# Metric packing for $K_3 + K_3$

Hiroshi HIRAI Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan hirai@kurims.kyoto-u.ac.jp

October 2007

#### Abstract

In this paper, we consider the metric packing problem for the commodity graph of disjoint two triangles  $K_3 + K_3$ , which is dual to the multiflow feasibility problem for the commodity graph  $K_3 + K_3$ . We prove Karzanov's conjecture concerning quarter-integral packings by certain bipartite metrics.

# 1 Introduction and main result

A metric  $\mu$  on a finite set V is a function  $V \times V \to \mathbf{R}$  satisfying  $\mu(i, i) = 0$ ,  $\mu(i, j) = \mu(j, i) \geq 0$ , and the triangle inequalities  $\mu(i, j) + \mu(j, k) \geq \mu(i, k)$  for  $i, j, k \in V$ . Throughout in this paper, a graph means an undirected graph. Let G = (V, E) be a graph. For a nonnegative edge length function  $l : E \to \mathbf{R}_+$ , let  $d_{G,l}$  denote the graph metric on V induced by (G, l), i.e.,  $d_{G,l}(i, j)$  is the shortest path length between i and j in G with respect to edge length l. Let  $d_G$  denote the metric on V by G with unit edge length.

Let H = (S, R) be another graph on  $S \subseteq V$ , called a *commodity graph*. A finite set of metrics  $\mathcal{M}$  on V together with its nonnegative weight  $\lambda : \mathcal{M} \to \mathbf{R}_+$  is called a *fractional* H-packing for (G, l) if it satisfies

$$l(ij) \geq \sum_{\mu \in \mathcal{M}} \lambda(\mu)\mu(i,j) \quad (ij \in E),$$
  
$$d_{G,l}(s,t) = \sum_{\mu \in \mathcal{M}} \lambda(\mu)\mu(s,t) \quad (st \in R).$$
(1.1)

If  $\lambda$  is integral, then it is called an *integral H-packing* for (G, l).

A classical theorem in the network flow theory says that if H consists of a single edge and l is integral, there is an integral H-packing by *cut metrics*. Here a metric d is called a cut metric if there is a set  $X \subseteq V$  such that d(i, j) = 1 if  $|X \cap \{i, j\}| = 1$  and d(i, j) = 0 otherwise. This is a *polar* theorem to the famous Ford-Fulkerson's maxflowmincut theorem [9]. As is well-known, fractional H-packing problems are polar to the multiflow feasibility problems with commodity graph H; see [21, Chapter 70]. The *multiflow feasibility problem* is: given a capacity  $c : E \to \mathbf{R}_+$  and a demand  $q : R \to \mathbf{R}_+$ , find flows  $f_{st}$  ( $st \in F$ ) from s to t of value q(st) such that for each  $e \in E$  the total flow through e does not exceed c(e), or establish that no such a flow exists.

For a finite set of metrics  $\mathcal{M}$  on V, an obvious necessary condition for multiflow feasibility

$$\sum_{ij\in E} c(ij)\mu(i,j) \ge \sum_{st\in R} q(st)\mu(s,t) \quad (\mu \in \mathcal{M})$$
(1.2)



Figure 1: (a)  $K_4$ , (b)  $C_5$ , and (c) the union of two stars

is also sufficient if and only if for any nonnegative length function  $l : E \to \mathbf{R}_+$  there exists a fractional *H*-packing for (G, l) by  $\mathcal{M}$ . This is a simple consequence of the linear programming duality.

Papernov [19] has characterized the class of commodity graphs with property that the *cut condition*, i.e., (1.2) by taking  $\mathcal{M}$  as cut metrics, is sufficient for multiflow feasibility. He has shown that if H is  $K_4$ ,  $C_5$ , or the union of two stars, then the cut condition is sufficient, where  $K_n$  is the complete graph on n vertices,  $C_m$  is a cycle on m vertices, and a *star* is a graph all of whose edge have a common vertex; see Figure 1. By polarity, there exists a fractional H-packing by cut metrics in this case.

Karzanov [12] has strengthened this result to a half-integral version. Here the length function l on G is said to be *cyclically even* if l is integral and  $\sum_{e \in C} l(e)$  is even for any cycle C in G.

**Theorem 1.1** ([12]). Let G be a graph with cyclically even edge length l and H a commodity graph. If H is  $K_4$ ,  $C_5$ , or the union of two stars, then there exists an integral H-packing for (G, l) by cut metrics.

If H violates the condition of Theorem 1.1, the cut condition is not sufficient for the existence of feasible multiflows, and therefore an H-packing by cut metrics does not exist in general. Karzanov [13] has studied the multiflow feasibility problems for a five-vertex commodity graph, and shown that the  $K_{2,3}$ -metric condition is sufficient. Here, for a graph  $\Gamma$  on X, a metric  $\mu$  on V is called a  $\Gamma$ -metric if there is a map  $\phi: V \to X$  such that  $\mu(i, j) = d_{\Gamma}(\phi(i), \phi(j))$  for  $i, j \in V$ .  $K_{n,m}$  denotes the complete bipartite graph with parts of n and m vertices. In particular, a cut metric is nothing but a  $K_2$ -metric. The  $\Gamma$ -metric condition is (1.2) by taking  $\mathcal{M}$  as the set of  $\Gamma$ -metrics. By this result, there is a fractional H-packing by cut metrics and  $K_{2,3}$ -metrics for a five-vertex commodity graph H. Again Karzanov [15] has strengthened it to:

**Theorem 1.2** ([15]). Let G be a graph with cyclically even edge length l, and H a commodity graph. If H has at most five vertices, or is the union of  $K_3$  and a star, then there exists an integral H-packing for (G, l) by cut metrics and  $K_{2,3}$ -metrics.

It is natural to ask: what is the class of commodity graphs H with the property that there exists a *finite* set of graphs  $\mathcal{G}$  admitting an H-packing for any graph (G, l) by  $\Gamma$ metrics over  $\Gamma \in \mathcal{G}$ ? It is known that if H has a matching of three edges  $K_2 + K_2 + K_2$ , there is no such a finite set of graphs  $\mathcal{G}$  [15, Section 3]. Therefore, one can expect such fractional or integral H-packings by finite types of metrics only for the class of commodity graphs H without  $K_2 + K_2 + K_2$ .



Figure 2: (d) the union of  $K_3$  and a star, and (e)  $K_3 + K_3$ 



Figure 3:  $K_2$ ,  $K_{2,3}$ ,  $K_{3,3}$ , and  $\Gamma_{3,3}$ 

By direct case-by-case analysis, the commodity graphs H without  $K_2 + K_2 + K_2$  are classified into the following:

- (1) H has at most five vertices,
- (2) H is the union of two stars,
- (3) H is the union of  $K_3$  and a star, or
- (4)  $H = K_3 + K_3$ , i.e., the sum of disjoint two triangles.

Theorems 1.1 and 1.2 above solve the first three cases (1-3). For the remaining last case (4), Karzanov [14] has shown that there exists a fractional *H*-packing by  $\Gamma_{3,3}$ metrics. Here  $\Gamma_{3,3}$  is the graph of 16 vertices and 27 edges obtained by subdividing each edge of  $K_{3,3}$  and connecting each subdivided point to one new point; see Figure 3. In [15, Section 3], Karzanov conjectured that if  $H = K_3 + K_3$  and *l* is cyclically even, there is an integral *H*-packing for (G, l) by  $(1/2)\Gamma_{3,3}$ -metrics.

Our main result solves this conjecture affirmatively in a strong form, and also completes the problem of the half or quarter integral H-packing by finite types of metrics.

**Theorem 1.3.** Let G be a graph with cyclically even edge length l, and H a commodity graph. If  $H = K_3 + K_3$ , then there exists an integral H-packing by cut metrics,  $K_{2,3}$ -metrics,  $K_{3,3}$ -metrics, and  $\Gamma_{3,3}$ -metrics.

Note that cut metrics,  $K_{2,3}$ -metrics, and  $K_{3,3}$ -metrics are submetrics of the half of  $\Gamma_{3,3}$ -metrics. In particular, this achieves an integral *H*-packing by *integral* metrics. It will turn out that a  $K_{3,3}$ -metric appears at most once in *H*-packing (1.1) and its coefficient

equals 1. In a sense, a  $K_{3,3}$ -metric summand is a half-integral *residue* of an integral H-packing by  $\Gamma_{3,3}$ -metrics.

Our approach to Theorem 1.3 is based on Chepoi's striking proof [5] to Karzanov's half-integral cut and  $K_{2,3}$ -metric packing results above (Theorems 1.1 and 1.2) using the *tight span* of a metric space, which has been introduced independently by Isbell [11], Dress [8], and Chrobak and Larmore [6]. Since Chepoi's argument relies heavily on the classification result of tight spans of five-point metrics [8], it cannot be applied to sixvertex commodity graph  $H = K_3 + K_3$ . To overcome this difficulty, we introduce the concept of H-minimal metrics that decreases the dimension of tight spans, and develop a certain decomposition theory of two-dimensional tight spans. Our approach is free from the classification result, and gives a geometrical interpretation to the questions why cut,  $K_{2,3}$ ,  $K_{3,3}$ , and  $\Gamma_{3,3}$ -metrics arise, and why commodity graph H having  $K_2 + K_2 + K_2$  cannot be packed by finite types of metrics.

This paper is organized as follows. In Section 2, we introduce fundamental concepts related to tight spans, and describe how an *H*-packing problem reduces to a problem of decomposing tight spans. In Section 3, we develop a decomposition theory for two-dimensional tight spans, and prove our main theorem. In Section 4, we give several remarks including a description of an  $O(n^2)$  algorithm for an integral  $K_3 + K_3$ -packing.

**Notation.** We use the following notation. Let  $\mathbf{R}$  and  $\mathbf{R}_+$  be the set of real and nonnegative real, respectively. Let  $\mathbf{Z}$  be the set of integers. The set of functions from a set X to **R** is denoted by  $\mathbf{R}^X$ . For  $p, q \in \mathbf{R}^X$ , the closed segment between p and q is denoted by [p,q]. For  $p,q \in \mathbf{R}^X$ ,  $p \leq q$  means  $p(i) \leq q(i)$  for each  $i \in X$ . The characteristic vector  $\chi_S \in \mathbf{R}^X$  of  $S \subseteq X$  is defined as:  $\chi_S(i) = 1$  for  $i \in S$  and  $\chi_S(i) = 0$ for  $i \notin S$ . We simply denote  $\chi_{\{i\}}$  by  $\chi_i$ , which is the *i*-th unit vector. For a graph G = (V, E), the edge between  $i, j \in V$  is denoted by ij or ji. ii means a loop. For a graph G an subgraph G' of G is called an *isometric subgraph* if  $d_G = d_{G'}$  holds on vertices of G'. A stable set S of G is a subset of vertices such that there is no edge both of whose endpoints belong to S. For a subset S of vertices in G, the neighbor N(S) of S is the set of vertices adjacent to S and not in S. A partition of undirected graph Gis a partition of vertices such that each part is a stable set. In particular, if there is a bipartition, G is called *bipartite*. G is called a *complete multipartite graph* if G has a partition such that each pair of vertices in different parts has an edge. We often identify a metric space  $(S,\mu)$  with metric  $\mu$ . We shall regard a metric as an edge length on the complete graph. A metric is called a *cyclically even* if it is cyclically even as an edge length on the complete graph. We use the standard terminology of polytope theory such as faces, extreme points, polyhedral complex, and so on; see [22].

# 2 Preliminaries

Main purposes of this section are to introduce fundamental concepts concerning tight spans, and to describe how an *H*-packing problem reduces to the problem of decomposing tight spans.

Let  $\mu$  be a metric on a finite set S. We define two polyhedral sets  $P(S, \mu)$  and  $T(S, \mu)$  as

$$P(S,\mu) = \{ p \in \mathbf{R}^S \mid p(i) + p(j) \ge \mu(i,j) \ (i,j \in V) \},$$
(2.1)

$$T(S,\mu) =$$
the set of minimal elements of  $P(S,\mu)$ . (2.2)

 $T(S, \mu)$  is called the *tight span* of  $\mu$  [11, 8, 6]. We immediately see the following characterization of  $T(S, \mu)$ .

**Lemma 2.1.** For  $p \in P(S, \mu)$ , the following conditions are equivalent:

- (1)  $p \in T(S, \mu)$ .
- (2) for  $i \in S$ , there is  $j \in S$  such that  $p(i) + p(j) = \mu(i, j)$ .
- (3) p is contained by a bounded face of  $P(S, \mu)$ .

Therefore,  $T(S,\mu)$  is the union of bounded faces of  $P(S,\mu)$ , and thus is compact. For  $i \in S$ , let  $\mu_i$  be a vector in  $\mathbf{R}^S$  defined by

$$\mu_i(j) = \mu(i, j) \quad (j \in S).$$
(2.3)

Namely,  $\mu_i$  is the *i*-th column vector of the distance matrix  $\mu$ .

