
Strongly Polynomial and Fully Combinatorial Algorithms

for Bisubmodular Function Minimization

S. Thomas McCormick ∗ Satoru Fujishige †

August 6, 2007

Abstract

Bisubmodular functions are a natural “directed”, or “signed”, extension of submodular
functions with several applications. Recently Fujishige and Iwata showed how to extend the
Iwata, Fleischer, and Fujishige (IFF) algorithm for submodular function minimization (SFM)
to bisubmodular function minimization (BSFM). However, they were able to extend only the
weakly polynomial version of IFF to BSFM. Here we investigate the difficulty that prevented
them from also extending the strongly polynomial version of IFF to BSFM, and we show a
way around the difficulty. This new method gives a somewhat simpler strongly polynomial
SFM algorithm, as well as the first combinatorial strongly polynomial algorithm for BSFM.
This further leads to extending Iwata’s fully combinatorial version of IFF to BSFM.

1 Introduction

We start by motivating our interest in bisubmodular function minimization via its connection
to 0, ±1 integral linear systems. We then cover the history of its algorithms, and how the rest
of the paper is organized.

1.1 Motivation

A key paradigm of combinatorial optimization is to model discrete optimization problems as
integer programs. If we are lucky, it turns out that solving the relaxed LP version of our integer
model produces an integral solution, and hence one that solves the integer program. Thus a big
area of study is which classes of linear programs have guaranteed integral optimal solutions.

One useful class comes from LPs with totally unimodular matrices. However, this class is
somewhat limited as it has been shown to contain essentially only network matrices and their
duals (see, e.g., Schrijver [47, Section 19.4]).

A larger class is the set of totally dual integral (TDI) problems, (see, e.g., Schrijver [47,
Chapter 22]). Despite often not being totally unimodular, these problems have integral optimal
solutions. TDI systems often have size exponential in the natural variables of the model. Often
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it is possible to show a separation algorithm that then implies a polynomial algorithm via the
Ellipsoid Method (see, e.g., Grötschel, Lovász, and Schrijver [27, 28]), but this is unsatisfactory
as Ellipsoid-based algorithms are reputed to be slow in practice. We would prefer to have
combinatorial (i.e., non-Ellipsoid) algorithms for these problems. Finding such combinatorial
algorithms has been a big area of research in recent times.

One type of constraint that often arises is Ax ≤ b when A is 0–1. In such cases, let E index
the columns of A. For each row i, Si = {j ∈ E | aij = 1} ⊆ E, and we could consider the RHS
bi as a function of Si, call it r(Si). If we further denote the family of subsets induced by the
rows by R, then our constraints look like

∑

e∈S

xe ≡ x(S) ≤ r(S) for all S ∈ R. (1)

Then it is interesting to ask under what conditions on R and r this system is TDI.
A very important class of instances where (1) is TDI is when R is closed under unions and

intersections (is a ring family), and when r is submodular on R, i.e.,

r(S) + r(T ) ≥ r(S ∪ T ) + r(S ∩ T ) for all S, T ∈ R.

As usual we identify S ⊆ E with its incidence vector χS, where χS
e = 1 if e ∈ S, and χS

e = 0
if e /∈ S. In this notation x(S) = (χS)′x. In this sense we can think of set union as the set of
indices where χS + χT is non-zero, and set intersection as the set of indices where χS + χT has
magnitude two. Note that χS + χT = χS∩T + χS∪T .

Suppose that (1) is part of a larger model, and we have a current point x̄ that we want to
check for feasibility to (1). Often |R| is exponential in |E|, and so brute force is not efficient.
Instead we would like to solve minS∈R{r(S)− x̄(S)}. If the optimal value is non-negative, then
x̄ is feasible, and otherwise an optimal solution S gives a violated constraint.

When r is submodular, the set function r(S) − x̄(S) is again submodular. Hence this is a
special case of the general problem

Submodular Function Minimization (SFM): minS∈R f(S),
where f is submodular on ring family R.

It turns out that SFM has many, many applications, see e.g., [32, 36]. Hence finding a combi-
natorial algorithm for SFM is important.

A natural next step from (1) is when matrix A is 0, ±1. In this case, for row i define
S+

i = {j ∈ E | aij = +1} and S−
i = {j ∈ E | aij = −1}, and consider the RHS bi to be a

function of the ordered pair (S+
i , S−

i ), call it r(S+, S−). We call such an ordered pair of subsets
S = (S+, S−) where S+ ∩ S− = ∅ a signed set. If we also denote the family of such signed sets
by R, then our system looks like

x(S) ≡ x(S+)− x(S−) ≤ r(S) for all S ∈ R. (2)

Again it is interesting to ask under what conditions on R and r this system is TDI. To
answer this we need “signed” versions of union and intersection. This implicitly uses a bijection
between signed sets S = (S+, S−) and their signed incidence vectors χS

e = +1 if e ∈ S+, −1 if
e ∈ S−, and 0 otherwise, so that again x(S) = (χS)′x. Since the incidence vectors have three
possible values, we let 3E denote the family of all signed sets on ground set E. We globally
define n = |E|, so that |3E | = 3n.
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If S, T ∈ 3E , then the set of indices where χS + χT is positive is (S+ ∪ T+) − (S− ∪ T−),
and the set of indices where χS + χT is negative is (S− ∪ T−) − (S+ ∪ T+), and so we define
S t T = ((S+ ∪ T+)− (S− ∪ T−), (S− ∪ T−) − (S+ ∪ T+)). The set of indices where χS + χT

equals +2 is S+ ∩ T+, and the set of indices where χS + χT equals −2 is S− ∩ T−, and so we
define S uT = (S+∩T+, S−∩T−). This implies that χS +χT = χSuT +χStT . We call R ⊆ 3E

a signed ring family if it is closed under t and u (see Fujishige [19] for a similar analysis of 0, ±1
vectors). Then a function f from signed ring family R to IR is called bisubmodular if it satisfies

f(S) + f(T ) ≥ f(S t T ) + f(S u T ) for all S, T ∈ R. (3)

Kabadi and Chandrasekaran [34, 35] showed that (2) is TDI if R is a signed ring family and
f is bisubmodular on R. The problem of deciding whether a current point x̄ satisfies (2) again
reduces to minimizing f(S)− x̄(S), again a bisubmodular function. Hence this is a special case
of the general problem

Bisubmodular Function Minimization (BSFM): minS∈R f(S),
where f is bisubmodular on signed ring family R.

BSFM also has several other applications (see Section 2.3), and so finding a combinatorial
algorithm for BSFM is important.

1.1.1 Why “Bisubmodular”?

Suppose that f is bisubmodular on 3E . Then for each fixed S, T ⊆ E, f(S,X) (for X ⊆ E−S)
and f(X,T ) (for X ⊆ E − T ) are submodular in X. Note that a bisubmodular function is not
in general submodular. Hence (by analogy to “bilinear”) “bisubmodular” is a good name for
this property. However, it was called by other names in the past: “polypseudomatroid” [12],
“universal polymatroid” [41], and “generalized submodularity” [49, Section 49.11.d].

Conversely, the name “bisubmodular” was used for a different concept described in Schrijver
[49, Section 49.11.d]. That concept reduces to classic submodularity on 0, ±1 vectors where the
+1s and −1s are restricted to a fixed partition of E. Fujishige [19] considers yet another notion
that again reduces to submodularity on 0, ±1 vectors, but with no fixed partition.

1.2 History of SFM and BSFM Algorithms

The importance of SFM has been recognized since the early days of combinatorial optimiza-
tion, and finding a polynomial algorithm for SFM was a long-standing open problem. In 1981
Grötschel, Lovász, and Schrijver [27] realized that Ellipsoid could be used to get a polynomial
algorithm for SFM, and later [28] was able to extend this result to show how to use Ellipsoid
to get a strongly polynomial algorithm for SFM. But finding a combinatorial SFM algorithm
remained open.

Nearly simultaneously in 1999, two working papers appeared giving quite different combina-
torial strongly polynomial algorithms for SFM. These were by Schrijver [48] (formally published
in 2000) and Iwata, Fleischer, and Fujishige (IFF) [33] (formally published in 2001). We call
the core weakly polynomial version of the IFF Algorithm just “IFF” and its strongly polyno-
mial variant IFF-SP. Various improvements to these algorithms have since appeared, including a
Push-Relabel speedup to Schrijver’s Algorithm by Fleischer and Iwata [18] which we call FlI-PR;
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an improved analysis of Schrijver’s Algorithm by Vygen [51]; a “fully combinatorial” version of
IFF by Iwata [30] that we call I-FC; and a speedup of the core subroutine of IFF incorporating
ideas from Schrijver’s Algorithm by Iwata [31] called the Hybrid Algorithm that speeds up IFF,
IFF-SP, and I-FC. Recently Orlin [42] developed a combinatorial strongly polynomial SFM al-
gorithm which somewhat resembles Schrijver’s Algorithm, but with many new ideas, which is
O(n log n) faster than the strongly polynomial version of Hybrid.

It has been relatively rare that a TDI problem such as SFM whose only known polynomial
algorithm uses Ellipsoid makes the transition to having a combinatorial algorithm. Therefore it
is tempting to speculate that the algorithmic techniques developed for the SFM combinatorial
(weakly, strongly, fully combinatorial) polynomial algorithms can be extended to other problems.
A natural place to start looking for such extensions is BSFM. The first polynomial algorithm for
BSFM was given by Qi [43], but it was based on Ellipsoid. Fujishige and Iwata [24] found the
first combinatorial BSFM algorithm by extending IFF to BSFM via an algorithm we call FuI-
BSFM. However, they were unable to extend IFF-SP to BSFM (and I-FC came later). Hence
it is natural to ask whether IFF-SP, I-FC, and the speedups of the Hybrid Algorithms can also
be extended to BSFM.

The main results in this paper show how to modify IFF-SP so that it and I-FC extend to
BSFM (so far we are not able to extend Hybrid). Furthermore, in order to derive our extension
of IFF-SP we also show how to adapt these algorithms to directly deal with the case where the
bisubmodular function is defined on a signed ring family, which extends techniques from [30].

1.3 Organization of the Paper

Section 2 covers various technical details about bisubmodularity, including applications, a graph-
ical representation of signed ring families and how to deal with it algorithmically, generating
vertices of the polyhedron using a Signed Greedy Algorithm, optimality conditions for BSFM,
the method used by the algorithms to represent the current feasible point, and a useful estimate
of the “size” of the current point.

Section 3 describes the new strongly polynomial (BSFM-SP) and fully combinatorial (BSFM-
FC) algorithms. These algorithms are based in large part on the same ideas as the Fujishige and
Iwata FuI-BSFM algorithm, so this section concentrates mostly on the parts that are different:
how to handle the signed ring family, and the modifications needed to attain strongly polynomial
and then fully combinatorial versions. After going over the basic framework of the algorithms in
Sections 3.1 and 3.2, Section 3.4 develops BSFM-SP, and Section 3.5 develops BSFM-FC. Then
Section 4 covers some extensions related to BSFM: finding all BSFM solutions, minimizing
separable convex objectives on the bisubmodular polyhedron, and using BSFM to solve a line
search problem over bisubmodular polyhedra. Finally, Section 5 summarizes and poses some
open questions.

2 Background on Bisubmodularity

2.1 BSFM Preliminaries

We consider E to be the base set of “unsigned” elements. When e ∈ E occurs in some T ∈ 3E

it must be either positive (in T+) or negative (in T−). We define E to be the set of signed
elements, so that each e ∈ E corresponds to two different members of E, a positive element
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+e and a negative element −e. If t ∈ E is a signed element, then we use abs(t) to denote the
corresponding unsigned element of E. We use −t to denote the negation of t, so that for e ∈ E,
−(+e) = −e and −(−e) = +e. We extend these notions to subsets, so that if S = (S+, S−) ∈ 3E ,
then abs(S) is the set of unsigned elements {abs(s) | s ∈ S} and −S is the signed set (S−, S+).
For t ∈ E we use sgn(t) to denote the sign of t, so that if t is positive, then sgn(t) = +, and
if t is negative, then sgn(t) = −. Therefore for any t ∈ E, t = sgn(t)abs(t). We consistently
use letters e, g, h, . . . , l for elements of E, and letters p, q, . . . , u for elements of E. Note that
S ⊆ E need not be a signed set (since we could have u, −u ∈ S), but if S contains at most one
of +e, −e for each e ∈ E, then we do consider S to be a signed set in the natural way.

