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Abstract

A class of discrete convex functions that can efficiently be minimized has been
considered by Murota. Among them are L\-convex functions, which are natural
extensions of submodular set functions. We first consider the problem of minimizing
an L\-convex function with a linear inequality constraint having a positive normal
vector. We propose a polynomial algorithm to solve it based on a binary search for
an optimal Lagrange multiplier, where use is made of algorithms for minimum-ratio
and maximum-ratio problems that are, respectively, associated with submodular and
supermodular set functions. We also examine an extension of the problem to that
with a linear inequality constraint having a not necessarily positive normal vector and
adapt it to the problem of minimizing an M\-convex function, the convex conjugate
of an L\-convex function, with a linear inequality constraint. The former extension
can be solved in polynomial time by using a binary search for an optimal Lagrange
multiplier and by adopting Nagano’s algorithm for the intersection of line and a base
polyhedron. The latter can also be solved in polynomial time by an approach similar
to that for L\-convex functions, based on a geometric characterization of M\-convex
functions.

1. Introduction

Murota [12, 13] considered a class of discrete convex functions that have nice min-max
relations and can efficiently be minimized. Among them are L-convex (L\-convex) func-
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tions and M-convex (M\-convex) functions; the former are the conjugates (or the Legendre
transforms) of the latter and vice versa. L\-convex functions were also treated earlier by
Favati and Tardella [1] and called submodular integrally convex functions (also see [6] for
L\-convex functions and [15] for M\-convex functions). A weakly polynomial algorithm
for minimizing L\-convex functions was proposed by Murota [14].

We consider the problem of minimizing an L\-convex function with a linear inequal-
ity constraint having a positive normal vector (or weight vector) such as a budget con-
straint. The effective domains of L\-convex functions have special discrete structures (see
[5, 13]), so that such an additional linear constraint does not fit into the effective domains
of L\-convex functions and we need a new algorithm to the problem other than those
for L\-convex functions without any additional constraints. Moreover, we examine pos-
sible extension and adaptation of the algorithm for other problems and give polynomial
algorithms.

The present paper is organized as follows. Section 2 gives definitions and describes
the optimization problem for an L\-convex function with a linear inequality constraint.
Section 3 shows a characterization of optimal solutions of the problem. In Section 4
we propose an algorithm to solve the problem based on a binary search for an optimal
Lagrange multiplier, which finds an optimal solution in weakly polynomial time. In Sec-
tion 5 we also examine an extension of the problem to the one having a not necessarily
positive weight vector and adapt the algorithm for an L\-convex function to minimizing
an M\-convex function with a linear inequality constraint. We propose polynomial algo-
rithms for solving these problems.

2. Definitions and Problem Description

Let E be a finite nonempty set, andR andZ be the sets of reals and of integers, respec-
tively. We consider an L\-convex functionf : ZE → R ∪ {+∞} on the integer lattice
ZE such that its effective domaindomf ≡ {x ∈ ZE | f(x) < +∞} is nonempty and
full-dimensional. See [13] for the precise definition. We give a characterization of an
L\-convex function in the following.

Denote byConv the convex hull operator inRE. For anyz ∈ ZE and any linear
ordering (or permutation)σ of E define a simplex

∆σ
z = Conv({z + χSi

| i = 1, · · · ,m, Si is the set of the firsti elements ofσ}). (2.1)

The collection of all such simplices∆σ
z for all pointsz ∈ ZE and linear orderingsσ of

E forms a simplicial division ofRE, which is called theFreudentahl simplicial division.
We also call each∆σ

z aFreudentahl cell.
Let f be a function on the integer latticeZE such that

(A1) Conv(domf) ∩ ZE = domf .
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(A2) The convex hullConv(domf) of the effective domain off is full-dimensional and
is the union of some Freudentahl cells.