**Lemma 2.2.**  $\mu_i$  has the following properties:

(1)  $\{\mu_i\} = T(S,\mu) \cap \{p \in \mathbf{R}^S \mid p(i) = 0\}$  for  $i \in S$ . (2)  $\|\mu_i - \mu_i\|_{\infty} = \mu(i,j)$  for  $i, j \in S$ .

*Proof.* (1). Take  $p \in T(S, \mu)$  with p(i) = 0. Then we have  $p(j) \ge \mu(i, j)$  for  $j \in S$ . For  $k \in S$ , by Lemma 2.1 (2), there is  $j \in S$  such that  $p(k)+p(j) = \mu(k, j) \le \mu(k, i)+\mu(i, j) \le p(k) + p(j)$ . Therefore,  $p(k) = \mu(k, i)$ .

(2).  $\mu(i,j) = |\mu_i(i) - \mu_j(i)| \le ||\mu_i - \mu_j||_{\infty}$ . Conversely, by the triangle inequality, we have  $\mu(i,j) \ge |\mu(i,k) - \mu(j,k)| = |\mu_i(k) - \mu_j(k)|$  for  $k \in S$ .

In particular,  $(S, \mu)$  is isometrically embedded into  $(T(X, d), l_{\infty})$  by (2). Next we introduce a lattice (a discrete subgroup) in  $\mathbf{R}^{S}$  that behaves nicely with the cyclically evenness. Let L be a lattice in  $\mathbf{R}^{S}$  defined as

$$L = \{ p \in \mathbf{R}^S \mid p(i) + p(j) = 0 \mod 2 \ (i, j \in S) \}.$$
(2.4)

Namely, L is the set of vectors all of whose components have the same parity. In other words, L is the union of even integer vectors and odd integer vectors.

**Lemma 2.3.** If  $\mu$  is cyclically even, then we have

$$\mu_i - \mu_j \in L \quad (i, j \in S). \tag{2.5}$$

*Proof.* By the cyclically evenness, we have

$$(\mu_i - \mu_j)(k) + (\mu_i - \mu_j)(l) = \mu(i, k) - \mu(j, k) + \mu(i, l) - \mu(j, l)$$
  
=  $\mu(i, k) + \mu(k, j) + \mu(j, l) + \mu(l, j) \mod 2$   
= 0 mod 2. (2.6)

Motivated by this fact, let  $A_{\mu}$  be an affine lattice defined by  $\mu_i + L$  for  $i \in S$ . As was suggested in [5], the following *discrete nonexpansive retraction* plays an important role in *H*-packing problems. Here we give it in a more precise form than that given in [5, Section 2].

**Proposition 2.4.** Suppose that  $\mu$  is cyclically even. For a finite subset U in  $P(S, \mu) \cap A_{\mu}$ , there is a map  $\phi : U \to T(S, \mu) \cap A_{\mu}$  such that

(1)  $\phi(p) = p \text{ if } p \in U \cap T(S,\mu), \text{ and}$ 

(2)  $\|\phi(p) - \phi(q)\|_{\infty} \le \|p - q\|_{\infty}$  for  $p, q \in U$ .

*Proof.* In this proof, we simply denote  $||p - q||_{\infty}$  by ||p,q||. Note that for  $p, q \in A_{\mu}$  we have  $||p,q|| = p(i) - q(i) \mod 2$  for  $i \in S$ .

Let  $U = \{p_1, p_2, \ldots, p_{n_0}, p_{n_0+1}, p_{n_0+2}, \ldots, p_{n_0+n}\}$  with  $\{p_1, p_2, \ldots, p_{n_0}\} \subseteq T(S, \mu) \cap A_\mu$  and  $\{p_{n_0+1}, p_{n_0+2}, \ldots, p_{n_0+n}\} \subseteq P(S, \mu) \cap A_\mu \setminus T(S, \mu)$ . If  $0 \le n_0 \le 1$  or n = 0, the existence of such a map  $\phi$  is obvious. So we may assume that  $n_0 \ge 2$  and  $n \ge 1$ .

We first define  $\phi(p_j) = p_j$  for  $1 \le j \le n_0$ . Next we construct  $\phi(p_{n_0+i})$  for  $1 \le i \le n$ incrementally. Suppose that we already know  $\phi(p_i)$   $(1 \le i \le n_0 + k - 1)$  satisfying above (1), (2) for  $\{p_1, \ldots, p_{n_0+k-1}\}$ , and the condition that  $p_i - \phi(p_i)$  is an even vector. Consider the set

$$B_k = \bigcap_{1 \le j < n_0 + k} \{ p \in \mathbf{R}^S \mid \|\phi(p_j), p\| \le \|p_j, p_{n_0 + k}\| \}.$$
 (2.7)

Then  $B_k$  is nonempty. This follows from the facts that  $B_k$  is the intersection of cubes  $(l_{\infty}\text{-ball})$ , the collection of cubes has Helly property, and  $||p_i, p_{n_0+k}|| + ||p_{n_0+k}, p_j|| \ge ||p_i, p_j|| \ge ||\phi(p_i), \phi(p_j)||$  implies that each pair of those  $l_{\infty}$ -balls intersects.

Our goal is to find a point  $\phi(p_{n_0+k})$  in  $B_k \cap T(S,\mu) \cap A_\mu$  with  $p_{n_0+k} - \phi(p_{n_0+k})$  even.  $B_k$  is also cube. The maximal element  $p^*$  of  $B_k$  is given by

$$p^*(l) = \min_{1 \le j < n_0 + k} \{ \phi(p_j)(l) + \| p_j, p_{n_0 + k} \| \} \quad (l \in S).$$
(2.8)

Then  $p^* \in P(S,\mu) \cap A_{\mu}$  holds. Indeed, we have

$$p^{*}(l) + p^{*}(m) = \phi(p_{i})(l) + ||p_{i}, p_{n_{0}+k}|| + \phi(p_{j})(m) + ||p_{j}, p_{n_{0}+k}||$$
  

$$\geq \mu(l, m) - \phi(p_{i})(m) + \phi(p_{j})(m) + ||p_{i}, p_{j}||$$
  

$$\geq \mu(l, m).$$
(2.9)

Therefore  $p^* \in P(S, \mu)$ . To see  $p^* \in A_{\mu}$ , we have

$$\begin{aligned} (\mu_{i'} + p^*)(l) + (\mu_{i'} + p^*)(m) \\ &= \mu_{i'}(l) + \phi(p_i)(l) + \|p_i, p_{n_0+k}\| + \mu_{i'}(m) + \phi(p_j)(m) + \|p_j, p_{n_0+k}\| \\ &= \phi(p_i)(m) + \|p_i, p_{n_0+k}\| + \phi(p_j)(m) + \|p_j, p_{n_0+k}\| \mod 2 \\ &= \phi(p_i)(m) + p_i(m) - p_{n_0+k}(m) + \phi(p_j)(m) + p_j(m) - p_{n_0+k}(m) \mod 2 \\ &= 0 \mod 2, \end{aligned}$$

$$(2.10)$$

where we use the property that  $p_i - \phi(p_i)$  is an even vector. Similarly, one can show that all vertices of cube  $B_j$  lie on  $A_{\mu}$ , and that  $p^* - p_i$  is an even vector, The minimal element  $p_*$  of  $B_j$  is given by

$$p_*(l) = \max_{1 \le j < n_0 + k} \{ \phi(p_j)(l) - \| p_j, p_{n_0 + k} \| \} \quad (l \in S).$$
(2.11)

For each  $l \in S$ , there are  $1 \leq i, j < n_0 + k$  and  $m \in S$  such that

$$p_{*}(l) + p_{*}(m) = \phi(p_{i})(l) + \phi(p_{j})(m) - ||p_{i}, p_{n_{0}+k}|| - ||p_{n_{0}+k}, p_{j}||$$
  
$$= \mu(l, m) - \phi(p_{i})(m) + \phi(p_{j})(m) - ||p_{i}, p_{n_{0}+k}|| - ||p_{n_{0}+k}, p_{j}||$$
  
$$\leq \mu(l, m).$$
(2.12)

Thus  $p_* \in T(S,\mu)$  or  $p_* \notin P(S,\mu)$ . From this and the fact that  $p(l) + p(m) - \mu(l,m)$  is even, we can construct a desired  $\phi(p_{n_0+k}) \in T(S,\mu) \cap A_{\mu} \cap B_k$  by decreasing  $p^*$  toward  $p_*$  by using steps  $\{-2\chi_i\}_{i\in S}$ . This property reduces an *H*-packing problem to the problem of decomposing the finite metric  $(T(S, \mu) \cap A_{\mu}, l_{\infty})$  [5]. However, to apply this approach to the case  $H = K_3 + K_3$ , we need one more step.

For a graph H = (S, R), a metric  $\mu$  on S is called an *H*-minimal metric if there is no metric  $\mu'(\neq \mu)$  on S such that  $\mu' \leq \mu$  and  $\mu'(i, j) = \mu(i, j)$  for  $ij \in R$ .

**Lemma 2.5.** For a cyclically even metric  $\mu$  on S and a graph H = (S, R), there is a cyclically even H-minimal metric of  $\mu^*$  with  $\mu^* \leq \mu$  and  $A_{\mu} = A_{\mu^*}$ .

The proof needs a characterization of *H*-minimal metrics. For  $i \in S$ , the set  $[i]_{\mu}$  is defined by  $\{i' \in S \mid \mu(i,i') = 0\}$ . By triangle inequality, we have  $[i]_{\mu} = [j]_{\mu}$  or  $[i]_{\mu} \cap [j]_{\mu} = \emptyset$ . Moreover,  $\mu(i',j') = \mu(i,j)$  holds for  $i' \in [i]_{\mu}$  and  $j' \in [j]_{\mu}$ .

**Lemma 2.6.** Let H = (S, R) be a graph and  $\mu$  a metric on S. Then  $\mu$  is H-minimal if and only if for each  $i, j \in S$  with  $\mu(i, j) > 0$ ,

- (1) there is  $kl \in R$  with  $k \in [i]_{\mu}$  and  $l \in [j]_{\mu}$ , or
- (2) there is  $k \in S \setminus [i]_{\mu} \cup [j]_{\mu}$  such that  $\mu(i, j) + \mu(j, k) = \mu(i, k)$  or  $\mu(i, j) + \mu(i, k) = \mu(j, k)$ .

*Proof.* We first show the only-if part. Suppose that there is  $i, j \in S$  with  $\mu(i, j) > 0$  not satisfying both (1) and (2). Then, for small  $\epsilon > 0, \mu' : S \times S \to \mathbf{R}_+$  defined by

$$\mu'(k,l) = \begin{cases} \mu(k,l) - \epsilon & \text{if } \{[k]_{\mu}, [l]_{\mu}\} = \{[i]_{\mu}, [j]_{\mu}\}, \\ \mu(k,l) & \text{otherwise,} \end{cases} \quad (k,l \in S)$$
(2.13)

is also a metric satisfying  $\mu' \leq \mu$  and  $\mu'(s,t) = \mu(s,t)$  for  $st \in R$ . Then  $\mu$  is not *H*-minimal.

We show the if part. Suppose that  $\mu$  is not H-minimal. Then there is a metric  $\mu'(\neq \mu)$ with  $\mu' \leq \mu$  and  $\mu'(s,t) = \mu(s,t)$  for  $st \in R$ . There are  $i, j \in S$  with  $\mu'(i,j) < \mu(i,j)$ . We take such i, j with  $\mu(i, j)$  maximum. Clearly ij does not satisfy (1). If ij satisfies (2) for some k, then we have  $\mu(i,k) > \mu(i,j)$  and  $\mu'(i,k) < \mu(i,k)$  or  $\mu(j,k) > \mu(i,j)$ and  $\mu'(j,k) < \mu(j,k)$ . Both cases contradict the maximality of  $\mu(i,j)$ .

Proof of Lemma 2.5. By the cyclically evenness, we have  $\mu(i, j) + \mu(j, k) - \mu(i, k) \in$ 2**Z**. Therefore, if  $\mu$  is not *H*-minimal, then there are  $i, j \in S$  violating (1) and (2) in Lemma 2.6. Define  $\mu' : V \times V \to \mathbf{R}$  by

$$\mu'(k,l) = \begin{cases} \mu(k,l) - 2 & \text{if } \{[k]_{\mu}, [l]_{\mu}\} = \{[i]_{\mu}, [j]_{\mu}\}, \\ \mu(k,l) & \text{otherwise,} \end{cases} \quad (k,l \in S).$$
(2.14)

Then  $\mu'$  is a cyclically metric with  $\mu' \leq \mu$  and  $\mu'(s,t) = \mu(s,t)$  for  $st \in R$ . By construction,  $A_{\mu} = A_{\mu'}$  holds. Repeating this process to  $\mu'$ , we obtain a required cyclically even H-minimal metric  $\mu^*$ .

The following decomposition theorem is our central subject to prove the main theorem (Theorem 1.3). The proof is given in the next section.

