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Abstract

We discuss the problems to list, sample, and count the chordal graphs with edge constraints.
The edge constraints are given as a pair of graphs one of which contains the other and one of
which is chordal, and the objects we look at are the chordal graphs contained in one and con-
taining the other. This setting is a natural generalization of chordal completions and deletions.
For the listing problem, we give an efficient algorithm running in amortized polynomial time
per output with polynomial space. For the sampling problem, we give an instance for which a
natural Markov chain suffers from an exponential mixing time. For the counting problem, we
show some #P-completeness results. These results provide a unified viewpoint from algorithms
theory to problems arising from various areas such as statistics, data mining, and numerical
computation.
key words: graph sandwich, chordal completion/deletion, enumeration, Markov chain Monte
Carlo, #P-completeness.

1 Introduction

A graph is chordal if it has no induced cycle of length more than three. The class of chordal
graphs often appears as a tractable case of a lot of problems arising from various areas such as
statistics, optimization, numerical computation, etc. In those areas, we often approximate a given
graph by a chordal graph and then apply efficient algorithms for chordal graphs to the obtained
graph. Evaluation criteria for chordal approximations depend on applications. For example, in the
context of graphical modeling in statistics, a chordal approximation is desired to minimize AIC
(Akaike’s Information Criterion), BIC (Bayesian Information Criterion), MDL (Minimum Descrip-
tion Length), etc. [19, 25, 30]; in the context of numerical computation, a chordal approximation is
desired to minimize the number of added edges (a.k.a. the minimum fill-in problem) [21, 22, 28, 5];
in the context of discrete optimization, a chordal approximation is desired to minimize the size of
a largest clique (a.k.a. the treewidth problem) [20, 13, 14, 4].
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Since we are concerned with various sorts of criteria and often these computational problems
are NP-hard, listing algorithms and random-sampling algorithms can be useful universal decision-
support schemes. An exhaustive list found by an algorithm may provide an exact solution, whereas
random samples may provide an approximative solution. Our goal is to provide efficient algorithms
for listing problems and random-sampling problems of graphs, or to show the intractability of the
problems.

As a chordal approximation, we consider the following two types of changes; either we just
insert some edges or we just delete some edges to make a given graph G chordal. A result of the
former operation is called a chordal completion of G, and a result of the latter operation is called
a chordal deletion of G. As a computational problem, given a graph G we want to deal with all
chordal completions of G or all chordal deletions of G.

However, in fact, we study a generalized problem of this kind. Namely, we are given two graphs
G and G on the same vertex set such that G is contained in G and one of them is chordal, we
want to deal with all chordal graphs that contain G and are contained in G. When G is chordal,
this problem generalizes the problem on chordal completions (since a complete graph is chordal),
and when G is chordal, this problem generalizes the problem on chordal deletions (since an empty
graph is chordal).

There are (at least) two reasons why we study this generalized problem. The first one is clear:
this is more general. The second one comes from a more practical aspect. Since the number of
chordal completions of a graph can be quite huge, it would be difficult and even impossible in most
of the cases to run a listing algorithm to obtain the exhaustive list of the chordal completions. Also
for random sampling, if the size of our sample space is quite large then the probability of needling a
desired object will be pretty small. Indeed, as Wormald [31] showed, the number of chordal graphs
with n vertices is asymptotically

∑n
r=0

(
n
r

)
2r(n−r), which is roughly 2n2/4+O(n log n). Thus, dealing

with all chordal graphs is impractical, and a simple and natural way to narrow down the size of our
list is to introduce a way to filter out some undesired candidates from the list, and a way to find a
“suitable” chordal approximation in a more flexible manner when combined with several heuristics
or local search strategies.

Results We provide an efficient listing algorithm to enumerate all chordal graphs containing a
given G and contained in a given G when G or G is chordal. The running time is polynomial in the
input size per output, and the memory usage is bounded by a polynomial in the input size. The
algorithm is based on a binary partition method, which is much simpler than the previous algorithms
by Kiyomi and Uno [11] to list all chordal deletions and by Kiyomi, Kijima, and Uno [12] to list
all chordal completions. Note also that these previous algorithms are not able to deal with our
generalized problems.

