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Abstract

We study the solutions of the sixth Painlevé equation with a logarithmic asymptotic behavior
at a critical point. We compute the monodromy group associated to the solutions by the method
of monodromy preserving deformations and we characterize the asymptotic behavior in terms of
the monodromy itself. This is the first of two papers aimed at the characterization/classification
of the logarithmic behaviors, in terms of the monodromy data.

1 Introduction

We consider the sixth Painlevé equation:
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The generic solution has essential singularities and/or branch points in 0,1,00. It’s behavior at
these points is called critical. Other singularities which may appear are poles and depend on the
initial conditions. A solution of (PVI) can be analytically continued to a meromorphic function on
the universal covering of P1\{0,1,00}. For generic values of the integration constants and of the
parameters «,3,7,0, it cannot be expressed via elementary or classical transcendental functions. For
this reason, it is called a Painlevé transcendent. Solving (PVI) means: i) Determine the critical
behavior of the transcendents at the critical points x = 0,1, 0c0. Such a behavior must depend on two
integration constants. ii) Solve the connection problem, namely: find the relation between couples
of integration constants at x = 0, 1, co.
(PVI) is the isomonodromy deformation equation of a Fuchsian system of differential equations
[18]:
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The 2 x 2 matrices A;(z) depend on z in such a way that there exists a fundamental matrix solution
W(\, x) such that its monodromy does not change for small deformations of . They also depend on
the parameters «, 3,7, of (PVI) through more elementary parameters 6o, 6,61, 6, according to
the following relations:
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Here o3 := (1) _01 is the Pauli matrix. The condition 8, # 0 is not restrictive, because 0o, = 0 is

equivalent to 6., = 2. The equations of monodromy preserving deformation (Schlesinger equations),
can be written in Hamiltonian form and reduce to (PVI), being the transcendent y(x) the solution
A of A(z,A)1,2 = 0. Namely:
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The matrices A;(x), i = 0,2, 1, depend on y(z), d?i(;) and [ y(z) through rational functions, which

are given in [18] and in subsection 8.2.

This paper, and the second paper, are devoted to the computation of the monodromy group of (1)
associated to the solutions with a logarithmic critical behavior, and to the action of the symmetries
of (PVI) on the monodromy of (1). They are part of a project to classify the critical behaviors in
terms of the monodromy data of the system (1). This project has been the motivation of our papers
[11] [12] [14].

In our paper [14], we developed a “constructive” procedure which we called matching. It enabled
us to compute the leading term of the critical behavior of a transcendent y(z) and the monodromy
data of (1) when the matrices A;(z) are those associated to y(z). Originally, such an approach was
suggested by Its and Novokshenov in [15], for the second and third Painlevé equations. The method of
Jimbo [17] can be regarded as a matching procedure. This approach was further developed and used
by Kapaev, Kitaev, Andreev, and Vartanian (see for example the case of the fifth Painlevé equation,
in [2]). Our approach in [14] is new, because we introduced non-fuchsian systems associated to
(PVTI) in the process of matching. In this way we obtained new asymptotic behaviors. The matching
procedure will be reviewed in section 2.

We developed the matching procedure in order to discover new critical behaviors and to clas-
sify the critical behaviors themselves in terms of associated monodromy data. Denote by Mgy, M,,
M; a monodromy representation of (1). The critical behaviors associated to monodromy matri-
ces satisfying the relation tr(M;M;) # 2, i # j € {0,z,1}, is known from the work [17]. But
when tr(M;M;) = £2, we cannot naively extend the procedure of [17]. In addition, many cases
corresponding to non generic values of «, 3,7, d are not yet studied. The matching procedure was
developed in [14], as a general method to study the cases tr(M;M;) = £2 and the non generic cases
of a, B,7,6. The logarithmic solutions, some of the Taylor’s series solutions and the trigonometric
solutions of [14] actually appear when tr(M;M;) = £2 for some i # j =0, z, 1.

The values of the traces tr(MoM,), tr(M;M,), tr(MoM;) characterize the critical behaviors at
x = 0,1, 00 respectively. This is a known fact, which follows from the solution of the connection
problem (see also subsection 8.3). For example, in the generic case studied in [17] we find the
following behaviors at the critical points [17][10][11][12][13][3][25]:

az'=7 (1 + O(|z]%)), x — 0,
y@) =< yl@) =1-aW(1—2) " 1+ 01 —2[), z—1,

y(z) = a2 (1+0(|z]79)), = — oo,

where € is a small positive number, a, o, a(t) |, () a(>) () are complex numbers such that a,
a® £0and 0 < Ro < 1,0 < R < 1,0 < Ro(*) < 1. The connection problem among the three
sets of parameters (a, o), (a(M), o), (a(>)5(>)) was first solved in [17] and its solution implies that:

2cos(mo) = tr(MoM,), 2cos(moM) = tr(M;M,), 2cos(no'™)) = tr(MyM,);

while a, a®"), a(>) are rational functions of the tr(M;M;)’s (i # j = 0,z,1) and depend on the ,’s
(v =0,x,1,00) through trigonometric functions and I'-functions rationally combined. In this sense,
the three traces determine the critical behavior at the three critical points.

Before we present the result of the paper, it is worth summarizing the results obtained by the
matching procedure in [14]. We first consider the point © = 0. Let o be a complex number defined
by:

tr(MoM,) = 2cos(mo), 0<%Ro <1.

The matching procedure yields the following behaviors for z — 0:
y(x) ~ az'°, if Ro > 0; (5)
03 — 62 + o2
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In the above formulae, o is one of the integration constants, while a, or ¢, is the other. A is:
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y(x)wx{iA sin(ioclnz + ¢) + }, if Ro =0, o#0.
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As we mentioned, the behavior (5) was first studied in [17]. For special values of o # 0, the first
leading term above is zero and we need to consider the next leading terms:
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When ¢ = 0, the matching procedure of [14] yields the logarithmic behaviors:
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y(z) ~z (r + 6y Inz), if 02 = 62. (7)

Here r is an integration constant.

In [14] we also computed all the solutions with Taylor expansions at a critical point. They fall
within three equivalent classes (the equivalence relations are Backlund transformations of (PVT)),
with representatives characterized by ¢ = +(0; £ 6,), 1, —1 respectively. To these classes, we must
add the singular solutions y = 0,x,1. The associated monodromy groups are characterized by
reducible subgroups generated by MoM, and M;. Taylor solutions are studied also in [19], by the
isomonodromy deformation method; and in [4] [5] [6] [7] by a power geometry technique.

The critical behaviors at = 1, 00 can be obtained from those at x = 0 by the action of some of
the Backlund transformations of (PVI). See subsection 8.3.

The monodromy data for the solution (5) are computed in [17][10][11][12][13][3]. The monodromy
data for the Taylor expansions are computed in [14] and [19].

In [14] we did not compute the monodromy associated to the logarithmic behaviors, postponing
this problem to the present paper and its companion paper in preparation. We are going to show that
logarithmic critical behaviors at = 0 are associated to tr(MoM,) = £2, at z = 1 to tr(M1M,) =
+2; and at x = oo to tr(MoM;) = £2.

Once the monodromy data are known, the connection problem is solved (see subsection 8.3)

We computed the logarithmic asymptotic behaviors in [14] as a result of the matching procedure
(in the framework of the method of monodromy preserving deformations). In [4] [5] [6] [7] [8],
A.D.Bruno and I.V.Goryuchkina constructed the asymptotic expansions, including logarithmic ones,
by a power geometry technique [9]. By this technique, the authors of [7] claim that they have obtained
all the critical behaviors for (PVI). The logarithmic asymptotics for real solutions of (PVI) is studied
n [24]. Our approach, being based on the method of isomonodromy deformations, allows to solve
the connection problem, while the results of [4]- [8] and [24] are local.

1.1 Results
In this paper:

1) In Section 3 we justify the project of classifying the transcendents in terms of monodromy
data of (1). We establish the necessary and sufficient conditions such that there exist a one to one
correspondence between a set of monodromy data of system (1) and a transcendent of (PVI). The
result is Proposition 1. The definition of monodromy data itself is given in Section 3.

2) We compute the monodromy data associated to the logarithmic solutions (6) in the generic
case 0, 0,061,050 ¢ Z. The result is Proposition 2, Section 5. In particular, tr(MoM,) = 2.

3) In Proposition 3 of Section 6, we compute the monodromy group associated to the solution
(7). In particular, tr(MoM,) = 2. The parameter r will be computed as a function of the 6,’s,
v =0,2,1,00 and of tr(MyM).

4) We consider a non generic case of (6), which occurs when:

91?:91:07 900217 00:21)#07 pez (8)



Therefore:

y(z) ~ {1—})2 <lnx—|— T;p)] .z —0. 9)

The monodromy of the associated system (1) is computed in Proposition 4, Section 7. It is important
to observe that the monodromy is independent of r. This means that the parameter r cannot be
determined in terms of the monodromy data. Therefore, (9) is a one parameter class of solutions
(parameter ) associated to the same monodromy data. We prove in Proposition 4 that the solution
(9) is associated to:

tY(MQMm) = 2, tr(MoMl) = 27 tI‘(Mle) = —2.

This special values of the traces imply that the behavior at * = co and x = 1 is also logarithmic.
tr(MoM,) = 2 is associated to the logarithmic behavior of type In®z at z = 0. tr(MoM;) = 2 is
associated to the logarithmic behavior of type In(1/z) at = co. tr(M;M,) = —2 is associated to
the logarithmic behavior of type 1/In*(1 — ) at z = 1. Actually a solution (9) has the following
behaviors at the three critical points:

z[l=p*(nz+po)?], x—0,
yw)~ 4 1= (Ind+px)’,  z—oo, (10)
1
1= ema—are z— 1.
where:
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The behavior at = 1 differs from those at = 0,00 for the inverse of In(1 — x) appears. This is
actually due to the fact that tr(M;M,) = —2. We will prove the above behaviors in section 8.4, and
in the second paper by a different method.

In general, the logarithmic behaviors of “type (6)” at the critical points are as follows:
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In general, the log-behaviors of “type (7)” are:
y(x) ~x (r £ 6p Inx), x—0, 63=0% (17)



y(x) ~r+0ylnz, x—o00, 0} =07 (18)

yz)~1—(1-z)(r+6In(1-2)), =z—1, 6 =0 (19)
y(x) ~ r:l:(@ool— s r—0, (oo —1)7?=06% (20)

z r 1 2 2
y(x):i(&,o—l)lnx [1:': (Hoo—l)lnx+0<ln2x)] nommeo Bl =0 (21)

1 r 1
ylz) =1+ foTn(z —1) [1$ foln(z —1) +O<71n2(a:—1)>} ,  x—1, (0o — 1)2 = 62. (22)

The above are proved in Section 8, making use of the Backlund transformations of (PVI). The
behaviors (11), (17) are associated to tr(MoM,) = 2; (12), (18) are associated to tr(MoM;) = 2;
(13), (19) are associated to tr(M;M,) = 2. This fact is proved in Section 8.3. The behaviors (14),
(20) are associated to tr(MoM,) = —2; (15), (21) are associated to tr(MoM;) = —2; (16), (22) are
associated to tr(M;M,) = —2. This fact is proved in the second paper. We note that generically
a solution (6) does not have the logarithmic behavior at = 1, 00, because the traces tr(M;M,),
tr(MoM;) are not equal to £2. The case (9) is special, in that the log-behavior appears at the three
critical points.

Acknowledgments: The author is supported by the Kyoto Mathematics COE fellowship at RIMS,
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2 Matching Procedure

This section is a review of the matching procedure of [14]. We explain how the asymptotic behavior
of a transcendent is derived, and how the associated monodromy is computed.

