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Abstract

For the root system of type A we introduce and study a certain
extension of the quadratic algebra invented by S. Fomin and the first
author, to construct a model for the equivariant cohomology ring of
the corresponding flag variety. As an application of our construction
we describe a generalization of the equivariant Pieri rule for double
Schubert polynomials. For a general finite Coxeter system we con-
struct an extension of the corresponding Nichols-Woronowicz algebra.
In the case of finite crystallographic Coxeter systems we present a
construction of extended Nichols-Woronowicz algebra model for the
equivariant cohomology of the corresponding flag variety.

1 Introduction

In the paper [3] S. Fomin and the first author have introduced and study a
model for the cohomology ring of flag varieties of type A as a commutative
subalgebra generated by the so-called Dunkl elements in a certain noncom-
mutaive quadratic algebra En. An advantage of the approach developed in
[3] is that it admits a simple generalization which is suitable for description
of the quantun cohomology ring of flag varieties, as well as (quantum) Schu-
bert polynomials. Constructions from the paper [3] have been generalized to
other finite root systems by the authors in [6]. One of the main constituents
of the above constructions is the Dunkl elements. The basic properties of the
Dunkl elements are:

1) they are pairwise commuting;
2) in the so-called Calogero-Moser representation [3, 6] they correspond

to the truncated (i.e. without differential part) rational Dunkl operators [2];
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3) in the crystallographic case they correspond – after applying the so-
called Bruhat representation [3, 6]– to the Monk formula in the cohomology
ring of the flag variety in question;

4) in the crystallographic case, subtraction-free expressions of Schubert

polynomials calculated at the Dunkl elements in the algebra B̃E(Σ), if ex-
ist, provide a combinatorial rule for describing the Schubert basis structural
constants, i.e. the intersection numbers of Schubert classes.

In the case of classical root systems ∆, the first author [4] has defined

a certain extension B̃E(∆) of the algebra BE(∆) together with a pairwise
commuting family of elements, called Dunkl elements, which after applying
the Calogero-Moser representation exactly coincide with the rational Dunkl
operators. One of the main objective of our paper is to study a commutative
subalgebra generated by the Dunkl elements in the extended algebra B̃E(∆)
in the case of type A root systems. Our main result in this direction is:

Theorem 1.1 (Pieri formula in the algebra En〈R〉[t])

ek(θ
(n)
1 , . . . , θ(n)

m ) =

∑
r≥0

(−t)r (2r − 1)!!

(
m − k + 2r

2r

){ ∑
S,I,J

XS

|I|∏
a=1

ia∈I, ja∈J

[ia, ja]
}

.

See Section 2, Theorem 2.1, for a detailed explanation of conditions on sets
I, J and S in the summation, and those on indices {ia, ja}|I|a=1 in the product.

When t = 0, Theorem 1.1 describes an analog of Pieri’s rule for double
Schubert polynomials. An important consequence of Theorem 1.1 states

Theorem 1.2 In the case t = 0, a commutative subalgebra generated by
the Dunkl elements in the algebra En〈R〉 is canonically isomorphic to the
T -equivariant cohomology ring of the type A flag variety Fln.

In Section 3 we construct the Bruhat representation of the algebra En〈R〉[t]
and study some properties of the former. The existence of Bruhat’s repre-
sentation of the algebra En〈R〉[t] plays a crucial role in applications to the
equivariant Schubert calculus, and constitutes an important step in the proof
of Corollary 2.2.

Another objective of our paper is to construct a certain extension of the
Nichols-Woronowicz model for the coinvariant algebra of a finite Coxeter
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group W . Recall that the Nichols-Woronowicz algebra model for the coho-
mology ring of flag varieties has been invented by Y. Bazlov [1]. In Section 4

we introduce a certain extension B̃W of the Nichols-Woronowicz algebra BW

and construct a commutative subalgebra in the extended Nichols-Woronowicz
algebra. Our second main result states

Theorem 1.3 For crystallographic root systems and t = 0, the commutative
subalgebra of B̃W in question is isomorphic to the T -equivariant cohomology
ring of the corresponding flag variety.

