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Abstract

Given a graph G, the m-step graph of G, denoted by Sm(G), has the same

vertex set as G and an edge between two distinct vertices u and v if there is

a walk of length m from u to v. The line graph of G, denoted by L(G), is a

graph such that the vertex set of L(G) is the edge set of G and two vertices

u and v of L(G) are adjacent if the edges corresponding to u and v share a

common end vertex in G. In this paper, we characterize connected graphs G

satisfying graph equation Sm(G) = L(G).
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1 Introduction

Throughout this paper, we only consider simple graphs. Given a graph G, the
following two notions of well-known graphs can be defined: The m-step graph of G,
denoted by Sm(G), has the same vertex set as G and an edge between two vertices
u and v if there is a walk of length m from u to v. The line graph of G, denoted by
L(G), is the intersection graph of the edge set of G. That is, the line graph of G is
a graph such that the vertex set of L(G) is the edge set of G and two vertices u and
v of L(G) are adjacent if the edges corresponding to u and v share a common end
vertex in G. For all undefined graph-theoretical terms, see [2].

∗The authors thank KOSEF for its support under grant Com2MaC-KOSEF.
†Corresponding author. email address: eotp11@empal.com
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Graph equations are equations in which the unknowns are graphs. Since many
problems and results in graph theory can be formulated in terms of graph equations,
graph equations have been studied by many authors (see [3] for surveys of the
literature of graph equations). Especially, graph equations seeking a solution graph
G whose line graph L(G) is isomorphic to another graph structure built from G
have been widely studied. For example, Akiyama et al. [1] studied graph equations
for line graphs and nth power graphs and Simić [6] studied graph equations for line
graphs and nth distance graphs. The authors may refer to [4] and [7] for the work
on Sm(G).

In this paper, we study graph equation for line graphs and m-step graphs. We
characterize the graphs whose m-step graphs and whose line graphs are isomorphic.
If Sm(G) is isomorphic to L(G) for a graph G, we say that G satisfies Sm(G) = L(G).

A graph with exactly one cycle is said to be unicyclic.

Proposition 1.1. If a connected graph G = (V,E) satisfies Sm(G) = L(G), then G
is unicyclic. Especially, if m is even, the length of the cycle contained in G is odd.

Proof. Since Sm(G) = L(G), V (Sm(G)) = V (L(G)). By definition, |V (Sm(G))| =
|V | and |V (L(G))| = |E| and so |V | = |E|. Since G is connected, it is true that G
contains exactly one cycle C.

Suppose that m is even. If the length n of C is even, then G is a bipartite graph.
Then any two vertices the distance between which is odd are disconnected in Sm(G)
and so Sm(G) is disconnected. However, L(G) is still connected and we reach a
contradiction. Thus the length of C must be odd.

We call a cycle of length ≥ 4 without a chord a hole. Now we present a simple
but useful property of L(G) for a unicyclic graph G:

Proposition 1.2. Suppose that a connected graph G is a unicyclic graph having
cycle C = v0e1v1 · · · vn−1env0 for n ≥ 5. Then L(G) has a unique hole e1e2 · · · ene1.

Proof. Since C is a hole, it is true that e1e2 · · · ene1 is a hole in L(G). If f1f2 · · · fm

is a hole in L(G), then x0x1 · · · xm−1x0 is a hole in G where xi−1 and xi are the end
vertices of fi for i = 1,. . . , m. (Identify xm with x0). Since C is the only cycle of
G, we have m = n and xi = vi for i = 0, . . . , n− 1. Thus L(G) has a unique hole,
which has length n.

Note that E(Sm(G)) ⊂ E(Sm+2(G)) for any positive integer m. To see why, take
an edge e = xy in Sm(G). Then there exists an (x, y)-walk W of length m in G.
Let z be the vertex immediately preceding y in W . Then Wzy is an (x, y)-walk of
length m+ 2. Thus e is an edge of Sm+2(G).
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We denote by dG(u, v) the distance between u and v in a connected graph G and
by diam(G) the diameter of G.

