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1. Introduction

In his paper [2], Keum used the following criterion for a K3 surface to cover an Enriques

surface.

Theorem 1.1 ([2], Theorem 1). Let X be an algebraic K3 surface. Assume that (∗) :

l(TX) + 2 ≤ ρ(X). Then the following two conditions are equivalent:

(1) X admits a fixed-point-free involution.

(2) There exists a primitive embedding of TX into Λ− = U⊕U(2)⊕E8(2) such that the

orthogonal complement of TX in Λ− contains no vectors of self-intersection −2.

Here TX and ρ(X) are respectively the transcendental lattice and the Picard number

of X. U and E8 denote the unique even unimodular lattices of signature (1, 1) and (0, 8)

respectively. l(L) of a nondegenerate lattice L is the number of minimal generators of the

discriminant group AL = L∗/L of L. Details on AL are found in [6].

As Keum remarks, the assumption (∗) is needed only for the implication (2)⇒(1) and

is satisfied if ρ(X) ≥ 12. In this note, first we show that in fact the equivalence above

holds without the assumption (∗).

Theorem 1.2. Let X be a K3 surface. Then (1) and (2) above are equivalent conditions.

The problem is reduced to classifying the lattices which occur in the case ρ(X) = 11.

This part of the result was stated without proofs in [8]. The proof contains an important

fact on Enriques quotients.

Proposition 1.3. Let X be a K3 surface having a free involution. Then the embedding

of TX into the K3 lattice Λ ' U⊕3 ⊕ E⊕2
8 is unique up to isomorphism.

Combining this step and the Torelli theorem for Enriques surfaces [4, 1], we can count

the number of non-isomorphic Enriques quotients of given K3 surface in the following form.

This formula is more sophisticated than that is used in [8] and better in computations, as

will be shown in [3].

Supported by JSPS Research Fellowships for Young Scientists.

1



2 HISANORI OHASHI

Theorem 1.4. Let X be a K3 surface. Then there is a one-to-one correspondence between

the following sets:

(1) {Enriques quotients of X}/{isomorphisms}.
(2) {Primitive embeddings of TX into Λ− whose orthogonal complement doesnot con-

tain vectors of self-intersection −2}/∼, where we define the equivalence ∼ between

two embeddings i1 and i2 by the existence of the following commutative diagram

TX
ϕ−−−→ TX

i1

y
yi2

Λ− −−−→
ϕ̃

Λ−

with ϕ̃ being an isometry and ϕ preserves the Hodge structure.

At last of this note, we will consider nine-dimensional family of Enriques surfaces with

one node, and apply the theorem to the covering K3 surfaces.

The author expresses his sincere gratitude to Professor Shigeru Mukai, who suggested

the formulation as in Theorem 1.4.

2. Proof of the Theorem 1.2

It suffices to show (2)⇒ (1) under the condition ρ(X) ≤ 11. If ρ(X) ≤ 9, then rank TX ≥
13, so there are no embeddings as in condition (2).

Assume ρ(X) = 10. The condition (2) implies TX = Λ− since the rank coincide. Then

it is a well-known fact that all embeddings of Λ− into a K3 lattice Λ := U⊕3 ⊕ E⊕2
8 are

isomorphic. It follows that the Neron-Severi lattice SX of X is isometric to U(2)⊕ E8(2)

and X has a unique free involution as in [8, 7].

Now assume ρ(X) = rank TX = 11. Let K be the orthogonal complement of TX in Λ−.

K is of rank 1, negative definite and contains no vectors of self-intersection −2, so K is

of the form K ' 〈−2N〉 with N ≥ 2. Consider the unique embedding Λ− ⊂ Λ, whose

orthogonal complement is the lattice Λ+ = U(2)⊕E8(2). TX is the orthogonal complement

of Λ+ ⊕K in the unimodular lattice Λ. We classify the primitive hull P of Λ+ ⊕K in Λ.

By [6], the overlattice P corresponds to an isotropic subgroup Γ ⊂ AΛ+ ⊕ AK , which is

a pushout of the sign-reversing isomorphism of subgroups ΓΛ+ ⊂ AΛ+ and ΓK ⊂ AK . In

our case AΛ+ is 2-elementary and AK is cyclic. Thus #Γ is either 1 or 2.

When #Γ = 1, P = Λ+ ⊕K ' U(2)⊕E8(2)⊕ 〈−2N〉. It follows that the discriminant

form of TX is isometric to u(2)⊕5 ⊕ c(2N), where u(2) is the discriminant form of U(2)

and c(2N) that of 〈2N〉. Then Nikulin’s theorem [6] applies and TX is isometric to

〈2N〉 ⊕ U(2) ⊕ E8(2). On the other hand, we can also apply Nikulin’s theorem to P . It

follows that the lattice P is unique in its genus, and the homomorphism O(P ) → O(qP )
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is surjective. Thus the embedding of TX into Λ is unique. Note that this is nothing but

Proposition 1.3 in this case. It follows that the Neron-Severi lattice SX of X is isometric

to P . Since SX has Λ+ as a primitive sublattice whose orthogonal complement K has no

vectors of self-intersection −2, we see that X admits a free involution [8].

