INTERSECTION SHEAVES OVER NORMAL SCHEMES
NOBORU NAKAYAMA

ABSTRACT. Intersection sheaves are usually defined for a proper flat surjective mor-
phism of Noetherian schemes of relative dimension d and for d 4+ 1 invertible sheaves
on the ambient scheme. In this article, the construction is generalized to the equi-
dimensional proper surjective morphisms over normal separated Noetherian schemes.
Applications to the studies on family of effective algebraic cycles and on polarized en-

domorphisms are also given.
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Let m: X — Y be a flat proper surjective morphism of Noetherian schemes of relative

dimension d. For invertible sheaves £, ..., L4411 of X, we can associate an invertible

sheaf Tx/y (L1, ..., L41) of Y which satisfies suitable conditions similar to those satisfied

by the fiber integral of Chern classes:

/7rcl(£1) JANEIIVAN Cl(£d+1)-

Especially, if 7: X — Y is a morphism of algebraic k-schemes smooth over a field k, then

CI(IX/Y<£1; ce ,»Cd—f—l)) = Tx (01(51) T Cl(£d+1))
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in the Chow group CH'(Y), where 7, is the push-forward homomorphism CH*™(X) —
CH'(Y). In particular, TIx/v(L) is the norm sheaf of £ in case d = 0, and

IX/Y<£17 <. 7£d+1) 2"Z—H/Y(£2’Ha o 7£d+1‘H)

if £1 ~ Ox(H) for an effective relative Cartier divisor H of X with respect to m. The
sheaf Tx/y(L1,...,Lq441) is called the intersection sheaf, the intersection bundle, or the
Deligne pairing (when d = 1). For the Picard groups Pic(X) and Pic(Y), we have a
homomorphism Sym“*! Pic(X) — Pic(Y) by Zx,y. In [4], Probleme 2.1.2, Deligne posed
a problem of constructing Zy,y as a functor PIC(X)L — PIC(Y); satisfying natural
properties on multi-additivity and base change. Here PIC (X );s denotes the Picard cate-
gory whose ‘objects’ are invertible sheaves on X and whose ‘morphisms’ are isomorphisms
of invertible sheaves. The intersection sheaf Zx,y can be defined a priori as a symmetric
difference of det R, (L) for invertible sheaves £ (cf. Remark 2.5/ below; [5], page 34),
but there is a problem of sign related to det. The problem was solved for projective
morphisms in [6], [8], [18], and [5] by several methods.

The flatness assumption is important for the functorial properties. In this article, we
do not consider the functoriality but the construction of intersection sheaves for non-flat
morphisms. More precisely, we shall construct intersection sheaves for proper surjective
equi-dimensional morphisms f: X — Y over normal separated Noetherian schemes Y.
The following is obtained in Section[3|(cf. Theorems[3.11and [3.20; Propositions[2.7]2.15]

and [3.17):

Theorem. Let Y be a normal separated Noetherian integral scheme and m: X — Y
a projective equi-dimensional surjective morphism of relative dimension d. Let U be a
Zariski-open subset of Y such that codim(Y \ U) > 2 and n=*(U) — U is flat. Then the

intersection sheaf
Trvwyo(Liler@wys - Lapilr—10)
defined for invertible sheaves Ly, ..., Lq11 € Pic(X), naturally extends to an invertible
sheaf Tx;y(La,...,Lay1) of Y. In particular, ITx;y induces a natural homomorphism
Sym®™ Pic(X) — Pic(Y). Moreover, it satisfies the following properties:
(1) Suppose that, for any i, there exists a surjection ©*G; — L; for a locally free sheaf

G; on'Y of finite rank. Then there is a surjection
d: Sym™(Gy) ® -+ - ® Sym 1 (Gap1) — Ixyv(La, ..., Latr),
where e; 1s the intersection number
i(Lilp, - Licalpy Livalrs - oo, LavalF)
for the generic fiber F of .



(2) Let g: Y' — Y be a dominant morphism of finite type from another normal sep-
arated Noetherian scheme Y', f': X' = X xy Y’ — Y’ the pullback of f, and
g : X' — X the pullback of g. Then

Ixryy (9" Ly 9" Lavr) = 9" Ixyy (L, - -5 Lagr).

By the strong assumption on Y, the sheaf 7x/y is first defined as a reflexive sheaf of
rank one, but after certain discussion, it will be shown to be invertible. By the invert-
ibility, we can prove that, for the equi-dimensional morphism 7: X — Y, if X is normal
and Q-factorial (i.e., every Weil divisor is Q-Cartier), then so is Y (cf. Theorem[3.15).

The surjection ® above can be regarded as the homomorphism giving the resultant:
For sections v; € H%(Y,G;) and its images s; € HY(X,L;), ®(vf' @ --- ® v®+1) is the
resultant of sections sy, ..., Sgy1, Up to unit. In particular, ®(vi' ® - - - ® v+1) does not
vanish at a point y € Y if and only if div(s;) N--- N div(sqer) N7t (y) = 0.

The intersection number i(Ly, Lo, ..., Ly; F) for invertible sheaves £; and coherent
sheaf F is defined on projective varieties defined over a field, where d = dim Supp F. As
an analogy of it, we can define the intersection sheaf Zz/y (L1, .., Lq41) by replacing X
with a coherent sheaf F with dim(Supp F)/Y = d. Moreover, we can define 7,y as a ho-
momorphism Gre™ K*(X) — Pic(Y) for the Mfiltration { F?K*(X)} of the Grothendieck
K-group K*(X) = Ky(X). In particular, for a locally free sheaf £ on X of rank r and for
a Chern polynomial P = P(xy,...,z,) of weighted degree d + 1, we have the intersection
sheaf T7/y(P(£)) = Zr/v(P(c1(€),...,¢(E))). A similar result to Theorem above also
holds for the intersection sheaves Z z/y (1) for n € Gr™ K*(X). Especially, we can prove
that if £ is a locally free sheaf of finite rank generated by global sections and if P is nu-
merically positive for ample vector bundles (cf. Definition [2.19)) in the sense of [9], then
Ir/v(P(£)) is also generated by global sections (cf. Proposition[2.21, Corollary 3.18).

Suppose that f: X — Y is an equi-dimensional surjective morphism of normal pro-
jective varieties over a field. If the invertible sheaves £; € Pic(X) are generated by
global sections, then so is the intersection sheaf Zx,y(Ly,...,La41). There are similar
numerical properties (e.g. ampleness) on the intersection sheaves (cf. Theorems|4.4,4.7):
For example, if £; are all ample (resp. nef and big), then so is Tx/y(L,..., L4q1). If
X C V xY for a projective variety V' and if £; are the pullbacks of very ample invertible
sheaves of V' by the first projection X — V', then we can show that the intersection sheaf
defines the Stein factorization of the morphism ¥ — Chow(V') into the Chow variety of
V', which associates a general point y € Y the algebraic cycle cyc(m'(y)) of V for the
fiber 77! (y) (cf. Section 4.2). By the property, we have the notion of Chow reduction
(cf. Proposition 4.14, Definition [4.15)) for a dominant rational map X ---— Y of normal
projective varieties , and also the notion of special MRC fibration (cf. Theorem [4.18) for



uniruled complex projective varieties generalizing the notion of maximal rationally con-
nected (= MRC) fibration (cf. [3], [16], [10]) defined for smooth varieties. The following
results on endomorphisms are proved in Theorem [4.19 and Corollary

(1) If f: X — X is a finite surjective morphism of a normal complex uniruled pro-
jective variety X, then f descends to an endomorphism A: Y — Y of the base YV
of the special MRC fibration X ---— Y.

(2) Here, if f is a polarized endomorphism, i.e., f*A ~ A% for some ¢ > 0 and an

ample invertible sheaf A, then the endomorphism h is also polarized.

The motivation of this article is a question by D.-Q. Zhang on a similar result in [25],
Proposition 2.2.4 on the endomorphisms of complex normal projective uniruled varieties,
where the intersection sheaf is used for proving (2), but the notion of intersection sheaves
is defined only for flat morphisms in the paper [25]. The results above solve the question.
The results in Section [4.3 are used in a joint paper [19] with D.-Q. Zhang.

It is hopeless to give a similar definition of the intersection sheaves Zx/y for a proper
equi-dimensional surjective non-flat morphism X — Y over a non-normal base scheme
(cf. Remark(3.5). In order to extend the notion of intersection sheaves to the non-normal
case, we must add some additional data. For example, [1] treats the intersection sheaves
associated to analytic families of cycles parametrized by a reduced complex analytic space,
where the definition of the analytic family requires more than the equi-dimensionality.

This article is organized as follows: After preparing basics on K-groups in Section |1, we
define and study the intersection sheaves 7,y in Section 2 for Y-flat coherent sheaves
F on X. We use essentially the same argument as in [6], [18], and the description of
Chow varieties in [17]. In Section 3, we consider the case where Y is a normal separated
Noetherian integral scheme, and prove basic properties including the invertibility and the
base change property. We apply these fundamental results obtained in Sections 2 and 3
to projective varieties over a field or the complex number field C in Section 4. We prove
some numerical properties of the intersection sheaves, give a relation to the morphisms
into Chow varieties, and finally have some of results on polarized endomorphisms of

projective varieties answering the question of D.-Q. Zhang.
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1. GROTHENDIECK K-GROUPS

We recall elementary properties of Grothendieck K-groups (cf. [13], [2]). Let X be a
Noetherian scheme. Let K*(X) (resp. Ko(X)) be the Grothendieck group on the locally
free sheaves (resp. coherent sheaves) on X. For a locally free (resp. coherent) sheaf
F, let cI*(F) = cl%(F) (resp. cle(F) = clxe(F) ) denote the corresponding element in
K*(X) (resp. Ko(X)). Note that K*(X) is the K, group in the K-theory. The tensor
products with locally free sheaves give K*(X) a ring structure and give K(X) a structure
of K*(X)-module so that the canonical homomorphism ¢: K*(X) — K,(X), which is
called the Cartan homomorphism, is K*(X)-linear. Here, cl*(Ox) is the unit element 1 of
the ring structure of K*(X), and ¢: K*(X) — K,(X) is regarded as the multiplication
map by ¢(1) = cle(Ox) € Ko (X). If X is a regular separated Noetherian scheme, then
¢: K*(X) — K.(X) is isomorphic by the existence of global locally free resolution for
coherent sheaves (cf. [13], Exp. II Proposition 2.2.3 and Exp. II Corollaire 2.2.7.1).

The ring H(X, Z) of locally constant Z-valued functions is a direct summand of K*(X),
in which a projection e: K*(X) — H(X,Z) (called the augmentation map) is given by
cl*(€) +— rank £ for locally free sheaves £. The A-ring structure of K*(X) is introduced
by setting AP(cl*(€)) = cl*(AP €) for locally free sheaves £. The augmentation map ¢ is a
A-homomorphism with respect to the natural A-ring structure of H°(X,Z). The operator
7P associated with the A-ring K*(X) is defined by 7?(z) = MW(x +p— 1) for z € K*(X).
The AMfiltration {FPK*(X)} of K*(X) is defined as follows: FPK®*(X) = K*(X) for
p <0, F1K*(X) = Ker(e), and FPK*(X) for p > 2 is generated by

kl(

V()Y (2) - - - (20)

with z; € Ker(e) and }_ k; > p. Then K*(X) is a filtered ring, i.e., FPK*(X)F1K*(X) C
Frrag*(X) for p, ¢ > 0. For Grl, K*(X) = FPK*(X)/F K*(X), we have

Gri(X) ~H°(X) and Grp(X) ~ Pic(X),

by [13], Exp. X Théoreme 5.3.2, where Pic(X) denotes the Picard group of X.
On the other hand, K,(X) also has a natural filtration { F? K.(X)}, which is called the

con- e

conview filtration, is defined as follows (cf. [13] Exp. X Remarque 1.4 and Exp. X Exemple
1.5): FP K.(X) is generated by cls(F) for coherent sheaves F with codim Supp F > p.

We have another natural subgroup F,K.(X) C K.(X) for p > 0, which is generated
by cle(F) for the coherent sheaves F with dimSuppF < p. Note that, K(X) =
Upso FpKe(X) does not hold unless dim X is bounded. If X is of finite type over a
field and if X is of pure dimension n, then F? K, (X) = F,_,K.(X). The following

properties are known (cf. [13], Exp. X Corollaire 1.1.4 and Exp. X Théoreme 1.3.2):



o Grfy K,(X) = FP K.(X)/FPi'K,(X) is generated by clo(Oyz) for the closed
integral subschemes Z of codimension p.

o Grl Ko(X) = F,K.(X)/F,_1K.(X) is generated by cl,(O) for the closed integral
subschemes Z of dimension p.

o FPK*(X)F4 KoX) C FEHMEL(X) and FPK®*(X)F,K.(X) C F,_,K.(X) for any

p, ¢ > 0. In particular, we have ¢p(FPK*(X)) C FP K.(X), and ¢(FPK*(X)) C
Fo_pKo(X) if dim X < n.

Convention. For the sake of simplicity, we write

FP(X) = FPK*(X), Fn(X) = FELKo(X), Fp(X) = FK(X),

con con

— G K*(X), Gon<X>:GrFmK<X>, G,(X) = Grf Ku(X),

)
)
G. X) = @pzo Gp(X)7 con(X @ >O COIl G. X = @pzo Gp
Then, G*(X) is a graded ring; G2, (X) and G.(X) have graded G*(X)-module structures
)

con

® G?

con

(X) — GPIY(X) and GP(X) ® Gy(X) — G,p(X). We denote by

con

G(¢): GP(X) — GP (X) the homomorphism induced from the Cartan homomorphism

¢: K*(X) — K (X).
Remark. Suppose that X is an n-dimensional smooth algebraic variety defined over a filed.
Then ¢: K*(X) — K.(X) is isomorphic and F? (X) = F,_,(X) C K.(X). Moreover,

K (X) has a structure of filtered ring by ¢ and by {F2 (X)}, i.e., F2 (X)F1 (X) C
FPra(X) for any p, ¢ > 0 (cf. [13], Exp. 0 App. II Théoreme 2.11, Corollaire; and Exp. VI
Proposition 6.6). Since ¢(FP(X)) C FP _(X), G(¢): G(X) — Geon(X) is a surjective
ring homomorphism; however G(¢) is not necessarily isomorphic.