2 Extension of the quadratic algebra

Definition 2.1 The algebra En is an associative algebra generated by the
symbols [i, j], 1 ≤ i, j ≤ n, i 6= j, subject to the relations:
(0) : [i, j] = −[j, i]
(1) : [i, j]2 = 0,
(2) : [i, j][k, l] = [k, l][i, j], if {i, j} ∩ {k, l} = ∅,
(3) : [i, j][j, k] + [j, k][k, i] + [k, i][i, j] = 0.

Let us consider the extension En〈R〉[t] of the quadratic algebra En by the
polynomial ring R[t] = Z[x1, . . . , xn][t] defined by the commutation relations:
(A): [i, j]xk = xk[i, j], for k 6= i, j,
(B): [i, j]xi = xj[i, j] + t, [i, j]xj = xi[i, j] − t, for i < j,
(C): [i, j]t = t[i, j].

Note that the Sn-invariant subalgebra RSn [t] of R[t] is contained in the
center of the algebra En〈R〉[t].

Definition 2.2 (1) We define the R[t]-algebra Ẽn[t] by

Ẽn[t] = En〈R〉[t] ⊗RSn R.

More explicitly, Ẽn[t] is an algebra over the polynomial ring Z[y1, . . . , yn] gen-
erated by the symbols [i, j], 1 ≤ i, j ≤ n, i 6= j, and x1, . . . , xn, t satisfying
the relations in the definition of the algebra En〈R〉[t], together with the iden-

tification ei(x1, . . . , xn) = ei(y1, . . . , yn), for i = 1, . . . , n. Denote by Ẽn,t0 the

specialization of Ẽn[t] at t = t0.

(2) The Dunkl elements θi ∈ Ẽn[t], i = 1, . . . , n, are defined by the formula

θi = θ
(n)
i = xi +

∑
j 6=i

[i, j].

3



Remark 2.1 Note that xi’s do not commute with the Dunkl elements, but
only symmetric polynomials in xi’s do. By this reason we need the second
copy of R = Z[y1, . . . , yn], where yi’s assumed to be belong to the center

of the algebra Ẽn[t], and f(x1, . . . , xn) = f(y1, . . . , yn) for any symmetric
polynomial f.

Lemma 2.1 The Dunkl elements commutes each other.

Proof. This follows from the fact that

(xi + xj)[i, j] = [i, j](xi + xj).

Let ek(x1, . . . , xn), 1 ≤ k ≤ n, stand for the elementary symmetric
polynomial of degree k in the variables x1, . . . , xn. We put by definition,
e0(x1, . . . , xn) = 1, and ek(x1, . . . , xn) = 0, if k < 0.

Theorem 2.1 (Pieri formula in the algebra En〈R〉[t])

ek(θ
(n)
1 , . . . , θ(n)

m ) =

∑
r≥0

(−t)r N(m − k, 2r)
{ ∑

S,I,J

XS

|I|∏
a=1

ia∈I, ja∈J

[ia, ja]
}

,

where

N(a, 2b) = (2b − 1)!!

(
a + 2b

2b

)
,

XS :=
∏

s∈S xs; the second summation runs over triples of sets (S, I, J) such
that S ⊂ {1, . . . , k}, I and J are subsets of the same cardinality in the set

{1, . . . , n}\S, and |I|+|S|+2r = k; the product is taken over pairs (ia, ja)
|I|
a=1

such that 1 ≤ ia ≤ m < ja ≤ n and the indices i1, . . . , i|I| are all distinct.

Proof. Let A := {1, . . . ,m} ⊂ {1, . . . , n}, d := n − m and ji := m + i.
Denote by Ek(A) the right-hand side of the formula. It will suffice to prove
the recursive formula

Ek(A ∪ {j = j1}) = Ek(A) + Ek−1(A)(xj +
∑
s 6=j

[j, s]).