Next we treat the case #Γ = 2. The argument is similar to the case above. AK '
c(−2N) contains the unique element zK of order 2, which is the nontrivial element of ΓK .

Necessarily the value z2
K ∈ Q/2Z is in Z/2Z, for otherwise there doesn’t exist an adequate

subgroup ΓΛ+ ' ΓK . This shows that N is even, N = 2M . z2
K can take two values 0 and

1, and in each case a direct computation shows qP = (qΛ+⊕ qK |Γ⊥)/Γ ' u(2)⊕4⊕ c(−2M).

As in the case above, we can apply Nikulin’s theorem to both P and TX . We obtain that

P ' U ⊕ E8(2) ⊕ 〈−4M〉, TX ' U ⊕ E8(2) ⊕ 〈4M〉 and the primitive embedding of TX

into Λ is unique. Thus SX ' P and the same reasoning as in #Γ = 1 case shows that

there exists a free involution on X.

This completes the proof of Theorem 1.2. ¤

We derive some consequences from the proof above. First, we have actually classified

all the possible Neron-Severi lattices SX of X having a free involution when ρ(X) = 11.

This was stated in [8] without proofs:

Proposition 2.1. Let X be a K3 surface with a free involution.

(1) If ρ(X) = 10, then SX ' U(2)⊕E8(2). The transcendental lattice TX is isomorphic

to U ⊕ U(2)⊕ E8(2).

(2) If ρ(X) = 11, then SX is isomorphic to either U(2) ⊕ E8(2) ⊕ 〈−2N〉, (N ≥ 2)

or U ⊕ E8(2)⊕ 〈−4M〉, (M ≥ 1). The transcendental lattice TX is isomorphic to

U(2)⊕ E8(2)⊕ 〈2N〉, (N ≥ 2) or U ⊕ E8(2)⊕ 〈4M〉, (M ≥ 1) respectively.

Second, the main body of the proof of Proposition 1.3 is already done.

Proof of Proposition 1.3. If ρ(X) = 10 or 11, then this was in the proof of Theorem 1.2.

Suppose ρ(X) ≥ 12. Then for all prime numbers p, one has

lp(SX) = lp(TX) ≤ rank TX ≤ rank SX − 2.

Thus Nikulin’s theorem implies that SX is unique in its genus and the homomorphism

O(SX) → O(qSX
) is surjective. This is enough. ¤
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3. Proof of the Theorem 1.4

First we prepare notation. Let D0 = (D(Λ−) − ∪tHt)/O(Λ−) be the moduli space of

Enriques surfaces, where

D(λ−) = {Cω ∈ Plines(Λ
− ⊗ C)|ω2 = 0, ωω > 0},

and Ht is the hyperplane orthogonal to vectors t ∈ Λ− of self-intersection −2. We denote

a point in D0 by [ω]. The Torelli theorem for Enriques surfaces asserts that D0 is a coarse

moduli space of Enriques surfaces.

For a point [ω] ∈ D0, we can define an integral Hodge structure of weight 2 on Λ by

taking Cω ⊂ Λ− ⊗ C ⊂ Λ⊗ C as the H2,0 component.

To make the argument clear, we make use of another set:

(3) :

{
[ω] ∈ D0

(Λ,Cω) and H2(X,Z) are

isomorphic as polarized integral Hodge structures.

}
.

We describe the correspondence of the sets between (1) and (3), and (3) and (2).

Given Enriques quotient Y of X, we can associate the period of Y (i.e., the corresponding

point as coarse moduli) in D0. Conversely for a point [ω] as in (3), we get an Enriques

surface. The Hodge structure of its covering K3 surface is exactly (Λ,Cω). Thus the

condition (3) assures that Y is an Enriques quotient of X. Thus the sets (1) and (3) are

bijective.

Next, for a point [ω] as in (3), the transcendental lattice TX of X corresponds to

a sublattice T ⊂ Λ by the Hodge isometry. This sublattice is contained in Λ−, thus

determines an element of the set (2). Conversely suppose given an embedding TX ⊂ Λ− as

in (2). ωX determines a point [ωX ] in D0 by the condition (2). To check the condition (3),

we use Proposition 1.3. Thus two embeddings TX ⊂ Λ and TX ⊂ H2(X,Z) are isomorphic,

and the condition (3) is fulfilled. This concludes Theorem 1.4.

