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Abstract

In this paper, we give a complete characterization of the class of weighted max-
imum multiflow problems whose dual polyhedra have bounded fractionality. This
is a common generalization of two fundamental results of Karzanov. The first is a
characterization of commodity graphs H for which the dual of maximum multiflow
problem with respect to H has bounded fractionality, and the second is a charac-
terization of metrics d on terminals for which the dual of metric-weighed maximum
multiflow problem has bounded fractionality. A key ingredient of the present pa-
per is a non-metric generalization, due to the present author, of the tight span,
which was originally introduced for metrics by by Isbell, Dress, and Chrobak and
Larmore. A theory of non-metric tight spans provides a unified duality framework
to the weighted maximum multiflow problem, and gives a unified interpretation of
combinatorial dual solutions of several known minimax theorems in the multiflow
theory.

1 Introduction and main results

Let G = (V,E, c) be an undirected graph with nonnegative edge capacity c : E → R+,
and let S ⊆ V be terminals and µ a nonnegative weight for each pair of S. A path
P ⊆ E is called an S-path if its endpoints are distinct vertices in S. A multiflow
(multicommodity flow) is a set P of S-paths in G together with nonnegative flow-value
function λ : P → R+ satisfying the capacity constraint

∑
P∈P:e∈P λ(P ) ≤ c(e) for each

e ∈ E. The weighted maximum multiflow problem with respect to G and (S, µ), denoted
by M(G;S, µ), is formulated as:

M(G; S, µ) Maximize
∑
P∈P

µ(sP , tP )λ(P ) over all multiflows (P, λ) in G,

where sP , tP ∈ S are the endpoints of P . One of the intriguing issues in the multiflow
theory is the fractionality of optimal multiflows; see [18] [25, Part VII]. The fractionality
of (S, µ) is the least positive integer k such that M(G;S, µ) has a 1/k-integral optimal
flow for any graph G = (V,E, c) with S ⊆ V and integral capacity c. If such a k does
not exist, the fractionality of (S, µ) is defined to be infinity. The question is:

(F) What is a necessary and sufficient condition for (S, µ) to have bounded fractional-
ity ?
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The 0-1 weight cases have a particular combinatorial interest. In this case, 0-1 weight
µ can be regarded as a commodity graph, and M(G; S, µ) is the problem of maximizing
the total sum of multiflows flowing pairs of terminals specified by µ(i, j) = 1. For
example, when S is a 2-set {i, j} with µ(i, j) = 1, which corresponds to the single-
commodity flow problem, the famous Ford-Fulkerson’s maxflow-mincut theorem [12]
states that there exists an integral optimal flow. The case where S is a 4-set {i, j, k, l}
and µ(i, j) = µ(k, l) = 1 and others are zero corresponds to the two-commodity flow
problem. Hu’s biflow-mincut theorem [14] says that there exists a half-integral optimal
flow. For the case of µ(i, j) = 1 for all distinct i, j ∈ S (the free multiflow problem),
Lovász [23] and Cherkassky [7] have shown the existence of half-integral optimal flows.
Such results for 0-1 weights µ are further generalized by Karzanov and Lomonosov [21]
to a certain class of commodity graphs. In the cases of non 0-1 weights, the so-called
multiflow locking theorem by Karzanov and Lomonosov [21] states the existence of half-
integral optimal flows for a class of cut-decomposable metrics µ. All of those results give
sufficient conditions, but a complete answer for (F) is still unknown (even for the 0-1
weight case).

Since M(G; S, µ) is a linear program, we may think of its dual problem M∗(G; S, µ),
which is given as:

M∗(G; S, µ) Minimize
∑
e∈E

c(e)l(e)

subject to
∑
e∈P

l(e) ≥ µ(sP , tP ) for all S-paths P,

l(e) ≥ 0 (e ∈ E).

Corresponding to the (primal) fractionality above, the dual fractionality of (S, µ) for
integral µ is the least positive integer k such that M∗(G; S, µ) has a 1/k-integral optimal
solution with for any graph G = (V,E, c) with S ⊆ V . Then the dual fractionality
problem is:

(F*) What is a necessary and sufficient condition for (S, µ) with integral µ to have
bounded dual fractionality ?

As was observed in [17], a necessary condition for bounded dual fractionality is also
necessary for bounded primal fractionality. Namely, for fixed (S, µ), if M(G; S, µ) has
a 1/k-integral optimal flow for any graph G with S ⊆ V and integral capacity c, then
M∗(G; S, µ) has also a 1/k-integral optimum for any graph G. The converse is not
true in general. In particular, the primal fractionality is greater than equal to the dual
fractionality.

There are two fundamental results in this direction due to Karzanov. The first is
in the 0-1 weight case. For a 0-1 weight µ on S, the commodity graph Hµ = (S, Fµ) is
defined as: ij ∈ Fµ if µ(i, j) = 1.

Theorem 1.1 ([17]). For a 0-1 weight µ on S whose commodity graph Hµ has no isolated
vertices, the following two statements hold:

(1) If Hµ satisfies:

(P) For any three pairwise intersecting maximal stable sets A, B,C of Hµ we have
A ∩ B = B ∩ C = C ∩ A,

then there exists a 1/4-integer optimal solution to M∗(G; S, µ) for any graph G =
(V,E, c) with S ⊆ V .
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(2) If Hµ violates condition (P), then there exists no integer k such that M∗(G; S, µ)
has a 1/k-integral optimal solution for any graph G = (V,E, c) with S ⊆ V .

This result completely answers (F*) for 0-1 weight cases. Karzanov [18] conjectured
that there exists a 1/4-integral optimal flow of M(G; S, µ) for 0-1 weight µ with the
property (P). However, this conjecture is still unsolved.

The second is in the case where µ is a metric on S. By definition, µ is a metric on
S if µ satisfies µ(i, j) = µ(j, i) ≥ 0, µ(i, i) = 0, and the triangle inequality µ(i, j) ≤
µ(i, k) + µ(k, j) for all i, j, k ∈ S. In addition, a weight µ is called cyclically even if µ is
integral and µ(i, j) + µ(j, k) + µ(k, i) is an even integer for all i, j, k ∈ S. For a metric
µ on S, the tight span T (S, µ), introduced independently by Isbell [16], Dress [11], and
Chrobak and Larmore [8], is defined by the set of minimal elements of the polyhedron

P (S, µ) = {p ∈ RS | p(i) + p(j) ≥ µ(i, j) (i, j ∈ S)} (1.1)

We will explain the tight spans in detail later. Karzanov’s result for M∗(G; S, µ) for a
metric µ is the following:

Theorem 1.2 ([20]). For a cyclically even metric µ on S, the following two statements
hold:

(1) If the dimension of T (S, µ) is at most 2, then there exists a half-integral optimal
solution to M∗(G; S, µ) for any graph G = (V,E, c) with S ⊆ V .

(2) If the dimension of T (S, µ) is greater than 2, there is no integer k such that
M∗(G; S, µ) has a 1/k-integral optimal solution for any graph G = (V,E, c) with
S ⊆ V .

Although (2) is not explicit in [20], it is a consequence of his characterization of prim-
itively finite metrics. Therefore, this theorem completely answers (F*) for the metric-
weighted case.

The main result of this paper is to give a complete answer to the problem (F*) by
establishing a common generalization of the above two theorems of Karzanov. In fact,
Theorem 1.2 holds for non-metric weights, where the polyhedral set T (S, µ) is defined
for non-metric weight µ as in the metric case above. Specifically, our main result is given
by the following theorem.

Theorem 1.3. For a cyclically even weight µ on S, we have:

(1) If the dimension of T (S, µ) is at most 2, there exists a half-integral optimal solution
to M∗(G; S, µ) for any graph G = (V,E, c) with S ⊆ V .

(2) If the dimension of T (S, µ) is greater than 2, there is no integer k such that
M∗(G; S, µ) has a 1/k-integral optimal solution for any graph G = (V,E, c) with
S ⊆ V .

It is not so obvious the fact that condition (P) in Theorem 1.1 is equivalent to
2-dimensionality of T (S, µ) for 0-1 weight µ. We give a direct proof of this fact later.

Our result suggests that we cannot expect a combinatorial min-max theorem in
M(G; S, µ) for fixed (S, µ) with T (S, µ) ≥ 3 and any graph G, although we still do not
know whether this condition (1) is sufficient for bounded primal fractionality. If it is
sufficient, it gives a complete answer for (F).
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Overview. The proof of Theorem 1.3 is based on a novel relationship between mul-
tiflows and the tight span T (S, µ) as generalized for non-metric µ. This is the central
topic in this paper. A certain duality relationship between multiflows and metrics was
pioneered by Onaga and Kakusho [24] and Iri [15] in 70’s, and further developed by
Lomonosov and Karzanov [22, 17]. In mid 90’s, Bandelt, Chepoi, and Karzanov re-
vealed the significance of tight spans in multiflow theory [3, 5, 19, 20]. Our approach to
Theorem 1.3 also lies on this line of research developments.

For a metric space (S, µ), a metric space (V, d) is called an extension of (S, µ) if
S ⊆ V and µ(i, j) = d(i, j) for all i, j ∈ S. Namely (S, µ) is a submetric of (V, d).
It is easy to see that M∗(G; S, µ) for metric µ is equivalent to the following minimum
extension problem; see [20, p.240] for example.

(MEP) Minimize
∑

i,j∈V

c(i, j)d(i, j) over all extensions (V, d) of (S, µ),

where we extend the capacity c for all pairs of V by defining c(i, j) = 0 for ij 6∈ E. A
key observation is that an optimum of (MEP) is attained by a tight extension because
of c ≥ 0. Here an extension (V, d) of (S, µ) is called tight if there is no extension (V, d′)
of (S, µ) with d′ ≤ d and d′ 6= d. Namely, a tight extension is a minimal extension.

The tight extension of metric spaces has been studied independently by Isbell, Dress,
and Chrobak and Larmore, and they have shown that for a metric space (X, d) there is
an essentially unique universal tight extension, called the tight span, such that every tight
extension of (X, d) is a submetric of the tight span of (X, d). The tight span is realized
by the set T (X, d) of minimal elements of P (X, d) ⊆ RX defined in (1.1), endowed
with the l∞-metric. The above-mentioned universality property of (T (X, d), l∞) can be
explained as follows.

Theorem 1.4 ([16, 11, 8]). For a finite metric space (X, d), the space (T (X, d), l∞) has
the following properties:

(1) Let h = hX,d : X → RX be a map defined as

(h(i))(j) = d(i, j) (i, j ∈ X) (1.2)

(i.e., h is the i-th column vector of the distance matrix d). Then we have h(i) ∈
T (X, d) and d(i, j) = ‖h(i) − h(j)‖∞ for i, j ∈ X, and therefore (X, d) is isomet-
rically embedded into (T (X, d), l∞). In particular, (T (X, d), l∞) is an extension of
(X, d).

(2) (T (X, d), l∞) is a tight extension of (X, d).

(3) For any tight extension (Y, d′) of (X, d), there uniquely exists a map φ : Y →
T (X, d) such that φ(i) = h(i) for i ∈ X and d′(i, j) = ‖φ(i) − φ(j)‖∞ for i, j ∈ Y .

By this theorem, one can easily see that the minimum extension problem (MEP) is
equivalent to the following continuous location problem in T (S, µ) (a variant of the p-
median problem, called the p-facility minisum problem with mutual communication [26]).

Minimize
∑

i,j∈V

c(i, j)‖pi − pj‖∞

subject to pi ∈ T (S, µ) (i ∈ V ),
pi = hS,µ(i) (i ∈ S).
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Therefore, the several nice properties of multiflows and metric extension problems can
be characterized in terms of the geometric properties of the space T (S, µ) [20].

To apply this idea to M∗(G; S, µ) for general weights µ, we first generalize Theo-
rem 1.4 to a non-metric distance space (X, d). Here we call d a distance if d(i, j) =
d(j, i) ≥ 0 and d(i, i) = 0 for i, j ∈ X. That is, the triangle inequality is not im-
posed. Namely, a distance is nothing but a nonnegative weight. When we emphasize
non-metricity, we call it a non-metric distance. To begin with, we generalize the con-
cept of extension of metrics for non-metric distances as follows. For a distance space
(X, d), let us call a distance space (Y, d′) an extension of (X, d) if if it satisfies X ⊆ Y ,
d′(i, j) = d(i, j) for i, j ∈ X, and

d′(i, k) + d′(k, j) ≥ d′(i, j) (k ∈ Y \ X, i, j ∈ Y ). (1.3)

This condition prohibits shortcuts using a point in Y \ X. Just as in the metric case,
an extension (Y, d′) of (X, d) is called tight if there is no extension (Y, d′′) of (X, d) with
d′′ ≤ d′ and d′′ 6= d′. To represent non-metric distance spaces in the l∞-space, we extend
the l∞-metric to the l∞-distance between subsets of points. The l∞-distance ‖P,Q‖∞
for two subsets P,Q is defined as

‖P,Q‖∞ = min{‖p − q‖∞ | p ∈ P, q ∈ Q}. (1.4)

We simply denote ‖P, {q}‖∞ by ‖P, q‖∞ As an extension of Theorem 1.4, we obtain the
following, where it should be clear that T (X, d) is defined also for a non-metric d as the
set of minimal elements of P (X, d).

Theorem 1.5. For a finite distance space (X, d), the metric space (T (X, d), l∞) has the
following properties:

(1) Let η = ηX,d : X → 2T (X,d) be a set-valued map defined as

η(i) = T (X, d) ∩ {p ∈ RX | p(i) = 0}. (1.5)

Then we have d(i, j) = ‖η(i), η(j)‖∞ for i, j ∈ X, and therefore (X, d) is isometri-
cally embedded into (2T (X,d), l∞). In particular, (η(X) ∪ T (X, d), l∞) is an exten-
sion of (X, d), where η(X) ∪ T (X, d) means {η(i)}i∈X ∪ {{p}}p∈T (X,d) ⊆ 2T (X,d).

(2) (η(X) ∪ T (X, d), l∞) is a tight extension of (X, d).