If T ∈ 3E and q ∈ E but abs(q) /∈ abs(T ), then if q ∈ E is positive, T + q is the set
(T+ + abs(q), T−) (where T+ + abs(q) stands for T+ ∪ {abs(q)}); if q is negative, then T + q
is the set (T+, T− + abs(q)). If t ∈ E, then f(t) stands for f({abs(t)}, ∅) if t is positive, and
f(∅, {abs(t)}) if t is negative. We use ∅ to also stand for (∅, ∅). Note that if q ∈ E is positive,
then T = (T+, T−) ∈ 3E contains q iff abs(q) ∈ T+; if abs(q) ∈ T− then we would write q /∈ T .

For S = (S+, S−), T = (T+, T−) ∈ 3E we write S v T if S+ ⊆ T+ and S− ⊆ T−. Then it
is easy to show that (3) implies that

f(T +t)−f(T ) ≤ f(S+t)−f(S) for all S v T ∈ 3E and t ∈ E such that abs(t) /∈ abs(T ). (4)

This is the bisubmodular equivalent to the familiar decreasing incremental cost characterization
of submodularity. Bisubmodularity also directly implies that

f(T + t) + f(T + (−t)) ≥ 2f(T ) for all t ∈ E such that abs(t) /∈ abs(T ). (5)

In fact [3] shows that (4) and (5) give an alternate characterization of bisubmodularity.

2.2 The Bisubmodular Polyhedron

If f is bisubmodular on signed ring family R, then the bisubmodular polyhedron is PR(f) = {y ∈
IRE | y(S) ≤ f(S) for all S ∈ R}. For our arguments to be consistent for every case we need to
worry about the constraint 0 = y(∅) ≤ f(∅). To ensure that this makes sense, from this point
forward we re-define f(S) to be f(S) − f(∅) so that f(∅) = 0; note that this change does not
affect bisubmodularity nor BSFM. It is known that PR(f) is never empty.

A bisubmodular function f can have as many as 3n values, so even inputing all values of f is
exponential in n. Hence we use the standard assumption that f is represented via an evaluation
oracle E , which is a black box whose input is some S ∈ 3E , and whose output is f(S). We
use EO to denote the running time of E , and separately count calls to E in our running times.
We also use M to denote a bound on the maximum absolute value of f(S) over all S ∈ 3E , a
measure of the size of f .

2.3 BSFM Applications

Section 1.1 gives our first application: given a point x̄ ∈ IRE , BSFM solve the separation problem
of deciding whether or not x̄ ∈ PR(f).

Given an instance of SFM with f : R → IR, define the signed ring family R̄ = {(R, ∅) | R ∈
R}. Then f is bisubmodular on R̄, and BSFM for f on R̄ is just SFM for f on R. Allowing a
signed ring family makes embedding SFM into BSFM simpler than what is done in [24].
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Delta-matroids were introduced by Bouchet [10] and Chandrasekaran and Kabadi [12], with
a slightly restricted version considered by Dress and Havel [16]. The membership problem for
the rank function of a delta-matroid is an instance of BSFM, and [24] was the first paper to
give a combinatorial polynomial time algorithm for it. A particular case of delta-matroids is the
convex hull of perfectly matchable node sets of an undirected graph, and here Cunningham and
Green-Krótki [15] developed a combinatorial algorithm.

Delta-matroids are further extended to jump systems by Bouchet and Cunningham [11], such
that convex hulls of jump systems are precisely integral bisubmodular polyhedra. One example
is the b-matching degree sequence polyhedron of Cunningham and Green-Krótki [14]. Zhang
[52] gives a combinatorial algorithm for membership in b-matching degree sequence polyhedra.

Note that many of these applications involve separation: given a point x̄ ∈ IRE , decide
whether x̄ ∈ PR(f); if not, give a separating hyperplane proving it. In such cases x̄ is likely to
be highly fractional, and so having a strongly polynomial algorithm for BSFM is especially useful.
In Section 4.3 we apply BSFM-FC to a line search problem over PR(f), and that application
requires having a fully combinatorial algorithm.

A natural further extension of BSFM is to minimizing a separable convex objective over a
bisubmodular polyhedron, and there are applications that involve such non-linear objectives.
Fujishige [20, Section 5] gives an algorithmic framework for solving this problem that depends
on an oracle for computing general bisubmodular exchange capacities. In Section 4.2 we show
how our BSFM algorithms can be used to compute these, and thereby give a complete algorithm
for such problems.

Bisubmodularity also arises in bicooperative games, see Bilbao et al. [7]. In this context
BSFM is useful for deciding if a given point belongs to the core of the game or not.

Finally, we point out a “non-application”, where there is a constraint of the form x(S+) −
x(S−) ≤ f(S+, S−) but which is not bisubmodular. Queyranne and Wang [44] consider the
polyhedron associated with a precedence-constrained scheduling problem. The separation prob-
lem for their class of serial constraints is formally similar to the BSFM separation problem, but
in general the sets of interest do not form a ring family, and the function is not bisubmodular.

2.4 Bisubmodularity on Signed Ring Families

FuI-BSFM works for f defined over 3E . We develop our algorithms to work over signed ring
families for two reasons: (1) As with SFM, some applications (such as the separation problem
in Section 1) define f only on such a sub-family, and (2) the strongly polynomial (and so also
the fully combinatorial) version of our algorithm, which we call BSFM-SP (and BSFM-FC)
generates subproblems over signed ring families.

We must start with some sort of representation of R, since otherwise it can be too difficult to
use E to discover what the feasible sets are. In the SFM case there is Birkhoff’s Representation
Theorem [8] that gives a compact representation in terms of a directed graph on E. In the
BSFM case we can get a similar representation in terms of a directed graph (E,C).

2.4.1 Skew-Symmetric Representation

Given a directed graph (E,C), we say that S ⊆ E is closed, or a (lower) ideal if no arc of C
exits S. Then a representation of an unsigned ring family S is that it corresponds to the family
of ideals of directed graph (E,C) for some C. The naive guess would then be that a signed ring
family R should correspond to the family of ideals of directed graph (E,C) for some C.
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One immediate problem arises. Suppose that C contains arc t→ u but not −u→ −t. Then
the family R of ideals could contain Stu containing both t and u, and also S−u, containing
−u but neither t nor −t. But then Stu u S−u contains t but not u, violating arc t → u of C.
Hence to ensure that the family of ideals is a signed ring family, we must assume that C is
skew-symmetric, i.e., for all arcs t→ u ∈ C, −u→ −t also belongs to C.

A second problem is that a closed S ⊆ E need not correspond to a valid signed set, since
there could be some u ∈ S such that −u is also in S. For S a closed subset of E, define its
reduced set S0 = S −

⋃
{{u,−u} | both u and −u ∈ S}. Then Ando et al. [4, Theorem 3.1]

shows that S0 is also closed, and S0 is clearly a signed set. In fact, Reiner [45] and Ando and
Fujishige [1] show a signed version of Birkhoff’s Representation Theorem that every signed ring
family arises as the set of reduced closed sets of a graph (E,C) with C skew-symmetric. (Signed
ring families can alternatively be defined using closed sets of a bidirected graph on node set E
[5].) Thus S ∈ R means that no arc of C exits S in (E,C). We assume from now on that our
ring family R is induced by (E,C).

2.4.2 Condition Arcs

Note that t → u ∈ C then implies the condition that every S ∈ R that includes t must also
include u, and so we call t → u ∈ C a condition arc. BSFM-SP dynamically adds arcs to C
as it progresses, and so R changes whenever C changes. Its mechanism for finding condition
arcs is to find an approximate BSFM solution to the problem BSFMt where we restrict to sets
containing an element t ∈ E. If we can prove that every solution to BSFMt must contain u, then
it is certainly true that any (unconstrained) BSFM solution that contains t must also contain
u, and so we add t→ u to C. The next lemma shows that when we find condition arcs via this
BSFMt mechanism, then we can force the condition graph (E,C) to be skew-symmetric without
losing BSFM optimality.

Lemma 2.1 If every solution of BSFMt also contains u ∈ E (so that condition arc t→ u ∈ C),
then every solution of BSFM containing −u must also contain −t (so that adding skew condition
arc −u→ −t to C preserves optimality).

Proof: Suppose that St is an optimal BSFM solution when restricting to sets containing t.
Since t → u ∈ C, we know that u ∈ St. Therefore if T is any other set containing t but not u,
then

f(St) < f(T ). (6)

Suppose that R solves BSFM, but that R violates condition arc −u → −t, i.e., R contains
−u but not −t. Now apply (3) to St and R:

f(St) + f(R) ≥ f(St tR) + f(St uR).

Note that since t ∈ St and −t /∈ R we have t ∈ St t R, and since −u ∈ R we have u /∈ St t R.
Now apply (6) to T = St tR to get f(R) > f(St uR), contradicting that R solves BSFM.

Note a subtle distinction: The skew-symmetric condition arc −u → −t we add to C does
not mean that every solution to BSFM−u must contain −t, only that every BSFM solution
containing −u must also contain −t, but this is enough for our purposes. Thus we henceforth
assume that C is skew-symmetric.
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2.4.3 Contracting Strong Components

For u ∈ E, define Du, the descendents of u, to be the set of signed elements in E reachable from
u via directed paths in (E,C), and Au, the ancestors of u, to be the set of signed elements in
E that can reach u via directed paths in (E,C). Note that t ∈ Dt, At. Skew-symmetry implies
that Du = −A−u.

If (E,C) has a directed cycle Q and t 6= u are nodes of Q, then for any z ∈ PR(f) we have
z + α(sgn(t)χabs(t) − sgn(u)χabs(u)) ∈ PR(f) for any (positive or negative) value of α, and so
PR(f) cannot have any vertices. Define Sall to be the family of node sets of strongly connected
components of (E,C), so that each τ ∈ Sall is a subset of E. The signed elements in such a τ
must either all belong to a BSFM solution, or none of them belongs, and so w.l.o.g. we contract
the strong components so that the polyhedron on the contracted problem does have vertices
that we can work with.

Suppose that for some τ ∈ Sall there is some e ∈ E with +e, −e ∈ τ , and suppose that t ∈ E
is some other element of τ . Then by strong connectivity of τ there are paths from +e to t and
from t to +e. By skew-symmetry then there are also paths from −t to −e and from −e to −t,
and so −t also belongs to τ . This shows that such a τ is self-skew, and that no element of such
a τ can belong to an optimal BSFM solution. We define Sself to be the set of such τ , and define
Scur = Sall − Sself .

Note that for τ ∈ Scur we have that −τ ∩ τ = ∅, and by skew-symmetry −τ is also a strong
component. Hence strong components in Scur come in skew-symmetric pairs; for each skew-
symmetric pair τ , −τ ∈ Scur, arbitrarily designate one as positive and the other as negative.
Define S+

cur as the set of positive elements of Scur, and S−cur as the set of negative elements.
We usually work with the members of Scur as our “elements”, which we also call “nodes”. At

the end we need to recover a solution in terms of the signed elements in E. Note that Scur gets
recursively contracted as more arcs are added to C, and so we need to recursively expand it at
the end. We use abs(Scur) to denote the family of unsigned strong components, which has just
one member for each signed pair in Scur. Define Rcur to be the current family of reduced closed
sets of (Scur, C), i.e., the signed ring family of feasible sets for Scur. For S = (S+, S−) ∈ Rcur

define E(S) to be
⋃

τ∈S+ τ ∪
⋃

τ∈S− −τ , so that S ∈ Rcur iff E(S) ∈ R.

Now define f̂ : Rcur → IR by f̂(S) = f(E(S)). It is easy to check that f̂ is bisubmodular,
and that if Z solves BSFM for f̂ , then E(Z) solves BSFM for f . Hence we reduce BSFM for
f to the smaller problem of BSFM for f̂ , with polyhedron PRcur(f̂). We consider the condition
arcs in C whose ends are in different components of Scur as being arcs on Scur as well as arcs on
E. Note that the graph (Scur, C) is acyclic.