Let f: X — Y be a morphism of Noetherian schemes. Then the A-ring homomorphism
f*: K*(Y) — K*(X) is defined, which maps cl},(£) to cl% (f*E) for a locally free sheaf
€ on Y. Here, f*FP(Y) C FP(X), and hence f*: GP(Y) — GP(X) is induced. For a
morphism ¢g: Y — Z to another Noetherian scheme Z, we have (g o f)* = f* o g*.

If f is proper, then the group homomorphism f.: K¢(X) — K¢(Y) is defined, which
maps clye(F) to 3(—1)"cly (R’ f.F) for a coherent sheaf F. Here, f,F,(X) C F,(Y),
since dim Supp R’ f,.F < dim Supp F for any i for any coherent sheaf F on X. In pai-
ticular, f: G,(X) — G,(Y) is induced. For a proper morphism g: Y — Z to another
Noetherian scheme Z, we have (g o f). = g. o f.. We have the following projection

formula: If f: X — Y is proper, then

(I-1) folz- fry) = fux -y
for any x € Ko(X) and y € K*(Y). This follows from the usual projection formula
R f.(F@f*€) ~ R’ f.F®E& for coherent sheaves F on X and locally free sheaves £ on Y.



As a result, we infer that f.: Ko(X) — K.(Y) is K*(Y)-linear and f.: Go(X) — G¢(Y)
is G*(Y)-linear.

Suppose that f is flat. Then f*: K,(Y) — K.(X) is induced (cf. [13], Exp. IV 2.12)
which is compatible with f*: K*(Y) — K*(X). Here, f*FP (Y) C F? (X) for any p. If
g: Z — Y is a proper morphism, then for the fiber product W = Z xy X and for the

natural projections p;: W — Z and py: W — X, we have the base change formula

(I-2) f9:(2) = p2upi(2)

for z € K.(Z) (cf. [13], Exp. IV Proposition 3.1.1). If f is proper, flat, and of relative
dimension d, then we have f,FFI4(X) C FP_(Y) by the formula:

dim Oy, = dim Oy, f(;) + dim Ox » ®o,. k(f(x)),

where k(f(x)) denotes the residue field of Oy s(;). For an open immersion j: U — X
and for the closed immersion i: Z < X from the complement Z = X \ U, we have the

following natural exact sequence (cf. [13], Exp. 0 App. II Proposition 2.10):
(1-3) KJ(2) 5 KJ(X) L5 K. (U) — 0.

An algebraic cycle Z = >~ n;Z; of X is a finite linear combination of closed integral
subschemes Z; of X with integral coefficients n;. If the coefficients n; are all non-negative,
then Z is called effective. If dim Z; = k (resp. codim Z; = k) for all 4, then Z is called a
cycle of dimension k (resp. of codimension k). The group of algebraic cycles of dimension
k (resp. codimension k) is denoted by Z;(X) (resp. Z¥(X)).

Definition 1.1. For a coherent sheaf F, we define an effective algebraic cycle by

cyc(F) = ZWCSupple(f)W

where all the irreducible components W of Supp F are taken, and Iy (F) denotes the
length of the Ox ,-module F, for the generic point n of W. If dim Supp F < k, then we

set

cyc,(F) = ZdimW:k’Wcsupple(}")W € Z(X).
If codim Supp F > k, then we set

cycH(F) = (F)W € ZF(X).

Zcodim W=k, WCSupp F lW

We write cyc(V') = cyc(Oy) for closed subschemes V.

We have natural homomorphisms cl,: Z¥(X) — Ff (X) and cl,: Z3(X) — Fp(X)

con

defined by cle(Z) = Y n;cle(Ogz,), where Z = Y. n;Z; for closed integral subschemes
Z; and n; € Z. Then, cly(cyc®(F)) = clo(F) mod FEH(X) and cly(cyc,(G)) = clo(G)

con

mod Fj_1(X) for coherent sheaves F and G with codim Supp F = dim Supp G = k.



Remark. Suppose that X is a smooth quasi-projective variety over a field. The Chow
group CH,(X) (resp. CH*(X) ) is defined as the quotient group of Z(X) (resp. Z*(X))
by the rational equivalence relation. Here, CH'(X) ~ CH,,_;(X) for i > 0, since Z/(X) =
Z,i(X). Then CH(X) = @, CH(X) has a graded ring structure by the intersection
theory, which is called the Chow ring of X. The map cl,: Z¥(X) — FF (X) defined

con

just after Definition [1.1 induces G(cl,): CH*(X) — G% _(X) and a ring homomorphism
G(cls): CH(X) — Geon(X).

Definition 1.2 (Chern class). Let X be a Noetherian scheme. For z € K*(X), the p-th
Chern class of x for p > 0 in the K-theory is defined to be

c’(r) :=~"(z —e(z)) mod FPT(X) € GP(X),
where ¢ is the augmentation map. For a locally free sheaf £, we write ¢(€) = ¢?(cl*(&)).

Remark (cf. [13] Exp. 0 App. 1T §5). Suppose that X is an n-dimensional smooth quasi-
projective variety over a field. Then we have the map of the i-th Chern class ¢;: K*(X) —
CH'(X) for 0 < i < n. The Chern class ¢;(x) and the Chern class ¢'(x) in the K-theory
for v € K*(X) is related by

G(cl)(ci(2)) = G(9)(c'(2)).
Definition 1.3. Let X be a Noetherian scheme. For an invertible sheaf £, we set
(L) =6x(L):=1—cl% (L) e FY(X).
Furthermore, for invertible sheaves L, ..., £; on X, we set
S(Lo,... L) =8V(Ly,.... L) = 68(L1)8(Ls)- (L) € FI(X).

Remark 1.4.
(1) (L@ L") =0d(L)+ (L) — (L, L) for two invertible sheaves £ and L'.
(2) 6(£) mod F?*(X) = c'(£) € G'(X) for an invertible sheaf L. In fact,

O(L) =AMl (L) = 1) = 1 —cI*(L7") = (I*(L) — 1) = (cI*(£) = D(el*(£7) — 1)
=7 (c(L) = Dy (l*(£7Y) = 1) € FA(X).
In particular,
8(Ly,..., L) mod FFFY(X)=cM (L)) - (L) = (Li@- @L).

(3) We have the following explicit expression:

l . k _
6(£17 s 7£l) = Zkzo(_l)k Zl§i1<---<ik§l cl <®j:1 £'L‘j1>

= 1= LT e (D (L @ @ L),



Remark. The determinant map det: K*(X) — Pic(X) is defined by det(cl*(€)) = det €
for locally free sheaves £. We note that

det(zy) ~ det(z)®¥ @ det(y)®=@

for z, y € K*(X). Since det is trivial on F?(X) by [13], Exp. X Lemma 5.3.4, a homo-
morphism G'(X) — Pic(X) is induced by det. Its inverse is given by the first Chern
class ¢': Pic(X) — G'(X).

Definition 1.5. Let F be a coherent sheaf and £ a coherent locally free sheaf on a
Noetherian scheme X. Let o be a section of £ and let ¢¥: &Y = Hom(E,O0x) — Ox
denote the dual of 0: Ox — &.

(1) The zero subscheme V(o) of the section ¢ is a closed subscheme defined by
Coker (") = Oy (o).

(2) o is called F-regular, if, for any point P € V(o) and for a local trivialization
Ep ~ OF, the germ op € Ep corresponds to an Fp-regular sequence. In other

words, the natural Koszul complex
o NEY S NTE) = = T Ox =0
defined by ¢" induces an exact sequence
14) = FONE)>FoN (E)>- > FRE - F - F® Oy — 0.

(3) Suppose that £ = L1 @ --- @ L, for invertible sheaves L1, ..., £; and o is given by
sections o; of £;. Then, we define V (o4, ...,0;) := V(o). Similarly, (oy,...,0) is

called F-regular if so is o.

Lemma 1.6 (cf. [11], Théoreme 2). Let € be a locally free sheaf of rank r on X.
(1) For the formal power series \(x) := 3,50 A\P(2)tP € K*(X)[t] for x € K*(X),

A1 (€)= Aa(c*(€)) = Aulcl* (€)=

is well-defined as an element of K*(X), and is equal to (—1)""(cI*(€) — ). In
particular, ¢"(€) = A_1(€EY) mod Fr(X).
(2) Let F be a coherent sheaf and o an F-regular section of £. Then,

(1*5) /\_1(5\/) Cl.(]:) = Cl.(]: (%9 O\/(U)>.

In particular,

con

clo(F ® Oy(ry) mod F_,—1(X), if dimF <k.

10-7:®O o dFk+T+1X’ . di f>k7
c(€)cly(F) = {C ( V(e)) MmO (X), if codimF >
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Proof. (1): For x € K*(X), formally, we have

)\_1(.T) = )\t(x)|t:—1 = ZpZO(_]')p)\p(x)

The formal power series v(x) := 3,50 77 (2)t? is related to A(x) by A\(x) = Y144 ().
By the property: AP(cl®(€)) = AP(cl*(E) —r) = 0 for p > r, and by the calculation

A(@) = Mz = 1) Au(r) = vyaen(@ —r)(1+8)" = szo V(—r)tP(1+1)"7,

we have A_1(€) = (—=1)"y"(cl*(£) — r). The other formula follows from the equality
c'(€) = (=) e(&Y).
(2) is derived from the exact sequence (I-4). U

Remark. If €= L1 @ --- @ L, for invertible sheaves £; on X, then, by Remark (1.4,
(=) (l*(EY) —r) = A 4(EY) =8(Ly, ..., L,).

Definition 1.7 (Intersection number). Assume that X is a scheme proper over Speck

for a field k. For the the structure morphism py: X — Speck, the composite
KJ(X) 25 K,(Speck) ~ H(Speck,Z) = Z

maps cle(F) to the Euler characteristic x(X,F) for a coherent sheaf F. In particular,
it induces the homomorphism deg: Go(X) = Fo(X) — Z, which maps cls(F) for a
skyscraper sheaf F to dim H’(X, F). The intersection number i(n; ) € Z for n € GY(X)
and £ € G(X) is defined to be the image of the natural homomorphism

GH(X) ® Gi(X) — Go(X) X5,

If n = c'(£y) - ' (L) for invertible sheaves Ly, ..., £;, then we write i(Ly,...,L;&)
for i(n;&). For a coherent sheaf F with dim Supp F = [ and a closed subscheme V' of

dimension , we write
i(n; F) =i(n;cle(F))  and  i(n; V) = i(n; cla(Ov)).
Remark. For Ly, ..., £, € Pic(X) and & € G;(X), we have
Loy L) = deg (x(La, ..., L2)E).

For a coherent sheaf F with dim SuppF = [, i(Ly,...,L;; F) is just the coefficient of
X129 - - - x; of the Snapper polynomial Pr(xy,...,2;) € Qlxy, ..., defined by

P]:(mla"'7ml) :X(X,E(lg)m1®®£l®ml®f')

for my, ..., m; € Z.
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Lemma 1.8. Let X be a reduced Noetherian scheme and I = {X;} the set of irreducible
components of X. Let 1k;: Ko(X) — Z be the homomorphism defined by

rk;(cle(F)) = Ix,(F) = lengthy . (Fy,)

for coherent sheaves F and for the generic point n; of X;. Then Yrk;: Ko(X) — P, Z

induces an isomorphism G° (X) ~ @, Z.

Proof. If F is a coherent sheaf with codim Supp F > 0, then rk;(F) = 0 for any 4; Thus
Srk; induces G2 _(X) — @;Z. For the surjective homomorphism Z°(X) — G (X)),

con

the composite Z°(X) — @; Z is just an isomorphism. Thus, G% _(X) ~ @; Z. O

con

Definition 1.9. Let X be a Noetherian scheme with a morphism X — Y to an integral
scheme Y. For a coherent sheaf F of X, we denote by Fi/y the unique maximal coherent
subsheaf 7 such that Supp 7’ does not dominate Y. We denote by F /v the quotient
sheaf F/Fior/y. In case X =Y, then we write Fior = Fior/y and Fys = Fir)y. The
sheaf Fi,, is called the torsion part of F. If Fi,, = 0, then F is called torsion free.

Lemma 1.10. Suppose that X is a normal separated Noetherian scheme. Then there is
an isomorphism det: G2 (X) = Ref'(X) into the group Ref'(X) of reflevive sheaves of

con

rank one on X with the natural commutative diagram

GH(X) % Pic(X)

o ]

G (X) L, Ref'(X).

con

Remark. The group structure of Ref' (X) is given by the double-dual (VV) of the tensor
product, where ¥ = Homo, (F,Ox) and F"Y = (FY)" for an Ox-module F. Note
that Ref'(X) is isomorphic to the Weil divisor class group CL(X) by D — Ox(D) for
Weil divisors D. Here Ox (D) is a subsheaf of the sheaf of germs of rational functions on
X defined by

0 € H'(U,Ox (D)) < div(e) + D|y >0

for any open subset U, where div(y) stands for the associated principal divisor.

Proof. We may assume that X is integral. For a coherent sheaf F, we can associate a
reflexive sheaf D(F) of rank one as follows:
o If F is a torsion sheaf, i.e., tk(F) = [x(F) = 0, then D(F) := Ox(Div(F)) for
the Weil divisor

Div(F) = cyc'(F) = F)I.

[
Zprime divisors I'CSupp F F<
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e If F is torsion free, then

D(F) = </\rk(]-') ]__>v\/.

e For a general coherent sheaf F, we define
D(F) = (D(Fir.) ® D(Fior) " -

We shall show D(F) ~ (D(G) ® D(H))"" for any exact sequence 0 — G — F — H — 0
of coherent sheaves: Let K be the kernel of F;; — H;¢ and C the cokernel of Fio, — Hior;

then we have an exact sequence
0—Gii—>K—C—0.

