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Abstract

We study the solutions of the sixth Painlevé equation with a logarithmic asymptotic behavior
at a critical point. We compute the monodromy group associated to the solutions by the method
of monodromy preserving deformations and we characterize the asymptotic behavior in terms of
the monodromy itself. This is the first of two papers aimed at the characterization/classification
of the logarithmic behaviors, in terms of the monodromy data.

1 Introduction

We consider the sixth Painlevé equation:
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, (PVI).

The generic solution has essential singularities and/or branch points in 0,1,∞. It’s behavior at
these points is called critical. Other singularities which may appear are poles and depend on the
initial conditions. A solution of (PVI) can be analytically continued to a meromorphic function on
the universal covering of P1\{0, 1,∞}. For generic values of the integration constants and of the
parameters α,β,γ,δ, it cannot be expressed via elementary or classical transcendental functions. For
this reason, it is called a Painlevé transcendent. Solving (PVI) means: i) Determine the critical
behavior of the transcendents at the critical points x = 0, 1,∞. Such a behavior must depend on two
integration constants. ii) Solve the connection problem, namely: find the relation between couples
of integration constants at x = 0, 1,∞.

(PVI) is the isomonodromy deformation equation of a Fuchsian system of differential equations
[18]:

dΨ

dλ
= A(x, λ) Ψ, A(x, λ) :=

[

A0(x)

λ
+
Ax(x)

λ− x
+
A1(x)

λ− 1

]

, λ ∈ C. (1)

The 2×2 matrices Ai(x) depend on x in such a way that there exists a fundamental matrix solution
Ψ(λ, x) such that its monodromy does not change for small deformations of x. They also depend on
the parameters α, β, γ, δ of (PVI) through more elementary parameters θ0, θx, θ1, θ∞, according to
the following relations:

−A∞ := A0 +A1 +Ax = −
θ∞
2
σ3, θ∞ 6= 0. Eigenvalues (Ai) = ±

1

2
θi, i = 0, 1, x; (2)

α =
1

2
(θ∞ − 1)2, − β =

1

2
θ20 , γ =

1

2
θ21,

(

1

2
− δ

)

=
1

2
θ2x (3)

Here σ3 :=

(

1 0
0 −1

)

is the Pauli matrix. The condition θ∞ 6= 0 is not restrictive, because θ∞ = 0 is

equivalent to θ∞ = 2. The equations of monodromy preserving deformation (Schlesinger equations),
can be written in Hamiltonian form and reduce to (PVI), being the transcendent y(x) the solution
λ of A(x, λ)1,2 = 0. Namely:

y(x) =
x (A0)12

x [(A0)12 + (A1)12] − (A1)12
, (4)
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The matrices Ai(x), i = 0, x, 1, depend on y(x), dy(x)
dx

and
∫

y(x) through rational functions, which
are given in [18] and in subsection 8.2.

This paper, and the second paper, are devoted to the computation of the monodromy group of (1)
associated to the solutions with a logarithmic critical behavior, and to the action of the symmetries
of (PVI) on the monodromy of (1). They are part of a project to classify the critical behaviors in
terms of the monodromy data of the system (1). This project has been the motivation of our papers
[11] [12] [14].

In our paper [14], we developed a “constructive” procedure which we called matching. It enabled
us to compute the leading term of the critical behavior of a transcendent y(x) and the monodromy
data of (1) when the matrices Ai(x) are those associated to y(x). Originally, such an approach was
suggested by Its and Novokshenov in [15], for the second and third Painlevé equations. The method of
Jimbo [17] can be regarded as a matching procedure. This approach was further developed and used
by Kapaev, Kitaev, Andreev, and Vartanian (see for example the case of the fifth Painlevé equation,
in [2]). Our approach in [14] is new, because we introduced non-fuchsian systems associated to
(PVI) in the process of matching. In this way we obtained new asymptotic behaviors. The matching
procedure will be reviewed in section 2.

We developed the matching procedure in order to discover new critical behaviors and to clas-
sify the critical behaviors themselves in terms of associated monodromy data. Denote by M0, Mx,
M1 a monodromy representation of (1). The critical behaviors associated to monodromy matri-
ces satisfying the relation tr(MiMj) 6= ±2, i 6= j ∈ {0, x, 1}, is known from the work [17]. But
when tr(MiMj) = ±2, we cannot naively extend the procedure of [17]. In addition, many cases
corresponding to non generic values of α, β, γ, δ are not yet studied. The matching procedure was
developed in [14], as a general method to study the cases tr(MiMj) = ±2 and the non generic cases
of α, β, γ, δ. The logarithmic solutions, some of the Taylor’s series solutions and the trigonometric
solutions of [14] actually appear when tr(MiMj) = ±2 for some i 6= j = 0, x, 1.

The values of the traces tr(M0Mx), tr(M1Mx), tr(M0M1) characterize the critical behaviors at
x = 0, 1,∞ respectively. This is a known fact, which follows from the solution of the connection
problem (see also subsection 8.3). For example, in the generic case studied in [17] we find the
following behaviors at the critical points [17][10][11][12][13][3][25]:

y(x) =



















ax1−σ(1 +O(|x|ε)), x→ 0,

y(x) = 1 − a(1)(1 − x)1−σ(1)

(1 +O(|1 − x|ε)), x→ 1,

y(x) = a(∞)xσ(∞)

(1 +O(|x|−ε)), x → ∞,

where ε is a small positive number, a, σ, a(1) , σ(1), a(∞) , σ(∞) are complex numbers such that a,
a(i) 6= 0 and 0 < <σ < 1, 0 < <σ(1) < 1, 0 < <σ(∞) < 1. The connection problem among the three
sets of parameters (a, σ), (a(1), σ(1)), (a(∞)σ(∞)) was first solved in [17] and its solution implies that:

2 cos(πσ) = tr(M0Mx), 2 cos(πσ(1)) = tr(M1Mx), 2 cos(πσ(∞)) = tr(M0M1);

while a, a(1), a(∞) are rational functions of the tr(MiMj)’s (i 6= j = 0, x, 1) and depend on the θν ’s
(ν = 0, x, 1,∞) through trigonometric functions and Γ-functions rationally combined. In this sense,
the three traces determine the critical behavior at the three critical points.

Before we present the result of the paper, it is worth summarizing the results obtained by the
matching procedure in [14]. We first consider the point x = 0. Let σ be a complex number defined
by:

tr(M0Mx) = 2 cos(πσ), 0 ≤ <σ ≤ 1.

The matching procedure yields the following behaviors for x→ 0:

y(x) ∼ a x1−σ , if <σ > 0; (5)

y(x) ∼ x

{

iA sin
(

iσ lnx+ φ
)

+
θ20 − θ2x + σ2

2σ2

}

, if <σ = 0, σ 6= 0.

In the above formulae, σ is one of the integration constants, while a, or φ, is the other. A is:

A :=

[

θ20
σ2

−

(

θ20 − θ2x + σ2

2σ2

)2
]

1
2

.
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As we mentioned, the behavior (5) was first studied in [17]. For special values of σ 6= 0, the first
leading term above is zero and we need to consider the next leading terms:

y(x) ∼
θ0

θ0 + θx

x ∓
r

θ0 + θx

x1+σ , σ = ±(θ0 + θx) 6= 0,

y(x) ∼
θ0

θ0 − θx

x ∓
r

θ0 − θx

x1+σ , σ = ±(θ0 − θx) 6= 0.

When σ = 0, the matching procedure of [14] yields the logarithmic behaviors:

y(x) ∼ x

{

θ2x − θ20
4

[

lnx+
4r + 2θ0
θ20 − θ2x

]2

+
θ20

θ20 − θ2x

}

, if θ20 6= θ2x, (6)

y(x) ∼ x (r ± θ0 lnx), if θ20 = θ2x. (7)

Here r is an integration constant.
In [14] we also computed all the solutions with Taylor expansions at a critical point. They fall

within three equivalent classes (the equivalence relations are Backlund transformations of (PVI)),
with representatives characterized by σ = ±(θ1 ± θ∞), 1,−1 respectively. To these classes, we must
add the singular solutions y = 0, x, 1. The associated monodromy groups are characterized by
reducible subgroups generated by M0Mx and M1. Taylor solutions are studied also in [19], by the
isomonodromy deformation method; and in [4] [5] [6] [7] by a power geometry technique.

The critical behaviors at x = 1,∞ can be obtained from those at x = 0 by the action of some of
the Backlund transformations of (PVI). See subsection 8.3.

The monodromy data for the solution (5) are computed in [17][10][11][12][13][3]. The monodromy
data for the Taylor expansions are computed in [14] and [19].

In [14] we did not compute the monodromy associated to the logarithmic behaviors, postponing
this problem to the present paper and its companion paper in preparation. We are going to show that
logarithmic critical behaviors at x = 0 are associated to tr(M0Mx) = ±2, at x = 1 to tr(M1Mx) =
±2, and at x = ∞ to tr(M0M1) = ±2.

Once the monodromy data are known, the connection problem is solved (see subsection 8.3)

We computed the logarithmic asymptotic behaviors in [14] as a result of the matching procedure
(in the framework of the method of monodromy preserving deformations). In [4] [5] [6] [7] [8],
A.D.Bruno and I.V.Goryuchkina constructed the asymptotic expansions, including logarithmic ones,
by a power geometry technique [9]. By this technique, the authors of [7] claim that they have obtained
all the critical behaviors for (PVI). The logarithmic asymptotics for real solutions of (PVI) is studied
in [24]. Our approach, being based on the method of isomonodromy deformations, allows to solve
the connection problem, while the results of [4]– [8] and [24] are local.

1.1 Results

In this paper:

1) In Section 3 we justify the project of classifying the transcendents in terms of monodromy
data of (1). We establish the necessary and sufficient conditions such that there exist a one to one
correspondence between a set of monodromy data of system (1) and a transcendent of (PVI). The
result is Proposition 1. The definition of monodromy data itself is given in Section 3.

2) We compute the monodromy data associated to the logarithmic solutions (6) in the generic
case θ0, θx, θ1, θ∞ 6∈ Z. The result is Proposition 2, Section 5. In particular, tr(M0Mx) = 2.

3) In Proposition 3 of Section 6, we compute the monodromy group associated to the solution
(7). In particular, tr(M0Mx) = 2. The parameter r will be computed as a function of the θν ’s,
ν = 0, x, 1,∞ and of tr(M0M1).

4) We consider a non generic case of (6), which occurs when:

θx = θ1 = 0, θ∞ = 1, θ0 = 2p 6= 0, p ∈ Z. (8)
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Therefore:

y(x) ∼

[

1 − p2

(

lnx+
r + p

p2

)]

, x→ 0. (9)

The monodromy of the associated system (1) is computed in Proposition 4, Section 7. It is important
to observe that the monodromy is independent of r. This means that the parameter r cannot be
determined in terms of the monodromy data. Therefore, (9) is a one parameter class of solutions
(parameter r) associated to the same monodromy data. We prove in Proposition 4 that the solution
(9) is associated to:

tr(M0Mx) = 2, tr(M0M1) = 2, tr(M1Mx) = −2.

This special values of the traces imply that the behavior at x = ∞ and x = 1 is also logarithmic.
tr(M0Mx) = 2 is associated to the logarithmic behavior of type ln2 x at x = 0. tr(M0M1) = 2 is
associated to the logarithmic behavior of type ln2(1/x) at x = ∞. tr(M1Mx) = −2 is associated to
the logarithmic behavior of type 1/ ln2(1 − x) at x = 1. Actually a solution (9) has the following
behaviors at the three critical points:

y(x) ∼























x
[

1 − p2(ln x+ ρ0)
2
]

, x→ 0,

1− p2
(

ln 1
x

+ ρ∞
)2
, x→ ∞,

1 − 1
p2(ln(1−x)+ρ1)2

, x→ 1.

(10)

where:

ρ0 =
(r + p)

p2
, ρ∞ =

π(4 ln 2 − 1 + ρ0)

π − i(4 ln 2 − 1 + ρ0)
− 2 ln 2 + 1, ρ1 =

π2

4 ln 2 − 1 + ρ0
− ln 2 + 1.

The behavior at x = 1 differs from those at x = 0,∞ for the inverse of ln(1 − x) appears. This is
actually due to the fact that tr(M1Mx) = −2. We will prove the above behaviors in section 8.4, and
in the second paper by a different method.

In general, the logarithmic behaviors of “type (6)” at the critical points are as follows:

y(x) ∼ x

{

θ2x − θ20
4

[

lnx+
4r + 2θ0
θ20 − θ2x

]2

+
θ20

θ20 − θ2x

}

, x → 0. (11)

y(x) ∼
θ20

θ20 − θ21
+
θ21 − θ20

4

[

ln
1

x
+

4r + 2θ0
θ20 − θ21

]2

, x→ ∞. (12)

y(x) ∼ 1 − (1 − x)

{

θ21
θ21 − θ2x

+
θ2x − θ21

4

[

ln(1 − x) +
4r + 2θ1
θ21 − θ2x

]2
}

, x→ 1. (13)

y(x) =
4

[θ21 − (θ∞ − 1)2] ln2 x

[

1 +
8r + 4θ∞ − 4

θ21 − (θ∞ − 1)2
1

lnx
+O

(

1

ln2 x

)]

, x→ 0. (14)

y(x) =
4 x

[(θ∞ − 1)2 − θ2x] ln2 x

[

1 −
8r + 4(θ∞ − 1)

θ2x − (θ∞ − 1)2
1

lnx
+O

(

1

ln2 x

)]

, x→ ∞. (15)

y(x) = 1 +
4

(θ21 − θ20) ln2(x − 1)

[

1 −
8r + 4θ0
θ20 − θ21

1

ln(x − 1)
+O

(

1

ln2(x− 1)

)]

, x→ 1. (16)

In general, the log-behaviors of “type (7)” are:

y(x) ∼ x (r ± θ0 lnx), x → 0, θ20 = θ2x. (17)
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y(x) ∼ r ± θ0 lnx, x → ∞, θ20 = θ21 . (18)

y(x) ∼ 1 − (1 − x)
(

r ± θ1 ln(1 − x)
)

, x→ 1, θ21 = θ2x. (19)

y(x) ∼
1

r ± (θ∞ − 1) lnx
, x→ 0, (θ∞ − 1)2 = θ21. (20)

y(x) = ±
x

(θ∞ − 1) lnx

[

1 ∓
r

(θ∞ − 1) lnx
+O

(

1

ln2 x

)]

., x → ∞, (θ∞ − 1)2 = θ2x. (21)

y(x) = 1 ±
1

θ0 ln(x − 1)

[

1 ∓
r

θ0 ln(x− 1)
+O

(

1

ln2(x− 1)

)]

, x→ 1, (θ∞ − 1)2 = θ20. (22)

The above are proved in Section 8, making use of the Backlund transformations of (PVI). The
behaviors (11), (17) are associated to tr(M0Mx) = 2; (12), (18) are associated to tr(M0M1) = 2;
(13), (19) are associated to tr(M1Mx) = 2. This fact is proved in Section 8.3. The behaviors (14),
(20) are associated to tr(M0Mx) = −2; (15), (21) are associated to tr(M0M1) = −2; (16), (22) are
associated to tr(M1Mx) = −2. This fact is proved in the second paper. We note that generically
a solution (6) does not have the logarithmic behavior at x = 1,∞, because the traces tr(M1Mx),
tr(M0M1) are not equal to ±2. The case (9) is special, in that the log-behavior appears at the three
critical points.

Acknowledgments: The author is supported by the Kyoto Mathematics COE fellowship at RIMS,
Kyoto University, Japan.

2 Matching Procedure

This section is a review of the matching procedure of [14]. We explain how the asymptotic behavior
of a transcendent is derived, and how the associated monodromy is computed.

