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��������� This paper forms the first part of a three-part series in which we treat
various topics in absolute anabelian geometry from the point of view of developing

abstract algorithms, or “software”, that may be applied to abstract profinite groups

that “just happen” to arise as [quotients of] étale fundamental groups from algebraic
geometry. In the present paper, after studying various abstract combinatorial prop-

erties of profinite groups that typically arise as absolute Galois groups or geometric

fundamental groups in anabelian geometry over number fields, mixed-characteristic
local fields, or finite fields, we take a more detailed look at certain p-adic Hodge-

theoretic aspects of the absolute Galois groups of mixed-characteristic local fields.
This allows us, for instance, to derive, from a certain result communicated orally to

the author by A. Tamagawa, a “semi-absolute” Hom-version of the anabelian conjec-

ture for hyperbolic curves over mixed-characteristic local fields. Finally, we generalize
to the case of varieties of arbitrary dimension over arbitrary sub-p-adic fields cer-

tain techniques developed by the author in previous papers over mixed-characteristic

local fields for group-theoretically constructing the étale fundamental group of one
hyperbolic curve from the étale fundamental group of another hyperbolic curve.
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Introduction

The present paper is the first in a series of three papers, in which we continue
our study of absolute anabelian geometry in the style of the following papers: [Mzk6],
[Mzk7], [Mzk8], [Mzk9], [Mzk14], [Mzk10], [Mzk11]. IfX is a [geometrically integral]
variety over a field k, and ΠX

def= π1(X) is the étale fundamental group of X [for
some choice of basepoint], then roughly speaking, “anabelian geometry” may be
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summarized as the study of the extent to which properties of X — such as, for
instance, the isomorphism class of X — may be “recovered” from [various quotients
of] the profinite group ΠX . One form of anabelian geometry is “relative anabelian
geometry” [cf., e.g., [Mzk3]], in which instead of starting from [various quotients of]
the profinite group ΠX , one starts from the profinite group ΠX equipped with the
natural augmentation ΠX � Gk to the absolute Galois group of k. By constrast,
“absolute anabelian geometry” refers to the study of properties of X as reflected
solely in the profinite group ΠX . Moreover, one may consider various “intermediate
variants” between relative and absolute anabelian geometry such as, for instance,
“semi-absolute anabelian geometry”, which refers to the situation in which one starts
from the profinite group ΠX equipped with the kernel of the natural augmentation
ΠX � Gk.

The new point of view that underlies the various “topics in absolute anabelian
geometry” treated in the present three-part series may be summarized as follows.
In the past, research in anabelian geometry typically centered around the establish-
ment of “fully faithfulness” results — i.e., “Grothendieck Conjecture-type” results
— concerning some sort of “fundamental group functor X �→ ΠX” from varieties
to profinite groups. In particular, the term “group-theoretic” was typically used
to refer to properties preserved, for instance, by some isomorphism of profinite
groups ΠX

∼→ ΠY [i.e., between the étale fundamental groups of varieties X , Y ].
By contrast:

In the present series, the focus of our attention is on the development of
“algorithms” — i.e., “software” — which are “group-theoretic” in the
sense that they are phrased in language that only depends on the structure
of the input data as, for instance, a profinite group. Here, the “input data”
is a profinite group that “just happens to arise” from scheme theory as
an étale fundamental group, but which is only of concern to us in its
capacity as an abstract profinite group. That is to say, the algorithms
in question allow one to construct various objects reminiscent of objects
that arise in scheme theory, but the issue of “eventually returning to
scheme theory” — e.g., of showing that some isomorphism of profinite
groups arises from an isomorphism of schemes — is no longer an issue
of primary interest.

This point of view may already be seen in the theory of pro-l cuspidalizations given
in [Mzk14], §3, in which “cuspidalized geometrically pro-l fundamental groups” are
“group-theoretically constructed” from geometrically pro-l fundamental groups of
proper hyperbolic curves without ever addressing the issue of whether or not the
original curve [i.e., scheme] may be reconstructed from the given geometrically pro-
l fundamental group [of a proper hyperbolic curve]. In some sense, this abstract,
algorithmic point of view is taken even further in [Mzk13], where one works with
certain types of purely combinatorial objects — i.e., “semi-graphs of anabelioids”
— whose definition “just happens to be” motivated by stable curves in algebraic
geometry. On the other hand, the results obtained in [Mzk13] are results concerning
the abstract combinatorial geometry of these abstract combinatorial objects — i.e.,
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one is never concerned with the issue of “eventually returning” to, for instance,
scheme-theoretic morphisms.

The main results of the present paper are, to a substantial extent, “generalities”
that will be of use to us in the further development of the theory in the latter two
papers of the present three-part series. These main results may be summarized as
follows:

(1) In §1, we study various notions associated to abstract profinite groups
such as RTF-quotients [i.e., quotients obtained by successive formation
of torsion-free abelianizations — cf. Definition 1.1, (i)], slimness [i.e.,
the property that all open subgroups are center-free], and elasticity [i.e.,
the property that every nontrivial topologically finitely generated closed
normal subgroup of an open subgroup is itself open — cf. Definition 1.1,
(ii)] in the context of the absolute Galois groups that typically appear in
anabelian geometry [cf. Proposition 1.5, Theorem 1.7].

(2) In §2, we begin by formulating the terminology that we shall use in our
discussion of the anabelian geometry of varieties of arbitrary dimension [cf.
Definition 2.1]. We then apply the theory of slimness and elasticity devel-
oped in §1 to study various variants of the notion of “semi-absoluteness”
[cf. Proposition 2.5]. Moreover, in the case of arithmetic base fields that
typically appear in anabelian geometry, we give various “group-theoretic
algorithms” for constructing the quotient of an arithmetic fundamental
group determined by the absolute Galois group of the base field [cf. The-
orem 2.6]. Finally, in the case of hyperbolic orbicurves, we apply the the-
ory of maximal pro-RTF-quotients developed in §1 to give quite explicit
“group-theoretic algorithms” for constructing these quotients [cf. Theorem
2.11].

(3) In §3, we generalize the main result of [Mzk1] concerning the geo-
metricity of arbitrary isomorphisms of absolute Galois groups of mixed-
characteristic local fields that preserve the ramification filtration [cf. The-
orem 3.5]. This generalization allows one to replace the condition of
“preserving the ramification filtration” by various more general condi-
tions, certain of which were motivated by a result orally communicated
to the author by A. Tamagawa [cf. Remark 3.8.1]. Moreover, unlike
the main result of [Mzk1], this generalization may be applied [in certain
cases] to arbitrary open homomorphisms between absolute Galois groups
of mixed-characteristic local fields, hence implies certain semi-absolute
Hom-versions [cf. Corollary 3.8, 3.9] of the relative Hom-versions of the
Grothendieck Conjecture given in [Mzk3], Theorems A, B. Also, we ob-
serve, in Example 2.13, that the corresponding absolute Hom-version of
these results is false in general. Indeed, it was precisely the discovery of
this counterexample to the “absolute Hom-version” that led the author to
the detailed investigation of the “gap between absolute and semi-absolute”
that forms the content of §2.

(4) In §4, we study various “fundamental operations” for passing from one
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algebraic stack to another. In the case of arbitrary dimension, these op-
erations are the operations of “passing to a finite étale covering” and
“passing to a finite étale quotient”; in the case of hyperbolic orbicurves,
we also consider the operations of “forgetting a cusp” and “coarsifying
a non-scheme-like point”. Our main result asserts that if one assumes
certain relative anabelian results concerning the varieties under considera-
tion, then the corresponding absolute anabelian operations on arithmetic
fundamental groups may be described “entirely group-theoretically” [cf.
Theorem 4.7]. This theory, which generalizes the theory of [Mzk9], §2,
and [Mzk14], §2, may be applied not only to hyperbolic orbicurves over
sub-p-adic fields [cf. Example 4.8], but also to “iso-poly-hyperbolic orbisur-
faces” over sub-p-adic fields [cf. Example 4.9]. We also give a tempered
version of this theory [cf. Theorem 4.12].

Finally, in an Appendix, we review, for lack of an appropriate reference, various well-
known facts concerning the theory of Albanese varieties that will play an important
role in the portion of the theory of §2 concerning varieties of arbitrary dimension.
Much of this theory of Albanese varieties is contained in such classical references as
[NS], [Serre1], [Chev], which are written from a somewhat classical point of view.
Thus, in the Appendix, we give a modern scheme-theoretic treatment of this classical
theory, but without resorting to the introduction of motives and derived categories,
as in [BS], [SS].
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Section 0: Notations and Conventions

Numbers:

The notation Q will be used to denote the field of rational numbers. The
notation Z ⊆ Q will be used to denote the set, group, or ring of rational integers.
The notation N ⊆ Z will be used to denote the set or monoid of nonnegative rational
integers. The profinite completion of the group Z will be denoted Ẑ. Write

Primes

for the set of prime numbers. If p ∈ Primes, then the notation Qp (respectively,
Zp) will be used to denote the p-adic completion of Q (respectively, Z). Also, we
shall write

Z(×)
p ⊆ Z×

p

for the subgroup 1 + pZp ⊆ Z×
p if p > 2, 1 + p2Zp ⊆ Z×

p if p = 2. Thus, we have
isomorphisms of topological groups

Z(×)
p × (Z×

p /Z
(×)
p ) ∼→ Z×

p ; Z(×)
p

∼→ Zp

— where the second isomorphism is the isomorphism determined by the p-adic
logarithm; Z×

p /Z
(×)
p

∼→ F×
p if p > 2, Z×

p /Z
(×)
p

∼→ Z/pZ if p = 2.

A finite field extension of Q will be referred to as a number field, or NF, for
short. A finite field extension of Qp for some p ∈ Primes will be referred to as a
mixed-characteristic nonarchimedean local field, or MLF, for short. A field of finite
cardinality will be referred to as a finite field, or FF, for short. We shall regard the
set of symbols {NF,MLF,FF} as being equipped with a linear ordering

NF > MLF > FF

and refer to an element of this set of symbols as a field type.

Topological Groups:

Let G be a Hausdorff topological group, and H ⊆ G a closed subgroup. Let us
write

ZG(H) def= {g ∈ G | g · h = h · g, ∀ h ∈ H}
for the centralizer of H in G;

NG(H) def= {g ∈ G | g ·H · g−1 = H}

for the normalizer of H in G; and

CG(H) def= {g ∈ G | (g ·H · g−1)
⋂
H has finite index in H, g ·H · g−1}
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for the commensurator of H in G. Note that: (i) ZG(H), NG(H) and CG(H) are
subgroups of G; (ii) we have inclusions H, ZG(H) ⊆ NG(H) ⊆ CG(H); (iii) H is
normal in NG(H). If H = NG(H) (respectively, H = CG(H)), then we shall say
that H is normally terminal (respectively, commensurably terminal) in G. Note
that ZG(H), NG(H) are always closed in G, while CG(H) is not necessarily closed
in G. Also, we shall write Z(G) def= ZG(G) for the center of G.

Let G be a topological group. Then [cf. [Mzk12], §0] we shall refer to a normal
open subgroup H ⊆ G such that the quotient group G/H is a free discrete group
as co-free. We shall refer to a co-free subgroup H ⊆ G as minimal if every co-free
subgroup of G contains H. Thus, any minimal co-free subgroup of G is necessarily
unique and characteristic.

We shall refer to a continuous homomorphism between topological groups as
dense (respectively, of DOF-type [cf. [Mzk10], Definition 6.2, (iii)]; of OF-type) if
its image is dense (respectively, dense in some open subgroup of finite index; an
open subgroup of finite index). Let Π be a topological group; Δ a normal closed
subgroup such that every characteristic open subgroup of finite index H ⊆ Δ admits
a minimal co-free subgroup Hco-fr ⊆ H. Write Π̂ for the profinite completion of Π.
Let

Π̂� Q

be a quotient of profinite groups. Then we shall refer to as the (Q,Δ)-co-free
completion of Π, or co-free completion of Π with respect to [the quotient Π̂ �] Q
and [the subgroup] Δ ⊆ Π — where we shall often omit mention of Δ when it is
fixed throughout the discussion — the inverse limit

ΠQ/co-fr def= lim←−
H

ImQ(Π/Hco-fr)

— where H ⊆ Δ ranges over the characteristic open subgroups of Δ of finite index;
Ĥco-fr ⊆ Π̂ is the closure of the image of Hco-fr in Π̂; Ĥco-fr

Q ⊆ Q is the image of
Ĥco-fr in Q; “ImQ(−)” denotes the image in Q/Ĥco-fr

Q of the group in parentheses.
Thus, we have a natural dense homomorphism Π→ ΠQ/co-fr.

We shall say that a profinite group G is slim if for every open subgroup H ⊆ G,
the centralizer ZG(H) is trivial. Note that every finite normal closed subgroup
N ⊆ G of a slim profinite group G is trivial. [Indeed, this follows by observing that
for any normal open subgroup H ⊆ G such that N

⋂
H = {1}, consideration of the

inclusion N ↪→ G/H reveals that the conjugation action of H on N is trivial, i.e.,
that N ⊆ ZG(H) = {1}.]

We shall say that a profinite group G is decomposable if there exists an iso-
morphism of profinite groups H1 ×H2

∼→ G, where H1, H2 are nontrivial profinite
groups. If a profinite group G is not decomposable, then we shall say that it is
indecomposable.

We shall write Gab for the abelianization of a profinite group G, i.e., the quo-
tient of G by the closure of the commutator subgroup of G, and

Gab-t
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for the torsion-free abelianization of G, i.e., the quotient of Gab by the closure of
the torsion subgroup of Gab. Note that the formation of Gab, Gab-t is functorial
with respect to arbitrary continuous homomorphisms of profinite groups.

We shall denote the group of automorphisms of a profinite group G by Aut(G).
Conjugation by elements of G determines a homomorphism G → Aut(G) whose
image consists of the inner automorphisms of G. We shall denote by Out(G)
the quotient of Aut(G) by the [normal] subgroup consisting of the inner auto-
morphisms. In particular, if G is center-free, then we have an exact sequence
1 → G → Aut(G) → Out(G) → 1. If, moreover, G is topologically finitely gen-
erated, then it follows immediately that the topology of G admits a basis of charac-
teristic open subgroups, which thus determine a topology on Aut(G), Out(G) with
respect to which the exact sequence 1→ G→ Aut(G)→ Out(G)→ 1 becomes an
exact sequence of profinite groups.

Algebraic Stacks:

We refer to [FC], Chapter I, §4.10, for a discussion of the coarse space associated
to an algebraic stack. We shall say that an algebraic stack is scheme-like if it is, in
fact, a scheme. We shall say that an algebraic stack is generically scheme-like if it
admits an open dense substack which is a scheme.

Curves:

We shall use the following terms, as they are defined in [Mzk14], §0: hyperbolic
curve, family of hyperbolic curves, cusp, tripod. Also, we refer to [Mzk6], the proof
of Lemma 2.1; [Mzk6], the discussion following Lemma 2.1, for an explanation of
the terms “stable reduction” and “stable model” applied to a hyperbolic curve over
an MLF.

If X is a generically scheme-like algebraic stack over a field k that admits a
finite étale Galois covering Y → X , where Y is a hyperbolic curve over a finite
extension of k, then we shall refer to X as a hyperbolic orbicurve over k. [Thus,
when k is of characteristic zero, this definition coincides with the definition of a
“hyperbolic orbicurve” in [Mzk14], §0, and differs from, but is equivalent to, the
definition of a “hyperbolic orbicurve” given in [Mzk7], Definition 2.2, (ii). We refer
to [Mzk14], §0, for more on this equivalence.] Note that the notion of a “cusp of
a hyperbolic curve” given in [Mzk14], §0, generalizes immediately to the notion of
“cusp of a hyperbolic orbicurve”. If X → Y is a dominant morphism of hyperbolic
orbicurves, then we shall refer to X → Y as a partial coarsification morphism if the
morphism induced by X → Y on associated coarse spaces is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field; denote its
étale fundamental group by ΔX . We shall refer to the order of the [manifestly
finite!] decomposition group of a closed point x of X as the order of x. We shall
refer to the [manifestly finite!] least common multiple of the orders of the closed
points of X as the order of X . Thus, it follows immediately from the definitions
that X is a hyperbolic curve if and only if the order of X is equal to 1.
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Section 1: Some Profinite Group Theory

We begin by discussing certain aspects of abstract profinite groups, as they
relate to the Galois groups of finite fields, mixed-characteristic nonarchimedean
local fields, and number fields. In the following, let G be a profinite group.

Definition 1.1.