For a subset I = {i1, . . . , il} ⊂ {1, . . . , n} and p 6∈ I, we use the symbol

〈〈I|p〉〉 =
∑
w∈Sl

[iw(1), p] · · · [iw(l), p]
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as defined in [8]. We have the following decompositions:

Ek(A)

=
∑
r≥0

(−t)rN(m − k, 2r)XS

∑
S⊂A

∑
I1···Id⊂k−2r−|S|A\S

〈〈I1|j1〉〉 · · · 〈〈Id|jd〉〉

=
∑
r≥0

(−t)rN(m − k, 2r)(Ar
1 + Ar

2),

Ek(A ∪ {j})
=

∑
r≥0

(−t)rN(m − k + 1, 2r)XS

∑
S⊂A

∑
I2···Id⊂k−2r−|S|A∪{j}\S

〈〈I2|j2〉〉 · · · 〈〈Id|jd〉〉

=
∑
r≥0

(−t)rN(m − k + 1, 2r)(Br
1 + Br

2 + Br
3),

Ek−1(A)
∑
s 6=j

[j, s]

=
∑
r≥0

(−t)rN(m − k + 1, 2r)XS

∑
S⊂A

∑
I1···Id⊂k−1−2r−|S|A\S

〈〈I1|j1〉〉 · · · 〈〈Id|jd〉〉
∑
s6=j

[j, s]

=
∑
r≥0

(−t)rN(m − k + 1, 2r)(Cr
1 + Cr

2 + Cr
3 + Cr

4),

Ek−1(A)xj

=
∑
r≥0

(−t)rN(m − k + 1, 2r)XS

∑
S⊂A

∑
I1···Id⊂k−1−2r−|S|A\S

〈〈I1|j1〉〉 · · · 〈〈Id|jd〉〉xj

=
∑
r≥0

(−t)rN(m − k + 1, 2r)(Dr
1 + Dr

2),

where Ar
i , Br

i , Cr
i , Dr

i are defined as follows.

• Ar
1 is the sum of terms with I1 = ∅; Ar

2 is the sum of terms with I1 6= ∅.

• Br
1 is the sum of terms with j 6∈ S∪I2∪· · ·∪ Id; Br

2 is the sum of terms
with j ∈ I2 ∪ · · · ∪ Id; Br

3 is the sum of terms with j ∈ S.

• Cr
1 is the sum of terms with s ∈ A \ (S ∪ I1 ∪ · · · ∪ Id); Cr

2 is the sum
of terms with s ∈ I2 ∪ · · · ∪ Id ∪Ac; Cr

3 is the sum of terms with s ∈ S;
Cr

4 is the sum of terms with s ∈ I1.

• Dr
1 is the sum of terms with I1 = ∅; Dr

2 is the sum of terms with I1 6= ∅.
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Based on the same arguments used in [8], we can see that Ar
1 = Br

1, Ar
2+Cr

1 =
0, Br

2 = Cr
2 and Cr

4 = 0. It is also easy to see that Br
3 = Dr

1. Now we have

Ek(A) + Ek−1(A)(xj +
∑
s 6=j

[j, s]) − Ek(A ∪ {j})

=
∑
r≥0

∑
S⊂A

(−t)r (N(m − k, 2r)(Ar
1 + Ar

2) − N(m − k + 1, 2r)(Br
1 − Cr

1 − Cr
3 − Dr

2))

=
∑
r≥1

∑
S⊂A

(−t)r (N(m − k, 2r) − N(m − k + 1, 2r)) (Ar
1 + Ar

2)

+
∑
r≥0

∑
S⊂A

(−t)rN(m − k + 1, 2r)(Cr
3 + Dr

2).

