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Abstract

For the root system of type A we introduce and study a certain
extension of the quadratic algebra invented by S. Fomin and the first
author, to construct a model for the equivariant cohomology ring of
the corresponding flag variety. As an application of our construction
we describe a generalization of the equivariant Pieri rule for double
Schubert polynomials. For a general finite Coxeter system we con-
struct an extension of the corresponding Nichols-Woronowicz algebra.
In the case of finite crystallographic Coxeter systems we present a
construction of extended Nichols-Woronowicz algebra model for the
equivariant cohomology of the corresponding flag variety.

1 Introduction

In the paper [3] S. Fomin and the first author have introduced and study a
model for the cohomology ring of flag varieties of type A as a commutative
subalgebra generated by the so-called Dunkl elements in a certain noncom-
mutaive quadratic algebra &£,. An advantage of the approach developed in
3] is that it admits a simple generalization which is suitable for description
of the quantun cohomology ring of flag varieties, as well as (quantum) Schu-
bert polynomials. Constructions from the paper [3] have been generalized to
other finite root systems by the authors in [6]. One of the main constituents
of the above constructions is the Dunkl elements. The basic properties of the
Dunkl elements are:

1) they are pairwise commuting;

2) in the so-called Calogero-Moser representation [3, 6] they correspond
to the truncated (i.e. without differential part) rational Dunkl operators [2];
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3) in the crystallographic case they correspond — after applying the so-
called Bruhat representation [3, 6]- to the Monk formula in the cohomology
ring of the flag variety in question;

4) in the crystallographic case, subtraction-free expressions of Schubert
polynomials calculated at the Dunkl elements in the algebra BE (2), if ex-
ist, provide a combinatorial rule for describing the Schubert basis structural
constants, i.e. the intersection numbers of Schubert classes.

In the case of classical root systems A, the first author [4] has defined
a certain extension BE (A) of the algebra BE(A) together with a pairwise
commuting family of elements, called Dunkl elements, which after applying
the Calogero-Moser representation exactly coincide with the rational Dunkl
operators. One of the main objective of our paper is to study a commutative
subalgebra generated by the Dunkl elements in the extended algebra BE(A)
in the case of type A root systems. Our main result in this direction is:

Theorem 1.1 (Pieri formula in the algebra &,(R)]t])

ex(0, ... 00 =

m

]
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See Section 2, Theorem 2.1, for a detailed explanation of conditions on sets

I, J and S in the summation, and those on indices {i,, ja}‘ail in the product.
When t = 0, Theorem 1.1 describes an analog of Pieri’s rule for double

Schubert polynomials. An important consequence of Theorem 1.1 states

Theorem 1.2 In the case t = 0, a commutative subalgebra generated by
the Dunkl elements in the algebra E,(R) is canonically isomorphic to the
T-equivariant cohomology ring of the type A flag variety Fl,,.

In Section 3 we construct the Bruhat representation of the algebra &, (R)[t]
and study some properties of the former. The existence of Bruhat’s repre-
sentation of the algebra &,(R)[t] plays a crucial role in applications to the
equivariant Schubert calculus, and constitutes an important step in the proof
of Corollary 2.2.

Another objective of our paper is to construct a certain extension of the
Nichols-Woronowicz model for the coinvariant algebra of a finite Coxeter



group W. Recall that the Nichols-Woronowicz algebra model for the coho-
mology ring of flag varieties has been invented by Y. Bazlov [1]. In Section 4
we introduce a certain extension gw of the Nichols-Woronowicz algebra By,
and construct a commutative subalgebra in the extended Nichols-Woronowicz
algebra. Our second main result states

Theorem 1.3 For crystallographic root systems and t = 0, the commutative
subalgebra of By in question is isomorphic to the T-equivariant cohomology
ring of the corresponding flag variety.

2 Extension of the quadratic algebra

Definition 2.1 The algebra &, is an associative algebra generated by the
symbols [i, 7], 1 <i,j < n, i # j, subject to the relations:

0167 =~1id

(1) :
Fﬁ ] [k, 0[d, 4], if {é, 3} 0 {k, 1} =0,

Jl
[, j]° =
(2): [4, ]
(3) : [4, 4114, k] + [, Kl [k, 4] + [k, d][4, j] = 0.