Thus, it is enough to show D(F) ~ (D(G) ® D(H))"" in the case where H is a torsion
sheaf and F is torsion free. For the generic point 1 of a prime divisor I', G,, — F,, is written
as a homomorphism h: Og'?:n — OE’?’:” for r =1k F =1k G. Thus, [r(H) is just the length
of Ox.,/ det(h)Ox,, for the determinant det(h). Hence, D(F) =~ (D(G) @ D(H))"".
Therefore, D gives rise to a homomorphism K,(X) — Ref'(X), which we write det.
Note that det is zero on F2,(X). The homomorphism cly: Z4(X) — G

con con(X) is surjec-
tive, and the composite Z'(X) — Ref'(X) is the canonical surjection which maps a Weil
divisor D to Ox (D). In order to prove the induced homomorphism det: G,_1(X) —
Ref'(X) to be isomorphic, it suffices to show that cl,(Z) = 0 € G (X) for a divi-
sor Z with Ox(Z) ~ Ox. Let Z = Z; — Z5 be the decomposition into effective divi-
sors Zy, Zs containing no common prime components. From the equality cly(Oz) =

cle(Ox) — clo(Ox(—2%;)) for i = 1, 2, we have
Cl.(Z) = Cl.(@zl) — Cl.(OZQ) = ¢(Cl.(0x(—Z2)) — Cl.(OX(—Z1>)) = 0

Finally, we compare with the other isomorphism det: G'(X) — Pic(X). For z =
cl*(€) —r € GY(X) for a locally free sheaf £ of rank 7, we have det(z) = det(£). On the
other hand, det(¢(z)) = D(E) ~ det(£). Thus, det is compatible with det. O



13

2. INTERSECTION SHEAVES FOR FLAT MORPHISMS

Let m: X — Y be a locally projective morphism of Noetherian schemes and let F be
a coherent sheaf on X which is flat over Y. We assume that Y is connected. Thus, the

relative dimension
d := dim(Supp F)/Y = dim Supp(F @ Or-1(y))
for y € Y is constant.

Assumption 2.1. For 7: X — Y, we assume that 7 is a projective morphism and the

following (A) or (B) is satisfied:

(A) 7 is flat.
(B) Y admits an ample invertible sheaf (cf. [12], Définition 4.5.3).

In this section, we shall define the intersection sheaf Zz,y(n) for n € G*(X) under
Assumption [2.1. Also we shall study the basic properties of the intersection sheaves.
Note that 7, F is locally free if R” 7, F = 0 for any p > 0. Using a m-ample invertible

sheaf A, we can show:

Lemma 2.2. For a locally free sheaf € of finite rank on X, under Assumption 2.1, there

is an eract sequence

0—=E&—=&— —=&—0
such that & are locally free sheaves of finite rank and RP m,(F & &) = 0 for any p > 0
and any 0 <1 < d.

Proof. There exists a positive integer k such that R” 7,(F ® A®*) = 0 for any p > 0 and

the natural homomorphism
7T*7T*(5v ® A®k) Y% ®A®k

is surjective. We shall construct & as follows:
In the case where 7 is flat, we choose the integer k so that it satisfies also the condition:
R? 7, (€Y ® A®F) = 0 for any p > 0. Then 7,(£Y @ A®¥) is locally free. We set

o :i=7" (m(c‘fv ® A®k)v) ® A%F,

Then, £ is regarded as a subbundle of & by the dual of the surjection above, and R? 7, (F®
&) = 0 for any p > 0.

In the case where Y admits an ample invertible sheaf H, we have a surjection

O;‘?N N W*(gv ® A®k) ® H®l
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for some positive integers [, N. We set
80 = W*(H®l>®N ®A®k

Then, £ is a subbundle of & and RP 7. (F ® &) = 0 for any p > 0.
Considering the same procedure to the quotient bundle & /&, and repeating, we have
a long exact sequence

0—=&—=& — - — &1

of locally free sheaves such that RP 7w, (F ® &) = 0 for any p > 0,0 <i < d— 1. We set
&4 to be the cokernel of &5 5 — &;_1. Then, &; is locally free and

RPm (F® &) ~RPFHn, (FRE) =0
for any p > 0. Thus, we have an expected exact sequence. Il
Therefore, we have a well-defined homomorphism 77 : K*(X) — K*(Y) by
RE(C*(E)) i= Y1) el (m.(F © )
under Assumption Here, for any x € K*(X), we have

o(m (x)) = m(z clo(F))
for m.: Ko(X) — Ko(Y) and the Cartan homomorphism ¢: K*(Y) — K,(Y).

Remark. Lemma shows that R 7, F is a perfect complex even if 7 is only a locally
projective morphism or if Y does not admit ample invertible sheaves. Thus, 77 is defined
as a homomorphism from K*(X) to the K-group K*(Y )per of the category of D(Y)pert
of perfect complexes on Y (cf. [13], Exp. IV, Section 2).

Lemma 2.3. Let h: Y’ — Y be a morphism from another Noetherian scheme Y', X' =
X xyY' and let ¢: X' — X and qo: X' — Y’ be natural projections. Then F' = qiF
is flat over Y', and the equality

/

g, (qiz - g3y') = 1" (nl (2)) -y
holds in K*(Y')pert for v € K*(X) and y' € K*(Y'). If 7w is flat or if Y and Y' admit

ample invertible sheaves, then the same equality holds in K*(Y”).

Proof. We may assume that ¢y’ = 1 by the projection formula
Rpu(F @8 @¢G) ~Rep.(Fee)ad

for locally free sheaves £ on X’ and G’ on Y’. Since F is flat over Y, F' = ¢{F is also

flat over Y’ and is quasi-isomorphic to L ¢iF. There is a natural base change morphism

O: LR (FRE) = Rpu(L g (F®E)) s Rou(F' @ ¢1E)
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for a locally free sheaf £ on X. It is enough to prove that © is a quasi-isomorphism.
If R'm.(F ® &) = 0 for any 4 > 0, then © is a quasi-isomorphism by the upper semi-
continuity theorem applied to the coherent sheaf F®& flat over Y. Hence, by Lemma [2.2]
if 7 is flat or Y and Y’ admit ample invertible sheaves, then © is a quasi-isomorphism for
any locally free sheaf €. There exist open coverings {Y,} of Y and {Y/} of Y’ such that
Y! c h!(Y,) and that Y and Y’ admits ample invertible sheaves. Thus, © restricted
to the derived category of Y. is a quasi-isomorphism for any a. Hence, © itself is also a

quasi-isomorphism. O

Definition 2.4. Let Ly, ..., L; be invertible sheaves of X, where k£ > d + 1. Under
Assumption 2.1, we define

iy (Ly, oo L) =2 (77 0% (Ly, . L1)) €HOY,Z) =2 for k>,
Trpy(Ly,... L) = det (7 6 (L1, ..., L1)) € Pic(Y) for k>d+1,

where e: K*(Y) — H%(Y,Z) = 7Z is the augmentation map and det: K*(Y) — Pic(Y)
is the determinant map. We call ir/y (L) the relative intersection number and Zz/y (L)
the intersection sheaf for £ = (£y,...,Ly). If F = Ox, then we write ix/y = ir/y and

Ix)y =ZLr)y.

Remark 2.5. By Remark 1.4, we can write

Ly D
IX/Y(£17---a[’d+1) = ®IC{1 41} (det(Rﬂ‘*ﬁll)) ,

.....

where £; = L£;, ® --- ® L;, for I = {iy,...,4} with / = k£ > 0, and £L; = Ox for
the empty set I = (). A similar but different formula is written in [5], page 34 (cf. [6],
Section IV.1).

Remark. There is also the augmentation map e: K*(Y)per — H(Y,Z) and the deter-
minant map det: K*(Y)per — Pic(Y'), which are lifts of the same maps from K*(Y),
respectively. In fact, € is defined by ranks of locally free sheaves, and the existence of
det is proved by Knudsen—Mumford [15]. Therefore, even if 7 is only a locally projective
morphism and even if Y has no ample invertible sheaves, one can define the relative

intersection number ix/y(£) and the intersection sheaf 77,y (L) by using ¢ and det from
K2 (Y)pert-

Lemma 2.6. ¢(n7 (z)) = 0 for any x € F¥Y(X). In particular, i)y gives rise to a
homomorphism G*(X) — G°(Y) ~ Z. Furthermore, iz;y(z) = i(z|s; F @ Of) for any
fiber F of  and for any v € GY(X).
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Proof. By Lemma 2.3} e(77 (z)) = i(x|r; F @ Of) for any € F¥(X). So, we may assume
Y to be Speck for a field k. Then (7 (z)) = i(x;F) = 0 for z € F(X), since

*

zclo(F) € FUU(X)Fy(X) C F_1(X) =0. O

Proposition 2.7. Let Ly, ..., Ly be invertible sheaves on X with surjective homomor-
phisms ©*G; — L; for locally free sheaves G; of finite rank on Y. If k > d + 2, then
Triy(Ly,. .. Ly) = Ox. If k =d+1, then there is a surjection

b Symel(gl) X Symed“ (gd+1) — I]:/y(ﬁl, Ce 7£d+1)7
where e; =iy (La,..., Lic1, Liya, ... Laga) for 1 <i <d+ 1.

Proof. Let ¢\ Pgﬁ) = Py(G;/) — Y be the projective space bundle associated to G,
IP’S? = X Xy ]P’gf), and let pgi): Pg? — X and pgi): Pg? — ]P’gi) be natural projections.
For the tautological line bundle O(1) of IP’@ with respect to G, we have a natural

homomorphism
P L — G = py "G — py o),

and thus a global section o of pgi)*£i®pg)*(9(1) which defines an effective Cartier divisor
B® = div(c®) on PY. Then B — X is a projective space bundle isomorphic to Py (K))
for the kernel IC; of 7*G; — L;. Let q¢: Py — Y be the fiber product Py = IP(Y” X oo X IP’%E)
of the projective space bundles, Py := X Xy Py =~ Pg) X -+ -xXIP’g’;), and let p1: Px — X,

po: Px — Py, and 7 : Py — Pg? for 1 <14 < k be natural projections. Then
Vo= ﬂle W(n—l(B(i)) ~ B® %y ... xx B®.
The sections ¢ give rise to a global section o of the locally free sheaf
=@ piL®po1)?,

where O(1)® is the pullback of O(1) by Py — ng). Furthermore, V' coincides with the
zero subscheme V(o) of o (cf. Definition 1.5). Since V' is smooth over X, we infer that
o is a regular section of £. Moreover, o is pjF-regular, since V' — X is flat. Hence, by
Lemma 1.6, we have

cd*(Ov) = A1(€Y) = ) (piLr @ p;O ()Y, .. piLy @ psO(1)M).

Note that

*f * * *F * *
phy (i phy) = phl (pix) -y = g*nl (z) -y

/
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for x € K*(X) and 3y € K*(Py) by Lemma [2.3. Thus

P (e (Oy) — ¢*nF 8(Ly, ..., L)
=3 T 6L Lo Lo, £4) - 6(O(1)P) mod F(Py)
=" iy (Lo, Loty Loty L) 8(O()P) mod F2(By).

Since det: K*(Py) — Pic(Py) is trivial on F?(Py), we have an isomorphism

(I1-1) det p5i7 (c1*(OV)) = ¢" Ty (Lr, ... L) © @)L )@

for e; = iz/v(L1,...,Lic1, Lita, ..., Ly). Note that

dim(Suppp; FNV)/Y = dim(Suppp; FNV)/Supp F +d = dim Py /Y — k + d.

If k > d, then py(Supp piF NV) # Py and moreover, ps(Supp piF NV) does not contain
any fiber of ¢: Py — Y. Therefore, by the same arguments as in [17], Chapter 5, §§3-4

(cf. [7], [15]), we have an effective Cartier divisor
D = Dz = Div(pa.(piF @ Oy ® A))
on Py for an invertible sheaf A of Py such that
R’ po(piF @ Oy ® A) =0

for any ¢ > 0. Here, D does not depend on the choice of A, D is a relative Cartier divisor
with respect to ¢: Py — Y, i.e., D is flat over Y, and Supp D C pa(Suppp{F NV). By

construction, we have an isomorphism
det phi” (c1*(Ov)) = det(Rpa. (b1 F © Ov)) = Op, (D).

Hence, if k£ > d+ 1, then D = 0 and iz(Ly,...,Li—1,Liv1,..., L) = 0 for any ; thus
Zriy(Ly,...,Lr) = Oy by . Assume that k = d + 1. Then (II-1) implies that

O Zry(Lise La) @ Q),_, (O(l)( ))
has a non-zero global section defining the divisor D. The section induces a section of
d+1 PRy
ey Ly Lapn) ® Q). Sym™(G,)),
and, equivalently, a homomorphism
d+1 ..

It remains only to show that ® is surjective. The composition of

R, 01 - ¢ @ sym*(G)
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and ¢*® is an injection between invertible sheaves whose cokernel defines D. In particular,
q¢*® is surjective outside D. Since D does not contain any fiber of ¢, we conclude that ®

is surjective. U

Remark 2.8. Let D = Dz be the effective Cartier divisor of Py = P(G)) Xy -+ Xy
P(G;,,) in the proof of Proposition 2.7. In view of the proof, we infer that, for a point

y €Y, the effective divisor D|,-1(,) is characterized by the following two conditions:

(1) For 1 <i < d, let O(1)® be the pullback of the tautological invertible sheaf of
Py (G,) with respect to G;. Then

d+1 i e
Og-1()(Dlg-10)) = @), (Oy (1)P)=.

(2) Let v; be a non-zero element of G; ®k(y) for 1 <i < d+1. For v = (vy,...,v441),
let [v] be a point of ¢~ *(y) corresponding to the surjections v} : GY @k(y) — k(y).
Let v be the global section of £; ® Or-1(,) defined by 7*G; — L;, and v* =
(vi, ..., v54) as a global section of (L@@ La11) ® Or-1(,). Then [v] & Supp D
if and only if V(vX) N Supp F = @ for the zero subscheme V (v¥) C 77(y).

Remark. Assume that Y = Spec A for a ring A, X = P4, F = Oy, and L; = Opn(m;)
for some m; > 0. Then, for G; = H*(X, £;) ~ Sym™ (A®(@+1)) the homomorphism ® in
Proposition defines the resultants: An element v; € G; is regarded as a homogeneous
polynomial of degree m; with coefficients in A. Then

D! @ - © )

is the resultant of vy, ..., v441 up to unit (cf. [5], Section 6.1).

Lemma 2.9 (cf. [6], Section III).

(1) I]:/Y(‘CT(I)a SR 7£T(d+1)> = If/Y(‘Ch B 7£d+1) fO'I” any T € Aut({17 s 7d+ 1}) =
Syt

(2) For another invertible sheaf L', one has an isomorphism
I}‘/Y(;Cl & Ell, ﬁg, e 7£d+1) ~ I]:/y(ﬁl, £2, Ce 7£d+1) ®I_7:/y(£ll, £2, Ce 7£d+1)~

(3) If oy is an F-reqular section of L1 and if F @ Op, is flat over Y for By = V(o1),
then

Zriy(Lay - Lav1) = Trgog, jv(Lalpys-- - Larils)-
(4) If d =0, then Zx,y (L) is the norm sheaf of an invertible sheaf L on X, i.e.,

Ix/v (L) = det(m.Ox) @ det(m L) ™" ~ det(m.L) @ det(m.Ox) "
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Proof. (1) follows from Definition (1.3, and (2) from Remark 1.4 and Proposition 2.7.