From the commutation relation [i, j]xj = xi[i, j] − t, we have

Dr
2 > = XS

∑
I1···Id⊂k−1−2r−|S|A\S

I1={a1,...,a|I1|
}

∑
w∈S|I1|

xaw(|I1|)
[aw(1), j] · · · [aw(|I1|), j]〈〈I2|j2〉〉 · · · 〈〈Id|jd〉〉

−tXS

∑
I1···Id⊂k−1−2r−|S|A\S

I1={a1,...,a|I1|
}

∑
w∈S|I1|

[aw(1), j] · · · [aw(|I1|−1), j]〈〈I2|j2〉〉 · · · 〈〈Id|jd〉〉

=
∑
s 6∈S

XS∪{s}
∑

I1···Id⊂k−1−2r−(|S|+1)A\S∪{s}

〈〈I1|j1〉〉[s, j]〈〈I2|j2〉〉 · · · 〈〈Id|jd〉〉

−(m − k + 2r + 2)tXS

∑
I1···Id⊂k−2−2r−|S|A\S

〈〈I1|j1〉〉 · · · 〈〈Id|jd〉〉

= −Cr
3 + (−t)(m − k + 2r + 2)(Ar+1

1 + Ar+1
2 ).

Hence, we have

(−t)r+1 (N(m − k, 2(r + 1)) − N(m − k + 1, 2(r + 1)) (Ar+1
1 + Ar+1

2 )

= −(−t)r+1(2r + 1)!!
(m − k + 2r + 2)!

(2r + 1)!(m − k + 1)!
(Ar+1

1 + Ar+1
2 )

= −(−t)r(2r − 1)!!
(m − k + 2r + 1)!

(2r)!(m − k + 1)!
· (−t)(m − k + 2r + 2)(Ar+1

1 + Ar+1
2 )

= −(−t)rN(m − k + 1, 2r)(Cr
3 + Dr

2).

This shows the desired result.
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Corollary 2.1 The list of relations in the algebra Ẽn[t]

ek(θ
(n)
1 , . . . , θ(n)

n ) =

ek(y1, . . . , yn)+
∑
r≥1

(−t)r (2r−1)!!

(
n − k + 2r

2r

)
ek−2r(y1, . . . , yn), 1 ≤ k ≤ n,

describes the complete set of relations among the Dunkl elements θ
(n)
1 , . . . , θ

(n)
n .

Corollary 2.2 For t = 0, the subalgebra of Ẽn,0 generated by the Dunkl
elements θ1, . . . , θn over HT (pt) = Z[y1, . . . , yn] is isomorphic to the T -
equivariant cohomology ring H∗

T (Fln).

Proof. Let (0 = U0 ⊂ U1 ⊂ · · · ⊂ Un) be the universal flag over Fln. First of
all it follows from Corollary 2.1 that the natural map zi := −c1(Ui/Ui−1) 7→
θi, yi 7→ yi defines a surjective homomorphism

π : H∗
T (Fln) → Z[y1, . . . , yn][θ1, . . . , θn] ⊂ Ẽn,0.

On the other hand, it follows from the definitions that the image of Dunkl’s
element θi in the Bruhat representation (see Section 3) acts according to the
rule:

θi w = yw(i)w +
∑
j>i

l(wtij)=l(w)+1

wtij −
∑
j<i

l(wtij)=l(w)+1

wtij.

This rule exactly corresponds to the Monk formula for double Schubert poly-
nomials, see e.g. [7, Exercise 2.7.2]. Therefore the element id. generates
Z[y1, . . . , yn]〈Sn〉 over Z[y1, . . . , yn][θ1, . . . , θn]. Since Z[y1, . . . , yn]〈Sn〉 is iso-
morphic as a Z[y1, . . . , yn]-module to the quotient Z[y1, . . . , yn, z1, . . . , zn]/Jn,
where Jn denotes the ideal generated by the elements ek(z1, . . . , zn)−ek(y1, . . . , yn),
1 ≤ k ≤ n. This exactly means that the homomorphism π is an isomorphism.