The assumption of the full dimensionality is not essential but we assume it here for sim-
plicity. Under Assumptions (A1) and (A2) we can uniquely construct a piecewise linear
extensionf̂ of f by means of the Freudentahl simplicial division as follows. For any
x ∈ ∆σ

z we have a unique expression ofx as a convex combination of extreme points of
the cell∆σ

z as

x =
m∑

i=1

αi(z + χSi
), (2.2)

whereSi is the set of the firsti elements ofσ. According to the expression (2.2) we define

f̂(x) =
m∑

i=1

αif(z + χSi
). (2.3)

For all x outsideConv(domf) we putf̂(x) = +∞. Note thatf̂ is well defined. Such a
piecewise-linear extension has been considered in fixed-point algorithms as a piecewise-
linear approximation of a nonlinear function onRE being sampled onZE (see [21, 24]). It
should also be noted that whendomf = {χX | X ⊆ E}, f̂ is called theLovász extension
([5, 11]).

Then,f is anL\-convex functionif and only if the following (A3) holds.

(A3) The piecewise linear extension̂f : RE → R ∪ {+∞} of f by (2.2) and (2.3) is a
convex function onRE

(see [6, 12, 13]). The original definition of an L\-convex function onZE is different, but
see [5, Chapter VII] for the proof of their equivalence. Hence Conditions (A1), (A2), and
(A3) imply

(S) f is submodular ondomf , i.e.,

f(x) + f(y) ≥ f(x ∨ y) + f(x ∧ y) (x, y ∈ domf), (2.4)

where(x∨ y)(e) = max{x(e), y(e)} and(x∧ y)(e) = min{x(e), y(e)} for e ∈ E.

It follows that the effective domaindomf is a (distributive) lattice with lattice operations
∨ and∧. For anyz ∈ ZE define a set functionfz on2E by

fz(X) = f(z + χX) (X ⊆ E). (2.5)

Then (2.4) implies that the functionfz is a submodular set function for everyz ∈ ZE

wheneverdomfz 6= ∅.
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We also call the extension̂f on RE an L\-convex function. We consider L\-convex
functions onZE andRE and their extensions in the above sense in the sequel.

For any L\-convex functionf : ZE → R ∪ {+∞}, any positive weight vectorw :
E → R, and anyβ ∈ R consider the following problem.

(P ◦) : Minimize f̂(x)

subject to 〈w, x〉 ≤ β,

x ∈ RE, (2.6)

where〈w, x〉 =
∑

e∈E w(e)x(e). Here it should be noted that the objective functionf̂
is defined onRE and is not restricted on the integer latticeZE. This makes the problem
substantially easier but the existence of a linear constraint makes it nontrivial.

3. The Lagrangian Function and the Optimality

For Problem(P ◦) given by (2.6) consider the associated Lagrangian function as follows.

L(x, λ) = f̂(x) + λ(β − 〈w, x〉). (3.1)

Then the optimal solutions of Problem(P ◦) are characterized by the following, which is
well-known in (continuous) convex optimization.

Proposition 3.1: A vectorx∗ ∈ RE is an optimal solution of Problem(P ◦) if and only if
there exists aλ∗ ≤ 0 such that the following(a), (b), and(c) hold.

(a) x∗ is a minimizer ofL(x, λ∗) in x.

(b) 〈w, x∗〉 ≤ β.

(c) λ∗(β − 〈w, x∗〉) = 0.

Condition(a) is rewritten as

0 ∈ ∂L(x∗, λ∗) = ∂f̂(x∗)− λ∗w (3.2)

or λ∗w ∈ ∂f̂(x∗), where∂L(x∗, λ∗) (resp.∂f̂(x∗)) denotes the subdifferential ofL(x, λ∗)
(resp.f̂(x)) in x at x = x∗. 2

It should be noted that Proposition 3.1 holds for any convex function. For the L\-
convex functionf the subdiferentials∂L(x∗, λ∗) and∂f̂(x∗) aregeneralized polymatroids
of Frank [3] because of the L\-convexity ofL(x, λ∗) andf̂(x) (see [5, 13]). This will play
a crucial r̂ole in constructing efficient algorithms. Note that for anyx ∈ domf we have

∂f̂(x) = {p ∈ RE | ∀X ⊆ E : f(x)− f(x−χX) ≤ p(X) ≤ f(x + χX)− f(x)} (3.3)
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(see [5, 13]).
DefineZ(λ) to be the set of minimizers ofL(x, λ) or f(x)− λ〈w, x〉 in x ∈ ZE. We

see from its submodularity thatZ(λ) is a distributive lattice with respective to∨ and∧.