(3): The section oy induces an exact sequence
0 -FRL' = F—Fx05 — 0.
Thus, we have equalities
0(Ly) cle(F) = cl(F ® Op,),
Ox(L1,...,Las1)cle(F) =1 (05, (La|By,- -5 Lat1]B,) cle(F @ Op,))

in K,(X) for the closed immersion i: B; C X. Hence, the expected isomorphism is

derived.
(4) follows from Remark 1.4 (2). O

We recall the following well-known result on Segre classes (cf. [6], Section V):

Lemma 2.10. Suppose that X = Py (E) for a locally free sheaf € of rank r on'Y . Then
for the tautological line bundle O(1) with respect to £, one has

l 1, if0<i<r:
m.(6(0(1))) = ‘
o(det&), ifl=r.

Furthermore, the following equality holds for any i > 0:
DoV THEN(EY) =) (8(0(1)F) = 0.
In particular, for i > 0,
s'(&) = m (6(0(1)) 1) mod F'TH(X) € G'(X)
can be regarded as the i-th Segre class of €.

Proof. The first assertion follows from

0, forl<rorp<r—1,;
RP 1, O(-1) =

det&Y, forl=randp=r—1,

5OM) =Y (-1 (l) A (O(~1)).

i
Let G be the cokernel of the natural injection O(—1) — 7*EY. Then

% (*(G) = (r = 1)) = 7 (I (7EY) = 1) 3 (A*(O(=1)) = 1) "
The left hand side equals the polynomial
Nyaon(ed(G) = (r = 1)) = Y0 M(G)r(1 — 1)t
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of degree r — 1. The right hand side equals

(S, 7€) = )e) (3, 80y,
so the coefficient of "+ for i > 0 equals

>y et (€Y) = r) 6(0(1)) .
By taking 7., we have the second expected equality. Comparing with the Chern classes
c(EY) =~4P(c1*(€Y) —r) mod FPT(Y), we have

m

Z::O " HEY) M (E) = Zk:o AR d(EY) — ) (8(O(1)) ) mod F™TH(Y)
=3 Y HAEY) — )m(B(O()" ) mod FH(Y)
=0

for m > 0. Thus, s*(£) is the i-th Segre class. 0O

The following is proved essentially by an argument in [6], Section V.

Proposition 2.11. If z € F™?(X), then 77 (z) € F*(Y). In particular, Zry(z) =

det 77 (z) gives rise to a homomorphism G1(X) — GYHY) ~ Pic(Y).

Proof. By definition, F'*(X) is generated by elements of the form & = ~" (z1)---~v%(x;)
for positive integers ¢; with ¢y + - - - + ¢, = k, where x; = cl(&;) — r; for a locally free sheaf
&; of rank r;. Thus, € mod F*™(X) is written as the product ¢ (&) - - - ¢%(&;) of Chern
classes. Chern classes are expressed by Segre classes. Thus, G*(X) is generated by the
products 871 (&;) - - - 87(&) of Segre classes. Let r; be the rank of the locally free sheaf
&;. For the product p: P = Px (&) xx -+ xx Px(&) — X of projective space bundles
over X, and for the pullback O(1)®) of the tautological line bundle O(1) on Px(&;) by
P — Px(&;), we have

$(E) 8" (E) = pe (OISO ) s(O(1) ) )
mod Fj1+~~-+jz+1(X>
for ji, ..., ji > 0 by Lemma 2.10. If 3 j; > d+ 1, then > (r; + j; — 1) > dim P/Y + 1,
and hence,
Tper/y (5((9(1)(1))r1+jrl . .5(@(1)(l)>n+jﬁl> — Oy,
by Proposition [2.7. Therefore, 77 (F4"2(X)) C F2(Y). O
Lemma 2.12. Let h: Y — Y be a morphism from a Noetherian scheme Y', X' =

X xy Y’ and F' = ¢iF for the natural projection q,: X' — X. Assume that Y’ admits

an ample invertible sheaf when m is not flat. Then one has an isomorphism

R Tryy(n) ~Zry(gin)
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for any n € G4L(X).
Proof. Proposition 2.11 above and the base change formula
@, (qix) = h*(x] (x))
for v € K*(X) shown in Lemma 2.3/ imply the equality
g, () = h*(xl (n))
in G*(Y') = Pic(Y”). Thus, the required isomorphism is obtained. O

The following Lemma and Corollary are similar to the projection formulas
shown in [6], Proposition IV.2.2 (b), and [18], Propositions 5.2.1 and 5.2.2.

Lemma 2.13. Let ¢: Y — S be a projective surjective flat morphism to a connected
Noetherian scheme S with the relative dimension e = dimY/S, and G a locally free sheaf
on'Y of finite rank. Suppose that F is flat over S and that S admits an ample invertible

sheaf when w is not flat. Then, there exist isomorphisms
Tronars(nm0) = Lgs(c'(Trpy(0)0)  and  Tremegs(n'm0') = Igs(0)=7/> )
forn e GHYX), n € GYX), 0 € G(Y), and 0 € GL(Y).
Proof. The assertion follows from the projection formula
S (amty) = o7 (n] (2)y)
for any x € K*(X) and y € K*(Y). This is derived from the quasi-isomorphism
R(¢om). (FRT'G®(E®V)) 2 Ry, (G0 V) @" R (F R E))
for any locally free sheaves £ on X and V on Y of finite rank. O

Corollary 2.14. For § € GYX) and an invertible sheaf M on'Y, one has an isomor-
phism
Zry(0c (" M)) = Mz ),

Proof. Apply the second isomorphism in Lemma to # € G4X) and c'(M) € GHY)
in the case where 1 is the identity map of Y. Il

Proposition 2.15. Let £ be a locally free sheaf on X of rank d+1 admitting a surjection
TG — & for a locally free sheaf G on'Y of finite rank. Then iz;y(c*(£)) > 0 and there

18 a natural surjection

®: Sym'7/vEN(G) — Tr ) (c™(E)).
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Proof. We shall prove by essentially the same argument as in Proposition2.7. Let ¢q: P :=
Py(GY) — Y be the projective space bundle and O(1) the tautological invertible sheaf
associated with GY. Let Px be the fiber product X xy P, and let p;: Px — X and
pa: Px — P be the natural projections. Pulling back the natural injection O(—1) — ¢*G

to Py, we can consider the composite
p30(=1) = p3¢"G = pi7*"G — pi€

and hence a section o of p;i€ @ p5O(1). The zero subscheme V = V(o) is isomorphic to
Px(KY) for the kernel K of 7*G — £. Since V' — X is smooth, the section o is regular

and furthermore pjF-regular. Thus,
(Ov) = Ay (€ @ pRO(—1)) = (—1)* 171 (cl*(pe" @ p3O(~1)) — (d+ 1))
and cle(F @ Oy) = clo(F) cl*(Oy) by Lemmall.6.
Claim 2.16.
det phi” (c1*(Ov)) =~ ¢" Ty (¢*(£)) ® O(1) %/ (e,

Proof. We set [ = cl*(O(—1)) € K*(P), y = 6(O(1)) =1 —1, and x = clI*(EY) € K*(X).
Then

Aa(piz - p3l) = 32, (D I (@) - (03D =3, pi(A* (@) - pi(y — 1)*
= Docjencan (U <k.>pf()\k(x)) 3y’
" (ZZZj(—l)’f-ﬂ‘ (k) A%)) i

J
- J
By Lemma 2.3, we have
* ° a+1 d+1 —J k /
pgif(d (Oy)) = ijo q 7rf (Zk:j(—l)k‘ J (j))ﬁ(@) -y’

d+1

= ¢ () +a'nf (SR @) ) -y mod FA(P).

Hence, Claim [2.16] follows from the equality:
(I 2) e (ﬁ (ZZZ 1(—1)k1k)\k(cl°(5\/))>> _ o(x% X(E)).

We shall show (I1-2) as follows: Comparing the coefficients of t¢ on the both side of the

equality
d+1

Vel = (d+1)) =32, - A (@)t (1 — )™,
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we have
ya = (d+1) =30 (~DTHd+ 1 k)N(2)
= (D% + ) I @) - () (1R )

d+1

— (—1)(d+ DA () + (1) (Z“(—DMW(@) |

Here e(nfA_(x)) = e(nf e(£Y)) = 0 by Lemmas [1.6 and 2.6. Thus, we have the
equality (II-2) by
e(nl ¢(€)) = (-1)%(m] '(€Y))

= (=)e(nly(z - (d+1)) =« (7{ (Zjii(_l)k_lk)\k(m)» -

Proof of Proposition [2.15] continued. We infer that po(Supp pjF N'V) does not contain
any fiber of ¢: P — Y by dim(SupppiF NV)/Y = N —1 = dimP/Y — 1. Thus, by
arguments in [17], Chapter 5, §§3—4, we have an effective relative Cartier divisor D = Dz ¢
on [P with respect to ¢ such that D C po(Supp p{F NV) and

det phi” (c1*(Ov)) = Op(D).
By Claim we have a global section of
0" Ty (¢"1(E)) @ O(1)2 7/ (€D,

Restricting it to a fiber of ¢, we infer that iz/y(c?(€)) > 0. The global section gives a

surjection
B Symi= O G L T, (A (E)),
by the same argument as in the proof of Proposition 2.7. O

Remark 2.17 (cf. Remark 2.8). Let D = Dx¢ be the effective relative Cartier divisor of
P = Py(GY) in the proof of Proposition 2.15. From the proof, we infer that, for a point
y € Y, the effective divisor D|,-1(,) of the fiber ¢7'(y) of ¢: P — Y is characterized by

the following two conditions:

(1) For the tautological invertible sheaf O(1) of the projective space ¢~ (y), one has
Oq_l(y)(D|q—1(y)) ~ (’)(1)®"f/y(cd(5)).

(2) Let v be a non-zero element of G ®k(y). Let [v] be a point of g7 (y) corresponding
to the surjection v¥: G¥®@k(y) — k(y). Let v be the global section of £®Or-1,)
defined by 7*G — £. Then [v] & Supp D if and only if V(v*) N Supp F = 0 for
the zero subscheme V (v*) C 771 (y).
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Lemma 2.18. I[f€ = L1 B - ® Ly, for invertible sheaves L; and if G = G1 B - B Gy
for locally free sheaves G; of finite rank with surjections ©*G; — L;, then the natural

surjection
Sym*(G) — Sym® () ® --- @ Sym*(Gy)

to a component is compatible with the surjections ® in Propositions 2.7 and 2.15], where

. . d+1
€; = Zf/Y(ﬁb o i, L, ,£d+1) and €= lf/Y(Cd(g)) = Z;l €;.

Proof. Let V be the locally free sheaf @ O(1)®) on Py = Py (GY) xy -+ Xy Py (G}, 1),
where O(1)® is the pullback of the tautological invertible sheaf by Py — Py (GY).
Then there is a birational morphism p: P(V) — Py (G"Y) for the projective space bun-
dle w: P(V) — Py such that the tautological invertible sheaf of P(V) associated to V
is just the pullback of the tautological invertible sheaf of P(GY) by u. Let T'; C P(V)
be the projective subbundle associated with the quotient locally free sheaf V/O(1)® for
1<¢<d+ 1. Then I'; is a Cartier divisor such that

O) @@ O(1)"” =~ pO(1) and () =Py(G"/G)) C Py(G).

For a point y € Y, let v = (vy,...,v441) be a non-zero element of G ® k(y), where
v; € G; @k(y). Then [v] € Py (GY) Xy y is not contained in pu(T;) if and only if v; # 0.
Let Dy = Dz be the effective relative Cartier divisor on Py defining ® in the proof
of Proposition 2.7. Let Dy = Dgg be the effective relative Cartier divisor on Py (GY)
defining ® in the proof of Proposition 2.15. Then,

w" Dy + Zj: e’y ~ "Dy
and 1. (ww*Dy) = Dy over Py (GY) \ UH] u(T;), by Remarks 2.8 and 2.17. Hence,

W*Do + Zj:ll eiFi = /L*Dl

since the invertible sheaves O(1)® are linearly independent in Pic(Py). The push-forward

on Y of the natural injection
* d+1 7 e; * e
= (@1 0)")*) = ron)®
is just the injection
d+1 .
®,_, Sym“(G;) — Sym*(G").

Hence, two ® are related by

®: Sym®(G) — ®(j:11 Sym®(G;) 2, Triy(La,..o  Lag)- O
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Definition 2.19 ([9]). Let P = P(x1,22,...,2,) € Z[x1,...,x,] be a weighted homoge-

neous polynomial with the weight of x; being 7. If
i(P(c'(E),...,c"(€)); X) = / P(c'(&),...,c"(€)) >0
X

for any projective variety X defined over a field and for any ample vector bundle & of

rank r on X, then P is called numerically positive for ample vector bundles.

Fact 2.20. If P € Z|xy, ..., x| is a weighted homogeneous polynomial of weight x; being
1, then P is expressed uniquely as Y, ay Py for the Schur polynomial P, associated with
the ‘partition’ A and ay € Z. Fulton-Lazarsfeld [9] showed that P is numerically positive
for ample vector bundles if and only if P # 0 and ay > 0.

Proposition 2.21. Let P € Z[xy, ..., x,.] be a numerically positive polynomial of degree
d+ 1 for ample vector bundles. Let £ be a locally free sheaf on X of rank r generated
by global sections, and F a coherent sheaf on X flat over Y. Then Zz)y(P(€)) =
Tr/y(P(c'(E),...,c"(E))) is generated by global sections.

Proof. We may assume that P is a Schur polynomial Py. By [14] and [9], there is a
smooth projective morphism ¢: W — X and a locally free sheaf H on W of rank N such
that H is generated by global sections and

¢ cN(H) = P(c*(€),...,c"(£)) € GITH(X).

Thus, Zzy (P(E)) = Zy7/v(c" (H)), which is globally generated by Proposition2.15. [



26

3. INTERSECTION SHEAVES OVER NORMAL BASE SCHEMES

We shall define the intersection sheaves for non-flat equi-dimensional locally projective
morphisms defined only over normal separated Noetherian schemes. Let us fix a normal
separated Noetherian scheme Y. For the sake of simplicity, we assume that Y is integral.
Let m: X — Y be a proper surjective morphism from a Noetherian scheme X. We fix a

non-negative integer d.