**Theorem 2.7.** Suppose that  $H = (S, R) = K_3 + K_3$ . Let  $\mu$  be a cyclically even Hminimal metric on S. Then the finite metric space  $(T(S, \mu) \cap A_{\mu}, l_{\infty})$  is decomposed into the sum of cut metrics,  $K_{2,3}$ -metrics,  $K_{3,3}$ -metrics, and  $\Gamma_{3,3}$ -metrics with integral coefficients Now using this, we can derive our main theorem (Theorem 1.3) as follows. Let G = (V, E) be a connected graph, and let H = (S, R) with  $S \subseteq V$  be  $K_3 + K_3$ . Let l be a cyclically even edge length function on E. Then, clearly, the graph metric  $d_{G,l}$  is a cyclically even metric on V. Let  $\mu$  be the restriction of  $d_{G,l}$  to S. By Lemma 2.5, we can take a cyclically even H-minimal metric  $\mu^*$  with  $\mu^* \leq \mu$  and  $A_{\mu} = A_{\mu^*}$ . Consider  $P(S, \mu^*)$  and  $T(S, \mu^*)$ . For  $k \in V$ , we define a vector  $p^k \in \mathbf{R}^S$  as:

$$p_k = \mu_k^* \quad (k \in S) \tag{2.15}$$

and

$$p_k(j) = d_{G,l}(k,j) \quad (j \in S, k \in V \setminus S).$$

$$(2.16)$$

Then we have

$$p_k \in P(S, \mu^*) \cap A_{\mu^*} \quad (k \in V).$$
 (2.17)

Indeed, we have  $p_k = \mu_k^* \in T(S, \mu^*) \cap A_{\mu^*}$  for  $k \in S$  and

$$p_{k}(i) + p_{k}(j) = d_{G,l}(k,i) + d_{G,l}(k,j)$$
  

$$\geq d_{G,l}(i,j) = \mu(i,j) \geq \mu^{*}(i,j) \quad (k \in V \setminus S).$$
(2.18)

Therefore  $p^k \in P(S, \mu^*)$  for  $k \in V \setminus S$ . By the cyclically evenness of  $d_{G,l}$  and the construction of  $\mu^*$ , we have  $p^k \in A_{\mu} = A_{\mu^*}$ . Then we have

$$l(ij) \geq d_{G,l}(i,j) \geq ||p_i - p_j||_{\infty} \quad (ij \in E), d_{G,l}(i,j) = \mu^*(i,j) = ||p_i - p_j||_{\infty} \quad (ij \in R).$$
(2.19)

Let  $U = \{p_i\} \subseteq P(S, \mu^*) \cap A_{\mu^*}$ . Take a nonexpansive retraction  $\phi : U \to T(S, \mu^*) \cap A_{\mu^*}$ in Proposition 2.4. Then we obtain

$$l(ij) \geq \|\phi(p_i) - \phi(p_j)\|_{\infty} \quad (ij \in E), d_{G,l}(i,j) = \|\phi(p_i) - \phi(p_j)\|_{\infty} \quad (ij \in R).$$
(2.20)

Therefore, the decomposition of  $(T(S, \mu^*) \cap A_{\mu^*}, l_{\infty})$  in Theorem 2.7 yields a required integral *H*-packing.

# **3** A decomposition theory for two-dimensional tight spans

The goal of this section is to develop a decomposition theory for two-dimensional tight spans to prove Theorem 2.7. Let  $(S, \mu)$  be a finite metric space. We further suppose that  $\mu$  is cyclically even.

The first task is to represent finite metric  $(T(S,\mu) \cap A_{\mu}, l_{\infty})$  as the graph metric of a graph obtained by the lattice L. Let  $\tilde{\Gamma}_{\mu}$  be an infinite graph on the vertices  $P(S,\mu) \cap A_{\mu}$  obtained by connecting  $p, q \in P(S,\mu) \cap A_{\mu}$  if  $\|p-q\|_{\infty} = 1$ .

Lemma 3.1. We have

$$d_{\tilde{\Gamma}_{\mu}}(p,q) = \|p-q\|_{\infty} \quad (p,q \in P(S,\mu) \cap A_{\mu}).$$
(3.1)

*Proof.* ( $\geq$ ) is obvious. We show the converse by constructing a path from p to q with length  $||p - q||_{\infty}$ . For  $p, q \in P(S, \mu) \cap A_{\mu}$ , let U be the set  $\{i \in S \mid q(i) < p(i)\}$ . Clearly,  $p' := p - \chi_U + \chi_{S\setminus U}$  is in  $P(S, \mu) \cap A_{\mu}$ . If  $p(i) \neq q(i)$  for all  $i \in S$ , then  $||p - q||_{\infty} = 1 + ||p' - q||_{\infty}$ . If p(i) = q(i) for some  $i \in S$ , then, by  $p - q \in L$ , we have  $||p - q||_{\infty} \geq 2$ , and therefore  $||p - q||_{\infty} = 1 + ||p' - q||_{\infty}$ . Repeating this process to p' and q, we obtain a desired path.

Let  $\Gamma_{\mu}$  be the subgraphs of  $\tilde{\Gamma}_{\mu}$  induced by  $T(S,\mu) \cap A_{\mu}$ . Then  $\Gamma_{\mu}$  is an isometric subgraph of  $\tilde{\Gamma}_{\mu}$ . Indeed, for  $p, q \in T(S,\mu) \cap A_{\mu}$ , consider the image of a shortest path joining p and q in  $\tilde{\Gamma}_{\mu}$  by a nonexpansive retraction in Proposition 2.4. Then this is a shortest path in  $\Gamma_{\mu}$ . In particular,  $(T(S,\mu) \cap A_{\mu}, l_{\infty})$  coincides with the graph metric of  $\Gamma_{\mu}$ . The decomposability of the graph metric  $d_{\Gamma_{\mu}}$  is our central interest.

It will turn out that two-dimensionality of  $T(S,\mu)$  is crucial for  $d_{\Gamma_{\mu}}$  to have a nice decomposability property. To study the dimension of  $T(S,\mu)$ , we introduce a graph K(p) associated with a point  $p \in P(S,\mu)$ , which is a fundamental tool to investigate  $T(S,\mu)$  [8]. For  $p \in P(S,\mu)$ , we define the graph K(p) = (S, E(p)) as  $ij \in E(p) \Leftrightarrow$  $p(i) + p(j) = \mu(i, j)$ . Namely, K(p) represents the information of facets of  $P(S,\mu)$ containing p. In particular,  $p \in T(S,\mu)$  if and only if K(p) has no isolated vertices. Let F(p) be the face of  $T(S,\mu)$  containing p as its relative interior. For a face F of  $T(S,\mu)$ , we denote the corresponding graph by  $K_F$ , i.e.,  $K_F := K(p)$  for a relative interior point  $p \in F$ . The dimension of F(p) is characterized in a graphical term of K(p).

**Lemma 3.2** ([8]). For  $p \in T(S, \mu)$ , we have

$$\dim F(p) = the number of bipartite components of K(p).$$
(3.2)

Sketch of proof. dim F(p) is given by the rank of the matrix whose columns are  $\{\chi_i + \chi_j \mid ij \in E(p)\}$ . The rank of a 0-1 matrix each of whose column has at most two 1's can be characterized in a graphical way as in (3.2).

It turns out in the proof of the next proposition that the graph K(p) and the commodity graph H are closely related; see Section 4.1 for further discussion. This was a motivation to introduce the concept of H-minimal metrics.

**Proposition 3.3.** Let H = (S, R) be a graph and  $\mu$  an H-minimal metric on S. If H has no n-matching  $(n \ge 2)$ , then the tight span  $T(S, \mu)$  is at most (n - 1)-dimensional.

*Proof.* First we note the following property of a point in the tight span:

(\*) For  $p \in T(S, \mu)$  and  $i, j \in S$ , we have  $p(i) + \mu(i, j) \ge p(j)$ .

Indeed, if  $p(j) > p(i) + \mu(i, j)$ , then we have  $p(j) + p(k) > p(i) + \mu(i, j) + p(k) \ge \mu(i, k) + \mu(i, j) \ge \mu(j, k)$  for any k. This contradicts Lemma 2.1 (2).

Suppose  $T(S,\mu)$  is at least *n*-dimensional. There is a point  $p \in T(S,\mu^*)$  such that K(p) has at least *n* (bipartite) connected components. It suffices to show that each component has at least one edge of H.

Take an edge  $ij \in E(p)$  from some component. Then  $\mu(i, j) > 0$  must hold. Indeed, suppose  $\mu(i, j) = 0$ . Then we have p(i) = p(j) = 0, and thus  $p = \mu_i = \mu_j$ . Then  $p(i) + p(k) = \mu(i, k)$  and  $ik \in E(p)$  holds for  $k \in S$ . This implies that K(p) is connected. A contradiction.

For  $j' \in [j]_{\mu}$ , we have  $p(i) + p(j') \leq p(i) + \mu(j, j') + p(j) = \mu(i, j) = \mu(i, j')$  by (\*). This implies  $ij' \in E(p)$ , and consequently  $i'j' \in E(p)$  for  $i' \in [i]_{\mu}, j' \in [j]_{\mu}$ . If there is  $st \in R$  with  $s \in [i]_{\mu}, t \in [j]_{\mu}$ , then  $st \in E(p)$  and we are done.

Suppose not. By Lemma 2.6 (2), there is  $k \in S \setminus [i]_{\mu} \cup [j]_{\mu}$  such that  $\mu(i, j) + \mu(j, k) = \mu(i, k)$  or  $\mu(i, j) + \mu(i, l) = \mu(j, l)$ . We may assume the former case (by exchanging the role of i, j if necessary). By (\*), we have

$$p(i) + p(k) \le p(i) + \mu(j,k) + p(j) = \mu(i,j) + \mu(j,k) = \mu(i,k).$$
(3.3)

Therefore  $ik \in E(p)$ .

Repeat this process to *ik*. Since  $\mu(i, k) > \mu(i, j)$ , after finitely many step we find an edge of *H* in this components. Therefore, there is at least one edge of *H* in each component. Thus *H* has an *n*-matching. In the case where H has no three-matching,  $T(S, \mu)$  is at most two dimensional. To concentrate on this case, we assume that  $T(S, \mu)$  is at most two-dimensional in the sequel. Our next task is to investigate how the graph  $\Gamma_{\mu}$  is drawn in  $T(S, \mu)$ . In particular, we will determine the connected components of

$$T(S,\mu) \setminus \bigcup \{ [p,q] \mid p,q \in T(S,\mu) \cap A_{\mu}, \|p-q\|_{\infty} = 1 \}.$$
(3.4)

In the subsequent arguments, the following moving process in  $T(S,\mu)$  is important.

**Lemma 3.4.** Let  $p \in T(S,\mu)$  and a maximal stable set U in K(p). For small  $\epsilon > 0$  the point  $p + \epsilon(-\chi_U + \chi_{S\setminus U})$  is in  $T(S,\mu)$ . In addition, if  $p \in T(S,\mu) \cap A_{\mu}$ , then  $p - \chi_U + \chi_{S\setminus U} \in T(S,\mu) \cap A_{\mu}$ .

*Proof.* The maximum step  $\max\{\epsilon \ge 0 \mid p + \epsilon(-\chi_U + \chi_{S\setminus U}) \in P(S,\mu)\}$  is given by

$$\min_{i,j \in U} (p(i) + p(j) - \mu(i,j))/2.$$
(3.5)

Therefore, if U is stable, then (3.5) is positive. Furthermore, by maximality,  $K(p + \epsilon(-\chi_U + \chi_{S\setminus U}))$  has no isolated point. This means  $p + \epsilon(-\chi_U + \chi_{S\setminus U}) \in T(S,\mu)$ . In addition, if  $p \in T(S,\mu) \cap A_{\mu}$ , then (3.5) is positive integral by cyclically evenness and the definition of  $A_{\mu}$ .

The first application of this lemma is:

**Lemma 3.5.** For  $p, q \in T(S, \mu) \cap A_{\mu}$ , if  $||p - q||_{\infty} = 1$ , then  $[p, q] \subseteq T(S, \mu)$ .

Proof. We show that the set  $X = \{i \in S \mid p(i) - q(i) = 1\}$  is a nonempty maximal stable set in K(p). If X is empty, then p < q, and this contradicts the minimality of q. Thus both X and  $S \setminus X$  are nonempty. If there is  $i, j \in S$  with  $ij \in E(p)$ , then  $1 = p(i) - q(i) = \mu(i, j) - p(j) - q(i) \le q(j) - p(j) = -1$ . This is a contradiction. Therefore X is stable in K(p). Suppose that X is not a maximal stable set. Then there is  $j \in S \setminus X$  such that j is not incident to X. Since  $q = p - \chi_S + \chi_{X \setminus S}$ , the vertex j is isolated in K(q). This is a contradiction to  $q \in T(S, \mu)$ .