2.1 Leading Terms of y(x)

We consider x → 0. We divide the λ-plane into two domains. The “outside” domain is defined for
λ sufficiently big:

|λ| ≥ |x|δOUT , δOUT > 0. (23)

Therefore, (1) can be written as:

dΨ

dλ
=

[

A0 +Ax

λ
+
Ax

λ

∞
∑

n=1

(x

λ

)n

+
A1

λ− 1

]

Ψ. (24)

The “inside” domain is defined for λ comparable with x, namely:

|λ| ≤ |x|δIN , δIN > 0. (25)

Therefore, λ→ 0 as x→ 0, and we rewrite (1) as:

dΨ

dλ
=

[

A0

λ
+

Ax

λ− x
−A1

∞
∑

n=0

λn

]

Ψ. (26)

If the behavior of A0(x), A1(x) and Ax(x) is sufficiently good, we expect that the higher order
terms in the series of (24) and (26) are small corrections which can be neglected when x → 0. If this
is the case, (24) and (26) reduce respectively to:

dΨOUT

dλ
=

[

A0 +Ax

λ
+
Ax

λ

NOUT
∑

n=1

(x

λ

)n

+
A1

λ− 1

]

ΨOUT , (27)
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dΨIN

dλ
=

[

A0

λ
+

Ax

λ− x
−A1

NIN
∑

n=0

λn

]

ΨIN , (28)

where NIN , NOUT are suitable integers. The simplest reduction is to Fuchsian systems:

dΨOUT

dλ
=

[

A0 +Ax

λ
+

A1

λ− 1

]

ΨOUT , (29)

dΨIN

dλ
=

[

A0

λ
+

Ax

λ− x

]

ΨIN . (30)

In [14] we considered reduced non-fuchsian systems for the first time in the literature, where the
fuchsian reduction has been privileged. We showed that in some relevant cases it cannot be used,
being the non-fuchsian reduction necessary.

Generally speaking, we can parameterize the elements of A0 +Ax and A1 of (29) in terms of θ1,
the eigenvalues of A0 + Ax and the eigenvalues θ∞ of A0 + Ax + A1. We also need an additional
unknown function of x. In the same way, we can explicitly parameterize the elements of A0 and Ax

in (30) in terms of θ0, θx, the eigenvalues of A0 + Ax and another additional unknown function of
x. Cases when the reductions (27) and (28) are non-fuchsian deserve particular care, as it has been
done in [14]. Our purpose is to find the leading terms of the unknown functions when x → 0, in
order to determine the critical behavior of A0(x), A1(x), Ax(x) and of (4).

The leading term can be obtained as a result of two facts:
i) Systems (27) and (28) are isomonodromic. This imposes constraints on the form of the unknown
functions. Typically, one of them must be constant.
ii) Two fundamental matrix solutions ΨOUT (λ, x), ΨIN (λ, x) must match in the region of overlap,
provided this is not empty:

ΨOUT (λ, x) ∼ ΨIN (λ, x), |x|δOUT ≤ |λ| ≤ |x|δIN , x → 0 (31)

This relation is to be intended in the sense that the leading terms of the local behavior of ΨOUT

and ΨIN for x → 0 must be equal. This determines a simple relation between the two functions of
x appearing in A0, Ax, A1, A0 +Ax. (31) also implies that δIN ≤ δOUT .

Practically, to fulfill point ii), we match a fundamental solution of (27) for λ → 0, with a
fundamental solution of the system obtained from (28) by the change of variables µ := λ/x, namely
with a solution of:

dΨIN

dµ
=

[

A0

µ
+

Ax

µ− 1
− xA1

NIN
∑

n=0

xnµn

]

ΨIN , µ :=
λ

x
. (32)

To summarize, matching two fundamental solutions of the reduced isomonodromic systems (27)
and (28), we obtain the leading term(s), for x → 0, of the entries of the matrices of the original
system (1). The procedure is algorithmic, the only assumption being (31).

This method is sometimes called coalescence of singularities, because the singularity λ = 0
and λ = x coalesce to produce system (27), while the singularity µ = 1

x
and µ = ∞ coalesce to

produce system (32). Coalescence of singularities was first used by M. Jimbo in [17] to compute the
monodromy matrices of (1) for the class of solutions of (PVI) with leading term y(x) ∼ a x1−σ ,
0 < <σ < 1.

2.2 Computation of the Monodromy Data

In the “λ-plane” C\{0, x, 1} we fix a base point λ0 and three loops, which are numbered in order 1,
2, 3 according to a counter-clockwise order referred to λ0. We choose 0, x, 1 to be the order 1, 2, 3.
We denote the loops by γ0, γx, γ1. See figure 1. The monodromy matrices of a fundamental solution
Ψ(λ) w.r.t. this base of loops are denoted M0, Mx, M1. The loop at infinity will be γ∞ = γ0γxγ1,
so M∞ = M1MxM0. As a consequence, the following relation holds:

cos(πθ0)tr(M1Mx) + cos(πθ1)tr(M0Mx) + cos(πθx)tr(M1M0)
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0

x

1

γ

γ

γ
0

x

1

1
2

3
order 1, 2, 3.

λ
0

Figure 1: The ordered basis of loops

= 2 cos(πθ∞) + 4 cos(πθ1) cos(πθ0) cos(πθx).

The monodromy matrices are determined by tr(Mν), tr(MνMµ) , ν, µ = 0, x, 1,∞ [3].
As a consequence of isomonodromicity, there exists a fundamental solution ΨOUT of (27) such

that
MOUT

1 = M1, MOUT
∞ = M∞,

where MOUT
1 and MOUT

∞ are the monodromy matrices of ΨOUT at λ = 1,∞. Moreover, MOUT
0 =

MxM0. There also exists a fundamental solution ΨIN of (28) such that:

M IN
0 = M0, M IN

x = Mx,

where M IN
0 and M IN

x are the monodromy matrices of ΨIN at λ = 0, x.

The method of coalescence of singularities is useful when the monodromy of the reduced systems
(27), (28) can be explicitly computed. This is the case when the reduction is fuchsian (namely
(29), (30)), because fuchsian systems with three singular points are equivalent to a Gauss hyper-
geometric equation (see Appendix 1). For the non-fuchsian reduction, in general we can compute
the monodromy when (27), (28) are solvable in terms of special or elementary functions.

In order for this procedure to work, not only ΨOUT and ΨIN must match with each other, as in
subsection 2.1, but also ΨOUT must match with a fundamental matrix solution Ψ of (1) in a domain
of the λ plane, and ΨIN must match with the same Ψ in another domain of the λ plane.

The standard choice of Ψ is as follows:

Ψ(λ) =







































[

I +O
(

1
λ

)]

λ−
θ∞
2 σ3λR∞ , λ→ ∞;

ψ0(x)
[

I +O(λ)
]

λ
θ0
2 σ3λR0C0, λ → 0;

ψx(x)
[

I +O(λ− x)
]

(λ − x)
θx
2 σ3(λ − x)RxCx, λ→ x;

ψ1(x)
[

I +O(λ − 1)
]

(λ− 1)
θ1
2 σ3(λ − 1)R1C1, λ → 1;

(33)
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Here ψ0(x), ψx(x), ψ1(x) are the diagonalizing matrices of A0(x), A1(x), Ax(x) respectively. They
are defined by multiplication to the right by arbitrary diagonal matrices, possibly depending on x.
Cν , ν = ∞, 0, x, 1, are invertible connection matrices, independent of x [18]. Each Rν , ν = ∞, 0, x, 1,
is also independent of x, and:

Rν = 0 if θν 6∈ Z, Rν =















(

0 ∗
0 0

)

, if θν > 0 integer

(

0 0
∗ 0

)

, if θν < 0 integer

If θi = 0, i = 0, x, 1, then Ri is to be considered the Jordan form

(

0 1
0 0

)

of Ai. Note that for the

loop λ 7→ λe2πi, |λ| > max{1, |x|}, we immediately compute the monodromy at infinity:

M∞ = exp{−iπθ∞} exp{2πiR∞}.

Let ΨOUT and ΨIN be the solutions of (27) and (28) matching as in (31). We explain how they
are matched with (33).

(*) Matching Ψ ↔ ΨOUT :
λ = ∞ is a fuchsian singularity of (27), with residue −A∞/λ. Therefore, we can always find a

fundamental matrix solution with behavior:

ΨMatch
OUT =

[

I +O

(

1

λ

)]

λ−
θ∞
2 σ3λR∞ , λ → ∞.

This solution matches with Ψ. Also λ = 1 is a fuchsian singularity of (27). Therefore, we have:

ΨMatch
OUT = ψOUT

1 (x)
[

I +O(λ − 1)
]

(λ− 1)
θ1
2 σ3(λ − 1)R1COUT

1 , λ → 1;

Here COUT
1 is a suitable connection matrix. ψOUT

1 (x) is the matrix that diagonalizes the leading
terms of A1(x). Therefore, ψ1(x) ∼ ψOUT

1 (x) for x → 0. As a consequence of isomonodromicity, R1

is the same of Ψ.
As a consequence of the matching Ψ ↔ ΨMatch

OUT , the monodromy of Ψ at λ = 1 is:

M1 = C1
−1 exp{iπθ1σ3} exp{2πiR1}C1, with C1 ≡ COUT

1 .

We finally need an invertible connection matrix COUT to connect ΨMatch
OUT with the solution ΨOUT

appearing in (31). Namely, ΨMatch
OUT = ΨOUTCOUT .

(*) Matching Ψ ↔ ΨIN :

As a consequence of the matching Ψ ↔ ΨMatch
OUT , we have to choose the IN-solution which

matches with ΨMatch
OUT . This is ΨMatch

IN := ΨINCOUT .

Now, λ = 0, x are fuchsian singularities of (28). Therefore:

ΨMatch
IN =







ψIN
0 (x)

[

I +O(λ)
]

λ
θ0
2 σ3λR0CIN

0 , λ → 0;

ψIN
x (x)

[

I +O(λ − x)
]

(λ− x)
θx
2 σ3(λ− x)RxCIN

x , λ → x;

The above hold for fixed small x 6= 0. Here CIN
0 and CIN

x are suitable connection matrices. ψIN
0 (x)

and ψx(x)IN are diagonalizing matrices of the leading terms of A0(x) and Ax(x). For x → 0 they
match with ψ0(x) and ψx(x) of Ψ in (36). On the other hand, as a consequence of isomonodromicity,
the matrices R0 and Rx are the same of Ψ. The above ΨMatch

IN has the same behavior of Ψ at λ → 0
and λ → x; moreover, it is an approximation of Ψ for x small. The matrices CIN

0 , CIN
x are

independent of x. So, the matching Ψ ↔ ΨIN is realized and the connection matrices C0 and Cx

coincide with CIN
0 , CIN

x respectively. As a result, we obtain the monodromy matrices for Ψ:

M0 = C0
−1 exp{iπθ0σ3} exp{2πiR0}C0, C0 ≡ CIN

0 ,
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Mx = Cx
−1 exp{iπθxσ3} exp{2πiRx}Cx, Cx ≡ CIN

x .

Our reduction is useful if the connection matrices COUT
1 , CIN

0 , CIN
x can be computed explicitly.

This is possible for the fuchsian reduced systems (29), (30). For non-fuchsian reduced systems, we
discussed the computability in [14].

3 Classification in Terms of Monodromy Data

Two conjugated systems:
dΨ

dλ
= A(x, λ) Ψ,

dΨ̃

dλ
= Ã(x, λ) Ψ̃,

Ψ̃ = WΨ, det(W ) 6= 0, Ã = WAW−1,

admit fundamental matrix solutions with the same monodromy matrices (w.r.t. the same basis of
loops). The matrix Ã(x, λ) defines the same solution of (PVI) associated to A(x, λ) only if the
following condition holds:

Ã0 + Ã1 + Ãx = −
θ∞
2
σ3, where Ãi = WAiW

−1, i = 0, x, 1.

Namely, Wσ3W
−1 = σ3. This occurs if and only if W is diagonal. The transformation of A(x, λ) is

therefore:

WA(x, λ)W−1 =

(

A11(x, λ)
w2

w1
A12(x, λ)

w1

w2
A21(x, λ) A22(x, λ)

)

, where W =

(

w1 0
0 w2

)

.

We conclude that the equation A12(x, λ) = 0 is the same and then:

Two conjugate fuchsian systems, satisfying (2) (3), define the same solution of PVI if and only
if the conjugation is diagonal.

Note that θ∞ 6= 0 is a necessary condition, otherwise any W would be acceptable and then
A12(x, λ) = 0 would not define y(x) uniquely.

The problem of finding a (branch of a) transcendent associated to a monodromy representation
is the problem of finding a fuchsian system (1) having the given monodromy. This problem is
called Riemann-Hilbert problem, or 21th Hilbert problem. For a given PVI there is a one-to-one
correspondence between a monodromy representation and a branch of a transcendent if and only if
the Riemann-Hilbert problem has a unique solution A(x, λ), defined up to diagonal conjugation.

• Riemann-Hilbert problem (R.H.): find the coefficients Ai(x), i = 0, x, 1 from the following
monodromy data:

a) A fixed order of the poles 0, x, 1. Namely, we choose a base of loops. Here we choose the order
(1,2,3)=(0,x,1). See figure 1.

b) The exponents θ0, θx, θ1, θ∞, with θ∞ 6= 0.
c) Matrices R0, Rx, R1, R∞, such that:

Rν = 0 if θν 6∈ Z, Rν =















(

0 ∗
0 0

)

, if θν > 0 integer

(

0 0
∗ 0

)

, if θν < 0 integer

Rj =

(

0 1
0 0

)

, if θj = 0, j = 0, x, 1.

c) three monodromy matricesM0,Mx,M1 relative to the loops, similar to the matrices exp{iπθiσ3} exp{2πiRi},
i = 0, x, 1, satisfying (for the chosen order of loops γ0γxγ1 = γ∞):

M1 Mx M0 = e−iπθ∞σ3e2πiR∞
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Solving the Riemann-Hilbert problem means that we have to find invertible connection matrices,
Cν , ν = ∞, 0, x, 1, such that.

C−1
j eiπθjσ3e2πiRjCj = Mj , j = 0, x, 1; (34)

C−1
∞ e−iπθ∞σ3e2πiR∞C∞ = e−iπθ∞σ3e2πiR∞ . (35)

and a matrix valued meromorphic function Ψ(x, λ) such that:

Ψ(x, λ) =







































[

I +O
(

1
λ

)]

λ−
θ∞
2 σ3λR∞C∞, λ→ ∞;

ψ0(x)
[

I +O(λ)
]

λ
θ0
2 σ3λR0C0, λ→ 0;

ψx(x)
[

I +O(λ − x)
]

(λ− x)
θx
2 σ3(λ− x)RxCx, λ→ x;

ψ1(x)
[

I +O(λ − 1)
]

(λ− 1)
θ1
2 σ3(λ− 1)R1C1, λ→ 1;

(36)

Here ψ0, ψx, ψ1 are invertible matrices depending on x. The coefficient of the fuchsian system are
then given by

A(x;λ) :=
dΨ(x, λ)

dλ
Ψ(x;λ)−1.

A 2× 2 R.H. is always solvable at a fixed x [1]. As a function of x, the solution A(x;λ) extends
to a meromorphic function on the universal covering of C̄\{0, 1,∞}. Now we prove the following
fact:

The R.H. admits diagonally conjugated solutions (fuchsian systems), except when at least one
θν ∈ Z\{0} and simultaneously Rν = 0.

This can be equivalently stated in the form of the following:

Proposition 1 There is a one to one correspondence between the monodromy data θ0, θx, θ1, R0, Rx, R1,
θ∞ 6= 0, R∞, M0,Mx,M1 (defined up to conjugation), satisfying a), b), c) above, and a (branch of
a) transcendent y(x), except when at least one θν ∈ Z\{0} and simultaneously Rν = 0.

To say in other words, the one to one correspondence is realized if and only if one of the following
conditions is satisfied:

(1) θν 6∈ Z, for every ν = 0, x, 1,∞;

(2) if some θν ∈ Z and Rν 6= 0, θν 6= 0

(3) if some θj = 0 (j = 0, x, 1) and simultaneously θ∞ 6∈ Z, or θ∞ ∈ Z and R∞ 6= 0.

Note that for θj = 0, Mj can be put in Jordan form

(

1 2πi
0 1

)

. Therefore Proposition 1 says

that:

There is one to one correspondence except when one of the matrices Mi (i = 0, x, 1), or M∞ =
M1MxM0, is equal to ±I.

Proof: The proof is based on the observation that a triple of monodromy matrices M0, Mx, M1

may be realized by two fuchsian systems which are not conjugated. The crucial point is that the
solutions of (34), (35) are not unique. Two sets of particular solutions Cν and C̃ν(ν = 0, x, 1,∞)
give to fuchsian systems:

dΨ(x, λ)

dλ
Ψ(x, λ)−1 = A(x, λ),

dΨ̃(x, λ)

dλ
Ψ̃(x, λ)−1 = Ã(x, λ).