(i) In the following, “RTF” is to be understood as an abbreviation for “recur-
sively torsion-free”. If H ⊆ G is a normal open subgroup that arises as the kernel
of a continuous surjection G � Q, where Q is a finite abelian group, that factors
through the torsion-free abelianization G� Gab-t of G [cf. §0], then we shall refer
to (G,H) as an RTF-pair. If for some integer n ≥ 1, a sequence of open subgroups

Gn ⊆ Gn−1 ⊆ . . .G1 ⊆ G0 = G

of G satisfies the condition that, for each nonnegative integer j ≤ n−1, (Gj , Gj+1)
is an RTF-pair, then we shall refer to this sequence of open subgroups as an RTF-
chain [from Gn to G]. If H ⊆ G is an open subgroup such that there exists an
RTF-chain from H to G, then we shall refer to H ⊆ G as an RTF-subgroup [of G].
If the kernel of a continuous surjection φ : G� Q, where Q is a finite group, is an
RTF-subgroup of G, then we shall say that φ : G� Q is an RTF-quotient of G. If
φ : G� Q is a continuous surjection of profinite groups such that the topology of Q
admits a basis of normal open subgroups {Nα}α∈A satisfying the property that each
composite G� Q� Q/Nα [for α ∈ A] is an RTF-quotient, then we shall say that
φ : G� Q is a pro-RTF-quotient. If G is a finite (respectively, profinite) group such
that the identity map ofG forms an RTF-quotient (respectively, pro-RTF-quotient),
then we shall say that G is an RTF-group (respectively, a pro-RTF-group).

(ii) We shall say that G is elastic if it holds that every topologically finitely
generated closed normal subgroup N ⊆ H of an open subgroup H ⊆ G of G is
either trivial or of finite index in G. If G is elastic, but not topologically finitely
generated, then we shall say that G is very elastic.

(iii) Let Σ ⊆ Primes [cf. §0] be a set of prime numbers. If G admits an
open subgroup which is pro-Σ, then we shall say that G is almost pro-Σ. We
shall refer to a quotient G� Q as almost pro-Σ-maximal if for some normal open
subgroup N ⊆ G with maximal pro-Σ quotient N � P , we have Ker(G � Q) =
Ker(N � P ). [Thus, any almost pro-Σ-maximal quotient of G is almost pro-Σ.]
When Σ def= Primes\{p} for some p ∈ Primes, then we shall write “pro-(
= p)” for
“pro-Σ”. Write

Ẑ( �=p)

for the maximal pro-(
= p) quotient of Ẑ. We shall say that G is pro-omissive (re-
spectively, almost pro-omissive) if it is pro-(
= p) for some p ∈ Primes (respectively,
if it admits a pro-omissive open subgroup). We shall say that G is augmented pro-p
if there exists an exact sequence of profinite groups 1 → N → G → Ẑ( �=p) → 1,
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where N is pro-p; in this case, the image of N in G is uniquely determined [i.e.,
as the maximal pro-p subgroup of G]; the quotient G � Ẑ( �=p) [which is well-
defined up to automorphisms of Ẑ( �=p)] will be referred to as the augmentation of
the augmented pro-p group G. We shall say that G is augmented pro-prime if it
is augmented pro-p for some [not necessarily unique!] p ∈ Primes. If Σ = {p} for
some unspecified p ∈ Primes, we shall write “pro-prime” for “pro-Σ”. When C is
the “full formation” [cf., e.g., [FJ], p. 343] of finite solvable Σ-groups, then we shall
refer to a pro-C group as a pro-Σ-solvable group.

Proposition 1.2. (Basic Properties of Pro-RTF-quotients) Let

φ : G1 → G2

be a continuous homomorphism of profinite groups. Then:

(i) If H ⊆ G2 is an RTF-subgroup of G2, then φ−1(H) ⊆ G1 is an RTF-
subgroup of G1.

(ii) If H, J ⊆ G are RTF-subgroups of G, then so is H
⋂
J .

(iii) If H ⊆ G is an RTF-subgroup of G, then there exists a normal [open]
RTF-subgroup J ⊆ G of G such that J ⊆ H.

(iv) Every RTF-quotient G� Q of G factors through the quotient

G� GRTF def= lim←−
N

G/N

— where N ranges over the normal [open] RTF-subgroups of G. We shall refer to
this quotient G� GRTF as the maximal pro-RTF-quotient.

(v) There exists a commutative diagram

G1
φ−→ G2⏐⏐�

⏐⏐�
GRTF

1
φRTF

−→ GRTF
2

— where the vertical arrows are the natural morphisms, and the continuous homo-
morphism φRTF is uniquely determined by the condition that the diagram commute.

Proof. Assertion (i) follows immediately from the definitions, together with the
functoriality of the torsion-free abelianization [cf. §0]. To verify assertion (ii), one
observes that an RTF-chain from H

⋂
J to G may be obtained by concatenating

an RTF-chain from H
⋂
J to J [whose existence follows from assertion (i) applied

to the natural inclusion homomorphism J ↪→ G] with an RTF-chain from J to G.
Assertion (iii) follows by applying assertion (ii) to some finite intersection of conju-
gates of H. Assertion (iv) follows immediately from assertions (ii), (iii). Assertion
(v) follows immediately from assertions (i), (iv). ©
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Proposition 1.3. (Basic Properties of Elasticity)

(i) Let H ⊆ G be an open subgroup of the profinite group G. Then the elas-
ticity of G implies that of H. If G is slim, then the elasticity of H implies that of
G.

(ii) Suppose that G is nontrivial. Then G is very elastic if and only if it
holds that every topologically finitely generated closed normal subgroup N ⊆ H of
an open subgroup H ⊆ G of G is trivial.

Proof. Assertion (i) follows immediately from the definitions, together with the
fact that a slim profinite group has no normal closed finite subgroups [cf. §0]. The
necessity portion of assertion (ii) follows from the fact that the existence of a topo-
logically finitely generated open subgroup of G implies that G itself is topologically
finitely generated; the sufficiency portion of assertion (ii) follows immediately by
taking N def= G 
= {1}. ©

Next, we consider Galois groups.

Definition 1.4. We shall refer to a field k as solvably closed if, for every finite
abelian field extension k′ of k, it holds that k′ = k.

Remark 1.4.1. Note that if k̃ is a solvably closed Galois extension of a field k of
type MLF or FF [cf. §0], then k̃ is an algebraic closure of k. Indeed, this follows
from the well-known fact that the absolute Galois group of a field of type MLF or
FF is pro-solvable [cf., e.g., [NSW], Chapter VII, §5].

Proposition 1.5. (Pro-RTF-quotients of MLF Galois Groups) Let k be an
algebraic closure of an MLF [cf. §0] k of residue characteristic p; Gk

def= Gal(k/k);
Gk � GRTF

k the maximal pro-RTF-quotient [cf. Proposition 1.2, (iv)] of Gk.
Then:

(i) GRTF
k is slim.

(ii) There exists an exact sequence 1 → P → GRTF
k → Ẑ → 1, where P is a

pro-p group whose image in GRTF
k is equal to the image of the inertia subgroup

of Gk in GRTF
k . In particular, GRTF

k is augmented pro-p.

Proof. Recall from local class field theory [cf., e.g., [Serre2]] that for any open sub-
group H ⊆ Gk, corresponding to a subfield kH ⊆ k, we have a natural isomorphism

(k×H)∧ ∼→ Hab

[where the “∧” denotes the profinite completion of an abelian group; “×” denotes
the group of units of a ring]; moreover, Hab fits into an exact sequence

1→ O×
kH
→ Hab → Ẑ→ 1
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[where OkH
⊆ kH is ring of integers] in which the image of O×

kH
in Hab coincides

with the image of the inertia subgroup of H. Observe, moreover, that the quotient
of the abelian profinite group O×

kH
by its torsion subgroup is a pro-p group. Thus,

assertion (ii) follows immediately from this observation, together with the definition
of the maximal pro-RTF-quotient. Next, let us observe that by applying the natural
isomorphism (O×

kH
)⊗Qp

∼→ kH , it follows that whenever H is normal in Gk, Gk/H
acts faithfully on Hab-t. Thus, assertion (i) follows immediately. ©

The following result is well-known.

Proposition 1.6. (Maximal Pro-p Quotients of MLF Galois Groups) Let
k be an algebraic closure of an MLF k of residue characteristic p; Gk

def= Gal(k/k);
Gk � G

(p)
k the maximal pro-p-quotient of Gk. Then:

(i) Any almost pro-p-maximal quotient Gk � Q of Gk is slim.

(ii) Suppose further that k contains a primitive p-th root of unity. Then
for any finite module M annihilated by p equipped with a continuous action by G(p)

k

[which thus determines a continuous action by Gk], the natural homomorphism
Gk � G

(p)
k induces an isomorphism

Hj(G(p)
k ,M) ∼→ Hj(Gk,M)

on Galois cohomology modules for all integers j ≥ 0.

(iii) If k contains (respectively, does not contain) a primitive p-th root
of unity, then any closed subgroup of infinite index (respectively, any closed
subgroup of arbitrary index) H ⊆ G(p)

k is a free pro-p group.

Proof. Assertion (i) follows from the argument applied to verify Proposition 1.5,
(i). To verify assertion (ii), it suffices to show that the cohomology module

Hj(J,M) ∼= lim−→
k′

Hj(Gk′ ,M)

[where J def= Ker(Gk � G
(p)
k ); k′ ranges over the finite Galois extensions of k such

that [k′ : k] is a power of p; Gk′ ⊆ Gk is the open subgroup determined by k′]
vanishes for j ≥ 1. By “dévissage”, we may assume that M ∼= Fp with the trivial
Gk-action. Since the cohomological dimension of Gk′ is equal to 2 [cf. [NSW],
Theorem 7.1.8, (i)], it suffices to consider the cases j = 1, 2. For j = 2, since
H2(Gk′ ,Fp) ∼= Fp [cf. [NSW], Theorem 7.1.8, (ii); our hypothesis that k contains
a primitive p-th root of unity], it suffices, by the well-known functorial behavior of
H2(Gk′ ,Fp) [cf. [NSW], Corollary 7.1.4], to observe that k′ always admits a cyclic
Galois extension of degree p [arising, for instance, from an extension of the residue
field of k′]. On the other hand, for j = 1, the desired vanishing is a tautology,
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in light of the definition of the quotient Gk � G
(p)
k . This completes the proof of

assertion (ii).

Finally, we consider assertion (iii). If k does not contain a primitive p-th root
of unity, then G

(p)
k itself is a free pro-p group [cf. [NSW], Theorem 7.5.8, (i)], so

any closed subgroup H ⊆ G
(p)
k is also free pro-p [cf., e.g., [RZ], Corollary 7.7.5].

Thus, let us assume that k contains a primitive p-th root of unity, so we may
apply the isomorphism of assertion (ii). In particular, if J ⊆ G

(p)
k is an open

subgroup such that H ⊆ J , and kJ ⊆ k is the subfield determined by J , then one
verifies immediately that the quotient GkJ

� J may be identified with the quotient
GkJ

� G
(p)
kJ

, so we obtain an isomorphism H2(J,Fp)
∼→ H2(GkJ

,Fp) [where Fp is
equipped with the trivial Galois action]. Thus, to complete the proof that H is free
pro-p, it suffices [by a well-known cohomological criterion for free pro-p groups —
cf., e.g., [RZ], Theorem 7.7.4] to show that the cohomology module

H2(H,Fp) ∼= lim−→
kJ

H2(GkJ
,Fp)

[where Fp is equipped with the trivial Galois action; kJ ranges over the finite
extensions of k arising from open subgroups J ⊆ G

(p)
k such that H ⊆ J ] vanishes.

As in the proof of assertion (ii), this vanishing follows from the well-known functorial
behavior ofH2(GkJ

,Fp), together with the observation that, by our assumption that
H is of infinite index in G

(p)
k , kJ always admits an extension of degree p arising

from an open subgroup of J [where J ⊆ G(p)
k corresponds to kJ ] containing H. ©

Theorem 1.7. (Slimness and Elasticity of Arithmetic Galois Groups)

Let k̃ be a solvably closed Galois extension of a field k; write Gk
def= Gal(k̃/k).

Then:

(i) If k is an FF, then Gk ∼= Ẑ is neither elastic nor slim.

(ii) If k is an MLF, then Gk, as well as any almost pro-p-maximal quo-
tient Gk � Q of Gk, is elastic and slim.

(iii) If k is an NF, then Gk is very elastic and slim.

Proof. Assertion (i) is immediate from the definitions; assertion (iii) is the content
of [Mzk11], Corollary 2.2; [Mzk11], Theorem 2.4. The slimness portion of assertion
(ii) for Gk is shown, for instance, in [Mzk6], Theorem 1.1.1, (ii) [via the same
argument as the argument applied to prove Proposition 1.5, (i); Proposition 1.6,
(i)]; the slimness portion of assertion (ii) forQ is precisely the content of Proposition
1.6, (i).

To show the elasticity portion of assertion (ii) for Q, let N ⊆ H be a closed
normal subgroup of infinite index of an open subgroup H ⊆ Q such that N is
topologically generated by r elements, where r ≥ 1 is an integer. Then it suffices
to show that N is trivial. Since Q has already been shown to be slim [hence has
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no nontrivial finite normal closed subgroups — cf. §0], we may always replace k
by a finite extension of k. In particular, we may assume that H = Q, and that
Q is maximal pro-p. Since [Q : N ] is infinite, it follows that there exists an open
subgroup J ⊆ Q, corresponding to a subfield kJ ⊆ k, such that N ⊆ J , and
[kJ : Qp] ≥ r + 1. Here, we recall from our discussion of local class field theory in
the proof of Proposition 1.5 that dimQp

(Jab ⊗ Qp) = [kJ : Qp] + 1 (≥ r + 2). In
particular, we conclude that N is necessarily a subgroup of infinite index of some
topologically finitely generated closed subgroup P ⊆ J such that [J : P ] is infinite.
[For instance, one may take P to be the subgroup of J topologically generated by
N , together with an element of J that maps to a non-torsion element of the quotient
of Jab by the image of Nab.] Thus, we conclude from Proposition 1.6, (iii), that P
is a free pro-p group which contains a topologically finitely generated closed normal
subgroup N ⊆ P of infinite index. On the other hand, by [a rather easy special
case of] the theorem of Lubotzky-Melnikov-van den Dries [cf., e.g., [FJ], Proposition
24.10.3; [MT], Theorem 1.5], this implies that N is trivial. This completes the proof
of the elasticity portion of assertion (ii) for Q.

To show the elasticity portion of assertion (ii) for Gk, let N ⊆ H be a closed
normal subgroup of infinite index of an open subgroup H ⊆ Gk such that N is
topologically generated by r elements, where r ≥ 1 is an integer. Then it suffices
to show that N is trivial. As in the proof of the elasticity of “Q”, we may assume
that H = Gk; also, since [Gk : N ] is infinite, by passing to a finite extension of
k corresponding to an open subgroup of Gk containing N , we may assume that
[k : Qp] ≥ r. But this implies that the image of N in Gab

k ⊗ Zp [which is of rank
[k : Qp]+1 ≥ r+1] is of infinite index, hence that the image of N in any almost pro-
p-maximal quotient Gk � Q is of infinite index. Thus, by the elasticity for “Q”,
we conclude that such images are trivial. Since, moreover, the natural surjection

Gk � lim←−
Q

Q

[where Q ranges over the almost pro-p-maximal quotients of Gk] is [by the definition
of the term “almost pro-p-maximal quotient”] an isomorphism, this is enough to
conclude that N is trivial, as desired. ©
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Section 2: Semi-absolute Anabelian Geometry

In the present §2, we consider the problem of characterizing “group-theoretically”
the quotient morphism to the Galois group of the base field of the arithmetic fun-
damental group of a variety. In particular, the theory of the present §2 refines the
theory of [Mzk6], Lemma 1.1.4 in two respects: We extend this theory to the case
of varieties of arbitrary dimension [cf. Corollary 2.8], and in the case of hyperbolic
orbicurves, we give a “group-theoretic version” of the numerical criterion of [Mzk6],
Lemma 1.1.4, via the theory of maximal pro-RTF-quotients developed in §1 [cf.
Corollary 2.12]. The theory of the present §2 depends on the general theory of
Albanese varieties, which we review in the Appendix, for the convenience of the
reader.

Suppose that:

(1) k is a perfect field, k an algebraic closure of k, k̃ ⊆ k a solvably closed
Galois extension of k, and Gk

def= Gal(k̃/k).

(2) X → Spec(k) is a geometrically connected, smooth, separated algebraic
stack of finite type over k.

(3) Y → X is a connected finite étale Galois covering which is a [necessarily
separated, smooth, and of finite type over k] k-scheme such that Gal(Y/X)
acts freely on some nonempty open subscheme of Y [so X is generically
scheme-like — cf. §0].