2.4.4 Partitioning the Skew Graph

Note that for t ∈ E, Dt and At are unions of elements of Scur, so it makes sense to define Dτ and
Aτ via reachability from and to τ in the graph (Scur, C). For some τ ∈ Scur, C might include
the arc τ → −τ (this arc is self-skew), which implies that no S ∈ Rcur can include τ . Since
conditions in C are transitive, for such a τ if ρ ∈ Aτ then also −ρ ∈ D−τ , giving a path in C
from ρ to −ρ, showing that no S ∈ Rcur can include ρ. We collect components τ ∈ Scur such
that −τ ∈ Dτ into Sout, the components known to be out of every BSFM solution for f̂ . We can
and do assume w.l.o.g. (by adding these arcs to C if necessary) that τ ∈ Sout iff τ → −τ ∈ C.
Note that Sout ⊆ Scur, and that no arc of C enters Sout.

8



The only components that appear in signed sets in Rcur are the active strong components
Sact = Scur − Sout. In fact Rcur is exactly the family of closed sets in Sact (and this partition
of Sall into Sself , Sout, and Sact gives the essential idea of Ando and Fujishige’s [1] proof of the
signed version of Birkhoff’s Theorem). Also define index sets of unsigned components SP

act =
{η ∈ abs(Scur) | +η ∈ Sact} and SN

act = {η ∈ abs(Scur) | −η ∈ Sact}.
For simplicity we henceforth denote elements of Scur with letters u, t, s, . . . , and elements of

abs(Scur) with letters e, g, . . . , despite using the same letters for the elements which constitute
the members of Scur and abs(Scur). We use the same capital letters to distinguish sets of signed
elements from sets of unsigned elements, except that we keep Dt and At as signed sets.

Therefore at a generic step of the algorithm we have Sall as the strong components of (E,C),
partitioned into the self-skew set Sself , and the current working set of disjoint skew pairs Scur.
Then Scur is in turn partitioned into Sout and Sact, where for u ∈ Scur we could have either that
both u and −u are in Sact, or only one of them is. The family Rcur of reduced closed sets of
(Scur, C) is a signed ring family, and f̂ : Rcur → IR is a bisubmodular function defined on Rcur.
Figure 1 shows a picture of this partition.

acyclic

Sout

S
+
cur S

−
cur

Sself

Scur

︸ ︷︷ ︸

Sall

SN
act is the unsigned versions

of elements of S−
cur − Sout

SP
act is the unsigned versions

of elements of S+
cur − Sout

Figure 1: Picture of the structure of the partition of the contracted skew sets Sall into
Scur and Sself , and then Scur into Sact and Sout.

When BSFM-SP dynamically adds arcs to C we call subroutine UpdateS to re-compute Sall,
Sself , Sout, and Sact. For example if u ∈ Sout (i.e., u → −u ∈ C and −u ∈ Sact) and new arcs
of C create a path from −u to u, then the components u and −u of the old Sall (possibly plus
other components included on these paths) collapse into a new larger component that moves to
Sself . The time for UpdateS is O(n|C|) ≤ O(n3), which is dominated by other operations.

9



2.5 Signed Greedy Optimizes over Bisubmodular Polyhedra

A sign vector (on abs(Scur)) is some σ ∈ {+,−}abs(Scur). Sign vector σ partitions abs(Scur) into
abs(Scur)

+(σ) = {e ∈ abs(Scur) | σe = +} and abs(Scur)
−(σ) = {e ∈ abs(Scur) | σe = −}. If

S ⊆ abs(Scur) is an unsigned subset, its signed counterpart w.r.t. σ, denoted S|σ, is the signed
set (S ∩ abs(Scur)

+(σ), S ∩ abs(Scur)
−(σ)).

Suppose that we have a pair of a linear order ≺ and sign vector σ on abs(Scur). It is
convenient to let σ define a signed linear order ≺σ such that if t = σee, u = σgg, and e ≺ g,
then we say that t ≺σ u. It is further useful to let ≺σ also stand for abs(Scur)|σ and so write
t ∈≺σ to mean that t = σabs(t)abs(t). We call the pair ≺, σ consistent (with (Scur, C)) if for
every t ∈≺σ we have t ∈ Sact (so that ≺σ⊆ Sact); and for every t→ u ∈ C, if t ∈≺σ then u ∈≺σ

and u ≺σ t.
For a consistent pair ≺, σ, and any e ∈ abs(Scur), define e≺ as {g ∈ abs(Scur) | g ≺ e}, a

subset of abs(Scur), and define e≺n+1 = abs(Scur). Note that ≺, σ consistent implies that for
every e ∈ abs(Scur), e≺|σ is a reduced closed set of (Scur, C) (and so contains Dσee − (σee)) for
every e ∈ abs(Scur), i.e., that e≺|σ ∈ Rcur. Note that since (Scur, C) is acyclic, a consistent pair
≺, σ always exists.

The Greedy Algorithm generates vertices of the submodular polyhedron, and so it is natural
to generalize it to the Signed Greedy Algorithm. Signed Greedy takes consistent ≺ and σ as
input, and outputs a vector v≺,σ ∈ IRabs(Scur); component ei of v≺,σ is then v≺,σ

ei
.

The Signed Greedy Algorithm
Input: Consistent linear order ≺= (e1, e2, . . . , en) and sign vector σ.
Output: Vertex v≺,σ.

For i = 1, . . . , n

Set v≺,σ
ei

= σei
(f̂(e≺i+1|σ)− f̂(e≺i |σ)) ( = σei

[f̂((e≺i + ei)|σ)− f̂(e≺i |σ)]).
Return v≺,σ.

It is known (see [2, 11, 17, 35, 41]) that the output v≺,σ of Signed Greedy is a vertex of
PRcur(f̂), and conversely for every vertex v of PRcur(f̂), there is a consistent pair ≺, σ such
that Signed Greedy applied to ≺, σ produces v. Our ability to use Signed Greedy to generate
vertices of PRcur(f̂) is a key part of our BSFM algorithms.

Suppose that y ∈ PRcur(f̂). We say that S ∈ Rcur is tight for y if y(S) = f̂(S). A corollary
to Signed Greedy is that

If v≺,σ is generated by Signed Greedy from ≺, σ, then e≺|σ is tight for v≺,σ

for all e ∈ abs(Scur).
(7)

2.6 BSFM Optimality on Signed Ring Families

For a scalar µ ∈ IR define µ+ = max(µ, 0) and µ− = min(µ, 0) as the positive and negative
parts of µ. For H ⊆ abs(Scur) this extends to vectors w ∈ IRabs(Scur) via w+(H) =

∑

e∈H w+
e

and similarly for w−(H). Define ||w||cur = w+(SN
act) − w−(SP

act). Note that if Sout = ∅, then
Sact = Scur so that SP

act = SN
act = abs(Scur), and then ||w||cur is the `1 norm ||w||1 of w.
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Theorem 2.2 ([20, Theorem 3.1]) For any bisubmodular f̂ : Rcur → IR,

min
S∈Rcur

f̂(S) = max
w∈PRcur(f̂)

−||w||cur. (8)

Moreover, if f̂ is integer-valued, then the maximum on the right-hand side of (8) is attained by
an integral w.

If w ∈ PRcur(f̂) and S ∈ Rcur are any feasible solutions, then

−||w||cur = w−(SP
act)−w+(SN

act)
≤ w−(S+)− w+(S−)
≤ w(S+)− w(S−)

≤ f̂(S),

(9)

which is weak duality for (8). Optimality for w and S is equivalent to complementary slackness,
which is the condition that all the inequalities in (9) become equalities, or

(CS i) if we > 0 then e ∈ S−, and if we < 0 then e ∈ S+ (the first inequality is tight); this
implies that we ≤ 0 for e ∈ S+, and we ≥ 0 for e ∈ S− (the second inequality is tight);
and

(CS ii) S is tight for w, i.e., w(S+)− w(S−) = f̂(S) (the third inequality is tight).

2.7 Representing Solutions

We need some further machinery to represent points w ∈ PRcur(f̂), and to get a handle on the
size of solutions.

2.7.1 Flow Boundaries in Skew Graphs

If ϕ is a flow in a graph (Scur, C), then for t ∈ Scur we define the boundary of ϕ at t (net
flow out of t) as ∂ϕt =

∑

t→u∈C ϕtu −
∑

r→t∈A ϕrt. Since boundary is modular, the net flow
out of S ⊆ Scur is ∂ϕ(S) =

∑

t∈S ∂ϕt. Flow ϕ on a skew-symmetric graph such as (Scur, C) is
called a skew flow if ϕtu = ϕ−t,−u for all t → u ∈ C. A skew flow satisfies ∂ϕt = −∂ϕ−t. For
e ∈ abs(Scur) define ∂+ϕe = ∂ϕ+e. Then ϕ skew implies that ∂ϕ−e = −∂ϕ+e = −∂+ϕe, and so
for S = (S+, S−), ∂ϕ(S) = ∂+ϕ(S+)− ∂+ϕ(S−).

Suppose that ϕ is a skew flow on C satisfying ϕ ≥ 0. If S ∈ Rcur then no arc of C exits S,
and so ∂ϕ(S) ≤ 0. Suppose that y ∈ PRcur(f̂) so that y(S) ≤ f̂(S) for all S ∈ Rcur, and define
w = y + ∂+ϕ. Then w(S) = (y + ∂+ϕ)(S+) − (y + ∂+ϕ)(S−) = y(S) + ∂ϕ(S) ≤ y(S) ≤ f̂(S),
and so w also belongs to PRcur(f̂). Since we could multiply ϕ by any positive scalar, we see
that ∂+ϕ is a direction of unboundedness of PRcur(f̂). Ando and Fujishige [2] showed that the
converse is also true: Every point w ∈ PRcur(f̂) can be represented as w = y + ∂+ϕ, where y is
a convex combination of the vertices of PRcur(f̂), and ϕ is a non-negative skew flow on C.
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2.7.2 Convex Combination of Vertices

As in other combinatorial SFM and BSFM algorithms it is non-trivial to verify that a point w
belongs to PRcur(f̂), since it could have an exponential number of constraints. As in the previous
section we keep the unbounded part of w as the boundary of skew flow ϕ ≥ 0 on C, and we keep
the bounded part y using the idea originated by Cunningham [13]: We keep an index set I of
vertices vi of PRcur(f̂), where vi = v≺

i,σi

is generated from Signed Greedy applied to consistent
pair ≺i, σi. We also keep scalar multipliers λi ≥ 0 so that our current point y ∈ PRcur(f̂) is
represented as a convex combination of vertices of PRcur(f̂) via

∑

i∈I

λi = 1, y =
∑

i∈I

λiv
i. (10)

Thus we keep the invariant that our current point w ∈ PRcur(f̂) equals y + ∂+ϕ. Whenever we
modify representation (10) we need to ensure that any new vertices come from consistent pairs
(also needed for Lemma 3.11).

Because ≺i is always associated with σi, we simplify and abuse notation and let ≺i stand for
both the unsigned order on abs(Scur) and the signed order ≺i

σi (though we sometimes continue
to use ≺i

σi when we want to emphasize that we are referring to the signed version). Since we were
already using ≺i

σi to stand for abs(Scur)|σ
i, we further overload ≺i to also stand for abs(Scur)|σ

i.
Therefore writing t ∈≺i means that σi

abs(t) = sgn(t).

Suppose that we have a signed set S ∈ Rcur and a point w = y + ∂+ϕ with y represented
as in (10) as a guess at BSFM solutions. Define the set W w(S) of elements wrong for w by
e ∈ W w(S) if +e ∈ S and we > 0 or −e ∈ S and we < 0 (wrong elements violate (CS i)). For
each i ∈ I, define Gi(S) = abs(S ∩ ≺i

σi), the e ∈ abs(Scur) with σi
ee ∈ S (good elements of

i belong to S with the correct sign); and Bi(S) = abs((−S)∩ ≺i
σi) as the e ∈ abs(Scur) with

−σi
ee ∈ S (bad elements of i belong to S with the wrong sign).
Since S ∈ Rcur, no arc of C exits S. Suppose that ϕst = 0 for every s→ t ∈ C entering S so

that ∂+ϕ(S) = 0, implying that w(S) = y(S). Suppose further that for every i ∈ I, Bi(S) = ∅
so that Gi(S) = abs(S), and that the elements of abs(S) are left-most in ≺i. This is equivalent
to saying that for every i ∈ I, there is some e /∈ abs(S) such that S = e≺

i

|σi, and so by (7)
that S is tight for vi. Therefore by (10), y(S) =

∑

i∈I λiv
i(S) =

∑

i∈I λif̂(S) = f̂(S), and so S
is also tight for w. If in addition W w(S) = ∅, then (CS i) is satisfied, and S tight for w verifies
that (CS ii) is satisfied, proving optimality of S and w.