2.1 Leading Terms of y(z)

We consider x — 0. We divide the A-plane into two domains. The “outside” domain is defined for
A sufficiently big:
Al > |z)%vT,  Sour > 0. (23)

Therefore, (1) can be written as:

av Ao+ A, A, AN Aq
_— = _— —_— - e qj. 24
Y X0 ;()\) i1 (24)
The “inside” domain is defined for A comparable with x, namely:
Al < |z|~, v > 0. (25)
Therefore, A — 0 as x — 0, and we rewrite (1) as:
av Ay A, -
— == —A AW 26
2N SN S nz:% (26)

If the behavior of Ap(x), A1(z) and A, (x) is sufficiently good, we expect that the higher order
terms in the series of (24) and (26) are small corrections which can be neglected when z — 0. If this
is the case, (24) and (26) reduce respectively to:

AVour Ao+ A, A, "N jz\n A
i s uh ; (X) T

dX

Your, (27)
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d¥in Ay paiy
= |— - A AW 28
h\ + P 1 ; IN, (28)
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where Ny, Noyr are suitable integers. The simplest reduction is to Fuchsian systems:

dVour _ Ag+ A, Ay
a { ) A—J Your, (29)
dVin  [Ao A,
X - |:T+)\—x:| \I/IN- (30)

In [14] we considered reduced non-fuchsian systems for the first time in the literature, where the
fuchsian reduction has been privileged. We showed that in some relevant cases it cannot be used,
being the non-fuchsian reduction necessary.

Generally speaking, we can parameterize the elements of Ag + A, and A; of (29) in terms of 6,
the eigenvalues of Ay + A, and the eigenvalues 0., of Ag + A, + A;. We also need an additional
unknown function of z. In the same way, we can explicitly parameterize the elements of Ag and A,
in (30) in terms of 6y, 0, the eigenvalues of Ag + A, and another additional unknown function of
x. Cases when the reductions (27) and (28) are non-fuchsian deserve particular care, as it has been
done in [14]. Our purpose is to find the leading terms of the unknown functions when z — 0, in
order to determine the critical behavior of Ag(x), A1(z), Az(z) and of (4).

The leading term can be obtained as a result of two facts:

i) Systems (27) and (28) are isomonodromic. This imposes constraints on the form of the unknown
functions. Typically, one of them must be constant.

il) Two fundamental matrix solutions ¥opyr (A, ), ¥rn(A, ) must match in the region of overlap,
provided this is not empty:

\I/OUT(AV:C) ~ \IJIN(/\v'r)v |‘T|§OUT < |)\| < |‘T|5IN3 x—0 (31)

This relation is to be intended in the sense that the leading terms of the local behavior of Yoy
and U;y for x — 0 must be equal. This determines a simple relation between the two functions of
x appearing in Ag, A, A1, Ao+ As. (31) also implies that é;n < dour.

Practically, to fulfill point ii), we match a fundamental solution of (27) for A — 0, with a
fundamental solution of the system obtained from (28) by the change of variables p := A/x, namely
with a solution of:

Nin A
—zA Z 2"u™| U, o= —. (32)
n=0

av A Ay
IN _ (4o
o —

du I 1

T

To summarize, matching two fundamental solutions of the reduced isomonodromic systems (27)
and (28), we obtain the leading term(s), for x — 0, of the entries of the matrices of the original
system (1). The procedure is algorithmic, the only assumption being (31).

This method is sometimes called coalescence of singularities, because the singularity A = 0
and A = x coalesce to produce system (27), while the singularity u = % and p = oo coalesce to
produce system (32). Coalescence of singularities was first used by M. Jimbo in [17] to compute the
monodromy matrices of (1) for the class of solutions of (PVI) with leading term y(z) ~ a z'7°
0<Ro < 1.

3

2.2 Computation of the Monodromy Data

In the “X-plane” C\{0,z,1} we fix a base point A¢ and three loops, which are numbered in order 1,
2, 3 according to a counter-clockwise order referred to A\g. We choose 0,z,1 to be the order 1,2, 3.
We denote the loops by 7o, 7z, 71. See figure 1. The monodromy matrices of a fundamental solution
U(A) w.r.t. this base of loops are denoted My, M., M;. The loop at infinity will be vo0 = Y0Y271,
so My = M1 M, M. As a consequence, the following relation holds:

cos(mlp)tr(My M,,) + cos(mwby )tr(MoM,;) + cos(mb, ) tr( My My)



order 1, 2, 3.

N

Figure 1: The ordered basis of loops

= 2c08(mlo ) + 4 cos(mhy) cos(mhy) cos(mhy ).

The monodromy matrices are determined by tr(M,), tr(M,M,) , v,p = 0,z,1, 00 [3].
As a consequence of isomonodromicity, there exists a fundamental solution oy of (27) such
that

MPYT = My, MQUT = M,

3

where MPUT and MQUT are the monodromy matrices of ¥opr at A = 1,00. Moreover, MPUT =
M, My. There also exists a fundamental solution ¥y of (28) such that:

MIN = M,, MM =M,

where M{Y and MY are the monodromy matrices of U,y at A =0, z.

The method of coalescence of singularities is useful when the monodromy of the reduced systems
(27), (28) can be explicitly computed. This is the case when the reduction is fuchsian (namely
(29), (30)), because fuchsian systems with three singular points are equivalent to a Gauss hyper-
geometric equation (see Appendix 1). For the non-fuchsian reduction, in general we can compute
the monodromy when (27), (28) are solvable in terms of special or elementary functions.

In order for this procedure to work, not only Voyr and ¥y must match with each other, as in
subsection 2.1, but also ¥oyr must match with a fundamental matrix solution ¥ of (1) in a domain
of the A plane, and ¥y must match with the same ¥ in another domain of the A plane.

The standard choice of ¥ is as follows:
[1+0(L)] A5 oo pBe, A — 003
Yo(x) [T+ ON)] AFo Aoy, A= 0

Ge(@)[I+O0ON—2)] A—2)F (A —2)BC,, A—u

Gi(@)[I+0A—-1)] A=1D)FA-DRCy, A= 1;



Here o (z), ¥z (), 11(x) are the diagonalizing matrices of Ag(x), A1(z), Ay (z) respectively. They
are defined by multiplication to the right by arbitrary diagonal matrices, possibly depending on x.
Cy, v =00,0,x,1, are invertible connection matrices, independent of z [18]. Each R,, v = 00,0, z, 1,
is also independent of z, and:

0 0

(2 O) , it 6, <0 integer

(0 *) if 0, > 0 integer
R,=0if0,¢%Z, R, =

0

0 0
loop A — Ae?™ |\| > max{1, ||}, we immediately compute the monodromy at infinity:

If0;, =0,7=0,z,1, then R; is to be considered the Jordan form <O 1> of A;. Note that for the

Mo = exp{—imbo} exp{2miRs}.

Let Uopyr and Uy be the solutions of (27) and (28) matching as in (31). We explain how they
are matched with (33).

(*) Matching ¥ < Ugoyr:
A = oo is a fuchsian singularity of (27), with residue —As/A. Therefore, we can always find a
fundamental matrix solution with behavior:

1 o
UEHE" = {14' 0 <X)] /\79703/\]%‘”, A — oo.
This solution matches with . Also A =1 is a fuchsian singularity of (27). Therefore, we have:

WY = U (@) [I+ 00 - 1] (A= )FR - 1)RCPUT, Ao
Here CPUT is a suitable connection matrix. Y7 (z) is the matrix that diagonalizes the leading
terms of A (z). Therefore, 1 (x) ~ PV (z) for z — 0. As a consequence of isomonodromicity, R;
is the same of W.
As a consequence of the matching ¥ « WMaleh the monodromy of ¥ at A = 1 is:

M1 = 0171 exp{iw@lag} exp{QWiRl}Cl, with Cl = CloUT.

We finally need an invertible connection matrix Coyr to connect \I/g[‘}éﬁh with the solution ¥our

appearing in (31). Namely, WMatch = UoprCopr.

(*) Matching ¥ « U;y:

As a consequence of the matching ¥ <« \Ilg,‘}%ch, we have to choose the IN-solution which

matches with WMateh This is WHateh .= U,y Copr.

Now, A = 0,2 are fuchsian singularities of (28). Therefore:

IN (@) [T+ O(\)] AFosARoCIN, A —0;
\I}]Watch _
IN

PIN@) [T +0(A —2)] (A-2)FB(A—a)-CIV, A

The above hold for fixed small z # 0. Here C{™ and CZV are suitable connection matrices. & (z)
and v, (z)!V are diagonalizing matrices of the leading terms of Ag(z) and A, (z). For z — 0 they
match with o (z) and 1, (x) of ¥ in (36). On the other hand, as a consequence of isomonodromicity,
the matrices Ry and R, are the same of ¥. The above \If%\‘,mh has the same behavior of ¥ at A — 0
and X — x; moreover, it is an approximation of W for z small. The matrices C{N, CIN are
independent of x. So, the matching ¥ <« W;y is realized and the connection matrices Cy and C,
coincide with CEN, CIN respectively. As a result, we obtain the monodromy matrices for W:

MQ = 0071 exp{i7r9003} exp{2m'Ro}Co, CO = CéN,



M, =0C,"! exp{inf,o3} exp{2miR, }Cy, C,=CV,

Our reduction is useful if the connection matrices CPYT CIN | CIN can be computed explicitly.
This is possible for the fuchsian reduced systems (29), (30). For non-fuchsian reduced systems, we
discussed the computability in [14].

3 Classification in Terms of Monodromy Data

Two conjugated systems:

dU dU

= A(z,\) U, oo Az, \) U,

5=
=W,  det(W)#0, A=WAW™,

admit fundamental matrix solutions with the same monodromy matrices (w.r.t. the same basis of
loops). The matrix A(z,\) defines the same solution of (PVI) associated to A(z,\) only if the
following condition holds:

L 0. y
Ag+ AL+ Ay = —70'37 where A; :WAinl, 1=0,x,1.

Namely, Wo3W ! = 3. This occurs if and only if W is diagonal. The transformation of A(z, \) is
therefore:

-1 All(CC,)\) %Alz(iﬂ,/\) o w1 0
WA, VW™ = (Z_;AZI(C'%)\) Npo(z,\) ) where W = 0wy )

We conclude that the equation Aqa(z, A) = 0 is the same and then:

Two conjugate fuchsian systems, satisfying (2) (3), define the same solution of PVI if and only
if the conjugation is diagonal.

Note that 6, # 0 is a necessary condition, otherwise any W would be acceptable and then
Aq2(z,A) = 0 would not define y(z) uniquely.

The problem of finding a (branch of a) transcendent associated to a monodromy representation
is the problem of finding a fuchsian system (1) having the given monodromy. This problem is
called Riemann-Hilbert problem, or 21" Hilbert problem. For a given PVI there is a one-to-one
correspondence between a monodromy representation and a branch of a transcendent if and only if
the Riemann-Hilbert problem has a unique solution A(z, A), defined up to diagonal conjugation.

e Riemann-Hilbert problem (R.H.): find the coefficients A;(z), ¢ = 0,z,1 from the following
monodromy data:

a) A fixed order of the poles 0, z,1. Namely, we choose a base of loops. Here we choose the order
(1,2,3)=(0,x,1). See figure 1.

b) The exponents 6y, 0., 01,00, with 0 # 0.

¢) Matrices Ry, R, R1, Roo, such that:

0 0

0 0 . .
<* O) , it 6, <0 integer

(O *) , if 8, > 0 integer
R,=0if 0, ¢ Z, R, =

Rj_<8 (1)> if0; =0, j=0,z1.

¢) three monodromy matrices My, M,,, M relative to the loops, similar to the matrices exp{in;03} exp{2miR;},
i =0,z,1, satisfying (for the chosen order of loops Y0V271 = Yoo):

My My My = e "m078¢?mi o



Solving the Riemann-Hilbert problem means that we have to find invertible connection matrices,
C,, v=00,0,z,1, such that.

Cylemhiosm 0y = My, j=0,2,1; (34)

071671779000'3 eQﬂ'sz Ooo — 671770300'3 eQﬂ'sz . (35)

o0

and a matrix valued meromorphic function ¥(z, \) such that:
[[+0(3)] A= os\feC, A — oo

Yo(x) [T+ ON)] AFo Aoy, A — 0
U(z, A)

|
—

w

=2}
=

2]

Vo (@) [T+ ON —2)] A =2)F (XA —2)R=Cy, A — a;

b(@)[T+0N-1)] A=1)FA-1)RCy,  A—1;

Here g, ¥,, 11 are invertible matrices depending on z. The coefficient of the fuchsian system are

then given by
d¥(z, \)

A(z; M) == )

T(x; A) L

A 2 x 2 R.H. is always solvable at a fixed z [1]. As a function of z, the solution A(x;\) extends
to a meromorphic function on the universal covering of C\{0,1,00}. Now we prove the following
fact:

The R.H. admits diagonally conjugated solutions (fuchsian systems), except when at least one
0, € Z\{0} and simultaneously R, = 0.