Theorem 3.2: Suppose that for a parameterλ∗ < 0 there existx, y ∈ Z(λ∗) such that

〈w, x〉 ≤ β, 〈w, y〉 ≥ β. (3.4)

Then a vectorx∗ lying on the line segment betweenx andy and satisfying〈w, x∗〉 = β is
an optimal solution of Problem(P ◦).

(Proof) For any feasible solutionz of Problem(P ◦),

f̂(z) ≥ f̂(z) + λ∗(β − 〈w, z〉)
≥ min{f(z′) + λ∗(β − 〈w, z′〉) | z′ ∈ domf}
= f̂(x∗) + λ∗(β − 〈w, x∗〉)
= f̂(x∗), (3.5)

where note thatf(x) − λ∗〈w, x〉 = f(y) − λ∗〈w, y〉 = f̂(x∗) − λ∗〈w, x∗〉 sincex, y ∈
Z(λ∗). It follows from Proposition 3.1 and the assumption thatx∗ is an optimal solution
of (P ◦). 2

Whendomf is bounded, we can apply Murota’s weakly polynomial algorithm [14]
for minimizing L\-convex functions to find a vector inZ(λ) for eachλ. We can perform
a binary search to find an optimal Lagrange multiplierλ∗ by making use of algorithms for
the minimum-ratio (and maximum-ratio) problems to be described in the next section.

It should also be noted that the structure of parametric minimizersZ(λ) of L(x, λ) or
f(x)−λ〈w, x〉 in x ∈ ZE is closely related to the theory of principal partitions (see [5, 7])
and also to the monotonicity results on parametric minimization of submodular functions
onZE (see [22, 23]).

4. A Polynomial Algorithm

In this section we propose algorithms for solving Problem(P ◦). In the following we
suppose

(i) The effective domaindomf is bounded and we are given the maximum elementū
and the minimum elementu of domf as a lattice.

(ii) f is integer-valued ondomf , w is a positive integral vector, andβ is an integer.

It should be noted that although we assume in (i) the boundedness ofdomf , the in-
equality constraint and the existence of the minimum elementu of domf imply that the
feasible region of the problem is bounded from above because of the positiveness of the
weight vectorw.
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4.1. A binary search algorithm

We construct an algorithm for finding an optimal solution of Problem(P ◦) based on a
binary search for an optimal Lagrange multiplierλ∗.

If we have a minimizerx∗ of f̂ that satisfies〈w, x∗〉 ≤ β, thenx∗ is an optimal solution
of (P ◦). Hence let us suppose〈w, x∗〉 > β. Then there exists an optimal solution lying
on the hyperplane〈w, x〉 = β. We try to find such an optimal solution.

Let x ∈ domf satisfyx ∈ Z(α) for someα ∈ R. For such anx define

λ̂x = inf{α | αw ∈ ∂f̂(x)}, (4.1)

µ̂x = sup{α | αw ∈ ∂f̂(x)}. (4.2)

It follows from (3.3) and the positiveness ofw that

λ̂x = inf{α | ∀X ⊆ E : αw(X) ≥ f(x)− f(x− χX)}, (4.3)

µ̂x = sup{α | ∀X ⊆ E : αw(X) ≤ f(x + χX)− f(x)}. (4.4)

Sincew is a positive vector, the problem of determining the value of (4.4) is reduced to
the minimum-ratio problem