(4) Y ↪→ Y is an open immersion into a connected proper k-scheme Y such
that Y is the underlying scheme of a log scheme Y

log
that is log smooth

over k [where we regard Spec(k) as equipped with the trivial log structure],
and the image of Y in Y coincides with the interior of the log scheme Y

log
.

Thus, it follows from the log purity theorem [which is exposed, for instance, in
[Mzk4] as “Theorem B”] that the condition that a finite étale covering Z → Y
be tamely ramified over the height one primes of Y is equivalent to the condition
that the normalization Z of Y in Z determine a log étale morphism Z

log → Y
log

[whose underlying morphism of schemes is Z → Y ]; in particular, one concludes
immediately that the condition that Z → Y be tamely ramified over the height
one primes of Y is independent of the choice of “log smooth log compactification”
Y

log
for Y . Thus, one verifies immediately [by considering the various Gal(Y/X)-

conjugates of the “log compactification” Y
log

] that the finite étale coverings of X
whose pull-backs to Y are tamely ramified over [the height one primes of] Y form a
Galois category, whose associated profinite group [relative to an appropriate choice
of basepoint for X ] we denote by πtame

1 (X, Y ), or simply

πtame
1 (X)
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when Y → X is fixed. In particular, if we use the subscript “k” to denote base-
change from k to k, then by choosing a connected component of Y k, we obtain
a subgroup πtame

1 (Xk) ⊆ πtame
1 (X) which fits into a natural exact sequence 1 →

πtame
1 (Xk)→ πtame

1 (X)→ Gal(k/k)→ 1.

Next, let Σ ⊆ Primes be a set of prime numbers; πtame
1 (Xk) � ΔX an al-

most pro-Σ-maximal quotient of πtame
1 (Xk) whose kernel is normal in πtame

1 (X),
hence determines a quotient πtame

1 (X) � ΠX ; we also assume that the quotient
πtame

1 (X) � Gal(Y/X) admits a factorization πtame
1 (X) � ΠX � Gal(Y/X),

and that the kernel of the resulting homomorphism ΔX → Gal(Y/X) is pro-Σ.
Thus, Ker(ΔX → Gal(Y/X)) may be identified with the maximal pro-Σ quotient
of Ker(πtame

1 (Xk)→ Gal(Y/X)); we obtain a natural exact sequence

1→ ΔX → ΠX → Gal(k/k)→ 1

— which may be thought of as an extension of the profinite group Gal(k/k).

Definition 2.1.

(i) We shall refer to any profinite group Δ which is isomorphic to the profinite
group ΔX constructed in the above discussion for some choice of data (k,X, Y ↪→
Y ,Σ) as a profinite group of [almost pro-Σ] GFG-type [where “GFG” is to be under-
stood as an abbreviation for “geometric fundamental group”]. In this situation, we
shall refer to any surjection πtame

1 (Xk)� Δ obtained by composing the surjection
πtame

1 (Xk) � ΔX with an isomorphism ΔX
∼→ Δ as a scheme-theoretic envelope

for Δ; we shall refer to (k,X, Y ↪→ Y ,Σ) as a collection of construction data for
Δ. [Thus, given a profinite group of GFG-type, there are, in general, many possible
choices of construction data for the profinite group.]

(ii) We shall refer to any extension 1 → Δ → Π → G → 1 of profinite groups
which is isomorphic to the extension 1→ ΔX → ΠX → Gal(k/k)→ 1 constructed
in the above discussion for some choice of data (k,X, Y ↪→ Y ,Σ) as an extension
of [geometrically almost pro-Σ] AFG-type [where “AFG” is to be understood as an
abbreviation for “arithmetic fundamental group”]. In this situation, we shall refer
to any surjection πtame

1 (X) � Π (respectively, πtame
1 (Xk) � Δ; Gal(k/k) � G)

obtained by composing the surjection πtame
1 (X) � ΠX (respectively, the surjec-

tion πtame
1 (Xk) � ΔX ; the identity Gal(k/k) = Gal(k/k)) with an isomorphism

ΠX
∼→ Π (respectively, ΔX

∼→Δ; Gal(k/k) ∼→G) arising from an isomorphism of the
extensions 1 → Δ → Π → G → 1, 1 → ΔX → ΠX → Gal(k/k) → 1 as a scheme-
theoretic envelope for Π (respectively, Δ; G); we shall refer to (k,X, Y ↪→ Y ,Σ) as
a collection of construction data for this extension. [Thus, given an extension of
AFG-type, there are, in general, many possible choices of construction data for the
extension.]

(iii) Let 1 → Δ∗ → Π∗ → G∗ → 1 be an extension of AFG-type; N ⊆ G∗

the inverse image of the kernel of the quotient Gal(k/k) � Gk relative to some
scheme-theoretic envelope G∗ ∼→ Gal(k/k). Suppose further that Δ∗ is slim, and
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that the outer action of N on Δ∗ [arising from the extension structure] is trivial.
Thus, every element of N ⊆ G∗ lifts to a unique element of Π∗ that commutes with
Δ∗. In particular, N lifts to a closed normal subgroup NΠ ⊆ Π∗. We shall refer
to any extension 1 → Δ → Π → G → 1 of profinite groups which is isomorphic
to an extension of the form 1 → Δ∗ → Π∗/NΠ → G∗/N → 1 just constructed as
an extension of [geometrically almost pro-Σ] GSAFG-type [where “GSAFG” is to
be understood as an abbreviation for “geometrically slim arithmetic fundamental
group”]. In this situation, we shall refer to any surjection πtame

1 (X) � Π (respec-
tively, πtame

1 (Xk)� Δ; Gal(k/k)� G) obtained by composing a scheme-theoretic
envelope πtame

1 (X) � Π∗ (respectively, πtame
1 (Xk) � Δ∗; Gal(k/k) ∼→ G∗) with

the surjection Π∗ � Π (respectively, Δ∗ � Δ; G∗ � G) in the above discus-
sion as a scheme-theoretic envelope for Π (respectively, Δ; G); we shall refer to
(k, k̃, X, Y ↪→ Y ,Σ) as a collection of construction data for this extension. [Thus,
given an extension of GSAFG-type, there are, in general, many possible choices of
construction data for the extension.]

(iv) Given construction data “(k,X, Y ↪→ Y ,Σ)” or “(k, k̃, X, Y ↪→ Y ,Σ)” as
in (i), (ii), (iii), we shall refer to “k” as the construction data field, to “X” as the
construction data base-stack [or base-scheme, if X is a scheme], to “Y ” as the con-
struction data covering, to “Y ” as the construction data covering compactification,
and to “Σ” as the construction prime set. Also, we shall refer to a portion of the
construction data “(k,X, Y ↪→ Y ,Σ)” or “(k, k̃, X, Y ↪→ Y ,Σ)” as in (i), (ii), (iii),
as partial construction data. If every prime dividing the order of a finite quotient
group of Δ is invertible in k, then we shall refer to the construction data in question
as base-prime.

The following result is well-known, but we give the proof below for lack of an
appropriate reference in the case where [in the notation of the above discussion] X
is not necessarily proper.

Proposition 2.2. (Topological Finite Generation) Any profinite group Δ
of GFG-type is topologically finitely generated.

Proof. Write (k,X, Y ↪→ Y ,Σ) for a choice of construction data for Δ. Since
a profinite fundamental group is topologically finitely generated if and only if it
admits an open subgroup that is topologically finitely generated, we may assume
that X = Y ; moreover, by applying de Jong’s theory of alterations [as reviewed,
for instance, in Lemma A.10 of the Appendix], we may assume that Y is projective
[and even k-smooth]. Since we are only concerned with Δ, we may assume that
k is algebraically closed, hence, in particular, infinite. Thus, since Y is normal
and projective [over k], it follows that there exists a connected, k-smooth, one-
dimensional closed subscheme C ⊆ Y obtained by intersecting Y with dimk(Y )− 1
sufficiently general hyperplane sections such that C def= C

⋂
Y 
= ∅, and Y is k-

smooth at the points of C. Now if Z → Y is any connected finite étale covering that
is tamely ramified over the divisor D def= Y \Y [equipped with the reduced induced
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structure], then write Z → Y for the normalization of Y in Z. Thus, since Z is
tamely ramfied over D [so one may apply “Abhyankar’s lemma” to describe the
local structure of Z → Y ], and D intersects C transversely, it follows immediately
that ZC

def= Z ×Y C is k-smooth. On the other hand, since the closed subscheme
ZC ⊆ Z is obtained by forming the intersection of the zero locus dimk(Y ) − 1
sections of an ample line bundle on Z, it thus follows [cf., e.g., [SGA2], XII, 2.4]
that ZC is connected. But this connectedness for arbitrary choices of the covering
Z → Y implies that the natural morphism πtame

1 (C) → πtame
1 (Y ) is surjective.

Thus, it suffices to prove Proposition 2.2 in the case where Y is a curve. But in this
case, [as is well-known] Proposition 2.2 follows by deforming Y ↪→ Y to a curve in
characteristic zero, in which case, the desired topological finite generation follows
from the well-known structure of the topological fundamental group of a Riemann
surface of finite type. ©

Proposition 2.3. (Slimness and Elasticity for Hyperbolic Orbicurves)

(i) Let Δ be a profinite group of GFG-type that admits partial construction
data (k,X,Σ) [consisting of the construction data field, construction data base-
stack, and construction data prime set] such that X is a hyperbolic orbicurve
[cf. §0], and Σ contains a prime invertible in k. Then Δ is slim and elastic.

(ii) Let 1 → Δ → Π → G → 1 be an extension of GSAFG-type that
admits partial construction data (k,X,Σ) [consisting of the construction data field,
construction data base-stack, and construction data prime set] such that X is a
hyperbolic orbicurve, Σ 
= ∅, and k is either an MLF or an NF. Then Π is
slim, but not elastic.

Proof. Assertion (i) is the easily verified “generalization to orbicurves over fields
of arbitrary characteristic” of [MT], Proposition 1.4; [MT], Theorem 1.5 [cf. also
the technique of proof applied to the elasticity portion of Theorem 1.7, (ii)]. The
slimness portion of assertion (ii) follows immediately from the slimness portion of
assertion (i), together with the slimness portion of Theorem 1.7, (ii), (iii); the fact
that Π is not elastic follows from the existence of the nontrivial, topologically finitely
generated [cf. Proposition 2.2], closed, normal, infinite index subgroup Δ ⊆ Π. ©

Definition 2.4. For i = 1, 2, let

1→ Δi → Πi → Gi → 1

be an extension which is either of AFG-type or of GSAFG-type. Suppose that

φ : Π1 → Π2

is a continuous homomorphism of profinite groups. Then:

(i) We shall say that φ is absolute if φ is open [i.e., has open image].
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(ii) We shall say that φ is semi-absolute (respectively, pre-semi-absolute) if φ
is absolute, and, moreover, the image of φ(Δ1) in G2 is trivial (respectively, either
trivial or of infinite index in G2).

(iii) We shall say that φ is strictly semi-absolute (respectively, pre-strictly semi-
absolute) if φ is semi-absolute, and, moreover, the subgroup φ(Δ1) ⊆ Δ2 is open
(respectively, either open or nontrivial).

Proposition 2.5. (First Properties of Absolute Homomorphisms) For
i = 1, 2, let

1→ Δi → Πi → Gi → 1

be an extension which is either of AFG-type or of GSAFG-type; (ki, Xi,Σi)
partial construction data for Πi � Gi [consisting of the construction data field,
construction data base-stack, and construction data prime set]. Suppose that

φ : Π1 → Π2

is a continuous homomorphism of profinite groups. Then:

(i) The following implications hold:

φ strictly semi-absolute =⇒ φ pre-strictly semi-absolute =⇒ φ semi-absolute
=⇒ φ pre-semi-absolute =⇒ φ absolute.

(ii) Suppose that k2 is an NF. Then “φ semi-absolute” ⇐⇒ “φ pre-semi-
absolute” ⇐⇒ “φ absolute”.

(iii) Suppose that k2 is an MLF. Then “φ semi-absolute” ⇐⇒ “φ pre-semi-
absolute”.

(iv) Suppose that k1 either an FF or an MLF; that X2 is a hyperbolic
orbicurve; and that Σ2 is of cardinality > 1. Then “φ pre-strictly semi-absolute”
⇐⇒ “φ semi-absolute”.

(v) Suppose that X2 is a hyperbolic orbicurve, and that Σ2 contains a
prime invertible in k2. Then “φ strictly semi-absolute”⇐⇒ “φ pre-strictly semi-
absolute”.

Proof. Assertion (i) follows immediately from the definitions. Since Δ1 is topo-
logically finitely generated [cf. Proposition 2.2], assertion (ii) (respectively, (iii))
follows immediately, in light of assertion (i), from the fact that G2 is very elastic
[cf. Theorem 1.7, (iii)] (respectively, elastic [cf. Theorem 1.7, (ii)]). To verify
assertion (iv), it suffices, in light of assertion (i), to consider the case where φ is
semi-absolute, but not pre-strictly semi-absolute. Then since Δ2 is elastic [cf. the
hypothesis on Σ2; Proposition 2.3, (i)], and Δ1 is topologically finitely generated [cf.
Proposition 2.2], it follows that the subgroup φ(Δ1) ⊆ Δ2 is either open or trivial.
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Since φ is not pre-strictly semi-absolute, we thus conclude that φ(Δ1) = {1}, so φ
induces an open homomorphism G1 → Π2. That is to say, every sufficiently small
open subgroup Δ∗

2 ⊆ Δ2 admits a surjection H1 � Δ∗
2 for some closed subgroup

H1 ⊆ G1. On the other hand, since X2 is a hyperbolic orbicurve, and Σ2 is of
cardinality > 1, it follows [e.g., from the well-known structure of topological fun-
damental groups of hyperbolic Riemann surfaces of finite type] that we may take
Δ∗

2 such that Δ∗
2 admits quotients Δ∗

2 � F ′, Δ∗
2 � F ′′, where F ′ (respectively,

F ′′) is a nonabelian free pro-p′ (respectively, pro-p′′) group, for distinct p′, p′′ ∈ Σ2.
But this contradicts the well-known structure of G1, when k1 is either an FF or
an MLF — i.e., the fact that G1, hence also H1, may be written as an extension
of a meta-abelian group by a pro-p subgroup, for some prime p. [Here, we recall
that this fact is immediate if k1 is an FF, in which case G1 is abelian, and follows,
for instance, from [NSW], Theorem 7.5.2; [NSW], Corollary 7.5.6, (i), when k1 is a
MLF.] Assertion (v) follows immediately from the elasticity of Δ2 [cf. Proposition
2.3, (i)], together with the topological finite generation of Δ1 [cf. Proposition 2.2].
©

Theorem 2.6. (Field Types and Group-theoreticity) Let

1→ Δ→ Π→ G→ 1

be an extension which is either of AFG-type or of GSAFG-type; (k,X,Σ)
partial construction data [consisting of the construction data field, construction
data base-stack, and construction data prime set] for Π� G. Suppose further that
k is either an FF, an MLF, or an NF, and that every prime ∈ Σ is invertible
in k. If H is a profinite group, j ∈ {1, 2}, and l ∈ Primes, write

δjl (H) def= dimQl
(Hj(H,Ql)) ∈ N

⋃ {∞}
εjl (Π) def= supJ⊆Π {δjl (J)} ∈ N

⋃ {∞}
θj(Π) def= {l | εjl (Π) ≥ 3− j} ⊆ Primes

[where J ranges over the open subgroups Π]; also, we set

ζ(H) def= sup
p,p′∈Primes

{δ1p(H)− δ1p′(H)} ∈ Z
⋃
{∞}

whenever δ1l (H) <∞, ∀l ∈ Primes. Then:

(i) Suppose that k is an FF. Then Π is topologically finitely generated;
the natural surjections

Πab-t � Gab-t; G� Gab-t

are isomorphisms. In particular, the kernel of the quotient Π� G may be char-
acterized [“group-theoretically”] as the kernel of the quotient Π� Πab-t. More-
over, for every open subgroup H ⊆ Π, and every prime number l, δ1l (H) = 1.

(ii) Suppose that k is an MLF of residue characteristic p. Then Π is topologi-
cally finitely generated; in particular, for every open subgroup H ⊆ Π, and every
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prime number l, δ1l (H) is finite. Moreover, δ1l (G) = 1 if l 
= p, δ1p(G) = [k : Qp]+1;
the quantity

δ1l (Π)− δ1l (G)

is = 0 if l /∈ Σ, and is independent of l if l ∈ Σ. Finally, ε1p(Π) = ∞; in
particular, the cardinality of θ1(Π) is always ≥ 1.

(iii) Let k be as in (ii). Then θ2(Π) ⊆ Σ. If, moreover, the cardinality of θ1(Π)
is ≥ 2, then θ2(Π) = Σ.