The second application reveals the structure of graph K(p).

**Lemma 3.6.** For  $p \in T(S,\mu)$ , graph K(p) has at most two connected components. In addition, if K(p) has two connected components, then K(p) has no loops and both components are complete multipartite.

Proof. Let U be a maximal stable set of K(p). Then  $p' := p + \epsilon(-\chi_U + \chi_{S\setminus U})$  is in  $T(S,\mu)$  for small  $\epsilon > 0$ . If K(p) has at least three components, then K(p') has at three nonbipartite component. This is a contradiction. Suppose that K(p) has two components  $K^1, K^2$ . If K(p) has a vertex *i* with loop *ii*, then p(i) = 0. This implies that  $p = \mu_i$  by Lemma 2.2. Then *i* is adjacent to all vertices. This contradicts the fact that K(p) has two connected components. Suppose that  $K^1$  has two intersecting maximal stable sets U, U'. For small  $\epsilon > 0, p' := p + \epsilon(-\chi_U + \chi_{N(U)})$  is in  $T(S,\mu)$ . Then K(p') has three components since  $U \cap U'$  is adjacent only to  $N(U) \setminus U', U \setminus U'$  is adjacent only to  $N(U) \cap U'$ , and both U and N(U) are stable in K(p'). Therefore, maximal stable sets in  $K^1$  is pairwise disjoint, and this implies that  $K^1$  is complete multipartite.  $\Box$ 

Then, from Lemmas 3.2 and 3.6, we see:

(1) F(p) is an extreme point of  $T(S, \mu)$  if and only if

- (1-1) K(p) is connected nonbipartite or
- (1-2) K(p) consists of two nonbipartite complete multipartite components.
- (2) F(p) is an edge of  $T(S, \mu)$  if and only if
  - (2-1) K(p) is connected bipartite or
  - (2-2) K(p) consists of one complete bipartite component and one nonbipartite complete multipartite component.
- (3) F(p) is a two-dimensional face of  $T(S, \mu)$  if and only if K(p) consists of two complete bipartite components.

In particular, there are two types of edges and extreme points. An edge e of  $T(S, \mu)$  is called an  $l_1$ -edge if K(p) for a relative interior point p in e is a connected bipartite. Other edge e is called an  $l_{\infty}$ -edge. An extreme point p of  $T(S, \mu)$  is called a *core* if K(p) has two nonbipartite components. These concepts have been introduced in [10]. Relationship among  $l_1$ -edges,  $l_{\infty}$ -edges, cores, and the graph  $\Gamma_{\mu}$  is important for us.

**Lemma 3.7.** Let p be an extreme point of  $T(S, \mu)$ . Then p is integral. In addition, if p is not a core, then  $p \in A_{\mu}$ .

*Proof.* For  $i \in S$ , then there is a nonbipartite component contain i. Let C be an odd cycle of this component. We order vertices in C cyclically as  $(j_0, j_1, \ldots, j_{m-1})$ . Then  $p(j_0)$  is given by  $(\sum_{k=0}^{m-1} (-1)^k \mu(j_k, j_{k+1}))/2$ , where the index is taken by modulo m. By cyclically evenness,  $p(j_0)$  is integral. There is a path from i to  $j_0$  in K(p). Substituting the relation  $p(i') + p(i'') = \mu(i', i'')$  along this path, we obtain p(i) which is integral.

Next we suppose that p is not a core. Fix an odd cycle C in K(p) ordered cyclically as above. For any  $i, j \in S$ , there are paths connecting from C to i and j, respectively. By calculation, p(i) + p(j) is given by  $\sum_{e \in P} \pm \mu(e)$  for some (possibly nonsimple) path joining i and j. Take  $k \in S$ , then we have

$$(\mu_k - p)(i) + (\mu_k - p)(j) = \mu(k, i) + \mu(k, j) + \sum_{e \in P} \pm \mu(e).$$
(3.6)

The right hand side is the sum of  $\mu$  along some (possibly nonsimple) cycle in the complete graph on S, and thus even.

For an  $l_1$ -edge e, if the corresponding bipartite graph  $K_e$  has a bipartition (A, B), then the direction of e is parallel to  $\chi_A - \chi_B \in \{1, -1\}^S$ . Furthermore, we easily see that neither of the endpoint of e is core. Therefore each  $l_1$ -edge e is a series of edges in  $\Gamma_{\mu}$ .

Next we study the shape of a two-dimensional face. We simply call a two-dimensional face a 2-face. By calculation, we have the following; see [10] for details.

**Lemma 3.8.** Let F be a 2-face of  $T(S, \mu)$ . Let  $K^1$  and  $K^2$  be two bipartite components of  $K_F$  with bipartitions  $(A_1, B_1)$  and  $(A_2, B_2)$ , respectively. For  $i \in A_1$  and  $j \in A_2$ , the projection map  $(\cdot)|_{\{i,j\}} : \mathbf{R}^S \to \mathbf{R}^{\{i,j\}}$  is an isometry between  $(F, l_{\infty})$ , and  $(F|_{\{i,j\}}, l_{\infty})$ . Moreover  $F|_{\{i,j\}}$  is represented as

$$F|_{\{i,j\}} = \left\{ (p(i), p(j)) \in \mathbf{R}^2 \mid a \leq p(i) \leq a', c \leq p(i) + p(j) \leq c', \\ b \leq p(j) \leq b', d \leq p(i) - p(j) \leq d' \right\}$$
(3.7)

for  $a, a', b, b', c, c', d, d' \in \mathbf{Z}$ .



Figure 4: (a) a 2-face and (b) decomposing the 2-face by  $\Gamma_{\mu}$ 

Sketch of proof. A point q in F is represented by  $p + \alpha(\chi_{A_1} - \chi_{B_1}) + \beta(\chi_{A_2} - \chi_{B_2})$ for some  $\alpha, \beta \in \mathbf{R}$  and  $p \in F$ . From this, we easily see that the projection is an isometry. The coordinate p(k) for  $k \in A_1 \cup B_1$  is obtained by substituting relations  $p(i') + p(i'') = \mu(i', i'')$  along a path in K(p) connecting i and k. From this, we see the linear inequality description of  $F|_{\{i,j\}}$  (3.7).

Therefore, a 2-face is isomorphic to a polygon in the  $l_{\infty}$ -plane  $\mathbb{R}^2$  whose edges are parallel to  $\chi_1 - \chi_2$  or  $\chi_1 + \chi_2$ ; see Figure 4 (a). Then  $l_{\infty}$ -edges in F are parallel to the coordinate axes in the  $l_{\infty}$ -plane. As is well-known, the  $l_{\infty}$ -plane is isomorphic to the  $l_1$ -plane by the map  $(x_1, x_2) \mapsto ((x_1 + x_2)/2, (x_1 - x_2)/2)$ ; see [7, p. 31]. Then  $l_1$ -edges in F are parallel to the coordinate axes in the  $l_1$ -plane. In particular,  $T(S, \mu)$  is obtained by gluing such polygons along the same type of edges.

Next we study the local structure around a core. In general, an edge vector of  $T(S, \mu)$  is parallel to  $\chi_A - \chi_B$  for some disjoint nonempty subsets  $A, B \subseteq S$ ; consider the orthogonal space of vectors  $\{\chi_i + \chi_j \mid ij \in E(p)\}$  having codimension 1. By combining Lemmas 3.4 and 3.2, we see that the edge e adjacent to an extreme point p is given by  $[p, p + \alpha(-\chi_A + \chi_{N(A)})]$  for a maximal stable set in some connected component of K(p) and a positive integer  $\alpha$ . For a core p, if two complete multipartite components in K(p) have partitions  $\{A_1, A_2, \ldots, A_m\}$  and  $\{B_1, B_2, \ldots, B_n\}$   $(n, m \geq 3)$ , then we say that p has the type  $(A_1, A_2, \ldots, A_m; B_1, B_2, \ldots, B_n)$ . We denote edges adjacent to p parallel to  $-\chi_{A_i} + \chi_{\cup_{k \neq i} A_k}$  and  $-\chi_{B_j} + \chi_{\cup_{k \neq j} B_k}$  by  $e(p, A_i)$  and  $e(p, B_j)$ , respectively. By the above argument and a routine verification, we have:

**Lemma 3.9.** Let p be a core of type  $(A_1, A_2, ..., A_m; B_1, B_2, ..., B_n)$ .

- (1) For an edge e of  $T(S, \mu)$ , e is adjacent to p if and only if e is  $e(p, A_i)$  or  $e(p, B_j)$  for some i, j.
- (2) For a pair of edges e', e'' of  $T(S, \mu)$  adjacent to p, both e' and e'' are contained by the common 2-face if and only if (e', e'') is  $(e(p, A_i), e(p, B_i))$  or  $(e(p, B_i), e(p, A_i))$  for i, j.

We call a core p even if  $p \in A_{\mu}$ , and odd if  $p \notin A_{\mu}$ .

**Lemma 3.10.** Let p be an odd core of type  $(A_1, A_2, \ldots, A_m; B_1, B_2, \ldots, B_n)$ . Then  $p - \chi_{A_i} + \chi_{\bigcup_{k \neq i} A_k}$  and  $p - \chi_{B_j} + \chi_{\bigcup_{k \neq j} B_k}$  are contained in  $T(S, \mu) \cap A_{\mu}$  for i, j.

*Proof.* By the argument similar to the proof of Lemma 3.7,  $(\mu_l - p)(i) + (\mu_l - p)(j)$  is even for  $i, j \in \bigcup_k A_k$  or  $i, j \in \bigcup_k B_k$ . Therefore,  $(\mu_l - p)(i) + (\mu_l - p)(j)$  is odd for  $i \in \bigcup_k A_k$ and  $j \in \bigcup_k B_k$ . Summarizing these arguments, a 2-face in  $T(S, \mu)$  is decomposed by  $\Gamma_{\mu}$  as in Figure 4 (b), where the black points are vertices of  $\Gamma_{\mu}$ , the white point is an odd core, the broken lines represent  $l_{\infty}$ -edges, and other black lines are edges of  $\Gamma_{\mu}$ .

**Lemma 3.11.** Let e be an  $l_{\infty}$ -edge of  $T(S, \mu)$ . Then there are at least three 2-faces containing e.

Proof. Let p be a relative interior point in e. Then K(p) consists of one bipartite graph and one nonbipartite graph K. The graph K is complete multipartite with partition  $\{A_1, A_2, \ldots, A_m\}$   $(m \ge 3)$ . For each  $A_i$ , a point  $p' := p + \epsilon(-\chi_{A_i} + \chi_{\cup_{k \ne i} A_k})$  for small  $\epsilon > 0$  in  $T(S, \mu)$ , and K(p') has two bipartite components.  $\Box$ 

Let us return back to the original problem to determine the closure of connected components of the set

$$T(S,\mu) \setminus \bigcup \{ [p,q] \mid p,q \in T(S,\mu) \cap A_{\mu}, \|p-q\|_{\infty} = 1 \}.$$
(3.8)

Recall that the graph  $\Gamma_{\mu}$  decomposes each 2-face of  $T(S, \mu)$  as in Figure 4 and  $T(S, \mu)$  is obtained by gluing polygons along the same type of edges.

There are unit squares with its edges parallel to  $\chi_{A_1 \cup A_2} - \chi_{B_1 \cup B_2}$  and  $\chi_{B_1 \cup A_2} - \chi_{A_1 \cup B_2}$ for some four-partition  $\{A_1, A_2, B_1, B_2\}$  of S. We call it a square. Suppose there is an  $l_{\infty}$ -edge e having two points of  $A_{\mu}$ . Then take two points  $p, q \in e$  with  $\|p-q\|_{\infty} = 2$ . By Lemma 3.11, there are  $m \geq 3$  2-faces of  $T(S, \mu)$ . Therefore, the closure of component containing (the relative interior of) e is a folder obtained by gluing m right-angled isosceles triangles along their long edge. The graph of boundary edges, which is a subgraph of  $\Gamma_{\mu}$ , is the complete bipartite graph  $K_{2,m}$ . We call it a  $K_{2,m}$ -folder. Suppose that there is an odd core p of type  $(A_1, \ldots, A_m, B_1, \ldots, B_n)$   $(m, n \ge 3)$ . The closure of the component containing p is the union of triangles whose vertices  $p, p - \chi_{A_i} + \chi_{\bigcup_{k \neq i} A_k}$ , and  $p - \chi_{B_j} + \chi_{\bigcup_{k \neq j} B_k}$  over all pairs (i, j) of  $1 \leq i \leq m$  and  $1 \leq i \leq n$ . Its boundary graph, which is an isometric subgraph of  $\Gamma_{\mu}$  induced by  $\{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p - \chi_{A_i} + \chi_{\cup_{k \neq i} A_k}\}_{i=1}^m \cup \{p \chi_{B_j} + \chi_{\bigcup_{k \neq j} B_k} _{j=1}^n$ , is the complete bipartite graph  $K_{n,m}$ . We call it a  $K_{n,m}$ -folder. In other words, a  $K_{n,m}$ -folder is isomorphic to the complex of the join of  $K_{n,m}$  and one point. Therefore, the graph  $\Gamma_{\mu}$  decomposes  $T(S,\mu)$  into squares,  $K_{2,l}$ -folders, and  $K_{n,m}$ folders. See Figure 5 (a), (b), and (c). Such a folder decomposition of a two-dimensional tight span has already been obtained by [16, 17, 4] via different approach; see Section 4.3 for further discussion. A new point here is a relation among the lattice L, odd cores, and  $l_1/l_{\infty}$ -edges.