We expect that for general t the subalgebra in Ẽn[t] generated by the
Dunkl elements θ1, . . . , θn over Z[y1, . . . , yn][t] is isomorphic to the (T ×C×)-
equivariant cohomology ring H∗

T×C×(Fln).

Theorem 2.2 The subalgebra generated by the elements g1 := [1, 2], g2 :=
[2, 3], . . . , gn−1 := [n − 1, n] in the algebra En〈R〉[t] is isomorphic to the nil

degenerate affine Hecke algebra of type A
(1)
n−1, i.e. the algebra given by two
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sets of generators g1, . . . , gn−1 and x1, . . . , xn subject to the set of defining
relations:

g2
i = 0, gigj = gjgi, if |i − j| > 1, gigjgi = gjgigj, if |i − j| = 1,

xi xj = xj xi, xk gi = gi xk, if k 6= i, i + 1, gixi − xi+1gi = t.

3 Bruhat representation

Let us recall the definition of the Bruhat representation of the algebra En on
the group ring of the symmetric group Z〈Sn〉 = ⊕w∈SnZ · w. The operator
σij, i < j, is defined as follows:

σij(w) =

{
wtij, if l(wtij) = l(w) + 1,

0, otherwise.

Then the Bruhat representation of En is defined by [i, j].w := σij(w).
Now we extend the Bruhat representation to that of the algebra En〈R〉[t]

defined on
R[t]〈Sn〉 = ⊕w∈SnZ[y1, . . . , yn][t] · w.

For f(y) ∈ Z[y1, . . . , yn][t] and w ∈ Sn, we define the Z[t]-linear operators
σ̃ij, i < j, and ξk as follows:

σ̃ij(f(y)w) =

{
t(∂w(i)w(j)f(y))w + f(y)wtij, if l(wtij) = l(w) + 1,

t(∂w(i)w(j)f(y))w, otherwise,

ξk(f(y)w) = (yw(k)f(y))w.

Proposition 3.1 The algebra En〈R〉[t] acts Z[t]-linearly on Z[y][t]〈Sn〉 via
[ij] 7→ σ̃ij and xk 7→ ξk.

Proof. Let us check the compatibility with the defining relations of the
algebra Ẽn[t]. We show the compatibility only with the relations (1), (3) and
(B). The rest are easy to check.

Let us start with the relation (1). We have

σ̃2
ij(f(y)w) = σ̃ij

(
t(∂w(i)w(j)f(y))w + f(y)σij(w)

)
= t2(∂2

w(i)w(j)f(y))w + t(∂w(i)w(j)f(y))σij(w)

+t(∂w(j)w(i)f(y))σij(w) + f(y)σ2
ij(w).
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Since ∂2
w(i)w(j) = 0, σ2

ij = 0 and ∂w(i)w(j) = −∂w(j)w(i), we get σ̃2
ij = 0.

For the relation (3), we have

σ̃ijσ̃jk(f(y)w) = σ̃ij

(
t(∂w(j)w(k)f(y))w + f(y)σjk(w)

)
= t2(∂w(i)w(j)∂w(j)w(k)f(y))w + t(∂w(j)w(k)f(y))σij(w)

+t(∂w(i)w(k)f(y))σjk(w) + f(y)σijσjk(w).

We also obtain σ̃jkσ̃ki(f(y)w) and σ̃kiσ̃ij(f(y)w) by the cyclic permutation
of i, j, k. The 3-term relations

∂w(i)w(j)∂w(j)w(k) + ∂w(j)w(k)∂w(k)w(i) + ∂w(k)w(i)∂w(i)w(j) = 0

and
σijσjk + σjkσki + σkiσij = 0

show the desired equality

σ̃ijσ̃jk + σ̃jkσ̃ki + σ̃kiσ̃ij = 0.