Lemma 1.3. Suppose that G is a connected unicyclic graph with diam(G) ≥ 4.
Then diam(Sm(G)) ≤ diam(G) − 2 for odd m ≥ 3.

Proof. Take two vertices u, v in G. Since E(G) ⊂ E(Sm(G)) as noted above, we
have dSm(G)(u, v) ≤ dG(u, v). If dG(u, v) ≤ 2, then dSm(G)(u, v) ≤ dG(u, v) ≤ 2 ≤
diam(G)−2. Now suppose that dG(u, v) ≥ 3. Let uv1v2 · · · vl−1v (Identify vl with v.)
be a shortest (u, v)-path in G. Then l ≥ 3, and u and v3 are adjacent in Sm(G) since
m is odd. Therefore, dSm(G)(u, v) ≤ dG(u, v)− 2. Thus, dSm(G)(u, v) ≤ diam(G)− 2
for any u, v in G and so diam(Sm(G)) ≤ diam(G) − 2.

Given a cycle C of a connected graph G, we call a path of G C-avoiding path
if its internal vertices are not on C. A spiked cycle is a connected graph whose
non-pendant vertices form a cycle.

For a vertex v of a graph G, we denote by NG(v) (resp. NG[v]) the set of vertices
adjacent to v in G (resp. the set of v and vertices adjacent to v in G) or the subgraph
of G induced by the those adjacent vertices.

Theorem 1.4. Let m be an odd integer greater than or equal to 3. Then for a
connected graph G, G satisfies Sm(G) = L(G) if and only if G is either a 3-cycle or
a 4-cycle.

Proof. The ‘if’ part is obviously true. Now we show the ‘only if’ part. Since a path
of G of length l as an induced subgraph corresponds to a path of L(G) of l−1 as an
induced subgraph, diam(G) ≤ diam(L(G)) + 1. By Proposition 1.1, G is unicyclic.
If diam(G) ≥ 4, then,by Lemma 1.3, diam(L(G)) ≥ diam(G) − 1 > diam(Sm(G)),
which contradicts the hypothesis that Sm(G) = L(G). Thus diam(G) ≤ 3. This
implies that G is a spiked cycle with a cycle C of length from 3 up to 7, or a
unicyclic graph with a 3-cycle C such that only one vertex x on C has degree ≥ 3
and a longest C-avoiding path starting at x is unique and has length 2.

If C is a 5-cycle, a 6-cycle, or a 7-cycle, then C is a hole in L(G) while C has a
chord in Sm(G) since any two vertices at distance 3 in G are adjacent in Sm(G).

If C is a 4-cycle, then the degree of each vertex on C is 2. For otherwise, there
is a vertex v of degree at least 3 on C, and the neighbors of v on C and a neighbor
of v not on C form an independent set of size 3 in S3(G). Thus the edge clique
cover number of NS3(G)[v] is at least 3. It is impossible for L(G) = Sm(G) since it
is known that the edge clique cover number of the closed neighborhood of a vertex
in a line graph is at most 2. Hence G itself is 4-cycle if C is a 4-cycle.

Now consider the case where C is a 3-cycle. Since diam(G) ≤ 3, Sm(G) is a
complete graph for odd m ≥ 3. If there is a vertex x not on C that is joined to
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a vertex y on C by an edge e, then e is not adjacent to the edge joining the two
vertices on C other than y in L(G). Thus it is impossible that Sm(G) = L(G).
Therefore G has to be a 3-cycle.

Now it remains to characterize a connected graph G satisfying Sm(G) = L(G)
for an even integer m. We begin by presenting the following theorem:

Theorem 1.5. Let G be a connected graph. If Sm(G) = L(G) for an even integer
m ≥ 4, then the girth of G is 3.