(3) For any tight extension (Y, d′) of (X, d), there uniquely exists a map φ : Y \ X →
T (X, d) such that d′(i, j) = ‖φ(i), φ(j)‖∞ and d′(i, k) = ‖φ(i), η(k)‖∞ for i, j ∈
Y \ X and k ∈ X.

Therefore, the set T (X, d) for non-metric (X, d) is justified to be called the tight span
of (X, d). Property (1) has already been shown in our previous paper [13, Theorem 2.4].
The essential distinction between Theorems 1.4 and 1.5 is the way of embedding of X to
T (X, d). Namely, we represent a non-metric distance as the l∞-distance among subsets in
T (X, d). If d is a metric, η(i) consists of a single point h(i) (Lemma 3.2). If d violates the
triangle inequality, some η(i)’s are “regions” in T (X, d). Figure 1 (a) and (b) illustrate a
distance d on 5-set X = {i, j, k, l,m} and its tight span T (X, d), respectively. In the case,
T (X, d) is a 2-dimensional polyhedral complex obtained by gluing three pentagons and
three triangles along the broken lines. Then η(k), η(l), and η(m) are segments in T (X, d)
caused by violations of triangle inequalities, e.g., 2 = d(j, l) + d(l,m) < d(j,m) = 3.

Non-metric tight spans provide a unified duality framework to the weighted maximum
multiflow problems for general nonnegative weights. Problem M∗(G; S, µ) is equivalent
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d =

i j k l m

i 0 2 3 4 2

j 2 0 3 3 3

k 3 3 0 1 3

l 4 3 1 0 1

m 2 3 3 1 0
η(i)

η(j)

η(k) η(l)

η(m)

(a) (b) (c)

Figure 1: (a) distance d, (b) tight span T (X, d), and (c) T (X, d) ∩ Z

to a certain minimum extension problem similar to (MEP); see Section 5. Then, by
Theorem 1.5, it is further transformed equivalently to

(TSD) Minimize
∑

i,j∈V

c(i, j)‖pi − pj‖∞

subject to pi ∈ T (S, µ) (i ∈ V ),
pi ∈ ηS,µ(i) (i ∈ S).

We call it the tight-span-dual to the weighted maximum multiflow problem. Here pi for
i ∈ S is not be fixed to a point h(i) but is constraint to the region η(i). In a sense, pi

is a (vector) potential at i ∈ V , and ‖pi − pj‖∞ is a potential difference. In a single-
commodity case; X is a 2-set, T (X, d) is a segment, and therefore pi can be regarded as
a scalar potential. Theorem 1.3 (1) follows from the following characterization when the
continuous location problem (TSD) becomes a discrete location problem in T (X, d).

Theorem 1.6. For a rational distance µ on a finite set S, the following two statements
hold:

(1) If the dimension of T (S, µ) is at most 2. there exists a finite set of points Z in
T (S, µ) such that for any graph G = (V,E, c) with S ⊆ V , the optimal solution of
(TSD) for (G;S, µ) can be taken from Z, i.e., (TSD) is equivalent to the discrete
location problem:

(TSD-Z) Minimize
∑

i,j∈V

c(i, j)‖pi − pj‖∞

subject to pi ∈ T (S, µ) ∩ Z (i ∈ V ),
pi ∈ ηS,µ(i) ∩ Z (i ∈ S).

(2) In addition, if µ is cyclically even, we can take Z such that the l∞-distance among
Z is a multiple of 1/2.

Figure 1 (c) illustrates the point Z in this theorem as the black points; also see
Figure 20 for further examples. In a sense, the above Z can be regarded as integer
points in T (S, µ), although Z is not a subset of the ordinary integer points ZS in general.
Furthermore, solutions of (TSD-Z) provide combinatorial dual solutions to M(G; S, µ)
and this gives a unified interpretation of the combinatorial dual of several known minimax
theorems in the multiflow theory mentioned above. Indeed, the constraints in (TSD-Z)
imply that it is an optimization over certain partitions of V . For example, consider a
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distance of a 2-set, which corresponds to the single-commodity case Then its tight span
is a line segment, and Z can be taken to be its endpoints, and therefore (TSD-Z) is the
problem of finding a minimum cut; see [20, p. 241] for a related argument.

An intuitive reason why the 2-dimensionality of T (X, d) implies bounded dual frac-
tionality is the following well-known property of the l∞-metric; see [9, p. 31].

(R2, l∞) is isomorphic to (R2, l1) by the map (x1, x2) 7→ (
x1 + x2

2
,
x1 − x2

2
).

In fact, (T (X, d), l∞) will turn out to be obtained by gluing certain l∞-spaces (Proposi-
tion 6.2). If dimT (X, d) ≤ 2, then T (X, d) is a 2-complex of l1-spaces and therefore has
nice decomposability properties.

Karzanov’s proof of Theorem 1.2 is based on his elegant characterization of minimiz-
able graphs [19], and a number of properties of modular closures and least generating
graphs (LG-graphs) of metrics [20]. Here, minimizable graphs are graphs G with prop-
erty that (MEP) with its graph metric becomes the discrete location problem on G.

Such a graph metric approach does not seem to be extended to the case of non-metric
distances. In particular, we do not know an analogue of LG-graphs and modular closures
of non-metric distances. Instead, our proof of Theorem 1.6 relies mainly on Theorem 1.5
and the geometry of the space T (X, d).

This paper is organized as follows. We begin with examining elementary properties
of distance extensions in Section 2, study geodesic properties of T (X, d) in Section 3,
and then give a proof of Theorem 1.5 in Section 4. Our proof is based on Dress’ original
proof of Theorem 1.4 with a careful treatment of the “partial” triangle inequalities (1.3).
In Section 5, we verify that M∗(G; S, µ) is indeed equivalent to (TSD). In Sections 6, 7,
and 8, we further study the geometry of T (X, d) with connection to primitive extensions.
In particular, we devise the billiard construction to draw a certain grid on T (X, d) as
in Figure 1 (c), which is an alternative to the modular closure approach. By combin-
ing a simple modification of Karzanov’s orbit splitting method [20], we give an explicit
construction of the minimal Z in Theorem 1.6 (1). Then, we prove Theorem 1.6 (1) in
Section 9 and Theorem 1.3 (2) in Section 10. Section 11 is devoted to proving the half-
integrality assertion in Theorem 1.6 (2). In Section 12, we verify that condition (P) in
Theorem 1.1 is indeed equivalent to 2-dimensionality of the tight span of 0-1 distances,
and also give an explicit combinatorial construction of tight spans for 2-dimensional 0-1
distances. Concluding Section 13 gives some remarks.

Notation. We use the following notation. Let R+ be the set of nonnegative real. Let
Z be the set of integer. The set of functions from a set X to R is denoted by RX . For
p, q ∈ RX , p ≤ q means p(i) ≤ q(i) for each i ∈ X. For p ∈ RX and S ⊆ X, the
restriction of p to S is denoted by p|S . Similarly, for a distance d on X and S ⊆ X,
the restriction of d to S is denoted by d|S . The l∞-length ‖p − q‖∞ is often simply
denoted by ‖p, q‖∞ or ‖p, q‖. The characteristic vector χS ∈ RX of S ⊆ X is defined
as: χS(i) = 1 for i ∈ S and χS(i) = 0 for i 6∈ S. We simply denote χ{i} by χi, which is
the i-th unit vector. For an undirected graph G = (V,E), the edge between i, j ∈ V is
denoted by ij or ji. ii means a loop. EV is the set of (non-loop) edges of the complete
graph on vertices V . A stable set S of G is a subset of vertices such that there is no edge
both of whose endpoints belong to S. A partition of undirected graph G is a partition
of vertices such that each part is a stable set. In particular, if there is a bipartition, G
is called bipartite. G is called a complete multipartite graph if G has a partition such
that each pair of vertices in different parts has an edge. We often regard distance d
on X as d ∈ REX

+ . We often identify a distance space (X, d) with distance d. We use
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the standard terminology of polytope theory such as faces, extreme points, polyhedral
complex or subdivision and so on; see [27].

2 Elementary properties of distance extensions

We begin with some elementary properties of extensions of distance spaces. Let (X, d)
be a finite distance space. A distance space (Y, d′) is an extension of (X, d) if it satisfies
X ⊆ Y , d′(i, j) = d(i, j) for i, j ∈ X, and

d′(i, k) + d′(k, j) ≥ d′(i, j) (i, j ∈ Y, k ∈ Y \ X). (2.1)

An extension (Y, d′) of (X, d) is tight if there is no extension (Y, d′′) of (X, d) such that
d′′ ≤ d′ and d′(i, j) < d′′(i, j) for some i, j ∈ Y . For notational simplicity, we often use
the same d for (X, d) and its extension (Y, d).

It should be noted that if (X, d) is a metric, an extension (Y, d) is not a metric in
general. However, a tight extension of a metric space is always a metric as follows.

Lemma 2.1. If d is a metric, then any tight extension (Y, d) of (X, d) is a metric.

Proof. For a distance space (Y, d), the metric closure (Y, d) defined as

d(i, j) = inf{
∑m−1

k=0 d(ik, ik+1) | i = i0, i1, i2, . . . , im = j : {ik}m−1
k=1 ⊆ Y, m ≥ 1}. (2.2)

Namely, d is the graph metric on the complete graph endowed with the edge length
d(i, j) on each edge ij (if Y is finite). Then we have d ≤ d, and d(i, j) < d(i, j) for some
i, j ∈ Y if (Y, d) is non-metric. If (Y, d) is an extension of (X, d), then d(i, j) = d(i, j) for
i, j ∈ X holds by the inequalities (2.1). Therefore, if an extension (Y, d) is tight, then
(Y, d) coincides with (Y, d), which is a metric.

Therefore, our theory of tight extensions is compatible to the theory of metric ex-
tensions. The following retraction property is due to Dress [11, p.331, (1.9)] (his proof
in [11, p.332, remark] does not use the triangle inequality).

Lemma 2.2 ([11]). There is a map ψ : P (X, d) → T (X, d) such that

(1) ‖ψ(p), ψ(q)‖∞ ≤ ‖p, q‖∞ for p, q ∈ P (X, d), and

(2) ψ(p) ≤ p for p ∈ P (X, d) (and thus ψ(p) = p for p ∈ T (X, d)).

In particular, ψ is a non-expansive retraction from P (X, d) to T (X, d).

Sketch of proof. For p ∈ P (X, d), let p∗ be defined as p∗(i) = maxj∈X{d(i, j) − p(j)}
for i ∈ X. A map τ : P (X, d) → RX is defined by τ(p) = (p + p∗)/2. Then we have
τ(p) ∈ P (X, d), ‖τ(p), τ(q)‖ ≤ ‖p, q‖, and τ(p) ≤ p for p, q ∈ P (X, d). From this, we
have a desired retraction ψ := limn→∞ τn.

The following criterion for the tightness is an extension of (the easy part of) [11,
Theorem 1].

Lemma 2.3. Let (Y, d) be an extension of (X, d). If (Y, d) satisfies

d(i, j) =
{

maxk∈X{d(j, k) − d(i, k)} (i ∈ Y \ X, j ∈ X),
maxk,l∈X{d(k, l) − d(i, k) − d(j, l)} (i, j ∈ Y \ X),

(2.3)

then (Y, d) is tight.
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Proof. Note that (≥) in (2.3) always holds for any extension by definition. Let (Y, d′)
be another extension of (X, d) with d′ ≤ d. For i ∈ Y \ X, j ∈ X, we have

d′(i, j) ≤ d(i, j) = max
k∈X

{d(j, k) − d(i, k)} ≤ max
k∈X

{d(j, k) − d′(i, k)} ≤ d′(i, j). (2.4)

For i, j ∈ Y \ X, we have

d′(i, j) ≤ d(i, j) = max
k,l∈X

{d(k, l) − d(i, k) − d(j, l)}

≤ max
k,l∈X

{d(k, l) − d′(i, k) − d′(j, l)} ≤ d′(i, j). (2.5)

Therefore we have d = d′, and (Y, d) is tight.

3 The space T (X, d) and its geodesic properties

We define two polyhedral sets P (X, d), T (X, d) ⊆ RX as

P (X, d) = {p ∈ RX | p(i) + p(j) ≥ d(i, j) (i, j ∈ X)}, (3.1)

T (X, d) = the set of minimal elements in P (X, d). (3.2)

In a sense, P (X, d) and T (X, d) are the space of one-element extensions and the space of
one-element tight extensions, respectively. To see this, consider one-element extension
(X ∪ {k}, d) of (X, d). Then a vector {d(i, k)}i∈X satisfies d(i, k) + d(j, k) ≥ d(i, j), and
hence d(·, k) ∈ P (X, d). Conversely, p ∈ P (X, d) determines a one-element extension by
d(i, k) := p(i). It will turn out that this space T (X, d) of one-element tight extensions
governs all possible tight extensions.

We introduce the undirected graph KX,d(p) = K(p) associated with p ∈ P (X, d)
which is a fundamental tool to investigate the space T (X, d); see [11, Section 3] or [13,
Section 3]. For p ∈ P (X, d), we define the graph K(p) = (X,E(p)) by

ij ∈ E(p) def⇐⇒ p(i) + p(j) = d(i, j) (i, j ∈ X). (3.3)

Note that E(p) may contain loop edges, like ii for i ∈ X. The graph K(p) expresses the
information of facets of P (X, d) which contain p.

Let F (p) denote the face of P (X, d) that contains p in its relative interior. Then one
can easily see that the following characterization of elements of T (X, d); see also [11, 13].

Lemma 3.1. For p ∈ P (X, d), the following conditions are equivalent.

(a) p is in T (X, d).

(b) For any i ∈ X, there is j ∈ X such that p(i) + p(j) = d(i, j).

(c) K(p) has no isolated vertices.

(d) F (p) is bounded.

In particular, T (X, d) is the union of the bounded faces of P (X, d). Recall two
embedding maps h = hX,d : X → RX and η = ηX,d : X → 2T (X,d) defined as

(h(i))(j) = d(i, j) (i, j ∈ X), (3.4)
η(i) = T (X, d) ∩ {p ∈ RX | p(i) = 0}. (3.5)

Point h(i) and region η(i) are related in the following way.
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Lemma 3.2. Let (X, d) be a finite distance space. If an element k ∈ X satisfies

d(i, k) + d(k, j) ≥ d(i, j) (i, j ∈ X). (3.6)

Then we have η(k) = {h(k)}. In this case, in K(h(k)), the vertex k is adjacent to all
vertices, i.e, kj ∈ E(h(k)) for any j ∈ X.