This gives part of the idea of our algorithms: Our current w and S define wrong elements
for w, and good and bad elements for each i. We try to modify w by modifying representation
(10) so as to drive we for e ∈W w(S) towards zero, and for each i ∈ I, elements of Gi(S) to the
left and elements of Bi(S) to the right. When e ∈ Bi(S) becomes the right-most in ≺i, then we
can flip its sign σi

e to move e into Gi(S), at which point we then try to drive e back to the left.
It appears to be necessary to drive e ∈ Bi(S) to the extreme right of ≺i before flipping their
signs because it is difficult to manage the changes in the components of vi if we change signs in
the middle of ≺i. We also try to drive the flow ϕ into S to zero.

2.7.3 Size of f̂

We need an estimate of the “size” of f̂ sharper than M for the analyses of BSFM-SP and
BSFM-FC. Compute δ0 = maxt∈Sact f̂(Dt) − f̂(Dt − t). Intuitively, (4) and Signed Greedy say
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that the magnitude of v≺,σ
e is larger as e occurs sooner in ≺. Consistency says that Dσee− (σee)

must precede e in ≺, so the largest magnitude for v≺,σ
e should occur when Dσee occurs first in

≺ immediately followed by e. Then σev
≺,σ
e = f̂(Dσee)− f̂(Dσee− (σee)) ≤ δ0, and so the size of

all components should be at most δ0. The next lemma formalizes this.

Lemma 2.3 Suppose that y belongs to the convex hull of vertices v≺,σ of PRcur(f̂). If e ∈ SP
act

then ye ≤ +δ0, and if e ∈ SN
act then ye ≥ −δ0.

Proof: It suffices to prove the statement for y = v≺,σ for some ≺, σ consistent with (Scur, C).
Signed Greedy computes σeye = f̂((e≺+e)|σ)− f̂(e≺|σ). Consistency implies that Dσee v (e≺+
e)|σ, and then (4) implies that σeye = f̂((e≺+e)|σ)− f̂ (e≺|σ) ≤ f̂(Dσee)− f̂(Dσee−(σee)) ≤ δ0.
Thus if σe = + we have ye ≤ δ0, and if σe = − we have ye ≥ −δ0.

Now suppose that σe = +, so that e ∈ SP
act, and that e also belongs to SN

act. Then ye =
f̂((e≺ + e)|σ) − f̂(e≺|σ), and we must show that ye ≥ −δ0. We first claim that there exists a
consistent pair ≺′, σ′ such that e is right-most in ≺′, σ′

e = σe, (e≺ + e)|σ v (e≺
′
+ e)|σ′, and if

we define σ′′ to be σ′ except that σ′′
e = −σ′

e then ≺′, σ′′ is also consistent. Suppose that there
is some g ∈ abs(Scur) with g ∈ e≺, σg = + (the case with σg = − is similar) and −g ∈ D−e;
this would be bad as it would require that σ′

g = σg to ensure that (e≺ + e)|σ v (e≺
′
+ e)|σ′, but

σ′
g = −σg to make ≺′, σ′′ consistent. But by skewness of C, −g ∈ D−e implies that +e ∈ D+g,

and then consistency of ≺, σ would imply that e ≺ g, contradicting that g ≺ e. Therefore there
is a way to choose a ≺′ and the signs of σ′ such that ≺′ is consistent with both σ′ and σ′′, and
such that (e≺ + e)|σ v (e≺

′
+ e)|σ′.

Since −e ∈≺′
σ′′ , we have that D−e v abs(Scur)|σ

′′. Then we get that

ye = f̂((e≺ + e)|σ) − f̂(e≺|σ) = v≺,σ
e definition of ye

≥ f̂((e≺
′
+ e)|σ′)− f̂(e≺

′
|σ′) = v≺

′,σ′

e (4) and (e≺ + e)|σ v (e≺
′
+ e)|σ′

= f̂(abs(Scur)|σ
′)− f̂((abs(Scur)− e)|σ′) e right-most in ≺′

≥ f̂((abs(Scur)− e)|σ′)− f̂(abs(Scur)|σ
′′) (5)

= −[f̂(abs(Scur)|σ
′′)− f̂((abs(Scur)− e)|σ′′)] = v≺

′,σ′′

e σ′ = σ′′ outside e

≥ −[f̂(D−e)− f̂(D−e − (−e))] (4) and D−e v abs(Scur)|σ
′′

≥ −δ0 definition of δ0

A similar argument shows that if σe = − and e ∈ SP
act, then ye ≤ δ0.

3 The New BSFM Algorithms

Iwata, Fleischer, and Fujishige’s SFM algorithm [33] uses the successive approximation frame-
work of Goldberg and Tarjan [26] and Tardos [50], where the complementary slackness conditions
for the original problem are relaxed by a scaling parameter δ. Roughly speaking, we call a so-
lution δ-optimal if it satisfies these δ-approximate conditions. Then a Refine subroutine is
developed that takes a δ-optimal solution, cuts δ in half, and then re-optimizes to get a new
solution that is δ-optimal for the new δ. Each call to Refine is also called a scaling phase.

The IFF Refine subroutine runs in O(n5EO) time. Then IFF [33] embeds this into O(log M)
scaling phases to get its weakly polynomial O(n5EO log M) running time, and into (O(n2) calls
to a fixing routine) times (O(log n) scaling phases per fix) to get its O(n7 log nEO) strongly
polynomial running time. Iwata [30] modifies Refine to make it fully combinatorial at the cost
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of making it a factor of O(n2 log n) slower. Otherwise its running time analysis is similar to
IFF-SP’s, for its O(n9 log2 nEO) running time.

Turning now to BSFM, Fujishige and Iwata [24] use the same successive approximation
framework as IFF. The refine subroutine in FuI-BSFM, which we call BRefine, runs in the
same O(n5EO) time as Refine. We extend BRefine to subroutine BRefineR that works
directly over signed ring families, also in O(n5EO) time. BRefineR again takes a δ-optimal
solution, cuts δ in half, and then re-optimizes to get a new solution that is δ-optimal for the
new δ, and one invocation is again called a scaling phase. Since our BRefineR is quite similar
to BRefine, we mostly emphasize only where differences occur due to the need to handle the
signed ring family.

We first show the basic operations used by the algorithm. Then we show how to imbed the
basic algorithm into a strongly polynomial framework different from IFF (first developed in [36])
to get a strongly polynomial algorithm. We then can use this strongly polynomial algorithm in
much the same way as Iwata [30] to get a fully combinatorial algorithm.

3.1 Basic Framework of the Algorithms

We have a bisubmodular function f̂ over the set of elements abs(Scur) with the signed ring family
Rcur as the family of feasible sets, represented as the reduced closed sets of skew-symmetric
acyclic graph (Scur, C). Recall that Scur is a superset of Sact such that if t ∈ Sact, then −t ∈ Scur

(whereas −t might not be in Sact, if −t ∈ Sout). Unlike most other papers in this area, we
specify our algorithm to be able to directly handle the signed ring family Rcur from the start.
Although this makes the algorithm somewhat more complicated, it has two advantages: (1) It
shows that solving BSFM over a signed ring family is essentially no harder than over 3E , and (2)
Lemma 3.11 below needs this capability to make the fully combinatorial version work correctly.

We keep a current point w ∈ PRcur(f̂), represented as w = y + ∂+ϕ, where ϕ ≥ 0 is a skew
flow on C, and y is represented as in (10). We keep a second skew flow x on the complete directed
graph on Scur (specifically including arcs t → −t for all t ∈ Scur), namely (Scur, Arelax), where
Arelax are the relaxation arcs. For all t→ u ∈ Arelax we enforce that xtu ·xut = 0. We put bounds
0 ≤ xtu ≤ δ for all t → u ∈ Arelax, and 0 ≤ ϕtu < ∞ for t → u ∈ C (the infinite bounds make
BRefineR consider only sets in Rcur, see below). We call x satisfying these bounds δ-feasible.
(This flow relaxation is expressed differently from [24], but it amounts to the same idea.) Define

z = w + ∂+x = y + ∂+ϕ + ∂+x. (11)

Instead of concentrating on minimizing ||w||cur, BRefineR concentrates on minimizing
||z||cur; as δ decreases, w and z converge together. It does this through two operations:

1. Try to Augment flow x on paths (without changing y, but possibly changing ϕ and hence
w to keep (11) invariant);

2. When blocked from augmenting, it modifies y by (fully or partially) replacing one vertex
in (10) with another vertex (and modifies x to keep (11) invariant).

3.1.1 The Augmentation Network

We want each augmentation to be by amount δ, so we define the set of residual arcs where flow
can be changed by δ as R(x) = {t→ u ∈ Arelax | xtu = 0} (if xut = δ so that we could decrease
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x by δ on u → t and would want to include t → u in R(x), due to enforcing xtu · xut = 0 we
would have xtu = 0 and so t→ u would be in R(x) anyway). Note that since x (and the bounds)
are skew-symmetric, R(x) is also skew-symmetric, so that for any t, u ∈ Scur, there is a directed
path P using arcs of R(x) from t to u iff −P (the skew version of P ) is a directed path using
arcs of R(x) from −u to −t (however P and −P need not be arc-disjoint).

The target set of unsigned nodes where we want to decrease z by δ is UT+δ(z) = {l ∈ SN
act |

zl ≥ +δ}, and where we want to increase z by δ is UT−δ(z) = {l ∈ SP
act | zl ≤ −δ}, as these

would decrease ||z||cur. Define the target signed source set Tsource(z) = (UT−δ(z), UT+δ(z)),
and the target signed sink set Tsink(z) = (UT+δ(z), UT−δ(z)) = −Tsource(z).

The algorithm looks for a directed path P from Tsource(z) to Tsink(z) in R(x). To preserve
skew symmetry of x, whenever we Augment path P we also augment −P , which by skewness
is also a directed path from Tsource(z) to Tsink(z) in R(x): Suppose, e.g. (the other cases are
similar), that P starts at t ∈ UT−δ(z) (therefore sgn(t) = + in order for t to belong to Tsource),
and ends at u ∈ UT+δ(z) (therefore sgn(u) = + in order for u to belong to Tsink); then −P is
the path from −u ∈ Tsource to −t ∈ Tsink. This P and −P look like the solid paths in Figure 2.
Note that (in this case) since zu ≥ +δ and sgn(u) = +, for any S ∈ Rcur with u ∈ S+ we have
that u ∈W z(S); similarly z−t ≤ −δ and sgn(−t) = − imply that for any S ∈ Rcur with −t ∈ S−

we have that −t ∈ W z(S). Therefore these augmentations have the side effect of getting rid of
relatively large (w.r.t. δ) violations of complementary slackness.

When we find such a skew pair of paths, Augment does a standard augmentation of x on
both of them by δ/2 (we must use δ/2 in case some or all of P is self-skew, such as the dashed
path in Figure 2). This reduces ||z||cur by δ, preserves δ-feasibility, and does not affect y, w,
nor ϕ. After each Augment we call routine ReduceV, which uses linear algebra to reduce the
number of vertices in representation (10) to at most n + 1 (see [36] for a detailed description of
ReduceV).

Note that augmenting paths are allowed to include only x-arcs, and cannot include arcs of
C. However, suppose that in our search we discover a forward arc t → u ∈ C that we would
like to use, but that the corresponding t → u ∈ Arelax is not in R(x) because xtu > 0. Then
we do a FlowSwap operation: increase ϕtu and ϕ−u,−t by xtu and reset xtu and x−u,−t to
zero. Similarly, suppose that we cannot augment on t → u due to xtu > 0 but that ϕut ≥ xtu.
Then we apply FlowSwap in a different way: decrease ϕut and ϕ−t,−u by xtu and reset xtu and
x−u,−t to zero. Both versions keep ∂+ϕ + ∂+x invariant and so do not change z (nor y, though
w changes; indeed, this is the only way that ϕ ever changes), and allow t → u and −u → −t
to join R(x). The algorithms apply FlowSwaps as necessary to allow arcs of C to implicitly
participate in augmenting paths.

If no augmenting path exists, then let S be the set of nodes in Sact that are reachable from
Tsource(z) via directed paths in R(x) (see Figure 3). By skew-symmetry, −S is the set of nodes
which have directed paths to Tsink(z). FlowSwap implies that no arc of C exits S. Since
t ∈ S ⇒ −t ∈ −S, if t, −t ∈ S we would have an immediate augmenting path, and so S is a
signed set. Therefore S ∩ Sout = ∅ (however, note that (−S) ∩ Sout could be non-empty), and
so S ∈ Rcur. FlowSwaps also keep ϕ-flow into S small (an optimal S has zero ϕ-flow into it).