This can be equivalently stated in the form of the following:

Proposition 1 There is a one to one correspondence between the monodromy data 6g, 6,,601, Ry, R;, R1,
Ooo #0, Roo, Mo, My, My (defined up to conjugation), satisfying a), b), ¢) above, and a (branch of
a) transcendent y(x), except when at least one 6, € Z\{0} and simultaneously R, = 0.

To say in other words, the one to one correspondence is realized if and only if one of the following
conditions is satisfied:

(1) 8, € Z, for every v =0, x, 1, o0;
(2) if some 0, € Z and R, # 0, 6, #0
(3) if some 6; =0 (j = 0,2,1) and simultaneously 0 & Z, or 6 € Z and R # 0.

1 2m

Note that for §; = 0, M; can be put in Jordan form (0 1

that:

). Therefore Proposition 1 says

There is one to one correspondence except when one of the matrices M; (i = 0,z,1), or M =
My M, My, is equal to +1.

Proof: The proof is based on the observation that a triple of monodromy matrices My, M,, M;
may be realized by two fuchsian systems which are not conjugated. The crucial point is that the
solutions of (34), (35) are not unique. Two sets of particular solutions C,, and C, (v = 0,z, 1, c0)
give to fuchsian systems:

d¥(x,\)

d¥(z, \)
dX

Uz, \) "= Az, \), Uz, \)7L = Az, \).

These may be not diagonally conjugated. If this happens, there is no one-to-one correspondence
between a set of monodromy data and a solutions of PVI.

We study the structure of the solutions of (34), (35). Equation (35) has the following solutions:

10



i) If 6o & Z (and then Ro, = 0),

0
O = (P>
(0 oo

Do Goo . _ (0 =
U5 i) wre=(55)
coo_(p“’ O>, ifRoo_<O 0).
Qoo Doo * 0
where peo, goo € C, poo # 0.

iii) If 6 € Z and Ry, = 0, then Cy is any invertible matrix.

) | peortiee € C\{0)

ii) If 0o € Z and R, # 0,

Coe =

Equation (34), may have different solutions C; and C;. Therefore C’jC'j_ !is a solution of:

(C]C 1) eur010'3627mR] CjCj 1 _ ewﬂ%o’ge%rzR] .

i) If 6; ¢ Z (and then R; = 0), we have:

C;C;" = (aﬂ‘ b(i) . a;,b; € C\{0}

0
. 0 =

ifR]:(i’ 8)

ii) If 0; € Z and R; # 0, we have:

Cjé-_1=(aj bj), aj,bj € C, a; #0;

J 0 G,j

aj 0 e 0.
(bj aj>’ aj,b; € C, a; #0;

In particular, for §; =0, R; is the Jordan form (8 (1))

iii) If 0; € Z and R; = 0, then CijJfl is any invertible matrix (i Z)

_ Let €, and C, (v=0,z,1,00) be two sets of solutions of (34) (35) and let us denote by ¥ and
¥ the corresponding solutions of the R.H. We observe that:
i)for0; ¢Z (j =0,z,1):

_.ﬁgs a; 0 [ ay 0 _'ﬁog
B0 (0 bj)_(o bj)()\ e

ii) For 6; € Z and R; # 0:

a-p¥no-am (Y )

J
or

bj aj

= [ajf-i-()\—j)lej (8 %)] A= )37 — )R,

=it (P D) = larea-0" () 5)]a-aFen-am

for R; upper or lower triangular respectively.

ili) For §; € Z and R; = 0:

0

=it (4h) -

c

a DA% N
(cxej d ) A==

11



We conclude that, for A — j:

aj 0 . ] .
(O bj)’ it ; € Z;
CLjI, if 0j 7£ O,

I—1 . .
v (%ﬂ ZJ}),ife‘,-:&
J

if0;, €Z, R; #0

Arbitrary invert. matrix, if 6; =0,
ifg; €Z, Rj =0

C (A —35)7 1%l = oo, otherwise,

. . 0 = 0 0
ThematrGCabovelsC—<0 O) 01?(3—(}}< 0).

Let Cs and Cs be two solutions of (35).
i) If 0o € Z (and then R, = 0), we have

Cooét;ol = (ago bo ) ) aoouboo € C\{O}

ii) If 0, € Z and R # 0, we have

cooéool_<a°° bw), oo boo € C, o £ 0: ifRoo_<8 ;)

0 aso

A=l _ (o 0 , . _ (0 0
Coocoo - (boo aoo), aoo;booGC, CLOO#O, lfRoo— <* O)

iii) If 6 € Z and R, = 0, then COOC'O_OI is any invertible matrix.

Therefore, for A — oo we have:

(ago bo ) it 0. ¢ Z:
YU~ 1 b .
(I+0(3)) (aced + 55=7) = asol, if 0o € Z\{0}, R #0
Coo MOl — 0, if 00 € Z\{0}, Roo =0

. . 0 = 0 0
Thematrlxcooabovelscoo—(o 0) or(,’oo_(}’< 0)'

From the above result we conclude that W~ is analytic on C and then it is a constant matrix
W, except when at least one 6, € Z\{0} and simultaneously R, = 0. Except for this case, we have:

U=WT¥ — Ax,\) = WAz, )WL

We observe that: W = limy_., ¥¥! (in the cases o & Z, or for 0o € Z (As # 0) and Ro # 0).
Therefore W is diagonal.

Proposition 1 is proved. O

4 Logarithmic asymptotics (6) and (7)

We consider cases when (1) can be reduced to the fuchsian systems (29) and (30). Let o be a
complex number defined, up to sign, by:

tr (MoM,,) = 2 cos(no), |Ro| < 1.

12



In our paper [14], we computed all the asymptotic behaviors for 0 < Ro < 1, as they can be
obtained from the matching procedure when (29) and (30) are fuchsian. Among them, we obtained
(6) and (7).

Note: For solutions with expansion:
y(z) =z(A1+ Bilnz + C n®z+DiIn®z+ )+ acz(Az +Bolnz+...)+ ..., z — 0.
only the following cases are possible:

b0 g+ O(x?) [Taylor expansion],

9010
2 2 2 2
y(x) =S z (Z)%jle +Bilnz+ &% 2 :c) +22() + s (37)
z (A £60lnz) +2%(..)+.., and @y = +0,.

A;j and B; are parameters. We see that the higher orders in (6) and (7) are O(z? In™ z), for some
integer m > 0.

4.1 Review of the Derivation of (6) and (7)

Let  — 0. The reduction to the fuchsian systems (29) is possible if in the domain (23) we have:
(Ao + Ag)ij| > ’(Az)ij ;] . namely: (Ao + Ag)ij| > [(Ay)iy 210007 (38)
Let us denote with A; the leading term of the matrix A;, i = 0,2,1. We can substitute (29) with:

Ao+ A, A
A A—1

d¥our _
d\

\IJOUT (39)

Lemma 1 If the approzimation (29) is possible, then Ao+ A, has eigenvalues £3 € C independent
of x, defined (up to sign and addition of an integer) by tr(M,My) = 2cos(wo). Let r1 € C, r1 # 0.
For 0 # 0, the leading terms are:

o2—-02 -2 -
P M0 —
A= ([azwlew)ﬂ[oz(eﬁem)z] 1 _ o007 ) ’ (40)
16920 T1 4900
and 47?2
. . 1 7 “oo o
I 4900
AO + A:c - (_ [0'2—(91—000)2][02—(91+000)2] 1 _05_02_020 ) . (41)
1662, r1 460

Proof: Observe that tr(Ag + A,) = tr(4g + A,) = 0, thus, for any =, Ay + A, has eigenvalues
of opposite sign, that we denote +&(x)/2. Then, we recall that x is a monodromy preserving
deformation, therefore the monodromy matrices of (39) are independent of z. At A = 0,1, co they
are:

ouT
. MOUT = M.

MmMO
MPUT = {MOMz . MPYT =My

Thus, det(MPYT) = 1, because det(M,)=det(My) = 1. Therefore, there exists a constant matrix
D and a complex constant number ¢ such that:

diag(exp{—ino}, exp{inc}),

—1 ouT _
D= My™" D =4 /41 & 10
0 +1) %\« 41) €%

We conclude that &(x) = 0. We also have tr(MPUT) = 2 cos(no).

13



Now consider the gauge:

By i= A2\ - 1)7971 Your. —— = 2+ 2| @ (42)

We can identify /10 + A, -

and /All — 92—1 with By and B; of Proposition 5 in Appendix 1, case
(69),Witha:‘%"-|-%1_|_%7 O

__ 96 [ _
=—2+3F+3,c=0.0

In principle, 71 may be a function of z. If the monodromy of system (39) depends on r1, then rq
is a constant independent of z. This is the case here.

For all the computations which follow, involving system (39) or (42), we note that the hypothesis

O # 0 excludes cases (70), (71) and the Jordan cases (72)—(74).

The reduction to the fuchsian system (30) is possible for  — 0 in the domain (25) if:

(Ao)ij n (Az)

ij (Ao + Az)ij
A A—zx

01N

> [(A1)ij],  namely: > (A1) - (43)

We can rewrite (30) using just the leading terms of the matrices:

é-f— Ajm
A A—x

a¥vy
dx

Yrn, (44)

Then, we re-scale A and consider the following system:

dv A A, A
IN_<_O+ >\IJIN5 Hi=

dp pooop—1

We know that there exists a matrix Ko(z) such that:

KoL (x) (Ao+Az)Ko($)—<% —O%)’ . <8 (1)>'

Let A; := Ko 'A;Ko, i =0,z. By a gauge transformation, we get the system:

hy, A
pooop—1

d¥o
Uiy =: Ko(x) Yo, — =
(2) 0

Uy, (45)

Important Remark (see [14]): Conditions (38), (43) are satisfied if and only if |[Ro| < 1, 0 < oy <
6OUT < 1.

4.2 Matching for 0 = 0. Proof of (6) and (7)

We suppose now ¢ = 0.

4.2.1 Case 0y + 6, # 0. Proof of (6)
Lemma 2 Let r1 € C, 1 # 0. The matrices of system (39) are:

000240, 0362

A - —S=pe- n A A = pr— ! Vr £ 0

1= i paree |0 Aot Ae= e Tep g g |, Vi #0
169207“1 4930 1692007“1 4900

A fundamental matriz solution can be chosen with the following behavior at A = 0:

1 log A\ 1 0
Vour(A) = [Go + O(N)] (0 O% )7 GO:(M L)'

4930 T1

14



Proof: The system (42) is:

dd Ag+ A, A -4
! ot + 2 2]‘1)1,

oy

A A—1

We identify Ay 4+ A, and A, — 02—1 with By and By of proposition 5 in Appendix 1, diagonalizable

case (69) (we recall that (70)—(74) never occur when 0o, # 0) with a = 97“’ + %1, b= —%" %1,
c=0.
The behavior of a fundamental solution is a standard result in the theory of Fuchsian systems.

The matrix Gy is defined by G+ (Ao + Az) Go = (8 (1)) =

Lemma 3 Let r € C. The matrices of system (45) are:

. [r+ 8 inrthl N G T R A
Ag = 92 _p2 ’ 00 ) Ay = 92 _p2 me 0 : (46)
20 “x —pr — 20 Zz 70 0
1 r—2 1 r+3

There exist a fundamental solution of (45) with the following behavior at p = oo:

on-[rso)] (3 ). »-

Proof: We do a gauge transformation:

Py (47)

We identify Ay — %, A, — % with By and B; in the Appendix 1, Proposition 5, case (72), with

2
00 6. 9

parameters a = 3 + 3, ¢ = y. In particular,

~ A ew _ 6o+, 1
Ao — > +Ae— o = ( 02 _00+0m) (48)
2

Here the values of the parameters satisfy the conditions a # 0 and a # ¢, namely 6y + 6, # 0. From

the matrices (72), we obtain Ay = By + 6y/2 and A, = B; + 6, /2. Keeping into account (48), by
the standard theory of fuchsian systems we have:

1 _b0+0x 1 1
woin) = [1+0 (2)] w2 (551, wese,

This proves the behavior of Wy(u). O

If the monodromy of the system (45) depends on r, then r is a constant independent of z. This
is the case here.

