
The competition numbers of
complete tripartite graphs

SUH-RYUNG KIM

Department of Mathematics Education,
Seoul National University, 151-742, Korea.

srkim@snu.ac.kr

YOSHIO SANO

Research Institute for Mathematical Sciences,
Kyoto University, 606-8502, Japan.
sano@kurims.kyoto-u.ac.jp

August 2007

Abstract

For a graph G, it is known to be a hard problem to compute the competition
number k(G) of the graph G in general. In this paper, we give an explicit formula
for the competition numbers of complete tripartite graphs.
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1. Introduction and Main Result
Cohen [1] introduced the notion of a competition graph in connection with a problem in
ecology in 1968 (also see [2]). The competition graph C(D) of a digraph D = (V,A) is
an undirected graph G = (V,E) which has the same vertex set V and has an edge between
distinct two vertices x, y ∈ V if there exists a vertex a ∈ V such that (x, a), (y, a) ∈ A.

Roberts [5] observed that, for any graph, the graph with sufficiently many isolated
vertices is the competition graph of some acyclic digraph. The minimum number of such
isolated vertices was called the competition number of the graph G and was denoted by
k(G). It is difficult to compute the competition number of a graph in general as Opsut
[4] has shown that the computation of the competition number of a graph is an NP-hard
problem.

But, for a graph in some special classes, it is easy to obtain the competition number
of the graph. The following are some of known results for competition numbers.

• If G is a chordal graph which has no isolated vertices, then k(G) = 1.

• If G is a triangle-free connected graph, then k(G) = |E(G)| − |V (G)| + 2.

As corollaries of these results, we have

• k(Kn) = 1, k(Kn,n) = n2 − 2n + 2, k(Kn1,n2) = (n1 − 1)(n2 − 1) + 1.

Competition graphs and the competition numbers of graphs are closely related to edge
clique covers and the edge clique cover numbers of the graphs. A clique of a graph G is
an empty set or a subset of V (G) such that its induced subgraph of G is a complete graph.
A clique consisting of 3 vertices is called a triangle. An edge clique cover (or an ECC
for short) of a graph G is a family of cliques of G such that each edge of G is contained
in some clique in the family. The minimum size of a edge clique cover of G is called the
edge clique cover number (or the ECC number for short) of the graph G, and is denoted
by θe(G).

Opsut [4] showed that, for any graph G, the competition number satisfies an inequality
θe(G)−|V (G)|+2 ≤ k(G) ≤ θe(G). Dutton and Brigham [3] showed that a graph G is a
competition graph of some digraph if and only if θe(G) ≤ |V (G)|, and also characterized
the competition graphs of acyclic digraphs by using ECCs as follows.

(∗) A graph G is the competition graph of an acyclic digraph if and only if there exist
an ordering v1, ..., vn of the vertices of G and an edge clique cover {S1, ..., Sn} of
G such that vi ∈ Sj ⇒ i < j.

For other applications of ECCs, see [6].
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In this paper, we give an explicit formula for the competition numbers k(Kn,n,n) of
complete tripartite graphs Kn,n,n. The following is our main result which will be proven
in the following section:

Theorem 1. For n ≥ 2, the competition number of the complete tripartite graph Kn,n,n

is given by the following:
k(Kn,n,n) = n2 − 3n + 4. (1.1)

2. Proof of Theorem 1
Let Kn,n,n (n ≥ 2) be a complete tripartite graph on 3 disjoint sets A := {a1, ..., an},
B := {b1, ..., bn}, and C := {c1, ..., cn}.

Put 4(i, j, l) := {ai, bj, cl} for 1 ≤ i, j, l ≤ n. Then 4(i, j, l) are triangles of Kn,n,n.
Note that there are n3 triangles. Let F := {4(i, j, l) | l = i + j − 1, 1 ≤ i, j ≤ n},
where i + j − 1 are reduced to modulo n. Note that |F| = n2.

Lemma 2. The family F is an edge clique cover of Kn,n,n of minimum size. In particular,
θe(Kn,n,n) = n2.

Proof. Take any edge aibj between A and B, then both ai and bj are in 4(i, j, l) ∈ F ,
where l = i + j − 1 (mod n). Take any edge aicl between A and C, then both ai and cl

are in 4(i, j, l) ∈ F , where j = l − i + 1 (mod n). Take any edge bjcl between B and C,
then both bj and cl are in 4(i, j, l) ∈ F , where i = l − j + 1 (mod n). Thus the family F
is an ECC of Kn,n,n.

Since all maximal cliques of Kn,n,n have size 3, we may assume that an ECC of Kn,n,n

of minimum size consists of triangles. Since |E(Kn,n,n)| = 3n2 and that a triangle has
3 edges, any ECC of Kn,n,n has size at least n2, i.e. θe(Kn,n,n) ≥ n2. Since |F| = n2,
we conclude θe(Kn,n,n) = n2 and thus we have that F is an ECC of Kn,n,n of minimum
size.

Lemma 3. If two triangles 4,4′ ∈ F are distinct, then |4 ∩4′| ≤ 1.

Proof. By the definition of 4(i, j, l), once two of i, j, l are given, the remaining one is
uniquely determined.