As for the random sampling, we give two clues that seem to imply that a random sampling is
not easy. The first clue is that counting the chordal graphs containing G and contained in G is
#P-complete, even when G is chordal. The proof is done by a parsimonious reduction from the
forest counting in a graph. To the best of our knowledge, this is the first result on #P-hardness for
the graph sandwich problems. We also show that counting the chordal deletions is #P-complete
by a Cook reduction from the forest counting. These results imply that a simple binary partition
method does not yield a polynomial-time sampling algorithm. The second clue is the following. We
apply the Markov chain Monte Carlo (MCMC) method to our problem. The MCMC is a promising
approach for an efficient random sampling from a family of objects that is hard to count. We show
that a simple and natural Markov chain suffers from slow mixing time; namely, we give an example
for which the mixing time of the Markov chain is exponential.
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Related work Our generalized concept is actually a special case of the framework proposed by
Golumbic, Kaplan, and Shamir [7] who studied the following graph sandwich problem: for a graph
property Γ, we are given a pair of graphs G and G such that G is a subgraph of G, and we are asked
to decide if there exists a graph G ∈ Γ that is a supergraph of G and at the same time a subgraph
of G. Golumbic, Kaplan, and Shamir [7] proved that graph sandwich problems are NP-complete
for many graph properties, e.g., chordal graphs, perfect graphs, interval graphs, etc. As discussed
above, for listing problems, Kiyomi and Uno [11] proposed algorithms to list the chordal deletions
within constant time delay, and Kiyomi, Kijima, and Uno [12] proposed listing algorithms to list
the chordal completions within a polynomial time delay. They are both based on the reverse search
technique by Avis and Fukuda [1]. As for the counting problem, we are aware of the paper by
Wormald [31] that gives an asymptotic number of the chordal graphs with n vertices. However,
as far as graph sandwiches are concerned, neither algorithmic results nor hardness results seem to
be known. There has been no result about random sampling of a chordal graph, as far as we see.
For the related minimum chordal completion/deletion problems, both of which are well-known to
be NP-hard [29, 18], there are some results on polynomial-time approximation, fixed parameter
tractability, and exponential-time exact algorithms [17, 16, 4].

2 Preliminaries

All graphs in this paper are undirected and simple. For a graph G, we denote the set of vertices of
G by V (G) and the set of edges of G by E(G). For a pair of graphs G and H on a common vertex
set V , we write G ⊂ H (and G ⊆ H) when E(G) ⊂ E(H) (and E(G) ⊆ E(H), respectively). For a
graph G = (V,E) and a pair of vertices e = {v1, v2} ∈ (

(
V
2

)
\ E), we denote the graph (V,E ∪ {e})

by G + e. Similarly, for a graph G = (V,E) and an edge e ∈ E we denote the graph (V,E \ {e}) by
G − e. Given a pair of graphs G and G satisfying G ⊂ G, we define the set ΩC(G,G) of chordal
graphs sandwiched by G and G as

ΩC(G,G) def.= {G | G is chordal, G ⊆ G ⊆ G}. (1)

A graph in ΩC(G,G) is called a chordal sandwich for the pair G and G while G and G are called
the ceiling graph and the floor graph of ΩC(G,G), respectively. If G is a complete graph, then a
chordal sandwich is called a chordal completion of G. If G is an empty graph (i.e. has no edge),
then a chordal sandwich is called a chordal deletion of G.

Note that the graphs are “labeled” in ΩC(G,G), meaning that we distinguish G ∈ ΩC(G,G)
from G′ ∈ ΩC(G,G) when their edge sets are different even if they are isomorphic graphs.

We study the following three types of problems: given a pair of graphs G and G with G ⊂ G

• output all graphs in ΩC(G,G) (listing);

• output the number |ΩC(G,G)| (counting);

• output one graph in ΩC(G,G) uniformly at random (sampling).

Golumbic, Kaplan, and Shamir [7] showed that, given a pair of graphs G and G satisfying
G ⊂ G, deciding whether ΩC(G,G) has an element is NP-complete. Therefore, three problems
above are all intractable without any restriction. In this paper, we always assume that at least one
of G and G is chordal. For later reference, we write this assumption as a condition.

Condition 1 A pair of graphs G and G satisfies G ⊂ G, and at least one of G and G is chordal.
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Procedure A(G, G) (when G is chordal) Procedure B(G,G) (when G is chordal)

1 begin 1 begin
2 find an edge e ∈ E \ E 2 find an edge e ∈ E \ E

such that G − e is chordal such that G + e is chordal
3 If such e exists do 3 If such e exists do
4 output G − e 4 output G + e

5 call A(G, G + e) 5 call B(G,G + e)
6 call A(G − e, G) 6 call B(G − e,G)
7 otherwise halt 7 otherwise halt
8 end. 8 end.

Figure 1: Procedures in the listing algorithms.

The following proposition is a key to some of our results.

Proposition 2.1 Suppose a pair of chordal graphs G = (V, E) and G = (V,E) satisfies G ⊂ G, and
let k = |E\E|. Then there exists a sequence of chordal graphs G0, G1, . . . , Gk that satisfies G0 = G,
Gk = G, and Gi+1 = Gi + ei with an appropriate edge ei ∈ E \ E for each i ∈ {0, . . . , k − 1}.

Proof. We use the following result by Rose, Tarjan, and Lueker [22]: for a graph G = (V,E) and
a chordal graph G′ = (V,E ∪ F ) with E ∩ F = ∅, the graph G′ is a minimal chordal completion of
G (i.e., ΩC(G′, G) = {G′}) if and only if G′ − f is not chordal for each f ∈ F .

The proof is done by induction on k. If k = 0, then G = G and we are done. Now assume
that k ≥ 1, and the proposition holds for all k′ < k. In this case, G is not a minimal chordal
completion of G since G 6= G and G is actually a minimal chordal completion of itself. By the
result of Rose, Tarjan, and Leuker above, there must exist an edge f ∈ E \ E such that G − f is
chordal. Then, letting Gk−1 = G − f and ek−1 = f , we have G = Gk = Gk−1 + ek−1. Further,
by the induction hypothesis, there exists a sequence of chordal graphs G = G0, G1, . . . , Gk−1 such
that Gi+1 = Gi + ei for some ei ∈ (E \ {ek−1}) \ E. ¤

Note that Proposition 2.1 implies that the set of chordal sandwiches forms a graded poset with
respect to the inclusion relation of edge sets.