3.1.2 Changing y When Blocked

Recall that S induces subsets Gi(S) and Bi(S) of good and bad elements of abs(Scur) for each
i ∈ I. The algorithm moves bad elements to the far right of their orders and then flips their
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Figure 2: Picture of the network used for augmentation with two possible skew pairs
of augmenting paths (solid and dashed heavy paths; note that the dashed path is
self-skew).
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signs (which makes them good), and moves good elements to the left of their orders. Thus there
are two defects linear order ≺i might have that keep us from optimality: (1) a consecutive pair
u ≺i t with either t ∈ Gi(S) (⇒ t ∈ S) and u /∈ Gi(S) (t is a good element not at the left), or
with u ∈ Bi(S) (⇒ u ∈ −S) and t /∈ Bi(S) (u is a bad element not at the right), or (2) the
right-most element t of ≺i is in Bi(S) (bad element t is in position to get its sign flipped). In
case (1) we call (i, u, t) an active triple, and in case (2) we call i, t a tail-active pair.

Given an active triple we apply procedure Double-Exchange(i, u, t). It generates a new
pair ≺j, σj , where ≺j matches ≺i except that u and t are swapped in ≺j, so that t ≺j u; it sets
σj = σi. Double-Exchange modifies (10) to include vj = v≺

j ,σj

, and so we need to check
whether it is consistent.

Lemma 3.1 Pair ≺j, σj in Double-Exchange is consistent.

Proof: Since ≺j contains the same signed elements as ≺i, certainly they are also contained
in Sact. But if t → u ∈ C, then t ≺j u would violate consistency. We have either t ∈ S, in
which case t → u would be an arc of C exiting S which cannot happen, or u ∈ −S, in which
case t→ u is an arc of C entering −S which also cannot happen.

Given a tail-active pair we apply procedure Tail-Exchange(i, t). It also generates a new
pair ≺j, σj , where σj matches σi except that σj

t = −σi
t; it sets ≺j=≺i.

Lemma 3.2 Pair ≺j, σj in Tail-Exchange is consistent.

Proof: Note that t bad means that −t ∈ S. Flipping the sign of t would violate consistency
if −t /∈ Sact. This happens only if −t ∈ Sout meaning that −t → t ∈ C, which would give an
arc of C exiting S which cannot happen. If there were some u ∈≺j, u 6= t, and u → −t ∈ C
this would also violate consistency. But this implies that u ∈≺i, and consistency of ≺i and
u→ −t ∈ C should imply that −t ∈≺i, a contradiction.

BSFM Subroutine Double-Exchange(i, u, t)
Applies when u ≺i t are consecutive in ≺i, and (t ∈ Gi(S) and u /∈ Gi(S), or u ∈ Bi(S)
and t /∈ Bi(S)).

Set β = vi
u − [f̂(u≺i

+ u + t)− f̂(u≺i

+ t)].
Set α = min(xtu, λiβ), and let j be a new index.
If α = λiβ ≤ xtu, [ a full step ]

Rename vi to vj , add βsgn(t) to vj
abs(t), subtract βsgn(u) from vj

abs(u).

Rename ≺i, σi to ≺j , σj , swap u and t in ≺j.
Set λj = λi, add j to I, drop i from I.

Else [ α = xtu < λiβ, a partial step ]

Set vj = vi + β(sgn(t)χabs(t) − sgn(u)χabs(u)).
Set ≺j equal to ≺i with u and t swapped, σj = σi.
Set λi = λi − α/β, λj = α/β, add j to I.

Set xut, x−t,−u = xut + α;
Reduce xut, xtu, x−t,−u, x−u,−t as necessary s.t. xut · xtu = x−t,−u · x−u,−t = 0.
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BSFM Subroutine Tail-Exchange(i, t)
Applies when t is right-most in ≺i, and t ∈ Bi(S).

Set β = vi
t + f̂(t≺

i

+ (−t))− f̂(t≺
i

).
Set α = min(x−t,t, λiβ), and let j be a new index.
If α = λiβ ≤ x−t,t, [ a full step ]

Rename vi to vj , subtract βsgn(t) from vj
abs(t).

Rename ≺i, σi to ≺j , σj , flip sign of σj
abs(t).

Set λj = λi, add j to I, drop i from I.
Else [ α = x−t,t < λiβ, a partial step ]

Set vj = vi − sgn(t)βχabs(t).

Set ≺j equal to ≺i, and σj = σi except with σj
t = −σi

t.
Set λi = λi − α/β, λj = α/β, add j to I.

Set xt,−t = xt,−t + α, and reduce xt,−t, x−t,t as necessary s.t. xt,−t · x−t,t = 0.

To compute the new vertices vj , from Signed Greedy and algebra note that for Double-

Exchange vj = vi +β(sgn(t)χabs(t)−sgn(u)χabs(u)), where β = [f̂(u≺i

+u)− f̂(u≺i

)]− [f̂(u≺i

+
u+t)−f̂(u≺i

+t)] = vi
u−[f̂(u≺i

+u+t)−f̂(u≺i

+t)]. Note that β ≥ 0 by (4). For Tail-Exchange

vj = vi−sgn(t)βχabs(t), where β = f̂(t≺
i

+t)+f̂(t≺
i

+(−t))−2f̂(t≺
i

) = vi
t+f̂(t≺

i

+(−t))−f̂(t≺
i

).
Note that β ≥ 0 by (5). These β’s are sometimes called exchange capacities.

Double-Exchange and Tail-Exchange then both try to replace vi by vj in (10). In
order to keep z invariant we need to change x so that y + ∂+x stays constant. Due to the upper
bounds of δ on x we may not be able to completely replace vi with vj in (10), so let us assume
we replace λiv

i by (λi − α/β)vi + (α/β)vj in (10).
For Double-Exchange, this would change y by α(sgn(t)χabs(t) − sgn(u)χabs(u)). We can

counterbalance this by increasing xut and x−t,−u by α. Note that if t ∈ Gi(S) then t ∈ S and
u /∈ S. We must have xtu > 0, else t→ u would be in R(x), implying that u ∈ S, a contradiction;
similarly t ∈ Bi(S) implies that xtu > 0. Since xut ·xtu = 0 we get xut = 0. To keep xut ·xtu = 0
true, the first min(α, xtu) of “increase to xut” would actually go towards reducing xtu. For the
analysis of the algorithm it is important that when α < λiβ we choose α large enough that xtu

hits zero. Hence we choose α = min(xtu, λiβ). We note for later use in BSFM-FC in Section 3.5
that there is flexibility here: we could feasibly choose any value for α satisfying xtu ≤ α ≤ δ+xtu

without changing the algorithm’s running time.
For Tail-Exchange, replacing λiv

i by (λi − α/β)vi + (α/β)vj in (10) would change y by
−αsgn(t)χabs(t). We can counterbalance this by increasing (self-skew) xt,−t by α. Note that
t ∈ Bi(S) means that t ∈ −S and −t ∈ S. We must have x−t,t > 0, else −t → t would be in
R(x), implying that t ∈ S, a contradiction. Therefore xt,−t = 0, and by the same argument
we choose α = min(x−t,t, λiβ). Again for Section 3.5 there is flexibility here: any α satisfying
x−t,t ≤ α ≤ δ + x−t,t suffices.

Note that in both cases, if α = λiβ, then the new coefficient of vi in (10) is zero, and so
we drop vi from I. We call this a full step (saturating in [24]); otherwise (α = δ < λiβ),
we call it a partial step (nonsaturating in [24]). Note that for both Double-Exchange and
Tail-Exchange, a full step takes O(EO) time, and a partial step takes O(EO + n) time.
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3.2 Extending BRefine to BRefineR

We now have all the ingredients we need to implement BRefineR.

BSFM Subroutine BRefineR(δ; y, x)
Input: y ∈ PRcur(f̂), 2δ-feasible x

Initialize x← x/2, z ← y + ∂+ϕ + ∂+x.
Compute UT−δ(z), UT+δ(z), Tsource(z), Tsink(z).
Use FlowSwap to look for augmenting paths.
While ∃ augmenting paths, or active triples or tail-active pairs, do

If ∃ augmenting path P , Augment(P,−P ), ReduceV.
Else (6 ∃ such a path) if there is an active triple (i, u, t) do

Call Double-Exchange(i, u, t).
Else (6 ∃ such a path, no active triple) if there is a tail-active pair (i, t) do

Call Tail-Exchange(i, t).
Update all data, renew FlowSwap augmenting path search.

Return S as an approximate optimal solution.

Theorem 2.2 says that an optimality condition for T solving BSFM is to have a w ∈ PRcur(f̂)
with ||w||cur = −f̂(T ). We formally define w and x to be δ-optimal if there is some T ∈ Rcur

such that w and T satisfy ||w||cur ≤ (2n2 +2n)δ− f̂(T ), a relaxed version of this. The following
lemma shows the approximate solution S at the end of BRefineR proves that the final w
is δ-optimal. (Many of our proofs are similar to those in [24], but we include the details for
completeness.)

Lemma 3.3 When BRefineR ends, S is in Rcur and is tight for y, and we have ||w||cur <
(2n2 + 2n)δ − f̂(S) and ||z||cur < 2nδ − f̂(S).

Proof: (The ||z||cur statement is similar to [24, Lemma 4.1].) We already argued that
S ∈ Rcur. Since no arc of C exits S, vi(S) = f̂(S) for all i ∈ I, and so y(S) = f̂(S).

Note that S+ ⊆ SP
act and S− ⊆ SN

act. Since Tsource v S, for e ∈ S+ we have ze < +δ, so that
z−(S+) > z(S+)− |S+|δ; for e ∈ S− we have ze > −δ, so that z+(S−) < z(S−) + |S−|δ. Since
S v Sact − Tsink, for e ∈ SP

act − S+ we have ze > −δ, so that z−(SP
act − S+) > −|SP

act − S+|δ; for
e ∈ SN

act − S− we have ze < +δ, so that z+(SN
act − S−) < |SN

act − S−|δ.
When u → t /∈ C interpret ϕut as 0. Then FlowSwap and the definition of S ensure

that for all t ∈ S and u /∈ S, xtu − ϕut > 0, implying that ∂+ϕ(S) + ∂+x(S) > 0. Therefore
y(S) = z(S) − ∂+x(S) − ∂+ϕ(S) < z(S). Hence ||z||cur = z+(S−) − z−(S+) + z+(SN

act −
S−) − z−(SP

act − S+) < (z(S−) + |S−|δ) − (z(S+) − |S+|δ) + |SN
act − S−|δ + |SP

act − S+|δ <
−y(S) + δ(|SP

act|+ |S
N
act|) ≤ −f̂(S) + 2nδ.

Since 0 ≤ x ≤ δ, ∂+xe ≤ 2nδ. Due to w = z − ∂+x, ||w||cur ≤ ||z||cur + 2n2δ, and so
||w||cur < (2n2 + 2n)δ − f̂(S).

Theorem 3.4 BRefineR runs in O(n5EO) time.

Proof: (Similar to [24, Lemmas 4.1, 4.3, and 4.4].) We first claim that there are O(n2)
augmentations. The x ← x/2 step changes ||z||cur by at most 2n2δ, and so for the T proving
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δ-optimality of z the initial z satisfies ||z||cur ≤ (2n+2n2)δ− f̂(T ). Now ||z||cur ≥ ||w||cur−2n2δ,
and ||w||cur ≥ −f̂(T ), so that ||z||cur ≥ −f̂(T )− 2n2δ. Each augmentation decreases ||z||cur by
δ, and so there are at most 2n + 4n2 = O(n2) augmentations.

Note that |I| increases by one only at a partial step, and each partial step causes at least one
new node to get added to S, so there can be only O(n) partial steps before an augmentation,
showing that |I| is O(n). Each i ∈ I can have only O(n2) Double-Exchanges and O(n) Tail-

Exchanges applied to it between augmentations, for a total of O(n3) Double-Exchanges
and O(n2) Tail-Exchanges per augmentation. Each call to Double-Exchange and Tail-

Exchange involves two evaluation oracle calls.