(iv) Let k be as in (ii). Then every almost pro-omissive topologically finitely
generated closed normal subgroup of Π is contained in Δ. If, moreover, Σ 
=
Primes, then the kernel of the quotient Π � G may be characterized [“group-
theoretically”] as the maximal almost pro-omissive topologically finitely gen-
erated closed normal subgroup of Π.

(v) Let k be as in (ii). If θ2(Π) 
= Primes, then write

Θ ⊆ Π

for the maximal almost pro-omissive topologically finitely generated closed nor-
mal subgroup of Π, whenever a unique such maximal subgroup exists; if θ2(Π) =
Primes, or there does not exist a unique such maximal subgroup, set Θ def= {1} ⊆ Π.
Then

ζ(Π) def= ζ(Π/Θ) = [k : Qp]

[cf. the finiteness portion of (ii)]. In particular, the kernel of the quotient Π � G
may be characterized [“group-theoretically” — since “θ2(−)”, “ζ(−)”, “ζ(−)”
are “group-theoretic”] as the intersection of the open subgroups H ⊆ Π such that
ζ(H)/ζ(Π) = [Π : H].

(vi) Suppose that k is an NF. Then the natural surjection Πab-t � Gab-t is an
isomorphism. The kernel of the quotient Π� G may be characterized [“group-
theoretically”] as the maximal topologically finitely generated closed normal sub-
group of Π. In particular, Π is not topologically finitely generated.

Proof. Write X → A for the Albanese morphism associated to X . [We refer to
the Appendix for a review of the theory of Albanese varieties — cf., especially,
Corollary A.11, Remark A.11.2.] Thus, A is a torsor over a semi-abelian variety
over k such that the morphism X → A induces an isomorphism

Δab-t ⊗ Zl
∼→ Tl(A)

onto the l-adic Tate module Tl(A) of A for all l ∈ Σ. Note, moreover, that A admits
a rational point over some finite extension of k. Thus, by applying the Galois section
arising from such a rational point, we conclude that for l ∈ Σ, the image of Δ in
Πab-t ⊗ Zl is given by the quotient

Δab-t ⊗ Zl
∼→ Tl(A)� Tl(A)/G
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— where we use the notation “/G” to denote the maximal torsion-free quotient on
which G acts trivially.

Next, whenever k is an MLF, let us write, for l ∈ Σ,

Δab-t � Δab-t ⊗ Zl
∼→ Tl(A)� Rl

def= R ⊗ Zl � Ql
def= Q⊗ Zl

for the pro-l portion of the quotients T (A)� R� Q of Lemma 2.7, (i), (ii), below
[in which we take “k” to be k and “B” to be the semi-abelian variety over which
A is a torsor]. [Put another way, Ql is simply the quotient Tl(A)/G considered
above.] Thus, the Zl-ranks of Rl, Ql are independent of l ∈ Σ.

The topological finite generation portion of assertion (i) follows immediately
from the fact that G ∼= Ẑ, together with the topological finite generation of Δ [cf.
Proposition 2.2]. The remainder of assertion (i) follows immediately from the fact
that Tl(A)/G = 0 [a consequence of the “Riemann hypothesis for abelian varieties
over finite fields” — cf., e.g., [Mumf], p. 206]. In a similar vein, assertion (vi)
follows immediately from the fact that Tl(A)/G = 0 [again a consequence of the
“Riemann hypothesis for abelian varieties over finite fields”], together with the fact
that G is very elastic [cf. Theorem 1.7, (iii)].

To verify assertion (ii), let us first observe that the topological finite generation
of Π follows from that of Δ [cf. Proposition 2.2], together with that of G [cf. [NSW],
Theorem 7.5.10]. Next, let us recall the well-known fact that

δ1l (G) = 1 if l 
= p, δ1p(G) = [k : Qp] + 1

[cf. our our discussion of local class field theory in the proofs of Proposition 1.5;
Theorem 1.7, (ii)]; in particular, ζ(G) = [k : Qp]. Moreover, the existence of
a rational point of A over some finite extension of k [which determines a Galois
section of the étale fundamental group of A over some open subgroup of G] implies
that

δ1l (Π) = δ1l (G) + dimQl
(Ql ⊗Ql)

[where we recall that dimQl
(Ql ⊗Ql) is independent of l] for l ∈ Σ, δ1l (Π) = δ1l (G)

for l /∈ Σ. Thus, by considering extensions of k of arbitrarily large degree, we obtain
that ε1p(Π) =∞. This completes the proof of assertion (ii).

Next, we consider assertion (iii). First, let us consider the “E2-term” of the
Leray spectral sequence of the group extension 1 → Δ → Π → G → 1. Since G is
of cohomological dimension 2 [cf., e.g., [NSW], Theorem 7.1.8, (i)], and δ2l (G) = 0
for all l ∈ Primes [cf., e.g., [NSW], Theorem 7.2.6], the spectral sequence yields an
equality δ2l (Π) = 0 if l /∈ Σ, and a pair of injections

H1(G,Hom(Rl,Ql)) ↪→ H1(G,Hom(Δab-t,Ql)) ↪→ H2(Π,Ql)

if l ∈ Σ [cf. Lemma 2.7, (iii), below]. By applying the analogue of this conclusion
for an arbitrary open subgroup H ⊆ Π, we thus obtain that δ2l (H) = 0 if l /∈ Σ,
i.e., that ε2l (H) = 0 if l /∈ Σ; this already implies that if l /∈ Σ, then l /∈ θ2(Π),
i.e., that θ2(Π) ⊆ Σ. If the cardinality of θ1(Π) is ≥ 2, then there exists some
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open subgroup H ⊆ Π and some l ∈ Primes such that δ1l (H) ≥ 2, l 
= p. Now
we may assume without loss of generality that H acts trivially on the quotient
R; also to simplify notation, we may replace Π by H and assume that H = Π.
Then [since δ1l (G) = 1, by assertion (ii)] the fact that δ1l (Π) ≥ 2 implies that
l ∈ Σ, and dimQl

(Rl ⊗ Ql) ≥ 1 [cf. our computation in the proof of assertion (ii)].
But this implies that for any l′ ∈ Σ, we have dimQl′ (Rl′ ⊗ Ql′) ≥ 1, hence that
H1(G,Hom(Rl′ ,Ql′)) = H1(G,Ql′) ⊗ Hom(Rl′ ,Ql′) 
= 0. Thus, by the injections
discussed above, we conclude that ε2l′(Π) ≥ δ2l′(Π) ≥ 1, so l′ ∈ θ2(Π). This completes
the proof of assertion (iii).

Assertion (iv) follows immediately from the existence of a surjection G � Ẑ

[cf., e.g., Proposition 1.5, (ii)], together with the elasticity of G [cf. Theorem 1.7,
(ii)], and the topological finite generation of Δ [cf. Proposition 2.2].

Next, we consider assertion (v). First, let us observe that whenever Σ =
Primes, it follows from assertion (ii) that ζ(Π) = ζ(G) = [k : Qp].

Now we consider the case θ2(Π) = Primes. In this case, Θ = {1} [by def-
inition], and θ2(Π) = Σ = Primes [by assertion (iii)]. Thus, we obtain that
ζ(Π) = ζ(Π/Θ) = [k : Qp], as desired [cf. [Mzk6], Lemma 1.1.4, (ii)]. Next,
we consider the case θ1(Π) 
= {p} [i.e., θ1(Π) is of cardinality ≥ 2 — cf. as-
sertion (ii)], θ2(Π) 
= Primes. In this case, by assertion (iii), we conclude that
Σ = θ2(Π) 
= Primes. Thus, by assertion (iv), Θ = Δ, so ζ(Π/Θ) = ζ(G) = [k : Qp],
as desired.

Finally, we consider the case θ1(Π) = {p} [i.e., θ1(Π) is of cardinality one],
θ2(Π) 
= Primes. If Σ 
= Primes, then it follows from the definition of Θ, together
with assertion (iv), that Θ = Δ, hence that ζ(Π/Θ) = ζ(G) = [k : Qp], as desired.
If, on the other hand, Σ = Primes, then since θ1(Π) = {p}, it follows [cf. the
computation in the proof of assertion (ii)] that dimQl

(Ql ⊗ Ql) = 0 for all primes
l 
= p, hence that dimQp

(Qp ⊗ Qp) = 0; but this implies that δ1l (Π) = δ1l (G) for
all l ∈ Primes. Now since Θ ⊆ Δ [by assertion (iv)], it follows that δ1l (Π) ≥
δ1l (Π/Θ) ≥ δ1l (G) for all l ∈ Primes, so we obtain that δ1l (Π) = δ1l (Π/Θ) = δ1l (G)
for all l ∈ Primes. But this implies that ζ(Π) = ζ(Π/Θ) = ζ(G) = [k : Qp], as
desired. This completes the proof of assertion (v). ©

Remark 2.6.1. When [in the notation of Theorem 2.6] X is a smooth proper
variety, the portion of Theorem 2.6, (ii), concerning “δ1l (Π)− δ1l (G)” is essentially
equivalent to the main result of [Yoshi].

Lemma 2.7. (Combinatorial Quotients of Tate Modules) Suppose that
k is an MLF [so k = k̃]. Let B be a semi-abelian variety over k. Write

T (B) def= Hom(Q/Z, B(k))

for the Tate module of B. Then:

(i) The maximal torsion-free quotient module T (B) � Q of T (B) on which
Gk acts trivially is a finitely generated free Ẑ-module.
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(ii) There exists a quotient Gk-module T (B) � R such that the following
properties hold: (a) R is a finitely generated free Ẑ-module; (b) the action of Gk
on R factors through a finite quotient; (c) no nonzero torsion-free subquotient S of
the Gk-module N def= Ker(T (B)� R) satisfies the property that the resulting action
of Gk on S factors through a finite quotient.

(iii) If R is as in (ii), then the natural map

H1(Gk,Hom(R, Ẑ))→ H1(Gk,Hom(T (B), Ẑ))

is injective.

Proof. Assertion (i) is literally the content of [Mzk6], Lemma 1.1.5. Assertion
(ii) follows immediately from the proof of [Mzk6], Lemma 1.1.5 [more precisely, the
[“combinatorial”] quotient “Tcom” of loc. cit.]. Assertion (iii) follows by considering
the long exact cohomology sequence associated to the short exact sequence 0 →
Hom(R, Ẑ) → Hom(T (B), Ẑ) → Hom(N, Ẑ) → 0, since the fact that N has no
nonzero torsion-free subquotients on which Gk acts through a finite quotient implies
that H0(Gk,Hom(N, Ẑ)) = 0. ©

Corollary 2.8. (Field Types and Absolute Homomorphisms) For i = 1, 2,
let 1 → Δi → Πi → Gi → 1, ki, Xi, Σi, φ : Π1 → Π2 be as in Proposition 2.5.
Suppose further that ki is either an FF, an MLF, or an NF, and that every prime
∈ Σi is invertible in ki. Then:

(i) The field type of k1 is ≥ [cf. §0] the field type of k2.

(ii) Suppose further that φ is an isomorphism. Then the field types of k1,
k2 coincide, and φ is strictly semi-absolute. If, moreover, for i = 1, 2, ki is an
MLF of residue characteristic pi, then p1 = p2.

Proof. Assertion (i) follows immediately from the topological finite generation
portions of Theorem 2.6, (i), (ii), (vi), together with the estimates of “δ1l (−)”,
“ε1l (−)” in Theorem 2.6, (i), (ii). Next, we consider assertion (ii). The fact that
the field types of k1, k2 coincide follows from assertion (i) applied to φ, φ−1. To
verify that φ is strictly semi-absolute, let us first observe that every semi-absolute
isomorphism whose inverse is also semi-absolute is necessarily strictly semi-absolute.
Thus, since the inverse to φ satisfies the same hypotheses as φ, to complete the
proof of Corollary 2.8, it suffices to verify that φ is semi-absolute. If k1, k2 are
FF’s (respectively, MLF’s; NF’s), then this follows immediately from the “group-
theoretic” characterizations of Πi � Gi in Theorem 2.6, (i) (respectively, Theorem
2.6, (v); Theorem 2.6, (vi)). Finally, if, for i = 1, 2, ki is an MLF of residue
characteristic pi, then since φ induces an isomorphism G1

∼→ G2, the fact that
p1 = p2 follows, for instance, from [Mzk6], Proposition 1.2.1, (i). ©

Remark 2.8.1. In the situation of Corollary 2.8, suppose further that k2 is an
MLF of residue characteristic p2, and that Σ2 ⊆ {p2}. Then it is not clear to the
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author at the time of writing [but of interest in the context of the theory of the
present §2!] whether or not it is possible for there to exist a continuous surjective
homomorphism

G1 � Π2

[in which case, by Corollary 2.8, (i), k1 is either an NF or an MLF].

The general theory discussed so far for arbitrary X becomes substantially sim-
pler and more explicit, when X is a hyperbolic orbicurve.

Definition 2.9. Let G be a profinite group. Then we shall refer to as an aug-free
decomposition of G any pair of closed subgroups H1, H2 ⊆ G that determine an
isomorphism of profinite groups

H1 ×H2
∼→ G

such that H1 is a slim, topologically finitely generated, augmented pro-prime [cf.
Definition 1.1, (iii)] profinite group, and H2 is either trivial or a nonabelian pro-Σ-
solvable free group for some set Σ ⊆ Primes of cardinality ≥ 2. In this situation,
we shall refer to H1 as the augmented subgroup of this aug-free decomposition and
to H2 as the free subgroup of this aug-free decomposition. If G admits an aug-free
decomposition, then we shall say that G is of aug-free type. If G is of aug-free type,
with nontrivial free subgroup, then we shall say that G is of strictly aug-free type.

Proposition 2.10. (First Properties of Aug-free Decompositions) Let

H1 ×H2
∼→ G

be an aug-free decomposition of a profinite group G, in which H1 is the aug-
mented subgroup, and H2 is the free subgroup. Then:

(i) Let J be a topologically finitely generated, augmented pro-prime
group; φ : J → G a continuous homomorphism of profinite groups such that φ(J)
is normal in some open subgroup of G. Then φ(J) ⊆ H1.

(ii) Aug-free decompositions are unique — i.e., if J1 × J2
∼→ G is any aug-

free decomposition of G, in which J1 is the augmented subgroup, and J2 is the free
subgroup, then J1 = H1, J2 = H2.

Proof. First, we consider assertion (i). Suppose that φ(J) is not contained in H1.
Then the image I ⊆ H2 of φ(J) in H2 is a nontrivial, topologically finitely generated
closed subgroup which is normal in an open subgroup of H2. Since H2 is elastic [cf.
[MT], Theorem 1.5], it follows that I is open in H2, hence that I is a nonabelian
pro-Σ free group for some set Σ ⊆ Primes of cardinality ≥ 2. On the other hand,
since I is a quotient of the augmented pro-prime group J , it follows that there exists
a p ∈ Primes such that the maximal pro-(
= p) quotient of I is abelian. But this
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implies that Σ ⊆ {p}, a contradiction. Next, we consider assertion (ii). By assertion
(i), J1 ⊆ H1, H1 ⊆ J1. Thus, H1 = J1. Now since H1 = J1 is slim, it follows that
the centralizer ZH1(G) (respectively, ZJ1(G)) is equal to H2 (respectively, J2), so
H2 = J2, as desired. ©

Theorem 2.11. (Maximal Pro-RTF-quotients for Hyperbolic Orbi-
curves) Let

1→ Δ→ Π→ G→ 1

be an extension of AFG-type; (k,X,Σ) partial construction data [consisting
of the construction data field, construction data base-stack, and construction data
prime set] for Π� G. Suppose that k is an MLF of residue characteristic p; X is
a hyperbolic orbicurve; Σ 
= ∅. For l ∈ Primes, write

Π[l] ⊆ Π

for the maximal almost pro-l topologically finitely generated closed normal sub-
group of Π, whenever a unique such maximal subgroup exists; if there does not exist
a unique such maximal subgroup, then set Π[l] def= {1}.

In the following, we shall use a subscript “G” to denote the quotient of a
closed subgroup of Π determined by the quotient Π � G; we shall use the super-
script “RTF” to denote the maximal pro-RTF-quotient and the superscripts
“RTF-aug”, “RTF-free” to denote the augmented and free subgroups of the max-
imal pro-RTF-quotient whenever this maximal pro-RTF-quotient is of aug-free
type. Then:

(i) Suppose that Π[l] 
= {1} for some l ∈ Primes. Then Π[l] = Δ, Σ = {l};
Π[l′] = {1} for all l′ ∈ Primes such that l′ 
= l.