These may be not diagonally conjugated. If this happens, there is no one-to-one correspondence
between a set of monodromy data and a solutions of PVI.

We study the structure of the solutions of (34), (35). Equation (35) has the following solutions:

10



i) If θ∞ 6∈ Z (and then R∞ = 0),

C∞ =

(

p∞ 0
0 q∞

)

, p∞, q∞ ∈ C\{0}

ii) If θ∞ ∈ Z and R∞ 6= 0,

C∞ =

(

p∞ q∞
0 p∞

)

, if R∞ =

(

0 ∗
0 0

)

C∞ =

(

p∞ 0
q∞ p∞

)

, if R∞ =

(

0 0
∗ 0

)

.

where p∞, q∞ ∈ C, p∞ 6= 0.

iii) If θ∞ ∈ Z and R∞ = 0, then C∞ is any invertible matrix.

Equation (34), may have different solutions Cj and C̃j . Therefore CjC̃
−1
j is a solution of:

(

CjC̃
−1
j

)−1
eiπθjσ3e2πiRj CjC̃

−1
j = eiπθjσ3e2πiRj .

i) If θj 6∈ Z (and then Rj = 0), we have:

CjC̃
−1
j =

(

aj 0
0 bj

)

, aj , bj ∈ C\{0}

ii) If θj ∈ Z and Rj 6= 0, we have:

CjC̃
−1
j =

(

aj bj
0 aj

)

, aj , bj ∈ C, aj 6= 0; if Rj =

(

0 ∗
0 0

)

Cj C̃
−1
j =

(

aj 0
bj aj

)

, aj , bj ∈ C, aj 6= 0; if Rj =

(

0 0
∗ 0

)

.

In particular, for θj = 0 , Rj is the Jordan form

(

0 1
0 0

)

.

iii) If θj ∈ Z and Rj = 0, then CjC̃
−1
j is any invertible matrix

(

a b
c d

)

.

Let Cν and C̃ν (ν = 0, x, 1,∞) be two sets of solutions of (34) (35) and let us denote by Ψ and
Ψ̃ the corresponding solutions of the R.H. We observe that:

i) for θj 6∈ Z (j = 0, x, 1):

(λ− j)
θj

2 σ3

(

aj 0
0 bj

)

=

(

aj 0
0 bj

)

(λ− j)
θj

2 σ3 .

ii) For θj ∈ Z and Rj 6= 0:

(λ− j)
θj

2 σ3(λ− j)Rj

(

aj bj
0 aj

)

=

[

ajI + (λ− j)|θj |

(

0 bj
0 0

)]

(λ− j)
θj

2 σ3(λ− j)Rj ,

or

(λ− j)
θj

2 σ3(λ− j)Rj

(

aj 0
bj aj

)

=

[

ajI + (λ− j)|θj |

(

0 0
bj 0

)]

(λ− j)
θj

2 σ3(λ− j)Rj ,

for Rj upper or lower triangular respectively.

iii) For θj ∈ Z and Rj = 0:

(λ− j)
θj

2 σ3

(

a b
c d

)

=

(

a bλθj

cλ−θj d

)

(λ− j)
θj

2 σ3
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We conclude that, for λ → j:

ΨΨ̃−1 ∼



































































(

aj 0
0 bj

)

, if θj 6∈ Z;











ajI, if θj 6= 0,

(

aj bj
0 aj

)

, if θj = 0,
if θj ∈ Z, Rj 6= 0







Arbitrary invert. matrix, if θj = 0,

C (λ− j)−|θj | → ∞, otherwise,
if θj ∈ Z, Rj = 0

The matrix C above is C =

(

0 ∗
0 0

)

or C =

(

0 0
∗ 0

)

.

Let C∞ and C̃∞ be two solutions of (35).

i) If θ∞ 6∈ Z (and then R∞ = 0), we have

C∞C̃
−1
∞ =

(

a∞ 0
0 b∞

)

, a∞, b∞ ∈ C\{0}.

ii) If θ∞ ∈ Z and R∞ 6= 0, we have

C∞C̃
−1
∞ =

(

a∞ b∞
0 a∞

)

, a∞, b∞ ∈ C, a∞ 6= 0; if R∞ =

(

0 ∗
0 0

)

C∞C̃
−1
∞ =

(

a∞ 0
b∞ a∞

)

, a∞, b∞ ∈ C, a∞ 6= 0; if R∞ =

(

0 0
∗ 0

)

.

iii) If θ∞ ∈ Z and R∞ = 0, then C∞C̃
−1
∞ is any invertible matrix.

Therefore, for λ → ∞ we have:

ΨΨ̃−1 ∼























(

a∞ 0
0 b∞

)

if θ∞ 6∈ Z;

(

I +O
(

1
λ

)) (

a∞I + b∞
λ|θ∞|

)

→ a∞I, if θ∞ ∈ Z\{0}, R∞ 6= 0

C∞λ
|θ∞| → ∞, if θ∞ ∈ Z\{0}, R∞ = 0

The matrix C∞ above is C∞ =

(

0 ∗
0 0

)

or C∞ =

(

0 0
∗ 0

)

.

From the above result we conclude that ΨΨ̃−1 is analytic on C̄ and then it is a constant matrix
W , except when at least one θν ∈ Z\{0} and simultaneously Rν = 0. Except for this case, we have:

Ψ = W Ψ̃ =⇒ Ã(x, λ) = WA(x, λ)W−1.

We observe that: W = limλ→∞ ΨΨ̃−1 (in the cases θ∞ 6∈ Z, or for θ∞ ∈ Z (θ∞ 6= 0) and R∞ 6= 0).
Therefore W is diagonal.

Proposition 1 is proved. 2

4 Logarithmic asymptotics (6) and (7)

We consider cases when (1) can be reduced to the fuchsian systems (29) and (30). Let σ be a
complex number defined, up to sign, by:

tr (M0Mx) = 2 cos(πσ), |<σ| ≤ 1.
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In our paper [14], we computed all the asymptotic behaviors for 0 ≤ <σ < 1, as they can be
obtained from the matching procedure when (29) and (30) are fuchsian. Among them, we obtained
(6) and (7).

Note: For solutions with expansion:

y(x) = x(A1 + B1 lnx + C1 ln2
x + D1 ln3

x + ...) + x
2(A2 + B2 lnx + ...) + ..., x → 0.

only the following cases are possible:

y(x) =



















θ0
θ0±θx

x + O(x2) [Taylor expansion],

x

(

θ
2
0−B

2
1

θ
2
0
−θ

2
x

+ B1 ln x +
θ
2
x−θ

2
0

4
ln2 x

)

+ x2(...) + ...,

x (A1 ± θ0 ln x) + x2(...) + ..., and θ0 = ±θx.

(37)

A1 and B1 are parameters. We see that the higher orders in (6) and (7) are O(x2 lnm x), for some
integer m > 0.

4.1 Review of the Derivation of (6) and (7)

Let x → 0. The reduction to the fuchsian systems (29) is possible if in the domain (23) we have:

|(A0 +Ax)ij | �
∣

∣

∣(Ax)ij

x

λ

∣

∣

∣ , namely: |(A0 +Ax)ij | �
∣

∣(Ax)ij x
1−δOUT

∣

∣ . (38)

Let us denote with Âi the leading term of the matrix Ai, i = 0, x, 1. We can substitute (29) with:

dΨOUT

dλ
=

[

Â0 + Âx

λ
+

Â1

λ− 1

]

ΨOUT (39)

Lemma 1 If the approximation (29) is possible, then Â0 + Âx has eigenvalues ±σ
2 ∈ C independent

of x, defined (up to sign and addition of an integer) by tr(MxM0) = 2 cos(πσ). Let r1 ∈ C, r1 6= 0.
For θ∞ 6= 0, the leading terms are:

Â1 =

(

σ2−θ2
∞−θ2

1

4θ∞
−r1

[σ2−(θ1−θ∞)2][σ2−(θ1+θ∞)2]
16θ2

∞

1
r1

−
σ2−θ2

∞−θ2
1

4θ∞

)

, (40)

and

Â0 + Âx =

(

θ2
1−σ2−θ2

∞

4θ∞
r1

− [σ2−(θ1−θ∞)2][σ2−(θ1+θ∞)2]
16θ2

∞

1
r1

−
θ2
1−σ2−θ2

∞

4θ∞

)

. (41)

Proof: Observe that tr(Â0 + Âx) = tr(A0 + Ax) = 0, thus, for any x, Â0 + Âx has eigenvalues
of opposite sign, that we denote ±σ̃(x)/2. Then, we recall that x is a monodromy preserving
deformation, therefore the monodromy matrices of (39) are independent of x. At λ = 0, 1,∞ they
are:

MOUT
0 =

{

MxM0

M0Mx
, MOUT

1 = M1, MOUT
∞ = M∞.

Thus, det(MOUT
0 ) = 1, because det(Mx)=det(M0) = 1. Therefore, there exists a constant matrix

D and a complex constant number σ such that:

D−1 MOUT
0 D =











diag(exp{−iπσ}, exp{iπσ}),

(

±1 ∗
0 ±1

)

, or

(

±1 0
∗ ±1

)

, σ ∈ Z

We conclude that σ̃(x) ≡ σ. We also have tr(MOUT
0 ) = 2 cos(πσ).
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Now consider the gauge:

Φ1 := λ−
σ
2 (λ− 1)−

θ1
2 ΨOUT .

dΦ1

dλ
=

[

Â0 + Âx − σ
2

λ
+
Â1 −

θ1

2

λ− 1

]

Φ1 (42)

We can identify Â0 + Âx − σ
2 and Â1 − θ1

2 with B0 and B1 of Proposition 5 in Appendix 1, case

(69), with a = θ∞

2 + θ1

2 + σ
2 , b = − θ∞

2 + θ1

2 + σ
2 , c = σ. 2

In principle, r1 may be a function of x. If the monodromy of system (39) depends on r1, then r1
is a constant independent of x. This is the case here.

For all the computations which follow, involving system (39) or (42), we note that the hypothesis
θ∞ 6= 0 excludes cases (70), (71) and the Jordan cases (72)–(74).

The reduction to the fuchsian system (30) is possible for x → 0 in the domain (25) if:

∣

∣

∣

∣

(A0)ij

λ
+

(Ax)ij

λ− x

∣

∣

∣

∣

� |(A1)ij | , namely:

∣

∣

∣

∣

(A0 +Ax)ij

xδIN

∣

∣

∣

∣

� |(A1)ij | . (43)

We can rewrite (30) using just the leading terms of the matrices:

dΨIN

dλ
=

[

Â0

λ
+

Âx

λ− x

]

ΨIN , (44)

Then, we re-scale λ and consider the following system:

dΨIN

dµ
=

(

Â0

µ
+

Âx

µ− 1

)

ΨIN , µ :=
λ

x

We know that there exists a matrix K0(x) such that:

K0
−1(x) (Â0 + Âx) K0(x) =

(

σ
2 0
0 −σ

2

)

, or

(

0 1
0 0

)

.

Let
ˆ̂
Ai := K0

−1ÂiK0, i = 0, x. By a gauge transformation, we get the system:

ΨIN =: K0(x) Ψ0,
dΨ0

dµ
=

[

ˆ̂
A0

µ
+

ˆ̂
Ax

µ− 1

]

Ψ0, (45)

Important Remark (see [14]): Conditions (38), (43) are satisfied if and only if |<σ| < 1, 0 < δIN ≤
δOUT < 1.

4.2 Matching for σ = 0. Proof of (6) and (7)

We suppose now σ = 0.

4.2.1 Case θ0 ± θx 6= 0. Proof of (6)

Lemma 2 Let r1 ∈ C, r1 6= 0. The matrices of system (39) are:

Â1 =

(

− θ∞
2+θ1

2

4θ∞
−r1

[θ2
1−θ2

∞]2

16θ2
∞r1

θ∞
2+θ1

2

4θ∞

)

, Â0 + Âx =

(

θ2
1−θ2

∞

4θ∞
r1

−
[θ2

∞−θ2
1]2

16θ2
∞r1

θ2
∞−θ2

1

4θ∞

)

, ∀r1 6= 0.

A fundamental matrix solution can be chosen with the following behavior at λ = 0:

ΨOUT (λ) = [G0 +O(λ)]

(

1 logλ
0 1

)

, G0 =

(

1 0
θ∞

2−θ1
2

4θ∞ r1

1
r1

)

.

14



Proof: The system (42) is:

dΦ1

dλ
=

[

Â0 + Âx

λ
+
Â1 −

θ1

2

λ− 1

]

Φ1,

We identify Â0 + Âx and Â1 − θ1

2 with B0 and B1 of proposition 5 in Appendix 1, diagonalizable

case (69) (we recall that (70)–(74) never occur when θ∞ 6= 0) with a = θ∞

2 + θ1

2 , b = − θ∞

2 + θ1

2 ,
c = 0.

The behavior of a fundamental solution is a standard result in the theory of Fuchsian systems.

The matrix G0 is defined by G0
−1
(

Â0 + Âx

)

G0 =

(

0 1
0 0

)

. 2

Lemma 3 Let r ∈ C. The matrices of system (45) are:

ˆ̂
A0 =

(

r + θ0

2
4 r (r+θ0)

θ2
x−θ2

0

θ2
0−θ2

x

4 −r − θ0

2

)

,
ˆ̂
Ax =

(

−r − θ0

2 1− 4 r (r+θ0)
θ2

x−θ2
0

θ2
x−θ2

0

4 r + θ0

2 .

)

. (46)

There exist a fundamental solution of (45) with the following behavior at µ = ∞:

Ψ0(µ) =

[

I +O

(

1

µ

)] (

1 logµ
0 1

)

, µ→ ∞.

Proof: We do a gauge transformation:

Φ0 := µ−
θ0
2 (µ− 1)−

θx
2 Ψ0,

dΦ0

dµ
=





ˆ̂
A0 −

θ0

2

µ
+

ˆ̂
Ax − θx

2

µ− 1



 Φ0. (47)

We identify
ˆ̂
A0 − θ0

2 ,
ˆ̂
Ax − θx

2 with B0 and B1 in the Appendix 1, Proposition 5, case (72), with

parameters a = θ0

2 + θx

2 , c = θ0. In particular,

ˆ̂
A0 −

θ0
2

+
ˆ̂
Ax −

θx

2
=

(

− θ0+θx

2 1

0 − θ0+θx

2

)

(48)

Here the values of the parameters satisfy the conditions a 6= 0 and a 6= c, namely θ0 ± θx 6= 0. From

the matrices (72), we obtain
ˆ̂
A0 = B0 + θ0/2 and

ˆ̂
Ax = B1 + θx/2. Keeping into account (48), by

the standard theory of fuchsian systems we have:

Φ0(µ) =

[

I +O

(

1

µ

)]

µ−
θ0+θx

2

(

1 log µ
0 1

)

, µ→ ∞.

This proves the behavior of Ψ0(µ). 2

If the monodromy of the system (45) depends on r, then r is a constant independent of x. This
is the case here.

The matching condition ΨOUT (λ) ∼ K0(x) Ψ0 (λ/x) becomes:

K0(x)

(

1 log
(

λ

x

)

0 1

)

∼ G0

(

1 log λ

0 1

)

=⇒ K0(x) ∼

(

1 0
θ
2
∞−θ

2
1

4 θ∞ r1

1
r1

) (

1 log x

0 1

)

.

From the above result, together with (46), we compute Â0 = K0
ˆ̂
A0K0

−1, Â1 = K0
ˆ̂
A1K0

−1. For
example,

Â0 = G0





r + θ0
2

+
θ
2
0−θ

2
x

4
log x

θ
2
x−θ

2
0

4
log2 x − 2

(

r + θ0
2

)

log x + 4 r(r+θ0)

θ
2
x−θ

2
0

θ
2
0−θ

2
x

4

θ
2
x−θ

2
0

4
log x −

(

r + θ0
2

)



 G0
−1

.

A similar expression holds for Âx. The leading terms of y(x) are obtained from (4) with matrix
entries (Â1)12 = −r1 and:

(Â0)12 = r1

[

θ2x − θ20
4

log2 x− 2

(

r +
θ0
2

)

logx+
4 r(r + θ0)

θ2x − θ20

]

.
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The result is:

y(x) ∼ x

[

θ2x − θ20
4

log2 x− 2

(

r +
θ0
2

)

logx+
4 r(r + θ0)

θ2x − θ20

]

(49)

= x

{

θ2x − θ20
4

log2 x− 2

(

r +
θ0
2

)

logx+
4

θ2x − θ20

[

(

r +
θ0
2

)2

−
θ20
4

]}

.