Definition 3.1. Let V9(X) be the set of closed integral subschemes Z of X such that
dim(Z N7 *(y)) < d for any point y € Y with dim Oy, < 1. We define K@ (X) to be
the subgroup of K,(X) generated by the images of K.(Z) — K (X) for all the closed
integral subschemes Z € V9 (X). We also define Coh!?(X) to be the set of coherent
sheaves F on X such that any irreducible component of Supp F belongs to V9 (X).

Note that, for a closed integral subscheme Z, if 7(Z) =Y and if dim(Z N7~ (*)) < d
for the generic point * of Y, then Z € V¥ (X).

Lemma 3.2. If ¢ € K9(X), then

T (FTH(X)E) C F,

con

(V) and m (F2(X)¢) C F?

con

(Y)
for the push-forward homomorphism m,: K¢(X) — Ko(Y).

Proof. Replacing X with a closed subscheme in V7(rd) (X), we may assume that X is in-
tegral. Since FI(X)¢ € F2H(X), it suffices to show m FEH(X) C FE (V) for i = 1,
2. This is derived from the assertion for i = 1, 2 that codimn(Z) > i for any integral
closed subscheme Z of X with codim Z > d +i. Let x be the generic point of Z. Then
dim Ox, > d+ 1. For y = f(x), if dim Oy, <1, then dim Oy, > i by

dim Ox, < dim Oy, + dim Ox, ® k(y) < dim Oy, + d.
Thus, the assertion is verified for ¢ = 1, 2. O
Definition 3.3. Let ¢ be an element of K(?(X). By Lemma 3.2, one can define
ey (60) i=thy (m.(66) €2 and  Tepy (n) i= det (. (n€)) € Ref*(¥)

for § € GY(X) and n € G (X). The i¢/y(0) is called the relative intersection number
and Z¢/y(n) is called the intersection sheaf.

Convention.
(1) If 0 = 8x(Ly,...,Ly) mod FIHL(X) and n = dx(Ly,...,L411) mod FIH(X)
for invertible sheaves L, ..., L4417 on X, then we write

iey (0) =idg/y (L1, La), Zeyy(m) =Zeyy(La, ..., Lar)-
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(2) If € = clo(F) for a coherent sheaf F belonging to Coh!®(X), then ¢ € K@ (X),
and we write iz/y (-) = i¢/y(-) and Tz/y(-) = Z¢)v (-).

(3) If £ = clo(V) for a closed subscheme V' whose irreducible components all belong to
V@ (X), then i¢/y and T¢/y are written by iy/y and Zy,y, respectively. Similarly,

if £ = cly(Z) for an algebraic cycle Z whose irreducible components all belong to

VW (X), then i¢/y and Z¢/y are written by iz/y and Zz/y, respectively.

Remark. For a closed immersion ¢: X < X’ into another proper Y-scheme X', and for
0 € GUX"), n € G (X"), we have

iy (0|x) =t v(0) and  Zey(0|x) =Ty ().

Thus, the definitions of ix/y, iv)v, iz/v, L7y, Ip/y, and 7y above cause no confusion.

Ezample 3.4. Assume that Ox € Coh'”(X) and d = 0; in other words, 7: X — Y
is generically finite. Then Zx,y (L) for an invertible sheaf £ on X is nothing but the

reflexive sheaf

VvV

((Te\t L ® ae\t(m(’)x)v)vv ~ (&&(m@x) ® (Te\t(w*ﬁ_l)v)
If X is normal and £ = Ox(D) for a Cartier divisor D, then Zx/y(£) ~ Oy(m.D). In

fact, we have an isomorphism

(det(m.Ox) ® det(m.Ox (—A)") " = Oy (1.4)
for an effective Weil divisor A of X, and applying it to effective Weil divisors Dy, D-
with D = Dy — Do, we have the isomorphism above (cf. Remark [1.4).

Remark 3.5. In this Section [3, we assume that the base scheme Y to be normal. If Y
is only a separated integral scheme, then the intersection sheaves Zx/y (L1, ..., Lqy1) are
not naturally defined for an equi-dimensional morphism 7: X — Y of relative dimension
d and invertible sheaves £; on X. For example, we consider the following situation: Let
Y be a nodal rational cubic plane curve defined over C and 7: X — Y the normalization.
Let P € X be a point not lying over the node of Y. One can consider the push-forward
7.(P) as a divisor of Y. So, the intersection sheaf Zy/y(O(1)) for the invertible sheaf
O(1) on X ~ P! is expected to be the invertible sheaf Oy (7, P). However, if P’ € X is
not lying over the node, then m,(P) is linearly equivalent to 7.(P’) only when P = P’

Hence, we have no natural definition of Zx,y(O(1)).
Lemma 3.6. Let F be a coherent sheaf belonging to Cohgrd) (X). Then

ey ) = Z(x,q /v (1)
for any n € G(X) (cf. Definition[1.9).
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Proof. Since clg(F) = clo(Fior)y) + clo(Fis./y), it is enough to show that
T s (77 Cl' (‘;Etor/y)) € Fc20n(Y)

for any n € G4*1(X). This follows from an argument in the proof of Lemma [3.2. In fact,
Fior)y is defined on 7 YW = X xy W for a proper closed subscheme W C Y and

T (FNX) clo(Fioryy)) C Image(Fop, (W) — F2 (V). O

con con

Remark 3.7. In order to study the intersection sheaf Zz,y (n) for F € Coh?(X), we may
assume that Fi,./y = 0 by Lemma/(3.6. Thus, we may remove the irreducible components
of X which do not dominate Y, i.e., we may replace Ox with (Ox)¢¢/y. Hence, we may
assume that there is an open subset U C Y with codim(Y \ U) > 2 such that 7 and F

are flat over U. In particular, we have
iFyy (0) =iz, )yl 21U (9|rl(U)) = i(0; Fisr vy @ Ox-1(y)),
Trpy(0) = 5 Tr ol (M)

fory e U, 0 € GYX), n € G™*(X), and for the open immersion j: U C Y.

Remark 3.8. If 7 is projective, F is flat over Y, and Assumption 2.1 is satisfied, then
Ty (n) defined in Definition[3.3 coincides with the intersection sheaf Zz,y (n) treated in
Section [2. In fact, this is derived from that

$(x7 (2) = m(wclo(F)) and  det(y) = det(y)

for any x € K*(X) and y € K*(Y). Even if we assume only that 7 is locally projective
and F is flat over Y, we can define Zr,y(x) for x € F*(X) by

Trpy =detor? : K*(X) — K*(Y)pert — Pic(Y).

Then Z 7y () is also isomorphic to the intersection sheaf Zz/y (cl*(x)) defined in Defini-

tion 3.3 by similar formulas

Ppert (77 () = To(x clo(F))  and  det(pe(y)) = det(y)

for the Cartan homomorphism ¢ ¢ K*(Y)per — Ko(Y) and y € K*(Y)perr. The latter
formula follows from Lemma(l.10/and an argument in [15], Chapter II (cf. [17], Chapter 5,

§3).

Lemma 3.9. Let 7: Y — Y be a dominant morphism from another normal separated
Noetherian integral scheme Y’ such that codim 7=Y(B) > 2 for any closed set B CY of
codim B > 2. Let X' be the fiber product X Xy Y', and let p1: X' — X and p3: X' — Y’
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be the natural projections. For a coherent sheaf F of X belonging to Cohgrd) (X) and for

n € GY(X), one has an isomorphism
% % VvV
Ly:7/yv(pin) =~ (T If/Y(n)) :

Proof. We may replace Y with a Zariski open subset U such that codim(Y \ U) > 2,
since the isomorphism of the reflexive sheaves follows from that on 771(U). Thus, we
may assume that Y is regular and 7 is flat. Applying the flat base change formula
[-2): 7*m.(x) = paupi(x) for x = ncle(F), we have the expected isomorphism, since
pi clo(F) = clo(piF). O

The following corresponds to Corollary 2.14:

Lemma 3.10. For ¢ € K9(X), § € GYX) and an invertible sheaf M on'Y, one has

an 1somorphism

Zeyy (0 (M) = MPerv @),

Proof. We set * = 6¢ and y = ¢'(M). Then the assertion is derived from m,(z)
mod FL (Y) = ig/y(0) and from the projection formula (I-1): m,(27*y) = m(z)y. O

con

We shall show that the intersection sheaf 7 7,y (n) is invertible under certain conditions.

The following is one of such results:

Theorem 3.11. Let m: X — Y be a proper surjective morphism onto a normal separated
Noetherian schemeY . Let F be a coherent sheaf on X such that dim(Supp FNr~1(y)) < d
foranyy eY.
(1) If Ly, ..., Lqi1 are invertible sheaves of X such that . L; — L; is surjective
for any i, then Tr/y(Lq, ..., Lay1) is an invertible sheaf.

(2) If 7 is locally projective, then Iy (n) is invertible for any n € G X).
The proof is given after Lemmas3.12/ and [3.14l

Lemma 3.12. Let F be a coherent sheaf on X belonging to Coh'?(X) and let € be
a locally free sheaf on X of rank d + 1. Let o be an F-reqular section of £. Then,
Zry (cTHE)) ~ Oy (D) for the codimension one part D of the effective algebraic cycle
7. cyc(F @ Oy (o). Moreover,

Cl.(D) = Cl.(ﬂ*(f® OV(O‘))) = T, Cl.(]:@ OV(O’)) mod F?2 (Y)

con

Proof. By Lemma we have

" E) elo(F) = clo(F ® Oy(y)) mod FEZ(X).

con
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Since cly(cyc(F @ Oy (o)) = clo(F ® Ov(,)) and since cyc(F @ Oy (,)) does not dominate
Y, we have

clo(D) = 7, clo(F ® Oy(r)) mod F2 (),

equivalently, Zz/y (c?t(€)) ~ Oy (D). Since codim Supp R’ 7.(F ® Oy (y)) > 2 for i > 0,
we have
clo(T(F @ Oy () = Tuclo(F ® Oy(y)) mod F2 (V). O

con

Remark 3.13. In the situation of Lemma if 771 (y) N Supp(F @ Oy(,)) = 0 for a
point y € Y, then Zx/y (¢ (£)) is invertible at y, since y & Supp D.

Lemma 3.14. Let V' be a Noetherian scheme over a Noetherian local ring A and L an
inwvertible sheaf of V' generated by finitely many global sections og, ..., on. Suppose that
the residue field k(A) = A/my is an infinite field. For coherent sheaves Fy, ..., Fy of V,
there exists a global section o of L such that o € YN, Ao; € HY(V, L) and o is Fi-regular
forany 1 <i<k.

Proof. For 1 < i < k, let J; be the set of point n € V with depth(F;,) = 0; in other
words, J; is the set of associated primes of F;. Let W (n) be the closure of {n} for n € J;.
Then, a global section o of £ is F;-regular if and only if o|w ;) # 0 as a section of L|w
for any n € J;. Let {W4,...,W,;} be the set {W(n) | n € UJ;}.

By the finite global sections oy, ..., oy, we have a morphism ¢: V — P4 such that
Y*O(1) ~ L. Tt is enough to find an element o € RY := H°(PY, O(1)) such that {o = 0}
does not contain (W) for any 1 < j <.

We may replace A by the residue field k(A). In fact, if we find a global section
7 € RN(k(A)) = H(P{,), O(1)) =~ RN(A) ®4 k(A) which does not vanish along ¢ (1)
for any j, then a lift 0 € RV(A) of & also does not vanish along 1(W;). Thus, we assume
A to be a field k.

Let L; C RY(k) be the vector subspace consisting of elements vanishing along ¢ (W;).
Then L; is a proper subspace. Since k is infinite, we can find an expected element o in

RN(k) \ UL;. O
We shall prove Theorem

Proof of Theorem 3.11. (1): By a flat base change (cf. Lemma [3.9), we may assume
that Y = Spec A for a local ring A. If the residue field k(A) is finite, then we replace
A with the localization B = A[z]y, of the polynomial ring A[z] at the maximal ideal
m = mylx] + xA[z]. Then Spec B — Spec A is flat and the residue field k(B) = k(A)(x)
is infinite. Thus, we may assume that k(A) is infinite.

Now, L; are all generated by global sections. Applying Lemma 3.14 successively,
for the closed point y € Y, we can find global sections o; € H%(X,L;) such that
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(01,...,0411) is F-regular and Supp(VNr~t(y)) =0 for V.=V (01,...,04:1). Therefore,
Tr/y(Ly,...,L441) is invertible at y by Lemma[3.12/and Remark [3.13.

(2): An element of G¥*!(X) is expressed as a homogeneous polynomial of Chern classes
of degree d + 1 for suitable locally free sheaves of finite rank. Since the Chern classes are
represented by Segre classes, it suffices to consider the case where n = s (&) - - s' (&)
for the Segre classes s'(&;) of locally free sheaves ;. Let p: P — X be the fiber product
of all P(£}’) over X, and let £; the pullback of the tautological invertible sheaf O(1) with
respect to &; for any j. Then

n= p*<cl(£1)Nl+ll . Cl(ﬁk)Nka)
for N; =rank&; — 1 by Lemma [2.10. Therefore,
ey () = Ly (€ (L)V 1 e (L) M),

Thus, we are reduced to the case where n = ¢'(My)---c'(Mgyq) for My, ..., Mgy €
Pic(X).

As in the proof of (1), we can localize Y. Hence, we may assume that X admits a
relatively very ample invertible sheaf with respect to w. Thus, by the linearity of Z#/y,

we may assume that M; are all relatively very ample. Then the assertion follows from

(D). O

As an application of Theorem we have:

Theorem 3.15. Let m: X — Y be an equi-dimensional locally projective surjective mor-
phism between normal separated Noetherian integral schemes. If X s Q-factorial, then

soisY.