3 Listing All Chordal Sandwiches

We give algorithms to list all chordal sandwiches in ΩC(G,G) for given G and G satisfying Condi-
tion 1.

First consider the case in which the ceiling graph G is chordal. Then, there exists an edge
e ∈ E \E such that G−e is chordal if ΩC(G,G)\{G} 6= ∅, from Proposition 2.1. For the edge e, we
consider a pair of sets ΩC(G− e,G) and ΩC(G,G + e). Then, each graph of ΩC(G,G) without e is
a member of ΩC(G− e,G), and each graph of ΩC(G, G) with e is a member of ΩC(G,G + e), from
the definition of a chordal sandwich. Thus, we obtain a binary partition of ΩC(G,G) as follows:

ΩC(G,G) = ΩC(G − e, G) ∪ ΩC(G,G + e), and ΩC(G − e,G) ∩ ΩC(G, G + e) = ∅.

Then, the ceiling graph G of ΩC(G,G+e) is chordal, and the ceiling graph G−e of ΩC(G−e,G) is
chordal again from the choice of e. We can repeat the binary partition recursively, until every set
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becomes empty. More concretely, in our algorithm we first output G and call Procedure A(G,G)
in Figure 1.

Now we estimate the time complexity of our algorithm. Let n = |V |, m = |E| and k = |E \E|.
We can find an edge e in Step 2 in O(k(n + m)) time by a simple try-and-error approach with a
linear-time algorithm to recognize a chordal graph by Rose, Tarjan, and Lueker [22] or by Tarjan
and Yannakakis [24]. The try-and-error algorithm can be improved to O(kn + n log n) time by a
dynamic data structure proposed by Ibarra [10].

The binary partition is valid in the sense that we always obtain a pair of non-empty sets
in recursive calls. Thus, the accumulated number of recursive calls made by a call to A(G,G)
is proportional to the number of outputs |ΩC(G,G)|. Therefore, the total time complexity is
O(k(n + m) · |ΩC(G, G)|) or O((kn + n log n) · |ΩC(G,G)|), depending on the algorithm to find the
edge e.

Consider next the case in which the floor graph G is chordal. In this case, we may obtain
a similar algorithm. Procedure B(G,G) in Figure 1 shows the concrete algorithm. The time
complexity can also be estimated similarly, but in this case we can find an appropriate e faster,
namely in O(k log2 n + n) [10].

Acceleration of finding an appropriated edge We can construct O(n + m) time algorithms
to find a chordal graph G − e ∈ ΩC(G,G) and G + e ∈ ΩC(G,G), respectively, when both G
and G are chordal. These algorithms are not based on try-and-error; each of them essentially
executes perfect eliminations twice (see Section A in Appendix). They are faster than Ibarra’s
dynamic algorithm [10] when k is sufficiently large, namely k = Ω(m/n) if G is chordal and
k = Ω(m/ log2 n) if G is chordal, respectively. Note that this modification may not improve the
theoretical time complexity of our listing algorithms, since even when both of G and G are chordal,
graphs appearing in recursive calls are usually not chordal.

4 Hardness of Counting the Chordal Sandwiches

Here, we show the #P-completeness of counting the chordal sandwiches by a parsimonious reduc-
tion. We also show the #P-completeness of counting the chordal deletions by a Cook reduction.
These results imply that random sampling of chordal graphs is not easy, as indicated by many pre-
vious results about the relationship between the (approximate) counting and the random sampling
(see e.g., [23]).

4.1 Counting the chordal sandwiches is at least as hard as counting the forests

First we show the following Theorem.

Theorem 4.1 The computation of |ΩC(G,G)| is #P-complete, even when G is a connected chordal
graph.

We give a reduction from the problem to count the forests in a graph, which is known to be
#P-complete [27]. Note that the reduction is parsimonious. Thus, if we have an approximation
algorithm for the chordal sandwich counting, then we obtain an approximation algorithm for the
forest counting with the same approximation ratio. Note that it is still a widely open problem
whether or not a fully polynomial-time randomized approximation scheme exists for the forest
counting problem.
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(a) An original graph H. (b) The reduced graphs G and G.

Figure 2: An example of the transformation.

Proof. The problem is clearly in #P. It is enough to show the #P-hardness.
First, we give a transformation of an instance (i.e., a graph) H of the forest counting problem into

an instance (i.e., a pair of graphs) G and G of the chordal sandwich counting problem. To construct
G, we just replace every edge {u, v} ∈ E(H) with a path of length three. Let wu,v and wv,u be
new vertices of G, which subdivide an edge {u, v} ∈ E(H). Then, |V (G)| = |V (H)|+ 2|E(H)| and
|E(G)| = 3|E(H)| hold. To construct G, we just remove every edge of the form {wu,v, wv,u} ∈ E(G)
from G. Figure 2 shows an example of the transformation. In Figure 2 (b), the edges of G are
drawn by solid lines, and the edges of G are drawn by solid lines and dashed lines. Note that G
is a chordal graph consisting of n disjoint stars. Moreover, the girth (i.e., the length of a shortest
cycle) of G is at least 9.