The above is (6).

4.2.2 Case θ0 ± θx = 0. Proof of (7)

We consider here the cases (73), (74) of Proposition 5 applied to the system (47).

Case (73) is the case σ = 0, θ0 = −θx, with a = 0, c = θ0 in the system (47). From Proposition 5
we immediately have:

ˆ̂
A0 =

(

θ0

2 r

0 − θ0

2

)

,
ˆ̂
Ax =

(

θx

2 1 − r

0 − θx

2

)

.

The behavior of Ψ0 and ΨOUT , and the matching are the same of subsection 4.2.1. We obtain the
same K0(x). Therefore:

(Â0)12 = r1 (r − θ0 lnx), (Â1)12 = −r1.

This gives the leading terms:

y(x) ∼ x(r − θ0 lnx) = x(r + θx lnx). (50)

In the same way, we treat the other cases. Case (73) with a = c, is the case σ = 0, θ0 = θx. As
above, we find y(x) ∼ x(r − θ0 lnx) = x(r − θx lnx). Case (74) with a = 0, is the case σ = 0,
θ0 = −θx. We find y(x) ∼ x(r + θ0 lnx) = x(r − θx lnx). Case (74) with a = c, is the case σ = 0,
θ0 = θx. We find y(x) ∼ x(r + θ0 lnx) = x(r + θx lnx).

Both (49) and (50) contain more than one term, and in principle only the leading one is certainly
correct. To prove that they are all correct, we observe that (49) and (50) can be obtained also by
direct substitution of y(x) = x(A1 + B1 lnx + C1 ln2 x + D1 ln3 x + ...) + x2(A2 + B2 ln x + ...) + ... into
(PVI). We can recursively determine the coefficients by identifying the same powers of x and lnx.
As a result we obtain only the five cases (37), which include (49) and (50).

The reader can verify that conditions (38), (43) are satisfied.

5 Monodromy Data associated to the solution (6)

In this section, we compute the monodromy data for the solution (6) in the generic case θν 6∈ Z for
any ν = 0, x, 1,∞. We need some notations. Let γE denote the Euler’s constant. Let:

ψE(x) =
d ln Γ(x)

dx
, x 6= 0,−1,−2,−3, ....

In particular, ψE(1) = −γE.

Proposition 2 Let θ0, θx, θ1, θ∞ 6∈ Z. The monodromy group associated to (6) is generated by:

M0 = EC
(∗)
0∞ exp{iπθ0σ3}

[

EC
(∗)
0∞

]−1

,

Mx = EC
(∗)
0∞ C

(∗)
01

−1
exp{iπθxσ3} C

(∗)
01

[

EC
(∗)
0∞

]−1

,

M1 = BC−1
01 exp{iπθ1σ3} C01B

−1.

The matrices above are:

E =





4q

θ2
x−θ2

0

4
θ2
0−θ2

x

4
θ2

x−θ2
0

0
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q = −4iπε+

+
1

θ20 − θ2x

{

4r + 2(θ0 − θx) + (θ2x − θ20)

[

ψ

(

−
θ0
2

−
θx

2

)

+ ψ

(

θx

2
−

θ0
2

+ 1

)

+ 2γE

]}

,

where ε = ±1.

C
(∗)
0∞ =











− e
iπε

(

θ0
2

+
θx
2

)

Γ(1+θ0)

Γ
(

θ0
2 + θx

2

)

Γ
(

θ0
2 − θx

2

) − e
iπε

(

θx
2

−
θ0
2

)

Γ(1−θ0)

Γ
(

−
θ0
2 − θx

2

)

Γ
(

θx
2 −

θ0
2

)

e
iπε

(

θ0
2

+
θx
2

)

π sin πθ0 Γ(1+θ0)

sin π
(

θ0
2 − θx

2

)

sin π
(

θ0
2 + θx

2

)

Γ
(

θ0
2 + θx

2

)

Γ
(

θ0
2 − θx

2

) 0











C
(∗)
01 =







Γ(−θx)Γ(1+θ0)
(

θ0
2 − θx

2

)

Γ
(

θ0
2 − θx

2

)2
Γ(−θx)Γ(1−θ0)

(

−
θ0
2 − θx

2

)

Γ
(

−
θ0
2 − θx

2

)2

Γ(θx)Γ(1+θ0)
(

θ0
2 + θx

2

)

Γ
(

θ0
2 + θx

2

)2
Γ(θx)Γ(1−θ0)

(

−
θ0
2 + θx

2

)

Γ
(

−
θ0
2 + θx

2

)2






,

C01 =









Γ(−θ1)

Γ
(

1− θ∞
2 −

θ1
2

)

Γ
(

θ∞
2 −

θ1
2

) −
Γ
(

1+
θ1
2 − θ∞

2

)

Γ
(

θ∞
2 +

θ1
2

)

Γ(1+θ1)

Γ(θ1)

Γ
(

1+
θ1
2 − θ∞

2

)

Γ
(

θ∞
2 +

θ1
2

) 0









,

B =

(

1 ω
0 1

)

, ω := ψE

(

θ∞
2

+
θ1
2

)

− ψE

(

θ1
2

−
θ∞
2

+ 1

)

+ 2γE,

With the above choice, we have:

M1MxM0 = COUT exp{−iπθ∞σ3} C
−1
OUT ,

where:

COUT = BC−1
0∞D

−1, D =





1 0

0 1−θ∞

r1



 , C0∞ =





1 −π e
−i π

2
(θ1+θ∞)

sin π
2 (θ1+θ∞)

1 −π e
−i π

2
(θ1−θ∞)

sin π
2 (θ1−θ∞)





We also note that tr(M0Mx) = 2.

If we compute tr(M0M1) and tr(M1Mx) we find two quadratic polynomials of q. Then, q can be
derived as a function tr(M0M1) and tr(M1Mx). In this way we obtain

r = r(θ0, θx, θ1, θ∞, tr(M0M1), tr(M1Mx)) (51)

We omit the long formula which results. Direct computation shows also that tr(M0M1) and
tr(M1Mx) depend on ε only through q. Therefore, different choices of ε just change the branch
of (6), because they change 4r/(θ2

0 − θ2x) of 8πi.

5.1 Derivation of Proposition 2

The matching ΨOUT ↔ ΨIN has been realized by:

ΨOUT (x, λ) = [G0 +O(λ)]

(

1 logλ
0 1

)

, G0 =

(

1 0
θ∞

2−θ1
2

4θ∞ r1

1
r1

)

.

ΨIN(x, λ) = K0(x)Ψ0

(

λ

x

)

, Ψ0(µ) =

[

I +O

(

1

µ

)] (

1 logµ
0 1

)

, µ→ ∞.

MATCHING Ψ ↔ ΨOUT .

The correct choice of ΨMatch
OUT must match with:

Ψ =

[

I +O

(

1

λ

)]

λ−
θ∞
2 σ3 , λ → ∞.
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System (42) is (69) of Appendix 1, with:

a =
θ∞
2

+
θ1
2
, b = −

θ∞
2

+
θ1
2
, c = 0.

If we write:

ΨOUT = (λ − 1)
θ1
2

(

ϕ1 ϕ2

ξ1 ξ2

)

,

then ϕ1 and ϕ2 are independent solutions of the hypergeometric equation (75):

λ(1 − λ)
d2ϕ

dλ2
+
(

1 + c− (a+ [b+ 1] + 1) λ
) dϕ

dλ
− a(b+ 1) ϕ = 0,

while ξi are given by (76):

ξi =
1

r

[

λ(1 − λ)
dϕi

dλ
− a

(

λ+
b− c

a− b

)

ϕi

]

, i = 1, 2.

We need a complete set of solutions at λ = 0, 1,∞.
We explain some preliminary facts. Let us consider a Gauss hypergeometric equation in standard

form:

z (1 − z)
d2ϕ

dz2
+
[

γ0 − (α0 + β0 + 1) z
] dϕ

dz
− α0β0 ϕ = 0 (52)

(α0, β0, γ0 here are not the coefficients of (PVI)! We are just using the same symbols only here). We
refer to the paper by N.E. Norlund [22] in order to choose three sets of two independent solutions
which can be easily expanded in series at z = 0, 1,∞ respectively. Solutions with logarithmic or
polynomial behaviors at z = 0 may occur when γ0 ∈ Z. The role of γ0 at z = 1 and z = ∞ is played
by α0 +β0−γ0 +1 and α0−β0 +1 respectively. Therefore, solutions with logarithmic or polynomial
behaviors at z = 1 may occur when α0 + β0 − γ0 + 1 ∈ Z, at z = ∞ when α0 − β0 + 1 ∈ Z. Some
more words must be said about the choice of independent solutions. We consider the point z = 0.

For γ0 6∈ Z, we choose the following two independent solutions:

ϕ1(z) = F (α0, β0, γ0; z), ϕ2(z) = z1−γ0F (α′, β′, γ′; z).

Here F is the standard hypergeometric function and α′ = α0 − γ0 + 1, β′ = β0 − γ0 + 1, γ′ = 2− γ0.
If γ0 = 0,−1,−2, ..., then:

ϕ1(z) = f(α0, β0, γ0; z), ϕ2(z) = z1−γ0F (α′, β′, γ′; z), if α0 or β0 = 0,−1, ..., γ.

ϕ1(z) = z1−γ0G(α′, β′, γ′; z), ϕ2(z) = z1−γ0F (α′, β′, γ′; z), if α0 and β0 6= 0,−1, ..., γ.

Here f is the truncation of F at the order z−γ . G is one of the functions g, g1, g0 or G with
logarithmic behavior, introduced in [22], section 2. They are listed in Appendix 3.

If γ0 = 2, 3, ..., then:

ϕ1(z) = F (α0, β0, γ0; z), ϕ2(z) = z1−γ0f(α′, β′, γ′; z), if α0 or β0 = 1, 2, ..., γ − 1.

ϕ1(z) = F (α0, β0, γ0; z), ϕ2(z) = G(α0, β0, γ0; z), if α0 and β0 6= 1, 2, ..., γ − 1.

If γ0 = 1, then:
ϕ1(z) = F (α0, β0, γ0; z), ϕ2(z) = G(α0, β0, γ0; z).

The point z = 1 is treated in the same way, with the substitution:

α0 7→ α0, β0 7→ β0, γ0 7→ α0 + β0 − γ0 + 1; ϕ 7→ ϕ, z 7→ 1 − z.

The point z = ∞ is treated in the same way, with the substitution:

α0 7→ α0, β0 7→ α0 − γ0 + 1, γ0 7→ α0 − β0 + 1; ϕ 7→ z−α0ϕ, z 7→
1

z
.

In our case:

α0 = a =
θ∞
2

+
θ1
2
, β0 = b+ 1 =

θ1
2

−
θ∞
2

+ 1, γ0 = c+ 1 = 1, z = λ.
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Because γ0 = 1, we have a logarithmic solution at λ = 0. As for λ = 1, α0 + β0 − γ0 + 1 = 1 + θ1
and for λ = ∞, α0 − β0 + 1 = θ∞. We suppose θ1 and θ∞ 6∈ Z. We choose the following set of
independent solutions at λ = 0, 1,∞ respectively (the upper label indicates the singularity):

{

ϕ
(0)
1 = F (α0, β0, γ0;λ),

ϕ
(0)
2 = g(α0, β0, γ0;λ);

{

ϕ
(1)
1 = F (α0, β0, α0 + β0 − γ0 + 1; 1 − λ),

ϕ
(1)
2 = (1 − λ)γ0−α0−β0F (γ0 − α0, γ0 − β0, γ0 − α0 − β0 + 1; 1− λ);

{

ϕ
(∞)
1 = λ−α0F (α0, α0 − γ0 + 1, 1 + α0 − β0;λ

−1),

ϕ
(∞)
2 = λ−β0F (β0, β0 − γ0 + 1, 1− α0 + β0;λ

−1);

Let:

Ψ
(i)
OUT = (λ− 1)

θ1
2

(

ϕ
(i)
1 ϕ

(i)
2

ξ
(i)
1 ξ

(i)
2

)

, i = 0, 1,∞.

From Norlund, 3.(1) and 3.(2) we get:

Ψ
(0)
OUT = Ψ

(1)
OUTC01, | argλ| < π, | arg(1 − λ)| < π,

where C01 is written in Proposition 2. From Norlund, 10.(1) and 10.(3) we obtain:

Ψ
(0)
OUT = Ψ

(∞)
OUTC0∞, 0 < arg z < π,

where C0∞ is written in Proposition 2.

• Note about the computation: In order to apply the formulae of Norlund, 10.(1) and 10.(3) we have
to transform g into g1, using the formula (see Norlund, formula (24)):

g(α, β, γ; z) = g1(α, β, γ; z) −
π

sinπα
eiπεαF (α, β, γ; z), (53)

where ε is an integer introduced as follows. g(α, β, γ; z) is defined for |arg(z)| < π, while g1(α, β, γ; z)
is defined for |arg(−z)| < π. Moreover, −z = eiεπz. In g(α, β, γ; z), ln(z) is negative for 0 < z < 1
(namely, arg(z) = 0), while in g1(α, β, γ; z), ln(−z) is negative for −1 < z < 0. Namely, for
−1 < z < 0, we have arg(z) = −πε. Formula (53) holds true for 0 < arg z < π when ε = −1, and
for −π < arg z < 0 when ε = 1.

In the formulae of Norlund, 10.(1) and 10.(3) it is required that |agr(−z)| < π, namely |arg(eiεπz)|
< π. This limitation must be restricted to 0 < arg z < π when ε = −1, and for −π < arg z < 0
when ε = 1 in order to apply (53).

In our computations we have chosen 0 < arg z < π (i.e. ε = −1), because this is the choice
which gives the order M1MxM0 = exp{−iπθ∞σ3}. The choice −π < arg z < 0 (ε = 1) gives
MxM1M0 = exp{−iπθ∞σ3}.

We expand ϕ
(0)
1 , ϕ

(0)
2 in series at λ = 0 and we get:

Ψ
(0)
OUT = G0

[

I +O(λ)
]

(

1 lnλ
0 1

)

Bei π
2 θ1 , λ→ 0,

where B is written in Proposition 2. Namely:

Ψ
(0)
OUT = ΨOUT Bei π

2 θ1

We expand ϕ
(∞)
1 , ϕ

(∞)
2 in series at λ = ∞, obtaining:

Ψ
(∞)
OUT =

[

I +O

(

1

λ

)]

λ−
θ∞
2 σ3 D, λ→ ∞,

where D is written in Proposition 2. Namely,

Ψ
(∞)
OUT = ΨMatch

OUT D.
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Combining the above results we get:

ΨMatch
OUT = Ψ

(∞)
OUTD

−1

= Ψ
(0)
OUTC

−1
0∞D

−1

= ΨOUT BC−1
0∞D

−1ei π
2 θ1 ≡ ΨOUTCOUT .

The matrix BC−1
0∞D

−1ei π
2 θ1 is COUT . It differs from the matrix COUT of proposition 2 by the factor

ei π
2 θ1 , which simplifies in the formulae. We also have:

ΨMatch
OUT = Ψ

(1)
OUTC01C

−1
0∞D

−1.

Finally, it is an elementary computation to see that

Ψ
(1)
OUT = (λ− 1)

θ1
2

(

ϕ
(1)
1 ϕ

(1)
2

ξ
(1)
1 ξ

(1)
2

)

7→ Ψ
(1)
OUT e

iπθ1σ3 , when λ− 1 7→ (λ− 1)e2πi.

Thus, a choice for the matrix M1 of (1) is

M1 ≡MOUT
1 = DC0∞C

−1
01 eiπθ1σ3 C01C

−1
0∞D

−1,

= C−1
OUT

[

BC−1
01 eiπθ1σ3 C01B

−1
]

COUT .

MATCHING Ψ ↔ ΨIN

The system:

Φ0 := µ−
θ0
2 (µ− 1)−

θx
2 Ψ0,

dΦ0

dµ
=





ˆ̂
A0 −

θ0

2

µ
+

ˆ̂
Ax − θx

2

µ− 1



 Φ0.

is (72) of Appendix 1, with:

a =
θ0
2

+
θx

2
, c = θ0.