Let us consider the extension &,(R)[t] of the quadratic algebra &, by the
polynomial ring R[t] = Z[x1, ..., x,][t] defined by the commutation relations:
(A) [Zvj]xk = xk[iaj]a for k 7£ i ],
(B): 1, 7lai = 404, ) + ¢, [, jlo; = xifi, 4] — ¢, for @ < j,
(C): i, gt = t[i, j].

Note that the S,-invariant subalgebra RS"[t] of R[t] is contained in the
center of the algebra &, (R)[t].

Definition 2.2 (1) We define the R[t]-algebra E,[t] by
Enlt] = En(R)[t] @ e R.

More explicitly, &, [t] is an algebra over the polynomial ring Zly,, . .., yn] gen-
erated by the symbols [i,j], 1 < i,j < n, i # j, and x1,...,x,,t satisfying
the relations in the definition of the algebra E,(R)[t], together with the iden-
tification e;(x1, ..., x,) = €;(y1, ..., Yn), fori=1,...,n. Denote by gmo the
specialization of E,[t] at t = t,.

(2) The Dunkl elements 0; € E,[t], i = 1,...,n, are defined by the formula
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Remark 2.1 Note that z;’s do not commute with the Dunkl elements, but
only symmetric polynomials in x;’s do. By this reason we need the second
copy of R = Z[yi,...,yn], where y;’s assumed to be belong to the center

of the algebra &,[t], and f(z1,...,2,) = f(y1,...,yn) for any symmetric
polynomial f.

Lemma 2.1 The Dunkl elements commutes each other.

Proof. This follows from the fact that

(zi + 25)[1, 5] = [1, j](zi + ;).

Let er(xq1,...,2,), 1 < k < n, stand for the elementary symmetric
polynomial of degree k in the variables xq,...,x,. We put by definition,
eo(r1,..., o) =1, and ex(xy,...,x,) =0, if £ < 0.

Theorem 2.1 (Pieri formula in the algebra &,(R)]t])

]

Sty Nem—k2){ 3 X [ liadal}-
r>0 S.1,J . a=1
io€l, ja€J
where ol
N(a,2b) = (2b — 1)1 (a ";b )

X := [l,eq xs; the second summation runs over triples of sets (S, 1,J) such
that S C {1,...,k}, I and J are subsets of the same cardinality in the set

{1,...,n}\S, and |I|+|S|+2r = k; the product is taken over pairs (iq, ja)',
such that 1 < i, <m < j, < n and the indices i1, . ..,1 are all distinct.

Proof. Let A := {1,....,m} C {1,...,n},d == n—m and j; == m + i.
Denote by Ej(A) the right-hand side of the formula. It will suffice to prove
the recursive formula

Ex(AU{j = i1}) = Bi(A) + Bea(A)(w; + D))
s#J
For a subset [ = {iy,...,4} C {l,...,n} and p & I, we use the symbol

() = iy p) -+ i, ]

wWES;



as defined in [8]. We have the following decompositions:

Ei(A)

= ) (~t)'N(m—k,2r)Xs Y >

r>0

SCcA 11---Ide_2T_|S‘A\S

= ) (=t)"N(m — k,2r)(A} + A}),

r>0

By (AU{j})

= D (~t)N(m—k+1,2r)Xg > >

r>0

= Y (=t)'N(m — k+1,2r)(B] + B} + Bj),

r>0

Eea(A) Yl s

s#j

= SO Nm - k4 1,20)Xs 3 >

r>0

r>0

Ek—l (A)SBJ

ScA Il~"Ide_1_2T_‘S|A\S

= Y (=t)'N(m—k+1,2r)(C] + C5 + Cj + C}),

= SO Nm -k +1,20)Xs S >

r>0

ScA Il~--Ide71,2,r,‘S|.A\S

= Y (—t)'N(m—k+1,2r)(D; + Dj),

r>0

where A}, B}, C7, D are defined as follows.

(Lalg1)) - - - (Lalja)

(L2]72) - - {Lalja)

SCAz-+IqCh_op— 5] AU{TI\S

<o (Lalja) >, 8]

s#j

- (Lalja)x;

e A7 is the sum of terms with I; = 0; A% is the sum of terms with ; # (.

e B is the sum of terms with j & SULLU---Uly; B is the sum of terms
with j € I, U--- U I; B is the sum of terms with j € S.

e (7 is the sum of terms with s € A\ (SUIL U---U I;); Cf is the sum
of terms with s € LU ---UI;U A% Cf is the sum of terms with s € S
C is the sum of terms with s € I;.

e D7 is the sum of terms with I; = 0; D} is the sum of terms with I; # 0.