Next, we show that there exists one-to-one correspondence between the set of forests in H and
ΩC(G,G). For a forest F = (V (H), E(F )) in H, we define the corresponding graph G ∈ ΩC(G,G)
as E(G) = E(G)∪{{wu,v, wv,u} ∈ E(G)\E(G) | {u, v} ∈ E(F )}. Then, G does not have any cycle,
and G is chordal. Conversely, every graph in ΩC(G,G) does not contain any cycle and is chordal
since the girth of G is at least 9. Thus, for any G ∈ ΩC(G,G), there exists a corresponding forest
in H as the inverse of the above map. Hence, we obtain a bijection. Thus, we showed that the
computation of |ΩC(G,G)| is #P-hard even when G is chordal.

To obtain the full theorem we transform ΩC(G,G) into ΩC(G′
, G′) in which G′ is connected and

chordal. Let G be a graph. We transform G into Φ(G) defined as V (Φ(G)) def.= V (G) ∪ {v0} and
E(Φ(G)) def.= E(G)∪ {{v0, v} | v ∈ V (G)}. Clearly Φ(G) is connected. Furthermore, G is chordal if
and only if Φ(G) is chordal. Now, we define a pair of graphs G

′ def.= Φ(G) and G′ def.= Φ(G) from the
pair graphs G and G. Then, G′ is chordal when G is chordal, and ΩC(G,G) and ΩC(G′

, G′) are in
one-to-one correspondence via Φ. Thus, we obtain the theorem. ¤

4.2 Hardness of counting the chordal deletions

The set of chordal deletions of G is described as the set of chordal sandwiches in ΩC(G, In), where
In is an empty graph with n vertices and no edge.

Theorem 4.2 The computation of |ΩC(G, In)| is #P-complete.

We give a Cook-reduction from the forest counting problem in a graph. Note that the reduction
does not preserve the approximation ratio.
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Proof. Let H be a graph with n vertices and m edges. First, we describe the construction of a
graph Gi for each i ∈ {1, . . . , n} from H as follows; we just replace every edge {u, v} in H with a
path P i({u, v}) of length i + 1. Then, |V (Gi)| = |V (H)| + i|E(H)| and |E(Gi)| = (i + 1)|E(H)|
hold. Moreover, the girth of Gi is at least 3i. Note that G2 is the same graph as G appearing in
the proof of Theorem 4.1.

We denote the set of forests with k edges in H as F(k). Now, we show that

|ΩC(Gi, In)| =
n−1∑
k=0

(2i+1 − 1)m−k|F(k)| for i ∈ {1, . . . , n}.

For a forest F = (V (H), E(F )) in H, we define a set ∆i(F ) ⊆ ΩC(Gi, In) as G ∈ ∆i(F ) if and only
if G satisfies the following two conditions;

1. If {u, v} ∈ E(F ), then G contains all i + 1 edges in the path P i({u, v}).
2. If {u, v} 6∈ E(F ), then G contains at most i edges in the path P i({u, v}).

Then, we obtain |∆i(F )| = (2i+1 − 1)m−k for a forest F ∈ F(k). If a pair of forests F1 and
F2 in H satisfies F1 6= F2, then ∆i(F1) ∩ ∆i(F2) = ∅ holds from the definition. Every graph in
ΩC(Gi, In) must be a forest, namely chordal, since the girth of Gi is at least 4. Thus, for any
G ∈ ΩC(Gi, In), there exists a forest F in H such that G ∈ ∆i(F ). It implies ΩC(Gi, In) =∪
{∆i(F ) | F is a forest of H}, and hence we obtain

|ΩC(Gi, In)| =
∑
F

|∆i(F )| =
n−1∑
k=0

∑
F∈F(k)

(2i+1 − 1)m−k =
n−1∑
k=0

(2i+1 − 1)m−k|F(k)|.

Then we obtain a linear equation system
|ΩC(G1, In)|
|ΩC(G2, In)|

...
|ΩC(Gn, In)|

 = A


|F(0)|
|F(1)|

...
|F(n − 1)|

 ,

where A is an n × n matrix defined by

A
def.=


3m 3m−1 · · · 3m−n+1

7m 7m−1 · · · 7m−n+1

...
...

. . .
...

(2n+1 − 1)m (2n+1 − 1)m−1 · · · (2n+1 − 1)m−n+1

 .

Here, A is a Vandermonde matrix, and is non-singular. Thus we have reduced the forest counting
into the chordal deletion counting. ¤

5 A Simple Markov Chain and Its Slow-Mixing

Here, we consider a uniform sampling on ΩC(G,G) satisfying Condition 1. We give a simple and
natural Markov chain. Note that the following Markov chain can be easily modified into ones for
non-uniform distributions by a Metropolis-Hastings method.

Let M be a Markov chain with a state space ΩC(G,G) with Condition 1. A transition of
M from a current state G ∈ ΩC(G,G) to a next state G′ is defined as follows; Choose an edge
e ∈ (E \ E) uniformly at random. We consider the following three cases.
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Figure 3: Example of an input pair on which the simple Markov chain M mixes slowly.

1. If e 6∈ E(G) and G + e is chordal, then set H = G + e.
2. If e ∈ E(G) and G − e is chordal, then set H = G − e.
3. Otherwise set H = G.