Minimize
f(x + χX)− f(x)

w(X)
subject to ∅ 6= X ⊆ E (4.5)

(see [5, Sec. 7.2]). The minimum value is equal toµ̂x. Dually, the maximum-ratio prob-
lem

Maximize
f(x)− f(x− χX)

w(X)
subject to ∅ 6= X ⊆ E (4.6)

gives the value of̂λx of (4.3). Note thatfx(X) = f(x + χX) − f(x) in X is a submod-
ular set function andf(x) − f(x − χX) is a supermodular set function inX. Strongly
polynomial algorithms for the minimum-ratio and maximum-ratio problems are obtained
by [2, 17].

Theorem 4.1: Suppose that we are givenx, y ∈ domf that definêµx, λ̂y ∈ R such that

µ̂x < λ̂y (4.7)

and
〈w, x〉 < β, 〈w, y〉 > β. (4.8)

Putα = (µ̂x + λ̂y)/2 and letz ∈ Z(α). Then we have

〈w, x〉 < 〈w, z〉 < 〈w, y〉. (4.9)

6



Moreover,
µ̂x ≤ λ̂z ≤ µ̂z ≤ λ̂y. (4.10)

(Proof) It follows from the definitions of̂µx andα that〈w, x〉 < 〈w, z〉. Similarly, from
the definitions of̂λy andα we get〈w, z〉 < 〈w, y〉. Moreover, (4.10) follows from the
definitions ofα, λ̂z, andµ̂z. 2

Based on Theorem 4.1 we propose an algorithm as follows.

Algorithm BS

Input : The minimum elementu of domf .

Output : An optimal solutionx∗ and an optimal Lagrange multiplierα∗.

Step 1: Compute a global minimizerx∗ ∈ ZE of f .
If x∗ is a feasible solution of(P ◦), then returnx∗ andα∗ = 0.
Else putx ← u andy ← x∗, computêµx andλ̂y, and go to Step 2.

Step 2: While µ̂x < λ̂y do (*):

(*) Putα ← (µ̂x + λ̂y)/2 and findz ∈ Z(α).
If z is feasible, then putx ← z and computêµx,
else puty ← z and computêλy.

Step 3: Find a pointx∗ in the intersection of the line segment betweenx andy and the
hyperplaneH = {z ∈ RE | 〈w, z〉 = β}. Returnx∗ andα∗ = µ̂x.

(End)

It should be noted that computinĝµx and λ̂y plays a crucial r̂ole in achieving the
polynomial complexity of the proposed algorithm, which will be seen in the sequel.

4.2. Validity of the algorithm

Let B = max{max{|f(z)| | z ∈ domf}, max{w(e) | e ∈ E}, |β|} and K =
max{ū(e)− u(e) | e ∈ E}. We assume thatB,K ≥ 2.

Theorem 4.2: AlgorithmBS computes an optimal solution of(P ◦) in O((L \+SFM) log B)
time, whereSFM denotes the complexity of the submodular function minimization algo-
rithm (of Orlin [18]) and L \ denotes the complexity of minimizing an L\-convex func-
tion (which is O(SFM log K) by Murota’s algorithm[14]). Consequently, it runs in
O(SFM log K log B) time.

(Proof) Since we have

µ̂u = min

{
f(u + χX)− f(u)

w(X)

∣∣∣∣ ∅ 6= X ⊆ E

}
≥ −2B, (4.11)
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the initial differencêλy − µ̂x is bounded by−min{0, µ̂u} ≤ 2B, and any nonzero differ-
enceλ̂y − µ̂x is not less than1/(B2). Since the differencêλy − µ̂x is cut in half in each
execution of (*) of Step 2, it follows that the number of the executions of (*) of Step 2 is
O(log B). Each computation of̂µx andλ̂y requiresO(SFM) (see [2, 17]). Also we can
apply Murota’s algorithm for minimizing L\-convex functions to compute a minimizerz
of L(·, α) (i.e., z ∈ Z(α)) in each execution of (*), which requiresO(SFM log K) time
(see [10] for the complexity estimation of Murota’s algorithm). It follows that the total
running time of AlgorithmBS is O((L \ + SFM) log B) or O(SFM log K log B). 2