Proof. Let p ∈ η(k). Then we have p(i) ≥ d(i, k) since p(k) = 0. By Lemma 3.1 (b),
there is j ∈ X such that p(i) + p(j) = d(i, j). By (3.6), we have d(i, k) + d(k, j) ≤
p(i) + p(j) = d(i, j) ≤ d(i, k) + d(k, j). Hence we obtain p(i) = d(i, k).

For p, q ∈ T (X, d), consider the image of the segment [p, q] ⊆ P (X, d) by the non-
expansive retraction in Lemma 2.2. Then it is a geodesic in T (X, d) between p and q.
Therefore we have:

Proposition 3.3. The metric space (T (X, d), l∞) is geodesic, i.e., for p, q ∈ T (X, d)
there is a path in T (X, d) connecting p and q with its length ‖p − q‖∞.

Next we present a useful way of moving a point p ∈ T (X, d) to another point in
T (X, d) using a stable set of K(p). For a subset of vertices S of a graph, the neighborhood
N(S) of S is the set of vertices which are adjacent to S and are not in S. For a stable set S
of K(p) and a sufficiently small ε > 0, one can easily see p + ε(−χS + χN(S)) ∈ P (X, d).
The following lemma, which concerns about the condition for p + ε(−χS + χN(S)) ∈
T (X, d), is also easily examined by using Lemma 3.1.

Lemma 3.4. For p ∈ T (X, d), let S be a stable set in K(p). If each vertex in N(S ∪
N(S)) is covered by an edge which is not adjacent to N(S), then for a sufficiently small
ε > 0, a vector pS,ε defined as

pS,ε = p + ε(−eS + eN(S)) (3.7)

is contained by T (X, d). In particular, any maximal stable set in K(p) is such a set.

As applications of Lemma 3.4, we have the further geodesic properties of T (X, d).

Proposition 3.5. For p ∈ T (X, d), we have

p(i) = ‖p, η(i)‖∞ (i ∈ X). (3.8)

Moreover there is a path in T (X, d) connecting p and η(i) with length p(i).

Proof. Since each q ∈ η(i) is q(i) = 0 by definition, we have p(i) ≤ minq∈η(i) ‖p − q‖∞.
We show (≥) by constructing a path from p to η(i) with its length p(i). If p(i) = 0,
then p ∈ η(i) and therefore (3.8) holds. Now we assume p(i) > 0. Take a maximal
stable set S containing i. Then move p → pS,ε as much as pS,ε ∈ T (X, d). Then we have
‖p, pS,ε‖∞ = ε. Set p ← pS,ε. Repeat this process until p(i) = 0. By finitely many steps,
we obtain a desired path with length p(i).

The following has already been obtained by [13] (in a slightly strong form). We give
a proof for completeness.

Proposition 3.6 ([13]). The following holds:

d(i, j) = ‖η(i), η(j)‖∞ (i, j ∈ X). (3.9)

Moreover there is a path in T (X, d) connecting η(i) and η(j) with length d(i, j).
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Proof. It is easy to see that there is p ∈ η(i) with ij ∈ E(p); take a minimal p ∈ P (X, d)
with p(i) = 0 and p(j) = d(i, j). Now we may assume d(i, j) > 0. Take a maximal
stable set S containing j. Move p → pS,ε as much as pS,ε ∈ T (X, d). Reset p ← pS,ε, and
repeat this process to p until p(j) = 0. In this process, the vertex j is always in N(S).
Therefore, the resulting path from η(i) to η(j) has the length d(i, j).

By the above proposition, we obtain the following.

Corollary 3.7. The distance space (η(X) ∪ T (X, d), l∞) is an extension of (X, d).

4 Proof of Theorem 1.5

Theorem 1.5 (1) follows from Proposition 3.6. We show (2).

Proof of Theorem 1.5 (2). We show that (η(X)∪T (X, d), l∞) satisfies the condition (2.3)
of Lemma 2.3. For q ∈ T (X, d), j ∈ X, we have

‖q, η(j)‖ = q(j) = d(i, j) − q(i) = ‖η(i), η(j)‖ − ‖q, η(i)‖

for some i ∈ X, where we use Propositions 3.3 and 3.5 for the first and the last equalities.
For p, q ∈ T (X, d), we have

‖p, q‖ = max
i∈X

|p(i) − q(i)| = p(i∗) − q(i∗) = d(i∗, j∗) − p(j∗) − q(i∗)

= ‖η(i∗), η(j∗)‖ − ‖p, η(j∗)‖ − ‖q, η(i∗)‖,

where we assume maxi∈X |p(i) − q(i)| = p(i∗) − q(i∗) and p(i∗) = d(i∗, j∗) − p(j∗) for
some i∗, j∗ ∈ X by Lemma 3.1 (b), and we use Propositions 3.3 and 3.5 for the last
equality.

For the proof of (3), the following lemma is crucial, which corresponds to [11, Theo-
rem 3 (vii)].

Lemma 4.1. Let (Y, d) be a tight extension of a finite distance space (X, d). The re-
striction map (·)|X : RY → RX is a bijection and an isometry between T (Y, d) and
T (X, d).

Proof. Since (Y, d) is tight for (X, d) and (η(Y )∪T (Y, d), l∞) is tight for (Y, d), (η(Y )∪
T (Y, d), l∞) must be tight for (X, d). By the proof of Proposition 3.6, for i, j ∈ X,
‖ηY,d(i)|X , ηY,d(j)|X‖ = d(i, j) must hold. By Lemma 3.2, we have h(i) ∈ T (Y, d) for i ∈
Y \X. Therefore, (ηY,d(X)|X ∪T (Y, d)|X , l∞) is an extension of (X, d). By ‖p|X , q|X‖ ≤
‖p, q‖ for p, q ∈ RY and the tightness of (η(Y )∪ T (Y, d), l∞), we have (T (Y, d)|X , l∞) '
(T (Y, d), l∞). Therefore the restriction map is an isometry and thus an injection. Clearly,
T (Y, d)|X ⊆ P (X, d). By the existence of a non-expansive retraction from P (X, d) to
T (X, d) in Lemma 2.2, it must hold T (Y, d)|X ⊆ T (X, d). To see T (Y, d)|X ⊇ T (X, d),
for p ∈ T (X, d), take a minimal p̂ ∈ P (Y, d) satisfying p̂|X = p (by using Zorn’s lemma
if Y is infinite). Then p̂ is also minimal in P (Y, d) and therefore is in T (Y, d).

We are ready to prove Theorem 1.5 (3).

Proof of Theorem 1.5 (3). Consider T (Y, d′) for (Y, d′). Then for k ∈ Y \ X, η(k) is a
single point h(k) by Lemma 3.2. Therefore, by Lemma 4.1, the restriction map (·)|X
induces a desired isometry φ : Y \ X → T (X, d). Finally, we show the uniqueness of
such a map. Now φ′, φ′′ : Y \X → T (X, d) be such maps. Then, by Proposition 3.5, we
have (φ′(k))(i) = ‖η(i), φ′(k)‖ = ‖η(i), φ′′(k)‖ = (φ′′(k))(i) for i ∈ X, k ∈ Y \ X. This
implies φ′ = φ′′.
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5 The tight-span-dual to the weighted maximum multiflow
problem

In this section, we show that the dual of the weighted maximum multiflow problem
is indeed equivalent to the tight-span-dual (TSD). Let G = (V,E, c) be a graph with
nonnegative edge capacity, and µ a distance on S ⊆ V . We extend c on every pair of V
by c(i, j) = 0 for ij 6∈ E.

Proposition 5.1. Let Ŝ = {̂i | i ∈ S} be a disjoint copy of S. We regard µ as a distance
on Ŝ. Then we have the following:

The optimal value of M(G; S, µ) or M∗(G; S, µ)

= min

 ∑
i,j∈V

c(i, j)d(i, j)
∣∣∣ (Ŝ ∪ V, d) is an extension of (Ŝ, µ),

and satisfies d(i, î) = 0 for i ∈ S


= min

 ∑
i,j∈V

c(i, j)d(i, j)
∣∣∣ (Ŝ ∪ V, d) is a tight extension of (Ŝ, µ),

and satisfies d(i, î) = 0 for i ∈ S


= min

 ∑
i,j∈V

c(i, j)‖pi − pj‖∞
∣∣∣ pi ∈ T (S, µ) (i ∈ V ), pi ∈ η(i) (i ∈ S)

 .

Proof. We show the first equality. Let (Ŝ ∪ V, d) be an extension of (Ŝ, µ). Then define
l ∈ RE

+ as l(ij) = d(i, j) for ij ∈ E. Then, by definition of the extension (2.1) and
d(i, î) = 0 for i ∈ S, we have∑

e∈P

l(e) ≥ d(sP , tP ) = d(sP , tP ) + d(sP , ŝP ) + d(tP , t̂P ) ≥ d(ŝP , t̂P ) = µ(sP , tP ), (5.1)

and therefore (≤). Conversely, let l ∈ RE
+ be a nonnegative weight on edges satisfying∑

e∈P l(e) ≥ µ(sP , tP ). Let dG,l be the graph metric of G with edge length l. From this,
we define a distance d on Ŝ ∪ V as

d(̂i, ĵ) = µ(̂i, ĵ), d(i, ĵ) = dG,l(i, j), d(i, j) = dG,l(i, j). (5.2)

By
∑

e∈P l(e) ≥ µ(sP , tP ) and d(i, j) ≤ l(ij) for ij ∈ E, we may replace l by d, and the
objective value does not increase. By construction, we have d(i, î) = 0. By

∑
e∈P l(e) ≥

µ(sP , tP ), d is an extension of µ. Therefore we have (≥). The second inequality follows
from c ≥ 0. The third follows from Theorem 1.6 and d(i, î) = 0 ⇔ pi ∈ η(i).

The proof of Theorem 1.6 (1) is based on the formulation of Proposition 5.1. However,
to prove Theorem 1.3 (2), we cannot use this formulation. We shall explain the reason.
It is known that M∗(G : S, µ) is also equivalent to:

Minimize
∑

i,j∈V c(i, j)d(i, j) over metric d on V with d|S ≥ µ (5.3)

This is a variant of the so-called Onaga-Kakusho-Iri Japanese theorem [24, 15]. If µ is
a metric, we may assume d(i, j) = µ(i, j) for i, j ∈ S, and therefore we obtain (MEP).
Then the dual fractionality is the least positive integer k such that for all V ⊇ S the
polyhedron

{d: metric on V | d|S ≥ µ } + REV
+ (5.4)
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is 1/k-integral. On the other hand, the formulation of Proposition 5.1 is a linear opti-
mization over the face, determined by d(i, î) = 0, of the extension polyhedron

{d: distance on V ∪ Ŝ | (V, d) is an extension of (Ŝ, µ) } + R
EV ∪Ŝ
+ . (5.5)

One can easily see that (5.4) is a projection of the face of the extension polyhedron
(5.5). Therefore, the fractionality of (5.4) may be better than that of (5.5). Such
a phenomenon is caused by non-metricity of µ; in the metric case, this projection is
bijection. For example, consider the extension polyhedron (5.5) for the distance µ on
4-set {1, 2, 3, 4} defined as: µ(1, 2) = µ(3, 4) = 1 and others are zero. Then, by using
Theorem 9.1 and Proposition 12.3, one can show that (5.5) for this µ is half-integral.
On the other hand, the polyhedron (5.4) is integral; this is a consequence of Hu’s biflow-
mincut theorem [14]. Therefore, to prove Theorem 1.3 (2), we have to investigate the
polyhedron (5.4).

Remark 5.2. The formulation in Proposition 5.1 naturally provides a similar duality
framework for the weighted maximum multiport-multiflow problem; the terminals are
disjoint subsets S of V , the weight µ is defined on pairs of S, and we pack S-paths (the
set of paths whose ends belong to distinct terminals in S) fractionally with maximizing
the total sum of weight µ. In this case we simply replace pi ∈ η(i) (i ∈ S) by pi ∈
η(S) (i ∈ S ∈ S) in (TSD).

6 The metric structure of faces of T (X, d)

The proof of Theorem 1.6, needs further investigation of metric properties of T (X, d).
We begin with a characterization of the dimension of the face F (p) for p ∈ T (X, d) by
the graph K(p). Note that dim F (p) is equal to |X| minus the rank of the matrix whose
column vectors are {χi + χj | ij ∈ E(p)}. Since the rank of a matrix which has two 1’s
in each column can be graph-theoretically characterized, we have the following; see [11]
or [13, Section 3].

Proposition 6.1. For p ∈ T (X, d), we have

dimF (p) = the number of bipartite components of K(p), (6.1)

where loops are regarded as odd cycles.

Since the metric space (T (X, d), l∞) is geodesic (Proposition 3.3), it is obtained by
gluing the metric spaces (F, l∞) of faces F of T (X, d). The next proposition concerns
about the shape of (F, l∞).

Proposition 6.2. Let F be a k-dimensional face of T (X, d). Then the metric space
(F, l∞) is isomorphic to a polytope Q in the k-dimensional l∞-space (Rk, l∞) represented
as

Q =
{

x ∈ Rk
∣∣∣ bij ≤ xi + xj ≤ b′ij (1 ≤ i ≤ j ≤ k),

cij ≤ xi − xj ≤ c′ij (1 ≤ i < j ≤ k)

}
(6.2)

for some bij , b
′
ij , cij , c

′
ij ∈ R. Moreover, the isomorphism is induced by the restriction

map (·)|S : RX → RS for some S ⊆ X with cardinality k.