The matching condition Yoy (A) ~ Ko(z) ¥o (A/x) becomes:

1 log (2 1 log\ 1 0 1 1
Ko() (0 Ogl(z)> ~ Go <0 o > — Ko(x)~<@goe§ L) <0 Ofx).
4 00 71 1

From the above result, together with (46), we compute AO = KvoKo_l, Al = KoAlKo_l. For
example,

2_p2 2_p2
r+%+%logz 9149010g2x —2(r+97°)logx +%
0

x

i -1
Ao = Go Go .
02—02 0262 0

0 T T (0] _ Y0

I T logz (r +3 )

A similar expression holds for A,. The leading terms of y(x) are obtained from (4) with matrix
entries (A7)12 = —ry and:

A 62—

(Ao)i2 =71 Arir +b)

62 — 62

0
log?z — 2 (r—i— %J) log x +

15



The result is:
2 2

6z — 6 6
y(x) ~x [I4 Olog2x—2<r+§)1ogz+

4 r(r+6p)
62 — 62

x

(+4-1)

02 —0%2 6o 4
:m{ 1 log x—2(r+3)10g:ﬁ+ﬂ
The above is (6).
4.2.2 Case 6y + 6, =0. Proof of (7)
We consider here the cases (73), (74) of Proposition 5 applied to the system (47).

Case (73) is the case 0 = 0, 8y = —0,, with a = 0, ¢ = 6, in the system (47). From Proposition 5

we immediately have:
b0 r 2 b 1y
0= 2 2 , Ay = 2 0 :
0 -3 0 —=

The behavior of ¥y and Yoy, and the matching are the same of subsection 4.2.1. We obtain the
same Ko(z). Therefore:

h>>>

(Ag)12 =11 (r—0p Inzx), (A1)12=—r1.

This gives the leading terms:
y(x) ~x(r—6p Inz) = z(r + 6, Inzx). (50)

In the same way, we treat the other cases. Case (73) with a = ¢, is the case 0 =0, 6y = 0,. As
above, we find y(z) ~ z(r — 6y Inz) = z(r — 0, Inx). Case (74) with a = 0, is the case o = 0,
0o = —0,. We find y(z) ~ z(r + 09 Inz) = x(r — 0, Inz). Case (74) with a = ¢, is the case o = 0,
0y = 0,. We find y(z) ~ z(r+ 0 Inz) = z(r + 6, Inz).

Both (49) and (50) contain more than one term, and in principle only the leading one is certainly
correct. To prove that they are all correct, we observe that (49) and (50) can be obtained also by
direct substitution of y(z) = (A1 + Bilnz + Ciln*2 + D1 In®*z 4 ...) + 2%(A2 + B2 Inz + ...) + ... into
(PVI). We can recursively determine the coefficients by identifying the same powers of 2 and Inz.
As a result we obtain only the five cases (37), which include (49) and (50).

The reader can verify that conditions (38), (43) are satisfied.

5 Monodromy Data associated to the solution (6)

In this section, we compute the monodromy data for the solution (6) in the generic case 6, ¢ Z for
any v = 0,z,1,00. We need some notations. Let vg denote the Euler’s constant. Let:

_ dInT(z)

YE(x) o z#0,—-1,-2,-3,....

In particular, ¥g(1) = —vg.

Proposition 2 Let 6y, 0,,01,00 & Z. The monodromy group associated to (6) is generated by:

—1
M, = EC’(();)) exp{imbfoos} [EOéZ} ;

—1 -1
M, = BCE) O] exlintuo} CF) [ECEL|

M1 = BC&l exp{i7r9103} COlB_l.

The matrices above are: 4q A

4 0

0202
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q = —4dime +

1 2 2
+0§_9%{4r+2(90 0.) + (03 90)[1/1< 5 2>+¢<2 2—1—1)—1—27;;}},
where € = £1.

_ eme(%OJFBTz)F(l-l-Go) B eW(BTZJTO)P 1-6,)
@ _ N(FE)r(2-%) (-2 (r-7)
Cooo = e (%
e 2 2 ) msinwly T(1460) 0

sinﬂ(%f%) sinTr(STOJrgTz)F(STOJr%)F(eT“—%)

I'(—0,)T(1+60) § (—6,)T(1—60) _
= [FRET TR )
(+3)r(2+%)" (2r)r(-2+%)
r(—61) _F(1+971—QT°°)F(QT°°+%1)
Cor = Pt F)r(%-%) T(1+61) |
'(61) 0

(1 w ._ Oo | 01 01 O
B_(O 1); w'_wE(7+§)_¢E(3_ 7+1)+2’YE7

With the above choice, we have:

MMMy = Cour exp{—inbocos} Colip,

where:
—i5(014+000)
1 0 1 e
1 ~—1 sin 5 (01+600)
Cour = BCy D™, D= ) Coso = .
1—0o0 ] _=x e~ 15 (01-0c0)
1 sin Z(01—0o)

We also note that tr(MoM,,) = 2.

If we compute tr(MyM;) and tr(M;M,) we find two quadratic polynomials of ¢. Then, g can be
derived as a function tr(MyM;) and tr(MyM,). In this way we obtain

r:r(@o,996,01,Hoo,tr(MoMl),tr(MlMx)) (51)

We omit the long formula which results. Direct computation shows also that tr(MyM;) and
tr(M;M,) depend on € only through ¢. Therefore, different choices of € just change the branch
of (6), because they change 4r/(03 — 02) of 8mi.

5.1 Derivation of Proposition 2

The matching Yoyr <> ¥y has been realized by:

Vour(z, \) = [Go + O(N)] <(1) 1051”), G0_<gréizf 3)
Wy, \) = Kol(2)Wo <%> \po(ﬂ)_[u()(%ﬂ <(1) 1"%”), 1 — o0,

MATCHING V¥ < \IIOUT-

The correct choice of ¥Makeh must match with:

1 _0so
v=[rro(H)]xn aom

17



System (42) is (69) of Appendix 1, with:
O 61 O 04

= — —_— b_—— -

2 27 T 2 97

|
e

If we write:

vor=(-0% (3 22).

then 1 and ¢y are independent solutions of the hypergeometric equation (75):
)
M1 —=)) d—/\2+(1+c—(a+[b+1]+1) A)

while &; are given by (76):

dp

oy~ b1 =0,

1 d(pi b—c .
i =— (A1 =X —alA i =1,2.
51 r ( ) d)\ a ( + a— b> 901:| ) 1 )
We need a complete set of solutions at A =0, 1, co.
We explain some preliminary facts. Let us consider a Gauss hypergeometric equation in standard

form:
2

Z(l—z)%-i-ho—(ao-i-ﬂo-i-l)z]j—f—aoﬁowzo (52)
(0, Bo, o here are not the coefficients of (PVI)! We are just using the same symbols only here). We
refer to the paper by N.E. Norlund [22] in order to choose three sets of two independent solutions
which can be easily expanded in series at z = 0,1, 0o respectively. Solutions with logarithmic or
polynomial behaviors at z = 0 may occur when vy € Z. The role of 7y at z =1 and z = oo is played
by ag+ 8o —v0+ 1 and o — By + 1 respectively. Therefore, solutions with logarithmic or polynomial
behaviors at z = 1 may occur when ag + By — v + 1 € Z, at z = co when ag — By + 1 € Z. Some
more words must be said about the choice of independent solutions. We consider the point z = 0.
For ¢ € Z, we choose the following two independent solutions:

¢1(2) = Flao, Bosv0; 2),  pa(2) =2 "0F (), B,9/s 2).

Here F is the standard hypergeometric function and o’ = ag—v+1, 3 =By —v+1,7 =2 —.
If v =0,—-1,-2, ..., then:

wl(z):f(OLOaﬁOv"YO; Z)v WQ(Z):ZlivoF(O/aﬁ/af}/; Z)v if Qg Or 60207_17"'77'

901(2) = Zlf’yog(a/,ﬁ/,,}/; Z)v <P2(Z) = Zli’YDF(a/aﬁ/a’}/; Z)v if @ and /60 # 07 _15 ey Y-

Here f is the truncation of F' at the order z=7. G is one of the functions g, g1, go or G with
logarithmic behavior, introduced in [22], section 2. They are listed in Appendix 3.
If v = 2,3, ..., then:

801(2) = F(OLO;ﬂOvVO; Z)v ()02(2:) = Zli’yof(a/vﬂlvp)/; Z)? if Qq Or 60 = 1725 TP 1.

¢1(2) = Faw, Bo, 705 ), p2(2) = G(aw, Bo, Y03 2), if ag and B # 1,2,...,y— 1.
If v9 = 1, then:
¢1(2) = Faw, Bo, Y05 2),  ¢2(2) = G(aw, Bo, Y03 2)-
The point z =1 is treated in the same way, with the substitution:

ag — ag, Po—Po, Y a+l—vn+1l e—e, 21—z

The point z = oo is treated in the same way, with the substitution:

1
ag—ag, Borrag—v+1, Yo ao—Bo+1; w2z, S
In our case:
6‘00 91 91 900
=—aqg=— 4+ — =b+l=——-——+1 = 1=1 =\
(&7s] a 2 +27 60 + 2 2 + ) Yo c+ ) z
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Because 79 = 1, we have a logarithmic solution at A = 0. Asfor A=1, a0+ 6o — 1 +1=1+6;
and for A\ = oo, ag — Bp + 1 = 0. We suppose 61 and 0., € Z. We choose the following set of
independent solutions at A = 0, 1, co respectively (the upper label indicates the singularity):

{ 9050) = F(O[()vﬁ()a’yo;)\)a
SOgO) = g(af)uﬁOa’yo;)‘);

{ wgl):F(Oéovﬁo,040+ﬂo—70+1;1—>\)a
P = (1= A) 107200 F (g — g, 50 — foy Yo — @0 — Bo + 11— A);

{ P17 = A" F(ag,00 — 90 + 1,1+ ag — fo; A7),
P8 = AP F(Bo, Bo — 0 + 1,1 — ag + Fos A 1);
Let:
, @ @

V= -1)7 (9"% 2, > . i=0,1,00,

From Norlund, 3.(1) and 3.(2) we get:
o) =w5) by 1A

ouT ourCo, |argAl <m, |arg( )| <,

where Cp is written in Proposition 2. From Norlund, 10.(1) and 10.(3) we obtain:
\I/E)O[)]T = \IJ(OOE)TCQOO, 0<argz <,

where Cpoo is written in Proposition 2.

e Note about the computation: In order to apply the formulae of Norlund, 10.(1) and 10.(3) we have
to transform g into g1, using the formula (see Norlund, formula (24)):

e“’“‘“F(oz7 B,7; 2), (53)

g(auﬁﬂ’y;z) = gl(a757’7;z) - .
sin Ta
where € is an integer introduced as follows. g(«, 3,7; 2) is defined for |arg(z)| < 7, while g1 («, 5, 7; 2)
is defined for |arg(—z)| < m. Moreover, —z = €™ z. In g(a, 3,7; 2), In(2) is negative for 0 < z < 1
(namely, arg(z) = 0), while in g1(e, 8,7;2), In(—2) is negative for —1 < z < 0. Namely, for
—1 < z < 0, we have arg(z) = —me. Formula (53) holds true for 0 < argz < 7 when e = —1, and
for —m < argz < 0 when € = 1.
In the formulae of Norlund, 10.(1) and 10.(3) it is required that |agr(—z)| < 7, namely |arg(e*"z)]

< . This limitation must be restricted to 0 < argz < m when € = —1, and for —7 < argz < 0
when e = 1 in order to apply (53).
In our computations we have chosen 0 < argz < 7 (i.e. ¢ = —1), because this is the choice

which gives the order M1 M, My = exp{—inf0s}. The choice —m < argz < 0 (¢ = 1) gives
M, My My = exp{—inl03}.