**Remark 3.12.** An even core p of type  $(A_1, \ldots, A_m, B_1, \ldots, B_n)(m, n \ge 3)$  is contained in  $n K_{2,m}$ -folders and  $m K_{2,n}$ -folders. The union of their boundary graphs is  $\Gamma_{n,m}$ ; see Figure 6. Here  $\Gamma_{n,m}$  is the graph obtained by subdividing  $K_{n,m}$  and connecting each subdivided point to one new point. This will turns out to be a reason why  $\Gamma_{3,3}$ -metrics appear in the  $K_3 + K_3$ -packing.

Next we discuss the decomposability property of the graph metric of  $\Gamma_{\mu}$ . In fact, this is a special case of the decomposition of a modular graph into its orbit graphs, which is discussed in [3, 18]. We use some of terminology in [18, Section 2] with slight modification.

Two edge e, e' in  $\Gamma_{\mu}$  are called *mates* if there is a rectangle containing e, e' as its parallel edges, or there is a  $K_{2,l}$ -folder or a  $K_{n,m}$ -folder containing e, e' as its edges. Two edge e, e' in  $\Gamma_{\mu}$  are said to be *projective* if there is a sequence  $e = e_1, e_2, \ldots, e_k = e'$ such that  $e_i$  and  $e_{i+1}$  are mates. The projectivity is an equivalence relation on edges of  $\Gamma_{\mu}$ . An equivalence class is called an *orbit*. For an orbit o, the *orbit graph*  $\Gamma_{\mu}^o$  of  $\Gamma_{\mu}$  is



Figure 5: (a) square, (b)  $K_{2,5}$ -folder, and (c)  $K_{3,3}$ -folder



Figure 6: The folder structure around an even core

the graph obtained by contracting all edges not in o and then identifying parallel edges appeared. By the contraction, we define a map  $\phi^o$  from vertices of  $\Gamma_{\mu}$  to vertices of  $\Gamma_{\mu}^o$ in a natural way. Then the graph metric  $d_{\Gamma_{\mu}}$  is decomposed into the graph metrics of the orbit graphs as follows:

**Proposition 3.13.** Let O be the set of all orbits of  $\Gamma_{\mu}$ . Then we have:

$$d_{\Gamma_{\mu}}(p,q) = \sum_{o \in O} d_{\Gamma_{\mu}^{o}}(\phi^{o}(p),\phi^{o}(q)) \quad (p,q \in T(S,\mu) \cap A_{\mu}).$$
(3.9)

We will derive Theorem 2.7 from this decomposition principle. In fact, this is a special case of a more general results of modular graphs [2, 18]. Here we give a self-contained proof suitable to our geometric setting. A key is the following Jordan-Hölder type theorem.

**Lemma 3.14.** For  $p, q \in T(S, \mu) \cap A_{\mu}$ , let  $P = (p = p_0, p_1, \dots, p_k = q)$  and  $P' = (p = p'_0, p'_1, \dots, p'_k = q)$  be two shortest paths joining p and q. For any orbit o, we have

$$\sum_{\substack{0 \le i < k\\ p_{i+1}p_i \in o}} p_{i+1} - p_i = \sum_{\substack{0 \le j < k\\ p'_{i+1}p'_i \in o}} p'_{j+1} - p'_j.$$
(3.10)

*Proof.* We may assume  $p \neq q$ . We use two lemmas. The first is:

(\*1)  $S_q^p = \{i \in S \mid ||p - q||_{\infty} = p(i) - q(i)\}$  is a nonempty stable set in K(p).

Indeed, if  $||p-q||_{\infty} = q(i)-p(i)$ , then we have  $q(i)-p(i) = \mu(j,i)-q(j)-p(i) \le p(j)-q(j)$ for some  $j \in S$ . Therefore  $S_q^p$  is nonempty. Moreover, if there is  $i, j \in S_q^p$  with  $ij \in E(p)$ , then we have  $p(i)-q(i) = \mu(i,j)-q(j)-q(i) = q(j)-p(j)$ , and this implies p(i)-q(i) = 0. A contradiction.

The second is:

(\*2)  $N_p(S_q^p) = S_p^q$ , where  $N_p(\cdot)$  is the neighbor operator in K(p).

By the argument above, we have  $N_p(S_q^p) \subseteq S_p^q$ . Take  $i \in S_p^q$ , there is  $j \in S_q^p$  with  $ij \in E(q)$ . Then we have  $p(i) + p(j) = (p(i) - q(i)) + q(i) + q(j) + (p(j) - q(j)) = q(i) + q(j) = \mu(i, j)$ . Therefore, we have  $ij \in E(p)$  and  $N_p(S_q^p) = S_p^q$ .

Now let us start the proof. We use induction on  $||p - q||_{\infty} = k$ . Let  $P = (p = p_0, p_1, \ldots, p_k = q)$  and  $P' = (p = p'_0, p'_1, \ldots, p'_k = q)$  be two shortest paths joining p and q. It is obvious for k = 1. We may assume that  $p_1 \neq p'_1$ . Therefore,  $||p_1 - p'_1||_{\infty} = 2$ . It suffices to show the existence of  $p^* \in T(S, \mu) \cap A_{\mu}$  such that  $||q - p^*||_{\infty} = k - 2$ ,  $||p_1 - p^*||_{\infty} = ||p_2 - p^*||_{\infty} = 1$ , and  $p, p_1, p'_1, p^*$  are contained by some square,  $K_{2,l}$ -folder, or  $K_{n,m}$ -folder. Indeed, let  $P^* = (p^*, p^*_3, \ldots, p^*_k = q)$  be a shortest path joining  $p^*$  and q. Then both  $P_1^* = (p_1, p^*, p^*_3, \ldots, p^*_k = q)$  and  $P_2^* = (p'_1, p^*, p^*_3, \ldots, p^*_m = q)$  are shortest paths. Then apply induction.

Let  $p_1 - p = -\chi_A + \chi_B$  and  $p'_1 - p = -\chi_{A'} + \chi_{B'}$  for some partitions  $\{A, B\}, \{A', B'\}$ of S with all A, B, A', B' nonempty. Since both A and A' are maximal stable sets in K(p), there is no edge between  $A \cap A'$  and  $A' \cap B$ . By these facts and (\*1-2), we have  $S_q^p \subseteq A \cap A'$  and  $S_p^q = N_p(S_q^p) \subseteq N_p(A \cap A') \subseteq B \cap B'$ .

(Case 1). Suppose  $N_p(A \cap A') = B \cap B'$ . In this case, for small  $\epsilon > 0$ , the vector  $p + \epsilon(-\chi_{A \cap A'} + \chi_{N_p(A \cap A')})$  is in  $T(S, \mu)$ . Therefore both  $pp_1$  and  $pp_2$  are boundary edges of a square or a  $K_{2,l}$ -folder. In the former case, the point  $p^*$  diagonal to p is a desired point. Consider the latter case. The point  $\tilde{p} = p - \chi_{A \cap A'} + \chi_{N_p(A \cap A')}$  lies on the  $l_{\infty}$ -edges of the  $K_{2,l}$ -folder. Therefore  $K(\tilde{p})$  consists of one complete multipartite component  $\tilde{K}$ 

and one complete bipartite component corresponding to  $(A \cap B', A' \cap B)$ . Then there is a maximal stable set  $\tilde{S}$  in  $\tilde{K}$  such that  $S_q^p \subseteq S_q^{\tilde{p}} \subseteq \tilde{S} \subseteq A \cap A'$ . Thus the point  $p^* = \tilde{p} - \chi_{\tilde{S}} + \chi_{N_{\tilde{c}}(\tilde{S})}$  is a desired one.

(Case 2). Suppose  $B \cap B' \setminus N_p(A \cap A') \neq \emptyset$ . Then any  $l \in B \cap B' \setminus N_p(A \cap A')$  must be adjacent to both  $A \cap B'$  and  $A' \cap B$ . For small  $\epsilon > 0$ , the graph  $K(p + \epsilon(-\chi_{A \cap A'} + \chi_{N_p(A \cap A')}))$  consists of one (complete) bipartite component and one nonbipartite (complete multipartite) component. Therefore, the point  $p + \epsilon(-\chi_{A \cap A'} + \chi_{N_p(A \cap A')})$  lies on an  $l_{\infty}$ -edge. Thus, both  $pp_1$  and  $pp_2$  are boundary edges of a  $K_{2,l}$ -folder or a  $K_{n,m}$ -folder. In the former case, the point  $p^* = p + 2(-\chi_{A \cap A'} + \chi_{N_p(A \cap A')})$  is a desired one. Suppose the latter case. The point  $\tilde{p} := p - \chi_{A \cap A'} + \chi_{N_p(A \cap A')}$  must be an odd core.  $K(\tilde{p})$  has two complete multipartite components. Let  $\tilde{K}$  be a complete multipartite component containing  $A \cap A'$ . Then there is a maximal stable set  $\tilde{S}$  in  $\tilde{K}$  such that  $S_q^p \subseteq S_q^{\tilde{p}} \subseteq \tilde{S} \subseteq A \cap A'$ . The point  $p^* := \tilde{p} - \chi_{\tilde{S}} + \chi_{N_{\tilde{p}}(\tilde{S})}$  is a desired one.  $\Box$ 

The next lemma says that  $\Gamma_{\mu}$  is a modular graph. Here, a graph G = (V, E) is said to be *modular* if for any triple  $k_1, k_2, k_3 \in V$  there is  $k^*$ , called *a median*, such that  $d_G(k_i, k_j) = d_G(k_i, k^*) + d_G(k^*, k_j)$  for  $1 \leq i < j \leq 3$ .

**Lemma 3.15.**  $\Gamma_{\mu}$  is a modular graph.

Proof. For any triple  $p_1, p_2, p_3 \in T(S, \mu) \cap A_\mu$ , we define  $r_i = (\|p_i - p_j\|_{\infty} + \|p_i - p_k\|_{\infty} - \|p_j - p_k\|_{\infty})/2$  for  $\{i, j, k\} = \{1, 2, 3\}$ . By cyclically evenness, all  $r_1, r_2, r_3$  are integer, and  $r_i + r_j = \|p_i - p_j\|_{\infty}$  holds for  $1 \le i < j \le 3$ . Consider the intersection of  $l_\infty$ -balls

$$B = \bigcap_{1 \le i \le 3} \{ p \in \mathbf{R}^S \mid ||p_i - p||_{\infty} \le r_i \}.$$
 (3.11)

By the same argument in the proof of Proposition 2.4, one can show that  $B \cap T(S,\mu) \cap A_{\mu}$  is nonempty. Any point in  $B \cap T(S,\mu) \cap A_{\mu}$  is a median of  $p_1, p_2, p_3$ .

See Section 4.3 for further discussion about the modularity of  $\Gamma_{\mu}$ . Fix an arbitrary point  $p^* \in T(S,\mu) \cap A_{\mu}$ . For an orbit o, we define a map  $\phi^o : T(S,\mu) \cap A_{\mu} \to A_{\mu}$ .

$$\phi^{o}(p) = \sum_{\substack{0 \le i < k \\ p_{i+1}p_i \in o}} p_{i+1} - p_i, \qquad (3.12)$$

where  $(p^* = p_0, p_1, \ldots, p_k = p)$  is a shortest path joining  $p^*$  and p. This map is welldefined by Lemma 3.14. By modularity (Lemma 3.15), we have

$$\phi^{o}(q) - \phi^{o}(p) = \sum_{\substack{0 \le i < k \\ q_{i+1}q_i \in o}} q_{i+1} - q_i,$$
(3.13)

where  $(p = q_0, q_1, \ldots, q_k = q)$  is a shortest path joining p and q. To see this, take a median r of the triple  $p^*, p, q$ . Let  $P_{p^*r}, P_{pr}$ , and  $P_{qr}$  be shortest  $p^*r, pr$ , and qr-paths, respectively. Then  $P_{p^*r} \cup P_{pr}, P_{p^*r} \cup P_{qr}$ , and  $P_{pr} \cup P_{qr}$  are shortest  $p^*p, p^*q$ , and pq-paths, respectively. Substitute the definition of  $\phi^o$  (3.12) into LHS of (3.13) by using shortest paths  $P_{p^*r} \cup P_{pr}$  and  $P_{p^*r} \cup P_{qr}$ . By cancellation, we obtain RHS of (3.13) with respect to the shortest path  $P_{pr} \cup P_{qr}$ . In particular, for  $p, q \in T(S, \mu) \cap A_{\mu}$  with  $||p - q||_{\infty} = 1$ , we have

$$\phi^{o}(p) - \phi^{o}(q) = \begin{cases} p - q & \text{if } pq \in o, \\ 0 & \text{otherwise.} \end{cases}$$
(3.14)

Therefore, the graph of  $\phi^o(T(S,\mu) \cap A_\mu)$  obtained by connecting pairs of points having the unit  $l_\infty$ -distance is isomorphic to the orbit graph  $\Gamma_\mu^o$ . Let O be the set of all orbits of  $\Gamma_\mu$ . Then we have

$$\|p - q\|_{\infty} = \sum_{o \in O} \|\phi^o(p) - \phi^o(q)\|_{\infty} \quad (p, q \in T(S, \mu) \cap A_{\mu}).$$
(3.15)

The image of a shortest path joining p and q by  $\phi^o$  yields a shortest path joining  $\phi^o(p)$ and  $\phi^o(q)$ . Therefore  $\|\phi^o(p) - \phi^o(q)\|_{\infty}$  must equal  $d_{\Gamma^o_{\mu}}(\phi^o(p), \phi^o(q))$ . Hence, we complete the proof of Proposition 3.13.