(ii) Suppose that Π[l] = {1} for all l ∈ Primes. Then Σ is of cardinality ≥ 2.
Moreover, for every open subgroup J ⊆ Π, there exists an open subgroup H ⊆ J
which is characteristic as a subgroup of Π such that HRTF is of aug-free type.
In particular, the subquotients HRTF-aug, HRTF-free of Π are characteristic.

(iii) Suppose that Π[l] = {1} for all l ∈ Primes. Suppose, moreover, that
H ⊆ Π is an open subgroup that corresponds to a finite étale covering Z → X,
where Z is a hyperbolic curve, defined over a finite extension kZ of k such
that Z has stable reduction [cf. §0] over the ring of integers OkZ

of kZ ; that
Z(kZ) 
= ∅; that the dual graph ΓZ of the geometric special fiber of the resulting
model [cf. §0] over OkZ

has either trivial or nonabelian topological fundamental
group; and that the Galois action of G on ΓZ is trivial. Thus, the finite Galois
coverings of the graph ΓZ of degree a product of primes ∈ Σ determine a pro-Σ
“combinatorial” quotient H � Δcom; write Δcom � Δcom-sol for the maximal
pro-solvable quotient of Δcom. Then the quotient

H � HRTF
G ×Δcom-sol
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may be identified with the maximal pro-RTF-quotient H � HRTF of H; more-
over, this product decomposition determines an aug-free decomposition of HRTF.
Finally, for any open subgroup J ⊆ Π, there exists an open subgroup H ⊆ J which
is characteristic as a subgroup of Π and, moreover, satisfies the above hypotheses
on “H”.

(iv) Suppose that Π[l] = {1} for all l ∈ Primes. Let H ⊆ J ⊆ Π be open
subgroups of Π such that HRTF, JRTF are of aug-free type. Then we have iso-
morphisms

JRTF-aug ∼→ JRTF
G ; JRTF-free ∼→ Ker(JRTF � JRTF

G )

[arising from the natural morphisms involved]; the open homomorphism HRTF →
JRTF induced by φ maps HRTF-aug (respectively, HRTF-free) onto an open subgroup
of JRTF-aug (respectively, JRTF-free).

Proof. Since Δ is elastic [cf. Proposition 2.3, (i)], every nontrivial topologically
finitely generated closed normal subgroup of Δ is open, hence almost pro-Σ′ for
Σ′ ⊆ Primes if and only if Σ′ ⊇ Σ. Also, let us observe that by Theorem 2.6, (iv),
Π[l] ⊆ Δ for all l ∈ Primes. Thus, if Π[l] 
= {1} for any l ∈ Primes, then it follows
that Σ = {l}, Π[l] = Δ, and that Π[l′] is finite, hence trivial [since Δ is slim — cf.
Proposition 2.3, (i)] for primes l′ 
= l. Also, we observe that if Σ is of cardinality
one, i.e., Σ = {l} for some l ∈ Primes, then Δ = Π[l] 
= {1} [cf. Theorem 2.6,
(iv)]. This completes the proof of assertion (i), as well as of the portion of assertion
(ii) concerning Σ. Also, we observe that the remainder of assertion (ii) follows
immediately from assertion (iii).

Next, we consider assertion (iii). Suppoes that H ⊆ Π satisfies the hypotheses
given in the statement of assertion (iii). Thus, one has the quotient H � Δcom,
where Δcom is either trivial or a nonabelian pro-Σ free group, where Σ is of cardi-
nality ≥ 2 [cf. the portion of assertion (ii) concerning Σ]. Write Δab = Δab-t � R
for the maximal pro-Σ quotient of the quotient “R” of Lemma 2.7, (ii), associated
to the Albanese variety of Z.

Now I claim that the quotient Δ � R coincides with the quotient Δ �
(Δcom)ab. First, let us observe that by the definition of R [cf. Lemma 2.7, (ii)], it
follows that the quotient Δ � (Δcom)ab factors through the quotient Δ � R. In
particular, since, for l ∈ Σ, the modules R⊗Zl, (Δcom)ab ⊗Zl are Zl-free modules
of rank independent of l ∈ Σ [cf. Lemma 2.7, (ii); the fact that Δcom is pro-Σ free],
it suffices to show that these two ranks are equal, for some l ∈ Σ. Moreover, let
us observe that for the purpose of verifying this claim, we may enlarge Σ. Thus, it
suffices to show that the two ranks are equal for some l ∈ Σ such that l 
= p. But
then the claim follows immediately from the [well-known] fact that by the “Rie-
mann hypothesis for abelian varieties over finite fields” [cf., e.g., [Mumf], p. 206],
all powers of the Frobenius element in the absolute Galois group of the residue
field of k act with eigenvalues 
= 1 on the pro-l abelianizations of the fundamental
groups of the geometric irreducible components of the smooth locus of the special
fiber of the stable model of Z over OkZ

. This completes the proof of the claim.
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Now let us write H � Hcom for the quotient of H by Ker(Δ� Δcom). Then
by applying the above claim to various open subgroups of H, we conclude that
the quotient H � HRTF factors through the quotient H � Hcom [i.e., we have a
natural isomorphism HRTF ∼→ (Hcom)RTF]. On the other hand, since Z(kZ) 
= ∅,
it follows that H � HG, hence also Hcom � HG admits a section s : HG → Hcom

whose image lies in the kernel of the quotient Hcom � Δcom [cf. the situation of
[Mzk3], Lemma 1.4]. In particular, we conclude that the conjugation action of HG

on Δcom = Ker(Hcom � HG) ⊆ Hcom arising from s is trivial. Thus, s determines
a direct product decomposition

Hcom ∼→ HG ×Δcom

— hence a direct product decompositionHRTF ∼→ (Hcom)RTF ∼→HRTF
G ×(Δcom)RTF.

Moreover, since Δcom is either trivial or nonabelian pro-Σ free, it follows immedi-
ately that the quotient Δcom � (Δcom)RTF may be identified with the quotient
Δcom � Δcom-sol, where Δcom-sol is either trivial or nonabelian pro-Σ-solvable free.
Since HRTF

G is slim, augmented pro-prime, and topologically finitely generated [cf.
Proposition 1.5, (i), (ii); Theorem 2.6, (ii)], we thus conclude that we have obtained
an aug-free decomposition of HRTF, as asserted in the statement of assertion (iii).

Finally, given an open subgroup J ⊆ Π, the existence of an open subgroup
H ⊆ J which satisfies the hypotheses on “H” in the statement of assertion (iii)
follows immediately from well-known facts concerning stable curves over discretely
valued fields [cf., e.g., the “stable reduction theorem” of [DM]; the fact that Σ is
of cardinality ≥ 2, so that one may assume that ΓZ is as large as one wishes by
passing to admissible coverings]. The fact that one can chooseH to be characteristic
follows immediately from the characteristic nature of Δ [cf., e.g., Corollary 2.8,
(ii)], together with the fact that Δ, Π are topologically finitely generated [cf., e.g.
Proposition 2.2; Theorem 2.6, (ii)]. This completes the proof of assertion (iii).

Finally, we consider assertion (iv). First, we observe that since the augmented
and free subgroups of any aug-free decomposition are slim [cf. Definition 2.9; [MT],
Proposition 1.4], hence, in particular, do not contain any nontrivial closed normal fi-
nite subgroups, we may always replaceH by an open subgroup ofH that satisfies the
same hypotheses as H. In particular, we may assume that H is an open subgroup
“H” as in assertion (iii) [which exists, by assertion (iii)]. Then by Proposition 2.10,
(i), the image of HRTF-aug in JRTF is contained in JRTF-aug, so we obtain a mor-
phism HRTF-aug → JRTF-aug. By assertion (iii), HRTF-free = Ker(HRTF � HRTF

G ),
and the natural morphism HRTF-aug → HRTF

G is an isomorphism. Since HG → JG,
hence also HRTF

G → JRTF
G , is clearly an open homomorphism, we thus conclude

that the natural morphism HRTF-aug → JRTF
G , hence also the natural morphism

JRTF-aug → JRTF
G , is open. Thus, the image of JRTF-free in JRTF

G commutes with an
open subgroup of JRTF

G [i.e., the image of JRTF-aug in JRTF
G ], so by the slimness of

JRTF
G [cf. Proposition 1.5, (i)], we conclude that JRTF-free ⊆ Ker(JRTF � JRTF

G ).
In particular, we obtain a surjection JRTF-aug � JRTF

G , hence an exact sequence

1→ N → JRTF-aug → JRTF
G → 1

[where we write N def= Ker(JRTF-aug � JRTF
G ) ⊆ JRTF-aug ⊆ JRTF]. Note, more-

over, that since JRTF
G is an augmented pro-p group [cf. Proposition 1.5, (ii)] which
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admits a surjection JRTF
G � Zp × Zp [cf. the computation of “δ1p(−)” in Theorem

2.6, (ii)], it follows immediately that [the augmented pro-prime group] JRTF-aug

is an augmented pro-p group whose augmentation factors through JRTF
G ; in par-

ticular, we conclude that N is pro-p. Also, we observe that since the composite
HRTF-free → HRTF

G → JRTF
G is trivial, it follows that the projection under the

quotient JRTF � JRTF-aug of the image of HRTF-free in JRTF is contained in N .

Now I claim that to complete the proof of assertion (iv), it suffices to verify
that N = {1} [or, equivalently, since JRTF-aug is slim, that N is finite]. Indeed,
if N = {1}, then we obtain immediately the isomorphisms JRTF-aug ∼→ JRTF

G ,
JRTF-free ∼→ Ker(JRTF � JRTF

G ). Moreover, by the above discussion, if N = {1},
then it follows that the image of HRTF-free in JRTF is contained in JRTF-free. Since
the homomorphism HRTF → JRTF is open, this implies that the open homomor-
phism HRTF � JRTF induced by φ maps HRTF-aug (respectively, HRTF-free) onto
an open subgroup of JRTF-aug (respectively, JRTF-free), as desired. This completes
the proof of the claim.

Next, let J ⊆ J be an open subgroup that arises as the inverse image in J
of an [open] RTF-subgroup JG ⊆ JG [so the notation “JG” does not lead to any
contradictions]. Then one verifies immediately from the definitions that any RTF-
subgroup of JG (respectively, J) determines an RTF-subgroup of JG (respectively,
J). Thus, the natural morphisms

JRTF
G → JRTF

G ; JRTF → JRTF

are injective. Moreover, the subgroups JRTF-aug
⋂
JRTF, JRTF-free of JRTF clearly

determine an aug-free decomposition of JRTF. Thus, from the point of view of
verifying the finiteness of N , we may replace J by J [and H by an appropriate
smaller open subgroup contained in J and satisfying the hypotheses of the “H” of
(iii)]. In particular, since [by the definition of “RTF” and of the subgroup N !] there
exists a J such that N ⊆ JRTF-aug has nontrivial image in (JRTF-aug)ab-t, we may
assume without loss of generality that N has nontrivial image in (JRTF-aug)ab-t.
Thus, we have

(δ1p(J) ≥) δ1p(J
RTF-aug) > δ1p(J

RTF
G ) = δ1p(JG)

[cf. the notation of Theorem 2.6], i.e., sJ
def= δ1p(J

RTF-aug) − δ1p(J
RTF
G ) > 0. By

Theorem 2.6, (ii), this already implies that p ∈ Σ.

In a similar vein, let J ⊆ J be an open subgroup that arises as the inverse
image in J of an [open] RTF-subgroup JRTF-free ⊆ JRTF-free. Then one verifies
immediately from the definitions that any RTF-subgroup of J determines an RTF-
subgroup of J . Thus, the natural morphism JRTF → JRTF is injective, with image
equal to JRTF-aug×JRTF-free. Moreover, the subgroups JRTF-aug, JRTF-free of JRTF

clearly determine an aug-free decomposition of JRTF [so the notation “JRTF-free”
does not lead to any contradictions]. Since [by the above discussion applied to
J instead of J ] JRTF-free maps to the identity in JRTF

G , we thus obtain a pro-
RTF quotient JRTF � JRTF-aug = JRTF-aug � JRTF

G , hence a pro-RTF quotient
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JRTF � JRTF-aug � JRTF
G in which the image of J

⋂
Δ is a finite normal closed

subgroup, hence trivial [since JRTF
G is slim — cf. Proposition 1.5, (i)]. That is to say,

the pro-RTF quotient J � JRTF-aug � JRTF
G factors through JG, hence through

JRTF
G . Thus, we obtain a surjection JRTF

G � JRTF
G whose composite JRTF

G �
JRTF
G → JRTF

G with the natural morphism induced by the inclusion J ↪→ J is the
identity [since all of these maps “lie under a fixed JRTF-aug”]. But this implies
that the natural morphism JRTF

G → JRTF
G is an isomorphism. In particular, we

have an isomorphism of kernels Ker(JRTF-aug � JRTF
G ) ∼→ Ker(JRTF-aug � JRTF

G ).
Thus, from the point of view of verifying the finiteness of N , we may replace J by
J [and H by an appropriate smaller open subgroup contained in J and satisfying
the hypotheses of the “H” of (iii)]. In particular, since JRTF-aug ∼→ JRTF-aug, we
may assume without loss of generality that the rank rJ of the pro-ΣJ -solvable free
group JRTF-free [for some subset ΣJ ⊆ Primes of cardinality ≥ 2] is either 0 or >
δ1p(JRTF-aug). In particular, if l ∈ ΣJ , then either rJ = 0 or rJ = δ1l (J

RTF-free) >
δ1p(JRTF-aug) ≥ sJ .

Now we compute: Since Σ is of cardinality ≥ 2, let l ∈ Σ be a prime 
= p. Then:

δ1l (J
RTF-free) = δ1l (J

RTF-free) + δ1l (J
RTF-aug)− δ1l (JRTF

G )

= δ1l (J
RTF)− δ1l (JRTF

G ) = δ1l (J)− δ1l (JG)

= δ1p(J)− δ1p(JG) = δ1p(J
RTF)− δ1p(JRTF

G )

= δ1p(J
RTF-free) + δ1p(J

RTF-aug)− δ1p(JRTF
G ) = δ1p(J

RTF-free) + sJ

[where we apply the “independence of l” of Theorem 2.6, (ii)]. Thus, we conclude
that sJ = δ1l (J

RTF-free)−δ1p(JRTF-free), where δ1l (J
RTF-free), δ1p(J

RTF-free) ∈ {0, rJ}
[depending on whether or not l, p belong to ΣJ ], is a positive integer. But this
implies that sJ ∈ {0, rJ ,−rJ}, hence that sJ = rJ > 0 — in contradiction to the
inequality sJ < rJ [which holds if rJ > 0]. This completes the proof of assertion
(iv). ©

Remark 2.11.1. One way of thinking about the content of Theorem 2.11,
(iv), is that it asserts that “aug-free decompositions of maximal pro-RTF-
quotients play an analogous [though somewhat more complicated] role for absolute
Galois group of MLF’s to the role played by torsion-free abelianizations for
absolute Galois groups of FF’s” [cf. Theorem 2.6, (i)].

Corollary 2.12. (Group-theoretic Semi-absoluteness via Maximal Pro-
RTF-quotients) For i = 1, 2, let 1 → Δi → Πi → Gi → 1, ki, Xi, Σi, φ :
Π1 → Π2 be as in Proposition 2.5. Suppose further that ki is an MLF; Xi is a
hyperbolic orbicurve; Σi 
= ∅. Also, for i = 1, 2, let us write

Θi ⊆ Πi

for the maximal almost pro-prime topologically finitely generated closed normal
subgroup of Πi if such a maximal subgroup exists; if such a maximal subgroup does
not exist, then we set Θi

def= {1}. Then:
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(i) For i = 1, 2, Θi ⊆ Δi; Θi 
= {1} if and only if Σi is of cardinality
one; if Θi 
= {1}, then Θi = Δi. Finally, φ(Θ1) ⊆ Θ2 [so φ induces a morphism
Π1/Θ1 → Π2/Θ2].

(ii) In the notation of Theorem 2.11, φ is semi-absolute [or, equivalently,
pre-semi-absolute — cf. Proposition 2.5, (iii)] if and only if the following [“group-
theoretic”] condition holds:

(∗s-ab) For i = 1, 2, let Hi ⊆ Πi/Θi be an open subgroup such that HRTF
i is

of aug-free type, and [the morphism induced by] φ maps H1 into H2.
Then the open homomorphism

HRTF
1 → HRTF

2

induced by φ maps HRTF-free
1 into HRTF-free

2 .

(iii) If, moreover, Σ2 is of cardinality ≥ 2, then φ is semi-absolute if and only
if it is strictly semi-absolute [or, equivalently, pre-strictly semi-absolute —
cf. Proposition 2.5, (v)].