We expand <p§0), goéo) in series at A = 0 and we get:

1 InA iz
\Ifg)[)]T:GO[IJrO(A)] (0 nl ) Be'zh X0,

where B is written in Proposition 2. Namely:
v = Woyr Be'Eh
We expand <p§°°), cpgoo) in series at A = 0o, obtaining;:
(o) LV -0
Vour = [I+O(X)])\ 29 D \— 00,
where D is written in Proposition 2. Namely,

\I](OO;)T = Uoir" D.
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Combining the above results we get:
vEeEt = VD!
= ‘IJg)I)JTO(ED_l
= VYour Bco_oloD—lei%% =VourCour.

The matrix BC,.! D~'e'3% is Copr. Tt differs from the matrix Copr of proposition 2 by the factor
e*3%  which simplifies in the formulae. We also have:

wMath = wh) CoCol DL

Finally, it is an elementary computation to see that

(1) Q) ) .
Vol = (A= * (80(11) <p(21) ) > WOl ™1 when A — 1 (A — 1)e?™.
SRS
Thus, a choice for the matrix My of (1) is
My = MPUT = DCooCpi' €™ Co1Cot D71,

= Colr|BCy' €173 CorB~']Cour.

MATCHING V « U,y

The system:
, dd,  |Ag—% A, -%
Doi=pF(u-1)"F W, o= |24 2| .
dp % p—1
is (72) of Appendix 1, with:
o by
a = D) 2 ) c = Up.
The equation for £ is in Gauss hypergeometic form (77):
d*¢ dg
u(u—l)d—/ﬂ+(1+c—2(a+1)u)@—a(a+1)£:0, (54)
while ¢ is given by (78):
1 d¢
= —_— 1 —_— _— —_— .
o(p) aa—0 (g )du + (ap—c—1)¢
In the standard form
d*¢ dg
1—p) = - 1)yl = — =0 55
w1 —p) d#2+ho (a0 + Bo + 1) p an apgfBo £ =0, (55)
we have:
0 0, bo | bs
aoza:%)—i—?, ﬁoza—i—l:g—i—?—i—L Y=c+1=0p+1; Z = l.

Therefore 9 = 146y, ap+ o — 0+ 1 =146, ag — o+ 1 = 0, and (54) has no logarithmic
solutions at p = 0,1 if 0y,07 € Z. On the other hand, at 4 = co we may have a solution with
logarithmic or polynomial behavior.

For 0y, 60, € Z, we choose the following independent solutions at u = 0, 1, oo respectively::

{ €£0) = F(a0760570; IUJ)
éo) =p' " F(ag — 0+ 1,60 — 70 + 1,2 — 05 p);
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{ §§1):F(060750,040+ﬂ0—70+1; 1 —p)
&) = (1 — pyro=20=Fo F(yy — By, 70 — g, L+ 70 — a0 — fo; 1 — p);

{ € = ;B0 gy (Bo, 1 — 30 + Bo, 1 — ao + fo; p 1)
() = =P F(By, 1 — 0 + Bo, 1 — g + Bo; 1= L)

Let us construct three fundamental matrices form the above three sets of independent solutions:
(@) (@)
i %0 Oz .
\I}é):MQ(M—l)Z (w(lz) s0(21))7 22071300
2

The connection formulae between solutions at ¢ = 0 and 1 is a standard one, and can be found in
any book on special functions:

v =wiMel,  Jarg(u)| <, Jarg(l—p)| <7

where C’((;{) is given in the statement of Proposition 2. The connection formulae between solutions
at 4 =0 and g = co can be found in Norlund [22], formulae 9.(1) and 9.(5) (case m = 1). We get:

\1180) \11(00)00007 |arg(—,u)| <,

where C’(()?;)) can be read in Proposition 2 and —p = e~y (when pu < 0, arg(p) = 7e).

e Note about the computation: In order to apply the formulae 9.(1) and 9.(5) of Norlund, we have
made use of the formula:

msin7(6 — @)

gl(a7ﬂa’7;z):gl(ﬁ7a7’7;z)+ F(aaﬁa%z)

sinmf sinma

We expand 5500), §§w), gpgoo), gpg)o) for g — oo. We obtain:

W=l G ) e

where E can be read in Proposition 2. Thus,
v = v, E,

where ¥q is the matrix used in the matching Voyr < ¥;ny. Expanding §§ , 50)7 gog ), goéo) for

u — 0 we get:

x

4(60+7) 4r
W = (1) :

% 93195) 140w u27, o

Expanding 51 , §2 ) 0] ), <p2 ) for w— 1 we get:

1 2(907914*27") 2(90+91+2’I") 0.
q’”‘( o " >[1+O(1—u)](1—u)7”3, w1

The above imply that:
\If((JO) s \Ij((JO)eiTrOOUs,’ for i — ’ueQm
\I]((Jl) — \Ilél)emem‘“, for pw—1m (u _ 1)627”..

Finally, we observe that:

Match
UiN“" =¥ nCour,

Ko(z) W C§1)

Ooco

1E_1
Uiy = Ko(x)T = Ko(x) \Iléoo) £l = »
Ko(z) 9 ¢l B
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As a result of the matching procedure we get:

. —1
My = M({N = C(;ll]T [ECSZ()) eim0oos Cé;)) Eil} Cour,

-1 . —1
My = MEY = Caby [BORCE ™ @000 0™ B Cour.

When we come to the computation of the traces, we find:
tr(MoM,) = ag® + (b — 2aw)q + (c — bw + aw?),

tr(M, M,) = Ag® + (B — 2Aw)q + (C — Bw + Aw?),

where a, b, ¢ , A, B, C are complicated long trigonometric expressions in sines and cosines of the
parameters 76, v = 0,2,1,00. We omit to write them. The above form for the system which
determines ¢ (and therefore r) implies that:

q=2w+ { solution of the system for w = 0}.

Moreover:

a(C — tr(MiM,)) — A(c — tr(MoMy))
Ab — aB

{ solution of the system for w = O} =

_ b(C —tr(M;M,)) — B(c — tr(MoMy))
" a(C - tr(M1 My)) — A(c — tr(MoMy))

We omit all the explicit expressions.

6 Monodromy Data associated to the Solution (7)
Proposition 3  [1]. The monodromy group associated to the solution (7):
y(x) ~z(r+ 60y Inx),
s generated by:
My = E exp{—inbyo3} E~', M, = EU" exp{inf,03} UE™!,

M1 = BC&l exp{i7r9103} COlB_l;
where B, Co1 are given in Proposition 2 and:
e~t500 % —Ugr(lo+1)—vyg —im 1 —T(0p+ 1)T'(—6p)

, U .=
0 eiz 0 0 1

FE =

Conversely, the parameter r is:

T o tI‘(MoMl)

m
0 4 sinmysin g (0oe + 01)sin 5 (00 — 01)

+ (gl +1) +im + ve)+

47 cos(6y + 01) w [cosm(fg + 61) — cos (6o — 61)] (56)
2 sinmlysin 5 (0oe + 61)sin 5 (0o — 61) 2 sin w6 sin w6, '

w 1s gwen in Proposition 2.

[2]. The monodromy group and r for the solution (7):
y(@) ~ a(r — 6o Inz),

are obtained from the results in [1], with the substitution 6y — —6g.
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Proof: For the matching Voyr < Uiy and ¥ « Wopyr, we proceed as in the proof of Proposition
2.

MATCHING ¥ « ¥y

Consider the case 6y = 6. For this case, the system for ®y can be chosen to be (73) or (74), with
a = ¢ = . Here we refer to system (74). Therefore, a fundamental solution is (see Proposition 6):

U = 0 (- 1) =

[20) 9% 9o
- 1

0, 0,
P =) F-p) e - e T (- @) F(1+ 60,1+ 60,2 + 6o 1)

0 pF -
Here, the branch is: (u — 1) = (1 — p). When p — oo, we write the hypergeometric function as
follows, using the connection formula 9.(1) in Norlund [22]:

) 1
F(1+6p,14 00,2+ 0p; 1 =™ (gy 4+ 1 ,u_l_eogl 0,1460,1;— |, 0<argu< 2.
1

Here, we have used the branch —u = e~y The function g; is:

! - X (1+60)y
g1 (O’1+9071;;>_\IJE(1+00)+’YE+Z7T—IH,UJ+27( 0y v
v=1

, W — 00.

v !

From the above, we obtain:

1 . .
v = {1 + (—)] <1 1““) Ee'3% = W, Ee't%.
7 0 1

Here, ¥y is the matrix used in the matching Voyr < Uy and F is in the statement of the
proposition. When p — 1, we use the connection formula:

F(1+90,1+90,2+90;u):

= P(—OO)F(2 + 90)F(1 + 90, 1+ 90, 1+ 90; 1-— M) + %(1 - M)_QOF(L 1, 1-— 90; 1-— ,u).
Therefore,
1 _ _L(o)L(Be+2)
pO =g roa—p) | " TN o pter, ao

0 1

Finally, when p — 0,we have:

Wl = 130 (1 4 O()) <(1) 7"/190) pm o,

Let Coyr be the same matrix introduced in the proof of Proposition 2. We have:
phtch = nCour = Ko(2)¥oCour = KO(I)‘I’E)O)EAOOUT-

This implies that:
M, = Colip EUTY exp{inf,o3} UE™" Cour,
My = C'a[l]T E exp{—infyo3} E~' Cour.
The matrix Coyr has been simplified in the statement of the proposition.

The proof for 6y = —0, is analogous (for example, it is the case (73) with a = 0, ¢ = 6y). O
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7 Monodromy Data for the Non-generic Case (9)
We consider the non-generic case
90:2]77 p€Z7 9075(); 91:91207 90021

In this case, the solutions (6) becomes (9). We show here that the solutions (9) are not in one to
one correspondence with a set of monodromy data. Namely, to a given set of monodromy data, as
defined in Proposition 1, there corresponds a one parameter family (9), where r is a free parameter
(i.e. r is not a function of the traces of the product of the monodromy matrices).

We miss the one-to-one correspondence because the conditions in Proposition 1 are not realized.
Namely, the matrix Ry associated to (9) is:

Ry =0, while 0y € Z and 6y # 0.
This fact is contained in the following Proposition.

Proposition 4 The monodromy group associated to (9) is generated by:

_ 8 _ 3% 2
1 omi 1—%In2 =~ (In2)
\/10 = I7 \/1x = 5 Hl ==

0 1 2 1+51n2

In particular,
tY(MQMm) = tY(MQMl) = 27 tl"(Mle) =2

The monodromy is independent of the parameter r in (9).
Note: With the above choice the monodrmy at infinity: M;M, ( or M,M;i) is not in standard
Jordan form. Namely:

1—%1112 —%(41H2+iﬂ')2 —3—%1112 %(4iln2—|—ﬂ')2
Mo-t) = MlMx - ] ) ) Mo_o = Mle = . .
Z -3+ %m2 2 1+ % n2

They can be put in Jordan form respectively by the following matrices:

1— % In2 —%(ln 2)2rq 1+ % In2 %(ln 2)2rq
C(J)rUT = . ) R CaUT = ) ) R r € C.
= (1+%ln2)r1 —= (1—%1n2)r1
We obtain:
-1 -1 2mir R -1 2mir
Covr  MLCyr = < 0 -1 ) ’ Covr MxCour = < 0 -1 >

On the other hand:

) . 1—%1112 —%(ln2)2 ol
C(JDFUT MlOgUT = 05UT M105UT = ) ) )
. 1+ %2

™ T

) —1-%mn2 Z4iln2+n)*r
OgUT MIC(-;UT = , ) ’
2 3+ %m2

™ r

3—%m2 Z(4iln2—-m)2r

_ - _
COUT MwCOUT:

2 -1+ %2

™ T
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7.1 Derivation of Proposition 4

The matching Yoy < ¥y has been realized by

Your(z, ) =[Gy + O(N)] (é lo§)\>7 Goz(% 2)
Uy (2, ) = Ko(2)Tq <%> \I/o(u):[l+0<%>} <é 10%“), [t — 0.

MATCHING V¥ « \IIOUT-

The correct choice of ¥Makeh must match with:
1 _1 0 —r
— _ o3 Rco — 1
v=[reo(D]rtm n=(2 ). A
System (42) is (69) of Appendix 1, with:

b=— c=0.