**Remark 3.16.** We define another map  $\psi^o : T(S,\mu) \cap A_\mu \to A_\mu$  by  $\psi^o(p) + \phi^o(p) = p$ . Corresponding to (3.14), for  $p, q \in T(S,\mu) \cap A_\mu$  with  $\|p-q\|_{\infty} = 1$ , we have

$$\psi^{o}(p) - \psi^{o}(q) = \begin{cases} 0 & \text{if } pq \in o, \\ p - q & \text{otherwise.} \end{cases}$$
(3.16)

Then  $\psi^o$  has the following geometrical interpretation. For an orbit o, consider the union  $B_o$  of  $K_{2,l}$ -folders and  $K_{n,m}$ -folders whose boundary edges are in o, and squares at least one of whose parallel pairs of boundary edges is o. Delete the relative interior of  $B_o$  from  $T(S, \mu)$ , and glue the resulting polyhedral set along the boundary of  $B_0$  by translation. This map  $\psi^o$  achieves such a gluing translation. This idea will be used by an packing algorithm presented in Section 4.4; also see Figure 10.

**Proof of Theorem 2.7.** Let us start the proof of Theorem 2.7. Let H = (S, R) be the commodity graph of disjoint two triangles  $K_3 + K_3$ . We suppose  $S = \{1, 2, 3, 1', 2', 3'\}$  and  $R = \{12, 23, 31, 1'2', 2'3', 3'1'\}$ ; see Figure 7 (a). Let  $\mu$  be a cyclically even H-minimal metric on six-point set S. Our goal is to show that possible orbit graphs of  $\Gamma_{\mu}$  are  $K_2$ ,  $K_{2,3}$ ,  $K_{3,3}$ , and isometric subgraphs of  $\Gamma_{3,3}$ . Then the orbit graph decomposition (Proposition 3.13) yields a desired decomposition.

Suppose that there is no  $l_{\infty}$ -edge in  $T(S, \mu)$ .  $T(S, \mu)$  is decomposed into squares. Therefore, each orbit consists of parallel edges, and its orbit graph is  $K_2$ . In this case,  $d_{\Gamma_{\mu}}$  is an integral sum of cut metrics, and we obtain an integral *H*-packing by cut metrics; also see Section 4.1 for further discussion.

We concentrate on the case where  $T(S, \mu)$  has  $l_{\infty}$ -edges. Recall that there is a  $K_{2,l}$ -folder or a  $K_{m,n}$ -folder around an  $l_{\infty}$ -edges. We determine possible l, m, n.

**Lemma 3.17.** Let e be an  $l_{\infty}$ -edge of  $T(S, \mu)$  Then the graph  $K_e$  is classified into:

(case 1)  $K_e$  equals H minus one edge, or

(case 2)  $K_e$  is the disjoint sum of one edge in H and  $K_4$  minus one edge containing one triangle of H.

*Proof.*  $K_e$  consists of one complete bipartite component and one complete multipartite component K. We show that for any different parts in K there is an edge of H joining them. Take a relative interior point p of e. Then  $K_e = K(p)$ . Take an edge  $ij \in E(p)$  in K. If there is an edge  $st \in R$  with  $s \in [i]_{\mu}, t \in [j]_{\mu}$ , then, by the argument in the proof of Lemma 2.6, s and t must belong to parts containing i and j, respectively, and st is a required edge.

Suppose not. By Lemma 2.6 (2), there is  $k \in S$  such that  $\mu(i, j) + \mu(j, k) = \mu(i, k)$ with  $\mu(j, k) > 0$ . By the same argument in the proof of Proposition 3.3, we have  $ik \in E(p)$ . If i, j, k are contained by different parts in K, then  $ij, jk, ki \in E(p), p(j) =$ 



Figure 7: (a)  $H = K_3 + K_3$ , (b) the case 1, and (c) the case 2

 $(\mu(j,k) + \mu(j,i) - \mu(i,k))/2 = 0$ , and therefore  $p = \mu_j$  (by Lemma 2.2 (2)). Thus j is adjacent to all vertices S. This contradicts the fact that  $K_e$  consists of two components. Therefore, j,k are contained by the same parts, i.e.,  $jk \notin E(p)$ . By repeating this process, we can find a required edge of H.

Since the number of vertices of K is three or four,  $K_e$  must be (case 1) or (case 2).

See Figure 7 (b), (c) for examples of the above two cases. By the same argument in the above proof, we have:

**Lemma 3.18.** If there exists a core p of  $T(S, \mu)$ , then K(p) = H, and therefore p is a unique core.

Therefore, the connected component of (3.8) consists of squares,  $K_{2,3}$ -folders, and one  $K_{3,3}$ -folder (if an odd core exists).

To investigate the orbit graph, we need to *chase* the orbit started from some edge. For the chase, we use the following lemma that characterizes a *boundary*  $l_1$ -edge (corresponding to the case k = 1).

**Lemma 3.19.** Let e be an  $l_1$ -edge of  $T(S, \mu)$ , Then e is contained by exactly k 2-faces if and only if  $K_e$  has exactly k + 2 maximal stable sets.

Proof.  $K_e$  is connected bipartite. Let (A, B) be the partition of  $K_e$ . Both A and B are maximal stable. Suppose there is another maximal stable set C. Take  $p \in e$  in the relative interior. Then  $p^{C,\epsilon} := p + \epsilon(-\chi_C + \chi_{N(C)})$  is in  $T(S,\mu)$  for small  $\epsilon > 0$ , and  $K(p^{C,\epsilon})$  has two bipartite components. Therefore 2-face F(p') contains e. Conversely, if there is 2-face F' containing e, there exists a maximal stable set  $C(\neq A, B)$  in K(p) such that  $p^{C,\epsilon}$  is in F. For distinct maximal stable sets  $C', C''(\neq A, B)$  in K(p), the graphs  $K(p^{C',\epsilon})$  and  $K(p^{C',\epsilon})$  are distinct, and hence  $F(p^{C',\epsilon})$  and  $F(p^{C'',\epsilon})$  are distinct. Thus we have done.

Suppose that there exists an odd core p in  $T(S, \mu)$ . We show that the orbit graph containing  $K_{3,3}$ -folder around p is  $K_{3,3}$ . To see this, we chase the orbit started from a boundary edge of this  $K_{3,3}$ -folder. The type of p is given by  $(\{1\}, \{2\}, \{3\}; \{1'\}, \{2'\}, \{3'\})$ . Let  $F_{11'}$  be the 2-face containing edges  $e(p, \{1\})$  and  $e(p, \{1'\})$ , where we use the notation of Lemma 3.9. The graph  $K_{F_{11'}}$  is H minus two edges  $\{23, 2'3'\}$ . Since the graph  $K_e$  for an edge e of  $F_{11'}$  contains  $K_{F_{11'}}$  as a subgraph, it follows from Lemma 3.17 that F has no  $l_{\infty}$ -edges except  $e(p, \{1\})$  and  $e(p, \{1'\})$ . Therefore, the orbit started from an edge  $[p + \chi_1 - \chi_{23}, p + \chi_{1'} - \chi_{2'3'}]$  hits the edge e of F having direction  $\chi_{12'3'} - \chi_{1'23}$ , where we simply denote  $\chi_{\{1,2',3'\}}$  by  $\chi_{12'3'}$ . The graph  $K_e$  has an edge 11'. By Lemma 3.19, this edge e is a boundary  $l_1$ -edge in  $T(S, \mu)$ . Hence the orbit started from  $[p + \chi_1 - \chi_{23}, p + \chi_{1'} - \chi_{2'3'}]$  escapes into the boundary of  $T(S, \mu)$ ; see Figure 8 (a).



Figure 8: The orbits started from (a)  $K_{3,3}$ -folder and (b)  $K_{2,3}$ -folder of (case 2)

The same holds for any  $i \in \{1, 2, 3\}$  and  $j \in \{1', 2', 3'\}$ . Therefore, the orbit started from this  $K_{3,3}$ -folder does not meet other  $K_{2,3}$ -folders, and its orbit graph is  $K_{3,3}$ .

Next we consider the orbit of a  $K_{2,3}$ -folder containing  $l_{\infty}$ -edge e of (case 2) in Lemma 3.17. We may assume that the graph e is  $(S, \{12, 23, 31, 1'2, 1'3, 2'3'\})$ ; see Figure 7 (c). There are three 2-faces  $F_1, F_2, F_3$  containing e. Then, the edges of the graphs  $K_{F_1}, K_{F_2}, K_{F_3}$  are given by  $\{12, 13, 1'2, 1'3, 2'3'\}, \{12, 1'2, 23, 2'3'\}, \text{ and } \{13, 23, 1'2, 2'3'\},$ respectively. For  $F_1, F_2, F_3$ , the common edge e is a unique  $l_{\infty}$ -edge. In  $F_2$ , the orbit started from this  $K_{2,3}$ -folder hits two edges  $e_1$  and  $e_2$  of  $F_2$ . Then  $K_{e_1}$  has an edge 22' and  $K_{e_2}$  has 23'. Both  $e_1$  and  $e_2$  are in the boundary of  $T(S,\mu)$ . The same holds for  $F_3$ . For  $F_1$ , the orbit hits two edges  $e_1$  and  $e_2$  of  $F_1$  such that  $K_{e_1}$  has 12' or 1'2' (or both), and  $K_{e_2}$  has 13' or 1'3' (or both). If  $K_{e_1}$  has both 12' and 1'2', then  $e_1$  is in the boundary of  $T(S,\mu)$ . Suppose  $K_{e_1}$  has only 22'. Then the edge  $e_1$  is contained by one more 2-face  $F'_1$  with  $K_{F'_1} = (S, \{13, 23, 1'2', 2'3'\})$ . The orbit hits an edge  $e'_1$  of  $F'_1$ . This edge  $e'_1$  is in the boundary of  $T(S, \mu)$ ; see Figure 8 (b). The case where  $K_{e_1}$  has only 12' does not occur since  $K_{F'_1}$  for another 2-face  $F'_1$  containing  $e_1$  has two components one of which has no edge of H which contradicts the proof of Proposition 3.3. For  $e_2$ , the argument is the same. Consequently, the orbit started from  $K_{2,3}$ -folder containing  $l_{\infty}$ -edge e of (case 2) does not meet other  $K_{2,3}$ -folders, and its orbit graph is  $K_{2,3}$ .

Finally, we consider a  $K_{2,3}$ -folder  $\mathcal{F}_{1'}$  containing  $l_{\infty}$ -edge  $e_{1'}$  of (case 1). We may assume that  $K_{e_{1'}}$  is H minus one edge 2'3'. Then five vertices of this  $K_{2,3}$ -folder  $\mathcal{F}_{1'}$  are given by  $p_{1'}, p_{1'}-2\chi_{1'}+2\chi_{2'3'}, p_{1'}-\chi_{11'}+\chi_{232'3'}, p_{1'}-\chi_{21'}+\chi_{132'3'}$ , and  $p_{1'}-\chi_{31'}+\chi_{122'3'}$ for some  $p_{1'} \in e_{1'} \cap A_{\mu}$ .