Proof. By Proposition 1.1, G contains a unique odd cycle C = v0v1 · · · vl−1v0. Sup-
pose that l ≥ 5. We will reach a contradiction. Since G is C4-free,

|E(L(G))| =
∑

v∈V (G)

(

degG(v)
2

)

where degG(v) denotes the degree of v in G.
Since E(S2(G)) ⊂ E(Sm(G)) for even m, Sm(G) has at least

∑

v∈V (G)

(

degG(v)
2

)

(⋆)

edges. However, since C is not a 6-cycle, Sm(G) contains edge v0v4 that is not
counted in (⋆). This implies that |E(Sm(G))| > |E(L(G))|, which is contradiction.
Thus, l ≤ 3.

We have characterized a connected graph G satisfying Sm(G) = L(G) for an
odd integer m. Now it remains to characterize a connected graph G satisfying
Sm(G) = L(G) for an even integer m. We consider a connected graph G with girth
greater than 3 in Section 2 and a connected graph G with girth 3 in Section 3.

2 Graph with girth> 3 satisfying Sm(G) = L(G) for even m

Theorem 1.5 tells us that if a connected graph G with girth greater than 3 satisfies
Sm(G) = L(G) for even m, then m = 2. Thus, it is sufficient to consider the case
where m = 2.

Proposition 2.1. Suppose that a connected graph G is a unicyclic graph having
cycle C = v0e1v1 · · · vn−1env0 for n ≥ 5. Then S2(G) and L(G) have unique holes
v0v2 · · · vn−1v1v3 · · · vn−2v0 and e1e2 · · · ene1, respectively.
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Proof. Let C = v0e1v1e2 · · · vn−1env0 (n ≥ 5). Then delete an edge en on C from G.
Then the resulting graph G−en is a tree. Phelps [5] showed that the 2-step graph of
a tree with at least 2 vertices has exactly two components and is chordal. It is easy
to see that v0v2 · · · vn−1 and v1v3 · · · vn−2 are paths of length at least one as induced
subgraphs of S2(G− en) which belong to different components of S2(G− en). Note
that

E(S2(G)) = E(S2(G− en)) ∪ {xvn−1 | x ∈ NG(v0)} ∪ {yv0 | y ∈ NG(vn−1)}.

Thus S2(G) has hole C∗ = v0v2 · · · vn−1v1v3 · · · vn−2v0. Any vertex in NG(v0) (resp.
NG(vn−1)) other than v1 (resp. vn−2) forms a triangle with v1 and vn−1 (resp. v0 and
vn−2) in S2(G). Hence C∗ is the only hole in S2(G).

By Proposition 1.2, L(G) contains a unique hole e1e2 · · · ene1.

Proposition 2.2. If a connected graph G has girth greater than 3 and satisfies
S2(G) = L(G), then G is a spiked odd cycle.

Proof. By contradiction. Suppose that there is a connected graph G such that
S2(G) = L(G) and G is not a spiked odd cycle. Since S2(G) = L(G), there exists
a bijection φ from V (S2(G)) to V (L(G)) such that uv ∈ E(S2(G)) if and only if
φ(u)φ(v) ∈ E(L(G)) for vertices u, v in G. By Proposition 1.1, G has a unique
odd cycle C = v0e1v1 . . . en−1vn−1env0 (n ≥ 5). Let P = x1x2 · · ·xk be a longest
C-avoiding path which shares an initial vertex x1 with C. Then k ≥ 3 by the
assumption that G is not a spiked odd cycle. Without loss of generality, we may
assume that v0 = x1. By Proposition 2.1, S2(G) and L(G) have unique holes C1 =
v0v2 · · · vn−1v1v3 · · · vn−2v0 and C2 = e1e2 · · · ene1, respectively. Then S2(G) = L(G)
implies that φ(V (C1)) = V (C2). It is easy to check that

r = max{dS2(G)(v, w) | v ∈ V (C1), w ∈ V (G) \ V (C1)}

=

{

dS2(G)(v1, xk) if k is odd;
dS2(G)(v0, xk) if k is even;

=
n− 1

2
+

⌊

k

2

⌋

and

s = max{dL(G)(e, f) | e ∈ V (C2), f ∈ E(G) \ V (C2)}

= dL(G)(e(n+1)/2, xk−1xk)

=
n− 1

2
+ (k − 1).