In Algorithm BS we can use the submodular function minimization (SFM) algorithms
that allow parametric minimization of a strong-map sequence of submodular set functions
such as those in [2, 8, 9, 18]. The complexity of currently the best SFM algorithm is
O(|E|5(|E|+EO) log |E|) due to Orlin, where EO denotes the time required for a function
evaluation off . The applicability of Orlin’s algorithm [18] to the minimum-ratio problem
is shown by Nagano [17].

5. Extensions and Related Algorithms

In this section we discuss possible extension and adaptation of the algorithm for Problem
(P ◦) to other problems.

5.1. General weight vectors

We have assumed that the weight vectorw : E → R is positive. This assumption leads
us to the minimum-ratio (resp. maximum-ratio) problem for determining the valueµ̂x

(resp.λ̂y) for which we have efficient algorithms. Although Problem(P ◦) becomes more
difficult, we can solve Problem(P ◦) with a not necessarily positive but nonzero weight
vectorw as follows.

Suppose that we are given a vectorz ∈ Z(α) for someα ∈ R. For such a vectorz we
modify the definitions of̂λz andµ̂z as follows.

λ̂z = inf{ν | ∀X ⊆ E : f(z)− f(z − χX) ≤ νw(X) ≤ f(z + χX)− f(z)}, (5.1)

µ̂z = sup{ν | ∀X ⊆ E : f(z)− f(z − χX) ≤ νw(X) ≤ f(z + χX)− f(z)}. (5.2)

Recall that the polyhedron represented by the system of inequalities in the right-hand side
of (5.1) and (5.2) is a generalized polymatroid, which is a projection of a base polyhedron
into the coordinate space of codimension one (see [4]). Hence the problem of computing
λ̂z andµ̂z defined as above is to find the end-points of the intersection of the generalized
polymatroid and the lineL = {νw | ν ∈ R}. We can adapt the strongly polynomial
algorithm of Nagano [16] to find such end-points. When a computed global minimizerx∗
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of f is infeasible, we should assume that we are given a feasible solutionz and a negative
valueα such thatz ∈ Z(α). Then we can start from Step 2 of AlgorithmBS by putting
x ← z andy ← x∗ to solve Problem(P ◦) with givenw, using the above definitions ofλ̂z

andµ̂z.

5.2. M\-convex functions

For any L\-convex functionf : ZE → Z we have the associated M\-convex function
f • : ZE → Z ∪ {+∞} as the convex conjugate or the Legendre transform off , which is
given by

f •(p) = sup{〈p, x〉 − f(x) | x ∈ ZE} (p ∈ ZE). (5.3)

Putg = f •. The convex extension̂g of g(= f •) is expressed as

ĝ(p) = sup{〈p, x〉 − f(x) | x ∈ ZE} (p ∈ RE). (5.4)

We also call̂g : RE → R ∪ {+∞} an M\-convex function. (M\-convex functions from
RE toR∪{+∞} in a more general sense have been considered in [15, 13] (also see [5]).)

For the M\-convex function̂g : RE → R∪{+∞}, a nonzero integral vectorc : E →
Z, and an integerγ consider the following problem.

(P •) : Minimize ĝ(p)

subject to 〈p, c〉 ≤ γ,

p ∈ RE. (5.5)

For anyα ∈ R denote byZ•(α) the set of all minimizers ofg(p)− α〈p, c〉 in p ∈ ZE.