Proof. Take any p∗ ∈ F in its relative interior. By Proposition 6.1, the graph K(p∗) has
exactly k bipartite components with partitions (A1, B1), (A2, B2), . . . , (Ak, Bk). Take
ji ∈ Ai for i = 1, . . . , k. We show that the restriction map (·){j1,...,jk} : RX → R{j1,...,jk}
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does not occur !
(b)(a)

Figure 2: Gluing l1-octagons

induces an isomorphism between (F, l∞) and ((F ){j1,...,jk}, l∞). Take p, q ∈ F with
p 6= q. Then both K(p) and K(q) contain K(p∗) as a subgraph. Now we assume
‖p − q‖∞ = p(i∗) − q(i∗) > 0. If i∗ 6∈

∪
1≤i≤k Ai ∪ Bi, then i∗ is in some nonbipartite

component in K(p∗). Let E be the set of edges of this nonbipartite component. Then,
the linear equality system {p(i) + p(j) = d(i, j) (ij ∈ E)} has full rank, and therefore
its solution is unique. This implies p(i∗) = q(i∗) which contradicts p(i∗) − q(i∗) > 0. If
i∗ ∈ Ai ∪ Bi, then there is i′ ∈ Ai ∪ Bi with i∗i′ ∈ E(p), and we have p(i∗) − q(i∗) =
d(i∗, i′)−p(i′)−q(i∗) ≤ q(i′)−p(i′). Therefore ‖p−q‖∞ is attained also by i′. Since there
is a path from i∗ to ji, ‖p − q‖∞ is attained by ji. This concludes that the restriction
map (·){j1,...,jk} is an isometry.

Next we show that (F ){j1,...,jk} is represented as (6.2). Let p ∈ F . For j ∈ Ai, there
is a path from j to ji. By substituting the equality p(i′) + p(i′′) = d(i′, i′′) along the
path, the jth component of p can be represented as p(j) = b + p(ji) for some b ∈ R
Similarly if j ∈ Bi, we have p(j) = c−p(ij) for some c ∈ R. Substitute such relations to
the inequalities p(j′)+p(j′′) ≥ d(j′, j′′). Then we obtain the desired the linear inequality
representation of (F ){j1,...,jk}.

The 2-dimensional case is important for us. In this case, Q is (a Minkowski summand
of) an octagon in l∞-plane. We call it an l∞-octagon (though it is a k-gon for 3 ≤ k ≤ 8).
Recall that l∞-plane is l1-plane. By the map (x1, x2) 7→ ((x1 + x2)/2, (x1 − x2)/2), we
again obtain an octagon in the l1-plane. We call it an l1-octagon.

Proposition 6.3. Let F be a 2-dimensional face of T (X, d). Then the metric space
(F, l∞) is isomorphic to an octagon Q in the l1-plane represented as

Q =
{

x ∈ R2
∣∣∣ a1 ≤ x1 ≤ a′1, b ≤ x1 + x2 ≤ b′,

a2 ≤ x2 ≤ a′2, c ≤ x1 − x2 ≤ c′

}
(6.3)

for some a1, a
′
1, a2, a

′
2, b, b

′, c, c′ ∈ R.

We can draw the l1-coordinate on 2-dimensional face F , and observe that there are
two types of edges of F : edges parallel to an l1-axis and edges parallel to an l1-axis.
The next proposition says that if dimT (X, d) ≤ 2, the metric space (T (X, d), l∞) is
constructed by gluing l1-octagons along same type of edges; see Figure 2.

Proposition 6.4. Suppose dimT (X, d) ≤ 2. Let F, F ′ be 2-dimensional faces of T (X, d)
with dimF ∩ F ′ = 1. The edge e = F ∩ F ′ is parallel to an l1-axis on F if and only if e
is parallel to an l1-axis on F ′.
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Proof. Let F be a 2-dimensional face of T (X, d). Take p ∈ F in its relative interior.
Then K(p) has exactly two bipartite components K1 and K2 with bipartitions (A1, B1)
and (A2, B2), respectively. First we show that

(*1) both K1 and K2 are complete bipartite graphs.

Suppose that K1 is not complete bipartite. There are vertices i ∈ A1 and j ∈ B1

such that ij 6∈ E(p). Take a maximal stable set S containing {i, j}. For small ε > 0,
p + ε(−χS + χN(S)) ∈ T (X, d) and K(p + ε(−χS + χN(S))) has at least three bipartite
components. This contradicts dimT (X, d) ≤ 2 (Proposition 6.1). Then we observe, from
the projection map of Proposition 6.2, that

(*2) the two l1-axes on F are parallel to χA1∪A2 − χB1∪B2 and χA1∪B2 − χB1∪A2 , and

(*3) the two l∞-axes on F are parallel to χA1 − χB1 and χA2 − χB2 .

Let e be an edge of F . Since e is one-dimensional face of T (X, d) and is a face of F ,
the graph Ke corresponding to e has K(p) as a subgraph and has exactly one bipartite
component K. Then we show:

(*4) K is complete bipartite if and only if e is parallel to an l∞-axis of F .

We may assume that p′ := p + ε(χB1∪B2 − χA1∪A2) is in the relative interior of the edge
e for ε > 0. In K(p′), there appears an edge ij ∈ E(p′) such that i, j ∈ A1, i, j ∈ A2,
i ∈ A1, j ∈ X \{A1∪A2∪B1∪B2}, i ∈ A2, j ∈ X \{A1∪A2∪B1∪B2}, or i ∈ A1, j ∈ A2.
The first four cases, K(p′) has exactly one complete bipartite graph K1 or K2. In this
case, the edge e is parallel to an l∞-axis on F by (*3). The last case, K(p′) has exactly
one bipartite graph which is not complete. In this case, the edge e is parallel to an
l1-axis on F by (*2). Since the property (*4) is independent of F , we have done.

Therefore, there are two types of edges in T (X, d). An edge e of T (X, d) is called an
l∞-edge if there is a 2-face containing e such that e is parallel to an l∞-axis of F . Other
edge e is called an l1-edge, which is parallel to an l1-axis of some 2-face containing e,
or is a maximal 1-face; there is no 2-face containing e. This definition is well-defined.
By the proof of Proposition 6.4, we obtain a characterization of l1-edges in term of K(·)
below, where the loop component of K(·) is a connected component all of whose vertices
have a loop. Note that vertices having a loop are pairwise adjacent, and therefore the
loop component is a complete graph.

Lemma 6.5. Let e be an edge of 2-dimensional tight span T (X, d) and p a point in the
relative interior of e.

(1) e is an l1-edge if and only if K(p) has exactly one bipartite component and has no
non-loop non-bipartite components.

(2) e is an l∞-edge if and only if K(p) has exactly one complete bipartite component
and exactly one non-loop non-bipartite component.

7 Constructions of primitive extensions using T (X, d)

As is seen in Proposition 5.1 in Section 5, M∗(G;S, µ) is equivalent to linear optimization
of a face of the extension polyhedron (5.5). For a finite distance space (X, d), the
extension polyhedron to Y ⊇ X is

{d′: distance on Y | d′ is an extension of d } + REY
+ . (7.1)
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In this section, we give several constructions of extreme points of this polyhedron using
the geometry of T (X, d), which is a basis for a construction of minimal Z in Theo-
rem 1.6 (1).

An extension (Y, d) of (X, d) is called an extreme extension if it is an extreme point
of the extension polyhedron. We call an extension (Y, d) of (X, d) positive if d(i, j) > 0
for i, j ∈ Y \ X with i 6= j. This condition excludes the case where the distance matrix
d has the same columns in Y \ X. A positive extreme extension is called a primitive
extension. Clearly, every extreme extension is a tight extension. By Theorem 1.5, for
every finite tight extension (Y, d) of (X, d), there uniquely exists the finite multiset
{pi}i∈Y \X ⊆ T (X, d) such that (Y, d) is represented as ({η(i)}i∈X ∪ {pi}i∈Y \X , l∞). In
the case of a positive tight extension (Y, d), the corresponding set {pi}i∈Y \X ⊆ T (X, d)
is all distinct. Motivated by this fact, a finite subset P ⊆ T (X, d) is called a primitive
set if (η(X) ∪ P, l∞) is a primitive extension. We note an obvious lemma.

Lemma 7.1. Let (Y, d) be a tight extension of (X, d). If there is extension (Y, d′) and
(Y, d′′) such that d = (1/2)(d′ + d′′), then both extensions (Y, d′) and (Y, d′′) are tight.

We are interested in the case where d = (1/2)(d′+d′′) implies d = d′ = d′′. For a finite
multiset P = {pi}i∈U ⊆ T (X, d) indexed by U , A distance dP denotes the corresponding
tight extension of (X, d) by P . We analyze the case where dP is decomposed to (d′+d′′)/2
for some extensions d′, d′′. By the previous lemma and Theorem 1.5, there uniquely exist
P ′ = {p′i}i∈U ⊆ T (X, d) and P ′′ = {p′′i }i∈U ⊆ T (X, d) such that d′ = dP ′

and d′′ = dP ′′
.

For notational simplicity, for finite multisets P, P ′, P ′′ ⊆ T (X, d), dP = (dP ′
+ dP ′′

)/2
means that P , P ′, and P ′′ are indexed by some finite set U as above. In particular, for
p ∈ P , the corresponding elements of P ′ and P ′′ are denoted by p′ and p′′, respectively.

We investigate the relation among P , P ′ and P ′′ in terms of geometric properties of
T (X, d). For p, q ∈ T (X, d), we define the interval I[p, q] of p, q in T (X, d) as

I[p, q] = {r ∈ T (X, d) | ‖p, r‖∞ + ‖r, q‖∞ = ‖p, q‖∞}. (7.2)

We can extend this definition to two subsets P,Q in T (X, d) in a natural way.

Lemma 7.2. Let P be a finite multiset in T (X, d). Suppose that dP = (dP ′
+ dP ′′

)/2
for some multisets P ′, P ⊆ T (X, d). Then we have the following:

(1) p = (p′ + p′′)/2 for p ∈ P .

(2) If p ∈ I[q, r] for p, q, r ∈ P , then p′ ∈ I[q′, r′] and p′′ ∈ I[q′′, r′′].

(3) If p ∈ I[η(i), η(j)] for p ∈ P, i, j ∈ X, then p′, p′′ ∈ I[η(i), η(j)].

(4) If p ∈ P is contained by some face F of T (X, d), then both p′ and p′′ are also
contained by F .

Proof. (1) follows from Proposition 3.5, i.e.,

p(k) = ‖p, η(k)‖ = (‖p′, η(k)‖ + ‖p′′, η(k)‖)/2 = (p′(k) + p′′(k))/2. (7.3)

We show (2). The condition p ∈ I[q, r] means the equality of the corresponding triangle
inequality, which is a valid inequality of the extension polyhedron (5.5). Therefore, both
dP ′

and dP ′′
must satisfy this equality.

(3) also follows from the similar reason.
(4) follows from (3). Indeed, p ∈ I[η(i), η(j)] is equivalent to p(i) + p(j) = d(i, j) by

Proposition 3.5. Recall that this equality defines a face of T (X, d).
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Figure 3: Constructing a primitive set

Consequences of Lemma 7.2 are as follows.

Corollary 7.3. Any nonempty subset of extreme points of T (X, d) is primitive.

This is natural since T (X, d) is the space of one-element tight extensions, and its
extreme point corresponds to one-element extreme extension.

Corollary 7.4. Let P ⊆ T (X, d) be a primitive set. Suppose that there are distinct
p, q, r, s ∈ P such that I[p, q] ∩ I[r, s] = {t} for t ∈ T (X, d) \ P . Then P ∪ {t} is
primitive.

We give one more construction. See also Figure 3.

Lemma 7.5. Suppose that dimT (X, d) ≤ 2. Let P ⊆ T (X, d) be a primitive set.
Suppose that there are p ∈ P , a face F of T (X, d) containing p, and a vector t ∈ RX

parallel to an l1-axis of F such that p + εt ∈ F for sufficiently small ε > 0, Let p∗(6= p)
be an endpoint of the segment F ∩ {p + Rt}. Then P ∪ {p∗} is primitive.

Proof. Let e be an edge of F containing p∗ as its relative interior. Then we have ‖p∗, p‖ =
minq∈e ‖q, p‖. Furthermore p∗ is an end of the segment e ∩ {s ∈ RX | ‖p, s‖ = ‖p, p∗‖}.
Then p∗ cannot be decomposed properly into (p′ + p′′)/2 for p′, p′′ ∈ e with ‖p, p∗‖ =
(‖p, p′‖ + ‖p′, p′′‖)/2.

Corollaries 7.3, 7.4 and Lemma 7.5 gives a successive construction of a primitive set
from extreme points of T (X, d), which will be discussed in the next section.

8 Constructions of l1-grids

The main purpose of this section is to construct a certain kind of l1-grid on 2-dimensional
T (X, d) whose grid-points are primitive. The idea of drawing an l1-coordinate on 2-
dimensional T (X, d) is due to Chepoi [5] for metric tight spans on at most 5-point set.
The argument presented here is an extension of Chepoi’s idea to general 2-dimensional
non-metric tight spans, and connects it to primitive extensions.

Now suppose that dimT (X, d) ≤ 2. Recall Propositions 6.3 that T (X, d) can be
constructed by gluing l1-octagons. An l1-subdivision ∆ of an l1-octagon Q ⊆ R2 is a
polyhedral subdivision of Q such that each 2-face of ∆ is

(r) a rectangle with edges parallel to l1-axes of R2 or

(t) a right-angled isosceles triangle whose two short edges are parallel to l1-axes of R2.
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We extend this definition to T (X, d). An l1-grid ∆ of T (X, d) is a 2-dimensional poly-
hedral complex satisfying following properties:

(1) The union of the members of ∆ is equal to T (X, d).

(2) For each 2-face F ∈ T (X, d), the restriction {C ∈ ∆ | C ⊆ F} induces an l1-
subdivision of an l1-octagon F .

A vertex of an l1-grid is called a grid-point. The long edge of a triangle is called an
l∞-edge, and other edge is called an l1-edge. The graph of l1-edges behaves nicely as
follows.

Proposition 8.1. Let ∆ be an l1-grid for T (X, d). Then we have the following.

(1) For two grid-points p, q in ∆, there is a geodesic between p and q consisting of
l1-edges of ∆.

(2) For a grid-point p in ∆. and i ∈ X, there is a grid-point q ∈ η(i) with ‖p, q‖∞ =
‖p, η(i)‖∞

(3) For i, j ∈ X, there are grid-points p ∈ η(i), q ∈ η(j) with ‖p, q‖∞ = ‖η(j), η(i)‖∞.

