ur) and (v1, . . . , vs)
are equal.

If (6.6) holds, then it follows from [O-W, Corollary 1.6], that

(2(r + s + 1))r

∆2(r+s+1)({u1, . . . , ur})
=

(2(r + s + 1))s

∆2(r+s+1)({v1, . . . , vs})
.

It remains to show that in the case of (6.6),

(6.7)
m∏

q=1

det W
(α

(q)
1 ,...,α

(q)
r )(u1,...,ur)

det W(r,r−1,...,1)(u1,...,ur)
=

m∏
q=1

det W
(β

(q)
1 ,...,β

(q)
s )(v1,...,vs)

det W(s,s−1,...,1)(v1,...,vs)
.

Note that {β(q)
1 , . . . , β

(q)
s } = {1, . . . , r+s}\{α(q)

1 , . . . , α
(q)
r }. Applying Lemma 6.3.2

as A = W and B =t W (= W ), we obtain

(−2(r + s + 1))s det W
(α

(q)
1 ,...,α

(q)
r )(u1,...,ur)

= sgn(α(q)
1 , . . . , α(q)

r , β
(q)
1 , . . . , β(q)

s )sgn(u1, . . . , ur, v1, . . . , vs) detW det W
(β

(q)
1 ,...,β

(q)
s )(v1,...,vs)

and

(−2(r + s + 1))s det W(s+1,...,s+r)(u1,...,ur)

= sgn(s + 1, . . . , s + r, s, . . . , 1)sgn(u1, . . . , ur, v1, . . . , vs) detW det W(s,...,1)(v1,...,vs).
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Taking the division on each side of these equations, we obtain
(6.8)
det W

(α
(q)
1 ,...,α

(q)
r )(u1,...,ur)

det W(s+1,...,s+r)(u1,...,ur)
=

sgn(α(q)
1 , . . . , α

(q)
r , β

(q)
1 , . . . , β

(q)
s ) detW

(β
(q)
1 ,...,β

(q)
s )(v1,...,vs)

sgn(s + 1, . . . , s + r, s, . . . , 1) detW(s,...,1)(v1,...,vs)
.

Using Lemma 6.3.1 (2), the left-hand side of (6.8) is equal to

(−1)
∑r

i=1(ui+1)
det W

(α
(q)
1 ,...,α

(q)
r )(u1,...,ur)

det W(r,r−1,...,1)(u1,...,ur)
.

Taking the product on each side of (6.8) for 1 ≤ q ≤ m, we obtain
m∏

q=1

det W
(α

(q)
1 ,...,α

(q)
r )(u1,...,ur)

det W(r,r−1,...,1)(u1,...,ur)

=

{
m∏

q=1

sgn(α(q)
1 , . . . , α(q)

r , β
(q)
1 , . . . , β(q)

s )

}
m∏

q=1

det W
(β

(q)
1 ,...,β

(q)
s )(v1,...,vs)

det W(s,...,1)(v1,...,vs)
,

here we used the assumption that m is even.
You can check easily that

sgn(α(q)
1 , . . . , α(q)

r , β
(q)
1 , . . . , β(q)

s ) = (−1)
r(r−1)

2 +
s(s−1)

2 +|Λ(q)|.

Hence
m∏

q=1

sgn(α(q)
1 , . . . , α(q)

r , β
(q)
1 , . . . , β(q)

s ) = (−1)
∑m

q=1 |Λ
(q)| = 1,

where the last equality follows from the assumption that
∑m

q=1 |Λ(q)| is even.
This completes the proof of Theorem 6.0.4. �
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