Since φ(V (C1)) = V (C2), we have r = s. Thus ⌊k/2⌋ = k−1. However, k−1 > ⌊k/2⌋
for k ≥ 3 and we reach a contradiction.
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G S2(G) L(G)

Figure 1: A spiked odd cycle G not satisfying S2(G) = L(G).

G S2(G) = L(G)

Figure 2: A spiked odd cycle G satisfying S2(G) = L(G).

It is natural to ask whether or not the converse of Proposition 2.2 is true. It
is not true as we can see from Figure 1. However, the spiked odd cycles of certain
types such as the one in Figure 2 satisfy S2(G) = L(G):

Theorem 2.3. Let G be a spiked odd cycle with cycle C = v0v1 · · · vn−1v0 (n ≥ 5)
and ai be the number of pendant vertices adjacent to vertex vi for each i = 0, . . . ,
n−1. Suppose that there exists k ∈ {0, . . . , n−1} such that either a0 = ak, a2 = ak+1,
. . . , an−1 = ak+(n−1)/2, a1 = ak+(n+1)/2, . . . , an−2 = ak+(n−1) or a0 = ak, a2 = ak−1,
a4 = ak−2, . . . , an−1 = ak−(n−1)/2, a1 = ak−(n+1)/2, . . . , an−2 = ak−(n−1) where the
subscripts are reduced to modulo n. Then G satisfies S2(G) = L(G).

Proof. Let C = v0e1v1e2 · · · vn−1env0. We denote by wi1, . . . , wiai
the pendant ver-

tices adjacent to vi in G and by fi1, . . . , fiai
the edges viwi1, . . . , viwiai

, respectively.
Suppose that a0 = ak, a2 = ak+1, . . . , an−1 = ak+(n−1)/2, a1 = ak+(n+1)/2, . . . ,
an−2 = ak+(n−1). We define a map φ from V (S2(G)) to V (L(G)) as follows:

φ(vi) =

{

ek+(i+1)/2 if i is odd;
ek+(n+i+1)/2 if i is even;

and if wij exists, then

φ(wij) =

{

fk+i/2,j if i is even;
fk+(n+i)/2,j if i is odd;
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where all the subscripts are reduced to modulo n. It is easy to check that φ is a
bijection.

To show that φ is an isomorphism, take an edge xy in S2(G). If both are vertices
on the hole in S2(G), then x = vi and y = vi+2. If i is odd, then φ(vi) = ek+(i+1)/2

and φ(vi+2) = ek+(i+3)/2, and they are adjacent in L(G). If i is even, then φ(vi) =
ek+(n+i+1)/2 and φ(vi+2) = ek+(n+i+3)/2, and they are adjacent in L(G). If one is on
the hole while the other one is not, then we may assume that x = vi−1 and y = wij

for some j ∈ {1, . . . , ai}. Then φ(vi−1) = ek+i/2 and φ(wij) = fk+i/2,j if i is even,
and φ(vi−1) = ek+(n+i)/2 and φ(wij) = fk+(n+i)/2,j if i is odd. In both cases, φ(x)
and φ(y) are adjacent in L(G). Finally suppose that none of x and y is on the hole
in S2(G). Then x = wij and y = wij′ . Then φ(wij) = fk+i/2,j and φ(wij′) = fk+i/2,j′

if i is even, and φ(wij) = fk+(n+i)/2,j and φ(wij′) = fk+(n+i)/2,j′ if i is odd. In both
cases, φ(x) and φ(y) are adjacent in L(G).