Proof. Let E be a prime divisor of Y. We shall show that some positive multiple of F is
Cartier. Thus, we may assume 7 to be projective by localizing Y. Let A be a m-ample
invertible sheaf on X and set § = ¢'(A)? € G¥(X) for d = dim X/Y. Then ix/y(0) > 0.
Since 7 is equi-dimensional, there exists uniquely an effective Weil divisor D on X such
that 7*E = D on 7 }(U) for an open subset U C Y with codim(Y \ U) > 2. By
assumption, kD is Cartier for some k > 0. Thus, Zx,y (0 c'(Ox(kD))) is an invertible
sheaf by Theorem On the other hand,

Ixyy (0 (Ox(kD)|v = Oy (ix/y (O)kE)|v,
by Lemma 3.10. Hence, ix/y(0)kE is Cartier. O

The following is a result analogous to Lemma[2.13.
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Lemma 3.16. Let ¢v: Y — S be a proper surjective morphism to a normal separated
Noetherian integral scheme S of relative dimension e = dimY /S, and G a torsion free

coherent sheaf on'Y . Assume that

e 7, 1Y, and v o m are locally projective morphisms, and
e dim(Supp F N7 (y)) < d and dim(Supp F N7t~ (s)) < d+e foranyy €Y
and s € S.

Then there exist isomorphisms
Tromgrs(nm*0) = Lgs(c'(Trpy(0)0)  and  Lromegus(n'm0') = Tgs(0)= 7/ )
forne GHYX), 0 € GUX), 0 € G¢(Y), and §' € GTL(Y).

Proof. Let U be an open subset of Y such that codim(Y \ U) > 2 and that G is locally

free on U. Then, every irreducible component of ¥\ U belongs to V5" (Y), and

(2 clo(F @ 7°G)) |y = me(x clo(F)) |y 1*(G|v)

for any © € K*(X). If z € F(X) represents 7, then, ¢'(Zz/y(n)) = m(x clo(F))
mod F2 (YY), since Zry(n) is invertible by Theorem [3.11. If z € F¥(X) represents 1/,
then iz/y(n') = e(m.(z cle(F))). Thus,

Y (0 cla(F @ 7°G)) = (e (Tr/v (0))0 cla(G)) = €' (Zgs(e (Zr/v (0)0))),
Y (/70 clo(F @ 7°G)) = i)y () u(0 cla(G)) = iy () €' (Zg/s(9'))-

These equalities induce the expected isomorphisms. Il

The following is a generalization of Theorem (I). This is proved by an argument
analogous to Propositions2.7/and[2.15/in Section|2. In particular, the proof is independent
of that of Theorem [3.11.

Proposition 3.17. Let G be a locally free sheaf on'Y of rank N + 1 and € be a locally
free sheaf on X of rank d+ 1 admitting a surjection 1*G — E. Let ¢: P=P(GY) = Y be
the projective space bundle, O(1) the tautological invertible sheaf on P with respect to GV,
and let p1: Px — X and py: Px — P be the natural projections from Py = X xy P. Let
F be a coherent sheaf on X such that dim(7'(y) N Supp F) < d for any point y € Y.
Then Zr/y(e™(E)) is invertible and iz y(c*(E)) > 0. Moreover, there exist an effective

relative Cartier divisor D on P with respect to q: P — Y, an isomorphism
(II11-1) Op(D) =~ ¢*(Zr/y (cHH(E))) @ O(1)iF/v ()

and a surjection

O: SymF v EE G Ty (e(E)).
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Proof. By replacing X with a closed subscheme, we may assume that Supp F = X. Thus,
dim7!(y) < d for any y € Y. From a natural injection O(—1) — ¢*G, considering the
composition

pO(=1) = p3q°G = pi7"G — pi€,
we have a global section o of pi€ ® p;O(1). Then V(o) is isomorphic to V = Px(KY)
for the kernel IC of 7*G — £. Since V' — X is smooth, the closed immersion V C Py is

locally of complete intersection. Thus, the section o is Op,-regular, and furthermore it

is pjF-regular, since V is flat over X. Thus, we have
U pi€ @ p;0(1)) = cI*(Oy)  mod F™2(Px),
T pi€ @ prO(1)) cla(piF) = cla(piF © Oy)  mod FF (Py)
by Lemma [1.6. Taking ps., we have the following equality in G*(PP):
po-(cla(PIF @ Ov)) = pau (" (D€ ® p30(1)) - clo (P} F))
= p2up (€THE) clo(F)) + paapi(¢!(€) cla(F)) - €1 (O(1))
= "1 (cTHE) clo(F)) + ¢ 1 (X (E) clo(F)) - ¢ (O(1)).
Since ¢ is flat, we have
det(q"m. (¢ (€) clo(F))) = ¢ det(m. (™€) cla(F))) = ¢" Trjv (¢*(€)),
¢"(m(c'(€) clo(F))) = irpy (€(€)) clo(Op)  mod F,,(P).

Here, we use the fact that the pullback of a reflexive sheaf by a flat morphism is also

reflexive. Therefore,
det (pau(cla (P} ® Ov))) = ¢" Lz (¢ (F)) ® O(1)i= <€D,
Let D be the codimension one part of po, cyc(piF & Oy ). Then Supp D = po(V') and
Op(D) = det (pa.(cle (0} F © Ov)).

In particular, the isomorphism (III-1) is derived. For an arbitrary point y € Y, Supp D =
p2(V') does not contain the fiber ¢~(y), since

dimpy(V) N g~ (y) < dim(V np;iat(y)) <N - 1.

Hence, ¢*Zr/y(c*t(€)) is invertible at a point of ¢~ '(y) \ Supp D by (III-1) and Re-
mark (3.13. Thus, Zz/y(c*T*(€)) is invertible at y and D is a relative Cartier divisor with

respect to q. Moreover,

iz (c!(€)) = deg Op(D)| -1y > 0.
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The effective divisor D defines a global section of
G (q* I;/y(cdﬂ (5)) ® O(l)z’f/y(cd(é‘))> _ If/y<cd+1(€)) ® Symz‘f/y(cd(g)) gv

and the expected homomorphism ® by the natural pairing Sym'(G) ® Sym'(G¥) — Oy..
The surjectivity of ® follows from the same argument as in the proof of Proposition
O

Remark. If F is flat over Y, then, by construction, the surjection ® in Proposition 3.17

is isomorphic to the surjection ® in Proposition 2.15
By Proposition [3.17 and by the argument of Proposition 2.21, we have:

Corollary 3.18. Let F be a coherent sheaf with dim(Supp F N7~ (y)) < d for any
y €Y, and let € be a locally free sheaf on X of rank r generated by global sections. If
r=d+1, then Zz/y(c’'(£)) is an invertible sheaf generated by global sections. Moreover,
if P(xy,...,2,) is a numerically positive polynomial of degree d + 1 for ample vector
bundles, then Zz/y(P(c'(€),...,c"(£))) is also an invertible sheaf generated by global
sections.

Proposition 3.19/ below gives a base change property related to the flattening of F. In
particular, we have another proof of Theorem 3.11, (2) and Proposition in the case

of projective morphisms 7. The proof uses results in Section 2.

Proposition 3.19. Let F be a coherent sheaf on X such that dim(Supp F N7~ (y)) < d
for any point y € Y. Let 7: Y — Y be proper surjective morphism from a Noetherian
integral scheme Y', X' the fiber product X xy Y’ and let py: X' — X and py: X' =Y’

be the natural projections. Assume that
e m: X — Y is a projective morphism,
o F' = (piF )i, v is flat over Y’,
e Y and Y’ admit ample invertible sheaves when m is not flat.

Then, the following assertions hold for any n € G¥(X):

(1) For any closed irreducible curve C contained in a fiber of T,
Zr v (Pin)le = Oc.

(2) Assume that n = c*Y(E) for a locally free sheaf & of rank d + 1 on X with a
surjection 7*G — & for a locally free sheaf G of finite rank on'Y. Then I zy(n)
18 tnvertible and the surjection

3 Symif/y<cd<s>>(7*g) — Tr v (P} €THE))
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on Y’ appearing in Proposition 2.15/ descends to a surjection
®: Sym#/ (E(G) = Ty)y ("(E)).
(3) Zx/v(n) is an invertible sheaf with an isomorphism
Zryy(pin) = 7" Lryv(n).
Proof. (1): Let W be the scheme theoretic inverse image py*(C) = X’ xy C. Then,

Trgowc@inw) = ey (pin) ® Oc

by Lemma 2.12. Here, pinlw = 0 € GH(W) by py(W) C 7= (y) and dim(7~!(y) N
Supp F) < d for {y} = 7(C). Thus, the intersection sheaf on C' is trivial by Proposi-
tion 2.11

(2) The surjection ¢’ defines a morphism

o1 Y' — Py(Sym' (€ €) g)

over Y so that Zz /vy (¢ (€)) =~ ¢*O(1) for the tautological invertible sheaf O(1). Then
©(Y") — Y is a finite morphism by (1). By Remark (3.7, we may assume that F is flat
over an open subset U C Y with codim(Y \ U) > 2. Then Zz/y(e*™(&)) is invertible on

U and there is a surjection
Dy : SymiF/Y(cd(S))(g)|U —>I_7:/y(cd+1(5))|U.

We infer that 7*(®y) and ®|,-1(yy are isomorphic to each other by the proof of Propo-
sition 2.15 and Remark 2.17l Therefore, ¢(Y’) — Y is an isomorphism over U. Since Y

is normal and ¢(Y”) is integral, we have p(Y’) ~ Y. Hence, & descends to a surjection
D Symif/Y(cd(g))(g) — M

to an invertible sheaf M with M|y ~ Zz/y (e*(E)). Thus, M ~ T x/y (e ()).

(3): As in an argument in Proposition or Theorem 3.11 (2), we may assume
that n = c'(L1) - ' (L4y1) for m-ample invertible sheaves £; such that 7*m,.L; — L; is
surjective and RP 7, L; = 0 for any p > 0. If 7 is flat, then 7,L; are locally free. If not,
then Y admits an ample invertible sheaf, hence there exist surjections G, — mw,L; from

locally free sheaves G; of finite rank. Therefore, the assertion follows from above. O

The base change properties in Lemma 3.9 and Proposition are generalized to:

Theorem 3.20. Let m: X — Y be a locally projective surjective morphism over a normal
separated Noetherian integral scheme Y, and F a coherent sheaf on X with dim(Supp FN
7 (y)) < d for any point y € Y. Let 7: Y — Y be a dominant morphism of finite
type from another separated Noetherian integral scheme Y'. Let X' be the fiber product



36

X xyY' p1: X' — X, po: X' — Y’ be the natural projections, and let F' be the sheaf
(pif)tf/yl Then
ey (pin) = 7" Lrsyv(n)
for any for any n € GY(X) provided that one of the following conditions is satisfied:
(1) F' is flat over Y', T is proper surjective with Oy ~ 1.0y, and py satisfies As-
sumption 2.1l

(2) Y’ is normal.

Proof. First, we treat the case (1). We may assume that F is flat over an open subset
U C Y with codim(Y \ U) > 2. Then

ey (011w = 7 (Zry()lo)
by Lemma 2.3 and Remark 3.8; in other words, the invertible sheaf

N =T (pin) @ T I_’F/Y(n)_l

is trivial on 771(U). By Proposition 3.19/and by Oy =~ 7.0y, we infer that M := 7.
is an invertible sheaf on Y and N ~ 7*M. Here, M is trivial on U. Hence, M ~ Oy
since Y is normal and codim(Y \ U) > 2. Therefore, N' ~ Oy, and the expected base
change formula is obtained.

Second, we consider the case (2). We may replace Y’ with an open subset whose
complement has codimension greater than one. Hence, we may assume that F' is flat
over Y’ also in case (2). By Nagata’s completion theorem, Y’ is realized as an open
subset of an integral scheme Y’ proper over Y. Let Y” — Y’ be a flattening over Y’
of the pullback of F in X Xy Y’. Then, it is enough to show the same base change
formula for X xy Y” — Y”. Precisely speaking, we are reduced to prove Lemma [3.21
below. In fact, the sheaf Iz ,y/(pjz) is isomorphic to Zz y/(pin) if Y’ is normal (cf.
Remark 3.8). O

Lemma 3.21. Under the same situation of Theorem [3.20] instead of the conditions (1),
(2), assume that
(3) po is locally projective, T is proper surjective, and F' is flat over Y.
Let x € FAL(X) be an element representing n and set
Tryy(pi) = det p3, (pi)
for the homomorphisms p3,: K*(X') — K*(Y')pat and det: K*(Y)pmt — Pic(Y").

Then, there is a finite birational morphism v: Y] — Y’ from a separated Noetherian

integral scheme Y| such that

v* (If//yf(p“{:c)) ~ VT Lr/v(n).
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Proof. Let U C Y be an open subset U C Y such that F ;v is flat over U and codim(Y"\
U) > 2. Then,

Ly v (1)) = 7 (Zrpy (0)|u)
by Lemmal2.3 (cf. Remark[3.8). We set

N =Try(piz) @7 Lryy(n) .

Then A has a rational section s which is nowhere vanishing on 77}(U). By Proposi-
tion [3.19] there is an open covering {Y,} of Y such that N is trivial over 77(Y,). Let
YY" — Yy — Y be the Stein factorization of 7. Then, for the morphism 74: Y’ — Y,
M = 7N is invertible and N ~ 7M. Thus, s descends to a rational section sg
of M which is nowhere vanishing on A~'(U) for the finite morphism h: Yy — Y. Let
w: Yy — Yy be the normalization. Then p is a finite morphism since h, Oy, is the
double-dual of h,Oy,. Hence, *(sg) is a nowhere vanishing section of p*M, since Y; is
normal and codim(Y; \ p~'h™1(U)) > 2. Let Y/ be the unique integral closed subscheme
of Y1 Xy, Y which dominates Y. Then v*N is trivial for the finite birational morphism
v:Y/ —-Y. d

The following gives a base change property by not necessarily dominant morphisms

from normal schemes.

Proposition 3.22. Let m: X — Y be a projective surjective morphism over a normal
separated Noetherian integral scheme Y, and F a coherent sheaf on X with dim(Supp FN
7 (y)) = d for any pointy € Y. Let v: B —Y be a morphism from a normal separated
Noetherian integral scheme B and p: X Xy B — X the induced morphism. Then there
exist a coherent sheaf Fr on X xy B and a positive integer e such that Supp]?B C
1Y (Supp F), dim(Supp Fp N (X xy {b})) = d for any b € B, and

V' ey () =Tz, 51 n)

for any n € G4L(X).
Remark. If F is flat over Y, then one can take e = 1 and Fr=1v*"F, by Lemma 2.12!