Proof. First, we consider assertion (i). By Theorem 2.6, (iv), any almost pro-
prime topologically finitely generated closed normal subgroup of Πi — hence, in
particular, Θi — is contained in Δi. Thus, by Theorem 2.11, (i), (ii), Θi 
= {1}
if and only if Σi is of cardinality one; if Θi 
= {1}, then Θi = Δi. Now to show
that φ(Θ1) ⊆ Θ2, it suffices to consider the case where φ(Θ1) 
= {1} [so Σ1 is of
cardinality one]. Then, by Theorem 2.6, (iv), we have φ(Θ1) ⊆ Δ2. Thus, we may
assume that Θ2 = {1} [so Σ2 is of cardinality ≥ 2]. But then the elasticity of Δ2

[cf. Proposition 2.3, (i)] implies that φ(Θ1) is an open subgroup of Δ2, hence that
φ(Θ1) is almost pro-Σ2 [for some Σ2 of cardinality ≥ 2], which contradicts the fact
that φ(Θ1) is almost pro-Σ1 [for some Σ1 of cardinality one]. This completes the
proof of assertion (i).

Next, we consider assertion (ii). By Proposition 2.5, (iii), one may replace
the term “semi-absolute” in assertion (ii) by the term “pre-semi-absolute”. By
assertion (i), for i = 1, 2, either Θi = {1} or Θi = Δi; in either case, it follows from
Theorem 2.11, (iv) [cf. also Proposition 1.5, (i), (ii)], that [in the notation of (∗s-ab)]
the projection HRTF

i � HRTF-aug
i may be identified with the projection HRTF

i �
(Hi)RTF

Gi
[which is an isomorphism whenever Θi = Δi]. Thus, the condition (∗s-ab)

may be thought of as the condition that the morphismHRTF
1 → HRTF

2 be compatible
with the projection morphisms HRTF

i � (Hi)RTF
Gi

. From this point of view, it
follows immediately that the semi-absoluteness of φ implies (∗s-ab), and that (∗s-ab)
implies [in light of the existence of H1, H2 — cf. Theorem 2.11, (ii)] the pre-semi-
absoluteness of φ. Assertion (iii) follows from Proposition 2.5, (iv), (v). ©

Remark 2.12.1. The criterion of Corollary 2.12, (ii), may be thought of as a
“group-theoretic Hom-version”, in the case of hyperbolic orbicurves, of the numerical
criterion “ζ(H)/ζ(Π) = [Π : H]” of Theorem 2.6, (v).
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Example 2.13. A Non-pre-semi-absolute Absolute Homomorphism.

(i) In the situation of Theorem 2.11, suppose that Σ = Primes. Fix a natural
number N [which one wants to think of as being “large”]. By replacing Π by an
open subgroup of Π, we may assume that Π satisfies the hypotheses of the subgroup
“H” of Theorem 2.11, (iii). Thus, we have a “combinatorial” quotient Π� Δcom,
where Δcom is a nonabelian profinite free group. In particular, there exists an open
subgroup of Δcom which is a profinite free group on > N generators. Thus, by
replacing Π by an open subgroup of Π arising from an open subgroup of Δcom, we
may assume from the start that Δcom is a profinite free group on > N generators.

(ii) Now let
1→ Δ∗ → Π∗ → G∗ → 1

be an extension of AFG-type that admits a construction data field which is an MLF.
Thus, Π∗ is topologically finitely generated [cf. Theorem 2.6, (ii)], so it follows that
there exists a Π as in (i), together with a surjection of profinite groups

ψ : Π� Π∗

that factors through the quotient Π� Δcom. Thus, ψ is an absolute homomorphism
which is not pre-semi-absolute [hence, a fortiori, not semi-absolute].

In light of the appearance of the “combinatorial quotient” in Theorem 2.11,
(iii), we pause to recall the following result [cf. [Mzk6], Lemma 2.3, in the profinite
case].

Theorem 2.14. (Graph-theoreticity for Hyperbolic Curves) For i = 1, 2,
let 1 → Δi → Πi → Gi → 1, ki, Xi, Σi, φ : Π1 → Π2 be as in Proposition 2.5.
Suppose further that ki is an MLF of residue characteristic pi; that Σi contains a
prime 
= pi; that φ is an isomorphism; and that Xi is a hyperbolic curve with
stable reduction over the ring of integers Oki

of ki. Write Γi for the dual semi-
graph with compact structure [i.e., the dual graph, together with additional
open edges corresponding to the cusps — cf. [Mzk6], Appendix] of the geometric
special fiber of the stable model of Xi over Oki

. Then:

(i) We have p1 = p2, Σ1 = Σ2; φ induces isomorphisms Δ1
∼→ Δ2, G1

∼→ G2;
φ induces an isomorphism of semi-graphs φΓ : Γ1

∼→ Γ2 which is functorial
in φ. In particular, the natural Galois action of G1 on Γ1 is compatible, relative to
φΓ, with the natural Galois action of G2 on Γ2.

(ii) For i = 1, 2, suppose that the action of Gi on Γi is trivial. Write Πi �
Δcom
i for the pro-Σi “combinatorial” quotient determined by the finite Galois

coverings of the semi-graph Γi of degree a product of primes ∈ Σi. Then φ is
compatible with the quotients Πi � Δcom

i .

Proof. First, we consider assertion (i). By Corollary 2.8, (ii), p1 = p2, and φ

induces isomorphisms Δ1
∼→ Δ2, G1

∼→ G2. Since [by the well-known structure
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of geometric fundamental groups of hyperbolic curves] Σi is the unique minimal
Σ ⊆ Primes such that Δi is almost pro-Σ, we thus conclude that Σ1 = Σ2. Write
p

def= p1 = p2, Σ def= Σ1 = Σ2; let l ∈ Σ be such that l 
= p. Then it follows
immediately from the “Riemann hypothesis for abelian varieties over finite fields”
[cf., e.g., [Mumf], p. 206] that the action of Gi on the maximal pro-l quotient Δi �
Δ(l)
i is — in the terminology of [Mzk13] — “l-graphically full”. Thus, by [Mzk13],

Corollary 2.7, (ii), the isomorphism Δ(l)
1

∼→ Δ(l)
2 is — again in the terminology

of [Mzk13] — “graphic”, hence induces a functorial isomorphism of semi-graphs
Γ1

∼→ Γ2, as desired.

Next, we consider assertion (ii). First, we observe that, by assertion (i), the
condition that the action of Gi on Γi be trivial is compatible with φ. Also, let us
observe that if Hi ⊆ Πi is an open subgroup corresponding to a finite étale covering
Zi → Xi of Xi, then the condition that Zi have stable reduction is compatible with
φ [cf. [Mzk6], the proof of Lemma 2.1; our assumption that there exists an l ∈ Σi
such that l 
= {pi}]. Next, I claim that:

A finite étale Galois covering Zi → Xi of Xi arises from Δcom
i if and only

if Zi has stable reduction, and the action of Gal(Zi/Xi) on the dual semi-
graph with compact structure of the geometric special fiber of the stable
model of Zi is free.

Indeed, the necessity of this criterion is clear. To verify the sufficiency of this
criterion, observe that, by considering the non-free actions of inertia subgroups of
the Galois covering Zi → Xi, it follows immediately that this criterion implies
that all of the inertia groups arising from irreducible components of the geometric
special fiber of a stable model of Xi are trivial, hence [cf., e.g., [Tama], Lemma 2.1,
(iii)] that the covering Zi → Xi extends to an admissible covering of the respective
stable models. On the other hand, once one knows that the covering Zi → Xi

admits such an admissible extension, the sufficiency of this criterion is immediate.
This completes the proof of the claim. Now assertion (ii) follows immediately, by
applying the functorial isomorphisms of semi-graphs of assertion (i). ©
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Section 3: Absolute Open Homomorphisms of Local Galois Groups

In the present §, we give various generalizations of the main result of [Mzk1]
concerning isomorphisms between Galois groups of MLF’s. One aspect of these
generalizations is the substitution of the condition given in [Mzk1] for such an
isomorphism to arise geometrically — a condition that involves the higher ram-
ification filtration — by various other conditions [cf. Theorem 3.5]. Certain of
these conditions were motivated by a recent result of A. Tamagawa [cf. Remark
3.8.1] concerning Lubin-Tate groups and abelian varieties with complex multiplica-
tion; other conditions [cf. Corollary 3.7] were motivated by a certain application of
the theory of the present §3 to be discussed in [Mzk15]. Another aspect of these
generalizations is that certain of the conditions studied below allow one to prove
a “Hom-version” [i.e., involving open homomorphisms, as opposed to just isomor-
phisms — cf. Theorem 3.5] of the main result of [Mzk1]. Finally, this Hom-version
of the main result of [Mzk1] implies certain semi-absolute Hom-versions [cf. Corol-
lary 3.8, 3.9 below] of the absolute Isom-version of the Grothendieck Conjecture
given in [Mzk14], §2, and the relative Hom-version of the Grothendieck Conjecture
for function fields given in [Mzk3], Theorem B.

Let k be an MLF of residue characteristic p; k an algebraic closure of k; Gk
def=

Gal(k/k); k̂ the p-adic completion of k; E an MLF of residue characteristic p all of
whose Qp-conjugates are contained in k. Write Ik ⊆ Gk (respectively, Iwild

k ⊆ Ik) for

the inertia subgroup (respectively, wild inertia subgroup) of Gk; Gtame
k

def= Gk/I
wild
k ;

Gunr
k

def= Gk/Ik (∼= Ẑ).

Definition 3.1.

(i) Let A be an abelian topological group; ρ, ρ′ : Gk → A characters [i.e.,
continuous homomorphisms]. Then we shall write ρ ≡ ρ′ and say that ρ, ρ′ are
inertially equivalent if, for some open subgroup H ⊆ Ik, the restricted characters
ρ|H , ρ′|H coincide [cf. [Serre3], III, §A.5].

(ii) Write Emb(E, k) for the set of field embeddings σ : E ↪→ k. Let σ ∈
Emb(E, k). Then if π is a uniformizer of k, then we shall denote by χσ,π : Gk → E×

the composite homomorphism

Gk � Gab
k

∼→ (k×)∧ ∼→ O×
k × Ẑ � O×

k → O×
E ⊆ E×

— where the “∧” denotes the profinite completion; the first “ ∼→ ” is the isomor-
phism arising from local class field theory [cf., e.g., [Serre2]]; the second “ ∼→ ”
is the splitting determined by π; the second “�” is the projection to the factor
O×
k , composed with the inverse automorphism on O×

k [cf. Remark 3.1.1 below];
the homomorphism O×

k → O×
E is the norm map associated to the field embed-

ding σ. Since [as is well-known, from local class field theory] Ik ⊆ Gk surjects to
O×
k × {1} ⊆ O×

k × Ẑ, it follows immediately that the inertial equivalence class of



34 SHINICHI MOCHIZUKI

χσ,π is independent of the choice of π. Thus, we shall often write χσ to denote χσ,π
for some unspecified choice of π.

(iii) Let ρ : Gk → E× be a character. Then we shall say that ρ is of qLT-
type [i.e., “quasi-Lubin-Tate” type] if there exists an open subgroup H ⊆ Gk,
corresponding to a field extension kH of k, and a field embedding σ : E ↪→ kH such
that ρ|H ≡ χσ; in this situation, we shall refer to [E : Qp] as the dimension of ρ.
We shall say that ρ is of 01-type if it is Hodge-Tate, and, moreover, every weight
appearing in its Hodge-Tate decomposition ∈ {0, 1}. Write

χcyclo
k : Gk → Q×

p

for the cyclotomic character associated to Gk. We shall say that ρ is of ICD-type
[i.e., “inertially cyclotomic determinant” type] if its determinant det(ρ) : Gk → Q×

p

[i.e., the composite of ρ with the norm map E× → Q×
p ] is inertially equivalent to

χcyclo
k .

(iv) For i = 1, 2, let ki be an MLF of residue characteristic pi; ki an algebraic

closure of ki; k̂i the pi-adic completion of ki. We shall use similar notation for the
various subquotients of the absolute Galois group Gki

def= Gal(ki/ki) of ki to the
notation already introduced for Gk. Let

φ : Gk1 → Gk2

be an open homomorphism. Then we shall say that φ is of qLT-type (respectively, of
01-qLT-type) if p1 = p2, and, moreover, for every pair of open subgroups H1 ⊆ Gk1 ,
H2 ⊆ Gk2 such that φ(H1) ⊆ H2, and every character ρ : H2 → F× of qLT-type
[where F is an MLF of residue characteristic p1 = p2 all of whose conjugates are
contained in the fields determined by H1, H2], the restricted character ρ|H1 : H1 →
F× [obtained by restricting via φ] is of qLT-type (respectively, of 01-type). We
shall say that φ is of HT-type [i.e., “Hodge-Tate” type] if p1 = p2, and, moreover,
the topological Gk1 -module [but not necessarily the topological field!] obtained by

composing φ with the natural action of Gk2 on k̂2 is isomorphic [as a topological

Gk1 -module] to k̂1. We shall say that φ is of CHT-type [i.e., “cyclotomic Hodge-
Tate” type] if φ is of HT-type, and, moreover, the cyclotomic characters of Gk1 ,
Gk2 satisfy χcyclo

k1
= χcyclo

k2
◦ φ. We shall say that φ is geometric if it arises from an

isomorphism of fields k2
∼→ k1 that maps k2 into k1 [which implies, by considering

the divisibility of the k×i , that p1 = p2].

(v) Let 1 → Δ → Π → Gk → 1 be an extension of AFG-type. Then we shall
say that this extension Π� Gk [or, when there is no danger of confusion, that Π] is
of A-qLT-type [i.e., “Albanese-quasi-Lubin-Tate” type] if for every open subgroup
H ⊆ Gk, and every character ρ : H → F× of qLT-type [where F is an MLF of
residue characteristic p all of whose conjugates are contained in the field determined
by H], there exists an open subgroup J ⊆ Π ×Gk

(Ik
⋂
H) [so one has an outer

action of the image JG of J in Gk on JΔ
def= J

⋂
Δ] such that the JG-module Vρ
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obtained by letting JG act on F via ρ|JG
is isomorphic to some subquotient S of

the JG-module Jab
Δ ⊗Qp.

Remark 3.1.1. As is well-known, the ρ that arises from a Lubin-Tate group is
of qLT-type — cf., e.g., [Serre3], III, §A.4, Proposition 4. This is the reason for the
terminology “quasi-Lubin-Tate”.

We begin by reviewing some well-known facts.

Proposition 3.2. (Characterization of Hodge-Tate Characters) Let ρ :
Gk → E× be a character; write Vρ for the Gk-module obtained by letting Gk act
on E via ρ. Then ρ is Hodge-Tate if and only if

ρ ≡
∏

σ∈Emb(E,k)

χnσ
σ

for some nσ ∈ Z. Moreover, in this case, we have an isomorphism of k̂[Gk]-modules:

Vρ ⊗Qp
k̂ ∼=

⊕
σ∈Emb(E,k)

k̂(nσ)

[where the “(−)” denotes a Tate twist].

Proof. Indeed, this criterion for the character ρ to be Hodge-Tate is precisely the
content of [Serre3], III, §A.5, Corollary. The Hodge-Tate decomposition of Vρ then
follows immediately the Hodge-Tate decomposition of “Vρ” in the case where one
takes “ρ” to be χσ [cf. [Serre3], III, §A.5, proof of Lemma 2]. ©

Proposition 3.3. (Characterization of Quasi-Lubin-Tate Characters)
Let ρ, Vρ be as in Proposition 3.2. Then the following conditions on ρ are equiv-
alent:

(i) ρ is of qLT-type.

(ii) We have an isomorphism of k̂[Gk]-modules: Vρ⊗Qp
k̂ ∼= k̂(1)⊕ k̂⊕ . . .⊕ k̂.

(iii) ρ is of ICD-type and Hodge-Tate; the resulting nσ’s of Proposition 3.2
are ∈ {0, 1}.

(iv) ρ is of ICD-type and of 01-type.

Proof. The fact that (i) implies (ii) follows immediately from the description of
the Hodge-Tate decomposition of “Vρ” in the case where one takes “ρ” to be χσ
[cf. [Serre3], III, §A.5, proof of Lemma 2]. Next, let us assume that (ii), (iii), or
(iv) holds. In either of these cases, it follows that ρ, hence also the determinant
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det(ρ) : Gk → Q×
p of ρ, is Hodge-Tate. Then by applying Proposition 3.2 to ρ, we

obtain that the associated nσ’s are ∈ {0, 1}; by applying Proposition 3.2 to det(ρ)
[in which case one takes “E” to be Qp], we obtain that det(ρ) is inertially equivalent
to the (

∑
σ nσ)-th power of χcyclo

k . But this allows one to conclude [either from
the explicit Hodge-Tate decomposition of (ii), or from the assumption that ρ is
of ICD-type in (iii), (iv)] that

∑
σ nσ = 1, hence that there exists precisely one

σ ∈ Emb(E, k) such that nσ = 1, nσ′ = 0 for σ′ 
= σ. Thus, [sorting through the
definitions] we conclude that (i), (ii), (iii), and (iv) hold. This completes the proof
of Proposition 3.3. ©

Proposition 3.4. (Preservation of Tame Quotients) In the notation of
Definition 3.1, (iv), let φ : Gk1 → Gk2 be an open homomorphism. Then
p1 = p2, and there exists a commutative diagram

Gk1
φ−→ Gk2⏐⏐�

⏐⏐�
Gtame
k1

φtame

−→ Gtame
k2

— where the vertical arrows are the natural surjections; φtame is an injective
homomorphism.