Now take an edge ef in L(G). Suppose that e and f both are on the hole. Then
e = ei and f = ei+1. Let A = {k + j (mod n) | j = 1, . . . , k + (n − 1)/2}. If
{i, i + 1} ⊂ A, then φ(v2(i−k)−1) = ei and φ(v2(i−k)+1) = ei+1, and it is true that
v2(i−k)−1 and v2(i−k)+1 are adjacent in S2(G). If exactly one of i, i+ 1 belongs to A,
then either i = k or i = k + (n − 1)/2 (mod n). Now it is true that φ(vn−1) = ek,
φ(v1) = ek+1, φ(vn−2) = ek+(n−1)/2, and φ(v0) = ek+(n+1)/2 and that vn−1 and v1

are adjacent and so are vn−2 and v0 in S2(G). If neither i nor i + 1 belongs to
A, then φ(v2(i−k)−n−1) = ei and φ(v2(i−k+1)−n−1) = ei+1. It is true that v2(i−k)−n−1

and v2(i−k+1)−n−1 are adjacent in S2(G). Suppose that e is on the hole while f
is not. Then e = ei and f = fi−1,j for some j ∈ {1, 2, . . . , ai−1} or fij for some
j ∈ {1, 2, . . . , ai}. If {i − 1, i} ⊂ A, then φ(v2(i−k)−1) = ei, φ(w2(i−k−1),j) = fi−1,j,
φ(w2(i−k),j) = fij, and it is true that v2(i−k)−1 is adjacent to both w2(i−k−1),j and
w2(i−k),j in S2(G). If exactly one of i − 1, i belongs to A, then either i = k + 1 or
i = k+(n+3)/2 (mod n). It is true that φ(v1) = ek+1, φ(w0j) = fk,j, φ(w2j) = fk+1,j,
and it is true that v1 is adjacent to both w0j and w2j. In addition, it is true that
φ(v2) = ek+(n+3)/2, φ(w1j) = fk+(n+1)/2,j, φ(w3j) = fk+(n+3)/2, and that v2 is adjacent
to both w1j and w3j. If neither i−1 nor i belongs to A, then φ(v2(i−k)−n−1) = ei and
φ(w2(i−k−1)−n−1,j) = fi−1,j, and φ(w2(i−k)−n,j) = fij, and it is true that v2(i−k)−n−1

is adjacent to both w2(i−k−1)−n,j and w2(i−k)−n,j. Suppose that neither e nor f is on
the hole in L(G). Then e = fij and f = fij′ . Then if i ∈ A, then φ(w2(i−k),j) = fij

and φ(w2(i−k),j′) = fij′ , and it is true that w2(i−k),j and w2(i−k),j′ are adjacent in
S2(G). If i 6∈ A, then φ(w2(i−k)−n,j) = fij and φ(w2(i−k)−n,j′) = fij′ , and it is true
that w2(i−k)−n,j and w2(i−k)−n,j′ are adjacent in S2(G). Hence we have shown that φ
is an isomorphism.

In the case where a0 = ak, a2 = ak−1, a4 = ak−2, . . . , an−1 = ak−(n−1)/2,
a1 = ak−(n+1)/2, . . . , an−2 = ak−(n−1), we define a map ψ from S2(G) to L(G)
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as follows:

ψ(vi) =

{

ek−(i−1)/2 if i is odd;
ek−(n+i−1)/2 if i is even;

and if wij exists, then

ψ(wij) =

{

fk−i/2,j if i is even;
fk−(n+i)/2,j if i is odd.

Then by applying a similar argument as above, we can show that ψ is an isomor-
phism. Hence in any case, G satisfies S2(G) = L(G).

In fact, it is also a necessary condition for a connected graph G with girth greater
than 3 satisfying S2(G) = L(G):

Lemma 2.4. Let G be a spiked odd cycle with cycle C = v0v1 · · · vn−1v0 (n ≥ 5) and
ai be the number of pendant vertices adjacent to vertex vi for each i = 0, . . . , n− 1.
Then if G satisfies S2(G) = L(G), then there exists k ∈ {0, . . . , n−1} such that either
a0 = ak, a2 = ak+1, . . . , an−1 = ak+(n−1)/2, a1 = ak+(n+1)/2, . . . , an−2 = ak+(n−1)

or a0 = ak, a2 = ak−1, a4 = ak−2, . . . , an−1 = ak−(n−1)/2, a1 = ak−(n+1)/2, . . . ,
an−2 = ak−(n−1) where the subscripts are reduced to modulo n.