The equation for ξ is in Gauss hypergeometic form (77):

µ(µ− 1)
d2ξ

dµ2
+
(

1 + c− 2(a+ 1)µ
) dξ

dµ
− a(a+ 1)ξ = 0, (54)

while ϕ is given by (78):

ϕ(µ) =
1

a(a− c)

[

µ(µ− 1)
dξ

dµ
+ (aµ− c− r)ξ

]

.

In the standard form

µ (1 − µ)
d2ξ

dµ2
+
[

γ0 − (α0 + β0 + 1) µ
] dξ

dµ
− α0β0 ξ = 0, (55)

we have:

α0 = a =
θ0
2

+
θx

2
, β0 = a+ 1 =

θ0
2

+
θx

2
+ 1, γ0 = c+ 1 = θ0 + 1; z = µ.

Therefore γ0 = 1 + θ0, α0 + β0 − γ0 + 1 = 1 + θx, α0 − β0 + 1 = 0, and (54) has no logarithmic
solutions at µ = 0, 1 if θ0, θ1 6∈ Z. On the other hand, at µ = ∞ we may have a solution with
logarithmic or polynomial behavior.

For θ0, θx 6∈ Z, we choose the following independent solutions at µ = 0, 1,∞ respectively::

{

ξ
(0)
1 = F (α0, β0, γ0; µ)

ξ
(0)
2 = µ1−γ0F (α0 − γ0 + 1, β0 − γ0 + 1, 2 − γ0; µ);
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{

ξ
(1)
1 = F (α0, β0, α0 + β0 − γ0 + 1; 1 − µ)

ξ
(1)
2 = (1 − µ)γ0−α0−β0F (γ0 − β0, γ0 − α0, 1 + γ0 − α0 − β0; 1 − µ);

{

ξ
(∞)
1 = µ−β0g1(β0, 1 − γ0 + β0, 1 − α0 + β0; µ

−1)

ξ
(∞)
2 = µ−β0F (β0, 1− γ0 + β0, 1 − α0 + β0; µ

−1);

Let us construct three fundamental matrices form the above three sets of independent solutions:

Ψ
(i)
0 := µ

θ0
2 (µ− 1)

θx
2

(

ϕ
(i)
1 ϕ

(i)
2

ξ
(i)
1 ξ

(i)
2

)

, i = 0, 1,∞

The connection formulae between solutions at µ = 0 and 1 is a standard one, and can be found in
any book on special functions:

Ψ
(0)
0 = Ψ

(1)
0 C

(∗)
01 , | arg(µ)| < π, | arg(1 − µ)| < π

where C
(∗)
01 is given in the statement of Proposition 2. The connection formulae between solutions

at µ = 0 and µ = ∞ can be found in Norlund [22], formulae 9.(1) and 9.(5) (case m = 1). We get:

Ψ
(0)
0 = Ψ

(∞)
0 C

(∗)
0∞, | arg(−µ)| < π,

where C
(∗)
0∞ can be read in Proposition 2 and −µ = e−iπεµ (when µ < 0, arg(µ) = πε).

• Note about the computation: In order to apply the formulae 9.(1) and 9.(5) of Norlund, we have
made use of the formula:

g1(α, β, γ; z) = g1(β, α, γ; z) +
π sinπ(β − α)

sinπβ sinπα
F (α, β, γ; z).

We expand ξ
(∞)
1 , ξ

(∞)
2 , ϕ

(∞)
1 , ϕ

(∞)
2 for µ→ ∞. We obtain:

Ψ
(∞)
0 =

[

I +

(

1

µ

)](

1 ln µ
0 1

)

E, µ→ ∞

where E can be read in Proposition 2. Thus,

Ψ
(∞)
0 = Ψ0 E,

where Ψ0 is the matrix used in the matching ΨOUT ↔ ΨIN . Expanding ξ
(0)
1 , ξ

(0)
2 , ϕ

(0)
1 , ϕ

(0)
2 for

µ → 0 we get:

Ψ
(0)
0 = (µ− 1)−

θx
2

( 4(θ0+r)
θ2
0−θ2

x

4r
θ2
0−θ2

x

1 1

)

[1 +O(µ)] µ
θ0
2 σ3 , µ→ 0.

Expanding ξ
(1)
1 , ξ

(1)
2 , ϕ

(1)
1 , ϕ

(1)
2 for µ→ 1 we get:

Ψ
(1)
0 =

( 2(θ0−θx+2r)
θ2
0
−θ2

x

2(θ0+θx+2r)
θ2
0
−θ2

x

1 1

)

[1 +O(1 − µ)](1 − µ)
θx
2 σ3 , µ → 1.

The above imply that:

Ψ
(0)
0 7→ Ψ

(0)
0 eiπθ0σ3 , for µ 7→ µe2πi,

Ψ
(1)
0 7→ Ψ

(1)
0 eiπθxσ3 , for µ− 1 7→ (µ− 1)e2πi.

Finally, we observe that:
ΨMatch

IN = ΨINCOUT ,

ΨIN = K0(x)Ψ0 = K0(x) Ψ
(∞)
0 E−1 =







K0(x) Ψ
(0)
0 C

(∗)
0∞

−1
E−1

K0(x) Ψ
(0)
1 C

(∗)
01 C

(∗)
0∞

−1
E−1
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As a result of the matching procedure we get:

M0 ≡M IN
0 = C−1

OUT

[

EC
(∗)
0∞ eiπθ0σ3 C

(∗)
0∞

−1
E−1

]

COUT ,

Mx ≡M IN
1 = C−1

OUT

[

EC
(∗)
0∞C

(∗)
01

−1
eiπθxσ3 C

(∗)
01 C

(∗)
0∞

−1
E−1

]

COUT .

2

When we come to the computation of the traces, we find:

tr(M0M1) = aq2 + (b − 2aω)q + (c − bω + aω2),

tr(M1Mx) = Aq2 + (B − 2Aω)q + (C −Bω + Aω2),

where a, b, c , A, B, C are complicated long trigonometric expressions in sines and cosines of the
parameters πθν , ν = 0, x, 1,∞. We omit to write them. The above form for the system which
determines q (and therefore r) implies that:

q = 2ω +
{

solution of the system for ω = 0
}

.

Moreover:

{

solution of the system for ω = 0
}

=
a
(

C − tr(M1Mx)
)

−A
(

c − tr(M0M1)
)

Ab − aB

≡
b
(

C− tr(M1Mx)
)

−B
(

c − tr(M0M1)
)

a
(

C − tr(M1Mx)
)

−A
(

c − tr(M0M1)
)

We omit all the explicit expressions.

6 Monodromy Data associated to the Solution (7)

Proposition 3 [1]. The monodromy group associated to the solution (7):

y(x) ∼ x(r + θ0 lnx),

is generated by:

M0 = E exp{−iπθ0σ3} E
−1, Mx = EU−1 exp{iπθxσ3} UE

−1,

M1 = BC−1
01 exp{iπθ1σ3} C01B

−1;

where B, C01 are given in Proposition 2 and:

E :=





e−i π
2 θ0 r

θ0
− ΨE(θ0 + 1) − γE − iπ

0 ei π
2 θ0



 , U :=





1 −Γ(θ0 + 1)Γ(−θ0)

0 1



 .

Conversely, the parameter r is:

r

θ0
= −

π

4

tr(M0M1)

sinπθ0 sin π
2 (θ∞ + θ1) sin π

2 (θ∞ − θ1)
+ (ΨE(θ0 + 1) + iπ + γE)+

+
π

2

cosπ(θ0 + θ1)

sinπθ0 sin π
2 (θ∞ + θ1) sin π

2 (θ∞ − θ1)
−
ω

2

[

cosπ(θ0 + θ1) − cosπ(θ0 − θ1)
]

sinπθ0 sinπθ1
. (56)

ω is given in Proposition 2.

[2]. The monodromy group and r for the solution (7):

y(x) ∼ x(r − θ0 lnx),

are obtained from the results in [1], with the substitution θ0 7→ −θ0.
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Proof: For the matching ΨOUT ↔ ΨIN and Ψ ↔ ΨOUT , we proceed as in the proof of Proposition
2.

MATCHING Ψ ↔ ΨIN

Consider the case θ0 = θx. For this case, the system for Φ0 can be chosen to be (73) or (74), with
a = c = θ0. Here we refer to system (74). Therefore, a fundamental solution is (see Proposition 6):

Ψ
(0)
0 := µ

θ0
2 (µ− 1)

θ0
2 Φ0 =

= ei π
2 θ0





µ−
θ0
2 (1 − µ)

θ0
2

π
θ0

(1 − µ)−
θ0
2 µ

θ0
2 − 1

θ0+1µ
θ0
2 +1(1 − µ)

θ0
2 F (1 + θ0, 1 + θ0, 2 + θ0;µ)

0 µ
θ0
2 (1 − µ)−

θ0
2



 .

Here, the branch is: (µ − 1) = eiπ(1 − µ). When µ → ∞, we write the hypergeometric function as
follows, using the connection formula 9.(1) in Norlund [22]:

F (1 + θ0, 1 + θ0, 2 + θ0;µ) = eiπθ0(θ0 + 1)µ−1−θ0g1

(

0, 1 + θ0, 1;
1

µ

)

, 0 < argµ < 2π.

Here, we have used the branch −µ = e−iπµ. The function g1 is:

g1

(

0, 1 + θ0, 1;
1

µ

)

= ΨE(1 + θ0) + γE + iπ − lnµ+
∞
∑

ν=1

(1 + θ0)ν

ν ν!
µ−ν , µ→ ∞.

From the above, we obtain:

Ψ
(0)
0 =

[

1 +

(

1

µ

)](

1 lnµ
0 1

)

Eei π
2 θ0 ≡ Ψ0 Ee

i π
2 θ0 .

Here, Ψ0 is the matrix used in the matching ΨOUT ↔ ΨIN and E is in the statement of the
proposition. When µ → 1, we use the connection formula:

F (1 + θ0, 1 + θ0, 2 + θ0;µ) =

= Γ(−θ0)Γ(2 + θ0)F (1 + θ0, 1 + θ0, 1 + θ0; 1 − µ) +
Γ(θ0)Γ(2 + θ0)

Γ(1 + θ0)2
(1 − µ)−θ0F (1, 1, 1− θ0; 1 − µ).

Therefore,

Ψ
(0)
0 = ei π

2 θ0(I +O(1 − µ))





1 r
θ0

− Γ(θ0)Γ(θ0+2)
(θ0+1)Γ(θ0+1)2

0 1



 (1 − µ)
θ0
2 σ3U, µ→ 1.

Finally, when µ→ 0,we have:

Ψ
(0)
0 = ei π

2 θ0(1 +O(µ))

(

1 r/θ0
0 1

)

µ−
θ0
2 σ3 .

Let COUT be the same matrix introduced in the proof of Proposition 2. We have:

ΨMatch
IN = ΨINCOUT = K0(x)Ψ0COUT = K0(x)Ψ

(0)
0 E−1COUT .

This implies that:
Mx = C−1

OUT EU−1 exp{iπθxσ3} UE
−1 COUT ,

M0 = C−1
OUT E exp{−iπθ0σ3} E

−1 COUT .

The matrix COUT has been simplified in the statement of the proposition.

The proof for θ0 = −θx is analogous (for example, it is the case (73) with a = 0, c = θ0). 2
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7 Monodromy Data for the Non-generic Case (9)

We consider the non-generic case

θ0 = 2p, p ∈ Z, θ0 6= 0, θ1 = θx = 0, θ∞ = 1.

In this case, the solutions (6) becomes (9). We show here that the solutions (9) are not in one to
one correspondence with a set of monodromy data. Namely, to a given set of monodromy data, as
defined in Proposition 1, there corresponds a one parameter family (9), where r is a free parameter
(i.e. r is not a function of the traces of the product of the monodromy matrices).

We miss the one-to-one correspondence because the conditions in Proposition 1 are not realized.
Namely, the matrix R0 associated to (9) is:

R0 = 0, while θ0 ∈ Z and θ0 6= 0.

This fact is contained in the following Proposition.

Proposition 4 The monodromy group associated to (9) is generated by:

M0 = I, Mx =

(

1 2πi
0 1

)

, M1 =





1 − 8i
π

ln 2 − 32i
π

(ln 2)2

2i
π

1 + 8 i
π

ln 2



 .

In particular,
tr(M0Mx) = tr(M0M1) = 2, tr(M1Mx) = −2

The monodromy is independent of the parameter r in (9).

Note: With the above choice the monodrmy at infinity: M1Mx ( or MxM1) is not in standard
Jordan form. Namely:

M+
∞ = M1Mx =





1 − 8i
π

ln 2 − 2i
π

(4 ln 2 + iπ)2

2i
π

−3 + 8i
π

ln 2



 , M−
∞ = MxM1 =





−3− 8i
π

ln 2 2i
π

(4i ln 2 + π)2

2i
π

1 + 8i
π

ln 2





They can be put in Jordan form respectively by the following matrices:

C+
OUT =





1 − 4i
π

ln 2 − 16i
π

(ln 2)2r1

i
π

(

1 + 4i
π

ln 2
)

r1



 , C−
OUT =





1 + 4i
π

ln 2 16i
π

(ln 2)2r1

− i
π

(

1 − 4i
π

ln 2
)

r1



 , r1 ∈ C.

We obtain:

C+
OUT

−1
M+

∞C
+
OUT =

(

−1 2πi r1
0 −1

)

, C−
OUT

−1
M−

∞C
−
OUT =

(

−1 2πi r1
0 −1

)

.

On the other hand:

C+
OUT

−1
M1C

+
OUT = C−

OUT

−1
M1C

−
OUT =





1 − 8i
π

ln 2 − 32i
π

(ln 2)2 r1

2i
π r1

1 + 8i
π

ln 2



 ,

C+
OUT

−1
MxC

+
OUT =





−1 − 8i
π

ln 2 2i
π

(4i ln 2 + π)2 r1

2i
π r1

3 + 8i
π

ln 2



 ,

C−
OUT

−1
MxC

−
OUT =





3 − 8i
π

ln 2 2i
π

(4i ln 2 − π)2 r1

2i
π r1

−1 + 8i
π

ln 2
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7.1 Derivation of Proposition 4

The matching ΨOUT ↔ ΨIN has been realized by

ΨOUT (x, λ) = [G0 +O(λ)]

(

1 logλ
0 1

)

, G0 =

(

1 0
1

4r1

1
r1

)

.

ΨIN(x, λ) = K0(x)Ψ0

(

λ

x

)

, Ψ0(µ) =

[

I +O

(

1

µ

)] (

1 logµ
0 1

)

, µ→ ∞.

MATCHING Ψ ↔ ΨOUT .

The correct choice of ΨMatch
OUT must match with:

Ψ =

[

I +O

(

1

λ

)]

λ−
1
2 σ3λR∞ , R∞ =

(

0 −r1
0 0

)

, λ → ∞.

System (42) is (69) of Appendix 1, with:

a =
1

2
, b = −

1

2
, c = 0.

If we write:

ΨOUT =

(

ϕ1 ϕ2

ξ1 ξ2

)

,

then ϕ1 and ϕ2 are independent solutions of the hypergeometric equation (75):

λ(1 − λ)
d2ϕ

dλ2
+
(

1 + c− (a+ [b+ 1] + 1) λ
) dϕ

dλ
− a(b+ 1) ϕ = 0,

and

ξi =
1

r

[

λ(1 − λ)
dϕi

dλ
− a

(

λ+
b− c

a− b

)

ϕi

]

, i = 1, 2.