Proof. We may assume without loss of generality that φ is surjective. Next, let
H2 ⊆ Gk2 be an open subgroup, H1

def= φ−1(H2) ⊆ Gk1 . Then if l def= p1 
= p2,
then [since we have a surjection H2 � H1] 1 = δ1l (H2) ≥ δ1l (H1) ≥ 2 for l = p1

[cf. Theorem 2.6, (ii)]; thus, we conclude that p1 = p2. Write p def= p1 = p2. Since
Gtame
k2

∼= Ẑ( �=p)(1) � Ẑ [for some faithful action of Ẑ on Ẑ( �=p)(1) — cf., e.g., [NSW],
Theorem 7.5.2], it follows immediately that every closed normal pro-p subgroup of
Gtame
k2

is trivial. Thus, the image of φ(Iwild
k1

) in Gtame
k2

is trivial, so we conclude that
φ induces a surjection φtame : Gtame

k1
� Gtame

k2
. Since, for i = 1, 2, the quotient

Gtame
ki

� Gunr
ki

∼= Ẑ may be characterized as the quotient Gtame
ki

� (Gtame
ki

)ab-t, it
thus follows immediately that φtame induces continuous homomorphisms

Ẑ ∼= Gunr
k1
� Gunr

k2
∼= Ẑ; Ẑ( �=p)(1) ∼= Ik1/I

wild
k1
→ Ik2/I

wild
k2
∼= Ẑ( �=p)(1)

— the first of which is surjective, hence an isomorphism [since, as is well-known,
every surjective endomorphism of a profinite group is an isomorphism]. But this
implies that the second displayed homomorphism is also surjective, hence an iso-
morphism. This completes the proof of Proposition 3.4. ©

Theorem 3.5. (Criteria for Geometricity) For i = 1, 2, let ki be an MLF

of residue characteristic pi; ki an algebraic closure of ki; k̂i the pi-adic completion
of ki. We shall use similar notation for the various subquotients of the absolute
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Galois group Gki

def= Gal(ki/ki) of ki to the notation introduced at the beginning of
the present §3 for Gk. Let

φ : Gk1 → Gk2

be an open homomorphism. Then:

(i) The following conditions on φ are equivalent: (a) φ is of CHT-type; (b)
φ is of 01-qLT-type; (c) φ is of qLT-type; (d) φ is geometric.

(ii) Suppose that φ is an isomorphism. Then φ is geometric if and only if
it is of HT-type.

(iii) For i = 1, 2, let 1→ Δi → Πi → Gki
→ 1 be an extension of AFG-type;

ψ : Π1 → Π2

a semi-absolute [or, equivalently, pre-semi-absolute — cf. Proposition 2.5,
(iii)] homomorphism that lifts φ. Suppose that Π2 is of A-qLT-type. Then φ is
geometric.

Proof. First, we observe that by Proposition 3.4, it follows that p1 = p2; write
p

def= p1 = p2. Also, we may always assume without loss of generality that φ is
surjective. In the following, we will use a superscript “Gki

” [where i = 1, 2] to
denote the submodule of Gki

-invariants of a Gki
-module.

Next, we consider assertion (i). First, we observe that it is immediate that
condition (d) implies condition (a). Next, let us suppose that condition (a) holds.

Since ki = k̂
Gki

i is finite-dimensional over Qp, it follows that, for i = 1, 2, any Gki
-

module M which is finite-dimensional over Qp is Hodge-Tate with weights ∈ {0, 1}
if and only if

dimQp
((M ⊗ k̂i)Gki ) + dimQp

((M (−1)⊗ k̂i)Gki ) = dimQp
(M) · dimQp

(k̂
Gki

i )

[where the tensor products are over Qp]. Now suppose that M is a Gk2 -module
that arises as a “Vρ” for some character ρ : Gk2 → E× of qLT-type [so M is
Hodge-Tate with weights ∈ {0, 1} — cf. Proposition 3.3, (i) =⇒ (iv)]; write Mφ for
the Gk1 -module Mφ obtained by composing the Gk2 -action on M with φ. Thus,
it follows immediately from our assumption that φ is of CHT-type that the above
condition concerning Qp-dimensions for M implies the above condition concerning
Qp-dimensions for Mφ. Applying this argument to corresponding open subgroups
of Gk1 , Gk2 thus shows that φ is of 01-qLT-type, i.e., that condition (b) holds.

Next, let us assume that condition (b) holds. First, I claim that χcyclo
k1

≡ χcyclo
k2
◦

φ. Indeed, by condition (b), it follows that the character χcyclo
k2

◦ φ : Gk1 → Q×
p is

of 01-type. Thus, by Proposition 3.2, we conclude that χcyclo
k2

◦ φ ≡ (χcyclo
k1

)n, for
some n ∈ {0, 1}. On the other hand, the restriction of χcyclo

k2
to Ik2 clearly has open

image; since φ is open, it thus follows that the restrction of χcyclo
k2

◦ φ to Ik1 has
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open image. This rules out the possibility that n = 0, hence completes the proof
of the claim. Now, by applying this claim, together with Proposition 3.3, (i) ⇐⇒
(iv), we conclude that φ is of qLT-type, i.e., that condition (c) holds.

Next, let us assume that condition (c) holds. First, I claim that this already
implies that φ is injective [i.e., an isomorphism]. Indeed, let γ ∈ Ker(φ) ⊆ Gk1 be
such that γ 
= 1. Then there exists an open subgroup J1 ⊆ Gk1 ⊆ GQp

satisfying
the following conditions: (1) γ /∈ J1; (2) J1 is characteristic as a subgroup GQp

; (3)
the extension E of Qp determined by J1 contains all Qp-conjugates of k2. Fix an
embedding σ2 : k2 ↪→ E; write H2 ⊆ Gk2 for the corresponding open subgroup. Let
H1 ⊆ J1 ⊆ Gk1 be an open subgroup which is normal in Gk1 such that φ(H1) ⊆
H2; for i = 1, 2, write kHi

for the extension of ki determined by Hi. Thus, the
embedding σ2 : E ↪→ kH2 given by the identity E = kH2 (respectively, σ1 : E ↪→ kH1

determined by the inclusion H1 ⊆ J1) determines a character ρ2 : H2 → E×

(respectively, ρ1 : H1 → E×) of qLT-type [i.e., the character “χσ2” (respectively,
“χσ1”)]. Moreover, by condition (c), the character ρ2 ◦ (φ|H1) : H1 → E× is of qLT-
type, hence is inertially equivalent to τ ◦ρ1 : H1 → E× for some τ ∈ Gal(E/Qp). In
particular, by replacing σ2 by σ2 ◦ τ , we may assume that τ is the identity, hence
that ρ2 ◦ (φ|H1) ≡ ρ1. On the other hand, since γ /∈ J1, hence acts nontrivially on
the subfield E ⊆ kH1 [relative to the embedding σ1], it follows that ρ1 ◦κγ ≡ δ ◦ρ1,
where we write κγ for the automorphism of H1 given by conjugating by γ, and
δ ∈ Gal(E/Qp) is not equal to the identity. But since φ(γ) = 1 ∈ Gk2 , we thus
conclude that δ ◦ ρ1 ≡ ρ1 ◦ κγ ≡ ρ2 ◦ (φ|H1) ◦ κγ ≡ ρ2 ◦ (φ|H1) ≡ ρ1, which [since
ρ1 has open image] contradicts the fact that δ ∈ Gal(E/Qp) is not equal to the
identity. This completes the proof of the claim. Thus, we may assume that φ is
an isomorphism of qLT-type, i.e., we are, in effect, in the situation of [Mzk1], §4.
In particular, the fact that φ is geometric, i.e., that condition (d) holds, follows
immediately via the argument of [Mzk1], §4. This completes the proof of assertion
(i).

Next, we consider assertion (ii). Since φ is an isomorphism, it follows [cf.
[Mzk1], Proposition 1.1; [Mzk6], Proposition 1.2.1, (vi)] that χcyclo

k1
= χcyclo

k2
◦ φ. In

particular, φ is of HT-type if and only if φ is of CHT-type. Thus, assertion (ii)
follows from the equivalence of (a), (d) in assertion (i).

Finally, we consider assertion (iii). First, let us recall that by a well-known
result of Tate [cf. [Tate], §4, Corollary 2], if J ⊆ Π1 is an open subgroup with image
JG ⊆ Gk1 and intersection JΔ

def= J
⋂

Δ1, then the JG-module Jab
Δ ⊗ Qp is always

Hodge-Tate with weights ∈ {0, 1}. Thus, the condition that Π2 is of A-qLT-type
implies that φ is of 01-qLT-type, hence, by assertion (i), geometric. This completes
the proof of assertion (iii). ©

Definition 3.6.

(i) If H ⊆ Gk is an open subgroup corresponding to an extension field kH of
k, then by local class field theory [cf., e.g., [Serre2]], we have a natural isomorphism

O×
kH

∼→ Tor(H)
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— where we write Tor(H) [i.e., the “toral portion of H”] for the image of Ik
⋂
H

in Hab. Thus, by applying the p-adic logarithm O×
kH
→ kH , we obtain a natural

isomorphism λH : Tor(H)⊗Qp
∼→ kH .

(ii) We shall refer to a collection {NH}H , where H ranges over a collection of
open subgroups of Gk that form a basis of the topology of Gk, as a uniformly toral
neighborhood of Gk if there exist nonnegative integers a, b [which are independent
of H!] such that [in the notation of (i)] NH ⊆ Tor(H) ⊗ Qp is an open subgroup
such that pa · OkH

⊆ λH(NH) ⊆ p−b · OkH
⊆ kH .

(iii) Let φ : Gk1
∼→ Gk2 be an isomorphism of profinite groups. Then we shall

say that φ is uniformly toral if Gk1 admits a uniformly toral neighborhood {NH}H
such that {φ(NH)}H forms a uniformly toral neighborhood of Gk2 . We shall say
that φ is RF-preserving [i.e., “ramification filtration preserving”] if φ is compatible
with the filtrations on Gk1 , Gk2 given by the [positively indexed] higher ramification
groups in the upper numbering [cf., [Mzk1], Theorem].

Corollary 3.7. (Uniform Torality and Geometricity) In the situation
of Theorem 3.5, suppose further that φ is an isomorphism. Then the following
conditions on φ are equivalent: (a) φ is RF-preserving; (b) φ is uniformly
toral; (c) φ is geometric.

Proof. First, we observe that by Proposition 3.4, it follows that p1 = p2; write
p

def= p1 = p2. Also, we observe that it is immediate that condition (c) implies
condition (a). Next, we recall that the fact that condition (a) implies condition
(b) is precisely the content of the discussion preceding [Mzk1], Proposition 2.2.
That is to say, for i = 1, 2, the images of appropriate higher ramification groups
in Tor(H) ⊗ Qp [for open subgroups H ⊆ Gki

] multiplied by appropriate integral
powers of p yield a uniformly toral neighborhood of Gki

that is compatible with φ
whenever φ is RF-preserving.

Next, let us assume that condition (b) holds. For i = 1, 2, let {N i
H}H be

a uniformly toral neighborhood of Gki
. Again, we take the point of view of the

discussion preceding [Mzk1], Proposition 2.2. That is to say, we think of ki as the
inductive limit

Ii
def= lim−→

H

Tor(H)⊗Qp

— where H ranges over the open subgroups ⊆ Gki
involved in {N i

H}H ; the mor-
phisms in the inductive system are those induced by the Verlagerung, or transfer,
map. Write Ni ⊆ Ii for the subgroup generated by the N i

H ⊆ Tor(H)⊗Qp. Then
relative to the isomorphism [of abstract modules!] λi : Ii

∼→ ki determined by the
λH ’s, we have

pa · Oki
⊆ λi(Ni) ⊆ p−b · Oki

⊆ ki

for some nonnegative integers a, b [cf. Definition 3.6, (ii)]. In particular, it follows
that the topology on Ii determined by the submodules pc · Ni, where c ≥ 0 is an
integer, coincides, relative to λi, with the p-adic topology on ki [i.e., the topology
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determined by the pc · Oki
, where c ≥ 0 is an integer]. Write Îi for the completion

of Ii relative to the topology determined by the pc · Ni. Thus, λi determines an
isomorphism of topological Gki

-modules Îi
∼→ k̂i. In particular, the assumption that

φ is uniformly toral implies that φ is of HT-type. Thus, by Theorem 3.5, (ii), we
conclude that φ is geometric, i.e., that condition (c) holds. This completes the proof
of Corollary 3.7. ©

Remark 3.7.1. In fact, one verifies immediately that the argument applied in the
proof of Corollary 3.7 implies that the equivalences of Corollary 3.7 [as well as the
definitions of Definition 3.6] continue to hold when φ is replaced by an isomorphism
of profinite groups between the maximal pro-p quotients of the Gki

. We leave the
routine details to the reader.

Corollary 3.8. (Geometricity of Semi-absolute Homomorphisms for

Hyperbolic Orbicurves) For i = 1, 2, let ki, ki, k̂i, pi, Gki
[and its subquotients]

be as in Theorem 3.5; 1 → Δi → Πi → Gki
→ 1 an extension of AFG-type;

(ki, Xi,Σi) partial construction data [consisting of the construction data field,
construction data base-stack, and construction data prime set] for Πi � Gki

; αi :
π1(Xi) = πtame

1 (Xi) � Πi a scheme-theoretic envelope compatible with the
natural projections π1(Xi)� Gki

, Πi � Gki
;

ψ : Π1 → Π2

a semi-absolute [or, equivalently, pre-semi-absolute — cf. Proposition 2.5,
(iii)] homomorphism that lifts a homomorphism φ : G1 → G2. Suppose further
that X2 is a hyperbolic orbicurve, that p2 ∈ Σ2, and that one of the following
conditions holds:

(a) φ is of CHT-type;

(b) φ is of 01-qLT-type;

(c) φ is of qLT-type;

(d) φ is an isomorphism of HT-type;

(e) φ is a uniformly toral isomorphism;

(f) φ is an RF-preserving isomorphism;

(g) Π2 is of A-qLT-type.

(h) φ is geometric;

Then ψ is geometric, i.e., arises [relative to the αi] from a unique dominant
morphism of schemes X1 → X2 lying over a morphism Spec(k1)→ Spec(k2).

Proof. Indeed, by Theorem 3.5, (i), (ii), (iii); Corollary 3.7, it follows that any of
the conditions (a), (b), (c), (d), (e), (f), (g), (h) implies condition (h). Thus, since
X2 is a hyperbolic orbicurve, and p2 ∈ Σ2, the fact that ψ is geometric follows from
[Mzk3], Theorem A. ©
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Remark 3.8.1. One important motivation for the theory of the present §3 is the
following result, orally communicated to the author by A. Tamagawa:

(∗A-qLT) Let X be a hyperbolic orbicurve over k that admits a finite étale covering
Y → X by a hyperbolic curve Y such that Y admits a dominant k-
morphism Y → P , where P is the projective line minus three points
over k [i.e., a tripod — cf. §0]. Then the arithmetic fundamental group
π1(X)� Gk of X is of A-qLT-type.

In particular, it follows that:

Corollary 3.8 may be applied [in the sense that condition (g) is satisfied]
whenever X2 satisfies the conditions placed on the hyperbolic orbicurve
“X” of (∗A-qLT).

Indeed, Tamagawa’s original motivation for considering (∗A-qLT) was precisely the
goal of applying the methods of [Mzk1] to obtain an “isomorphism version” of
Corollary 3.8, (g). Upon learning of these ideas of Tamagawa, the author proceeded
to re-examine the theory of [Mzk1]. This led the author to the discovery of the
various generalizations of [Mzk1] — and, in particular, the Hom-version of Corollary
3.8, (g) — given in the present §3. Tamagawa derives (∗A-qLT) from the following
result:

(∗CM) Given a character ρ : Gk → E× of qLT-type, there exists an abelian
variety with complex multiplication A over some finite extension kA of k
such that ρ|GkA

is inertially equivalent to some character whose associated
GkA

-module appears as a subquotient of the GkA
-module given by the p-

adic Tate module of A.