Proof. Since S2(G) = L(G), there exists an isomorphism φ from S2(G) to L(G).
We denote vi−1vi by ei. By Proposition 2.1, S2(G) and L(G) have unique holes
v1v3 · · · vn−2v0v2 · · · vn−1v1 and ek+1ek+2 · · · ekek+1, respectively. Thus for some k,
either

φ(vi) =

{

ek+(i+1)/2 if i is odd;
ek+(n+i+1)/2 if i is even;

(∗)

or

φ(vi) =

{

ek−(i−1)/2 if i is odd;
ek−(n+i−1)/2 if i is even;

(∗∗)

where all the subscripts are reduced modulo n.
Now the maximal cliques containing vi in S2(G) are NG(vi−1) and NG(vi+1) sizes

of which are ai−1 +2 and ai+1 +2, respectively. Similarly, we can check that the sizes
of maximal clique containing ej in L(G) are aj−1 + 2 and aj + 2. Since the sizes of
maximal cliques containing each of two corresponding vertices under isomorphism
must be the same, the following are true: If φ satisfies (∗), then

ai+1 =

{

ak+(i+1)/2 if i is odd;
ak+(n+i+1)/2 if i is even;

or

ai =

{

ak+i/2 if i is even;
ak+(n+i)/2 if i is odd.
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Similarly, if φ satisfies (∗∗), then

ai =

{

ak−i/2 if i is even;
ak−(n+i)/2 if i is odd.

Now we are ready to characterize a connected graph G with girth greater than
3 satisfying graph equality S2(G) = L(G):

Theorem 2.5. Let G be a connected graph G with girth greater than 3. Then
G satisfies S2(G) = L(G) if and only if G is a spiked odd cycle such that for some
k ∈ {0, . . . , n−1}, either a0 = ak, a2 = ak+1, . . . , an−1 = ak+(n−1)/2, a1 = ak+(n+1)/2,
. . . , an−2 = ak+(n−1) or a0 = ak, a2 = ak−1, a4 = ak−2, . . . , an−1 = ak−(n−1)/2,
a1 = ak−(n+1)/2, . . . , an−2 = ak−(n−1) where the subscripts are reduced to modulo
n, C = v0v1 · · · vn−1v0 (n ≥ 5) is the cycle of G, and ai is the number of pendant
vertices adjacent to vertex vi for each i = 0, . . . , n− 1.

Proof. The ‘if’ part is just Theorem 2.3. To show the ‘only if’ part, assume that
S2(G) = L(G). Then by Proposition 2.2, G is a spiked odd cycle and Lemma 2.4
completes the proof.

3 Graph with girth 3 satisfying Sm(G) = L(G)

In Sections 1 and 2, we characterized a connected graph G satisfying graph equa-
tion Sm(G) = L(G) for an odd integer m ≥ 3 and for an even integer m with girth
greater than 3. Now to complete the characterization of a connected graph satis-
fying Sm(G) = L(G) for m ≥ 2, it remains to characterize a connected graph G
with girth 3 satisfying graph equation Sm(G) = L(G) for an even integer m. By
Proposition 1.1, a connected graph G with girth 3 satisfying Sm(G) = L(G) is still
unicyclic.

For a unicyclic graph with girth 3, the following holds:

Lemma 3.1. Given a connected unicyclic graph G with girth 3, a vertex e of L(G)
is a cut vertex in L(G) if and only if e is neither incident with a pendant vertex nor
on the cycle in G.