Let G′ = H with the probability 1/2, otherwise let G′ = G. Clearly G′ ∈ ΩC(G,G).
The chain M is irreducible from the fact that ΩC(G,G) on Condition 1 forms a graded poset.

The chain M is clearly aperiodic, and hence M is ergodic. The unique stationary distribution of M
is the uniform distribution on ΩC(G,G), since the detailed balanced equation P (G,G′) = P (G′, G)
holds for any pair of G ∈ ΩC(G,G) and G′ ∈ ΩC(G,G). From Proposition 2.1, the diameter of M
is at most 2k, where k = |E \ E|.

Now, we discuss the mixing time of the Markov chain. Let µ and ν be a pair of distributions
on a common finite set Ω. The total variation distance dTV(µ, ν) between µ and ν is defined by
dTV(µ, ν) def.= 1

2

∑
x∈Ω |µ(x)− ν(x)|. For an arbitrary positive ε, the mixing time τ(ε) of an ergodic

Markov chain MC with a state space Ω is defined by τ(ε) def.= maxx∈Ω min{t | ∀s ≥ t, dTV(P s
x , π) ≤

ε} where π is the unique stationary distribution of M, and P s
x denotes a distribution of M at time

s starting from a state x.
In the following, we show that the Markov chain M is not rapidly mixing for some inputs.

Proposition 5.1 There exist infinitely many pairs of chordal graphs G and G satisfying G ⊆ G
for which the mixing time of M on ΩC(G, G) is exponential in n, where n is the number of vertices
of G (and G).

Proof. Figure 3 shows an example. Let V be a set of vertices {a, b, v1, . . . , vp, u1, . . . , up, w1 . . . , wq}.
Let G = (V,E(G)) be a graph defined by

E(G) def.= {{a, ui} | i ∈ {1, . . . , p}} ∪ {{b, vi} | i ∈ {1, . . . , p}}
∪ {{b, wi} | i ∈ {1, . . . , q}} ∪ {{ui, vj} | (i, j) ∈ {1, . . . , p}2}.

Let G = (V,E(G)) be a graph defined by

E(G) def.= E(G) ∪ {{a, vi} | i ∈ {1, . . . , p}} ∪ {{a,wi} | i ∈ {1, . . . , q}} ∪ {{a, b}}.

In Figure 3, G is described by solid lines, and G is described by solid lines and dashed lines. Note
that both G and G are chordal.
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Now, let G = (V,E(G)) be a graph defined by E(G) def.= E(G) ∪ {{a, vi} | i ∈ {1, . . . , p}}, and
Let G′ be a graph defined by G′ def.= G + {a, b}. Then, G ∈ ΩC(G,G) and G′ ∈ ΩC(G,G). We show
that a bottle-neck lies between G and G′.

If a graph H ∈ ΩC(G,G) contains the edge {a, b}, then H contains all edges of {{a, vi} | i ∈
{1, . . . , p}} ⊂ E(G) \ E(G). Otherwise H has a chordless cycle a-b-vi-ui-a with {a, vi} 6∈ E(H).
If a graph H ∈ ΩC(G,G) does not contain the edge {a, b}, then H does not contain any edge of
{{a,wi} | i ∈ {1, . . . , q}} ⊂ E(G) \ E(G). Otherwise H has a chordless cycle wi-a-u1-v1-b-wi when
{a, v1} 6∈ E(H), or wi-a-v1-b-wi when {a, v1} ∈ E(H), with {a,wi} ∈ E(H). From above, the set
ΩC(G,G) can be partitioned into ΩC(G,G′) and ΩC(G,G), where ΩC(G,G′)∩ΩC(G,G) = ∅. Thus,
the pair of G and G′ is the bottleneck of M on ΩC(G,G) from the definition of M.

If a graph H satisfies G′ ⊆ H ⊆ G then H is chordal. It implies |ΩC(G,G′)| = 2q. In the same
way, we obtain |ΩC(G,G)| = 2p. Let p = q = (n−2)/3, and by computing the conductance between
G and G′, we can show that the mixing time of M starting from a worst state is exponential of n,
based on the conductance method [23]. ¤

6 Concluding Remarks

We gave a simple and natural Markov chain for uniform sampling of ΩC(G,G), and showed an
example for which the mixing time of the chain is exponential, even when both of G and G are
chordal. It is open if there is a rapidly mixing Markov chain. Our Markov chain uses the fact that
ΩC(G,G) for given G and G with Condition 1 forms a graded poset. However, it is known that the
set of chordal sandwiches generally does not form a lattice even when both G and G are chordal.
A future work would include a characterization of the pairs G and G such that ΩC(G,G) forms a
lattice.

It is open that counting the chordal sandwiches is #P-hard when a given ceiling graph is
restricted to be chordal. We conjecture that counting the chordal completions (i.e., when a given
ceiling graph is complete) is #P-complete. We can consider listing, counting, and sampling the
graph sandwiches for other graph classes, such as interval, proper interval, or perfect graphs. We
can show that counting the interval sandwiches is #P-complete even when a given floor graph is
connected and interval (see Section B in Appendix).
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A Acceleration of Finding an Appropriate Edge in Our Listing
Algorithms

Here, we give a linear time algorithm to find an appropriate edge which we use in our listing
algorithms.