Proof. (1). Let L ⊆ T (X, d) be a geodesic from p to q. Suppose that L does not lie on
l1-edges of ∆. Then there is a member F in ∆ such that L meets a point not in l1-edges
of F . Let F be such first member of ∆. Let p′, q′ be the endpoint of L ∩ F . We may
assume that p′ is a grid-point of ∆ and q′ is in the boundary of F . Suppose that F is
a rectangle. Then we modify L so that p′ and q′ are connected by a geodesic boundary
path in F . Then the resulting path is also geodesic. Suppose that F is a triangle. If q′

lies on an l1-edge (a short edge) of F , then we modify P as above. If q′ lies on the long
edge of F , then there is a triangle F ′ in ∆ such that F ′ and F share the long edge by
Proposition 6.4. Let q′′(6= q′) be the endpoint of P ∩ F ′. Then q′′ lies on an l1-edge of
F ′. Then we modify L so that p′ and q′′ are connected by a geodesic boundary path in
F ∪ F ′. The modified path is also a geodesic between p and q. Repeat this process, we
obtain a desired geodesic consisting of l1-edges of ∆.

(2). Let L ⊆ T (X, d) be a geodesic from p to η(i). Suppose the endpoint q(6= p) of
L is not a grid-point in ∆. Apply the above modification to L starting from p. Let F
be the final member in ∆ meeting L at a point not in l1-edges F . Then F must be a
triangle, q is on the long edge of F , and the other end p′ of F ∩ L is the right angled
vertex in F . Since the l∞-length from p′ to arbitrary point in the long edge is same, we
can take q as one of ends of the long edge of F .

(3). In the proof of Proposition 3.6, we can take p ∈ η(i) as an extreme point of
T (X, d); see [13] for detail. Then p is a grid-point of ∆. Apply (2).

Remark 8.2. Chepoi [6] studied 2-dimensional complex constructed by gluing rectan-
gles and right triangles, and explored some of interesting geodesic and graph-theoretic
properties. By using his arguments in [6, Section 7], one can show that the graph of
l1-edges of an l1-grid of a 2-dimensional tight span is a hereditary modular graph without
induced K3,3 and K−

3,3. A hereditary modular graph is just a bipartite graph without
isometric k-cycles for k ≥ 6 [2].

An l1-grid for T (X, d) may not exist for an irrational distance d; see Remark 8.4.
However if d is rational, an l1-grid always exists. To see this, take an integer k such
that such that vertices of T (X, kd) are even integral vectors. Project 2-face F of
T (X, kd) to 2-dimensional plane as in Proposition 6.2, and transform by (x1, x2) 7→
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(a) (b)

Figure 4: (a) an l1-grid and (b) the billiard construction

((x1 +x2)/2, (x1−x2)/2), the resulting l1-octagon is integral since vertices of F are even
integral vectors. The lines {Rχ1 +nχ2}n∈Z∪{mχ1 +Rχ2}m∈Z in Z2 decompose this l1-
octagon into unit squares and right-angled isosceles triangles. Taking the inverse image
of this decomposition we can obtain an subdivision of F . We apply this subdivision for
all 2-faces of T (X, d). Since two adjacent 2-faces can be put on R2 as Figure 2 (a) by
Proposition 6.4, the union of these subdivision (and maximal 1-faces of T (X, d)) forms
an l1-grid of T (X, d). If all l1-edges of an l1-grid has the same length 1/k, we call it the
(1/k)-uniform l1-grid. In this case, the distance among grid-points are multiple of 1/k
by Proposition 8.1. As will be seen, the existence of (1/k)-uniform l1-grids guarantees
1/(2k)-integrality of primitive extensions.

The above construction of an l1-grid may be redundant since the set of the grid-
points is not primitive in general. Here we present a construction of the minimal l1-grid,
called the billiard construction, whose grid-points are primitive.

Algorithm: the billiard construction

(b0) L ← ∅ and P ← the set of extreme points of T (X, d).

(b1) Take a point p ∈ P , a 2-face F of T (X, d) containing p, and a feasible l1-direction
t in F such that there is no line in L such that it has a direction t and contains p.
If no such p, F , and t exist, then go to (b5).

(b3) Let l = {p + Rt} ∩ F , and let q(6= p) be the endpoint of l.

(b4) L ← L ∪ {l} and P ← P ∪ {q}.

(b5) Decompose each 2-face of T (X, d) by the lines in L. ∆ is the set consisting of
resulting rectangles, triangles, and maximal 1-faces of T (X, d) (and their faces).

This algorithm proceeds as the billiard ball. The billiard ball starts from some pocket
(vertex) toward an l1-direction, hits the wall of l∞-edges in 45-degree angle, and moves
toward another l1-direction, turning 90-degrees around; see Figure 4 (b). The locus of
the balls draw an l1-grid as follows.

Proposition 8.3. If d is a rational distance, the billiard construction terminates after
finite number of steps, and yields an l1-grid for T (X, d) whose set of grid-points is
primitive.
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α

Figure 5: The billiard ball never stops

Proof. It is easy to see that the locus generated by the billiard is a subset of grid-lines of
the (1/k)-uniform l1-grid for some integer k. Hence the billiard stops after finite number
of steps, and we conclude that ∆ is an l1-grid by the condition of the termination.

To show the latter part, we note the following property of l1-axes on a 2-face F .

(*) For p, q ∈ F , if p − q is parallel to an l1-axis, then I[p, q] = [p, q].

Indeed, let K be the graph corresponding to F . Then K has exactly two bipartite
components with partitions (A1, B1), (A2, B2). We may assume that p − q is parallel
to χA1∪A2 − χB1∪B2 . Clearly [p, q] ⊆ I[p, q]. Take a point r ∈ I[p, q]. Then there is
0 ≤ α ≤ 1 such that r(i) = αp(i) + (1 − α)q(i) for all i ∈ A1 ∪ A2 ∪ B1 ∪ B2. For
j ∈ X \ A1 ∪ A2 ∪ B1 ∪ B2, vertex j must have a loop in K, and thus p(j) = q(j) = 0.
Therefore r(j) = 0 must hold since r ∈ T (X, d) is a minimal element of P (X, d).

The grid-points of ∆ are the intersection points of the locus of billiard and the
endpoint of lines L. By this fact and property (*), we can apply Corollaries 7.3, 7.4, and
Lemma 7.5. Then the grid-points are primitive.

Remark 8.4. If d is irrational, the billiard may not terminate and therefore T (X, d)
has no l1-grids. For example, consider the distance d on 4-set {1, 2, 3, 4} defined by
d(1, 2) = 1, d(3, 4) = α for irrational positive real α, and others are zero (the case
α = 1 corresponds the two-commodity flow problem). Then the tight span T (X, d) is
the 45-degree rotation of a rectangle in the l1-plane with the edge length ratio (1 : α).
Then the billiard ball started from some pocket never falls other pocket; see Figure 5. In
particular, since the intersection points of this locus are primitive, d has infinitely many
primitive extensions.

Although this l1-grid by the billiard is the unique minimal l1-grid by construction,
it is not sufficient to describe all possible primitive sets. Next we explain a simple
modification of Karzanov’s orbit splitting method [20]. The essential distinction is to
need to deal with l∞-edges explicitly.

Two edges e and e′ of an l1-grid ∆ are said to be projective if there is a sequence
of edges e = e0, e1, . . . , em = e′ such that for 0 ≤ i ≤ m − 1 there is a triangle in ∆
containing ei and ei+1, or a rectangle in ∆ containing ei and ei+1 as its parallel edges.
The projectivity is an equivalence relation on the set of edges of l1-grid. An equivalence
class is called an orbit. For an orbit o, the band of o is the set consisting of rectangles at
least one of whose parallel pairs of edges belongs to o and triangles all of whose edges
belong to o.

An l1-grid is said to be orientable if we can orient its edges in such a way that for
a rectangle, its parallel edges have the same direction, and for a triangle, its 45-degree
angle vertex is a source or a sink; see Figure 6.
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Figure 6: Orientations of a rectangle and a triangle

Figure 7: Non-orientable 1/2-uniform grid

It is easy to see that l1-grid is non-orientable if and only if there is an orbit having a
sequence of edges p0q0, p1q1, . . . , pmqm such that pm = q0, qm = p0, and for 0 ≤ i ≤ m−1
there is a rectangle with edges {piqi, pi+1qi+1, pipi+1, qiqi+1} or a triangle with vertices
pi, pi+1, qi = qi+1 or pi = pi+1, qi, qi+1. Such an orbit is called a non-orientable orbit.
A characterization of non-orientable orbits using the billiard is also useful. We observe
that the billiard ball started from a point p on an edge e = qr of the l1-grid meets all
edges of the orbit of e, and meets such edges only. If this orbit is non-orientable, then
the billiard ball started from a point p = αq + βr for α + β = 1, α, β > 0 returns back
to the edge e at the point βr + αq; see Figure 7. Therefore, the billiard ball goes round
this orbit twice. Conversely, if this orbit is orientable, the billiard ball goes around this
orbit once.

Figure 7 illustrates the 1/2-uniform l1-grid, generated by the billiard, for the tight
span given in Figure 1 (b) in the introduction. This l1-grid has one non-orientable orbit,
and therefore is non-orientable.

Take a point p on the midpoint on arbitrary edge of an orbit o, and start the billiard
(b1-b3) from p. In the resulting l1-grid, if o is non-orientable, then o is transformed
into one orientable orbit of the twice size, and if o is orientable, then o is split into two
orientable orbits. In particular, the orientability of other orbits are not affected. This
operation corresponds to splitting each element of the band of the orbit as in Figure 8,
and we can orient this split orbit so that newly added points are sinks. This process is
called an orbit splitting. Applying orbit splittings to each non-orientable orbit, we have
an orientable l1-grid. Figure 1 (c) is the result of an orbit splitting for Figure 7. By the
arguments above, we have:

Proposition 8.5. The orbit splitting yields an orientable l1-grid.

Furthermore, the new grid-points by the orbit splitting for non-orientable orbits after
the billiard are also primitive
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Figure 8: Splitting and orienting a triangle and rectangles
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Figure 9: p, q, r in the proof of Proposition 8.6

Proposition 8.6. The set of grid-points of the l1-grid generated by the billiard and the
orbit splittings to each non-orientable orbit is primitive.

Proof. Let ∆ be the l1-grid generated by the billiard, and ∆′ the l1-grid obtained by
applying the orbit splitting to one non-orientable orbit. It suffices to show that the
grid point P of ∆′ are primitive. Suppose that dP = (dP ′

+ dP ′′
)/2 with dP ′ 6= dP ′′

for some P ′, P ′′ ⊆ T (X, d), where we use the notation of Lemma 7.2. Then there is
p ∈ P such that the corresponding p′ ∈ P ′ is in the different position to p. We may
assume that p is a new point added by the orbit splitting. Therefore there exists an
edge e = ab of a non-orientable orbit in ∆′ such that p is the midpoint of the edge e.
Now we suppose that p 6= p′. If e is an l∞-edge, then p′, p′′ must be also on the edge
e by Lemma 7.2(2),(4). There is a triangle having vertices a, b, c such that the points
q = (b + c)/2 and r = (a + c)/2 are new grid points added by the orbit splitting. Let
q′, r′ ∈ P ′ and q′′, r′′ ∈ P ′′ be the corresponding points of q, r. We may assume that
p′ is αa + βb for α > β ≥ 0 with α + β = 1. Then p′′ is βa + αb by p = (p′ + p′′)/2
(Lemma 7.2 (1)). Moreover, q′, q′′ are on bc with q = (q′+q′′)/2, and r′, r′′ are on ac with
r = (r′+r′′)/2 again by Lemma 7.2. By p ∈ I[q, r], we have p′ ∈ I[q′, r′] (Lemma 7.2 (2)).
Therefore the possible configuration satisfying dP = (dP ′

+ dP ′′
)/2 is exactly the case

where q′ is αb + βc and r′ is βa + αc; see Figure 9 (a). If e is an l1-edge of a rectangle
with edges ab, cd, ac, bd. Then q = (c+d)/2 is a new grid point. By the same arguments
above. Let q′ ∈ P ′ be a corresponding point of q. If p′ = αa+βb, then q′ = βc+αd; see
Figure 9 (a). Therefore the corresponding points of P ′ of newly added grid-points of ∆
by the orbit splitting are exactly the intersection points by the billiard started from p′.
However, by p 6= p′, the billiard started from p′ goes around the non-orientable orbit of
e twice. Thus p′ = p′′. A contradiction.

We show in the next section that this primitive set P by the billiard and the orbit
splitting is in fact finite universal primitive set, i.e., every primitive set of T (X, d) is a
subset of P .
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(a) (b) (c) (d)

Figure 10: (a) l1-grid ∆, (b) 1/4-subdivision ∆4, (c) T (X, d) \ B◦
i , and (d) (3/4)∆3

9 Proof of Theorem 1.6 (1)

Suppose that d is a rational distance with T (X, d) ≤ 2. Theorem 1.6 (1) is immediate
from the following, which seems to be a non-metric variant of [20, Lemma 5.1].

Theorem 9.1. Let Z be the grid-points of the l1-grid for T (X, d) generated by the billiard
and the orbit splittings to each non-orientable orbit. Then every primitive set of T (X, d)
is a subset of Z.

Therefore, every extreme extension of d is represented as dP for a multiset P ⊆ Z.
Since the constraint pi ∈ η(i) in (TSD) or d(i, î) = 0 defines a face of the extension
polyhedron (5.5), Z in Theorem 1.6 (1) can be taken as Z in the above theorem. The
primitivity has already shown in Proposition 8.6. For a subset Z ⊆ T (X, d), a tight
extension (Y, d) is a Z-extension if there is a map φ : Y \X → Z such that d = dφ(Y \X),
where we use the notation in Section 7. We prove:

Proposition 9.2. Let ∆ be an orientable l1-grid for T (X, d) and Z the grid-point of
∆. Every finite tight extension of d can be represented as a convex combination of Z-
extensions of d.