Finally, we check the relation (B). We have

σ̃ijξi(f(y)w) = σ̃ij(yw(i)f(y)w)

= t∂w(i)w(j)(yw(i)f(y))w + (yw(i)f(y))σij(w)

= t(f(y)w) + t(yw(j)∂w(i)w(j)f(y))w + ywtij(j)σij(w)

= ξjσ̃ij(f(y)w) + t(f(y)w).

Theorem 3.1 Let Sw(x, y) be the double Schubert polynomial corresponding
to w ∈ Sn. Then, we have

Sw(θ, y)(id.) = w.

Proof. This follows from the Monk formula for the double Schubert polyno-
mials and

(θi − yw(i))(w) = ξi(w) +
∑
j 6=i

σij(w) − yw(i)w

=
∑

j<i,l(wtij)=l(w)+1

wtij −
∑

j>i,l(wtij)=l(w)+1

wtij.
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Remark 3.1 Only when t = 0, one can extend Z[y][t]-linearly the Bruhat

representation of the algebra En〈R〉[t] to that of the algebra Ẽn[t]. In fact,
Theorem 3.1 describes the multiplicative structure of the Z[y]-subalgebra

generated by the Dunkl elements in Ẽn,0, which is isomorphic to H∗
T (Fln).

Nevertheless, the property of the double Schubert polynomials in Theorem
3.1 holds for arbitrary t.

4 Quantization

Definition 4.1 The algebra Eq
n is a Z[q1, . . . , qn−1]-algebra defined by the

same generators and relations as in the definition of the algebra En except
that the relation (1) is replaced by

(1)′ [i, j]2 =

{
qi if i = j − 1,
0, if i < j − 1.

The extension Eq
n〈R〉[t] of the algebra Eq

n is also defined by the relations (A),
(B) and (C).

The Bruhat representation for En is deformed to the quantum Bruhat repre-
sentation for Eq

n. We define the quantum Bruhat operator σq
ij, i < j, acting

on Z[q1, . . . , qn−1]〈Sn〉 = ⊕w∈SnZ[q1, . . . , qn−1] · w as follows:

σq
ij(w) =


qijwtij, if l(wtij) = l(w) − 2(j − i) + 1,

wtij, if l(wtij) = l(w) + 1,

0, otherwise.

For f(y) ∈ Z[y1, . . . , yn][t] and w ∈ Sn, we define the Z[q1, . . . , qn−1][t]-
linear operators σ̃q

ij by

σ̃q
ij(f(y)w) = t(∂w(i)w(j)f(y))w + f(y)σq

ij(w).

We can check the well-definedness of the quantum extended Bruhat repre-
sentation [ij] 7→ σ̃q

ij, xk 7→ ξk of the algebra Eq
n〈R〉[t] in the same way as the

proof of Proposition 3.1.

Theorem 4.1 Let Sq
w(x, y) be the quantum double Schubert polynomial cor-

responding to w ∈ Sn. Then, we have

Sq
w(θ, y)(id.) = w

under the quantum extended Bruhat representation.
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Proof. This follows from the quantum Monk formula for the quantum Schu-
bert polynomials.

Corollary 4.1 The quantum double Schubert polynomials Sq
w(x, y) are char-

acterized by the conditions:
(1) Sq

w(x, y)|q=0 = Sw(x, y),
(2) Sq

w(x, y) is a linear combination of polynomials Sv(x, y) with v ≤ w over
Z[q1, . . . , qn−1],
(3) Sq

w(θ, y)(id.) = w.

5 Nichols-Woronowicz model

The model of the equivariant cohomology ring H∗
T (Fln) in the algebra Ẽn

has a natural interpretation in terms of the Nichols-Woronowicz algebra.
The Nichols-Woronowicz approach leads us to the uniform construction for
arbitrary root systems.