We need a complete set of solutions at λ = 0, 1,∞. In the standard Gauss hypergeometric form (52)
we have α0 = β0 = 1/2, γ0 = 1. Since γ0 = 1, α0 + β0 − γ0 + 1 = 1 and α0 − β0 + 1 = 1, we expect
solutions with logarithmic behaviors at λ = 0, 1,∞. We choose three sets of independent solutions:

{

ϕ
(0)
1 = F (α0, β0, γ0;λ) ≡ F

(

1
2 ,

1
2 , 1;λ

)

,

ϕ
(0)
1 = g(α0, β0, γ0;λ) ≡ g

(

1
2 ,

1
2 , 1;λ

)

;

{

ϕ
(1)
1 = F (α0, β0, α0 + β0 − γ0 + 1; 1 − λ) ≡ F

(

1
2 ,

1
2 , 1; 1− λ

)

,

ϕ
(1)
1 = g(α0, β0, α0 + β0 − γ0 + 1; 1 − λ) ≡ g

(

1
2 ,

1
2 , 1; 1 − λ

)

;

{

ϕ
(∞)
1 = λ−β0F (β0, β0 − γ0 + 1, β0 − α0 + 1;λ−1) ≡ λ−

1
2F
(

1
2 ,

1
2 , 1; 1

λ

)

,

ϕ
(∞)
1 = λ−β0g(β0, β0 − γ0 + 1, β0 − α0 + 1;λ−1) ≡ λ−

1
2 g
(

1
2 ,

1
2 , 1; 1

λ

)

;

Let

Ψ
(i)
OUT =

(

ϕ
(i)
1 ϕ

(i)
2

ξ
(i)
1 ξ

(i)
2

)

,

From Norlund, formulae 5.(1) and 5.(2) we get:

Ψ
(0)
OUT = Ψ

(1)
OUTC01, C01 =

(

0 −π
− 1

π
0

)

; | argλ| < π, | arg(1 − λ)| < π.

From Norlund, formulae 12.(1) and 12.(3) we get:

Ψ
(0)
OUT = Ψ

(∞)
OUTC0∞, C0∞ =

(

1 0
− 1

π
ei π

2 ε 1

)

;
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0 < argλ < π (ε = 1), − π < argλ < 0 (ε = −1).

• Note on the computation: In order to apply 12.(1) we need:

g1

(

1

2
,
1

2
, 1;

1

λ

)

= g

(

1

2
,
1

2
, 1;

1

λ

)

+ πei π
2 εF

(

1

2
,
1

2
, 1;

1

λ

)

0 < argλ < π (ε = 1), − π < argλ < 0 (ε = −1).

ε appears in the computations when we express: −λ = e−iπελ.

We expand the solutions for λ → 0 and we get:

Ψ
(0)
OUT = G0(1 +O(λ))

(

1 lnλ
0 1

)

B, B =

(

1 −4 ln 2
0 1

)

, λ → 0.

Namely,

Ψ
(0)
OUT = ΨOUTB.

Then expansion when λ→ ∞ yields::

Ψ
(∞)
OUT =

[

I +O

(

1

λ

)]

λ−
1
2 σ3λR∞ D, λ → ∞;

D =

(

1 − ln 16
0 1

r1

)

, R∞ =

(

0 −r1
0 0

)

.

Namely,

Ψ
(∞)
OUT = ΨMatch

OUT D.

From the above:

ΨMatch
OUT = Ψ

(∞)
OUTD

−1

= Ψ
(0)
OUTC

−1
0∞D

−1

≡ ΨOUT COUT , where COUT = BC−1
0∞D

−1.

It is easy to see that:

Ψ
(1)
OUT 7→ Ψ

(1)
OUT

(

1 2πi
0 1

)

, when λ− 1 7→ e2πi (λ− 1).

This, together with the connection formulae

ΨMatch
OUT = Ψ

(0)
OUTC

−1
0∞D

−1,

= Ψ
(1)
OUTC01C

−1
0∞D

−1,

yields:

M1 ≡ MOUT
1 = DC0∞C

−1
01

(

1 2πi
0 1

)

C01C
−1
0∞D

−1

= C−1
OUTBC

−1
01

(

1 2πi
0 1

)

C01B
−1COUT .

We have two choices for COUT , depending on ε = ±1 in C0∞. These have been called C+
OUT and

C−
OUT in the Note, after Proposition 4.

MATCHING Ψ ↔ ΨIN

The system:

Φ0 := µ−p Ψ0,
dΦ0

dµ
=

[

ˆ̂
A0 − p

µ
+

ˆ̂
Ax

µ− 1

]

Φ0.
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is (72) of Appendix 1, with:
a = p, c = 2p.

The equation for ξ is in Gauss hypergeometic form (77):

µ(µ− 1)
d2ξ

dµ2
+
(

1 + c− 2(a+ 1)µ
) dξ

dµ
− a(a+ 1)ξ = 0, (57)

ϕ(µ) =
1

a(a− c)

[

µ(µ− 1)
dξ

dµ
+ (aµ− c− r)ξ

]

.

In the standard form (55), we have:

α0 = p, β0 = 1 + p, γ0 = 1 + 2p; z = µ.

Therefore γ0 = 1 + 2p, α0 + β0 − γ0 + 1 = 1, α0 − β0 + 1 = 0, and (57) may have solutions with
logarithmic or polynomial behaviors at µ = 0, 1,∞.

The choice of three sets of independent solutions requires a distinction of sub cases p > 0 and
p < 0. As before, we denote:

Ψ
(i)
0 = µpΦ

(i)
0 , Φ

(i)
0 =

(

ϕ
(i)
1 ϕ

(i)
2

ξ
(i)
1 ξ

(i)
2

)

, i = 0, 1,∞.

* CASE p > 0. We choose:

{

ξ
(0)
1 = F (α0, β0, γ0;µ),

ξ
(0)
2 = µ1−γ0f(α0 − γ0 + 1, β0 − γ0 + 1, 2 − γ0;µ);

{

ξ
(1)
1 = F (α0, β0, α0 + β0 − γ0 + 1; 1− µ),

ξ
(1)
2 = g(α0, β0, α0 + β0 − γ0 + 1; 1 − µ);

{

ξ
(∞)
1 = µ−β0F (β0, β0 − γ0 + 1, β0 − α0 + 1;µ−1),

ξ
(∞)
2 = µ−β0g1(β0 − γ0 + 1, β0, β0 − α0 + 1;µ−1);

From Norlund, formulae 5.(1), 5.(7) we get:

Ψ
(0)
0 = Ψ

(1)
0 C

(∗)
01 , | arg(1 − λ)| < π, C

(∗)
01 =

(

0 pΓ(p)2

Γ(2p)

− 2Γ(2p)
Γ(p)2 0

)

.

From Norlund, formulae 12.(1), 12.(6) we get:

Ψ
(0)
0 = Ψ

(∞)
0 C

(∗)
0∞, | arg(−µ)| < π, C

(∗)
0∞ = (−1)p+1

(

0 p2Γ(p)2

Γ(2p)
2p Γ(2p)

Γ(p)2 0

)

,

where −µ = e−iπηµ, η = ±1.

We compute the behavior of ϕ
(∞)
i , ξ

(∞)
i (i = 1, 2) for µ → ∞. In the computation, ln(−1/µ)

appears in g1. We write −1/µ = eiπη/µ, argµ = ηπ when −∞ < µ < 0. The final result (after
expanding in series):

Ψ
(∞)
0 (µ) =

[

I +O

(

1

µ

)](

1 lnµ
0 1

)

E, µ→ ∞, E =

(

p−2 Q> p−2

0 −p−2

)

,

Q> = ψE(p) + ψE(p+ 1) + 2γE + iπη −
p+ r

p2
.

Namely,

Ψ
(∞)
0 = Ψ0E,
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where Ψ0 is the matrix for the matching ΨOUT ↔ ΨIN . Expanding ϕ
(0)
i , ξ

(0)
i for µ→ 0 we get:

Ψ
(0)
0 =

(

r+2p
p2

r
p2

1 1

)

[

I +O(µ)
]

µpσ3 , µ→ 0.

Expanding ϕ
(1)
i , ξ

(1)
i for µ→ 1 we get:

Ψ
(1)
0 =

( p+r
p2

p+r
p2 (ψE(p) + ψE(p+ 1) + 2γE) − 1

p2

1 ψE(p) + ψE(p+ 1) + 2γE

)

[

I +O(1 − µ)
]

(

1 ln(1 − µ)
0 1

)

, µ→ 1.

* CASE p < 0. We choose:
{

ξ
(0)
1 = f(α0, β0, γ0;µ),

ξ
(0)
2 = µ1−γ0F (α0 − γ0 + 1, β0 − γ0 + 1, 2− γ0;µ);

{

ξ
(1)
1 = F (α0, β0, α0 + β0 − γ0 + 1; 1− µ),

ξ
(1)
2 = g0(α0, β0, α0 + β0 − γ0 + 1; 1− µ);

{

ξ
(∞)
1 = µ−β0F (β0, β0 − γ0 + 1, β0 − α0 + 1;µ−1),

ξ
(∞)
2 = µ−β0g1(β0, β0 − γ0 + 1, β0 − α0 + 1;µ−1);

From Norlund, formulae 8.(6), 8.(11) we compute:

Ψ
(0)
0 = Ψ

(1)
0 C

(∗)
01 , | arg(1 − λ)| < π, C

(∗)
01 =

(

−pΓ(−p)2

Γ(−2p) 0

0 − 2Γ(−2p)
Γ(−p2)

)

.

From Norlund, formulae 13.(1), 13.(6) we compute:

Ψ
(0)
0 = Ψ

(∞)
0 C

(∗)
0∞, | arg(−µ)| < π, C

(∗)
0∞ = (1)p+1

(

p2Γ(−p)2

Γ(−2p) 0

0 − 2p Γ(−2p)
Γ(−p)2

)

.

We compute the behavior of ϕ
(∞)
i , ξ

(∞)
i (i = 1, 2) for µ → ∞. In the computation, ln(−1/µ)

appears in g1. We write −1/µ = eiπη/µ, argµ = ηπ when −∞ < µ < 0. The final result (expanding
in series):

Ψ
(∞)
0 (µ) =

[

I +O

(

1

µ

)](

1 lnµ
0 1

)

E, µ→ ∞, E =

(

p−2 Q< p−2

0 −p−2

)

,

Q< = ψE(−p) + ψE(−p+ 1) + 2γE + iπη −
p+ r

p2
.

Namely,

Ψ
(∞)
0 = Ψ0E,

where Ψ0 is the matrix for the matching ΨOUT ↔ ΨIN . Expanding ϕ
(0)
i , ξ

(0)
i for µ→ 0 we get:

Ψ
(0)
0 =

(

r+2p
p2

r
p2

1 1

)

[

I +O(µ)
]

µpσ3 , µ→ 0.

Expanding ϕ
(1)
i , ξ

(1)
i for µ→ 1 we get:

Ψ
(1)
0 =

( p+r
p2

p+r
p2 (ψE(−p) + ψE(1 − p) + 2γE) − 1

p2

1 ψE(−p) + ψE(1 − p) + 2γE

)

[

I +O(1 − µ)
]

(

1 ln(1 − µ)
0 1

)

, µ→ 1.

* Both for p > 0 and p < 0 we have:

ΨIN = K0(x)Ψ0 = K0(x)Ψ
(∞)
0 E−1,

= K0(x)Ψ
(0)
0 C

(∗)
0∞

−1
E−1,

= K0(x)Ψ
(1)
0 C

(∗)
01 C

(∗)
0∞

−1
E−1;
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together with ΨMatch
IN = ΨINCOUT . We conclude that the monodromy of (1) is:

M0 ≡M IN
0 = I, Mx ≡M IN

1 = C−1
OUT

[

EC
(∗)
0∞C

(∗)
01

−1
(

1 2πi
0 1

)

C
(∗)
01 C

(∗)
0∞

−1
E−1

]

COUT .

The connection matrices E, C
(∗)
0∞, C

(∗)
01 have different form for p > 0 and for p < 0. We also have

two choices for COUT , depending on ε = ±1 in C0∞. These have been called C+
OUT and C−

OUT

in the comments just after Proposition 4. Multiplying by COUT and C−1
OUT to the left and right

respectively we get three generators for the monodromy group:

M0 = I, M1 = BC−1
01

(

1 2πi
0 1

)

C01B
−1, Mx = EC

(∗)
0∞C

(∗)
01

−1
(

1 2πi
0 1

)

C
(∗)
01 C

(∗)
0∞

−1
E−1.

With this choice, we obtain the matrices of the Proposition 4. We observe that

C−1
OUTM1MxM0COUT =

(

−1 2πi
0 −1

)

, ε = 1;

C−1
OUTMxM1M0COUT =

(

−1 2πi
0 −1

)

, ε = −1.

tr(M0Mx) = tr(M0M1) = 2, tr(M1Mx) = −2.

2

8 Logarithmic Behaviors at x = 1 and x = ∞ – Symmetries

and their Action on the Monodromy Data – Connection
Problem

In this section we compute the logarithmic asymptotic behaviors at x = 1,∞. This is easily done
by applying the action of some Backlund transformations of (PVI) on (6) and (7). They act as
birational transformations on y(x) and x, and as permutations on the θν ‘s, ν = 0, x, 1,∞. In order
to know the monodromy data which are associated to the solutions of (PVI) obtained from (6) and
(7) by the Backlund transformations, we also compute their action on the monodromy data.

The birational transformations are described in [23]; some of them form a representation of the
permutation group and are generated by:

σ1 : θ′1 = θ0, θ′0 = θ1; θ′x = θx, θ′∞ = θ∞; y′(x′) = 1 − y(x), x = 1 − x′.

σ2 : θ′0 = θ∞ − 1, θ′∞ = θ0 + 1; θ′1 = θ1, θ′x = θx; y′(x′) =
1

y(x)
, x =

1

x′
.

σ3 : θ′x = θ1, θ′1 = θx; θ′0 = θ0, θ′∞ = θ∞; y′(x′) =
1

x
y(x), x =

1

x′
.

It is convenient to consider also:

θ′0 = θx, θ′x = θ0; θ′1 = θ1, θ′∞ = θ∞; y′(x′) =
x− y(x)

x− 1
, x =

x′

x′ − 1
; (58)

θ′0 = θ∞ − 1, θ′x = θ1, θ′1 = θx, θ′∞ = θ0 + 1; y′(x′) =
x

y(x)
, x = x′. (59)

θ′x = θ1, θ′1 = θ∞ − 1, θ′∞ = θx + 1; θ′0 = θ0; y′(x′) =
y(x)

y(x) − x
, x =

x′ − 1

x′
. (60)

The transformantion (58) is the composition σ1 · σ3 · σ1. (59) is σ2 · σ3. (60) is the composition of
σ2, (58), (59). For brevity, we will call the Backlund transformations with the name “symmetries”.
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8.1 Action on the Transcendent. Formulae (11)-(16) and (17)-(22)

The symmetry σ3, acting on the transcendent (6), gives the behavior:

y′(x′) ∼
θ′0

2

θ′0
2 − θ′1

2 +
θ′1

2
− θ′0

2

2

[

ln
1

x′
+

4r + 2θ′0

θ′0
2 − θ′1

2

]2

, x′ → ∞;

We prove below that σ3 maps tr(M0Mx) to tr(M ′
0M

′
1), where M ′

ν , ν = 0, x, 1,∞ are th emonodromy
matrices for the system (1) associated to y′(x′), with respect to the same basis of loops (see below).
Therefore tr(M ′

0M
′
1) = 2.

The symmetry σ1, acting on the transcendent (6), gives the behavior:

y′(x′) ∼ 1 − (1 − x′)







θ′1
2

θ′1
2 − θ′x

2
+
θ′x

2
− θ′1

2

4

[

ln(1 − x′) +
4r + 2θ′1

θ′1
2 − θ′x

2

]2






, x′ → 1.

As it is proved below, σ1 maps tr(M0Mx) to tr(M ′
1M

′
x) and thus tr(M ′

1M
′
x) = 2.

The action of (59) gives the behavior:

y′(x′) ∼
1

θ′
1
2−(θ′

∞−1)2

4

[

lnx′ +
4r+2θ′

∞−2

(θ′
∞−1)2−θ′

1
2

]2

+
(θ′

∞−1)2

(θ′
∞−1)2−θ′

1
2

, x′ → 0,

Namely,

y′(x′) =
4

[θ′1
2 − (θ′∞ − 1)2] ln2 x′

[

1 +
8r + 4θ′∞ − 4

θ′1
2 − (θ′∞ − 1)2

1

lnx′
+O

(

1

ln2 x′

)

]

, x′ → 0.

The symmetry (60) gives:

y′(x′) ∼ 1 +
1

θ′
1
2−θ′

0
2

4

[

ln(x′ − 1) +
4r+2θ′

0

θ′
0
2−θ′

1
2

]2

+
θ′
0
2

θ′
0
2−θ′

1
2

, x′ → 1.