3.3 Extending FuI-BSFM to BSFM on Signed Ring Families

We can now easily plug BRefineR in place of BRefine in FuI-BSFM to get a weakly polynomial
BSFM algorithm that works on signed ring families. The outer framework is to use Signed
Greedy to compute a vertex v and call BRefineR until δ is small enough that we can conclude
exact optimality.

Weakly Polynomial BSFM Algorithm for Signed Ring Families

Initialize by choosing ≺1, σ1 to be any consistent pair, y = v1, and I = {1}.

Compute δ0 = maxt∈Sact{f̂(Dt)− f̂(Dt − t)}, initialize δ = δ0 and x = 0.
While δ ≥ 1/3n2, [ when δ < 1/3n2 current S is optimal ]

Set δ ← δ/2.
Call BRefineR. [ converts 2δ-optimality to δ-optimality ]

Return last approximate solution S from BRefineR as an optimal BSFM solution.

We now prove that this works.

Theorem 3.5 When f̂ is integer-valued, the BSFM Algorithm solves BSFM over the signed
ring family Rcur in O(n5EO log(nM)) time.

Proof: (Similar to [24, Theorems 4.2 and 4.5].) Lemma 3.3 shows that the S produced at
the end of one call to BRefineR proves that the initial z at the next call to BRefineR is
2δ-optimal.

If a call to BRefineR ends with S ∈ Rcur and δ-optimal w with δ < 1/3n2, then Lemma 3.3
shows that ||w||cur < (2n2 + 2n)δ − f̂(S) < 3n2δ − f̂(S) < 1− f̂(S). By (8), for any T ∈ Rcur

we have ||w||cur ≥ −f̂(T ), and so 1− f̂(S) > −f̂(T ). Since f̂ is integer-valued, S solves BSFM.
By Lemma 2.3, for y0 = w0 as the initial values of y and w, we have ||w0||cur ≤ 2nδ0 =

2nδ0 − f̂(∅), and so w0 is δ0-optimal. Clearly δ0 ≤ 2M . Since each call to BRefineR halves δ,
there are at most log2(6Mn2) = O(log(nM)) such calls. Theorem 3.4 shows that each call costs
O(n5EO) time, for a total of O(n5EO log(nM)) time.

When the initial C is the empty set (so that Rcur = 3E and ||y0||cur = ||y0||1) we can instead
initialize δ0 = ||y0||1/n

2 and sharpen this slightly to match the bound on FuI-BSFM from [24].

Corollary 3.6 If f̂ is integer-valued and Rcur = 3E, then this algorithm solves BSFM in
O(n5EO log M) time.
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Proof: Define S+ = {e | y0
e > 0} and S− = {e | y0

e < 0}. Then ||y0||1 = y0(S) ≤ f̂(S) ≤M ,
and so y0 is δ0-optimal. Hence now we need at most log2(3M) = O(log M) calls to BRefineR.

3.4 Extending IFF-SP to BSFM

The challenge in making a weakly polynomial scaling algorithm like the IFF Algorithm strongly
polynomial is to avoid having to call BRefineR for each scaled value of δ, since the weakly
polynomial factor O(log M) is really Θ(log M). The rough idea is to find a way for the current
data of the problem to reveal a good starting value of δ, and then to apply O(log n) calls to
BRefineR to get close enough to optimum that we can “fix a variable”, which can happen only
a strongly polynomial number of times. Letting the current data determine the value of δ can
also be seen as a way to allow the algorithm to make much larger decreases in δ than would be
available in the usual scaling framework.

The general mechanism for fixing a variable is to prove a “proximity lemma” as in Tardos
[50] that says that if the value of a variable gets too far from a bound, then we can remove
that bound, and then reduce the size of the problem. The proximity lemma below says that if
component we is negative enough w.r.t. δ, then +e belongs to S for every minimizer S of f̂ , and
if we is positive enough w.r.t. δ, then −e belongs to S for every minimizer S of f̂ . A strongly
polynomial number of such steps would bring us to optimality.

Lemma 3.7 After a call to BRefineR, if there is some e ∈ SP
act such that the current w

satisfies we < −3n2δ, then +e belongs to S for every minimizer S of f̂ ; if there is some e ∈ SN
act

such that the current w satisfies we > +3n2δ, then −e belongs to S for every minimizer S of f̂ .

Proof: Let S be any solution to BSFM for f̂ . Recall that ||w||cur = w+(SN
act)−w−(SP

act). By
Lemma 3.3, at the end of a δ-scaling phase, for the current approximate solution S (note that
S, S ∈ Rcur), we have −||w||cur = w−(SP

act) − w+(SN
act) ≥ f̂(S) − (2n2 + 2n)δ ≥ f̂(S) − 3n2δ.

Since S solves BSFM, we have f̂(S) ≥ f̂(S) ≥ w(S
+
) − w(S

−
) ≥ w−(S

+
) − w+(S

−
). This

implies that w−(SP
act − S

+
) − w+(SN

act − S
−
) ≥ −3n2δ. Then if e ∈ SP

act and we < −3n2δ but

+e /∈ S
+
, we could add −we > 3n2δ to this to get w−((SP

act − S
+
)− e)− w+(SN

act − S
−
) > 0, a

contradiction, so we must have e ∈ S
+
. A similar argument establishes the case where e ∈ SN

act

and we > +3n2δ.

In order to use Lemma 3.7 to generate condition arcs we apply BRefineR to a bisubmodular
function f̂t (defined below) that is defined so that solving BSFM for f̂t solves BSFMt for f̂ . If a
set contains t, it must also contain all signed elements in Dt. Furthermore, it cannot contain −t,
and so it also cannot contain any of the signed elements in A−t = −Dt. The set of active (current)
nodes for f̂t is Sact(t) (Scur(t)), which is the nodes in Sact (Scur) with the nodes in Dt ∪ A−t

deleted (t /∈ Sout implies that Dt is disjoint from A−t, so we can use ordinary union here). Then
the signed ring family Rcur(t) is the family of reduced closed sets of (Scur(t), C) (where arcs
incident to Scur − Scur(t) are also deleted). For T ∈ Rcur(t) define f̂t(T ) = f̂(T tDt) − f̂(Dt)
(here T is disjoint from Dt, so this is just a signed version of an ordinary union).

Define Du(t) to be the descendents of u in (Scur(t), C). Recall that δ0 = maxu∈Sact{f̂(Du)−
f̂(Du − u)}. Then Lemma 2.3 would be true for f̂t if we replaced the δ0 for f̂ with δ0(t) =
maxu∈Scur(t){f̂t(Du(t)) − f̂t(Du(t) − u)} = maxu∈Scur(t){f̂(Du(t) tDt) − f̂((Du(t) − u) t Dt)}.
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Since Du v (Du(t) t Dt), we get by (4) that δ0(t) ≤ δ0, and so the conclusion of Lemma 2.3
remains true for f̂t and the original δ0. Similarly, Lemmas 3.3 and 3.7 apply to f̂t using the
original n.

Function f̂t is clearly again bisubmodular on Rcur(t) with f̂(∅) = 0, and solving BSFM on
f̂t would yield a signed set with smallest function value among all sets containing t. Therefore
if Lemma 3.7 tells us that u belongs to every minimizer of f̂t, then we could add the condition
arc t→ u to C (and so also −u→ −t, by Lemma 2.1).

We choose a t such that δ0 = f̂(Dt)− f̂(Dt−t), and then subroutine Fix calls BRefineR on
f̂t O(log n) times to produce some approximate solution with δ < δ0/3n3. We call a signed set
T ∈ Rcur(t) with f̂t(T ) ≤ −δ0 highly negative (for f̂t). If there is a highly negative set when we
call Fix, then for the w ∈ PRcur(t)(f̂t) at the end of Fix we have w(T ) ≤ f̂(T ) ≤ −δ0 < −3n3δ.
This implies that there is at least one e ∈ T+ with we ≤ −3n2δ or e ∈ T− with we ≥ +3n2δ. We
call such an e a highly far element. If we ≤ −3n2δ then we call e highly negative and Lemma 3.7
then shows that +e belongs to every minimizer of f̂t and so we can add condition arc t → +e
(and −e → −t) to C; similarly if we ≥ +3n2δ then we call e highly positive and we can add
condition arc t → −e (and +e → −t) to C. Since +e, −e /∈ Dt, this represents real progress.
Fix checks for highly far elements after the calls to BRefineR and adds such arcs to C.

Unfortunately it is difficult to guarantee that a highly negative set exists. IFF [33] go to
some trouble to manufacture such a set, and rely on the fact that y(E) = g(E) for all y in the
base polytope of the submodular function g. In the bisubmodular case, in general w ∈ P (f̂)
does not satisfy such an equation, and so it is not clear how to accomplish this. This is the
hurdle that prevented [24] from achieving a strongly polynomial BSFM algorithm. Instead we
take a “lazy” approach developed in [36] that does not depend on the existence of such a set,
but rather concludes that t cannot belong to an optimal solution if no element satisfying the
condition of Lemma 3.7 appears.

Lemma 3.8 If a call to Fix produces no element satisfying the conditions of Lemma 3.7 with
f̂ replaced by f̂t, then no optimal solution contains t.

Proof: If a highly negative set existed when Fix was called, then such an element would
certainly be produced. Thus no highly negative set exists, and so we must have that every T ∈
Rcur(t) has f̂t(T ) > −δ0. Expanding both sides gives f̂(T ∪Dt)− f̂(Dt) > −(f̂(Dt)− f̂(Dt− t)),
or f̂(T ∪ Dt) > f̂(Dt − t). Then T ∪ Dt is a generic feasible set containing t, and Dt − t is a
specific set not containing t. This proves that t cannot belong to any solution to BSFM.

Lemma 3.8 shows that when Lemma 3.7 does not apply after Fix, we can add t to Sout (by
adding t → −t to C), which is again real progress. As the algorithm proceeds we are getting
rid of “big” elements, and so δ0 tends towards zero (in fact it is not hard to show that δ0 is
non-increasing). We need to know how to construct an optimal BSFM solution if we attain
δ0 ≤ 0, and the next lemma shows how to do this.

Lemma 3.9 If δ0 ≤ 0, then for any consistent pair ≺0, σ0, abs(Scur)|σ
0 solves BSFM for f̂ ,

with dual optimal solution y = v≺
0,σ0

.

Proof: Define S = (S+, S−) = (abs(Scur)|σ
0). From Lemma 2.3 we have that for each

g ∈ S+, yg ≤ δ0 ≤ 0, and for each h ∈ S−, yh ≥ −δ0 ≥ 0. Therefore y−(SP
act) = y−(S+) = y(S+)

and y+(SN
act) = y+(S−) = y(S−).
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Now (7) implies that y(S) = f̂(S). Thus we get that −||y||cur = y+(SN
act) − y−(SP

act) =
y(S) = f̂(S). This implies that y and S are jointly optimal.

Subroutine Fix(f̂t, (Scur(t), C), δ0)
Applies to f̂t defined on reduced closed sets of (Scur(t), C), and vu ≤ δ0 for all vertices v
of PRcur(t)(f̂t).
Returns N ⊆ Sact(t) of elements in every optimal solution and their descendents.

Initialize ≺, σ as any pair consistent with C, y ← v≺,σ, δ ← δ0, and N = ∅.
While δ ≥ δ0/n3 do

Set δ ← δ/2.
Call BRefineR.

For e ∈ abs(Sact(t)) do [ Lemma 3.7: add descendents of highly far nodes to N ]
If we < −3n2δ set N ← N ∪D+e.
If we > +3n2δ set N ← N ∪D−e.

Return N .

When δ0 > 0, the proof of Theorem 3.5 showed that the initial w0 is δ0-optimal. When we
then apply Fix to f̂t, if it finds highly far elements then we add new arcs to C; if it finds no
highly far elements, then we add t to Sout.

Strongly Polynomial BSFM Algorithm (BSFM-SP)

Initialize Sout ← ∅, C ← ∅, Scur ← E.
While abs(Scur) > 1 do

Compute δ0 = maxu∈Sact{f̂(Du)− f̂(Du − u)} and t ∈ Sact as an argmax.
If δ0 ≤ 0 then [ implement Lemma 3.9 ]

For consistent σ0 return E(abs(Scur)|σ
0) as a BSFM solution.

Else [ δ0 > 0 ] do

Set N ← Fix(f̂t, (Scur(t), C), δ0).
If N = ∅, add t→ −t to C. [ add t to Sout ]
Else [ N 6= ∅ ] do

For all u ∈ N add t→ u and −u→ −t to C. [ Lemma 2.1 ]
Call UpdateS, update all Ds’s, As’s.