Proof. To show the ‘only if’ part, suppose that e is an edge incident with a pendant
vertex v. Then the neighbors of e form a clique in L(G) and so L(G)−e is connected.
Suppose that e is on the cycle in G. Let e1 and e2 be the edges on C which are
adjacent to e. Then every neighbor of e in L(G) is adjacent to either e1 or e2. Since
vertices e1 and e2 are connected in L(G) − e, it is true that L(G) − e is connected.
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To show the converse, take an edge f = xy that is neither incident with a pendant
vertex nor on the cycle. Since f is not incident with a pendant vertex, there exist
vertices w and z distinct from x and y such that x is adjacent to w and y is adjacent
z. Since f is not on the cycle, it is true that wxyz is the only path between w and z.
This implies that the vertex sequence wx, f , yz in L(G) is a unique path between
wx and yz. Thus deleting f from L(G) disconnects vertex xw from vertex yz and
so f is a cut vertex of L(G).

For a vertex v 6∈ V (C) of a graph G, we let dG(v, C) = min{dG(v, w) | w ∈
V (C)}.

Lemma 3.2. If a connected unicyclic graph G with a 3-cycle C = xyzx has a C-
avoiding path length at least 2 starting at x, then diam(L(G)) ≥ k+ l where k is the
length of a longest C-avoiding path and l is the length of a C-avoiding path starting
at y or z.

Proof. It is true that

diam(L(G)) ≥ dL(G)(e, f) = dL(G)(e, C) + dL(G)(f, C) = k + l

for edges e and f incident to pendant vertices on a longest C-avoiding path starting
x and a C-avoiding path starting y or z, respectively. Thus we have diam(L(G)) ≥
k + l.

Lemma 3.3. Suppose that G is a connected unicyclic graph with girth 3 and has a
C-avoiding path of length at least 2. Then if m is even, then

diam(Sm(G)) =

⌈

k

m

⌉

+ 1 +

⌊

k

m

⌋

where k is the length of a longest C-avoiding path.

Proof. Let C = xyzx and P be a longest C-avoiding path starting at x. Let P =
xx1 · · ·xk. Then k ≥ 2 by the hypothesis. It is not difficult to check that xk and
xk−1 are farthest vertices in Sm(G) with

dSm(G)(xk, xk−1) = dSm(G)(xk, C) + 1 + dSm(G)(xk−1, C) =

⌈

k

m

⌉

+ 1 +

⌊

k

m

⌋

.

Given a graph G, we denote the edge clique number of a graph G by θE(G).

Lemma 3.4. Suppose that a connected unicyclic graph G with cycle C = xyzx
satisfies Sm(G) = L(G) for an even integer m. If G has a C-avoiding path P with
an end vertex x on C, then m = 2 and the degree of each of y, z is 2.
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Proof. It follows from Lemmas 3.2 and 3.3 thatm ≤ 3 and l ≤ 2 where l is the length
of a C-avoiding path starting at y or z. Since m is even, we have m = 2. If l ≥ 1,
then one of y or z is adjacent to a vertex w not on C. Without loss of generality, we
may assume that w is adjacent to y. In addition, we denote by v the vertex on P
at distance 2. Then y, w, v are neighbors of x in S2(G). However, no two of these
vertices belong to the same edge clique in S2(G) and so θE(NS2(G)(x)) ≥ 3, which is
impossible for a line graph. This completes the proof.

From Lemma 3.1 and Lemma 3.4, the following proposition follows:

Proposition 3.5. If a connected unicyclic graph G with a 3-cycle C satisfies Sm(G) =
L(G) for an even integer m, then any C-avoiding path with an end vertex on C has
length at most 2.

Proof. By contradiction. Suppose that there exists a C-avoiding path of length ≥ 3
with an end vertex x on C. Let P be the set of paths of length ≥ 3 from x to a
pendant vertex. Let y, z be the other vertices on C. By Lemma 3.4, m = 2, and y
and z have degree 2. Thus, by Lemma 3.1, the set of cut vertices of L(G) equals

⋃

P∈P

E(P ) \ {eP}

where eP is an incident with the pendant vertex on P . Thus the subgraph of L(G)
induced by its cut vertices is connected.