For an integer k, we define the 1/k-subdivision of ∆ as follows. For each rectangle
R in ∆, divide it equally into k2 rectangles congruence to (1/k)R For each triangle T
in ∆, divide it into k triangles congruence to (1/k)T and (k2 − k)/2 squares obtained
by gluing two (1/k)T ’s along its long edge. Similarly, divide each (maximal) edge in ∆
equally into k edges. The resulting l1-grids, denoted by ∆k, is called the 1/k-subdivision
of ∆; see Figure 10 (b).

Let (Y, d) be a rational tight extension of (X, d). Then there uniquely exists P = {P i |
i ∈ Y \X} such that d = dP . Since d′ is rational, each P i is a rational vector. There is an
integer k such that that each P i lies on a grid-point on ∆k. Let O = {O1, O2, . . . , Om}
be the set of orbits of ∆. By orientability, in ∆k, each orbit Oi of ∆ is split into k-orbits.
We take one orbit oi of ∆k from each split k-orbits of Oi. For a member T of the band
of oi, the interior of T (with respect to oi) is the subset of T obtained by deleting all of
its vertices and its l1-edges not in oi. Let B◦

i is the union of the interior of members of
the band of oi. Consider T (X, d) \ B◦

i , and glue each connected components along the
boundary of B◦

i . Then we obtain the polyhedral set congruence to (k−1)/kT (X, d); see
Figure 10 (c), (d). Expand this set in factor k/(k − 1) so that it becomes the original
T (X, d). This contraction/expansion induces a continues map φ from T (X, d) \ B◦

i to
T (X, d). We observe that φ(P ) lies on the grid-points of ∆k−1. Since each connected
components of T (X, d) \ B◦ has exactly one grid-point of ∆ by the orientability of ∆,
we can define another map ψ from T (X, d) \ B◦ to Z as: ψ(p) is the unique grid-point
of ∆ in the connected component containing p. By construction, dψ(P ) is a Z-extension.
Then we have:
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Lemma 9.3.
dP =

k − 1
k

dφ(P ) +
1
k
dψ(P ). (9.1)

Proof. Let p, q be grid-points of ∆k. By Proposition 8.1, there is a geodesic L between
p and q consisting of l1-edges of ∆k. Then φ(l \ B◦

i ) is a path between φ(p) and φ(q),
and its length is k/(k − 1)-times as longer as the sum of the length of the segments in
L \ B◦

i . A sequence of points ψ(l \ B◦
i ) induces a path between ψ(p) and ψ(q) with its

length k-times as longer as the sum of the length of the segments in L ∩ Bi. Therefore,
we have

‖p, q‖ ≥ k − 1
k

‖φ(p), φ(q)‖ +
1
k
‖ψ(p), ψ(q)‖. (9.2)

Consequently, we have

dP ≥ k − 1
k

dφ(P ) +
1
k
dψ(P ). (9.3)

The equality must hold by the tightness of dP .

Apply the same process to dφ(P ). Recall that φ(P ) lies on the grid-points of ∆k−1.
Consequently, we obtain a desired convex combination of Z-extensions.

10 Proof of Theorem 1.3 (2)

The goal of this section is to prove Theorem 1.3 (2). Recall Section 5 that M∗(G; S, µ) for
(S, µ) is equivalent to the linear optimization of over metrics d with d|S ≥ µ. Motivated
by this fact, we call a metric (S, d) a minimal dominant of (S, µ) if d ≥ µ and there is
no metric d′(6= d) on d′ ≥ µ with d′ ≤ d. First we show:

Lemma 10.1. For a distance (S, µ) with dimT (S, µ) ≥ k, there exists a minimal dom-
inant d of µ such that dimT (S, d) ≥ k

Proof. Let F be a k-dimensional face of T (S, µ) and p a point of the relative interior
of F . By Proposition 6.1, K(p) has exactly k bipartite components with bipartitions
(A1, B1), (A2, B2), . . . , (Ak, Bk). For small ε > 0, points p±i := p + ε(∓χAi ± χBi) (i =
1, . . . , k) are in the relative interior of F . p±i are vertices of the cross polytope with
center p. Then K(p) = K(p±i ). We take edges u+

i u−
i ∈ E(p) with u+

i ∈ Ai, u
−
i ∈ Bi for

i = 1, . . . , k. By construction of p±i , we have

µ(u+
i , u−

i ) = p+
i (u+

i ) + p+
i (u−

i ) = p+
i (u+

i ) + 2ε + p−i (u−
i )

= ‖η(u+
i ), p+

i ‖ + ‖p+
i , p−i ‖ + ‖p−i , η(u−

i )‖. (10.1)

We take q±i ∈ η(u±
i ) with ‖q±i , p±i ‖ = ‖η(u±

i ), p±i ‖. Then, ‖q+
i , q−i ‖ = µ(u+

i , u−
i ) must

hold by (10.1). We define a metric µ′ on 2k-set U := {u+
i , u−

i }k
i=1 as µ′(u+

i , u±
j ) :=

‖q+
i , q±j ‖. Then µ′ ≥ µ|U with µ′(u+

i , u−
i ) = µ(u+

i , u−
i ). Consider T (U, µ′). Then p|U ,

the restriction of p to U , is also in P (U, µ′), and furthermore we have:

the graph KU,µ′(p|U ) is exactly k-matching {u+
i u−

i }k
i=1.

Indeed, u+
i u−

i ∈ EU,µ′(p|U ) is obvious. We show u+
i u±

j 6∈ EU,µ′(p|U ) if i 6= j. By
construction of p±i , we have

µ(u+
i , u±

j ) ≤ ‖η(u+
i ), p+

i ‖ + ‖p+
i , p±j ‖ + ‖p±j , η(u±

j )‖
= ‖η(u+

i ), p+
i ‖ + ε + ‖p±j , η(u±

j )‖
< ‖η(u+

i ), p+
i ‖ + 2ε + ‖p±j , η(u±

j )‖
= ‖η(u+

i ), p‖ + ‖p, η(u±
j )‖ = p(u+

i ) + p(u±
j ). (10.2)
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(0,0,0)

(1,1,-1)

(2,0,0)(2,-2,0)

(1,-1,-1)

(1,-1,1)

(a) (b)

Figure 11: (a) K−
3,3 and (b) piling two K−

3,3’s

Therefore, dim T (U, µ′) ≥ k by Proposition 6.1. Let µ′′ be a minimal dominant of µ|U
on U with µ′′ ≤ µ′. By µ(u+

i , u−
i ) = µ′(u+

i , u−
i ) = µ′′(u+

i , u−
i ), again p|U ∈ P (U, µ′′), and

KU,µ′′(p) is still k-matching {u+
i u−

i }k
i=1. Therefore, dim T (U, µ′′) ≥ k. We can extend µ′′

to a minimal dominant d of µ with d|U = µ′′ . Dress’ dimension criterion (Theorem 12.1)
implies dim T (S, d) ≥ k.

Second we recall the notion of primitive metrics. A metric d on a finite set V is
called extreme if d lies on an extreme ray of the metric cone, which is a polyhedral cone
in REV

+ defined by the triangle inequalities. An extreme metric d is called primitive if
d(i, j) > 0 for i, j ∈ V with i 6= j; this condition prohibits the situation that the distance
matrix corresponding µ has same column (or row) vectors since d(i, j) = 0 for distinct
i, j implies d(i, k) = d(j, k) for k by the triangle inequalities.

We recall a useful construction of primitive metrics by graphs due to Avis [1]. For
an undirected graph G = (V,E), the graph metric dG on V defined by the shortest path
length on vertices, where each edge length has the unit length. A subgraph G′ = (U,F )
of G is called an isometric subgraph if dG′(i, j) = dG(i, j) for i, j ∈ U . In particular, an
isometric 4-cycle C of G is a 4-cycle C = {uv, vw,wz, zu} ⊆ E satisfying dG(u,w) =
dG(v, z) = 2.

Proposition 10.2 ([1], also see [22]). Let G = (V,E) be an undirected graph. Sup-
pose that for each pair of edges uv,wz ∈ E, there is a sequence of isometric 4-cycles
{{uivi, uiui+1, vivi+1, ui+1vi+1}}m−1

i=1 such that u1v1 = uv and umvm = wz. Then the
graph metric of dG is primitive.

If dim T (S, µ) ≥ 3, we can construct an infinite sequence of tight extensions (S ∪
Zi, µi) with |Zi+1| > |Zi| for i = 1, 2, 3, . . . such that µi|Zi is a primitive metric, where |Zi|
means the cardinality of Zi. Take a 3-dimensional face F of T (S, µ), by Proposition 6.2,
F is isomorphic to a (3-dimensional) subspace of (R3, l∞). Let Z1 be a 6-element subset
of R3 defined as

Z1 = {(0, 0, 0), (1, 1,−1), (1,−1, 1), (1,−1,−1), (2, 0, 0), (2,−2, 0)}. (10.3)

Then, (Z1, l∞) is primitive. Indeed, it is the graph metric of K−
3,3 (the graph of K3,3

minus one edge), which is primitive by Proposition 10.2; see Figure 11 (a). Subsequently,
let Z2 be defined by (1/2)(Z1 ∪ {(1,−1, 1) + Z1}). Then (Z2, l∞) is also primitive since
it is (the half of) the graph metric of the graph of piled two K−

3,3’s; see Figure 11.
Therefore, we recursively define Zk by 1/2(Zk−1 ∪ {(1,−1, 1) + Zk−1}) Then (Zk, l∞) is
primitive for k = 1, 2, . . .. We can take points Pk ⊆ F isomorphic to (a dilation of) Zk.
The corresponding sequence of tight extensions µPk(k = 1, 2, . . .) of (S, µ) is a desired
one. Now we are ready to prove Theorem 1.3 (2).
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Proof of Theorem 1.3 (2). We show that for any integer k > 0, there is V ⊆ S such
that the polyhedron (5.4) is not 1/k-integral. By Lemma 10.1, we can take a minimal
dominant d of µ such that dimT (S, d) ≥ 3. For an integer l, consider the tight extension
dPl on V := S ∪ Pl with respect to some 3-dimensional face F as above. Then dPl is
a minimal element of the polyhedron (5.4). Decompose dPl into a convex combination∑

i λid
P i

l of extreme points of (5.4), where P i
l is a (multi)subset in F by Lemma 7.2 (4).

By the primitivity of (Pl, l∞) that is the restriction of dPl to Pl, there is a summand
dP j

l in the convex combination such that dP j
l |Pl

= αdPl |Pl
for some positive α. Since the

face F is bounded, the l∞-distance among P j
l is bounded by some positive constant C

independent on l. Hence, dP j
l has an element smaller than C/l. We can take a large l

such that C/l < 1/k. This implies that the polyhedron (5.4) is not 1/k-integral.

Combining Theorem 9.1, we obtain an extension of Karzanov’s primitively finiteness
result [20].

Corollary 10.3. A rational distance d on a finite set X has finite primitive extensions
if and only if dimT (X, d) ≤ 2.

In particular, the converse of Theorem 1.6 (1) also holds.

11 Proof of the half-integrality

In this section, we prove Theorem 1.6 (2). We begin with the fundamental lemma.

Lemma 11.1. If d is a cyclically even distance, then the polyhedron P (X, d) is integral.

Proof. Let p be an extreme point of T (X, d). Then the graph K(p) has no bipar-
tite components. Take a nonbipartite component K. Then there is an odd cycle C
in K. We order vertices in C cyclically as (i0, i1, . . . , ik−1). Then p(i0) is given by
(
∑k−1

j=0(−1)jd(ij , ij+1))/2, where the index is taken by modulo k. By the cyclically even-
ness, p(i0) is integral, and thus p(ij) is integral. Let i′ be a arbitrary vertex of K. There
is a path connecting i′ to C. p(i′) is determined by substituting p(j) + p(j′) = d(j, j′)
along this path. Consequently p is integral.

Now that the 1/4-integrality is easy. Indeed, by the previous lemma, we can take the
1/2-uniform l1-grid for T (X, d). This 1/2-uniform l1-grid may be non-orientable, By the
orbit splittings, we obtain an orientable 1/4-uniform l1-grid. Therefore every primitive
extension is a multiple of 1/4. In fact, surprisingly, this 1/2-uniform l1-grid is orientable.
The remaining of this section is devoted to proving this fact:

Theorem 11.2. Suppose that d be a cyclically even distance with dimT (X, d) ≤ 2. The
1/2-uniform l1-grid for T (X, d) is orientable.

As was seen in Figure 7, the fractionality and non-orientability come from l∞-edges.
Motivated by this observation, we introduce the concept “ a core” of T (X, d), which is
a source of l∞-edges. An extreme point p of T (X, d) is called a core of T (X, d) if K(p)
has exactly two non-loop non-bipartite components. Recall that the loop component is
a connected component whose all vertices have a loop. We call a vertex having a loop
a loop vertex. By Lemma 6.5, one can easily see that all edges adjacent to a core p are
l∞-edges. The detailed structure of K(p) is given as follows

Lemma 11.3. Let p be a core. There is a partition {A1, . . . Am, B1, . . . , Bn, C} of X
having the following properties:
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(1) C is the set of loop vertices (C may be empty).

(2) The subgraph of K(p) induced by X \C consists of two complete multipartite com-
ponents with partitions {A1, . . . , Am} and {B1, . . . , Bn}.

(3) If kl ∈ E(p) for k ∈ Ai(Bj) and l ∈ C, then for any k′ ∈ Ai(Bj) we have k′l ∈ E(p).

Proof. Let K1 and K2 be non-loop non-bipartite components of K(p). Let S1 and S2

be maximal stable sets of K1 and K2 respectively. Then S := S1 ∪ S2 is a maximal
stable set of K(p). By Lemma 3.4, p′ = p + ε(−χS + χN(S)) is in T (X, d) for small
ε > 0. In particular K(p′) has exactly two complete bipartite components (by the proof
of Proposition 6.4). From this, we easily see the existence of the above partition.

The subpartition (A1, . . . Am; B1, . . . , Bn) is called the type of p. K(p) has exactly
two non-loop non-bipartite components; the component in K(p) containing {Ai} is called
the A-component, and the component containing {Bj} is called the B-component. Since
loop vertices are pairwise adjacent, at most one non-loop component has a loop. In
particular, max(m,n) ≥ 3 must holds, and if m ≤ 2, the A-component must have a
loop.