4. An Example

Let (x0 : x1, y0 : y1) be the homogeneous coordinate of P1 × P1 and i : (x0 : x1, y0 :

y1) 7→ (x1 : x0, y1 : y0) an involution. We consider the following linear system L of divisors

of bidegree (4, 4):

a0x
2
0x

2
1y

2
0y

2
1 + a1(x0x

3
1y

2
0y

2
1 + x3

0x1y
2
0y

2
1) + a2(x

4
1y

2
0y

2
1 + x4

0y
2
0y

2
1) + a3(x

3
0x1y0y

3
1 + x0x

3
1y

3
0y1)

+a4(x
2
0x

2
1y0y

3
1 + x2

0x
2
1y

3
0y1) + a5(x0x

3
1y0y

3
1 + x3

0x1y
3
0y1) + a6(x

4
1y0y

3
1 + x4

0y
3
0y1)

+a7(x
2
0x

2
1y

4
1 + x2

0x
2
1y

4
0) + a8(x0x

3
1y

4
1 + x3

0x1y
4
0) + a9(x

4
1y

4
1 + x4

0y
4
0).

Simply, divisors D ∈ L is characterized by the following conditions inside |O(4, 4)|:
• the bihomogeneous equation of D is invariant under i.
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• D has multiplicities at least 2 at both (0 : 1, 1 : 0) and (1 : 0, 0 : 1).

The general member of L has exactly two ordinary nodes at (0 : 1, 1 : 0) and (1 : 0, 0 : 1)

as singularities, and doesn’t contain the four fixed points (1 : ±1, 1 : ±1) of i. According

to the general construction [1], the double covering X of P1×P1 branched along such D is

a K3 surface with two nodes and one of the liftings of i, denoted by ε, is a free involution

of X. Thus we obtain a family of Enriques surfaces Y = X/ε with one node. Let X and

Y be the minimal desingularizations of X and Y . From now on, we consider the general

member X.

Proposition 4.1. We have Pic(X) ' U ⊕ E8(2)⊕ 〈−4〉.

Proof. First we note that X has a natural quasi-polarization of degree 4 given by the

pullback of O(1, 1) to X. Here quasi-polarization means a nef line bundle on X. If X and

X ′ are isomorphic as quasi-polarized varieties, the isomorphism is induced from an element

ϕ of Aut(P3) that preserves the defining quadratic equation of P1×P1 ⊂ P3 and takes D to

D′. The former condition is reduced to saying ϕ ∈ Aut(P1×P1) and the latter means that

ϕ stabilizes L. It can be checked that the stabilizer G of L is in fact G = 〈i, σ〉 ' (Z/2Z)2,

where σ : (x0 : x1, y0 : y1) 7→ (y0 : y1, x0 : x1). This shows that our family has dimension

nine, and general X has Picard number 11, i.e., Pic(X) is one of the lattices in Proposition

2.1. Let M (resp. K) be the invariant (resp. anti-invariant) part of the action of ε on

Pic(X). As is known, M ' U(2)⊕E8(2). We consider the two (−2)-curves E1 and E2 on

X arising from two nodes on X. ε exchanges them, so E1 +E2 ∈ M and E1−E2 ∈ K and

we see that K ' 〈−4〉. The condition E1 ∈ Pic(X) shows [Pic(X) : M ⊕K] = 2. This is

the case of Proposition 2.1, SX ' U ⊕ E8(2)⊕ 〈−4〉. ¤

Corollary 4.2. TX ' U ⊕ E8(2)⊕ 〈4〉.

Remark 4.3. Since the rank of TX is an odd number, it follows that only isometries of TX

that preserve CωX when tensored with C is {± id}. For this, we can apply the finiteness

of that group and the result of Nikulin [5].

Proposition 4.4. The conjugacy class of free involutions on X is unique, i.e., Y is the

unique Enriques surface whose covering K3 surface is X.

Proof. We use Theorem 1.4. The orthogonal complement of TX in Λ− is 〈−4〉. This follows

from Section 2, or we can prove it directly as follows. If we take the orthogonal complement

of the unimodular component U in the inclusion TX ⊂ Λ−, it becomes 〈4〉 ⊕ E8(2) ⊂
U(2)⊕E8(2). Here we used the uniqueness of these complements in their genera. Dividing

by 2, it is reduced to 〈2〉 ⊕ E8 ⊂ U ⊕ E8. Since U ⊕ E8 is unimodular, we see that the

orthogonal complement of this inclusion is 〈−2〉. Thus K ' 〈−4〉.
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The calculation of determinant shows [Λ− : K ⊕ TX ] = 2. The patching group γ =

Λ−/K ⊕ TX ⊂ AK ⊕ ATX
is, as usual, the pushout of an isomorphism of ΓK ⊂ AK and

ΓT ⊂ ATX
. Obviously ΓK is unique. On the other hand, ΓT is also unique: ΓT contains the

unique element of the form 2g, where g is any element of order 4 in ATX
. This is because

every other order 2 element of ATX
has order 4 element in its orthogonal complement.

In this case the discriminant form qK ⊕ qTX
|Γ⊥/Γ will not be isomorphic to u(2)5 = qΛ− .

Hence the patching Γ is unique. By the definition of equivalence ∼ in Theorem 1.4, this

shows the uniqueness of Enriques quotients of X. ¤

Remark 4.5. Concerning other lattices of Proposition 2.1, similar number of non-isomorphic

Enriques quotients is computed in [8]. This needs a little more computations on finite qua-

dratic forms.
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