A.1 Notations and Properties of Chordal Graphs

As a preliminary step, we explain a well-known characterization of chordal graphs by perfect
elimination orderings. For a graph G = (V,E) and a vertex v ∈ V , let δ(v; G) be the set of
edges incident to v ∈ V on G, and let N(v; G) be the set of vertices adjacent to v ∈ V on
G, i.e., δ(v; G) = {{v, u} ∈ E | u ∈ V } and N(v; G) = {u ∈ V | {v, u} ∈ E}. For a graph
G = (V,E) and a subset V ′ ⊆ V of vertices, G[V ′] denotes the graph induced from G by V ′, i.e.,
G[V ′] = (V ′, {e = {v, v′} ∈ E | v ∈ V ′, v′ ∈ V ′}).

For a graph G, a vertex v ∈ V (G) is simplicial if the set N(v;G) of vertices induces a clique.
For a graph G = (V,E) with n vertices, a sequence v = (v1, . . . , vn) of all vertices in V is a perfect
elimination ordering of G if the vertex vi is a simplicial vertex of the graph G[vi, . . . , vn] for each
i ∈ {1, . . . , n}. It is known that a graph G is chordal if and only if the graph G has a perfect
elimination ordering [2, 3, 21]. Moreover, if G is chordal, then there exists a perfect elimination
ordering (v1, . . . , vn) satisfying vn = u for any vertex u ∈ V . Rose, Tarjan, and Lueker [22] proposed
an O(n + m) algorithm to check the chordality of a graph. The algorithm also provides a perfect
elimination ordering (v1, . . . , vn) satisfying vn = u for any vertex u ∈ V when the graph is chordal.
The next lemma is used in the proof of Propositions A.2 and A.3.

Lemma A.1 For a pair of graphs G and G satisfying G ⊆ G, if v ∈ V is a simplicial vertex of G
and δ(v; G) = δ(v; G) holds, then v is also a simplicial vertex of G.

Proof. Since δ(v; G) = δ(v; G), N(v; G) is identical to N(v; G). Since G[N(v; G)] is a clique of G
and G[N(v; G)] ⊆ G[N(v; G)] holds, G[N(v; G)] is a clique of G. Hence v is a simplicial vertex
of G. ¤

A.2 Linear Time Algorithm to Find a Chordal Graph G + e ∈ ΩC(G,G)

Here we describe our algorithm.

Proposition A.2 Given a pair of chordal graphs G = (V, E) and G = (V,E) satisfying G ⊂ G,
we can find an edge e ∈ E \ E such that G + e is chordal in O(n + m) time.

Proof. Consider the following Procedure 1, given the pair of chordal graphs G and G.

Procedure 1
Step 1. Find a perfect elimination ordering (p1, . . . , pn) of G.
Step 2. Find an index s = max{i ∈ {1, . . . , n} | Di 6= ∅},

where Di
def.= E(G[pi, . . . , pn]) ∩ (E \ E).

Step 3. Output G′ def.= (V,E ∪ Ds).

Note first that we can always choose an index in Step 2 since D1 = E(G[p1, . . . , pn]) ∩ (E \ E) =
E ∩ (E \ E) = E \ E 6= ∅. Secondly, we note that the output graph G′ of Procedure 1 satisfies
G ⊂ G′ ⊆ G.
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Now we show that G′ is chordal. To this end we construct a perfect elimination ordering of
G′. Let s ∈ {1, . . . , n} be the index obtained in Step 2. Fix an index i ∈ {1, . . . , s − 1} ar-
bitrary. We may observe that pi is a simplicial vertex of G′[pi, . . . , pn] from Lemma A.1 since
G[pi, . . . , pn] ⊆ G′[pi, . . . , pn], pi is a simplicial vertex of G[pi, . . . , pn], and δ(pi; G′) = δ(pi; G). Fur-
thermore G′[ps, . . . , pn] is chordal since G′[ps, . . . , pn] = G[ps, . . . , pn] and G[ps, . . . , pn] is chordal.
It implies that G′[ps, . . . , pn] has a perfect elimination ordering (p′s, . . . , , p

′
n). Therefore an order

(p1, . . . , ps−1, p
′
s, . . . , p

′
n) is a perfect elimination ordering of G′, and hence G′ is chordal.

If |Ds| = 1, we readily obtain the claim. If |Ds| ≥ 2, we need an extra procedure. Namely, since
G′ and G satisfy G ⊂ G′, we execute Procedure 1 again but for the pair of G′ and G and find a
perfect elimination ordering with a special property in Step 1. Below is more detail.

Let (q1, . . . , qn) be a perfect elimination ordering of G satisfying qn = ps. We define D′
i

def.=
E (G′[qi . . . , qn]) ∩ Ds for i ∈ {1, . . . , n}. Since Ds consists of edges of G′[ps, . . . , pn] only and
satisfies E(G′[ps+1, . . . , pn]) ∩ Ds = ∅ from the choice of s, every edge of Ds is incident to the
vertex ps on the graph G′. Therefore, the cardinality of the set D′

i \ D′
i+1 is at most one for each

i ∈ {1, . . . , n − 1}. Let t ∈ {1, . . . , n} be an index satisfying

t = max{i ∈ {1, . . . , n} | D′
i 6= ∅}.