1
9’

_ [ P1 P2
\I/OUT—<€1 €2>7

then 71 and @9 are independent solutions of the hypergeometric equation (75):

If we write:

& d
A(1—A)d—;§+(1+c—(a+[b+1]+1) A) d—f—a(bﬂ)«p:O,

and
1 depi

b—c )
&—;[)\(1—)\) N —a(/\—l-a_b) %}, i=1,2.

We need a complete set of solutions at A = 0, 1, co. In the standard Gauss hypergeometric form (52)
we have ag = Fp =1/2, 79 = 1. Since yo =1, ap + fo — 0+ 1 =1 and oy — By + 1 = 1, we expect
solutions with logarithmic behaviors at A = 0,1, co. We choose three sets of independent solutions:

{ A" = Flao, Bo,70:0) = F (3,3, 1;)),
@go) = g(OZOaﬁOvFYO;)\) =g (%, %, 1,)\) ;

oM = F(ao, Bo,a0+fo =0+ L1 -X)=F(3,5,1;1-X),
o =g(ao,Bo,a0+Bo—r+L1-N) =g (5,3, 11-X);

<P§OO) = AiﬁoF(ﬂOvﬁO — Y + 1760 — g + 17>\71) = Ai%F (%7 %a 17 %) )
<P§OO) = A7[309(/60760 — Y + 1760 — g + 17>\71) = )\7%9 (%5 %a 17 %) ;
Let ) .
W= (2 70)
SHENS
From Norlund, formulae 5.(1) and 5.(2) we get:
0 -
\II(OOI)JT = \IJ(Oll)JTCm, Co1 = (_l OW) ;o Jarg | <, Jarg(l— M) <.

From Norlund, formulae 12.(1) and 12.(3) we get:

0 0 1 0
Wb = WG Con = (_pige )

e'z
™
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O<argA<m (e=1), —wm<argA<0 (e=-1).

e Note on the computation: In order to apply 12.(1) we need:

11 1 11 1 . x 11 1
o) =g 10 ifep (2 210
g1 (2727 7A) 9(2727 ,A>+7T62 (2727 7)\>

O<argd<m (e=1), —m<argA<0 (e=-—-1).
€ appears in the computations when we express: —\ = e ¥\,

We expand the solutions for A — 0 and we get:

1 InAX 1 —4In2
\IJE%T—GO(HO(A))(O 1>B, B—<0 1), A— 0.

Namely,
vl = WourB.

Then expansion when A — oo yields::

1 1
vSor = {14—0 <X>} A= D\ S oo

(1 —In16 A
O

\I/(OO?J)T = UgsrE"D.

Namely,

From the above:
it = D

= ‘IJ(O(%TCJ;D_l

= VYour Cour, where Coyr = Bco_oloDil.
It is easy to see that:
v el (2T hen A— 1 — e2™ (A—1
our — Four\qg 1 ) when A =1 e™™ (A—1).

This, together with the connection formulae
U = \I/(OOI)JTCO_oiDilv
= 05 7Con Cob D7,

yields:
1 2w
0 1

_ _ 1 2m
= CoyrBCy' (0 71m> ConB™'Cour.

M, = MPUT = DCOOOCO_ll( >00105;D—1

We have two choices for Coyr, depending on € = +1 in Cys. These have been called C&LUT and
Coyr in the Note, after Proposition 4.

MATCHING ¥ « ¥y

The system:
ddg
dp

Av—p | A
(I)O = ‘U,ip \110, 0 P + ‘1)0.
% p—1

26



is (72) of Appendix 1, with:
a=p, c=2p.

The equation for ¢ is in Gauss hypergeometic form (77):

2
u(u—1)3—5—1—(1—%—0—2(61—&-1)/1)%—a(a+1)§=0, (57)

In the standard form (55), we have:
ao=p, Po=1+p, N=1+2p z=p

Therefore 0 = 14+2p, ag+ B0 — 0+ 1 =1, ag — fo+ 1 = 0, and (57) may have solutions with
logarithmic or polynomial behaviors at ;1 = 0, 1, co.

The choice of three sets of independent solutions requires a distinction of sub cases p > 0 and
p < 0. As before, we denote:

_ _ ) (@) (@)
\If((f) = MP(I)((Jl)a (I)((JZ) = (?(11) ?é) ) , 1=0,1,00.
1 2

* CASE p > 0. We choose:
5%0) = F(aOa ﬁOu Y05 /’L)J

{ ) — = f(ap — 0 + 1, Bo — 70 + 1,2 — Y0; 1);

{ql) = F(ao, fo, a0+ Bo —vo + 1;1 — p),
551) = g(a0, Bo, a0 + Bo —v0 + 151 — p);

{ §§OO) = M*QOF(BO, 60 — 7 + 1760 — Qp + 1;/1’71)5
5500) =pP0g1(Bo — o+ 1,80, B0 — o + L; 7 1);

From Norlund, formulae 5.(1), 5.(7) we get:

2T°(2p) 0

0 PF(P)2
vg) =V C, Jarg(1- N <m O = ( o ) .
- T)?

From Norlund, formulae 12.(1), 12.(6) we get:

(0) _ (o) () (+) 0

%) * * 2
Vo' =W ' Choos |arg(—,u)| <m, Cooo = (_1)p+1 2p I'(2p) p) )

TG 0

where —p = ey, n = £1.
We compute the behavior of gpz(-oo), 51-(00) (i =1,2) for g — oo. In the computation, In(—1/u)
appears in g;. We write —1/p = €™ /u, argpu = nm when —co < p < 0. The final result (after
expanding in series):

0 1 11 —2 —2
S )(u)=[1+0(;>]<0 “ﬂ) E, - oo, Ez(po ijffg )

. p+r
Q> =) +Yel@+1) + 2vp +imn — FERt

Namely,
v = WE,
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where ¥ is the matrix for the matching Yoy < V;n. Expanding @EO), 51-(0) for p — 0 we get:

(0) e 5 pos
Uy = # 7 ) [I+0W]p, p—0.
Expanding <pl(-1), 51-(1) for p — 1 we get:

W _ (B L*J(¢E<p>+¢E(p+1)+2vE)—%) - (1 ln(l—,u)) -
Yo _(pl ’ Ye(p) +Ye(+1) +27E ) I+00 - ) 0 1 » o h L

* CASE p < 0. We choose:

{ 0 550) = f(a07507’70;/1‘)7
& = =10 F(ap — 70 + 1, B0 — Y0 + 1,2 — 03 1);

{ §1) = F(ag, fo, a0 + o —v0 + 1;1 — p),
fél) = go(, Bo, a0 + Bo — Y0 + 151 — p);

{ §OO) = M_BOF(ﬂf)u 60 — 7 + 1750 — + 1;11/_1)7
&) = % g1(Bo, Bo — 0 + 1, Bo — o + L ™ L);
From Norlund, formulae 8.(6), 8.(11) we compute:

_PF(*ZD)Q 0
W -eel e i<n o= (TRE )
T'(—p?)
From Norlund, formulae 13.(1), 13.(6) we compute:
3O — g0 | arg(— ) _ gyt T 0
0 0 Cooo g=pl<m  Coo=(1) 0 _211“5(;)2217) '

We compute the behavior of ¢{°, £°°) (i = 1,2) for 4 — oo. In the computation, In(—1/p)

appears in g;. We write —1/u = €™/, arg u = nm when —oo < p < 0. The final result (expanding
in series):

o 1 1 1 —2 —2
s [0 (D] (5 ) 5w mo (7 %07,

+7r
pr

Q< = ¥u(—p) + u(—p+1) + 2vp +imn — =

Namely,
v = WE,

where Wy is the matrix for the matching Voyr < ¥rn. Expanding @EO), 51-(0) for g4 — 0 we get:

(0) S
vy =( 5 ) [I+0W]e™, p—0.

Expanding <p1(-1), 51-(1) for p — 1 we get:

) _ (B B (¢p(-p) + ¢e(l—p) +278) - 5 - 1 In(1— p) -
i _( 1 Ye(=p) +¥E(l —p) +27E )[I+O(1 u>]<0 1 )’ po b

* Both for p > 0 and p < 0 we have:

Uiy = Ko(a)¥y = Ko(a)U®E1,
—1
= Ko(@)wy'Ce B,
—1
= Ko@)v'cicg) B
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together with \I!%\}mh = U;nCoyr. We conclude that the monodromy of (1) is:

1 2m

—1
My= MY =1 M= = oghy (B0 (37

* * -1 _
)0530501 B Cour.

Don ) have different form for p > 0 and for p < 0. We also have
two choices for Coyr, depending on € = +1 in Cys. These have been called C‘O"UT and Copp
in the comments just after Proposition 4. Multiplying by Coyr and C&le to the left and right
respectively we get three generators for the monodromy group:

The connection matrices E, C{*) Cé;

1 2m

0 1

My=1, M= BCy' < 0 1

-1 i -1
) eus o =rcilel) (o 77 ) el e
With this choice, we obtain the matrices of the Proposition 4. We observe that

_ -1 2m
Oog,TMleMOCOUT—(O _”f), e=1

_ -1 2m
Coprr MM MoCouyr = ( 0 _7r11> , e=-—L
tI‘(MoMm) = tr(MoMl) = 2, tr(Mle) = 2.

8 Logarithmic Behaviors at *+ = 1 and * = co — Symmetries
and their Action on the Monodromy Data — Connection
Problem

In this section we compute the logarithmic asymptotic behaviors at x = 1,00. This is easily done
by applying the action of some Backlund transformations of (PVI) on (6) and (7). They act as
birational transformations on y(z) and z, and as permutations on the 6,‘s, v = 0,z,1,00. In order
to know the monodromy data which are associated to the solutions of (PVI) obtained from (6) and
(7) by the Backlund transformations, we also compute their action on the monodromy data.

The birational transformations are described in [23]; some of them form a representation of the
permutation group and are generated by:

ol G =60, Oh=6i;  0,=0,, 6 =0 V(@) =1-y(), z=1-2.
o2 0y =0—1, 0 =0y+1; 0, =6y, 0. =0,; '(a:')zi L
. 0 o0 9 [’} 0 I 1 1, x T y y(.’l?)’ I,'
3 / / / / i 1 1
o 0, =01, 0] =0, 0y = 6o, 0 =0 Yy (') =—ylx), z=—.
T T
It is convenient to consider also:
x —y(x) a
0o = 0z, 07 = bo; 0r =01, 0 =0c; y'(@') = -1 YT o1 (58)
0 =00 —1, 0. =61, 0, =0,, 0_=0+1; @)= 2 z=2a 59
0 ) T 1, 1 ) 0o o + ) Yy (:E) y(z)u &€ &€ ( )
x 1, 1 o) 9 [o%s) x 5 0 0, y(z) —5[37 2 .

The transformantion (58) is the composition o' - 2 - 1. (59) is 02 - ¢3. (60) is the composition of
a2, (58), (59). For brevity, we will call the Backlund transformations with the name “symmetries”.
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8.1 Action on the Transcendent. Formulae (11)-(16) and (17)-(22)

The symmetry o, acting on the transcendent (6), gives the behavior:

/
, r — OQF

2 2 2
) o 0 0, ;96 [hl 1, 4r+26)
X

/2 ’2 ,2 ’2
0,2 — 0, 0,2 — 0,

We prove below that o maps tr(MoM,) to tr(M{ M), where M/, v = 0,z,1, 0o are th emonodromy
matrices for the system (1) associated to (), with respect to the same basis of loops (see below).
Therefore tr(M{M;) = 2.

The symmetry o', acting on the transcendent (6), gives the behavior:

0) 0,° — 0,
0702 4

4r + 20}

y/(flf/) ~1- (1 - .I/) 9/2 9/ 2

lln(l -2+

As it is proved below, o1 maps tr(MoM,) to tr(M]M].) and thus tr(M]M.) = 2.
The action of (59) gives the behavior:

1
y’(x’) ~ . z — 0,
07— (0012 [} 4202 17 (00—1)2
1 (0. —1)2-0,7 (0. —102-0,7

Namely,

4 8140, —4 1 1
1o\ — 1 o0 O — / 0.
V) = e 1t l TeT e iz T (m%')]’ S

The symmetry (60) gives:

1 /

0]2-6,> dr+26} 6,2

y'(a") ~ 1+ 2
A [ingar 1)+ g+

3

Namely:

4 8 + 46 1 1
") =1+ 1-— 9 +0(7) |
V(@) (0,7 — 6)°) In*(x/ — 1) l gy> — ;% In(a’ — 1) In?(z' — 1)

The symmetry o2 yields:

.T/

1ot
y'(') ~ .
0,%— (04, —1)? 4r4-207_—2 (07, —1)2
Tz "Woo ™ 1) [l - T o + .