Lemma 4. We can label the vertices of Kn,n,n as v1, . . . , v3n, and choose trianlges
41, ...,43n−3 ∈ F so that

41 ∪ ... ∪4i ⊆ {v1, ..., vi+3} (2.1)

for 1 ≤ i ≤ 3n − 3.
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Proof. We label the vertices of Kn,n,n as v1, v2, . . . , v3n in the following order:

a1, b1, c1, a2, bn, cn, an, b2, c2, an−1, bn−1, cn−1, an−2, bn−2, cn−2, ..., a3, b3, c3 (2.2)

More precisely, we put v1, ..., v9 as above, and v3s+7 = an−s, v3s+8 = bn−s, v3s+9 = cn−s

for 1 ≤ s ≤ n − 3. Now choose triangles from F and label them as follows.

41 = {a1, b1, c1}, 42 = {a2, bn, c1}, 43 = {a1, bn, cn},
44 = {an, b1, cn}, 45 = {an, b2, c1}, 46 = {a1, b2, c2},
47 = {an−1, b2, cn}, 48 = {a2, bn−1, cn}, 49 = {a1, bn−1, cn−1},

...
...

...
43s+4 = {an−s, b2, cn−s+1}, 43s+5 = {a2, bn−s, cn−s+1}, 43s+6 = {a1, bn−s, cn−s},

= {v3s+7, v6, v3s+6}, = {v4, v3s+8, v3s+6}, = {v1, v3s+8, v3s+9},
...

...
...

43n−5 = {a3, b2, c4}, 43n−4 = {a2, b3, c4}, 43n−3 = {a1, b3, c3},

where 1 ≤ s ≤ n− 3. Note that 4i are all distinct. Now, we will see that (2.1) holds. For
i = 1, ..., 6, we can easily check that (2.1) holds. For i = 7, ..., 3n − 3, it can easily be
seen that the vertex of maximum index in 4i has index at most i + 3. Thus, we conclude
41 ∪ ... ∪4i ⊆ {v1, ..., vi+3} for 1 ≤ i ≤ 3n − 3. Hence the lemma holds.

Now we are ready to prove our main theorem.

Proof of Theorem 1. First, we will show k(Kn,n,n) ≥ n2 − 3n + 4. Let k = k(Kn,n,n)
for convenience. Then the graph G := Kn,n,n ∪ Ik is the competition graph of some
acyclic digraph D, where Ik denotes a set of k isolated vertices. Then, by (∗), we can
label the vertices of G as v1, . . . , v3n+k so that there exists an ECC {S1, ..., S3n+k} of
G satisfying vi ∈ Sj ⇒ i < j. That is, Sj ⊆ {v1, ..., vj−1}. Since any edge of G
is contained in a triangle and any maximal clique of G has size 3, we may assume that
any nonempty clique Si is a triangle. Therefore we may assume that S1 = S2 = S3 =
∅. Since S4 ⊆ {v1, v2, v3} and S5 ⊆ {v1, v2, v3, v4}, we may assume that S4 = S5

by Lemma 3 if they are not empty. Thus the family {S5, S6, ..., S3n+k} is also an ECC
of G, and so we have θe(G) ≤ 3n + k − 4. However, we know from Lemma 2 that
θe(G) = θe(Kn,n,n ∪ Ik) = θe(Kn,n,n) = n2. Hence we have n2 ≤ 3n + k − 4, i.e.
k(Kn,n,n) = k ≥ n2 − 3n + 4.

Now we show that k(Kn,n,n) ≤ n2 − 3n + 4. By Lemma 4, there exist a labeling
v1, ..., v3n of the vertices of Kn,n,n, and triangles 41, ...,43n−3 ∈ F such that 41 ∪ ... ∪
4i ⊆ {v1, ..., vi+3} for 1 ≤ i ≤ 3n − 3. Since |F| = n2, there are n2 − 3n + 3 triangles
in F \ {41, ...,43n−3}. Label those triangles as T1, T2, . . . , Tn2−3n+3. Now, we define a
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digraph D as follows.

V (D) = {v1, ..., v3n} ∪ {z0, z1, ..., zn2−3n+3},

A(D) =
3n−4∪
i=1

{(x, vi+4) | x ∈ 4i}

∪ {(x, z0) | x ∈ 43n−3}

∪
n2−3n+3∪

i=1

{(x, zi) | x ∈ Ti}.

Then this digraph D is acyclic. For, vertex zi has no outgoing arcs for each i = 0, ..., n2−
3n + 3 and (vi, vj) ∈ A(D) ⇒ i < j. Since every clique in the ECC F has a common
out-neighbor in D, E(Kn,n,n) ⊂ E(C(D)). On the other hand, the in-neighborhood of
each vertex in D is either empty or a clique in F , it is true that E(Kn,n,n) ⊃ E(C(D)).
Thus C(D) = Kn,n,n ∪ {z0, z1, ..., zn2−3n+3}. Hence we have k(Kn,n,n) ≤ n2 − 3n + 4.

Therefore, k(Kn,n,n) = n2 − 3n + 4 holds.

3. Concluding Remarks
In this paper, we compute the competition numbers of complete tripartite graphs on the
vertex sets of the same size. We present the following problems for further study:

• What is the competition number of a complete tripartite graphs Kn1,n2,n3 on the
vertex sets of different size?

• What is the competition number of the complete tetrapartite graphs Kn,n,n,n (on the
vertex sets of the same size)?

• More generally, what is the competition number of a complete multipartite graph
Kn1,n2,...,nm ?
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