Return whichever of ∅ and E(Sact) has a smaller function value.

We now prove that this is correct, picking out the main points of the proof in boldface.

Theorem 3.10 Algorithm BSFM-SP is correct, and runs in O(n7EO log n) time.

Proof:
When a highly negative T ∈ Dt exists, a call to Fix(f̂t, (Scur(t), C), δ0) results in at

least one element added to N : The call to Fix reduces δ from δ0 to δ0/3n3. Then T highly
negative and T ∈ Dt imply that w(T ) ≤ y(T ) ≤ f̂(T ) ≤ −δ0 = −3n3δ. This implies that there
is at least one highly far s ∈ Sact, so at least one element gets added to N .
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If Fix(f̂t, (Scur(t), C), δ0) finds no highly negative element, then we can add t to
Sout: By Lemma 3.8.

The algorithm returns a solution to BSFM: If some δ0 ≤ 0, then we showed above
that the returned set is optimal. Otherwise the algorithm terminates because |abs(Scur)| ≤ 1.
In this case the only two choices left for solving BSFM are Sact and ∅, and the algorithm returns
the better of these.

Fix calls BRefineR O(log n) times: Parameter δ starts at δ0, ends at δ0/n3, and is halved
at each iteration. Thus there are log2(2n

3) = O(log n) calls to BRefineR.
The algorithm calls Fix O(n2) times: Each call to Fix adds at least one arc to C (either

via Sout or N ). Since there are only 2n(2n − 1) possible arcs for C, Fix is called O(n2) times.
The algorithm runs in O(n7EO log n) time: Theorem 3.4 says that one call to BRefineR

costs O(n5EO) time. Each call to Fix calls BRefineR O(log n) times, and the algorithm calls
Fix O(n2) times, for a total time of O(n7EO log n).

3.5 Extending I-FC to BSFM

Recall that a fully combinatorial algorithm cannot use multiplication or division, and must also
be strongly polynomial. This implies that it cannot call ReduceV, since the linear algebra in
ReduceV apparently needs to use multiplication and division in a way that cannot be simulated
with addition and subtraction. This suggests that we adapt BSFM-SP by avoiding the calls to
ReduceV; this degrades the running time since |I| is allowed to get much larger than n, but
the algorithm will work as long as we can show that |I| remains polynomially-bounded.

BSFM-SP adds new vj’s only at partial steps, and only one new vj at a time. Since there are
at most n partial steps per Augment, this means that each Augment creates at most n new
vj ’s. In BSFM-SP, each call to Fix calls BRefineR O(log n) times. Each call to BRefineR
does O(n2) Augments, or a total of O(n2 log n) Augments for each call to Fix, for a total of
O(n3 log n) vj ’s added in each call to Fix. Each call to Fix starts out with |I| = 1, so |I| stays
bounded by O(n3 log n) when we do not use ReduceV.

Without ReduceV, each of the O(n3 log n) vertices in I has O(n2) possible active triples
(each requiring O(EO) work), so now the work from full steps between each Augment is
O(n5 log n ·EO). Multiplied by the O(n2) Augments, this gives O(n7 log n ·EO) as the time for
BRefineR. Multiplied by the O(log n) calls to BRefineR per call to Fix, and by the O(n2)
calls to Fix overall, we would get a total of O(n9 log2 n · EO) time for the algorithm without
calling ReduceV.

However, getting rid of ReduceV is not sufficient to make BSFM-SP fully combinatorial, as
we must deal with its various other multiplications and divisions. The only non-trivial remaining
multiplications and divisions are the terms λiβ and α/β that arise in Double-Exchange and
Tail-Exchange, and the δ0/n3 and n2δ that arise in Fix.

3.5.1 Scaling via Doubling

Below we modify the representation (10) by implicitly multiplying through by a common denom-
inator so that each λi is an integer bounded by a polynomial in n. Then λiβ can be dealt with
using repeated addition. The common denominator is implemented by changing from halving
δ at each iteration to doubling a scaling parameter. We need another factor of n for technical
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reasons, so we instead compute n4. This can be done via O(n) repeated additions. Expressions
like n2δ can also be dealt with using repeated addition in O(n) time.

We plan to simulate a discrete version of α/β via repeated subtractions. To do this we need
to know that the quotient has strongly polynomial size in terms of the scale factor. Recall
that α was defined w.r.t. flow on a key arc, which is t → u for Double-Exchange, and is
−t → t for Tail-Exchange; denote this key arc by r → s. Then the prior definition was
α = min(xrs, λiβ). As previously noted, we could choose any α satisfying xrs ≤ α ≤ xrs + δ
without changing the analysis of the algorithm. This gives us enough flexibility to discretize the
quotient. Indeed, this is essentially what Iwata [30] does.

BSFM-FC adapts BSFM-SP as follows: We denote corresponding variables in BSFM-FC by
tildes, so where BSFM-SP has x, y, z, λ, δ, etc., BSFM-FC has x̃, ỹ, z̃, λ̃, δ̃, etc. Recall from (10)
that BSFM-SP keeps y ∈ PRcur(t)(f̂t) as a convex combination of vertices y =

∑

i∈I λiv
i. The λi

satisfy λi ≥ 0 and
∑

i∈I λi = 1, but are otherwise arbitrary. To make the arithmetic discrete in
BSFM-FC, we keep a scale factor SF = 2a (for a a non-negative integer). We now keep each λi

as a fraction with integer numerator, and denominator SF. To clear the fractions we represent
ỹ as SFy ∈ P (SFf̂) and λ̃i = SFλi, so that ỹ =

∑

i∈I λ̃iv
i with each λ̃i a positive integer,

and
∑

i∈I λ̃i = SF. At the beginning of each call to Fix, as before we choose an arbitrary ≺1

consistent with D and set ỹ = v1. Thus we choose a = 0, SF = 20 = 1, and λ̃1 = 1 to satisfy
this initially.

BSFM-SP starts each call to Fix with δ = δ0 and halves it before each call to BRefineR.
BSFM-FC starts with δ̃ = 2nδ0, and instead of halving it, BSFM-FC doubles SF (increases a
by 1). This extra factor of 2n is needed to make Lemma 3.11 work, which in turn is needed
to make the fully combinatorial discrete approximation of α/β lead to a δ̃-feasible update to x̃.
Even if we started out with f defined on 3E , the proof of Lemma 3.11 forces us to ensure that
only vertices consistent with Sact(t) are generated (the “explicit method” of handling Sact(t);
see [36] for details).

3.5.2 Details of BSFM-FC

Lemma 3.11 below also needs that for each vi in the current representation of y, f̂(abs(Scur)|σ
i) >

−δ0, which necessitates changing BSFM-SP: At the point that Double-Exchange or Tail-

Exchange generates a new vj we check whether f̂(abs(Scur)|σ
j) > −δ0. If it is not, it is highly

negative, and we call Fix directly on f̂ (instead of f̂t) to find some s ∈ Sact that is contained in
all BSFM solutions via Lemma 3.7, and then we add E(Ds) to a set In of elements in all BSFM
solutions. We then delete Ds from Sact and re-set f̂ ← f̂s. Since each such highly negative call
to Fix results in at least one new element of In, we can have only O(n) of these overall, and
this change does not impair the running time of the algorithm. This also means that we need
the same sort of bound for PRcur(f̂).

Lemma 3.11 If every vi in the current representation of y has f̂(abs(Scur)|σ
i) > −δ0, then for

any two vertices vi and vj of PRcur(t)(f̂t) and any s ∈ Sact(t), |v
i
s − vj

s| ≤ δ̃. In particular β ≤ δ̃

in PRcur(t)(f̂t) (and also PRcur(f̂)).

Proof: Note that for both Double-Exchange and Tail-Exchange β equals |vi
e − vj

e|
for some e, so it suffices to prove the first statement, and we can assume that y = vi for some
vertex vi. We have that y(abs(Sact(t))|σ

i) = f̂t(abs(Sact(t))|σ
i) = f̂(abs(Scur)|σ

i)− f̂(Dt). Then
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f̂(abs(Scur)|σ
i) > −δ0 and f̂(Dt) ≤

∑

s∈Dt
|f̂(Ds)− f̂(Ds − s)| ≤ |Dt|δ

0 imply that

y(abs(Scur(t))|σ
i) ≥ −(|Dt|+ 1)δ0. (12)

For all g ∈ abs(Sact(t)), either g ∈ SP
act if σi

g = +, or g ∈ SN
act if σi

g = −. Suppose that σi
e = +.

Then Lemma 2.3 shows that ye ≤ δ0. For all g ∈ abs(Sact(t)) with g 6= e and σi
g = + add

−yg ≥ −δ0 to (12), and for all g ∈ abs(Sact(t)) with g 6= e and σi
g = − add yg ≥ −δ0 to (12),

to get ye ≥ −nδ0. Thus −nδ0 ≤ ye ≤ δ0 for any e ∈ abs(Sact(t)) with σi
e = +, and similarly

−δ0 ≤ ye ≤ nδ0 for any e ∈ abs(Sact(t)) with σi
e = −. Thus β is at most 2nδ0 = δ̃. A simpler

version of the same proof works for PRcur(f̂).

BSFM Fully Combinatorial Algorithm (BSFM-FC)

Initialize In← ∅, Sout, C, and Sact.
While |Sact| > 1 do

Compute δ0 = maxs∈Sact{f̂(Ds)− f̂(Ds − s)} and let t ∈ Sact be an argmax.
If δ0 ≤ 0 then [ implement Lemma 3.9 ]

For consistent σ0 return E(abs(Scur)|σ
0) as a BSFM solution.

Else [ δ0 > 0 ] do

If some vi has f̂(abs(Scur)|σ
i) ≤ −δ0 do [ highly negative ]

Set N ← Fix(f̂ , (Scur, C), δ0).

For each s ∈ N add E(Ds) to In, and re-set Sact ← Sact −Ds, f̂ ← f̂s.

Else [δ0 > 0 and f̂(abs(Scur)|σ
i) > −δ0 for all i ∈ I] do

Set N ← Fix(f̂t, (Scur(t), C), δ0).
If N = ∅, set Sout ← Sout ∪ E(At).
Else [ N 6= ∅ ] do

For all u ∈ N add t→ u and −u→ −t to C. [ Lemma 2.1 ]
Call UpdateS, update all Ds’s, As’s.

Return whichever of ∅ and E(Sact) has a smaller function value.

When BSFM-SP took a full step (α = λiβ ≤ xrs) it replaced vi by vj in I with the same
coefficient. We can translate this directly to BSFM-FC without harming discreteness. Because
both x̃ and λ̃ are multiplied by SF, this translates to saying that if x̃rs ≥ λ̃iβ, then we choose
α̃ = λ̃iβ and take a full step.

When BSFM-SP took a partial step (α = xrs < λiβ) it replaced λi by λi − xrs/β and λj

by xrs/β, which required computing xrs/β. To keep λ̃i and λ̃j integral, we need to compute
an integral approximation to xrs/β. To ensure that the new x̃rs value hits zero, we need this
approximation to be at least as large as x̃rs/β.

The natural thing to do is to compute ρ̃ = dx̃rs/βe and update λi and λj to λi − ρ̃ and ρ̃
respectively, which are integers as required. This implies choosing α̃ = ρ̃β. Because dx̃rs/βe <
(x̃rs/β) + 1, α̃ < α + β. The (at most β) increase to α above x̃rs/β goes to increasing x̃sr. By
Lemma 3.11, β ≤ δ̃, so we would have that the updated x̃sr ≤ δ̃, so it remains δ̃-feasible, as
desired. Furthermore, we can compute ρ̃ by repeatedly subtracting β from x̃rs until we get a
non-positive answer. We started from the assumption that x̃rs < λ̃iβ, or x̃rs/β < λ̃i, implying
that ρ̃ ≤ λ̃i ≤ SF. Thus the number of subtractions needed is at most SF, which we show below
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remains small. In fact, we can do better by using repeated doubling: Initialize q = β and set
q ← 2q until q ≥ xrs. The number d of doublings is O(log SF) = O(a). Along the way we save
qi = 2iq for i = 0, 1, . . . , d. Then set q ← qd−1, and for i = d− 2, d− 3, . . . , 0, if q + qi ≤ xrs set
q ← q + qi. If the final q < xrs, set q ← q +β. Thus the final q is of the form pβ for some integer
p, we have q ≥ xrs, and (p − 1)β < xrs. Thus q = ρ̃, and we have computed this in O(log SF)
time.