Proof of Proposition 3.22. Let 7: Y’ — Y be a projective birational morphism from an
integral scheme Y’ which gives a flattening of /Y. For the fiber product X’ = X xy Y’
let p: X’ — X and po: X’ — Y’ be the natural projections. Here, 7' = (piF)is /v
is flat over Y’. There is a closed integral subscheme B’ C Y’ xy B such that 753 :=
T Xy idg: B" — B is surjective and generically finite. We set v/ to be the morphism
B CcY' xy B—Y' LetW and W’ be the fiber products X xy B and X’ xy» B,
respectively. Let rg =7 Xy idg: W = B, q1: W - W, qo: W' — B’ and ¢/ W' — X’
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be the induced morphisms. Note that the induced morphism W — X is p. For the sheaf
Fiyr = p*F', we have
Iy, (Wpin) 22 V" ey (pin) = 750" Ly (n)
for any n € G4*1(X) by Lemma[2.12 and Theorem [3.20. On the other hand,
ko k ]:/ !/ k %k
c(Zr (W in) = 2 (W*pin) € GY(B').
Since B is normal, 7 is a finite morphism over an open subset of B whose complement

con 2 (B) for the homomorphism
7B+ Ko(B') — K.(B). Therefore, the natural homomorphism v.: G*(B') — G._ (B) is

con

has codimension greater than one. Hence, 75,F2 (B') C F?

induced and the following equalities in G ,(B) make sense:

con

Ik x

f’ / * * *
By (11" DIN) = T (W PIN) clo(Fyyr)) = 7o (11 1) cla (R qrs clo(Fyp)).

Now, Supp(R’ q1.(F' ® Ow~)) does not dominate B for any i > 0. Hence, for the sheaf

Fp = q1.Fy on W, we have

(V" Trpy (0)78.(le(O)) = To. € (T, 1 (1P1M)) = 7o (1) cla(F)) = 752 (17m)
in G¢,(B). Therefore,

V' Iy =TIz (i)
by TB*<C1.<OB/)) = ecl.((?B) S Ggon

tions follow from Supp Fiy» C i/~'p;  (Supp F) and dim(Supp Fiy)/B’ = d. d

(B) for the rank e of 75,0p/. The remaining asser-

The following is an application of Theorem [3.20:

Proposition 3.23. Let 7: X — Y be a locally projective surjective morphism of k-
schemes for a field k such that'Y is a normal separated Noetherian integral scheme, and
let F be a coherent sheaf on X with dim(Supp F N7 1(y)) < d for any point y € Y.
Let T be a normal separated Noetherian integral k-scheme, Fr the sheaf p;F for the first
projection py: X X, T — X, and 7 an element of GTY(X xy T). For a k-valued point
t e T(k), put Xy == X <, {t}, Y; =Y < {t}, Fi := Fro0x,, and n; := ij|x, € GTHX,).
Then,
Lrepysar (v = L v ()

Proof. By taking a flattening of /Y, and by Theorem [3.20] we may assume that F is

flat over Y. Then the assertion follows from Lemma 2.3. O
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4. INTERSECTION SHEAVES FOR VARIETIES OVER A FIELD

In what follows, we shall work in the category of k-schemes for a fixed field k. A
variety (over k) is by definition an integral separated scheme of finite type over Speck.
We shall study the intersections sheaves for morphisms X — Y of normal projective
varieties. In Section we study some numerical properties of Zx,y. In Section
for a family Z of effective algebraic cycles of pure dimension of X parametrized by Y
(hence, Z is a cycle of X x Y') and for an ample invertible sheaf A of X, we show that the
intersection sheaf 77y (piA,...,p;A) is just the pullback of an ample invertible sheaf
by the morphism to the Chow variety of X determined by Z/Y. An application to the

study of endomorphisms of complex projective normal varieties is given in Section 4.3.

4.1. Numerical properties of intersection sheaves. Let 7: X — Y be a proper
surjective equi-dimensional morphism from a projective variety X to a normal variety
Y. Note that Y is proper over Speck. We set d = dim X/Y and m = dimY. Then the
intersection sheaf Zy,y(n) for n € G (X) is also defined as 7, ¢(n) mod F2 (V) =

con

Fr oY) for ¢: GH(X) — GLHL(X) = G 1 (X) and 7 G 1(X) — Gra (V).
The base space Y is projective by the following, which is an analogue of [22], Théoreme

2 on Kahler spaces:

Theorem 4.1. Let m: X — Y be a proper surjective morphism from a projective scheme
to a mormal algebraic variety defined over a field. Suppose that m is equi-dimensional.

Then'Y is projective.

Proof. Let A be a very ample invertible of X. We set = c!(A)?! € G4(X) for
d = dimX/Y. Then Zx,y(n) = Zx/v(A,...,A) is an invertible sheaf generated by
global sections by Corollary[3.18 (cf. Lemma(2.18). We shall show that Zx/y(n) is ample.
For this, it is enough to prove that the intersection number Zx,y(1)C is positive for any
irreducible curve C C Y. Let v: B — C be the normalization and p: X xy B — X the
induced finite morphism. Then there exist a coherent sheaf F g on X Xy B and a positive

integer e such that dim Supp F5 = d + 1 and
Vi Iy ()~ Tz ()
by Proposition [3.22. Hence,
eIxyy(n)C =deg Ty, (1) = i(u'n; Fp) = i(u" A, ..., 5" A; Fig) > 0. O

In order to calculate the intersection sheaves Zy,y(n), we may replace X with the

normalization. In fact, we have:
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Lemma 4.2. Let v: X — X be a finite surjective morphism from another projective
variety X. Then

I;?/y(’/*n) ~ Txyy(n)®
for any n € GY(X) and for the degree e = deg(f).

<> we have v, cl,(O5) = ecly(Ox) in G2, (X), which

proves the formula. O

Proof. Since e is the rank of v, O

In Lemma [4.3/ and Theorem 4.4/ below, we shall give sufficient conditions for an inter-

section sheaf Zx/y (1) to be ample or nef.

Lemma 4.3. Let n be an element of GI(X) such that i(n; W) > 0 for any closed
irreducible subset W C Supp F of dimension d + 1. Then Ixy(n) is nef.

Proof. For an irreducible curve C' of Y, let B — C be the normalization. Then, by
Proposition [3.22, there exist positive integer e and a coherent sheaf Fp of X xy B such
that

eZx/y(n)C = i(p'n; Fp) = i(n; p.Fp) > 0
for the induced finite morphism p: X xy B — X. U

Theorem 4.4. Let m: X — Y be an equi-dimensional proper surjective morphism of
normal projective varieties defined over a field. Let 0 be an element of GY(X) for d =
dim X/Y. For an invertible sheaf L of X, the intersection sheaf M = Tx;y(0c'(L))

satisfies the following properties:

(1) If L is algebraically equivalent to zero, then so is M.
(2) If L is numerically trivial, then so is M.

Assume that i(0; W) > 0 for any closed subscheme W C X with dim W = d. Then the
following properties are also satisfied:

(3) If L is nef, then so is M.

(4) If L is ample and if ix;y(0) > 0, then M is ample.

Proof. Let k be the algebraic closure of the base field k. Let Y be the normalization of a
closed integral subscheme of Y ®; k which dominates Y. Then, by Lemma (3.9, it suffices
to show the assertion for the pullback X xy Y — Y of m. Hence, we may assume from
the beginning that k is algebraically closed.

(1) follows from Proposition 3.23!

(2): (6 cH(L); W) = 0 for any closed subscheme W’ C X of dimension d + 1, since £
is numerically trivial. Hence, MC = 0 for any irreducible curve C' C Y by the proof of
Lemma 4.3.



41

(3): By Lemma 4.3, it suffices to show
(IV-1) i(0c(L); W) >0

for any closed subvariety W’ C X of dimension d+1. If £ is very ample, then dim W/NA =
d for a general member A € |L]| (cf. Lemma 3.14). Hence,

i(0c(L); W) =i(0; W NA)>0.

Thus, (IV-1) holds if £ is ample. Even if £ is only nef, L2V ® A is ample for any ample
invertible sheaf A of X and for any N > 0. Thus

0 <i(0c(LEN @ A); W) = Ni(0c (L); W) +i(0 e (A); W)

for any N > 0. Hence, (IV-1) holds for any nef invertible sheaf L.
(4): Let A be an ample invertible sheaf on Y. Then £ @ 7*A~! is ample for some
b > 0. Thus,

IX/Y(H Cl(£®b Q 71'*./4_1)) ~ M®b ®IX/Y(9 Cl(W*A))_l ~ MO @ A®(ix/y(0)
is nef by (3) (cf. Lemma[3.10). Hence, M is ample. O

In Lemma 4.5 and Theorem [4.7 below, we shall give sufficient conditions for an inter-

section sheaf Zx/y(n) to be effective, big, or pseudo-effective.

Lemma 4.5. Let B CY be a closed subset of codim(B) > 2 and Z an effective algebraic
cycle of X\ 7 Y(B) of codimension d such that any irreducible component of Z dominates
Y\ B. Let 0 € GYX) be an element such that

POl x\a-1p) = clo(Z) € KJ(X \ 7 '(B)).

If D is an effective Cartier divisor on X which does not contain any irreducible component

of Z, then the intersection sheaf Ixy (0 c'(Ox(D))) has a non-zero global section.
Proof. Let Z =" n;Z; be the irreducible decomposition. Then

IX/Y(9 Cl(ﬁ))’Y\B = ®IZZ-/Y\B(£ z

If M is an invertible sheaf on Y, then H*(Y, M) ~ H*(Y \ B’, M) for a closed subset B’
with codim(B’) > 2. Thus, by replacing Y with Y \ B’ for certain closed subset B’ O B

with codim(B’) > 2, and X with Z, we are reduced to prove the existence of a non-

zero global section of M = Tx/y(Ox (D)) for a finite surjective morphism 7: X — Y
of not necessarily projective varieties, where Y is normal, and for an effective Cartier
divisor D on X. We may also assume that X is normal by Lemma 4.2. Then, the
assertion follows from the property that the push-forward m,D is effective and from the
isomorphism Oy (m.D) ~ Zx,y(Ox (D)) (cf. Example [3.4). O
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Definition 4.6 (cf. [23]). Let N be an invertible sheaf on a normal projective variety X
defined over an algebraically closed field, and W C X a closed subset. If the following
condition is satisfied, then N is called weakly positive outside W:

e For an ample invertible sheaf A on X, an arbitrary point x € X \ W, and for any
positive rational number €, there exist a positive integer m with me € Z and an
effective divisor D such that Ox (D) ~ N®™ @ A®™ and = € Supp D.

Theorem 4.7. Let m: X — Y be an equi-dimensional proper surjective morphism of
normal projective varieties defined over an algebraically closed field with d = dim X/Y".
Let Ny, ..., Ny be invertible sheaves on X which are weakly positive outside 71 (B) for
a closed subset B C'Y of codim(B) > 2. For an invertible sheaf L of X, the intersection
sheaf M = IX/Y(Nl, ..., Ny, L) satisfies the following properties:

(1) If L is pseudo-effective, then so is M.

(2) If L is big and if ix/y (N1, ..., Ng) >0, then M is big.

(3) If all the N and L are nef and big, then M is also nef and big.

Proof. (1): Let A be an ample invertible sheaf on X and e a positive rational number.
Then there is an effective divisor A such that Ox(A) ~ L% @ A®* for some [ > 0 with
le € 7. By the weak positivity, there exist also positive integers mq, ..., mg and effective
divisors D1, ..., Dy such that

e mc € Z and Ox(D;) ~ NF™ @ A™€ for any 1 <i < d,

e codim(VNANa (Y \ B)) =d+ 1 for the intersection V = D; N---N Dy, and

o VNr~Y(Y\B') — Y\ B'is a finite surjective morphism for a closed subset B’ > B

with codim(B’) > 2.

Hence, Zx,y(Ox(D1),...,0x(Dq),Ox(A)) has a non-zero global section by Lemma 4.5
Taking the limit ¢ — 0, we infer that M is pseudo-effective.

(2): L% @ m* A~! has a non-zero global section for an ample invertible sheaf A and a
positive integer b. Hence, by the same argument as in the proof of Theorem 4.4, (4)), we
infer that M®" ® A®%) is pseudo-effective for k = ix/y (N, ..., Ny) by (1). Thus, M
is big.

(3) is a consequence of (2) above and Theorem 4.4, (3). O
4.2. Morphisms into Chow varieties. Let X be a projective variety, ¥ a normal

variety, and let p;: X XY — X and py: X XY — Y be the natural projections. Let us

fix a non-negative integer d.

Definition 4.8. Let Z = >"n;Z; be an effective algebraic cycle of X x Y, where n; > 0
and Z; is a closed integral subscheme of X x Y. The cycle Z is called a family of
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effective algebraic cycles of X of dimension d parametrized by Y if py: Z; — Y is an
equi-dimensional surjective morphism of relative dimension d for any ¢. We denote by
Supp Z the reduced scheme |J; Z;.

Let Z =Y n;Z; be a family of effective algebraic cycles of X of dimension d parametr-
ized by Y. For a point y € Y, Z; Xy y is a closed subscheme of X ®j k(y) of pure
dimension d, where k(y) denotes the residue field of Oy,,,. Thus, for the associated cycles
cye(Z; Xy y), we can define the algebraic cycle Z(y) to be Y- n; cye(Z; Xy y).

Let 7: Y' — Y be a surjective morphism from a normal variety Y’. Then one can
consider the pullback 7*Z as follows: Let {Z];} be the set of irreducible components of
Z; Xy Y’ such that Z{J dominates Y. Let [; ; be the length of Z; xy Y along Zlﬂj, ie.,

lij = lZZfJ(OZix;fY/)-
We set 7°Z to be the cycle 32, ;nil; ;Z ;. Then, 7°Z is a family of effective algebraic
cycles of X of dimension d parametrized by Y’. By Lemma and Theorem 3.20, we

have:
Lemma 4.9. For any n € G*™(X), there is an isomorphism
Lrezpy (Pin) = 7" Ly (Pin).
We shall show the following:

Theorem 4.10. Let X be a projective variety, Y a normal projective variety, and Z a
family of algebraic cycles of X of dimension d parametrized by Y. Then, there exist a
proper surjective morphism ¢:Y — T into a normal projective variety T with connected
fibers and a family Zy of algebraic cycle of X of dimension d parametrized by T such that

(1) Z = ¢*Zr,

(2) " Lzpyr(pin) = Lzyv (pin) for any n € G*H(X),

(3) Zzpyr(Pi AL, ... P1Aar) is ample for any ample invertible sheaves A; on X,
where p1 denotes the first projection X xY — X or X xT — X.