We easily see that for small ε > 0, a point p′ := p + ε(−χAi + χNp(Ai)) is on the
edge of T (X, d) adjacent to p, where Np(·) is the neighborhood operator in the graph
K(p). Indeed, K(p′) consists of the B-component of K(p), one complete bipartite graph
with partition (Ai, Np(Ai)), and the (possibly empty) loop component. Motivated by
this fact, the edges adjacent to p with directions −χAi + χNp(Ai) and −χBi + χNp(Bi)

are denoted by e(p,Ai) and e(p,Bj), respectively. By the structure of the graph K(p),
we see that all edges adjacent to p are such edges, and that e(p, Ai) and e(p, Bj) are
contained by the common 2-face, and e(p,Ai) and e(p,Aj) are not contained by the
common 2-face if i 6= j. Summarizing these facts, the local structure around a core p of
T (X, d) is given as follows:

Corollary 11.4. Let p be a core of type (A1, . . . , Am; B1, . . . , Bn). Then we have:

(1) e is an edge adjacent to p if and only if e is e(p,Ai) or e(p,Bj) for some i, j.

(2) Two edges e′, e′′ adjacent to p belong to the common 2-face if and only if (e′, e′′) is
(e(p,Ai), e(p,Bj)) or (e(p,Bi), e(p,Aj)) for some i, j.

Let ∆ be the 1/2-uniform l1-grid. For a core p, ∆p is the subcomplex of ∆ containing
p as a vertex, i.e., ∆p is the star at p of ∆. By the previous corollary, we obtain a
combinatorial description of ∆p.

Corollary 11.5. Let p be a core of type (A1, . . . , Am; B1, . . . , Bn). The complex ∆p is
isomorphic to the join of one point p and the subdivision of the complete bipartite graph
Kn,m.

See Figure 12 for (a) the complete bipartite graph K3,3 and (b) the complex ∆p

obtained by subdividing K3,3 and taking the one-point join, where the broken lines
represent l∞-edges.

A key of the proof of Theorem 11.2 is based on the following observation:

If all l∞-edges have even length, there is the integral uniform l1-grid.

Indeed, an l∞-octagon all of whose l∞-edges have even length is an integral polygon in the
Z-lattice {(x1, x2) ∈ Z2 | x1 + x2 is even }. By the map (x1, x2) 7→ ((x1 + x2)/2, (x1 −
x2)/2), the resulting l1-octagon is integral in Z2. Then, we obtain the integral uniform
l1-grid for T (X, d). Consequently, we obtain the orientable 1/2-uniform l1-grid by the
orbit splittings. Related to this, we have:
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(a) (b) (c)

Figure 12: (a) K3,3, (b) the complex ∆p, and (c) an orientation of ∆p

Lemma 11.6. Let e be an l∞-edge. If both endpoints are not cores, then e has even
length.

Proof. Let p be a point in the relative interior of e. By Lemma 6.5, K(p) has one bipartite
component K with bipartition (A,B) and one non-bipartite non-loop component K̃. Let
q, r be the endpoints of e. Then we may assume q − r = ‖q, r‖(−χA + χB). Therefore
‖q, r‖ = −q(i) + r(i) for i ∈ A. In K(q), there is an edge connecting A and K̃ since q is
not a core. Similarly, in K(r), there is an edge connecting B and K̃. Let C be an odd
cycle in K̃. Then q(i) is

∑
e∈P ′ ±d(e) + (1/2)

∑
e∈C ±d(e) for a path P ′ connecting i

and C in K(q), and r(i) is
∑

e∈P ′′ ±d(e) + (1/2)
∑

e∈C ±d(e) for a path P ′′ connecting i

and C in K(r). By calculation, −q(i) + r(i) is
∑

e∈C̃ ±d(e) for cycle C̃ in (X,EX), and
is even by the cyclically evenness.

In particular, if T (X, d) has no core, then there is the integral uniform l1-grid. The
proof of Theorem 11.2 is completed by showing the existence of a set of cores {pi}i∈I

having the following property:

Each l∞-edge of T (X, d) \ (
∪

i∈I |∆pi |◦) has even length,

where |∆pi |◦ is the union of the relative interior of the elements in ∆pi . Namely we can
hollow T (X, d) out of some cores to make the resulting polyhedral set, which is also a
complex of l1-octagons, have the integral uniform l1-grid ∆∗. Apply the orbit splitting
to each orbit of ∆∗ and orient it as in Figure 6. Moreover, ∆pi itself is orientable, and
can be oriented as in Figure 12 (c), i.e., orient the graph of ∆pi so that pi is the unique
sink and vertices adjacent to pi by l∞-edges are sources. Then restore each ∆pi to the
original position, which induces an orientation of the 1/2-uniform l1-grid ∆. Thus we
can conclude that the 1/2-uniform l1-grid ∆ is orientable.

Let Gc be the subgraph of 1-skeleton graph of T (X, d) consisting of edges adjacent
to some core. Our final goal is to prove the following intriguing properties of Gc.

Proposition 11.7. Gc has the following properties:

(1) For each core p, there is a path in Gc connecting p and some non-core vertex.

(2) Let P be a path in Gc connecting a pair of non-core vertices. Then the length
(measured by l∞-metric) of P is even.

From this properties, the following definition is well-defined:

A core p is said to be odd if a path in Gc connecting p and some non-core
vertex has odd length.
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The set of odd cores is a desired one. Indeed, if an l∞-edge e has odd length, then the
exactly one of its endpoints is an odd core. On the other hand, if e has even length,
then both of its endpoints are odd cores or neither of its endpoints is an odd core.

Now we begin to prove Proposition 11.7. We still need some preliminary arguments.
Let p be a core of type (A1, . . . , Am; B1, . . . , Bn). We call a move tracing edge e(p,Ai)
for some Ai an A-move. Similarly, a B-move is to trace edge e(p,Bj) for some Bj . If the
end p′( 6= p) of e(p,Ai) is a core, then the type of p′ is (Np(Ai), Ã1, . . . , Ãl; B1, . . . , Bn)
for some Ãk ⊆ Ai with 1 ≤ k ≤ l, and the B-component does not change. Therefore,
from the A and B-components of K(p), the A and B-components of K(p′) at other
core p′ in the component of Gc containing p is well-defined. Let GA

c (p) be the subgraph
of Gc which is reachable from p by A-moves. Similarly, we can define the subgraph
GB

c (p) by B-moves. Let p → q → r (p 6= r) be A-moves in GA
c (p). Then we have

q − p = ‖q, p‖(−χAi + χNp(Ai)) and r − q = ‖r, q‖(−χÃj
+ χNq(Ãi)

). In particular,

Ãj ⊆ Ai and Nq(Ãi) ⊇ Np(Ai). At least one of the inclusions is strict. From this we
have:

(a1) Both GA
c (p) and GB

c (p) are trees.

Let p1, p2, . . . , pk be a path in GA
c (p). Then we may assume that pi+1 − pi is repre-

sented by ‖pi+1, pi‖(−χAi + χNpi (A
i)) for some Ai in the subpartition of the type of pi.

By Ai+1 ⊆ Ai and Npi+1(A
i+1) ⊇ Npi(A

i), we have ‖p1, pk‖ =
∑k−1

i=1 ‖pi, pi+1‖. Hence
we have:

(a2) Both GA
c (p) and GB

c (p) are a geodesic subgraph of T (X, d).

Let u, v be non-core vertices in GA
c (p). Then, we have:

(a3) ‖u, v‖ is even. By (a2) the length of a path in GA
c (p) connecting non-core vertices

is even.

Indeed, let u = p1, p2, . . . , pk = v be the unique path in GA
c (p). We have pi+1 − pi =

‖pi+1, pi‖(−χAi + χNpi (A
i)) for i = 1, . . . , k − 1. Take j ∈ Ak ⊆ Ai and j′ ∈ N1(A1) ⊆

Npi(A
i). Then ‖u, v‖ = −pk(j) + p1(j′). In K(pk), there is an edge between Ak and B-

component. In K(p1), there is an edge between A1 and B-component. By the argument
similar to the proof of Lemma 11.6, we can conclude that ‖u, v‖ is even.

Finally, we easily to see:

(a4) The total length of all l∞-edges of an integral l∞-octagon is even.

We are ready to prove Proposition 11.7. (1) is not difficult. Let p be a core of type
(A1, . . . , Am; B1, . . . , Bn). Consider GA

c (p) and take a leaf q of the tree GA
c (p). If q is not

a core, then we are done. Suppose that q is a core. Then the type of q is (A′
1; B1, . . . , Bn).

Consider GB
c (q). Then every leaf of the tree GB

c (q) is a non-core vertex. Indeed, if a leaf
r of GB

c (q) is a core, the type of r must be (A′
1; B

′
1). This is impossible.

To prove (2), we assume:

Assumption: There is an odd length path in Gc connecting non-core vertices.

We simply call it a violating path. We call a core p in the path P a bending point if
P interchanges A-move and B-move at p. By (a3), any violating path has at least one
bending point. We first claim:

(a5) There is a violating path having exactly one bending point.
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Figure 13: The shapes of Fk∗,0
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Figure 14: Another violating paths

Suppose that every violating path has at least two bending point. We can take a violating
path P with properties that (1) the number of bending points is minimum, (2) the total
length is minimum among violating paths with property (1), and (3) the length between
the first and the second bending point is minimum among violating paths with properties
(1) and (2). By minimality, vertices except endpoints u, v of P are cores. The path
P is u = pa,0, pa−1,0, . . . , p1,0, p0,0, p0,1, . . . , p0,b, . . . , v, where a, b are positive integers,
p0,0 is the first bending point, and p0,b is the second bending point. We may assume
that pk,0 → pk+1,0 is A-move in GA(p0,0), and p0,l → p0,l+1 is B-move in GB(p0,0).
We further assume that the types of pk,0 and p0,l are (Ak

1, . . . , A
k
mk

; B0
1 , . . . , B0

n0
) and

(A0
1, . . . , A

0
m0

; Bl
1, . . . , B

l
nl

), respectively, and edge pk,0pk+1,0 is given by e(pk,0, A
k
ik

) for
k = 0, . . . , a − 1, and edge p0,lp0,l+1 is given by e(p0,l, B

l
jl
) for l = 0, . . . , b − 1. Let Fk,0

for 0 ≤ k ≤ a − 1 be the 2-face of T (X, d) containing e(pk,0, A
k
ik

) and e(pk,0, B
0
j0

); the
existence of such a 2-face is guaranteed by Corollary 11.4. Then we have:

• For 0 ≤ k ≤ a − 2, Fk,0 is a rectangle each of whose vertices is a core.

We simply call it a core-rectangle. Indeed, suppose that there is k∗ such that Fk∗,0

is not a core-rectangle. We take the smallest k∗. Then Fk,0 for 0 ≤ k ≤ k∗ −
1 is a core-rectangle pk,0pk+1,0pk+1,1pk,1, and Fk∗,0 is a rectangle pk∗,0pk∗+1,0p

′pk∗,1

or a pentagon pk∗,0pk∗+1,0p
′p′′pk∗,1, where p′, p′′ are non-core vertices; see Figure 13,

where the black points are cores and the white points are non-core vertices. Then
the path pa,0, pa−1,0, . . . , pk∗+1,0, p

′ has only one bending point pk∗+1,0 and therefore
has even length by the assumption; See Figure 14 (a). Combining (a4), the path
p′′(or p′), pk∗,1, , . . . , p0,1, p0,2, . . . , p0,b, . . . v is a shorter violating path than P . A con-
tradiction.

• The shape of Fa−1,0 is one of Figure 15.

Indeed, other possible seven cases listed in Figure 16 are impossible by similar argu-
ments above. The last case contradicts the minimality of the length between the first
and the second bending points.
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Figure 15: The shapes of Fa−1,0

Figure 16: Other possibilities of Fa−1,0

Let pk,1 for 1 ≤ k ≤ a − 1 be a core adjacent to pk,0 by edge e(pk,0, B
0
j0

) and
pa,1 a core adjacent to pa,0 or p′a,0 in Fa−1,0. As above, let Fk,1 for 0 ≤ k ≤ a − 1
be a 2-face of T (X, d) containing edges e(pk,0, A

k
ik

) and e(pk,1, B
1
j1

). Then Fk,1 for
0 ≤ k ≤ a − 1 is a core-rectangle pk,1pk+1,1pk+1,2pk,2 by the similar arguments above.
Repeat this process, we can further unfold core-rectangles Fk,l = pk,lpk+1,lpk+1,l+1pk,l+1

for 1 ≤ k ≤ a − 1 and 0 ≤ l ≤ b − 1; see Figure 14 (b). Note that pk,lpk+1,l and
pk,l′pk+1,l′ are parallel, and pk,lpk,l+1 and pk′,lpk′,l+1 are parallel. If the next point
v′ of p0,b is p1,b, then this contradicts the minimality assumptions. Then the path
pa,0(or p′a,0), pa,1, pa,2, . . . , pa,b, pa−1,b, . . . , p0,b, v

′ . . . v is also violating and the number of
its bending points is less than that of P . A contradiction. Hence we can conclude (a5).

Take a minimal length one-bending violating path P = pa,0, . . . , p0,0, p0,1, . . . , p0,b

whose min(a, b) is minimal, where p0,0 is a unique bending point. Types of cores pk,0

and p0,l are given as above. Then, by the similar arguments above, Fk,0 and F0,l for
0 ≤ k ≤ a − 1 and 0 ≤ l ≤ b − 1 are core-rectangles.

In K(pa,0), there is an edge between Aa−1
ia−1

and B-component. If there is an edge
connecting Aa−1

ia−1
and B0

j0
in K(pa,0), then the shape of Fa−1,0 is the sixth type of

Figure 16. This is impossible by the minimality of P . Therefore, there are two cases:
(A1) in K(pa,0) there is a vertex in the B-component adjacent to both Aa−1

ia−1
and B0

j0
,

and (A2) there is no such a vertex, but there is an edge connecting Aa−1
ia−1

and a loop in
the B-component. For the case (A1), the shape of Fa−1,0 is the left in Figure 15. For
the case (A2), the shape of Fa−1,0 the right in Figure 15. Similarly, in K(p0,b), there are
two cases: (B1) there is a vertex adjacent to both Bb−1

jb−1
and A0

i0
in K(p0,b), and (B2)

there is no such a vertex, but there is an edge connecting Bb−1
jb−1

and some loop vertex
which belongs to A-component.