Due to choosing the initial value of δ̃ = 2nδ0 instead of δ0, we now need to run Fix for
log2(4n

3(2n)) iterations instead of log2(2n
3), but this is still O(log n). This implies that SF stays

bounded by a polynomial in n, so that the computation of ρ̃ and our simulated multiplications
are fully combinatorial operations.

BSFM-FC Subroutine Fix(f̂t, (Scur(t), C), δ̃)
Applies to f̂t defined on closed sets of (Scur(t), C), and β ≤ δ̃ for all y ∈ PRcur(t)(f̂t)

Initialize ≺, σ as any consistent pair, ỹ ← v≺,σ, SF← 1, and N = ∅.
Initialize x̃ = ϕ̃ = 0 and z̃ = ỹ + ∂+ϕ̃ + ∂+x̃ ( = ỹ).
While SF ≤ 8n4 do

Set SF← 2SF, y ← 2y, and λ̃i ← 2λ̃i for i ∈ I.
Call BRefineR.

For u ∈ Sact(t) do [ add any highly negative nodes to N ]

If w̃u < −n2δ̃ set N ← N + Du.
Return N .

From this point the analysis of BSFM-FC proceeds just like the analysis that we did at the
beginning of this section.

Theorem 3.12 The running time of BSFM-FC is O(n9EO log2 n).

4 Extensions of BSFM

4.1 Finding All BSFM Solutions

In general there can be an exponential number of BSFM solutions. However, it is easy to see
that they form a signed ring family, and so there is a compact graph representation of them.
This section shows how to construct this representation.

Recall that the complementary slackness conditions for BSFM say that w and S ∈ R are
jointly optimal if and only if (CS i): we < 0 ⇒ e ∈ S+ and we > 0 ⇒ e ∈ S− (which implies
that e ∈ S+ ⇒ we ≤ 0 and e ∈ S− ⇒ we ≥ 0); and (CS ii): w(S) = f(S) (S is tight). Given
any w optimal to BSFM, define index sets N = {e ∈ E | we < 0}, Z = {e ∈ E | we = 0}, and
P = {e ∈ E | we > 0}. Then (since any optimal S must be complementary slack to this w), to
find all optimal BSFM solutions, all we need to do is to find all tight sets for w, and then all
tight sets T such that N ⊆ T+ ⊆ N ∪ Z = E − P and P ⊆ T− ⊆ P ∪ Z = E −N are precisely
all optimal BSFM solutions.

Given that w = y + ∂+ϕ and the representation of y in (10), note that T is tight for w
⇐⇒ ∂+ϕ(T ) = 0 and T is tight for each vi. Bixby, Cunningham, and Topkis (BCT) [9] give
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an algorithm for finding the lattice of tight sets for a vertex of a submodular base polyhedron,
and Ando and Fujishige [2, Section 3.2] show how to extend this to vertices of bisubmodular
polyhedra. For each i ∈ I this algorithm requires O(n2) evaluations of f̂ , and it produces a
directed graph Gi = (Scur,D

i) representing the family of tight sets for vi. Now compute the
directed graph G = (E,D) where D includes all t → u with ϕtu > 0, and all arcs of each Di.
Then any reduced closed set T of G must have ∂+ϕ(T ) = 0 and T is tight for each vi, and hence
T is tight for w. BSFM-SP maintains that |I| = O(n), and so computing G takes O(n3) extra
function evaluations.

Now contract all strong components of G which are descendents of elements of P into a single
node, and those which are ancestors of elements of N into a single node. Every reduced closed
set of the partial order of the strong components of the remaining graph induces a tight set for
w, and also satisfies (CS i), and so is optimal. Conversely, every optimal BSFM solution induces
such a reduced closed set. Although there can be an exponential number of BSFM solutions,
this contracted graph compactly represents all of them. The material in this section up to this
point is an extension from SFM on 2E to BSFM on R of ideas in Fujishige [22, Remark at the
end of Section 14.2], in Murota [38, Note 10.11], and in Nagano [39].

Unfortunately, the various IFF-derived Algorithms, including our BSFM algorithms, do not
produce an exact optimal point w (and its representation (10)) required for this algorithm.
However, we now show that BSFM-SP and BSFM-FC do carry enough information to get all
optimal solutions. As they proceed, they develop sets In and Out such that (by Lemma 3.7)
e ∈ In ⇒ e belongs to every BSFM optimal solution, and e ∈ Out ⇒ e belongs to no BSFM
optimal solution. They work on the contracted ground set Sact which excludes elements of In

and Out.
They recognize optimality in one of two ways: (1) |Sact| ≤ 1: In this case the only possible

solutions to BSFM on Scur are ∅ and Sact. Therefore the only possible solutions to BSFM on E
are In and In ∪ Ē(Sact), and these are easy to check. (2) Scaling parameter δ ≤ 0: Lemma 3.9
shows that for any consistent ≺0, σ0, w = v≺

0,σ0
(with ϕ ≡ 0, so that ∂+ϕ(T ) = 0 for all

T ∈ Rcur) proves that abs(Scur)|σ
0 solves BSFM. Therefore we can apply the algorithm of [2]

to find all tight sets w.r.t. w, which then gives us all BSFM solutions to the original problem.
This shows that to get all optimal BSFM solutions, we do not actually need an exact w defined
over all of E. It is enough that BSFM-SP (and BSFM-FC) supply an exact optimal w defined
only on abs(Scur).

4.2 Minimizing Separable Convex Objectives on PR(f)

Fujishige [20, Section 5] gives an algorithmic framework for minimizing
∑

e ge(we) s.t. w ∈ PR(f),
where each ge is convex. This algorithm assumes two things: (1) We can compute (or are
given) w̄e = argmin ge(we) if it exists. Define w̄e = +∞ if ge(we) is monotone decreasing,
and w̄e = −∞ if ge(we) is monotone increasing. Note that in some cases computing w̄ might
already not be do-able in strongly polynomial time: Hochbaum [29] shows that even square
roots cannot be computed in strongly polynomial time. However, in practice computing w̄ is
usually easy. (2) An oracle for computing signed exchange capacities: For w ∈ PR(f) and
e ∈ E, define c(w,±e) = min{f(S) − w(S) | e ∈ S±, S ∈ R}, and for e 6= g ∈ E define
c(w,±e,+g) = min{f(S)−w(S) | (e ∈ S± and g /∈ S+∪S−) or (e /∈ S+∪S− and g ∈ S+)} and
c(w,±e,−g) = min{f(S) − w(S) | (e ∈ S± and g /∈ S+ ∪ S−) or (e /∈ S+ ∪ S− and g ∈ S−)}.
Note that any of these can be computed with one call to a BSFM algorithm (given that the w
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appearing here is likely to be fractional, BSFM-SP is likely to be helpful).
The algorithm proceeds as follows: Let w0 ∈ PR(f) be some initial feasible point, perhaps

coming from Signed Greedy on a consistent pair. Then the algorithm moves w0 towards w̄
in PR(f) by computing O(n2) signed exchange capacities to compute an optimal solution (the
algorithm is able to recognize when the solution is unbounded). Putting together our Theorems
3.10 and 3.12, and [20, Theorems 4.1, 5.1] we get:

Theorem 4.1 If we can compute w̄, then we can minimize separable convex objectives over
PR(f) in O(n9EO log n) strongly polynomial, and O(n11EO log2 n) fully combinatorial time.

4.3 Solving a Line Search Problem on PR(f)

The signed exchange capacities of the previous section are special cases of the more general
Line Search problem: Given some w ∈ PR(f), and a direction vector a ∈ IRE , compute
max{α | w + αa ∈ PR(f)}. Nagano [39] shows how to solve this problem for base polyhe-
dra and submodular polyhedra coming from submodular functions. Here we adapt Nagano’s
ideas for the bisubmodular case.

Nagano’s algorithm uses Megiddo’s [37] general framework for parametric optimization,
which requires a “linear” algorithm for solving the underlying non-parametric algorithm, i.e., an
algorithm that generates only linear functions of its data when making comparisons. Among the
SFM algorithms, only I-FC is linear in this sense, and so Nagano embeds I-FC inside Megiddo’s
framework to get a strongly polynomial algorithm for the SFM case.

By using our BSFM-FC algorithm we can replicate this idea. Note that the optimal solution
is +∞ iff a is an unbounded direction for PR(f) iff there is some flow x ≥ 0 on (E,C) with
δ+x = a. This can be checked using the skew flow methods of Goldberg and Karzanov [25].

5 Conclusions and Open Questions

This paper finds the first combinatorial strongly polynomial and fully combinatorial algorithms
for BSFM. Given that many of the applications of BSFM are to separation problems, which po-
tentially could involve highly fractional points, it is worthwhile to have a combinatorial strongly
polynomial algorithm.

This work also deepens our understanding of the technical issues involved in trying to extend
IFF algorithmic techniques to other problems. On one hand it is encouraging that we were able
to extend as far as we did, but on the other hand it is discouraging that we (so far) were not
able to extend the Hybrid Algorithm [31] from SFM to BSFM.

Recall that Hybrid gets its speed-up from modifying blocks of consecutive components of its
≺i’s, instead of just consecutive pairs. By choosing these blocks w.r.t. distance labels, Hybrid’s
HRefine is O(n) faster than Refine. It is not too hard to figure out how to do similar block
changes that preserve consistency in the BSFM context. The hurdle that we have not been able
to overcome is in how the distance labels interact with Tail-Exchange: it is not clear how to
define labels that properly cause bad elements to first move right, then move left after getting
their signs flipped.

Hence a big open question is whether Hybrid can be extended to BSFM. We can ask the same
question about whether Schrijver’s Algorithm (the original version [48, 51] or the Push-Relabel

29



version [18]), or Orlin’s Algorithm [42] be extended to BSFM? The most intriguing at this point
is Orlin’s algorithm, as it is O(n log n) faster than the strongly polynomial version of Hybrid,
which had been the fastest among combinatorial algorithms.

All of the combinatorial SFM and BSFM algorithms use the device of representing the
current feasible point as a convex combination of vertices as in (10). This device contributes
to the complexity of the algorithms, is rather inelegant to implement, and detracts from the
esthetics of the algorithms. It is not clear that SFM or BSFM algorithms essentially need to
use linear algebra in this way. Hence it would be nice to find SFM or BSFM algorithms that
use some other method to represent their current points. One possibility is the “combinatorial
hull”, see [21].

Section 4.1 raises the following question. It is easy to see that in fact for both SFM and
BSFM, with integral data there always exists an integral optimal solution w, but apparently
none of the existing algorithms can directly find one. It is possible to use O(n) calls to an SFM
or BSFM algorithm to find an integral optimal point, but it is not clear how to keep or compute
representation (10) of its bounded part (which was quite useful in Section 4.1). Thus it would
be interesting to find a BSFM (or even SFM) algorithm that can find an integral optimal point
w together with a representation of its bounded part as a convex combination of vertices.

Both SFM and BSFM are problems where a simple greedy algorithm optimizes over the
underlying polyhedron, but where the problem becomes much more difficult with even a very
simple separable piece-wise linear convex objective. Nagano [40] shows how to adapt any para-
metric SFM algorithm to solve general separable convex objectives over the base polytope of a
submodular function. Section 4.2 shows how our algorithms plus the framework of [20] suffice
to get a combinatorial polynomial algorithm for minimizing separable convex objectives over
PR(f), but it would be interesting to get a more direct and faster algorithm for this problem.

Another problem that fits into the “linear easy, separable convex not so easy” paradigm
is optimizing over zonotopes (see [23]). Linear optimization is trivial, but finding a minimum
`2-norm point is as hard as linear programming, and there is some hope that this approach could
lead to a strongly polynomial algorithm for linear programming. Perhaps other such problems
exist.

Finally, we have placed this paper in the context of an overall stream of research aimed
at finding combinatorial polynomial algorithms for problems whose only known polynomial
algorithm is Ellipsoid-based. Hence it would be very nice to be able to broaden the applications
of the algorithmic techniques herein to other problems. One possible target would be to solve
the separation problem over the polytope of subtour elimination constraints for the Traveling
Salesman Problem (see, e.g., [6, Chapter 6]). Another possible target from the TDI point of
view would be Schrijver’s general framework for TDI [46].
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