4 1)2 9/2
4 2 8 40, —-1) 1 1
ylw) = - 212 [1 - 742+ e = 1) +0 (2—)] .1l — oo
[0, —1)2 =07 In" a2’ 07— (0, —1)2Ina’ In2 2/

We study the action of the symmetries on (7). If we apply o! we find:

y(@)~1-(1-a")(r+£0In(1-2")), ' —1, 06 ==0,.
The action of o2 gives:

y' (@) ~r+6(Ina’, 2’ — o0, 6)==0].
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The action of (59) gives:

1
"(2) ~ 0 0 —1=20].
YO e e T !
The action of (60) gives:
V@)~ b —— 1, 0 1= 0
T:I:t%ln(z;l)’ ’ e 0
Namely:
y'(2') =1+ ! 1F ! +0 ! o =1, O —1=20]
0y In(a’ — 1) 0y In(z" — 1) In?(z' = 1)/ ]’ ’ oe 0
The action of o2 gives:
:L,/
y'(z) ~ ¥ —o0, O —1=40..

/ 1
(2) = +—" 1 - 0—— 0, —1=+0.,.
v(@) (0, — 1) Ina’ - 0, —1)Ina’ + n?z' )|’ > *

When we drop the index /7 from the above formulae, we get the asymptotic behaviors (11)—(16)
and (17)—(22).

8.2 Action of ¢! and ¢® on the Monodromy Data

To compute the action of the symmetries on the monodromy of system (1), it is important that we
choose the same base of loops in the A-plane that we used to parameterize a transcendent in terms of
the monodromy data. Therefore, we consider an ordered base of loops in the “A-plane” C\{0,z, 1}
as we did in Sub-Section 2.2, figure 1.

Consider the system associated to y(z):

d@_[@ Ae | A }\11

= 61
N [P S (61
The monodromy matrices of a fundamental solution W(A) w.r.t. the chosen base of loops are denoted
My, M,, M. The loop at infinity will be voo = YoV2v1, S0 Moo = MM, My. We need to construct

the system associated to y'(2):

oA, AL, A
AN = [Y N — ! + N — 1] v, (62)

We will determine the relation between (61) and (62), between a fundamental solutions ¥(A) and a
fundamental solution ¥'()\’) and between their respective monodromy matrices My, M, M; and M|,
M., M;. The monodromy M|, M.,, M, are understood to be referred to the order 1,2,3 = 0,2/, 1.
In order to do this, we will construct A’ (z2',y(2"),dy’/dz"), j = 0,2',1 and we will see how they are
related to the matrices A;(z,y(z), dy/dz).

The explicit formulas to write A;(z, y(x), dy/dx) can be found at page 443-445 of [18]:

Y _y-1 _ gy
(Ao)i2 = ks (141)12—]‘330_17 (Az)12 = kx(:c—l)’

d. . y—x _ “yls) = s
%hlk—(ﬂoo—l)m = k(z)—koexp{(t?oo—l)/ s(s—l)ds}’ ko € C.

0;
(Ai)in = 2z + % i=0,x,1.
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20 = ﬁ{y(y—l)(y—x)z%r[01(y—z)+mé)z(y—l)—2nz(y—1)(y—x)}5+H§(y—w—1)—ﬂz(91+zﬁz)},
5 =~ (= D=0 + [0 +0) (=) 20 (=) = 2raly = 1) (=) 4 =)+
301 + 6,) — Ka(k2 + ) |
2z = ﬁ{y(y —1)(y—2)22 + [01(y — 2) + 2(0, + 00) (y — 1) — 2r2(y — D) (y — 2)] 2+

+f<a§(y — 1) — k(b1 + 20,) — xka(k2 + 900)},

Ko = — 9_04_6‘_14_@4_9;’0 g—lM@_l L_;’_H_OJ’_ 0z + 01
2 2 2 2 2 [ C2yly—-Dy—x)de 2\ \y-z y y—zx y—1J’

z(x — 1)z,

(Ag)a1 = k—y(zo +6), (A1) = _m(zl +01), (Az)a = Wy —2) (22 + 02).
We also recall that (Ao)12/A + (Aa)12/(A — ) + (A1)12/(A = 1) = seaiisy-

Symmetry o3: We compute the matrices A%, i = 0,2', 1, through the above formulas. By direct
computation we find:

~/ ~ ’ / /
zZ =Tz, Z0 = 20, 21 = Rz, Zp = Z1-

Therefore we find:

_k_
Ay =K TAK, A=K 'AK, A, =K 'AK; K::(mg’ (1))

We also note that d(Ink’)/dz’ = d(Ink)/dz + (fso — 1)/, thus: k' = kx’>~—1. Anyway, the specific
form of k/k’ is not important here. What is important is that the matrix K is diagonal. Then we
can write

v TAL A, A L TA A A
— |20 T \IJ/ - K 1 x K\I//
dN N )\’—:E'+)\’—1] [)\’ N—a  N-1 ’

With the change of variables:

we get:

) +

d\IJ/ _ AO Al A;E
=K 1
[ A A=-1 -2

}K\I!’.

With the gauge:
U =KV

We finally get (61):

d\y{@ A Az}\y, (63)

P I R
It is important to note that the gauge is diagonal, a fact that ensures that, for the gauge-transformed
system, the solution A of the equation obtained by setting the matrix element (1,2) equal to zero
defines the same y(z). We conclude that the systems (61) and (62) are related by a diagonal gauge

transformation and the exchange of the point z and 1. In other words, we can take as (62) the
system:

dv _ {AO Ay Ay ]\IJ, (64)

U D A
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M

X

Figure 2:

where W()) is also a fundamental matrix solution of (61). The equation defining y'(z’) is:

{@ Ay Ay

+

=0 = XN=y@)
NN = X—Jm

while:

D N L

Therefore, (62) can be obtained from (61) simply by a change of variables A’ = A\/x, © = 1/2’. The
result is that the points A = x,1 are exchanged to \' = 1,x’.

1,2

We compute the monodromy of (64) in terms of the monodromy of (63). For the latter, we have
fixed in the beginning of the section a ordered base of loops 7o, ¥z, y1. But for (64), the points 1, 2’
are exchanged. The loops 7y, 41 7. of figure 2 correspond to the order 1,2,3. Their monodromy
matrices are:

Msy = My, Ms, = M,, Ms, =M.
We need a new basis of loops such that the order 1, 2,3 be 0,2’, 1. Let us denote these loops (), V.., 71
of figure 3. For the basis in figure 3 we easily see that:

W=% =N h Nn=h

Let M{, M.,, M{ be the monodromy matrices for the orderded loops 7, ~./,7;. Therefore we
have:

Mg = M5, = Mo,
-1 — -1

l = My " Ms My, = M~ M M,
M| = M5, = M,.

From the above results we compute the traces:

tr(MyM,,) = — tr(MoMy) — tr(MoMy)tr(M1M,) + 4(cos(m) cos(mly) + cos(my) cos(mb1)),
tr(M{M]) = tr(MoM,),

tr(M{M.,)) = tr(M1My).
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Figure 3:

The above follow from the identity:

tr(AB) = tr(A)tr(B) — tr(AB™1), A, B 2 x 2 matrices, det(B) =1
and from:

tr(My M, M) = e™0> 4 e tr(M;) = ™ 470 §=0,x,1
Symmetry o;: We repeat the computation Af, A’,, A as above. As a result we find that the
system (62) is — up to diagonal conjugation:

d\IJ . AQ Al Aw

- = - I: —_ I: —
Y v_it v T v_2 U, N=1-\ 2 =1-z, (65)

where U()) is also a fundamental matrix of (61). In other words, (65) can be obtained from (61)
by the change of variables A’ = A\ — 1, z = 1 — 2’. The relation between the two systems is simply
that the points A = 0,1 are exchanged to A’ = 1,0. The base 7y, 7,71 becomes the basis 41, Y./, Yo,
in figure 4. The monodromy matrices are:

Ms, =My, My, =M, M, =M.

We introduce the ordered basis (), 7., 74 of figure 5 and we easily compute:

/

Y=, Ve =0 Aerdos M= o A A1 Fo-

Therefore:
My =M, M., =MMM;", M =M MMM M
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Figure 5:
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and:

tr(MyM.,) = tr(M M),
tr(M{M{) = — tr(MoMy) —tr(MyM,)tr(MoM,) + 4(cos(mbss) cos(mhy) + cos(mby) cos(mby))
tr(M{M,,) = tr(MoM,).

8.3 Connection Problem

When we act with a Backlund transformation on y(x) for x — 0, we obtain the asymptotic behavior
for ' — (the image of z = 0). r in (6) is expressed in terms of the monodromy data. Let us write
the dependence on the monodromy data in a synthetic way as follows:

y(x) = y(z;0; TRy ),

where © = 90, 917 91, 900, TRMM = tI‘(MoMz), tI‘(MoMl), tI‘(Mle).
When we act with a symmetry on the above transcendent, we get:

y/( ZZT/; @(9/), TRMM (TRM/M/) )

Here ©(0O') stands for the 6,’s expressed in terms of the 0’s, and TR (TRM/M/) stands for
the traces of the products of the M;’s as functions of the traces of the products of the MJ’-’S. For
example:

For o3:

2 =tr(MoM,) = tr(M{M7),

tr(MoMy) = — tr(MgM,,)  — tr(MEM])tr(M{M,) + 4(cos(mbl,) cos(m]) 4 cos(wb}) cos(wb,)),
tr(My M,) = tr(M{M.,).
For o

2 =tr(MoM,) = tr(M{M.,),
tr(MoMy) = — tr(M{M{)  —tr(M{M],)tr(M{M.,) + 4(cos(nb,) cos(nb,) + cos(md}) cos(n6y))

tr(M1M,) = tr(MyM.,),

In order to obtain the formulas which express r in terms of the monodromy data for the solutions
(12) and (13), (18) and (19), we substitute in (51) of Proposition 2 or in (56) of Proposition (3), the
0,’s as functions of the 0,,’s and the tr(M;M;) as functions of the tr(M;M}). When this is done, we
can drop the index /. The above also proves that (12), (18) are associated to tr(MoM;) = 2, while
(13) , (19) are associated to tr(MyM;) = 2.

8.4 The case of (9): asymptotic behavior (10)

We apply the above results for the transformation of the traces to the case (9). First of all, we
observe that the solutions obtained from the above by the symmetry (59) are:

)

1 [ _2p—|—ri+4p2+67’p+37’2 1

y(l‘) ~ = p2 Inx p4 1n2 T

p2In’

with:
90:91291207 00022p—|—1

These contain the family of Chazy solutions studied in [21] (for p = —1/2 in [21]), namely:

1 24+2r 446r43r2
y() ~——— |1-

Inx In?

:|, 6‘0:9m291207 90023 (p:l)

In?z
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The symmetry ¢ transforms (9) into :

10 2 1 T-i—p 2 /
y(@)~1-p ln;—i— P , T — 00, (66)

(tr(MoMy), tr(MoMy), tr(Mi M)+ (tr(MgM,), tr(MoMy), tr(M{ M) = (2,2, -2),
(00, 0,01, 000) = (2p,0,0,1) > (6),0,.6,,65) = (2p,0,0,1).
Therefore, the transformed solution is again associated to the same monodromy data of (9).
Now we apply (60). We obtain:

y'(z)=1- ! ¥ —1 (67)

2
p? (ln(l —x)+ %)
(tr(MoMy), tr(Mo M), tr(Mi M) +—  (tr(M{M,), tr(M{M7), tr(M{ M) = (2,2, -2),
(9079m7917900) = (2pu07071) — (9679/179/ 91 ) = (217707071)

1> Yoo

The transformation of the traces by the action of (60) will be proved in the second paper. The
transformed solution is again associated to the same monodromy data of (9).

Actually, a transcendents (9) has a behaviors (67) at x = 1 and a behavior (66) at z = oc.
Namely, it is the transcendent (10). The parameters r appearing in (9), (66) and (67) are not the
same. Their relation will be determined below.