The cases (A2) and (B2) do not occur simultaneously. Indeed, if (A2) and (B2)
occur, then in K(p0,0) the both components have a loop. This is impossible since loop
vertices are pairwise adjacent. Therefore, it suffices to consider the two cases (A1)-(B1)
and (A2)-(B1).

First we treat the case (A1)-(B1). Let (Aa
1, . . . , A

a
ma

; B1
1 , . . . , B1

n1
) be the type of pa,1.

There is Aa
ia

⊆ Aa−1
ia−1

such that in K(p′a,0) there is a vertex v adjacent both Aa
ia

and B0
j0

.
Consider 2-face Fa,0 containing pa,1p

′
a,0 and e(pa,1, A

a
ia

). Then the vertex p′a,0 must have
45-degree angle in Fa,0. Indeed, S := Aa

ia
∪B0

j0
is maximal stable in K(p′a,0), the subgraph

of K(p′a,0) consisting of edges between S and N(S) is a connected bipartite graph by the
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Figure 17: (a) Fa,0 and (b) unfolding Fa,0, Fa+1,0, Fa+2,0, Fa+3,0.

Figure 18: Other possibilities of Fa,0

existence of v. Therefore p′a,0 + ε(−χS +χN(S)) is on an edge of Fa,0 (by Lemma 3.4 and
Proposition 6.1). The shape of 2-face Fa,0 is (a) of Figure 17. The other cases listed
in Figure 18 are impossible by the minimality of P . Let (Aa+1

1 , . . . , Aa+1
ma+1

;B1
1 , . . . , B1

n1
)

be the type of pa+1,1. Then, there is Aa+1
ia+1

⊆ Aa
ia

such that in K(p′a+1,0), the vertex v is
again adjacent to both Aa+1

ia+1
and B0

j0
. the shape of 2-face Fa,0 containing pa,1p

′
a,0 and

e(pa,1, A
a
ia

) is again (a) of Figure 17. Repeating this process as Figure 17 (b), there is a
nonnegative integer a′ such that in K(pa+a′,1) the A-component has a loop. We apply the
same process to p0,b. Then there is a nonnegative integer b′ such that the B-component
has a loop vertex in K(p1,b+b′). By minimality assumption, we can tile 2-faces Fk,l for
1 ≤ k ≤ a + a′ − 1, 1 ≤ l ≤ b + b′ − 1, which are core-rectangles except Fa+a′−1,b+b′−1.
Then the final 2-face Fa+a′−1,b+b′−1, which is a pentagon or a rectangle, must contain a
non-core vertex. If Fa+a′−1,b+b′−1 is a pentagon pa+a′,b+b′−1pa+a′−1,b+b′−1pa+a′−1,b+b′p

′′p′,
neither p′ or p′′ is core. Suppose that Fa+a′−1,b+b′−1 is a rectangle. The vertex pa+a′,b+b′

diagonal to pa+a′−1,b+b′−1 is non-core. Indeed, In the B-moves pa+a′,1 → pa+a′,2 → · · · →
pa+a′,b+b′−1, the A-component, which has a loop, is invariant. In K(pa+a′,b+b′), there is
a loop in Bb+b′−1

jb+b′−1
. Since loop vertices are adjacent each other, K(pa+a′,b+b′) has only

one component, and thus pa+a′,b+b′ is not a core.
Project 2-faces Fk,l isometrically into 2-dimensional plane by the map p 7→ (p(i∗), p(j∗))

for i∗ ∈ Aa+a′−1
ia+a′−1

and j∗ ∈ Bb+b′−1
ib+b′−1

. Then we obtain a tiling of an integral l∞-octagon;
see Figure 19. By (a3), both edges p′a+a′,0pa+a′,b+b′ (or p′a+a′,0p

′) and p′0,b+b′pa+a′,b+b′ (or
p′0,b+b′p

′′) have even length. Therefore by (a4) the length of path P must be even. This
is a contradiction to the first assumption.

Next we treat the case (A2)-(B1). Similarly, we unfold F0,b+1, F0,b+2, . . . F0,b+b′ until
the B-component has a loop in K(p1,b+b′). In K(pa,1), the A-component already has a
loop. Consider 2-faces Fk,l for 0 ≤ k ≤ a − 1 and 0 ≤ l ≤ b + b′ − 1 as above. Then the
final Fa,b+b′−1 has a non-core vertex. The remaining arguments are the same as above.

Now we complete the proof of Proposition 11.7 and therefore Theorem 11.2.
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Figure 19: Tiling an l∞-octagon by Fk,l

12 0-1 distances

In this section, we verify that the condition (P) in Theorem 1.1 is indeed equivalent to
the 2-dimensionality of 0-1 distances, and give an explicit combinatorial construction of
the tight span of a 2-dimensional 0-1 distance.

First we present Dress’ criterion [11, Theorem 9] of the dimension of tight spans.

Theorem 12.1 ([11], also see [13]). For a distance d on a finite set X and a positive
integer n, the following conditions are equivalent.

(a) dim T (X, d) ≥ n.

(b) There exists a 2n-element subset Y ⊆ X and a perfect matching M ⊆ EY such
that χM is the unique optimal solution of the following linear programming over
the fractional matching polytope:

Maximize
∑

i,j∈Y

λijd(i, j)

subject to
∑

i,j∈Y

(χi + χj)λij = χY , λij ≥ 0 (i, j ∈ Y ). (12.1)

(c) There exists a 2n-element subset Y ⊆ X and a perfect matching M ⊆ EY such
that χM attains the unique maximum of

max
M ′,C1,...,Cm

∑
ij∈M

d(i, j) +
1
2

m∑
k=1

∑
ij∈Ci

d(i, j), (12.2)

where the maximum is taken over pairwise vertex disjoint matching M ′ and odd
cycles C1, . . . , Cm(m ≥ 0).
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(d) There exists a 2n-element subset {i1, i−1, i2, i−2, . . . , in, i−n} ⊆ X such that∑
k∈{±1,±2,...±n}

d(ik, i−k) >
∑

k∈{±1,±2,...±n}

d(ik, iσ(k)) (12.3)

holds for any permutation σ of {±1,±2, . . . ± n} with σ(i) 6= −i for any i ∈
{±1,±2, . . . ± n}.

The equivalence between (a) and (d) is the original form given in [11].

Sketch of proof. (b) ⇔ (c) is immediate from the characterization of extreme points of
the fractional matching polytopes [4]; see also [25, p. 522]. (c) ⇔ (d) is also immediate
from the facts that a permutation can be decomposed into disjoint cyclic permutation,
and that even cycle is the vertex-disjoint sum of two matchings. (a) ⇔ (b) can be shown
by using Proposition 6.1 and the complementary slackness condition; see [13, Appendix]
for detail.

Specializing Theorem 12.1 to 0-1 distance d and n = 3, we have the following.

Proposition 12.2. For a 0-1 distance d on X whose Hd has no isolated vertex, the
following conditions are equivalent:

(a) dim T (X, d) ≤ 2.

(b) There is no six-elements subset U such that the induced subgraph Hd(U) of Hd by
U has a unique perfect matching and has no vertex disjoint two triangles.

(P) For any three distinct pairwise intersecting maximal stable sets A, B,C of Hd, we
have A ∩ B = B ∩ C = C ∩ A.

Proof. It is easy to see that the condition (b) is equivalent to the negation of the condition
(c) of Theorem 12.1 for 0-1 distances and n = 3.

(b) ⇒ (P). Suppose that there are three distinct pairwise intersecting maximal stable
sets A,B,C of Hd such that (B ∩C) \A is nonempty. Take i ∈ (B ∩C) \A. Since A is
a maximal stable set, there is i′ ∈ A \ (B ∪ C) with ii′ ∈ Fd

(Case 1). Suppose that A∩B ∩C is empty. Then both (A∩C) \B and (A∩B) \C
are nonempty. Take j ∈ (A ∩ C) \ B and k ∈ (A ∩ B) \ C. There are j′ ∈ B \ (A ∪ C),
k′ ∈ C \(A∪B) with jj′, kk′ ∈ Fd. Let U = {i, i′, j, j′, k, k′}. Then the induced subgraph
Hd(U) consists of three edges {ii′, jj′, kk′}, which is a unique perfect matching.

(Case 2). Suppose A∩B ∩C is not empty. Take j ∈ B \C. Then there is j′ ∈ C \B
with jj′ ∈ Fd. Take k ∈ A ∩ B ∩ C. By the condition that Hd has no isolated vertex,
there is k′X \ (A∪B∪C) with kk′ ∈ Fd. Let U = {i, i′, j, j′, k, k′}. Consider the induced
subgraph Hd(U) which has a perfect matching {ii′, jj′, kk′}. In Hd(U), a vertex k is
covered by edge kk′ only. Therefore, Hd(U) does not have vertex disjoint two triangles.
Moreover, any perfect matching must use edge kk′. A vertex i is not adjacent to j and
j′. Therefore {ii′, jj′, kk′} is a unique perfect matching of Hd(U)

(P) ⇒ (a). Suppose that dimT (X, d) ≥ 3. Then there is p ∈ T (X, d) such that the
graph K(p) has three bipartite components. We can take three edges i1i

′
1, i2i

′
2, i3i

′
3 ∈

E(p) from different bipartite components. Since d is a 0-1 distance, we have iki
′
k ∈ Fd

for k = 1, 2, 3. By p(ik) + p(i′k) = 1, we may assume that p(ik) ≥ 1/2 ≥ p(i′k) and
p(i1) ≥ p(i2) ≥ p(i3). Consequently we have p(i′1) ≤ p(i′2) ≤ p(i′3). Since p(i) + p(j) ≤ 1
implies ij 6∈ Fd, three sets {i′1, i′2, i′3}, {i′1, i′2, i3}, and {i′1, i2} are pairwise intersecting
stable sets of Hd(U) violating condition (P). Then we can extend this triple to pairwise
intersecting maximal stable sets of Hd violating condition (P).
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Finally, we give an explicit combinatorial construction of T (X, d) for a 2-dimensional
0-1 distance d. Let Ad be the set of maximal stable sets of Hd and Kd the set of maximal
clique of the intersection graph of Ad.

Proposition 12.3. Let d be a 2-dimensional 0-1 distance on X whose Hd has no isolated
vertices. Let {pS}S∈Ad

, {pK}K∈Kd
, and pO be points in T (X, d) defined as

pS = χX\S (S ∈ Ad), (12.4)
pK = (1/2)χ∪S∈KS\∩S∈KS + χX\∪S∈KS (K ∈ Kd), (12.5)
pO = (1/2)χX . (12.6)

Then we have

T (X, d) =
∪

{ convex hull of {pS , pK , pO} | S ∈ K ∈ Kd}. (12.7)

Proof. (⊇) in (12.7) is straightforward. We show (⊆). Take a sufficiently generic p ∈
T (X, d). By the facts 0 ≤ p ≤ 1 and that Hd has no isolated vertices, K(p) does not have
the loop component. Combining the genericity of p, we can conclude that K(p) is one
complete bipartite graph or the (vertex-disjoint) sum of two complete bipartite graphs
K1,K2. For the first case, let A and B be the two parts of the bipartite graph K(p).
Then we have p(i) = α, p(j) = β for i ∈ A, j ∈ B and α, β with α + β = 1 and 0 < α <
1/2 < β < 1. Then A is a maximal stable set of Hd. Therefore p = (β − α)pA + 2αpO.

For the second case, let Ai and Bi be the two parts of the bipartite graph Ki for i =
1, 2. Similarly, (p(i), p(j), p(k), p(l)) = (α1, β1, α2, β2) for (i, j, k, l) ∈ A1 ×B1 ×A2 ×B2

and 1 < α1 < α2 < 1/2 < β2 < β1 < 1 with α1 + β1 = α2 + β2 = 1. Then A1 ∪ A2 is a
maximal stable set of Hd, and there is no edge in Hd between A1 and B2. By condition
(P), there is a maximal set K of pairwise intersecting stable sets such that A1∪A2 ∈ K,
and the union and intersection of members in K are X \ B1 and A1, respectively. By
calculation, we have p = 2α1pO + (α1 + β1 − 2α2)pS + (2α2 − 2α1)pK .

Namely, T (X, d) is the complex of the join of the point pO and the clique-vertex
incidence graph of Ad and Kd. Figure 20 illustrates the tight spans with their minimal
orientable l1-grids for commodity graphs (a) H = K2 + K2, (b) H = K2 + K3, and (c)
H = K3 + K3. Karzanov’s original proof [17] of Theorem 1.1 is based on the concept
of frameworks of graph G = (V,E, c) and commodity graph Hµ, which is a certain
subpartition of V . He has shown that M∗(G; S, µ) is equivalent to discrete optimization
over all possible frameworks. In our setting, frameworks can be interpreted as feasible
configurations to (TSD-Z) of the 1/4-uniform l1-grid.

13 Concluding remarks

We interpreted T (X, d) as the space of one-element tight extensions. This interpretation
naturally leads us to the space of one-element tight extensions of an asymmetric distance
space (X, γ), where a asymmetric distance γ is a function γ : X × X → R+ satisfying
γ(i, i) = 0 for i ∈ X, and γ(i, j) = γ(j, i) is not imposed. So an asymmetric analogue
T (X, γ) are given by the set of minimal elements of

P (X, γ) = {(p, q) ∈ RX×X
+ | p(i) + q(j) ≥ γ(i, j) (i, j ∈ X)}. (13.1)

This space T (X, γ) is the intersection of the nonnegative orthant and the tropical convex
hull of γ which was introduced by Develin and Sturmfels [10]. The forthcoming paper,
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Figure 20: Tight spans for 0-1 distances

jointly with S. Koichi, will develop a parallel theory for this asymmetric tight span
T (X, γ) and its applications to directed multiflow problems.

Apart from the fractionality issues, the design of combinatorial or practical algo-
rithms specialized to general multiflow problems is still a challenging problem. The
tight-span-dual problem and the geometry of T (X, d) explored in this paper might give
a basis against this challenge.
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