The edge  $e_1$  is contained by three 2-faces  $F_{11'}, F_{21'}, F_{31'}$  whose graphs  $K_{F_{11'}}, K_{F_{21'}}$ , and  $K_{F_{21'}}$  are H minus  $\{23, 2'3'\}$ , H minus  $\{13, 2'3'\}$ , and H minus  $\{13, 1'3'\}$ , respectively. Each of 2-faces  $F_{11'}, F_{21'}, F_{31'}$  has at most two  $l_{\infty}$ -edges. The orbit started from  $[p_{1'} - \chi_{11'} + \chi_{231'2'}, p_{1'} - 2\chi_{1'} + 2\chi_{2'3'}]$  through 2-face  $F_{11'}$  with direction  $-\chi_{11'} + \chi_{232'3'}$ escapes into a boundary edge of  $T(S, \mu)$  by the argument same as above. However, the orbit started from  $[p_{1'}, p_{1'} - \chi_{231'} + \chi_{12'3'}]$  with direction  $-\chi_{12'3'} + \chi_{231'}$  may meet an  $l_{\infty}$ -edge. Suppose that this orbit meets an  $l_1$ -edge. Then this edge is in the boundary of  $T(S, \mu)$  or there is another 2-face F'. For the latter case, the orbit further goes through F' and escapes into the boundary; see Figure 9 (c-2). Suppose this orbit meets an  $l_{\infty}$ edge  $e_1$ . Then the graph  $K_{e_1}$  is H minus one edge 23, and therefore meets a  $K_{2,3}$ -folder denoted by  $\mathcal{F}_1$ . Then five vertices of this  $K_{2,3}$ -folder  $\mathcal{F}_1$  are given by  $p_1, p_1 - 2\chi_1 + 2\chi_{23}, p_1 - \chi_{11'} + \chi_{232'3'}, p_1 - \chi_{12'} + \chi_{231'3'}$ , and  $p_1 - \chi_{13'} + \chi_{231'2'}$  Similarly, this  $K_{2,3}$ -folder  $\mathcal{F}_1$  meets three 2-faces  $F_{11'}$ ,  $F_{12'}$ , and  $F_{13'}$  whose graphs  $K_{F_{11'}}$ ,  $K_{F_{21'}}$ , and  $K_{F_{31'}}$  are H minus  $\{23, 2'3'\}$ , H minus  $\{13, 2'3'\}$ , and H minus  $\{12, 2'3'\}$ , respectively. Again, the orbits started from  $[p_1 - \chi_{11'} + \chi_{232'3'}, p_1 - 2\chi_1 + 2\chi_{23}]$ ,  $[p_1 - \chi_{12'} + \chi_{231'3'}, p_1 - 2\chi_1 + 2\chi_{23}]$ , and  $[p_1 - \chi_{13'} + \chi_{231'2'}, p_1 - 2\chi_1 + 2\chi_{23}]$  escape into the boundary of  $T(S, \mu)$ . In the 2-face  $F_{12'}$ , again the orbit started from  $[p_1, p_1 - \chi_{12'}\chi_{231'3'}]$  may meet an  $l_{\infty}$ -edge  $e_{2'}$  whose graph  $K_{e_{2'}}$  is H minus one edge 1'3', and therefore meets a  $K_{2,3}$ -folder denoted by  $\mathcal{F}_{2'}$ . Then five vertices of this  $K_{2,3}$ -folder  $\mathcal{F}_1$  are given by  $p_{2'}$ ,  $p_{2'} - 2\chi_{2'} + 2\chi_{1'3'}, p_{2'} - \chi_{11'} + \chi_{231'3'}, p_{2'} - \chi_{22'} + \chi_{131'3'}, and <math>p_{2'} - \chi_{32'} + \chi_{121'3'}$ . Similarly, this  $K_{2,3}$ -folder  $\mathcal{F}_1$  meets three 2-faces  $F_{12'}$ ,  $F_{22'}$ , and  $F_{32'}$  whose graphs  $K_{F_{12'}}$ ,  $K_{F_{22'}}$ , and  $K_{F_{32'}}$  are H minus  $\{23, 1'3'\}$ , H minus  $\{13, 1'3'\}$ , and H minus  $\{12, 1'3'\}$ , respectively.

Again the orbit started from edges adjacent to  $p_{2'} - 2\chi_{2'} + 2\chi_{1'3'}$  escapes into the boundary. In the 2-face  $F_{22'}$ , the orbit started from  $[p_{2'}, p_{2'} - \chi_{22'} + \chi_{131'3'}]$  may meet an  $l_{\infty}$ -edge  $e_2$  whose  $K_{e_{2'}}$  is H minus one edge 23, and therefore meets a  $K_{2,3}$ -folder, which is denoted by  $\mathcal{F}_2$ . This  $K_{2,3}$ -folder  $\mathcal{F}_2$  meets three 2-faces  $F_{21'}, F_{22'}$ , and  $F_{23'}$  whose graphs  $K_{F_{21'}}, K_{F_{22'}}$ , and  $K_{F_{23'}}$  are H minus  $\{13, 1'2'\}$ , H minus  $\{13, 2'3'\}$ , and H minus  $\{13, 1'3'\}$ , respectively. Therefore,  $\mathcal{F}_{1'}$  and  $\mathcal{F}_2$  shares the common 2-face  $F_{21'}$ . Project four 2-faces  $F_{11'}, F_{12'}, F_{22'}, F_{21'}$  by the restriction map  $(\cdot)|_{\{1,1'\}} : \mathbb{R}^S \to \mathbb{R}^{\{1,1'\}}$ . By Lemma 3.8, this is an injection, and we obtain a tiling by these four 2-faces in the plane. Then edges  $e_{1'}$  and  $e_{2'}$  have the same 1-th coordinate, and edges  $e_1$  and  $e_2$  have the same 1'-th coordinate in the plane  $\mathbb{R}^{\{1,1'\}}$ . Indeed, since  $\{p(i) + p(j) = \mu(i, j), 1 \le i < j \le 3\}$ has full rank, the value p(1) is constant in  $e_{1'} \cup e_{2'}$ . Therefore, in  $\mathcal{F}_{1'}$ ; see Figure 9 (c-1).

Summarizing these arguments, this orbit meets a subset of six  $K_{2,3}$ -folders  $\{\mathcal{F}_j\}_{j\in S}$ . Suppose that this orbit meets all six  $K_{2,3}$ -folders. Translate six  $K_{2,3}$ -folders so that the points  $\{p_j\}_{j\in S}$  coincides. The resulting polyhedral complex is nothing but Figure 6. Thus, the corresponding orbit graph is  $\Gamma_{3,3}$ . Suppose that some of orbits escapes into the boundary instead of meeting other  $K_{2,3}$ -folders  $\mathcal{F}_j$ . The resulting polyhedral complex consists of a proper subset of  $K_{2,3}$ -folders  $\{\mathcal{F}_j\}_{j\in S}$  and squares. A square appears as in the case of Figure 9 (c-2). Namely, the orbit started from  $[p_{1'}, p_{1'} - \chi_{11'} + \chi_{232'3'}]$ hits an  $l_1$ -edge in  $F_{11'}$  with direction  $-\chi_{11'} + \chi_{232'3'}$ , goes through the adjacent 2-face F', and escapes into the boundary. The orbit started from  $[p_{1'}, p_{1'} - \chi_{21'} + \chi_{131'2'}]$  goes thorough 2-faces  $F_{21'}, F_{22'}, F_{1'2}$ , and F', crosses the above orbit in F' and escapes into the boundary. The metric space obtained by gluing these three  $K_{2,3}$ -folders  $\mathcal{F}_{1'}, \mathcal{F}_2, \mathcal{F}_{2'}$ and one square is a submetric of the metric space obtained by gluing four  $K_{2,3}$ -folders  $\mathcal{F}_{1'}, \mathcal{F}_2, \mathcal{F}_{2'}, \mathcal{F}_1$ .

Consequently, the orbit graph is an isometric subgraph of  $\Gamma_{3,3}$ . We complete the proof of Theorem 2.7.

# 4 Remarks

In this section, we give several remarks.

### 4.1 *H*-packing by cut and $K_{2,3}$ -metrics

Recall Proposition 3.3 that for a commodity graph H without *n*-matching, the tight span of an arbitrary H-minimal metric is at most (n - 1)-dimensional. So it would be valuable to point out a further connection between the commodity graph H and the tight spans of H-minimal metrics.

The graphs  $K_4$ ,  $C_5$ , and the union of two stars are exactly graphs having no  $K_2 + K_3$ 



Figure 9: The orbits started from  $K_{2,3}$ -folder of (case 1)

and three-matching  $K_2 + K_2 + K_2$  [20]; also see [21, Theorem 72.1]. How does this condition reflect the tight span of an *H*-minimal metric ? The answer is:

**Proposition 4.1.** Let H = (S, R) be the graph having no  $K_2 + K_3$  and  $K_2 + K_2 + K_3$ , and let  $\mu$  be an *H*-minimal metric on *S*. Then  $T(S, \mu)$  has no  $l_{\infty}$ -edges. Consequently, every orbit graph of  $\Gamma_{\mu}$  is  $K_2$ .

*Proof.* Similar to the proof of Lemma 3.17.

From this, we obtain Karzanov's half-integral cut packing theorem (Theorem 1.1). This is a tight-span-interpretation of the shape of a commodity graph H admitting cut packing.

The next ask is: what happens for the case that H has at most five vertices or is the union of  $K_3$  and a star ? In this case, the tight span of an H-minimal metric has no core; the proof is similar to Lemma 3.17. Therefore,  $K_{n,m}$ -folders for  $n, m \ge 3$  do not appear. However,  $l_{\infty}$ -edge e may exist. Then  $K_e$  consists of one bipartite component and one complete multipartite component having three parts; the proof is again similar to Lemma 3.17. Therefore, the tight span is the union of squares and  $K_{2,3}$ -folders. By chasing the orbit of  $K_{2,3}$ -folders as in the proof of Theorem 2.7, one can show that the orbit graph is  $K_{2,3}$ . From this, we obtain Karzanov's half-integral  $K_{2,3}$ -metric packing theorem (Theorem 1.2).

#### 4.2 The case dim $T(S, \mu) \ge 3$

In this subsection, we explain that metric spaces  $(T(S, \mu) \cap A_{\mu}, l_{\infty})$  arose from three dimensional tight spans cannot be decomposed into finite types of metrics.

Let  $\Gamma_L$  be the graph of L obtained by connecting a pair of points having the unit  $l_{\infty}$ -distance. If L is in the plane, then  $\Gamma_L$  is a grid graph, and every submetric of  $d_{\Gamma_L}$  can be decomposed into cut metrics. On the other hand, if the lattice L in three dimensional space, there are infinitely many extreme submetrics in  $d_{\Gamma_L}$ , where a metric is called *extreme* if it is in an extreme ray of the metric cone.

For example, consider the subgraph  $\Gamma_{Q_k \cap L}$  of  $\Gamma_L$  induced by the lattice points  $Q_k \cap L$ in the affine 3-cube

$$Q_k = \{ (x_1, x_2, x_3) \in \mathbf{R}^3 \mid 0 \le x_i + x_j \le 2k \ (1 \le i < j \le 3) \}$$

$$(4.1)$$

for a positive integer k. One can show that  $\Gamma_{Q_k \cap L}$  is an isometric subgraph of  $\Gamma_L$ , and the corresponding graph metric  $d_{\Gamma_{Q_k \cap L}}$  is extreme. Indeed, the points  $Q_1 \cap L$  is given by eight points

$$\{(0,0,0), (-1,1,1), (1,-1,1), (1,1,-1), (2,0,0), (0,2,0), (0,0,2), (1,1,1)\},$$
(4.2)

and therefore the graph  $\Gamma_{Q_1 \cap L}$  is the cube plus one diagonal edge; this graph appears in [13, Fig 4 (b)]. It is extreme by Avis' criterion [1]. Since  $Q_k$  is obtained by piling  $Q_1$ 's, by Avis' criterion again,  $d_{Q_k \cap L}$  is also extreme. Moreover one can show that for each k there is a metric  $\mu$  with dim  $T(S, \mu) \geq 3$  such that  $\Gamma_{\mu}$  has  $Q_k \cap L$  as an isometric subgraph. Therefore, the graph metric  $d_{\Gamma_{\mu}}$  arose from three dimensional tight spans cannot be decomposed into finite types of metrics. Consequently, the commodity graph H having  $K_2 + K_2 + K_2$  cannot be packed by finite types of metrics.