Namely:

y′(x′) = 1 +
4

(θ′1
2 − θ′0

2) ln2(x′ − 1)

[

1 −
8r + 4θ′0

θ′0
2 − θ′1

2

1

ln(x′ − 1)
+O

(

1

ln2(x′ − 1)

)

]

, x′ → 1

The symmetry σ2 yields:

y′(x′) ∼
x′

θ′
x
2−(θ′

∞−1)2

4

[

ln 1
x′ +

4r+2θ′
∞−2

(θ′
∞−1)2−θ′

x
2

]2

+
(θ′

∞−1)2

(θ′
∞−1)2−θ′

x
2

, x′ → ∞.

Namely,

y(x) =
4 x′

[(θ′∞ − 1)2 − θ′x
2] ln2 x′

[

1 −
8r + 4(θ′∞ − 1)

θ′x
2 − (θ′∞ − 1)2

1

lnx′
+O

(

1

ln2 x′

)]

, x′ → ∞.

We study the action of the symmetries on (7). If we apply σ1 we find:

y′(x′) ∼ 1 − (1 − x′)
(

r ± θ′1 ln(1 − x′)
)

, x′ → 1, θ′1 = ±θ′x.

The action of σ3 gives:

y′(x′) ∼ r ± θ′0 lnx′, x′ → ∞, θ′0 = ±θ′1.
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The action of (59) gives:

y′(x′) ∼
1

r ± (θ′∞ − 1) lnx′
, x → 0, θ′∞ − 1 = ±θ′1.

The action of (60) gives:

y′(x′) ∼ 1 +
1

r ± θ′0 ln
(

x′−1
x′

) , x′ → 1, θ′∞ − 1 = ±θ′0.

Namely:

y′(x′) = 1 ±
1

θ′0 ln(x′ − 1)

[

1 ∓
r

θ′0 ln(x′ − 1)
+O

(

1

ln2(x′ − 1)

)]

, x′ → 1, θ′∞ − 1 = ±θ′0.

The action of σ2 gives:

y′(x′) ∼
x′

r ± (θ∞ − 1) lnx′
, x′ → ∞, θ′∞ − 1 = ±θ′x.

Namely:

y′(x′) = ±
x′

(θ′∞ − 1) lnx′

[

1 ∓
r

(θ′∞ − 1) lnx′
+O

(

1

ln2 x′

)]

, θ′∞ − 1 = ±θ′x.

When we drop the index ′ from the above formulae, we get the asymptotic behaviors (11)–(16)
and (17)–(22).

8.2 Action of σ
1 and σ

3 on the Monodromy Data

To compute the action of the symmetries on the monodromy of system (1), it is important that we
choose the same base of loops in the λ-plane that we used to parameterize a transcendent in terms of
the monodromy data. Therefore, we consider an ordered base of loops in the “λ-plane” C\{0, x, 1}
as we did in Sub-Section 2.2, figure 1.

Consider the system associated to y(x):

dΨ

dλ
=

[

A0

λ
+

Ax

λ− x
+

A1

λ− 1

]

Ψ, (61)

The monodromy matrices of a fundamental solution Ψ(λ) w.r.t. the chosen base of loops are denoted
M0, Mx, M1. The loop at infinity will be γ∞ = γ0γxγ1, so M∞ = M1MxM0. We need to construct
the system associated to y′(x′):

dΨ′

dλ′
=

[

A′
0

λ′
+

A′
x′

λ′ − x′
+

A′
1

λ′ − 1

]

Ψ′, (62)

We will determine the relation between (61) and (62), between a fundamental solutions Ψ(λ) and a
fundamental solution Ψ′(λ′) and between their respective monodromy matricesM0, Mx, M1 andM ′

0,
M ′

x′ , M ′
1. The monodromy M ′

0, M
′
x′ , M ′

1 are understood to be referred to the order 1, 2, 3 = 0, x′, 1.
In order to do this, we will construct A′

j(x
′, y′(x′), dy′/dx′), j = 0, x′, 1 and we will see how they are

related to the matrices Aj(x, y(x), dy/dx).
The explicit formulas to write Aj(x, y(x), dy/dx) can be found at page 443-445 of [18]:

(A0)12 = −k
y

x
, (A1)12 = k

y − 1

x− 1
, (Ax)12 = −k

y − x

x(x− 1)
;

d

dx
ln k = (θ∞ − 1)

y − x

x(x− 1)
=⇒ k(x) = k0 exp

{

(θ∞ − 1)

∫ x y(s) − s

s(s− 1)
ds

}

, k0 ∈ C.

(Ai)11 = zi +
θi

2
, i = 0, x, 1.
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z0 =
y

xθ∞

{

y(y−1)(y−x)z̃2+
[

θ1(y−x)+xθx(y−1)−2κ2(y−1)(y−x)
]

z̃+κ2
2(y−x−1)−κ2(θ1+xθx)

}

,

z1 = −
y − 1

(x− 1)θ∞

{

y(y−1)(y−x)z̃2+
[

(θ1+θ∞)(y−x)+xθx(y−1)−2κ2(y−1)(y−x)
]

z̃+κ2
2(y−x)+

−κ2(θ1 + xθx) − κ2(κ2 + θ∞)
}

,

zx =
y − x

x(x− 1)θ∞

{

y(y − 1)(y − x)z̃2 +
[

θ1(y − x) + x(θx + θ∞)(y − 1) − 2κ2(y − 1)(y − x)
]

z̃+

+κ2
2(y − 1) − κ2(θ1 + xθx) − xκ2(κ2 + θ∞)

}

,

κ2 = −

{

θ0
2

+
θx

2
+
θ1
2

+
θ∞
2

}

, z̃ =
1

2

x(x − 1)

y(y − 1)(y − x)

dy

dx
−

1

2

{

1

y − x
+
θ0
y

+
θx

y − x
+

θ1
y − 1

}

,

(A0)21 =
z0x

ky
(z0 + θ0), (A1)21 = −

(x− 1)z1
k(y − 1)

(z1 + θ1), (Ax)21 =
x(x − 1)zx

k(y − x)
(zx + θx).

We also recall that (A0)12/λ+ (Ax)12/(λ− x) + (A1)12/(λ− 1) = k(λ−y)
λ(λ−1)(λ−x) .

Symmetry σ3: We compute the matrices A′
i, i = 0, x′, 1, through the above formulas. By direct

computation we find:
z̃′ = xz̃, z′0 = z0, z′1 = zx, z′x = z1.

Therefore we find:

A′
0 = K−1A0K, A′

1 = K−1AxK, A′
x′ = K−1A1K; K :=

(

k
xk′ 0
0 1

)

.

We also note that d(ln k′)/dx′ = d(ln k)/dx+ (θ∞ − 1)/x, thus: k′ = kxθ∞−1. Anyway, the specific
form of k/k′ is not important here. What is important is that the matrix K is diagonal. Then we
can write

dΨ′

dλ′
=

[

A′
0

λ′
+

A′
x′

λ′ − x′
+

A′
1

λ′ − 1

]

Ψ′ = K−1

[

A0

λ′
+

A1

λ′ − x′
+

Ax

λ′ − 1

]

KΨ′,

With the change of variables:

λ′ =
λ

x
, x′ =

1

x
,

we get:
dΨ′

dλ
= K−1

[

A0

λ
+

A1

λ− 1
+

Ax

λ− x

]

KΨ′.

With the gauge:
Ψ = KΨ′,

We finally get (61):
dΨ

dλ
=

[

A0

λ
+

A1

λ− 1
+

Ax

λ− x

]

Ψ. (63)

It is important to note that the gauge is diagonal, a fact that ensures that, for the gauge-transformed
system, the solution λ of the equation obtained by setting the matrix element (1, 2) equal to zero
defines the same y(x). We conclude that the systems (61) and (62) are related by a diagonal gauge
transformation and the exchange of the point x and 1. In other words, we can take as (62) the
system:

dΨ

dλ′
=

[

A0

λ′
+

A1

λ′ − x′
+

Ax

λ′ − 1

]

Ψ, (64)
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where Ψ(λ) is also a fundamental matrix solution of (61). The equation defining y′(x′) is:
[

A0

λ′
+

A1

λ′ − x′
+

Ax

λ′ − 1

]

1,2

= 0 =⇒ λ′ = y′(x′),

while:
[

A0

λ
+

A1

λ− 1
+

Ax

λ− x

]

1,2

= 0 =⇒ λ = y(x),

Therefore, (62) can be obtained from (61) simply by a change of variables λ′ = λ/x, x = 1/x′. The
result is that the points λ = x, 1 are exchanged to λ′ = 1, x′.

We compute the monodromy of (64) in terms of the monodromy of (63). For the latter, we have
fixed in the beginning of the section a ordered base of loops γ0, γx, γ1. But for (64), the points 1, x′

are exchanged. The loops γ̃0, γ̃1 γ̃x′ of figure 2 correspond to the order 1,2,3. Their monodromy
matrices are:

Mγ̃0 = M0, Mγ̃1 = Mx, Mγ̃x′ = M1.

We need a new basis of loops such that the order 1, 2, 3 be 0, x′, 1. Let us denote these loops γ ′0, γ
′
x′ , γ′1

of figure 3. For the basis in figure 3 we easily see that:

γ′0 = γ̃0, γ′x′ = γ̃1 γ̃xγ̃
−1
1 , γ′1 = γ̃1.

Let M ′
0,M

′
x′ ,M ′

1 be the monodromy matrices for the orderded loops γ ′0, γ
′
x′ , γ′1. Therefore we

have:
M ′

0 = Mγ̃0 = M0,

M ′
x′ = M−1

γ̃1
Mγ̃x′Mγ̃1 ≡M−1

x M1Mx,

M ′
1 = Mγ̃1 ≡Mx.

From the above results we compute the traces:

tr(M ′
0M

′
x′) = − tr(M0M1) − tr(M0Mx)tr(M1Mx) + 4

(

cos(πθ∞) cos(πθx) + cos(πθ0) cos(πθ1)
)

,

tr(M ′
0M

′
1) = tr(M0Mx),

tr(M ′
1M

′
x′) = tr(M1Mx).
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The above follow from the identity:

tr(AB) = tr(A)tr(B) − tr(AB−1), A,B 2 × 2 matrices , det(B) = 1

and from:

tr(M1MxM0) = eiπθ∞ + e−iπθ∞ , tr(Mi) = eiπθi + e−iπθi , i = 0, x, 1

Symmetry σ1: We repeat the computation A′
0, A

′
x′ , A′

1 as above. As a result we find that the
system (62) is – up to diagonal conjugation:

dΨ

dλ′
=

[

A0

λ′ − 1
+
A1

λ′
+

Ax

λ′ − x

]

Ψ, λ′ = 1 − λ, x′ = 1 − x, (65)

where Ψ(λ) is also a fundamental matrix of (61). In other words, (65) can be obtained from (61)
by the change of variables λ′ = λ − 1, x = 1 − x′. The relation between the two systems is simply
that the points λ = 0, 1 are exchanged to λ′ = 1, 0. The base γ0, γxγ1 becomes the basis γ̃1, γ̃x′ , γ̃0,
in figure 4. The monodromy matrices are:

Mγ̃1 = M0, Mγ̃x′ = Mx, Mγ̃0 = M1.

We introduce the ordered basis γ ′0, γ
′
x′ , γ′1 of figure 5 and we easily compute:

γ′0 = γ̃0, γ′x′ = γ̃−1
0 γ̃x′ γ̃0, γ′1 = γ̃−1

0 γ̃−1
x′ γ̃1γ̃x′ γ̃0.

Therefore:
M ′

0 = M1, M ′
x′ = M1MxM

−1
1 , M ′

1 = M1MxM0M
−1
x M−1

1 ;
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and:

tr(M ′
0M

′
x′) = tr(M1Mx),

tr(M ′
0M

′
1) = − tr(M0M1) −tr(M1Mx)tr(M0Mx) + 4

(

cos(πθ∞) cos(πθx) + cos(πθ1) cos(πθ0)
)

tr(M ′
1M

′
x′) = tr(M0Mx).

8.3 Connection Problem

When we act with a Backlund transformation on y(x) for x → 0, we obtain the asymptotic behavior
for x′ → (the image of x = 0). r in (6) is expressed in terms of the monodromy data. Let us write
the dependence on the monodromy data in a synthetic way as follows:

y(x) = y(x; Θ;TRMM ),

where Θ = θ0, θx, θ1, θ∞; TRMM = tr(M0Mx), tr(M0M1), tr(M1Mx).
When we act with a symmetry on the above transcendent, we get:

y′
(

x′; Θ(Θ′);TRMM

(

TRM ′M ′

) )

.

Here Θ(Θ′) stands for the θν ’s expressed in terms of the θ′ν ’s, and TRMM

(

TRM ′M ′

)

stands for
the traces of the products of the Mj ’s as functions of the traces of the products of the M ′

j ’s. For
example:

For σ3:

2 ≡ tr(M0Mx) = tr(M ′
0M

′
1),

tr(M0M1) = − tr(M ′
0M

′
x′) − tr(M ′

0M
′
1)tr(M

′
1M

′
x′) + 4

(

cos(πθ′∞) cos(πθ′1) + cos(πθ′0) cos(πθ′x)
)

,

tr(M1Mx) = tr(M ′
1M

′
x′).

For σ1:

2 ≡ tr(M0Mx) = tr(M ′
1M

′
x′),

tr(M0M1) = − tr(M ′
0M

′
1) −tr(M ′

1M
′
x′)tr(M ′

0M
′
x′) + 4

(

cos(πθ′∞) cos(πθ′x) + cos(πθ′1) cos(πθ′0)
)

tr(M1Mx) = tr(M ′
0M

′
x′),

In order to obtain the formulas which express r in terms of the monodromy data for the solutions
(12) and (13), (18) and (19), we substitute in (51) of Proposition 2 or in (56) of Proposition (3), the
θν ’s as functions of the θ′ν ’s and the tr(MiMj) as functions of the tr(M ′

iM
′
j). When this is done, we

can drop the index ′. The above also proves that (12), (18) are associated to tr(M0M1) = 2, while
(13) , (19) are associated to tr(M1Mx) = 2.

8.4 The case of (9): asymptotic behavior (10)

We apply the above results for the transformation of the traces to the case (9). First of all, we
observe that the solutions obtained from the above by the symmetry (59) are:

y(x) ∼ −
1

p2 ln2 x

[

1 − 2
p+ r

p2

1

lnx
+

4p2 + 6rp+ 3r2

p4

1

ln2 x

]

,

with:
θ0 = θx = θ1 = 0, θ∞ = 2p+ 1.

These contain the family of Chazy solutions studied in [21] (for µ = −1/2 in [21]), namely:

y(x) ∼ −
1

ln2 x

[

1 −
2 + 2r

lnx
+

4 + 6r + 3r2

ln2 x

]

, θ0 = θx = θ1 = 0, θ∞ = 3 (p = 1).
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The symmetry σ3 transforms (9) into :

y′(x′) ∼ 1 − p2

(

ln
1

x′
+
r + p

p2

)2

, x′ → ∞, (66)

(

tr(M0Mx), tr(M0M1), tr(M1Mx)
)

7−→
(

tr(M ′
0M

′
x), tr(M ′

0M
′
1), tr(M

′
1M

′
x)
)

≡ (2, 2,−2),

(θ0, θx, θ1, θ∞) = (2p, 0, 0, 1) 7−→ (θ′0, θ
′
x, θ

′
1, θ

′
∞) = (2p, 0, 0, 1).

Therefore, the transformed solution is again associated to the same monodromy data of (9).

Now we apply (60). We obtain:

y′(x′) = 1 −
1

p2
(

ln(1 − x) + r+p
p2

)2 , x′ → 1 (67)

(

tr(M0Mx), tr(M0M1), tr(M1Mx)
)

7−→
(

tr(M ′
0M

′
x), tr(M ′

0M
′
1), tr(M

′
1M

′
x)
)

≡ (2, 2,−2),

(θ0, θx, θ1, θ∞) = (2p, 0, 0, 1) 7−→ (θ′0, θ
′
x, θ

′
1, θ

′
∞) = (2p, 0, 0, 1).

The transformation of the traces by the action of (60) will be proved in the second paper. The
transformed solution is again associated to the same monodromy data of (9).

Actually, a transcendents (9) has a behaviors (67) at x = 1 and a behavior (66) at x = ∞.
Namely, it is the transcendent (10). The parameters r appearing in (9), (66) and (67) are not the
same. Their relation will be determined below.

The rigorous proof of (10) is as follows. For θ0 = θx = θ1 = 0 and θ∞ = 2p + 1, p ∈ Z, (PVI)
was completely studied in [21]. There are two classes of solutions:

(1) Chazy solutions for any p 6= 0. The Chazy solutions for a given p 6= 0 can be obtained
applying a birational transformation to the Chazy solutions for p = 1.