Theorem 5.1: Suppose thatp ∈ Z•(α) for someα ∈ R. Then,

inf{α | p ∈ Z•(α)}

= max

{
max

{
ĝ(p + χe − χe′)− ĝ(p)

c(e)− c(e′)

∣∣∣∣ e, e′ ∈ E, c(e) < c(e′)
}

,

max

{
ĝ(p + εχe)− ĝ(p)

εc(e)

∣∣∣∣ e ∈ E, εc(e) < 0, ε = +,−
}}

, (5.6)

sup{α | p ∈ Z•(α)}

= min

{
min

{
ĝ(p + χe − χe′)− ĝ(p)

c(e)− c(e′)

∣∣∣∣ e, e′ ∈ E, c(e) > c(e′)
}

,

min

{
ĝ(p + εχe)− ĝ(p)

εc(e)

∣∣∣∣ e ∈ E, εc(e) > 0, ε = +,−
}}

. (5.7)
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(Proof) Because of the conjugacy between L\-convex functions and M\-convex functions
the tangent cone of the epigraph ofĝ at p is generated by those vectors from among
(χe−χe′ , ĝ(p+χe−χe′)−ĝ(p)) (e, e′ ∈ E) and(εχe, ĝ(p+εχe)−ĝ(p)) (e ∈ E, ε = +,−)
that belong toRE×R. (Note that L\-convex functions are affine on every Freudentahl cell
and the facets of Freudentahl cells are determined by hyperplanes having normal vectors
from amongχe − χe′ (e, e′ ∈ E) andεχe (e ∈ E, ε = +,−) (see [5, 13].) Hence we
have (5.6) and (5.7). 2

Let us denote the values of (5.6) and (5.7) byl̂p andm̂p, respectively. Note that̂lp and
m̂p can be computed inO(|E|2EO•) time, whereEO• means the time for the function
evaluation oracle forg.

Now, suppose that we are given vectorsp1, p2 ∈ RE such that

p1 ∈ Z•(α1), p2 ∈ Z•(α2) (5.8)

and
〈p1, c〉 ≤ γ ≤ 〈p2, c〉. (5.9)

If we havem̂p1 ≥ l̂p2, then a pointp∗ in the intersection of the line segment betweenp1

andp2 and the hyperplaneH• = {p ∈ RE | 〈p, c〉 = γ} is an optimal solution of Problem
(P •).

If m̂p1 < l̂p2, then putα ← (m̂p1 + l̂p2)/2 and find a pointq ∈ Z•(α). If q is feasible,
then putp1 ← q or elsep2 ← q. Repeat this process until̂mp1 = l̂p2 and we obtain an
optimal solutionp∗ as above.

The validity of this algorithm can be proven by the same arguments as made for Al-
gorithmBS.

Starting with vectorsp1, p2 ∈ RE satisfying (5.8) and (5.9), the above-mentioned
algorithm computes an optimal solution of Problem(P •) in O((M \ + |E|2EO•) log B•),
whereM \ denotes the complexity of minimizing an M\-convex function, which isO((|E|3
+|E|2 log(K•/|E|))EO•(log(K•/|E|)/ log |E|)) or O(|E|3EO• log(K•/|E|)) due to
Shioura [19] and Tamura [20], and

B• = max{max{|g(p)| | p ∈ dom g}, max{|c(e)| | e ∈ E, |γ|}}, (5.10)

K• = max{|x(e)− y(e)| | x, y ∈ dom g}. (5.11)

Here we assume that bothB• andK• are finite values.

6. Concluding Remarks

We have proposed polynomial algorithms for minimizing a discrete convex function, such
as an L\-convex function and an M\-convex function, with a linear inequality constraint.
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We can adapt the proposed algorithm to minimizing those extensions of discrete convex
functions for which the end-points of the intersection of a line and a subdifferential of the
function at every point can efficiently be computed.

In the present paper we have considered the minimization problem with a single in-
equality constraint. The simple binary search approach adopted here does not work for
the problem with multiple inequality constraints. Related research on minimization of
submodular functions with multiple parameters has been made in the theory of principal
partitions [7] (also see [5, Sec. 7.2]). We will investigate the problem elsewhere.
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