Let P = xx1x2 · · · xk for some k ≥ 3. Then every walk between x2 and x3 in
S2(G) contains x1 and so x1 is a cut vertex of S2(G). In addition, every walk between
x1 and x2 in S2(G) contains x and so x is a cut vertex of S2(G). On the other hand,
since any vertex adjacent to y or z is a pendant vertex, the neighbors of y form a
clique, and so do the neighbors of z. This implies that neither y nor z is a cut vertex.
However, every walk between x and x1 in S2(G) contains either y or z. Thus the
subgraph of S2(G) induced by its cut vertices contains two disconnected vertices x
and x1. Hence the subgraph of S2(G) induced by its cut vertices is disconnected.
However, we have shown that the subgraph of L(G) induced by its cut vertices is
connected, which contradict the hypothesis that S2(G) = L(G).

Lemma 3.6. Suppose that a connected unicyclic graph G with cycle C = xyzx
satisfies Sm(G) = L(G) for an even integer m. If P is a longest C-avoiding path
with an end vertex x on C, then any C-avoiding paths of length 2 with an end vertex
x shares an edge incident to x with P and there is no pendant vertex adjacent to x.

Proof. By contradiction. Suppose that there exist a C-avoiding path Q of length 2
that is edge-disjoint from P . By Proposition 3.5, the length of P is 2. Let P = xwv.

11



Figure 3: A graph obtained from identifying a vertex of a 3-cycle with a pendant
vertex of K1,4.

Let u be the other end vertex of Q than x. Then u, v, y are neighbors of x in S2(G)
which form an independent set. Hence θE(NS2(G)(x)) ≥ 3, which is impossible for a
line graph.

Suppose that there exists a pendent vertex u adjacent to x. By Lemma 3.1, xw
is the only cut vertex of L(G). Since x is on every walk connecting w and v in
S2(G), x is a cut vertex of S2(G). Since S2(G) = L(G), x corresponds to xw under
any isomorphism from S2(G) to L(G). However, the degree of x in S2(G) is k + 2
while the degree of xw in L(G) is at least k + 3 where k is the number pendant
vertices adjacent to w. Hence we reach a contradiction and so there is no pendant
vertex adjacent to x.

Now we are ready to characterize a connected graph G with girth 3 satisfying
Sm(G) = L(G).

Theorem 3.7. Let G be a connected graph with girth 3. Then G satisfies Sm(G) =
L(G) for an even integer m if and only if

(1) G is a 3-cycle, or

(2) m = 2 and either G is a spiked odd cycle with a 3-cycle or G is a graph
obtained from identifying a vertex of a 3-cycle with a pendant vertex of K1,n.
(see Figure 3 for an illustration).

Proof. The ‘only if’ part immediately follows from Proposition 3.5 and Lemmas 3.4
and 3.6. If (1) is true, then it is obvious that Sm(G) = L(G). Now suppose that
(2) holds. Suppose that G is a spiked odd cycle with a 3-cycle. Let v0v1v2v0 be the
3-cycle of G and Pi be the set of pendant vertices adjacent to vi for i = 0, 1, 2.
Define a map ϕ from V (G) to E(G) as follows:

ϕ(vi) = vi+1vi+2 (the subscripts are reduced modulo 3);

For each x ∈ Pi,

ϕ(x) = vix.
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Then it can easily be checked that ϕ is a bijection such that uv ∈ E(S2(G)) if and
only if ϕ(u)ϕ(v) ∈ E(L(G)).

Let G be a graph G obtained from identifying a vertex of a 3-cycle with a pendant
vertex of K1,n. Then it is easy to check that S2(G) and L(G) both are the graphs
obtained from identifying one end of e of K4 − e and a vertex of Kn. Thus we have
shown that the ‘if’ part is true.
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