Based on the same arguments used in [8], we can see that A] = B}, AL+C] =

0, B}

= (4 and O] = 0. It is also easy to see that B = D]. Now we have

Ek(A)—i-Ek 1 J}J+Z], Ek AU{]})

s#]
= D> (=) (N(m—k,2r)(A] + Ap) — N(m — k +1,2r)(B] — Cf — Cj — Dj))
r>0 SCA
= S S () (Nm— b, 20) — N(m — ke +1,27)) (A7 + Ap)
r>1 SCA

+3 N (=)' N(m — k+1,2r)(Cy + Dy).

r>0 SCA

From the commutation relation [i, jlz; = x;[i, j] — t, we have

D3 >

Hence,

= Xs >, Y Taugop @ 31 [awqns 1GEL2) - (Lalja)

L 1gCro1_2r— |5 A\S WES [
I1={ay,..., aull}

—tXs > > lawqy, 1+ lawqng-1, 14T lg2) -+ - (Lalja)

11 1gCp_1—9p—|5|A\S WES|
Iy={ay,..., aull}

= Y Xous > (Lalg) (s, 1 L2l g2)) - - - (Lalja))
sgS I TgCh1_gr—(|5|+1)A\SU{s}
—(m =k +2r 4+ 2)tXs > (Lalg1) - -~ (Lalda))

I IgCr_g_2r— |5 A\S

= —C5 + (=t)(m —k+2r +2)(A7T + ALY,

we have

(=) TN (N(m —k,2(r +1)) = N(m — k4 1,2(r + 1)) (AT + A7)

— (=)™t (2r + 1!

—(—ty(2r - 1!

(m —k+2r+2)!
2r+Dl(m—k+1)!

e (C0(m— k2 (AT 4 45

(A71"+1 —|—A§+1)

= —(=t)'N(m —k+1,2r)(C} + Dj).

This shows the desired result.



Corollary 2.1 The list of relations in the algebra gn[t]

ex(0, ... 00 =

n

n—=k+2r
k(Y1s s Un —1—2 (2r— 1”< o )ekQT(yl,...,yn),lgkgn,
r>1
describes the complete set of relations among the Dunkl elements ng), cee o,

Corollary 2.2 For t = 0, the subalgebra of gn,O generated by the Dunkl
elements 01,...,0, over Hr(pt) = Z[y1,...,yn] is isomorphic to the T-
equivariant cohomology ring H;(Fl,).

Proof. Let (0 =Uy C Uy C --- C U,) be the universal flag over F,. First of
all it follows from Corollary 2.1 that the natural map z; := —¢;(U;/U;—1) —
0;, y; — y; defines a surjective homomorphism

7 Hi(FL) — Zy, . - yn[0hs - 00 C Eno.

On the other hand, it follows from the definitions that the image of Dunkl’s
element 6; in the Bruhat representation (see Section 3) acts according to the

rule:
Ohw=yupw+ Y wty— > why.
> j<i
Wwtij)=l(w)+1 Wwtij)=l(w)+1

This rule exactly corresponds to the Monk formula for double Schubert poly-
nomials, see e.g. [7, Exercise 2.7.2]. Therefore the element id. generates
Zlyi, - ynl(Sn) over Zlyr, ..., yal[01, ..., 0.]. Since Zlyi, ..., yn](S,) is iso-
morphic as a Z[y, . . . , y»]-module to the quotient Z[yi, ..., Yn, 21, - -, Zn]/In,
where J,, denotes the ideal generated by the elements ey (21, ..., zn)—€x (Y1, .- -, Yn),
1 <k < n. This exactly means that the homomorphism 7 is an isomorphism.

We expect that for general ¢ the subalgebra in &,[t] generated by the
Dunkl elements 64, ..., 0, over Z[y1, ..., y,][t] is isomorphic to the (T x C*)-
equivariant cohomology ring Hx.. o« (F1,,).

Theorem 2.2 The subalgebra generated by the elements g := [1,2], go =
12,3],..., gn_1 := [n— 1,n] in the algebra E,(R)[t] is isomorphic to the nil
degenerate affine Hecke algebra of type AS_)l, i.e. the algebra given by two



sets of generators gi,...,gn—1 and x1,...,x, subject to the set of defining
relations:

g, =0, g9, =9;9;, ifli—3j|>1, gigj9;i = 9,695, if |i — j| =1,

ZT; 13]' = $j i, Tk g = g; Tk, lf k 7A Z,Z + 1, gil; — Tjr1G; = t.