Then |D′
t| = 1. Let e be a unique element of D′

t. We may observe that G + e is chordal by the
same argument as G′ is chordal. ¤
The following Algorithm 1 is naturally derived from the proof.

Algorithm 1

Input: a pair of chordal graphs G = (V, E), G = (V,E) satisfying G ⊂ G.
Output: a chordal graph G := G + e satisfying G ⊂ G ⊆ G and e ∈ E \ E.

Phase I (Procedure 1)
I-1. Find a perfect elimination ordering (p1, . . . , pn) of G.
I-2. Find an index s = max{i ∈ {1, . . . , n} | Di 6= ∅},

where Di
def.= E(G[pi, . . . , pn]) ∩ (E \ E).

I-3. If |Ds| = 1, then output G + e for a unique e ∈ Ds, and halt.

Otherwise, set G′ def.= (V,E ∪ Ds), and go to Phase II.

Phase II (simple modification of Procedure 1)
II-1. Find a perfect elimination ordering (q1, . . . , qn) of G satisfying qn = ps.
II-2. Find an index t = max{i ∈ {1, . . . , n} | D′

i 6= ∅},
where D′

i
def.= E(G′[qi, . . . , qn]) ∩ Ds.

II-3. Output G + e for a unique e ∈ D′
t, and halt.

A.3 Linear Time Algorithm to Find a Chordal Graph G − e ∈ ΩC(G,G)

We next consider the case that G is chordal. Similarly to the previous case, we propose the following
algorithm.
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Algorithm 2

Input: A pair of chordal graphs G = (V, E), G = (V,E) satisfying G ⊂ G.
Output: A chordal graph G := G − e satisfying G ⊆ G ⊂ G and e ∈ E \ E.

Phase I
I-1. Find a perfect elimination ordering (p1, . . . , pn) of G.
I-2. Find an index s = min{i ∈ {1, . . . , n} | Ai 6= ∅},

where Ai
def.= δ(pi; G[pi, . . . , pn]) ∩ (E \ E).

I-3. If |As| = 1, then output G − e for a unique e ∈ As, and halt.

Otherwise, set G′ def.= (V, E \ As) and go to Phase II.

Phase II (simple modification of Phase I)
II-1. Find a perfect elimination ordering (q1, . . . , qn) of G′ satisfying qn = ps.
II-2. Find an index t = min{i ∈ {1, . . . , n} | A′

i 6= ∅},
where A′

i
def.= δ(pi; G[qi, . . . , qn]) ∩ As.

II-3. Output G − e for a unique e ∈ A′
t, and halt.

It is easy to see that the time complexity of Algorithm 2 is O(n+m), since we can execute each
step of each phase in O(n + m) time.

Proposition A.3 For a pair of chordal graphs G = (V, E) and G = (V,E) satisfying G ⊂ G, the
output G − e of Algorithm 2 is chordal.

Proof. Consider the following procedure for the pair of chordal graphs G and G, which corre-
sponds to Phase I.

Procedure 2

Step 1. Find a perfect elimination ordering (p1, . . . , pn) of G.
Step 2. Find an index s = min{i ∈ {1, . . . , n} | Ai 6= ∅},

where Ai
def.= δ(pi; G[pi, . . . , pn]) ∩ (E \ E).

Step 3. Output G′ def.= (V, E \ As).

Note first that we can always find an index s in Step 2 since G contains at least one edge, say
e = {pi, pj} with i < j, and e ∈ Ai. Secondly we note that the output graph G′ of Procedure 2
satisfies G ⊂ G′ ⊆ G.

Now we show that G′ is chordal. To this end we construct a perfect elimination ordering of G′.
Let s ∈ {1, . . . , n} be the index obtained in Step 2. For each index i ∈ {1, . . . , s−1}, we may observe
that pi is a simplicial vertex of G′[pi, . . . , pn] from Lemma A.1 since G[pi, . . . , pn] ⊆ G′[pi, . . . , pn], pi

is a simplicial vertex of G[pi, . . . , pn], and δ(pi;G′) = δ(pi; G). Furthermore, G′[ps, . . . , pn] is chordal
since G′[ps, . . . , pn] = G[ps, . . . , pn] and G[ps, . . . , pn] is chordal. It implies that G′[ps, . . . , pn] has a
perfect elimination ordering (p′s, . . . , , p

′
n). Therefore an order (p1, . . . , ps−1, p

′
s, . . . , p

′
n) is a perfect

elimination ordering of G′, and hence G′ is chordal.
If |As| = 1, then Procedure 2, i.e., Phase I of Algorithm 2, immediately gives an appropriate

chordal graph. Thus we obtain the claim in this case. On the other hand, if |As| ≥ 2, then we
execute Phase II of the algorithm, which is essentially the same as Procedure 2 except for having
G and G′ as an input and finding a perfect elimination ordering that ends with ps. In this case,
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every edge of As is incident to the vertex ps on the graph G′ by the choice of s. Therefore, the
cardinality of A′

t, which corresponds to As of Procedure 2, is one. Thus, we obtain the claim also
in this case. ¤

B Hardness of Counting the Interval Sandwiches

Here, we show that counting the interval sandwiches is #P-complete. We begin with definitions.
A graph is an interval graph if it has an interval representation. It is easy to see and well-known

that an interval graph is chordal. An asteroidal triple (or AT in short) in a graph is an (unordered)
triple of independent vertices of the graph such that every two of them are connected by a path
avoiding the neighborhood of the third. A graph is asteroidal-triple free (or AT-free) if it does not
contain any asteroidal triples. Leckerkerker and Boland showed that a graph is interval if and only
if it is chordal and AT-free [15]. More information on interval graphs can be found in [6, 7].