The proof is given after Lemmas and

Lemma 4.11. Let B C Y be a connected closed algebraic subset and F' C X the image
p1(Supp Z N (X x B)). Suppose that dim F' = d. Then Supp Z N (X x B) = F' x B as an
algebraic subset of X x Y.

Proof. We write S = Supp Z. By construction, there is a natural inclusion SN (X x B) C
F' x B. In order to show the converse inclusion, we may assume B to be irreducible since

B is connected. Furthermore, we can reduce to the case where Z; — Y is flat for any ¢



44

as follows: We can find a birational morphism Y’ — Y from a normal projective variety
Y’ which gives a flattening of Z; — Y for any i. Let Z] be the irreducible component of
Z; xy Y' flat over Y'. Then Z] — Z; is surjective since it is birational. Let S’ be the
union |J; Z/. Then S'N (X x B') C F' x B' for B’ = B xy Y’ and for the image F' C X
of SN (X x B’) by the first projection X x Y’ — X. Here, FF = F’ since S’ — S is
surjective. Thus, if S"N (X x B') = F x B’, then we have SN (X x B) = F x B by
considering the image by X x Y’ — X x Y.

Therefore, we may assume that B is irreducible and Z; — Y is flat for any 7. Let
{Vi;} be the set of irreducible components of Z; N (X x B). Then po(V;;) = B and
dimV;; = dim B + d, since V; ; — B is flat at the generic point of V; ;. Let F;; be the
image p;(V; ;). Then the natural inclusion V;; C F;; x B is just the equality, since the
both sides are irreducible subvarieties of X x Y with the same dimension. Therefore,
Z; N (X x B) = F; x B for the union F; = U, Fj;, and finally, SN (X x B) = F x B by
F=UF,. O

Let Ay, ..., Ay be very ample invertible sheaves on X. Then we can consider the
intersection sheaf M := T,y (piAi,...,p7Aq). Here, M is generated by global sections
by Corollary Let ¢: Y — T be the Stein factorization of the morphism

Djpg: Y — M|V = P(H(Y, M)) = Proj(Sym H(Y, M))
associated with the linear system |[M|. In other words, ¢ is the canonical morphism

Y — T =Proj@,_ H (Y, M.

>0

Lemma 4.12. For an integral closed subscheme B C'Y, ¢(B) is a point if and only if
Supp Z N (X x B) = F x B for a closed subset F' C X. In particular, the morphism ¢

does not depend on the choices of very ample invertible sheaves A;.

Proof. By Lemmal4.11, the latter condition is equivalent to dim p; (Supp ZN(X x B)) = d.
Let 7: Y/ — Y be a projective birational morphism from a normal projective variety Y’
which gives a flattening of Z; — Y for any i. Then 7°M ~ T..5/y+(pin) by Lemma [4.9]
Thus ¢ o 7 is associated with the family 7*Z of algebraic cycles parametrized by Y.
Hence, we can replace Y with Y’ in order to show the assertion. Therefore, we assume

from the beginning that Z; — Y is flat for any i. Then,
M|p =Tz, p/8(P1N)

by Lemma 2.12.
If dim p; (Supp Z N (X x B)) = d, then pincly(Z) = 0 € GL Y Z xy B); hence, M|p is

con

numerically equivalent to zero, and p(B) is a point.
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If dim py(Supp Z N (X x B)) > d + 1, then there is an irreducible curve C' C B such
that dim(Supp Z N (X x () = dim p1.(Supp ZN (X x C)) = d+ 1 by Lemma 4.11} hence

deg Mlc = i(pin; Z xy C) > 0,
which implies that ¢(B) is not a point. O
We are ready to prove Theorem [4.10:

Proof of Theorem 4.10. Let Zy,; C X xT be the image of Z; by idx x¢: X xY — X xT,
and let Zr be the cycle > n;Zr;. Then the natural inclusion Z; C Zp; xr Y is an
equality of algebraic sets by Lemma 4.11. Hence the second projection py: Zr; — T is
a surjective equi-dimensional morphism of relative dimension d; thus Z7 is a family of
algebraic cycles of X of dimension d parametrized by 7. Let U C Y be an open dense
subset such that ¢: Y — T is flat along U. Then Zp; xp U is reduced. Hence, the
inclusion Z; C Zr; xr Y is an isomorphism over U. Thus, the equality ¢*Zr = Z in (1)
follows. The isomorphism (2) follows from (1) and Lemma|4.9. The condition (3] follows
from (2) and Lemma [4.12. O

Remark 4.13. We fix a closed immersion X — P” into an n-dimensional projective space
P" and set A = O(1)|x. Let R, be the vector space H°(P", O(1)). We set 0 = c'(A)? €
GY(X) and n = ¢!(A)* € G(X). Furthermore, we set
e :=iz/y(pi0) =izyy (D1 A, ..., p1A) = izy (p1O(),...,p1O(1)),
M =Tz (pin) = L7y (P1 A - ... pIA) = L7y (piO(1), ..., p1O(1)).
Then by Propositions[2.7 and [3.17/ (cf. Lemma|[2.18), we have a natural surjection
®d+1 Sym®(R,,) ®k Oy — M.

By construction, the associated morphism

VY - P <®d“ Syme(Rn)>

is just the morphism to the Chow variety Chow,.(X) C Chow,e(P") of d-dimensional
algebraic cycles of degree e corresponding to y +— Z(y). Therefore, p: Y — T' is just the

Stein factorization of .

Proposition 4.14. Letw: X ---— Y be a dominant rational map from a projective variety
X to a normal projective variety Y. Then there exist a normal projective variety T and

a birational map p: Y ---— T satisfying the following conditions:

(1) Let T'r € X x T be the graph of the composite pomn: X -+—Y -.—T. Then

I'r — T s equi-dimensional.
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(2) Let (/Y -+—T" be a birational map to another normal projective variety T’
such that T'prr — T is equi-dimensional. Then there exists a birational morphism

v: T — T with p=vo .

Proof. There exist many birational maps p': Y ---— T to normal projective varieties T’
such that the graph I'rw € X x 7" of p/ o w: X --+— T induces an equi-dimensional
morphism I'rv — T”. For example, a flattening of 7 creates such a rational map. For the

rational map p': Y ---— T let us consider the intersection sheaf

M = II‘T//T’ (pin)
for n = c'(A)! € G4(X) for an ample invertible sheaf A on X. Then M’ is nef
and big by Theorem 4.4 since p;: I'tw — X is birational. By Theorem 4.10, there is a
birational morphism ¢: 7" — T to a normal projective variety T such that I'y — T is
equi-dimensional for the graph I'r C X x T of X ---—T" — T, and M’ ~ ¢*M for the
ample invertible sheaf

M :=Trpr(pin)-
We shall show that X ---— T and M are independent for the choice of X ---—T". Let
W'Y -—T" be another birational map such that I'yvw — T” is equi-dimensional for
the graph I'rv € X x T” of p” o w. By replacing T"” by the normalization of the graph
of the birational map T"---— T", we may assume that there is a birational morphism
7:T" — T with ¢/ = 7o yu”. Then,

M" =Ty, jon(pin) ~ 7" M’

by Lemma 4.9. Thus, the composite po7: T” — T" — T is defined only by the invertible
sheaf M”. Therefore, T" and the birational map Y ---— T are uniquely determined up to

isomorphism. 0

Definition 4.15. The rational map X ---— T in Proposition 4.14 is called the Chow

reduction of X ---— Y.

4.3. Endomorphisms of complex normal projective varieties. In this section, we
assume k to be the complex number field C. We shall study surjective endomorphisms

f: X — X of a normal projective variety X.

Lemma 4.16. Let 7: X =Y, 7#: X' =Y/ 7:Y =Y, and 7": X' — X be surjective
morphisms for projective varieties X, X', Y, and Y’ such that

(1) rom" =707,

(2) Y and Y’ are normal,

(3) 7 is equi-dimensional of relative dimension d,
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(4) for an open dense subset U' C Y', the induced morphism 7'~ 1(U') — X xy U’ is

a finite surjective morphism of degree e.
Then for any n € G4TY(X), one has an isomorphism

Ixiyr (t"n) ~1* IX/y(n)®€.

Proof. Let f: X' — X Xy Y’ be the induced morphism, and let p;: X xy Y’ — X and
p2: X Xy Y — Y’ be the natural projections. Then

fecle(Oxr) — ecle(Oxywyyr) € Image(Ko (W) — Ko(X Xy Y'))
for a closed subscheme W with po(W) NU = 0. By the proof of Lemma 3.6/ and by

Theorem [3.20L we have

le/yl(’T/*’r]) ~ IXXyY//Y/(pTT])@e ~ 7'>k IX/Y(’I’])@)E. D

Proposition 4.17. Let f: X — X be a surjective endomorphism of a normal projec-
tive variety X. Let m: X — Y be an equi-dimensional surjective morphism of relative
dimension d to a normal projective variety Y such that m has connected fibers and that
mo f=how for a surjective endomorphism h:Y — Y. Let A be a nef and big invertible
sheaf on X and let M be the intersection sheaf Ty y(c'(A)*) =Zy/v(A,..., A).

(1) If f*A ~ A®? for an integer q, then h* M is Q-linearly equivalent to M®1.

(2) If f*A is numerically equivalent to A®? for an integer q, then h* M is numerically

equivalent to M®4,

Proof. Note that f and h are finite morphisms. In fact, f* induces an automorphism of
NS(X) ® Q for the Néron—Severi group NS(X); thus an ample divisor of X is Q-linearly
equivalent to f* of a Cartier divisor. The induced morphism (f,7): X — X Xy, Y is
a finite surjective morphism, since 7 has connected fibers. Thus, deg f = edegh for
the mapping degree e of (f, 7). Therefore, we can apply Lemma 4.16] and obtain an

isomorphism

(IV-2) Ixyy(f™n) = h* Ix)y(n)®

for any n € G¥*1(X). Let us consider the case where n = ¢!(A)*™. Then M =Zy,y(n)
is nef and big by Theorem [4.4. In both cases (1) and (2), f*A is numerically equivalent
to A®9. Thus, Zx/y(f*n) is numerically equivalent to M®4"™ by Theorem 4.4, and
deg f = ¢®™ for m = dimY. Hence, M®"" is numerically equivalent to h*M®¢ by
(IV-2), which implies that degh = ¢ for ¢ = ¢?*te”!. Furthermore, e = ¢¢ and
degh = ¢™ by deg f = edeg h. In particular, h*M is numerically equivalent to M®?. In
case (1), from (IV-2), we have

(WM @ MPED)E ~ Oy O
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Theorem 4.18. Let X be a complex projective variety. Then there exists a rational map

m: X ---—Y into a normal projective variety Y such that

(1) Y is not uniruled,

(2) The second projection py: I'y — Y for the graph I'y C X XY of 7 is equi-
dimensional,

(3) a general fiber of T'y — Y 1is rationally connected,

(4) 7 is a Chow reduction.

Moreover, m: X ---—Y is uniquely determined up to isomorphism.
We call the rational map 7: X ---— Y the special MRC fibration.

Proof. Let M — X be a resolution of singularities. Then we have a rational map
f: M--— S called a maximal rationally connected fibration (MRC fibration, for short)
satisfying the following conditions (cf. [3], [16], [10]):

e S is a non-singular non-uniruled variety
e f is holomorphic along f~!(U) for an open dense subset U C S,

e a general fiber of f is a maximal rationally connected submanifold of M.

Moreover, the maximal rationally connected fibration is unique up to birational equiva-
lence, i.e., if u: M'---— M is a birational map from a non-singular projective variety M’
and f': M'---— S’ is a maximal rationally connected fibration of M’, then fou=wvo f’
for a birational map v: §"---— S. Let m: X ---— Y be the Chow reduction of the rational
map X ---— M ---— S. Then 7 is uniquely determined up to isomorphism and satisfies

the required conditions. U

Theorem 4.19. Let f: X — X be a surjective endomorphism of a normal complex
projective variety X. Let w: X ---—Y be the special MRC' fibration. Then there is an
endomorphism h: Y — 'Y such that mo f = ho.

Proof. Let X ---—Y; — Y be the Stein factorization of the composite 7o f: X ---—=Y;
we set m: X ---—Y; and 7: Y] — Y. Then a general fiber of m; is rationally connected,
and the graph I'y; C X X Y; induces an equi-dimensional morphism py: I'y;, — Y;. Thus,
there is a birational morphism ¢: Y7 — Y such that m = ¢ o m; by Proposition 4.14 and
by Theorem [4.18. Let n = ¢!'(A)%™! € G4 (X) for an ample invertible sheaf A of X and
for d = dim X/Y. Since I'y; — I'y Xy Y] is a finite surjective morphism over an open
dense subset of Y7, by applying Lemma 4.16, we have

Iry, v (pin) = 7 Iry v (pin)®°
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for some b > 0, where p; denotes the first projection I'y;, — X or I'y — X. On the other
hand, by a property of the Chow reduction (cf. Theorem 4.10), we have

Iry, i (Pin) = @ Iy v (P10)-

Hence, ¢ is a finite morphism, since Zr,, /v (pin) is ample on Y and 7 is finite. Therefore,

©0: Y, ~Y, and the endomorphism h =70 ¢~ ': Y — Y satisfies mo f = ho . O

Remark. In Theorem|4.19, if f is étale, then A is induced from the push-forward morphism
Chow(X) — Chow(X) given by Z — f,Z. However, if f is not étale, h is not necessarily

induced from the push-forward morphism.

Corollary 4.20. Let X be a normal complex projective variety admitting a surjective
endomorphism f: X — X such that f*H ~ H®? for a nef and big invertible sheaf H and
a positive integer q. Let m: X ---—Y be the special MRC' fibration. Then there exist an
endomorphism h:' Y — Y and a nef and big invertible sheaf M on'Y such that wof = how
and h*M ~ M®1. Here, if H is ample, then one can take M to be ample.

Proof. We have h by Theorem 4.19. The intersection sheaf M’ = Ty, jy (p; ' (H)*) is
nef and big by Theorem 4.4, If H is ample, then so is M’, since 7 is a Chow reduction
(cf. Theorem [4.10). Then a suitable power M of M’ satisfies the required condition by
Proposition [4.17. O

Remark. An assertion similar to Corollary [4.20]is proved in [25], Proposition 2.2.4. How-
ever, the proof there is sketchy. For example, it uses the intersection sheaves, which are
defined only for flat morphisms in [25], but there are no explanation how to reduce to

flat morphisms.
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