3 Bruhat representation

Let us recall the definition of the Bruhat representation of the algebra &, on
the group ring of the symmetric group Z(S,) = @yes,Z - w. The operator
0ij, 1 < j, is defined as follows:

oij(w) = { 0, otherwise.

Then the Bruhat representation of &, is defined by [i, j].w = 0;;(w).
Now we extend the Bruhat representation to that of the algebra &, (R)[t]
defined on

R[t)(Sn) = Bues, Zly1, - - - yl[l] - w.

For f(y) € Z[y1,...,yn][t] and w € S,, we define the Z[t]-linear operators
0ij, 1 < j, and & as follows:

HOw@yw(p f(W))w + [(y)wty, if l(wty;) = l(w) +1,
t(Ow(iywi) f (Y))w, otherwise,

E(f(Y)w) = (Yuww f(y)w

Proposition 3.1 The algebra E,(R)[t] acts Z[t]-linearly on Z[y][t](S,) via
[ij] — 645 and x) — &.

i (f(y)w) = {

Proof. Let us check the compatibility with the defining relations of the
algebra &,[t]. We show the compatibility only with the relations (1), (3) and
(B). The rest are easy to check.

Let us start with the relation (1). We have

ai(fw) = Gy (t@wiiywi)fW)w + f(y)osy(w))
= (02w S W)W+ tOuywi f (1)) oij (w)
+t(8w(j 0 f(W)oi(w) + f(y)or;(w).
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Since 8 =0, 0’ = 0 and Oy(yw() = —Ouw(j)w(i)s We get &fj =0.
For the relatlon (3) we have

0i0(f(y)w) = 0y (t( o (5) w(k fy)w + f(y)o(w ))
= t2(8w(l)w w(iywik) f (Y)W + HOuwm) f(Y))oi(w)
+t(wiiywr) f (Y))ojr(w) + f(y)oijon(w).

We also obtain 7,64 (f(y)w) and 64,6;;(f(y)w) by the cyclic permutation
of i, 7, k. The 3-term relations

w(iyw() Ow(ywk) T Ow(ywr) Owkyw(i) + Owkyw(i) Qi) = 0

and
O’ijO'jk + ajkaki —+ O'kiO'ij = O

show the desired equality
516k + 010 + Oribyy = 0.
Finally, we check the relation (B). We have
0 (f(Ww) = 7ij(Yu [ (Y)w ) )
= t0utiyu() Wu() S (W) + (Yuii f(y))oi; (w)

H\Y
= t(f(y)uw )+t(yw(a Dw(iyw(i) f Y)W + Yt ()45 (w)
= &6 (f(y)w) +t(f(y)w).

Theorem 3.1 Let S, (x,y) be the double Schubert polynomial corresponding
tow €8S,. Then, we have

Proof. This follows from the Monk formula for the double Schubert polyno-
mials and

(05 — Yuwp))(w) = Ei(w) + Z 05 (W) = Ywiyw




Remark 3.1 Only when ¢ = 0, one can extend Z|y|[t]-linearly the Bruhat
representation of the algebra &,(R)[t] to that of the algebra &,[t]. In fact,
Theorem 3.1 describes the multiplicative structure of the Z[y]-subalgebra

generated by the Dunkl elements in &, , which is isomorphic to H}.(F1,).
Nevertheless, the property of the double Schubert polynomials in Theorem
3.1 holds for arbitrary ¢.

4 Quantization

Definition 4.1 The algebra E2 is a Z[q, ..., qn-1]-algebra defined by the
same generators and relations as in the definition of the algebra &, except
that the relation (1) is replaced by

;o2 )o@ ti=35-1,
W liaF = { 0, ifi<j—1
The extension EI(R)[t] of the algebra 1 is also defined by the relations (A),
(B) and (C).

The Bruhat representation for &, is deformed to the quantum Bruhat repre-
sentation for £7. We define the quantum Bruhat operator Ugj, 1 < j, acting
on Z[Qla s >Qn—1]<Sn> = @w€§nz[q1a v 7qn—1] W as follows:

0, otherwise.