(2) Picard solutions for any p. The Picard solutions for a given p 6= 0 can be obtained applying
a birational transformation to the Picard solutions for p = 0.

The symmetry (59) transforms the Chazy solutions of (PVI) with θ0 = θx = θ1 = 0, θ∞ = 2p+1,
p = 1, to the solution:

y(x) =
8x ωω′

(

2(x− 1)ω′ + ω)
)

(2xω′ + ω)
[

(2xω′ + ω)2 − 4xω′2
]2 , (68)

associated to
θ0 = 2p, p = 1, θx = θ1 = 0, θ∞ = 1.

Here,
ω = ω1 + νω2, ν ∈ C, ω′ = dω/dx.

The ωi, i = 1, 2 are two independent solutions of the hypergeometric equation x(x − 1)ω′′ + (1 −
2x)ω′ − 1/4ω = 0, namely:

ω1 = F

(

1

2
,
1

2
,
1

2
;x

)

, ω2 = g

(

1

2
,
1

2
,
1

2
;x

)

.

Any other case p ∈ Z, p 6= 0, can be obtained by a birational transformation of (68), as it is already
proved in [21] for the Chazy solutions. If we expand (68) for x → 0 we obtain (9), with:

ν = 1/(4 ln 2− 1 + ρ0), ρ0 ≡
r + p

p2
.

Thanks to the representation (68), we can compute the parameters in (10):

ρ∞ =
π(4 ln 2 − 1 + ρ0)

π − i(4 ln 2 − 1 + ρ0)
− 2 ln 2 + 1, ρ1 =

π2

4 ln 2 − 1 + ρ0
− ln 2 + 1.

This is done by expanding ω1, ω2 for x → 1, x → ∞. In order to do this, we use the connection
formulae in Norlund [22]. From 5.(1) and 5.(2), we get:

ω1 = −
1

π
g

(

1

2
,
1

2
,
1

2
; 1 − x

)

, ω1 = −πF

(

1

2
,
1

2
,
1

2
; 1 − x

)

;
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From 12.(1), 12.(3) we get:

ω1 =
x−

1
2

π

[

πF

(

1

2
,
1

2
,
1

2
;
1

x

)

− ig

(

1

2
,
1

2
,
1

2
;
1

x

)]

,

ω2 = x−
1
2 g

(

1

2
,
1

2
,
1

2
;
1

x

)

.

It is not possible to compute the relation between ρ0, ρ∞ and ρ1 by the method of monodromy
preserving deformations, due to the lack of one to one correspondence between a solution (the
parameter r, i.e. ρ0) and the monodromy data.

Note 1: The pure braid group (Appendix 2) acts as follows:

βi · βi :
(

tr(M0Mx), tr(M0M1), tr(M1Mx)
)

= (2, 2,−2) 7−→ (2, 2,−2), i = 1, 2.

It leaves
(

tr(M0Mx), tr(M0M1), tr(M1Mx)
)

invariant, thus the log-behaviors at x = 0, 1,∞ are
preserved in the analytic continuation of (10).

Note 2: The symmetry σ1 transforms:

(

tr(M0Mx), tr(M0M1), tr(M1Mx)
)

7→
(

tr(M ′
0M

′
x), tr(M ′

0M
′
1), tr(M

′
1M

′
x)
)

≡ (−2, 2, 2),

(θ0, θx, θ1, θ∞) = (2p, 0, 0, 1) 7→ (θ′0, θ
′
x, θ

′
1, θ

′
∞) = (0, 0, 2p, 1).

Therefore, the solution:

y′(x′) ∼ 1 − (1 − x′)

[

−p2

(

ln(1 − x) +
r + p

p2

)2

+ 1

]

, x′ → 1

is not associate to the same monodromy data of (9).

9 Appendix 1

Proposition 5 Let B0, B1 be 2 × 2 matrices such that

Eigenvalues (B0) = 0,−c, Eigenvalues (B1) = 0, c− a− b.

and B0 +B1 is either diagonalizable:

B0 +B1 =

(

−a 0
0 −b

)

(it may happen that a = b),

or it is a Jordan form:

B0 +B1 =

(

−a 1
0 −a

)

.

Then, B0 and B1 can be computed as in the following cases. Let r, s be any complex numbers.

1) Diagonalizable case.
Case a 6= b:

B0 :=

(

a(b−c)
a−b

r
ab(a−c)(c−b)

r(a−b)2
b(c−a)

a−b

)

, B1 =

(

a(c−a)
a−b

−r

−(B0)21
b(b−c)
a−b

)

, r 6= 0 (69)

Case a = b. We have two sub-cases:

If a = b = c : B0 =

(

−c− s r
− s(c+s)

r
s

)

, B1 =

(

s −r
s(c+s)

r
−c− s

)

. (70)

If a = b = 0 : B0 =

(

−c− s r
− s(c+s)

r
s

)

, B1 = −B0. (71)
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The transpose matrices of all the above cases are also possible.

2) Jordan case.
For a 6= 0 and a 6= c we have:

B0 =

(

r r(r+c)
a(a−c)

a(c− a) −c− r

)

, B1 =

(

−a− r 1 − r(r+c)
a(a−c)

a(a− c) c− a+ r

)

. (72)

For a = 0, or a = c, we have two possibilities:

B0 =

(

0 r
0 −c

)

, B1 =

(

−a 1 − r
0 −a+ c

)

; (73)

or

B0 =

(

−c r
0 0

)

, B1 =

(

c− a 1 − r
0 −a

)

(74)

Proposition 6 Let B0 and B1 be as in Proposition 5. The linear system:

d

dz

(

ϕ
ξ

)

=

[

B0

z
+

B1

z − 1

] (

ϕ
ξ

)

may be reduced to a Gauss hyper-geometric equation, in the following cases.

Diagonalizable case (i.e. from (69) to (71)):

z(1− z)
d2ϕ

dz2
+
(

1 + c− (a+ [b+ 1] + 1) z
) dϕ

dz
− a(b+ 1) ϕ = 0. (75)

The component ξ is obtained by the following equalities, according to the different cases of Proposition
5.

Cases (69):

ξ =
1

r

[

z(1 − z)
dϕ

dz
− a

(

z +
b− c

a− b

)

ϕ

]

(76)

Case (70):

ξ =
1

r

[

z(1 − z)
dϕ

dz
+ (c+ s− c z) ϕ

]

Case (71):

ξ =
1

r

[

z(1− z)
dϕ

dz
+ (c+ s) ϕ

]

Jordan case (72): The equation for ξ is in Gauss hypergeometic form:

z(z − 1)
d2ξ

dz2
+
(

1 + c− 2(a+ 1)z
)dξ

dz
− a(a+ 1)ξ = 0, (77)

ϕ(z) =
1

a(a− c)

[

z(z − 1)
dξ

dz
+ (az − c− r)ξ

]

. (78)

Jordan case (73): The equation for ξ:

dξ

dz
=

(

−
c

z
+
c− a

z − 1

)

ξ =⇒ ξ(z) =







D z−c(1 − z)c, a = 0;

D z−c, a = c;
D ∈ Z

The equation for ϕ:

dϕ

dz
=











[

r
z

+ 1−r
z−1

]

D (1−z)c

zc , a = 0;

− c
z−1ϕ+

[

r
z

+ 1−r
z−1

]

D
zc , a = c;

39



The equation for ϕ can be integrated. If c 6∈ Z we obtain (by variation of parameters):

ϕ(z) =











E +D
[

− r
c
(1 − z)cz−c + 1

c−1 z1−cF (1 − c, 1 − c, 2 − c; z)
]

, a = 0;

E(1 − z)−c +D
[

− r
c
z−c + 1

c−1 z
1−c(1 − z)−cF (1 − c, 1− c, 2 − c; z)

]

, a = c;
D,E ∈ C

If c ∈ Z, the solution contains a logarithmic term.

Jordan case (74): The equation for ξ:

dξ

dz
= −

a

z − 1
ξ =⇒ ξ(z) =







D, a = 0;

D (1 − z)−c, a = c;
D ∈ C

The equation for ϕ:

dϕ

dz
=











(

− c
z

+ c
z−1

)

ϕ+
(

r
z

+ 1−r
z−1

)

D, a = 0;

− c
z
ϕ+

(

r
z

+ 1−r
z−1

)

D
(1−z)a , a = c;

The equation for ϕ can be integrated. If c 6∈ Z we obtain (by variation of parameters):

ϕ(z) =











E(1 − z)cz−c +D
[

r
c
− 1

c+1 z(1 − z)cF (1 + c, 1 + c, 2 + c; z)
]

, a = 0;

Ez−c +D
[

r
c
(1 − z)−c − 1

c+1 zF (1 + c, 1 + c, 2 + c; z)
]

, a = c;
E,D,∈ C

If c ∈ Z, the solution contains a logarithmic term.

10 Appendix 2: Action of the Braid Group and Analytic

Continuation

The subject of this Appendix is well known. Let us denote a branch of a transcendent, in one to one
correspondence with the monodromy data θ0, θx, θ1, θ∞; tr(M0Mx), tr(M0M1), tr(M1Mx)), with the
following notation:

y(x; θ0, θx, θ1, θ∞; tr(M0Mx), tr(M0M1), tr(M1Mx)),

Its analytic continuation, when x goes around a loop around one of the singular points x = 0, 1,∞,
is obtained by an action of the pure braid group on the monodromy data. This means that the new
branch is:

y(x; θ0, θx, θ1, θ∞; tr(Mβ
0 M

β
x ), tr(Mβ

0 M
β
1 ), tr(Mβ

1 M
β
x )),

where β is a pure braid, and Mj 7→Mβ
j is its action.

It is convenient to replace (1) by

dΨ

dλ
=

[

A0(u)

λ− u1
+
Ax(u)

λ− u2
+
A1(u)

λ− u3

]

Ψ,

where we have restored three parameters of isomonodromy deformation u1, u2, u3. The ordered
basis of loops γ1, γ2, γ3 is in figure 6. The monodromy matrices which correspond to the loops are
M0,Mx,M1.

When x goes around a loop around x = 0, the monodromy data of the system (1) change by
the action of the pure braid β1 · β1, where β1 is the elementary braid which exchanges u1 and u2,
namely which continuously deforms (u1, u2, u3) 7→ (u′1, u

′
2, u

′
3) := (u2, u1, u3). The basis γ1, γ2, γ3 is

deformed, but it is still denoted by γ1, γ2, γ3 in figure 7. The monodromy matrices remain unchanged,
because the deformation is monodromy preserving. The monodromy matrices obtained by the action
of the braid are the monodromy matrices for:

dΨ

dλ
=

[

A0(u
′)

λ− u′1
+
Ax(u′)

λ− u′2
+
A1(u

′)

λ− u′3

]

Ψ,
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w.r.t to the basis γ′1, γ
′
2, γ

′
3 of figure 7.

We have:
γ′1 = γ2, γ′2 = γ−1

2 γ1γ2, γ′3 = γ3.

Therefore:
Mβ1

0 = Mx, Mβ1
x = MxM0M

−1
x , Mβ1

1 = M1.

If follows that:
Mβ1·β1

0 = MxM0M
−1
x ,

Mβ1·β1
x = MxM0MxM

−1
0 M−1

x ,

Mβ1·β1

1 = M1;

tr(Mβ1·β1

0 Mβ1·β1
x ) = tr(M0Mx)

tr(Mβ1·β1

0 Mβ1·β1

1 ) = −tr(M0M1)− tr(M1Mx)tr(M0Mx)+4
(

cos(πθ∞) cos(πθx)+ cos(πθ1) cos(πθ0)
)

,

tr(Mβ1·β1

1 Mβ1·β1
x ) = tr(M1Mx)

[

tr(M0Mx)2 − 1
]

+tr(M0Mx)tr(M0M1)+

−4
[

cos(πθ∞) cos(πθx) + cos(πθ1) cos(πθ0)
]

tr(M0Mx) + 4
[

cos(πθ∞) cos(πθ0) + cos(πθ1) cos(πθx)
]

.

We observe that tr(M0Mx) is unchanged. This means that the log-behavior at x = 0 is preserved
when x goes around a small loop around x = 0.

When x goes around a loop around x = 1, the monodromy data of the system (1) change by
the action of the pure braid β2 · β2, where β2 is the elementary braid which exchanges u2 and u3,
namely which continuously deforms (u1, u2, u3) 7→ (u′1, u

′
2, u

′
3) := (u1, u3, u2). The basis γ1, γ2, γ3 is

deformed, and we still denote it γ1, γ2, γ3 in figure 8. The monodromy matrices remain unchanged.
The monodromy matrices obtained by the action of the braid group are the monodromy matrices
w.r.t to the basis γ′1, γ

′
2, γ

′
3 of figure 8. We have:

γ′1 = γ1, γ′2 = γ3, γ′3 = γ−1
3 γ2γ3.

Mβ2

0 = M0, Mβ2
x = M1, Mβ2

1 = M1MxM
−1
1 .

Therefore:
tr(Mβ2·β2

0 Mβ2·β2
x ) = −tr(M0Mx) − tr(M0M1)tr(M1Mx)

+4
(

cos(πθ∞) cos(πθ1) + cos(πθ0) cos(πθx)
)

,

tr(Mβ2·β2

0 Mβ2·β2

1 ) = tr(M0M1)
[

tr(M1Mx)2 − 1
]

+tr(M0Mx)tr(M1Mx)+

−4
[

cos(πθ∞) cos(πθ1) + cos(πθ0) cos(πθx)
]

tr(M1Mx) + 4
[

cos(πθ∞) cos(πθx) + cos(πθ0) cos(πθ1)
]

,

tr(Mβ2·β2

1 Mβ2·β2
x ) = tr(M1Mx).

We observe that tr(M1Mx) is unchanged. This means that the log-behavior at x = 1 is preserved
when x goes around a small loop around x = 1.

Any pure braid can be obtained by the two generators β1 · β1, β2 · β2 introduced above.
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11 Appendix 3: Functions introduced in [22]

(a)n := a(a+ 1)(a+ 2)...(a+ n− 1), (a)−n :=
1

(a− 1)(a− 2)(a− 3)...(a− n)
.

F (a, b, c; z) =

∞
∑

n=0

(a)n(b)n

n!(c)n

zn.

G(a, b, c; z) =

c−1
∑

n=1

(−1)n−1(n− 1)!
(a)−n(b)−n

(c)−n

z−n+

+

∞
∑

n=0

(a)n(b)n

n!(c)n

(

[ψE(a+ n) − ψE(a)+

+ψE(b+ n) − ψE(b) − ψE(c+ n) + ψE(c) − ψE(1 + n) + ψE(1)] + ln z
)

zn.

g(a, b, c; z) =

c−1
∑

n=1

(−1)n−1(n− 1)!
(a)−n(b)−n

(c)−n

z−n+

+

∞
∑

n=0

(a)n(b)n

n!(c)n

[ψE(a+ n) + ψE(b+ n) − ψE(c+ n) − ψE(1 + n) + ln z]zn.

g1(a, b, c; z) =

c−1
∑

n=1

(−1)n−1(n− 1)!
(a)−n(b)−n

(c)−n

z−n+

+

∞
∑

n=0

(a)n(b)n

n!(c)n

[ψE(1 − a− n) + ψE(b+ n) − ψE(c+ n) − ψE(1 + n) + ln z]zn.
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g0(a, b, c; z) =

c−1
∑

n=1

(−1)n−1(n− 1)!
(a)−n(b)−n

(c)−n

z−n+

+

∞
∑

n=0

(a)n(b)n

n!(c)n

[ψE(1 − a− n) + ψE(1 − b− n) − ψE(c+ n) − ψE(1 + n) + ln z]zn.
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singular points x = 0 and x = ∞. Preprint of the Keldysh Institute of Applied Mathematics of
RAS. Morcow, (2006).

[7] A.D.Bruno, I.V. Goryuchkina: Exotic expansions of solutions to the sixth Painlevé equation.
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equations, Springer Lecture Notes in Mathematics 1191, (1986).

[16] K.Iwasaki, H.Kimura, S.Shimomura, M.Yoshida: From Gauss to Painleve’. Aspects of Mathe-
matics 16, (1991).

[17] M.Jimbo: Monodromy Problem and the Boundary Condition for Some Painlevé Trascendents.
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