We denote by BW the Nichols-Woronowicz algebra associated to the
Yetter-Drinfeld module

V =
⊕
α∈∆

R[α]/([α] + [−α])

over the finite Coxeter group W of the root system ∆. Let h be the reflection
representation of W and R = Symh∗ the ring of polynomial functions on h.
Let us consider the extension BW 〈R〉[t] of the algebra BW by the polynomial
ring R[t] defined by the commutation relation

[α]x = sα(x)[α] + t(x, α) for x ∈ h∗.

Definition 5.1 We define the R-algebra B̃W by

B̃W = BW 〈R〉[t] ⊗RW R.

Choose a W -invariant constants (cα)α. Let us consider a linear map µ : h∗ →
B̃W defined as

µ(x) = x +
∑

α∈∆+

cα(x, α)[α]

for x ∈ h∗.
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Proposition 5.1 [µ(x), µ(y)] = 0, x, y ∈ h∗.

The linear map µ extends to a homomorphism of algebras

µ : R → BW 〈R〉[t].

Denote by µ̃ the composite of the homomorphisms

R ⊗Z R
µ⊗1→ BW 〈R〉[t] ⊗Z R → B̃W .

Theorem 5.1 If t = 0 and the constants (cα)α are generic, the image of the
homomorphism µ̃ is isomorphic to the algebra R⊗RW R. In particular, when
W is the Weyl group, it is isomorphic to the T -equivariant cohomology ring
H∗

T (G/B) of the corresponding flag variety G/B.

The proof is based on the correspondence between the twisted derivation Dα

and the divided difference operator ∂α. We define the operator Dα as the
twisted derivation on B̃W determined by the conditions:
(1): Dα(x) = 0, for x ∈ R,
(2): Dα([β]) = δα,β, for α, β ∈ ∆+,
(3): Dα(fg) = Dα(f)g + sα(f)Dα(g).
The operator Dα is linear with respect to R on the second component.

Proposition 5.2

∩α∈∆+Ker(Dα) = R[t] ⊗RW R

Proof. Any element ω ∈ BW 〈R〉[t] can be written as

ω = f1ϕ1 + · · · + fkϕk,

where f1, . . . , fk ∈ R[t] are linearly independent, and ϕ1, . . . , ϕk ∈ BW . We
have

Dα(ω) = sα(f1)Dα(ϕ1) + · · · + sα(fk)Dα(ϕk)

from the twisted Leibniz rule. If Dα(ω) = 0, we have Dα(ϕ1) = · · · =
Dα(ϕk) = 0. Hence, ω ∈ ∩α∈∆+Ker(Dα) implies that ϕi ∈ B0

W = R for
i = 1, . . . , k. This means ω ∈ R[t].

Proposition 5.3

Dα(µ̃(x)) = cαµ̃(∂α(x))

for x ∈ R ⊗Z R.
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Proof. When x = β ⊗ 1, β ∈ ∆, we can check that

Dα(µ̃(β ⊗ 1)) = cα(β, α) = cαµ̃(∂α(β)).

Hence, we have Dα(µ̃(x)) = cαµ̃(∂α(x)) for x ∈ h∗ ⊗ R. On the other hand,
the both-hands sides satisfy the same twisted Leibniz rule, so it follows that
Dα(µ̃(x)) = cαµ̃(∂α(x)) for x ∈ R ⊗ R.

(Proof of Theorem 5.1) If x ∈ RW ⊗Z R, we have Dα(µ̃(x)) = 0 for
every α ∈ ∆+ from Proposition 5.3. This implies from Proposition 5.2 that
µ̃(x) ∈ RW ⊗RW R. When t = 0, µ̃(x) coincides with the element of R
which is obtained by replacing all the symbols [α] by zero in µ̃(x). Hence,

the homomorphism µ̃ factors through R ⊗RW R → B̃W . Since a linear basis
of the coinvariant algebra of W gives an RW -basis of R, it is easy to see that
R ⊗RW R → B̃W is injective.
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