#### 4.3 The folder decomposition, modular closures, and $T(S,\mu) \cap A_{\mu}$

The folder decomposition of tight spans has already been obtained by Karzanov [17] via the method of modular closures. Here, we explain some relation among the folder decomposition, modular closures, and the points  $T(S,\mu) \cap A_{\mu}$ . We need some terminology related to modular metrics. The *least generating graph* (LG-graph) of a metric  $(S,\mu)$  is the graph on vertices S obtained by connecting a pair  $i, j \in S$  if there is no  $k \in S \setminus \{i, j\}$  such that  $\mu(i, j) = \mu(i, k) + \mu(k, j)$ . A metric  $\mu$  is called *modular* if for any triple  $k_1, k_2, k_3 \in S$  there is  $k^* \in S$  such that  $\mu(k_i, k_j) = \mu(k_i, k^*) + \mu(k^*, k_j)$  for  $1 \leq i < j \leq 3$ . A modular closure  $(V, \tilde{\mu})$  of a metric  $(S, \mu)$  is a certain minimal modular metric containing  $\mu$  as a submetric. It is constructed by the following process. Initially, set V := S and  $\tilde{\mu} := \mu$ . Choose a triple  $s_0, s_1, s_2 \in V$  without a median, add a new point  $s^*$  to V and define the (unique) distances from  $s^*$  to the  $s_k$ 's by

$$\tilde{\mu}(s^*, s_k) = (\tilde{\mu}(s_k, s_i) + \tilde{\mu}(s_k, s_j) - \tilde{\mu}(s_i, s_j))/2$$
(4.3)

for  $\{i, j, k\} = \{0, 1, 2\}$ . Then define distances from  $s^*$  to other points  $V \setminus \{s_0, s_1, s_2\} = \{s_3, s_4, \ldots, s_n\}$  by

$$\tilde{\mu}(s^*, s_k) = \max_{0 \le i < k} \{ \tilde{\mu}(s_k, s_i) - \tilde{\mu}(s^*, s_i) \} \quad (3 \le k \le n).$$
(4.4)

Repeat this procedure for another medianless triple in the current  $(V, \tilde{\mu})$  until there is no medianless triple, i.e.,  $\tilde{\mu}$  is modular. Note that a modular closure  $\tilde{\mu}$  depends on the choice of a medianless triple  $\{s_0, s_1, s_2\}$  and the order of  $V \setminus \{s_0, s_1, s_2\}$ . Karzanov [17] has shown that  $T(S, \mu)$  is two dimensional if and only if the LG-graph of a modular closure of metric  $\mu$  is hereditary modular having no  $K_{3,3}^-$  as an isometric subgraph, where a graph is called *hereditary modular* if all isometric subgraphs are modular, and  $K_{3,3}^-$  is  $K_{3,3}$  minus one edge. It is known that a graph is hereditary modular if and only if it is bipartite, and has no isometric k-cycle for  $k \ge 6$  [3]. Furthermore, Karzanov [17] has shown that if dim  $T(S, \mu) \le 2$ , then  $T(S, \mu)$  is obtained by filling folders appropriately into isometric subgraphs  $K_{n,m}$   $(n, m \ge 2)$  of the LG-graph of a modular closure of  $\mu$  as in Figure 5. Interestingly, a modular closure of  $\mu$  is unique if dim  $T(S, \mu) \le 2$ . However, the uniqueness of a modular closure for a general metric  $\mu$  is not known [17, p.239 (ii)]. In a sense, our approach to obtain the folder decomposition is opposite to this modular closure approach. In fact, one can show that if dim  $T(S, \mu) \leq 2$ , then  $\Gamma_{\mu}$  is hereditary modular without  $K_{3,3}^-$ . Moreover, a modular closure of a cyclically even metric  $\mu$  is a submetric of  $(T(S,\mu) \cap A_{\mu}, l_{\infty})$ . Indeed, consider a vector  $p^* \in \mathbf{R}^S$  defined as  $p^*(i) = \tilde{\mu}(i,s^*)$ for  $i \in S$  by (4.3) and (4.4). Then  $p^*$  is in  $T(S,\mu) \cap A_{\mu}$ , and  $\|p^* - \mu_i\|_{\infty} = \tilde{\mu}(i,s^*)$  holds for  $i \in S$ . Consequently, a modular closure  $(V,\tilde{\mu})$  is a *tight extension* of  $(S,\mu)$ , i.e., there is no metric  $\tilde{\mu}'(\neq \tilde{\mu})$  on V such that  $\tilde{\mu}' \leq \tilde{\mu}$  and  $\tilde{\mu}' = \mu$  on S; see [8]. Then the restriction map  $(\cdot)|_S : T(V,\tilde{\mu}) \to \mathbf{R}^S$  is an isomorphism between  $T(V,\tilde{\mu})$  and  $T(S,\mu)$  [8, Theorem 3 (vii)], and  $(\{\tilde{\mu}_i\}_{i\in V})|_S$  is a subset of  $T(S,\mu) \cap A_{\mu}$ . (In particular, the modular closure construction terminates if  $\mu$  is rational.)

However we still do not know the exact relationship between modular closures and  $T(S,\mu) \cap A_{\mu}$ . We leave this issue to a future research topic.

# 4.4 An $O(n^2)$ algorithm for $K_3 + K_3$ -packings

The proof of the main theorem is constructive, and therefore yields a strongly polynomial time for  $K_3 + K_3$ -packing problems by careful modifications. Here we give an  $O(n^2)$  algorithm, where n is the cardinality of vertices of graph G = (V, E). The essential idea is the same as Chepoi's  $O(n^2)$  algorithm for cut and  $K_{2,3}$ -metric packings [5].

Let G = (V, E) be a graph,  $H = (S, R) = K_3 + K_3$  a commodity graph on  $S \subseteq V$ , and l a cyclically even length function. Note that the algorithm presented below works for any commodity graph H without  $K_2 + K_2 + K_2$ . An algorithm of H-packing of (G, l)by  $\Gamma_{3,3}$ -metrics is the following:

- (s1) Calculate  $d_{G,l}(i,j)$  for  $(i,j) \in S \times V$ . Let  $\mu$  be the restriction of  $d_{G,l}$  to S.
- (s2) Take a cyclically even *H*-minimal metric  $\mu^*$  on *S* such that  $\mu^* \leq \mu$  and  $A_{\mu} = A_{\mu^*}$ .
- (s3) Construct  $T(S, \mu^*)$ .
- (s4) Define vectors  $U := \{p_k\}_{k \in V} \subseteq P(S, \mu^*)$  by (2.15) and (2.16). Take a nonexpansive retraction  $\phi : U \to T(S, \mu^*) \cap A_{\mu^*}$  in Proposition 2.4.
- (s5) Decompose finite metric  $(\phi(U), l_{\infty})$  into  $\Gamma_{3,3}$ -metrics.

(s1) can be done in  $O(n \log n)$  time by Dijkstra algorithm, and both (s2) and (s3) can be done in O(1) time (assuming the size of H fixed). For (s4), the proof of Proposition 2.4 gives an  $O(n^2)$  algorithm.

Let us analyze the complexity of (s5). The size of the graph  $\Gamma_{\mu^*}$  is not polynomially bounded by  $\log(\sum_{i,j} \mu(i,j))$ . Therefore, a naive approach to retain  $\Gamma_{\mu}$  does not work. Instead, we chase a kind of *virtual* orbits in  $T(S, \mu^*)$  to identify orbit graphs of  $\Gamma_{\mu}$ .

First, we consider the simplest case where  $T(S, \mu^*)$  has no  $l_{\infty}$ -edges. Take an arbitrary  $l_1$ -edge e = [p, q]. Take an endpoint p and a point  $p^{\epsilon} := p + \epsilon(q-p)$  for small  $\epsilon > 0$ . Draw two lines from p and  $p^{\epsilon}$  with  $l_1$ -direction orthogonal to e until escaping into the boundary of  $T(S, \mu)$ . Increase  $\epsilon$  until the line started from  $p^{\epsilon}$  meets a point in  $\phi(U)$  or  $p^{\epsilon} = q$ . Note that such  $\epsilon$  is integral. Consider the strip sandwiched by two lines. The relative interior of this strip has no points in  $\phi(U)$ . Delete the relative interior of this strip from  $T(S, \mu)$ . Then the resulting set consists of two connected components, which yields the bipartition of  $\phi(U)$  and a cut metric summand of the H-packing with integral coefficient  $\epsilon$ .

Next glue this polyhedral set along the boundary of this deleted strip by translating two components together with  $\phi(U)$ . Such a translation is indeed possible by the



Figure 10: (a) the strip generated by  $K_{2,3}$ -folder, (b) deleting the strip, and (c) gluing the components

argument in Remark 3.16. This can be done in O(n) time. Then we obtain a twodimensional polyhedral set smaller than  $T(S, \mu^*)$ . Repeat the same process to this set until it becomes one point. The number of the strip-deletion steps will be analysed later.

Second, we consider the case where  $T(S, \mu^*)$  has  $l_{\infty}$ -edges and has no odd core. The idea is the same as above. Take an  $l_{\infty}$ -edge e = [p, q]. Take an endpoint p of e and a point  $p^{\epsilon} := p + \epsilon(q - p)$  for small  $\epsilon > 0$ . Draw lines having  $l_1$ -direction started from pand  $p^{\epsilon}$  as in Figure 10 (a). Increase  $\epsilon$  until lines started from  $p^{\epsilon}$  meets a point in  $\phi(U)$ or  $p^{\epsilon} = q$ . Note that such  $\epsilon$  is an even integer. Then delete the strip sandwiched by these lines (Figure 10 (b)). The resulting components yields a partition of  $\phi(U)$ , and we obtain a summand of H-packing, which is a  $K_{2,3}$ -metric or a submetric of a  $\Gamma_{3,3}$ -metric. Gluing these components along the strip (Figure 10 (b)). Repeat this process until all  $l_{\infty}$ -edge vanish. The remaining arguments reduces to the first case.

Finally, we consider the case where  $T(S, \mu^*)$  has an odd core p. Note that this odd core is a unique core of  $T(S, \mu^*)$  (Lemma 3.18). Consider the  $K_{3,3}$ -folder containing p, delete the strip generated by this  $K_{3,3}$ -folder; recall Figure 8 (a). The resulting set consists of six connected components, which gives a unique  $K_{3,3}$ -metric summand. Gluing these connected components, the remaining argument reduces to the second case.

The number of the strip-deletion steps is bounded by O(n) times. Indeed, consider all lines having a  $l_1$ -direction started from  $\phi(U)$  and extreme points in  $T(S,\mu)$  The number of such lines is O(n). Each strip-deletion step decreases number of such lines. Consequently, we can conclude that (s5) can be done in  $O(n^2)$  time, and that a desired integral *H*-packing can be obtained by  $O(n^2)$  time.

## References

- D. Avis, On the extreme rays of the metric cone, Canadian Journal of Mathematics 32 (1980), 126–144.
- [2] H.-J. Bandelt, Networks with Condorcet solutions, European Journal of Operational Research 20 (1985), 314–326.
- [3] H.-J. Bandelt, Hereditary modular graphs, Combinatorica 8 (1988), 149–157.

- [4] H.-J. Bandelt, V. Chepoi, and A. Karzanov, A characterization of minimizable metrics in the multifacility location problem, *European Journal of Combinatorics* 21 (2000), 715–725.
- [5] V. Chepoi,  $T_X$ -approach to some results on cuts and metrics, Advances in Applied Mathematics 19 (1997), 453–470.
- [6] M. Chrobak and L. L. Larmore, Generosity helps or an 11-competitive algorithm for three servers, *Journal of Algorithms* 16 (1994), 234–263.
- [7] M. M. Deza and M. Laurent, Geometry of Cuts and Metrics, Springer-Verlag, Berlin, (1997).
- [8] A. W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on combinatorial properties of metric spaces, *Advances in Mathematics* 53 (1984), 321–402.
- [9] L.R. Ford and D.R. Fulkerson, *Flows in networks*, Princeton University Press, Princeton, 1962.
- [10] H. Hirai, Tight extensions of distances spaces and the dual fractionality of undirected multiflow problems, RIMS-preprint 1606, (2007), available at http://www.kurims.kyoto-u.ac.jp/preprint/file/RIMS1606.pdf.
- [11] J. R. Isbell, Six theorems about injective metric spaces, Commentarii Mathematici Helvetici 39 (1964), 65–76.
- [12] A. V. Karzanov, Metrics and undirected cuts, Mathematical Programming 32 (1985), 183–198.
- [13] A. V. Karzanov, Half-integral five-terminus flows. Discrete Applied Mathematics 18 (1987), 263–278.
- [14] A. V. Karzanov, Polyhedra related to undirected multicommodity flows, *Linear Algebra and its Applications* 114/115 (1989), 293–328.
- [15] A. V. Karzanov, Sums of cuts and bipartite metrics, European Journal of Combinatorics 11 (1990), 473–484.
- [16] A.V. Karzanov, Minimum 0-extensions of graph metrics, European Journal of Combinatorics 19 (1998), 71–101.
- [17] A. V. Karzanov, Metrics with finite sets of primitive extensions, Annals of Combinatorics 2 (1998), 211–241.
- [18] A. V. Karzanov, One more well-solved case of the multifacility location problem, Discrete Optimization 1 (2004), 51–66.
- [19] B. A. Papernov, On existence of multicommodity flows, In Studies in Discrete Optimizations, A. A. Fridman, ed., Nauka, Moscow, 1976, 230–261 (in Russian).
- [20] A. Schrijver, Short proofs on multicommodity flows and cuts, Journal of Combinatorial Theory, Series B, 53, 32–39 (1991).
- [21] A. Schrijver, Combinatorial Optimization-Polyhedra and Efficiency, Springer-Verlag, Berlin, 2003.
- [22] G. M. Ziegler, *Lectures on Polytopes*, Springer-Verlag, Berlin, 1995.