Given a pair of G and G satisfying G ⊂ G, we define the set ΩI(G,G) of interval graphs
sandwiched by G and G as

ΩI(G,G) def.= {G | G is interval, G ⊆ G ⊆ G}. (2)

A graph in ΩI(G,G) is called an interval sandwich for the pair of G and G while G and G are called
the ceiling graph and the floor graph of ΩI(G,G), respectively. Note that the graphs are “labeled”
in ΩI(G,G) in an analogous fashion to the set of chordal graph sandwiches. Golumbic, Kaplan, and
Shamir [7] showed that given a pair of graphs G and G satisfying G ⊂ G, deciding whether ΩI(G,G)
has an element is NP-complete. The rest of the section is devoted to the following theorem.

Theorem B.1 The computation of |ΩI(G,G)| is #P-complete, even when G is a connected interval
graph.

Proof. The problem is clearly in #P. It is enough to show #P-hardness. We give a reduction
from the problem to count the matchings in a graph, which is known to be #P-complete [27].

First, we give a transformation of an instance (i.e., a graph) H of the matching counting
problem into an instance (i.e., a pair of graphs) G and G of the interval sandwich counting problem.
The construction of G is done in a similar way to the proof of Theorem 4.1; We replace every
edge {u, v} ∈ E(H) with a path of length three. Let wu,v and wv,u be new vertices of G which
subdivide an edge {u, v} ∈ E(H). Furthermore, we add an extra path av-bv-v with new vertices
av and bv to every vertex v ∈ V (H). This completes the construction of G. Note that |V (G)| =
3|V (H)| + 2|E(H)|, |E(G)| = 3|E(H)| + 2|V (H)|, and the girth of G is at least 9. To construct
G, we just remove every edge of the form {wu,v, wv,u} ∈ E(G). Figure 4 shows an example of
the transformation. In Figure 4 (b), the edges of G are drawn by solid lines, and the edges of G
are drawn by solid lines and dashed lines. The graph G consists of n disjoint trees. Let Tv be
a connected component (i.e., a tree) of G including v ∈ V (H). Then Tv is AT-free. Thus G is
interval.

Next, we show that there exists one-to-one correspondence between the set of matchings in H
and ΩI(G,G). For a matching M ⊂ E(H) of H, we define the corresponding graph G ∈ ΩI(G,G)
as E(G) = E(G) ∪ {{wu,v, wv,u} ∈ E(G) \ E(G) | {u, v} ∈ M}. Then, G does not have any
cycle. Moreover, we can observe that G is AT-free. Thus, G is interval. Conversely, every graph in
ΩI(G,G) does not simulataneously contain two edges {wv,u, wu,v} ∈ E(G) and {wv,u′ , wu′,v} ∈ E(G)
which correspond to edges {v, u} ∈ E(H) and {v, u′} ∈ E(H) since it would contain an AT
otherwise. Thus, for any G ∈ ΩI(G,G), there exists a corresponding matching in H as the inverse
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(a) An original graph H. (b) The reduced graphs G and G.

Figure 4: An example of the transformation.

of the map above. Hence, we obtain a bijection. Thus, we showed that the computation of |ΩI(G, G)|
is #P-hard even when G is interval.

To obtain the full theorem we transform G and G obtained from H as described above into G
′

and G′ such that G′ is connected and interval. Let G be a graph satisfying G ⊆ G ⊆ G, and we
transform G into Φ′(G) defined as

V (Φ′(G)) def.= (V (G) \ {av, bv | v ∈ V (H)}) ∪ {a} ∪ {b}, and

E(Φ′(G)) def.= E(G[V (G) \ {av, bv | v ∈ V (H)}]) ∪ {{b, v} | v ∈ V (Φ′(G)) \ {b}}.

Note that Φ′(G)[V (Φ′(G)) \ {a}] = Φ(G), where Φ is the map defined in the proof of Theorem 4.1.
Clearly Φ′(G) is connected and chordal. Furthermore, if G is AT-free, then Φ′(G) is AT-free, since
b is a cut and dominating vertex. Inversely, if G has an AT, then w.l.o.g. let {av, u, u′} ⊂ V (G)
be an AT where {wv,u, wu,v} ∈ E(G) and {wv,u′ , wu′,v} ∈ E(G), and Φ′(G) has an AT {a, u, u′} ⊂
V (Φ′(G)). Now, we define a pair of graphs G

′ def.= Φ′(G) and G′ def.= Φ′(G) from the pair graphs G

and G. Then, G′ is interval when G is interval, and ΩI(G,G) and ΩI(G
′
, G′) are in one-to-one

correspondence via Φ′. Thus, we obtain the theorem. ¤
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