The rigorous proof of (10) is as follows. For 6y = 0, = 61 =0 and 0 =2p+ 1, p € Z, (PVI)
was completely studied in [21]. There are two classes of solutions:

(1) Chazy solutions for any p # 0. The Chazy solutions for a given p # 0 can be obtained
applying a birational transformation to the Chazy solutions for p = 1.

(2) Picard solutions for any p. The Picard solutions for a given p # 0 can be obtained applying
a birational transformation to the Picard solutions for p = 0.

The symmetry (59) transforms the Chazy solutions of (PVI) with 8g = 0, = 0; =0, o = 2p+1,
p =1, to the solution:
8z wu(2(z — W' +w)) (220" + w)

(22w’ + w)? — 4xw’2]2

y(x) ; (68)

associated to
90:2]), p:l’ szelz(), 90021

Here,
w=w +rwe, reC, W =dw/dr.

The w;, i = 1,2 are two independent solutions of the hypergeometric equation z(z — 1)w” + (1 —
2z)w’ — 1/4w = 0, namely:

YR EY (11
wi = 272727$ ; w2 =g 272727$ .
Any other case p € Z, p # 0, can be obtained by a birational transformation of (68), as it is already
proved in [21] for the Chazy solutions. If we expand (68) for z — 0 we obtain (9), with:
r+p

v=1/(4ln2 -1+ pg), po= e

Thanks to the representation (68), we can compute the parameters in (10):

m(4In2 — 1+ pg) 2
—2mln2+1 = T m2+1
T—i@m2—14p) TN P Ty, 0T

Poo =

This is done by expanding wi, we for £ — 1, £ — oo. In order to do this, we use the connection
formulae in Norlund [22]. From 5.(1) and 5.(2), we get:

1 111 111
w1 7_‘_9(272727 (E), w1 ™ (272727 (E),
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From 12.(1), 12.(3) we get:

N A U U I A A U U
E ™M\ ey Y\ )|

1 1111
w=ag\ 3595 )

It is not possible to compute the relation between pg, poo and p; by the method of monodromy
preserving deformations, due to the lack of one to one correspondence between a solution (the
parameter 7, i.e. pg) and the monodromy data.

Note 1: The pure braid group (Appendix 2) acts as follows:
Bi- B+ (tr(MoMy), tr(MoMy), tr(My M) = (2,2,-2) — (2,2,-2), i=12.

It leaves (tr(MoM,), tr(MoM;y),tr(MyM,)) invariant, thus the log-behaviors at z = 0,1,00 are
preserved in the analytic continuation of (10).

Note 2: The symmetry o! transforms:
(tr(MoMy), tr(MoMy), tr(My M) — (tr(M{ML), tr(M{My), tr(M{M})) = (-2,2,2),

(90;990;917900) = (2p7070? 1) = (0679;79/159530) = (07072p7 1)

Therefore, the solution:

!
r —1

)

y'(2)~1—(1-2) l—p2 <ln(1 —x)+ T;;p) +1

is not associate to the same monodromy data of (9).

9 Appendix 1
Proposition 5 Let By, By be 2 X 2 matrices such that

FEigenvalues (By) =0, —c, Figenvalues (B1) = 0,c—a —b.
and By + B is either diagonalizable:

—a

0

— 1
Bo+31=< Oa _a>.

Then, By and By can be computed as in the following cases. Let r, s be any complex numbers.

By + B; = ( _Ob) (it may happen that a = b),

or it is a Jordan form:

1) Diagonalizable case.

Case a # b:
a(b—c) r a(c—a) r
BO - ab a(jc—bcfb b(c—a ) ’ Bl = < ab b(b—c ) ! r 7& 0 (69)
( (r(a—)lg)2 ) (a— ) _(B0)21 (a b)
Case a = b. We have two sub-cases:
—c—S8 T s —r

Ifa=b=c: By= < s(cts) s)’ B; = < (ot5) —c—5> (70)
Ifa=b=0: Boz(__f(;f) ;) B = —By. (71)



The transpose matrices of all the above cases are also possible.

2) Jordan case.
For a # 0 and a # ¢ we have:

r(r+c) o _ r(r+o)
BO — ( ( r a(a—c) ) , B1 — ( a r 1 a(a—c)) . (72)
a

c—a) —c—r ala—c) c—a-+r

For a =0, or a =c, we have two possibilities:
0o r —a 1-r
BO_(O —c)’ Bl_( 0 —a+c)’ (73)
—c r c—a 1-—r7r
Bo—<0 O)’ Bl-( 0 —a) (74)
Proposition 6 Let By and By be as in Proposition 5. The linear system:
4 (e _|Bo B »
dz \ & z  z—1 3

may be reduced to a Gauss hyper-geometric equation, in the following cases.

Diagonalizable case (i.e. from (69) to (71)):

or

z(1—z)d2—‘p+(1+c—(a+[b+1]+1)z)dﬁ—a(b+1)¢=o. (75)

dz? dz

The component & is obtained by the following equalities, according to the different cases of Proposition
5.

Cases (69): . % [z(l L j—f » (z+ Z:Z) 4 (76)
Case (70): §=%[z(1_z)z_f+(c+8—cz) Lp]

ase (71):

C 71 52%[2(1_2)2_‘2’+(c+s)4

Jordan case (72): The equation for & is in Gauss hypergeometic form:

z(z—l)ﬂ+(1+c—2(a+1)z)g—a(a+1)§:0 (77)
dz? dz ’
1 d¢
o(z) = aa—0 [z(z—l)a—i-(az—c—r)f] . (78)
Jordan case (73): The equation for &:
D z7%(1-2)° a=0;
d — 5 ;
_§: _E_|_C a § — 5(2’): DeZ
dz z z-—1 D sc .
z7°, a=c
The equation for @:
o, d-r (1-2)° _
d_(,ﬁ |:z + z—l} D z¢ a O’
dz ¢




The equation for ¢ can be integrated. If ¢ € Z we obtain (by variation of parameters):

E+D [—%(1—2)02_04—;11 zl_CF(l—c,l—c,2—c;z)], a=0;
p(z) = D,E€C
E(l-2)°4+D {—%zfc—i- ! zl’c(l—z)ch(l—c,l—c,2—c;z)} , a=g¢

c—1
If ¢ € Z, the solution contains a logarithmic term.
Jordan case (74): The equation for &:

%_ a

dz~  z-1

§ = ()= DecC

The equation for p:

frst)et (B ) D a=0

de _ (_
dZ _EQP‘F (g + i:;) (12)(17 a = C;

The equation for ¢ can be integrated. If ¢ & Z we obtain (by variation of parameters):

C

E(l—z)cz_c—i-D[ﬁ—?ll z(l—z)cF(1+c,1+c,2+c;z)], a=0;
Ezfc—i-D[%(l—z)*C—;llzF(l—i—ql—&—c,?—i—c;z)}, a=c

If c € Z, the solution contains a logarithmic term.

10 Appendix 2: Action of the Braid Group and Analytic
Continuation

The subject of this Appendix is well known. Let us denote a branch of a transcendent, in one to one
correspondence with the monodromy data 6o, 6, 01, 0oo; tr(MoM,), tr(MoMy), tr(M1M,)), with the
following notation:

y(x; 00, 0z, 01, Oo0; tr(MoM,,), tr(MoMy), tr(M1M,,)),

Its analytic continuation, when x goes around a loop around one of the singular points z = 0, 1, co,
is obtained by an action of the pure braid group on the monodromy data. This means that the new

branch is:
y(2;00, 0p, 01, Ooo; tr(MJ MP), tr(ME MP), tr(MF MP)),

where (3 is a pure braid, and M; — Mf is its action.
It is convenient to replace (1) by

dV [ Ag(u) n Az (u) n Az (u)

— = \\
d\ /\_ul A—UQ A—’U,g ’

where we have restored three parameters of isomonodromy deformation ui,us,us3. The ordered
basis of loops 71,72, 3 is in figure 6. The monodromy matrices which correspond to the loops are
Moy, My, M.

When z goes around a loop around x = 0, the monodromy data of the system (1) change by
the action of the pure braid 3 - 81, where 31 is the elementary braid which exchanges u; and wus,
namely which continuously deforms (u1,ug, ug) — (u}, ub, us) := (ug, u1,us). The basis v1, 72,73 is
deformed, but it is still denoted by 71, ¥2, 3 in figure 7. The monodromy matrices remain unchanged,
because the deformation is monodromy preserving. The monodromy matrices obtained by the action
of the braid are the monodromy matrices for:

dv  [Ao(u') N Ay (u) N Ay ()
dx | A—uf N —uh  A—uh]
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Figure 6:
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w.r.t to the basis 71,4, v4 of figure 7.
We have:

V=", Y=7 MY Vh=7s

Therefore:
MY = My, M2 = M,MoM;", M =M.

If follows that:
MOBI'BI — MmMOMm_la
MPvPy = M, MoM, My ' M,

x

Mlﬁl'ﬁl = M;y;

tr(MJ P MO Oy = tr(MoM,)
tr(MY P MYy = —tr(Mo My) — tr(My M, )tr(MoM,) + 4(cos(m8u ) cos (8, ) + cos(m6:) cos(nby)),

tr(My 7 MB O = tr(My M) [tr(MoMy)? — 1]+tr(Mo M, )tr(Mo M, )+
—4[cos(m0s0 ) cos(ml) + cos(mby ) cos(mby) | tr(Mo M) + 4[cos(m0s ) cos(my) + cos(mhy) cos(mh,)].

We observe that tr(MyM,) is unchanged. This means that the log-behavior at z = 0 is preserved
when z goes around a small loop around x = 0.

When z goes around a loop around x = 1, the monodromy data of the system (1) change by
the action of the pure braid (s - B2, where (5 is the elementary braid which exchanges us and us,
namely which continuously deforms (u1,ug, ug) — (u}, ub, us) := (u1, us, uz). The basis v1, V2,73 is
deformed, and we still denote it 1, y2, 3 in figure 8. The monodromy matrices remain unchanged.
The monodromy matrices obtained by the action of the braid group are the monodromy matrices
w.r.t to the basis v{, 75,74 of figure 8. We have:

!’ /I /-1
Y1 =7 V2 =73, V3= 73 7273

M= =My, M =My, M= MMM

Therefore:
tr(MJ?> 72 MP2 P2y = —tr(MoM,) — tr(MoM, )tr(M, M)

+4(cos(m ) cos(my) + cos(mby) cos(mby)),

tr(MG> 72 M) = tr(Mo M) [tr(My M,)? — 1] +tr(MoM, )tr(M; M, )+
—4[cos(mls0) cos(m:) + cos(mby) cos(ml) | tr(M1 M) + 4[cos(mbu) cos(mb,) + cos(mby) cos(mbr)],

tr(MP> P2 MP2P2) = tr(MM,).

We observe that tr(M;M,) is unchanged. This means that the log-behavior at z = 1 is preserved
when z goes around a small loop around x = 1.

Any pure braid can be obtained by the two generators (1 - 81, (2 - f2 introduced above.
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Figure 8:

11 Appendix 3: Functions introduced in [22]
1

(a)n :=ala+1)(a+2)..(a+n—-1), (a)_p:=

F(a,b,c;z) = Z %Z".
n=0 ' n
c—1
G(a,b,c;2) Zl (n—1)! (“)(—CT)L(Z):_" P
—I—Z ) gla+n)—vYgr(a)+

+¢p(b+n) —pb) —velc+n) + ¥e(c) —Ye(l+n)+ ¢Yp(1)] +1nz)z"

gla,b,c;z) = Z(—l)”fl(n —1)! (

3 0Ot m) 4+ 06+ 1) — (e -+ ) — vs(1+ ) +In 2]

o nl(c)n

c—1
gi1(a,b,c;2) = Z(—l)”*l(n —1)! (a)fn(b)—nz,n_‘_

# 3 (L —a =) ()~ vislet ) ~U(1 £ )+ nls”

43
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go(a,b, G Z) = Z(_l)n_l(n — 1)'72’ +

+;%[¢E(l —a—-n)+¢vp(l—-b—n)—vYe(c+n)—ve(l+n)+Inz]z".
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