For f(y) € Z[y1,...,yn)[t] and w € S,, we define the Zlq, ..., ¢,—1][t]-
linear operators &;; by

o (f(y)w) = tQ@uiywi f(y))w + f(y)of(w).
We can check the well-definedness of the quantum extended Bruhat repre-

sentation [ij] — G, 71, — &, of the algebra EI(R)[t] in the same way as the

proof of Proposition 3.1.

Theorem 4.1 Let &% (x,y) be the quantum double Schubert polynomial cor-
responding to w € S,,. Then, we have

&5, (0, y)(id.) = w

under the quantum extended Bruhat representation.
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Proof. This follows from the quantum Monk formula for the quantum Schu-
bert polynomials.

Corollary 4.1 The quantum double Schubert polynomials &4 (x,y) are char-
acterized by the conditions:

(1) &% (2, 9)lg=0 = Gu(z,y),

(2) &4 (z,y) is a linear combination of polynomials &,(x,y) with v < w over

Z[Ql; e 7Qn—1]>
(3) &40, y)(id.) = w.

5 Nichols-Woronowicz model

The model of the equivariant cohomology ring H7(Fl,) in the algebra &,
has a natural interpretation in terms of the Nichols-Woronowicz algebra.
The Nichols-Woronowicz approach leads us to the uniform construction for
arbitrary root systems.

We denote by By, the Nichols-Woronowicz algebra associated to the
Yetter-Drinfeld module

V =PRI/ (la] + [~a])

a€cA

over the finite Coxeter group W of the root system A. Let b be the reflection
representation of W and R = Symbh* the ring of polynomial functions on §.
Let us consider the extension By (R)[t] of the algebra By, by the polynomial
ring R[t] defined by the commutation relation

[a]x = so(2)[a] +t(x, ) for x € h*.
Definition 5.1 We define the R-algebra gw by
By = By (R)[t] ®pw R.

Choose a W-invariant constants (¢, )q. Let us consider a linear map p : h* —
By defined as
pla) =2+ Y calz,a)la]

aEA L

for x € b*.
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Proposition 5.1 [u(x),u(y)] =0, z,y € h*.

The linear map u extends to a homomorphism of algebras
p: R — By (R)t].

Denote by ji the composite of the homomorphisms

ue1

R®z RS By (R)[t] ®2 R — By.

Theorem 5.1 [ft =0 and the constants (c,)a are generic, the image of the
homomorphism [ is isomorphic to the algebra R @pw R. In particular, when

W s the Weyl group, it is isomorphic to the T-equivariant cohomology ring
H3(G/B) of the corresponding flag variety G/B.

The proof is based on the correspondence between the twisted derivation D,
and the divided difference operator d,. We define the operator D, as the
twisted derivation on By, determined by the conditions:

(1): Do(z) =0, for z € R,

(2): Do([f]) = 00, for a, f € AL,

(3): Da(fg) = Da(f)g + salf)Dalg)-

The operator D,, is linear with respect to R on the second component.

Proposition 5.2
Naea, Ker(D,) = R[t] @gw R

Proof. Any element w € By (R)[t] can be written as

w= fie1+ -+ frer,

where f1,..., fr € RJ[t] are linearly independent, and ¢4, ..., o, € By. We
have

Do (w) = sa(f1)Dalpr) + -+ + sa(fr) Daler)

from the twisted Leibniz rule. If D,(w) = 0, we have D,(p1) = -+ =
D,(¢r) = 0. Hence, w € Naen, Ker(D,) implies that ¢; € BY), = R for
i=1,...,k. This means w € R[t].

Proposition 5.3

Dao(fi(x)) = cafi(0a())
for x € R®yz R.
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Proof. When z = (8 ® 1, g € A, we can check that

Do (11(B ® 1)) = ca(B, a) = cafi(0a(8)).

Hence, we have D, (ji(z)) = copi(0a(z)) for € h* ® R. On the other hand,
the both-hands sides satisfy the same twisted Leibniz rule, so it follows that
D, (1i(z)) = capi(0a(z)) for x € R® R.

(Proof of Theorem 5.1) If # € RV ®z R, we have D,(ji(z)) = 0 for

every a € A, from Proposition 5.3. This implies from Proposition 5.2 that
p(r) € RY @zpw R. When t = 0, fi(r) coincides with the element of R
which is obtained by replacing all the symbols [a] by zero in p(x). Hence,
the homomorphism g factors through R @ pw R — gw. Since a linear basis
of the coinvariant algebra of W gives an R -basis of R, it is easy to see that
R ®grw R — By is injective.
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