Indeed, to derive (∗A-qLT) from (∗CM), one reasons as follows: Every abelian variety
with complex multiplication A is defined over a number field, hence arises as a
quotient of a Jacobian of a smooth proper curve Z over a number field. Moreover,
by considering Belyi maps, it follows that some open subscheme UZ ⊆ Z arises as
a finite étale covering of the projective line minus three points. Thus, any Galois
module that appears as a subquotient of the p-adic Tate module of A also appears
as a subquotient of the p-adic Tate module of the Jacobian of some finite étale
covering of the curve P of (∗A-qLT), hence, a fortiori, as a subquotient of the p-adic
Tate module of the Jacobian of some finite étale covering of the curves Y , X of
(∗A-qLT). Thus, we conclude that π1(X) is of A-qLT-type, as desired.

Corollary 3.9. (Geometricity of Strictly Semi-absolute Homomor-
phisms for Function Fields) Assume that the result (∗A-qLT) of Remark 3.8.1
holds. For i = 1, 2, let ki be an MLF, Ki a function field of transcendence degree
≥ 1 over ki [so ki is algebraically closed in Ki], Ki an algebraic closure of Ki, ki
the algebraic closure of ki determined by Ki, Πi

def= Gal(Ki/Ki), Gi
def= Gal(ki/ki),

Δi
def= Ker(Πi � Gi). Then every open homomorphism

ψ : Π1 → Π2
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that induces an open homomorphism ψΔ : Δ1 → Δ2 [hence also an open homomor-
phism φ : G1 → G2] is geometric, i.e., arises from a unique embedding of fields
K2 ↪→ K1 that induces an embedding of fields k2 ↪→ k1 of finite degree.

Proof. Since every function field of transcendence degree ≥ 1 over k2 contains
the function field of a tripod over k2, it follows from (∗A-qLT) that there exists
a hyperbolic curve X over k2 with function equal to K2 such that if we write
Π2 � Π3

def= π1(X) for the resulting surjection, then Π3 is of A-qLT-type. Now
we wish to apply a “birational analogue” of Corollary 3.8, (g), to the composite
homomorphism Π1 → Π2 � Π3 [where the first arrow is ψ].

To verify that such an analogue holds, it suffices to verify that φ is of 01-qLT-
type [cf. Theorem 3.5, (i), (b) =⇒ (d)]. To this end, set k3

def= k2, G3
def= G2,

Δ3
def= Ker(Π3 � G3); let us suppose, for i = 1, 3, that Hi ⊆ Δi, Ji ⊆ Gi

are characteristic open subgroups such that ψΔ(H1) ⊆ H3, φ(J1) ⊆ J3. Thus, if
we write p for the common residue characteristic of k1, k3 [cf. Proposition 3.4],
then we obtain a surjection Hab

1 ⊗ Qp � Hab
3 ⊗ Qp that is compatible with φ.

Moreover, it follows immediately from Corollary A.11 [cf. also Proposition A.3,
(v)] of the Appendix that the J1-module Hab-t

1 ⊗ Zp admits a quotient J1-module
Hab-t

1 ⊗ Zp � Q1 such that Q1 is the p-adic Tate module of some abelian variety
over a finite extension of k1, and, moreover, the kernel Ker(Hab-t

1 ⊗ Zp � Q1) is
topologically generated by topologically cyclic subgroups [i.e., “copies of Zp”] on
which some open subgroup of J1 [which may depend on the cyclic subgroup] acts via
the cyclotomic character. Next, let us observe that if V3 is any J3-module associated
to a character of qLT-type of dimension ≥ 2, then V3 does not contain any sub-J3-
modules of dimension 1 over Qp. From this observation, it follows immediately that
any subquotient [cf. Definition 3.1, (v)] of the J3-moduleHab

3 ⊗Qp that is isomorphic
to the J3-module associated to a character of qLT-type of dimension ≥ 2 determines
a subquotient [not only of the J1-module Hab-t

1 ⊗ Qp, but also] of the J1-module
Q1 ⊗Qp. Thus, we conclude that any such subquotient of the J1-module Q1 ⊗Qp

is Hodge-Tate with weights ∈ {0, 1}. Moreover, by considering determinants of such
subquotients, one concludes that the pull-back of the cyclotomic character J3 → Z×

p

is a character J1 → Z×
p which is Hodge-Tate, and whose unique weight w is ≥ 0. If

w ≥ 2, then the fact that the J3-module determined by the cyclotomic character of
J3 occurs as a subquotient of Hab

3 ⊗Qp [for sufficiently small H3], hence determines
a J1-module that occurs as a subquotient [not only of the J1-module Hab-t

1 ⊗ Qp,
but also, in light of our assumption that w ≥ 2!] of the J1-module Q1⊗Qp leads to
a contradiction [since the J1-module Q1⊗Qp is Hodge-Tate with weights ∈ {0, 1}].
Thus, we conclude that φ : G1 → G2 = G3 is of 01-qLT-type, hence geometric,
i.e., arises from a unique embedding of fields k2 ↪→ k1 of finite degree. Finally,
the geometricity of φ implies that the geometricity of ψ may be derived from the
“relative” result given in [Mzk3], Theorem B. ©

Remark 3.9.1. The proof given above of Corollary 3.9 shows that the “Π2” of
Corollary 3.9 may, in fact, be taken to be a “Π2” as in Corollary 3.8, (g).
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Section 4: Chains of Elementary Operations

In the present §4, we generalize [cf. Theorems 4.7, 4.12; Remarks 4.7.1, 4.12.1
below] the theory of “categories of dominant localizations” discussed in [Mzk9],
§2 [cf. also the tempered versions of these categories, discussed in [Mzk10], §6],
to include “localizations” obtained by more general “chains of elementary opera-
tions” — i.e., the operations of passing to a finite étale covering, passing to a finite
étale quotient, “de-cuspidalization”, and “de-orbification” [cf. Definition 4.2 below;
[Mzk14], §2] — which are applied to some given algebraic stack over a field. The
field and algebraic stack under consideration are quite general in nature [by com-
parison, e.g., to the theory of [Mzk9], §2; [Mzk14], §2], but are subject to various
assumptions. One key assumption asserts that the algebraic stack satisfies a certain
relative version of the “Grothendieck Conjecture”.

Before proceeding, we recall the following immediate consequence of [Mzk14],
Lemma 2.1; [Mzk13], Proposition 1.2, (ii).

Lemma 4.1. (Decomposition Groups of Hyperbolic Orbicurves) Let Σ
be a nonempty set of prime numbers, Δ a pro-Σ group of GFG-type that admits
base-prime [cf. Definition 2.1, (iv)] partial construction data (k,X,Σ) [consisting
of the construction data field, construction data base-stack, and construction data
prime set] such that X is a hyperbolic orbicurve [cf. §0], and k is algebraically
closed. Let xA (respectively, xB 
= xA) be either a closed point or a cusp [cf.
§0] of X; A ⊆ Δ (respectively, B ⊆ Δ) the decomposition group [well-defined
up to conjugation in Δ] of xA (respectively, xB). Then:

(i) A, B are pro-cyclic groups; A
⋂
B = {1}. If xA is a closed point of

X, and A 
= {1}, then A is a finite, normally terminal [cf. §0] subgroup of Δ.
If xA is a cusp, then A is a torsion-free, commensurably terminal [cf. §0]
infinite subgroup of Δ.

(ii) The order of every finite cyclic closed subgroup C ⊆ Δ divides the
order of X [cf. §0].

(iii) Every finite nontrivial closed subgroup C ⊆ Δ is contained in a
decomposition group of a unique closed point of X. In particular, the non-
trivial decomposition groups of closed points of X may be characterized [“group-
theoretically”] as the maximal finite nontrivial closed subgroups of Δ.

(iv) X is a hyperbolic curve if and only if Δ is torsion-free.

(v) Suppose that the quotient ψA : Δ � ΔA of Δ by the closed normal sub-
group of Δ topologically generated by A is slim and nontrivial. If xA is a closed
point of X (respectively, a cusp), then we suppose further that Σ = Primes [which
forces the characteristic of k to be zero] (respectively, that A ⊆ J for some normal
open torsion-free subgroup J of Δ). Then ΔA is a profinite group of GFG-type
that admits base-prime partial construction data (k,XA,Σ) [consisting of the con-
struction data field, construction data base-stack, and construction data prime set]
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such that XA is a hyperbolic orbicurve equipped with a dominant k-morphism
φA : X → XA that is uniquely determined [up to a unique isomorphism] by the
property that it induces [up to composition with an inner automorphism] ψA. More-
over, if xA is a closed point of X (respectively, a cusp), then φA is a partial
coarsification morphism [cf. §0] which is an isomorphism either over XA or
over the complement in XA of the point of XA determined by xA (respectively, is an
open immersion whose image is the complement of the point of XA determined
by xA).

(vi) In the notation of (v), if B 
= {1}, then ψA(B) 
= {1}.

Proof. First, we recall that by the definition of a profinite group of GFG-type
[cf. the discussion at the beginning of §2], it follows that there exists a normal
open subgroup H ⊆ Δ such that if we write XH → X for the corresponding
Galois covering, then XH is a hyperbolic curve. Next, let us observe that, in light
of our assumption that the partial construction data is base-prime, we may lift
the entire situation to characteristic zero, hence assume, at least for the proof of
assertions (i), (ii), (iii), (iv), that k is of characteristic zero. Thus, assertions (i),
(ii), (iii) when xA, xB are closed points (respectively, cusps) ofX follow immediately
from [Mzk14], Lemma 2.1 (respectively, [Mzk13], Proposition 1.2, (ii)). Next, we
consider assertion (iv). First, we observe that the necessity portion of assertion
(iv) follows immediately from assertion (iii). To verify sufficiency, let us suppose
that Δ is torsion-free. Let πtame

1 (X) � Δ be a scheme-theoretic envelope of Δ.
Then since XH is a scheme, it follows that the nontrivial [finite closed] subgroups
of πtame

1 (X) that arise as decomposition groups of closed points map injectively,
via the composite surjection πtame

1 (X) � Δ � Δ/H , into Δ/H , hence, a fortiori,
injectively via the surjection πtame

1 (X) � Δ, into Δ [which is torsion-free]. Thus,
the decomposition groups in π1(X) = πtame

1 (X) [cf. our assumption that k is
algebraically closed of characteristic zero] of closed points of X are trivial. But this
implies [by considering, for instance, the Galois covering XH → X ] that X is a
scheme, as desired. This completes the proof of assertion (iv).

Next, we consider assertion (v). First, let us observe that XA admits a finite
étale covering YA → XA arising from a normal open subgroup of ΔA such that YA is
a curve, which will necessarily be hyperbolic, in light of the slimness and nontriviality
of ΔA. Indeed, when xA is a closed point of X [so Σ = Primes; k is of characteristic
zero], this follows immediately from the equivalence of definitions of a “hyperbolic
orbicurve” discussed in §0; when xA is a cusp, this follows from assertion (iv) and
our assumption of the existence of the subgroup J ⊆ Δ. Now the remainder of
assertion (v) follows immediately from the definitions. This completes the proof of
assertion (v). Finally, we consider assertion (vi). Assertion (vi) is immediate if xB
is a cusp [cf. assertion (i)]; thus, we may assume that xB is a closed point of X .
If ψA(B) = {1}, then it follows that the decomposition group ⊆ ΔA of the image
of xB in XA is trivial. Since [by assertion (v)] XA admits a finite étale covering
YA → XA arising from an open subgroup of XA such that YA is a hyperbolic curve,
we thus conclude that XA is scheme-like in a neighborhood of the image of xB in
XA, hence [in light of the explicit description of the morphism φA in the statement



TOPICS IN ABSOLUTE ANABELIAN GEOMETRY I 45

of assertion (v)] that X is scheme-like in a neighborhood of xB . But this implies
that B = {1}. This completes the proof of assertion (vi). ©

Remark 4.1.1. Note that Lemma 4.1, (iv), is false if we only assume that Δ is
almost pro-Σ. Indeed, such an example may be constructed by taking X to be a
hyperbolic curve over an algebraically closed field k of characteristic zero, Y → X a
finite étale Galois covering of degree prime to Σ, and Δ to be the quotient of π1(X)
by the kernel of the surjection (π1(X) ⊇) π1(Y )� π1(Y )(Σ) to the maximal pro-Σ
quotient π1(Y )(Σ) of π1(Y ). Then for any prime p dividing the order of Gal(Y/X)
[so p 
∈ Σ], it follows by considering Sylow p-subgroups that Δ contains an element
of order p, despite the fact that X is a curve.

Definition 4.2. Let G be a slim profinite group;

1→ Δ→ Π→ G→ 1

an extension of GSAFG-type that admits base-prime partial construction data
(k,X,Σ), where Σ 
= ∅; α : πtame

1 (X) � Π a scheme-theoretic envelope. Thus,
if we write πtame

1 (X)� Gk for the quotient given by the absolute Galois group Gk
of k, then α determines a scheme-theoretic envelope β : Gk � G. Write X̃ → X

for the pro-finite étale covering of X determined by the surjection α; k̃ for the
resulting field extension of k. In a similar vein, we shall write Π̃ for the projective
system of profinite groups determined by the open subgroups of Π. [Thus, one
may consider homomorphisms between Π̃ and a profinite group by thinking of the
profinite group as a trivial projective system of profinite groups — cf. the theory
of “pro-anabelioids”, as in [Mzk8], Definition 1.2.6.] Then:

(i) We shall refer to as an [X̃/X-]chain [of length n] [where n ≥ 0 is an integer]
any finite sequence

X0 � X1 � . . .� Xn−1 � Xn

of generically scheme-like algebraic stacks Xj [for j = 0, . . . , n], each equipped with
a dominant “rigidifying morphism” ρj : X̃ → Xj satisfying the following conditions:

(0X) X0 = X [equipped with its natural rigidifying morphism X̃ → X ].

(1X) There exists a [uniquely determined] morphism Xj → Spec(kj) com-
patible with ρj, where kj ⊆ k̃ is a finite extension of k such that Xj is
geometrically connected over kj .

(2X) Each ρj determines a maximal pro-finite étale covering X̃j → Xj such
that X̃ → Xj admits a factorization X̃ → X̃j → Xj . The kernel Δj of
the resulting natural surjection

Πj
def= Gal(X̃j/Xj)� Gj

def= Gal(k̃/kj)
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is slim and nontrivial; every prime dividing the order of a finite quotient
group of Δj is invertible in k.

(3X) Suppose that X is a hyperbolic orbicurve [over k]. Then each Xj is also
a hyperbolic orbicurve [over kj ]. Moreover, each Δj is a pro-Σ group.

(4X) Each “Xj � Xj+1” [for j = 0, . . . , n− 1] is an “elementary operation”,
as defined below.

Here, an elementary operation “Xj � Xj+1” is defined to consist of the datum of
a dominant “operation morphism” φ either from Xj to Xj+1 or from Xj+1 to Xj

which is compatible with ρj, ρj+1, and, moreover, is of one of the following four
types:

(a) Type �: In this case, the elementary operation Xj � Xj+1 consists
of a finite étale covering φ : Xj+1 → Xj . Thus, φ determines an open
immersion of profinite groups Πj+1 ↪→ Πj .

(b) Type �: In this case, the elementary operation Xj � Xj+1 consists of
a finite étale morphism φ : Xj → Xj+1 — i.e., a “finite étale quotient”.
Thus, φ determines an open immersion of profinite groups Πj ↪→ Πj+1.

(c) Type •: This type of elementary operation is only defined if X is a
hyperbolic orbicurve. In this case, the elementary operation Xj � Xj+1

consists of an open immersion φ : Xj ↪→ Xj+1 [so kj = kj+1] — i.e., a “de-
cuspidalization” — such that the image of φ is the complement of a single
kj+1-valued point of Xj+1 whose decomposition group in Δj is contained
in some normal open torsion-free subgroup of Δj . Thus, φ determines a
surjection of profinite groups Πj � Πj+1.

(d) Type �: This type of elementary operation is only defined if X is a
hyperbolic orbicurve and Σ = Primes [which forces the characteristic of k
to be zero]. In this case, the elementary operation Xj � Xj+1 consists
of a partial coarsification morphism [cf. §0] φ : Xj → Xj+1 [so kj =
kj+1] — i.e., a “de-orbification” — such that φ is an isomorphism over
the complement in Xj+1 of some kj+1-valued point of Xj+1. Thus, φ
determines a surjection of profinite groups Πj � Πj+1.

Thus, any X̃/X-chain determines a sequence of symbols ∈ {�,�, •,�} [correspond-
ing to the types of elementary operations in the X̃/X-chain], which we shall refer
to as the type-chain associated to the X̃/X-chain.

(ii) An isomorphism between two X̃/X-chains with identical type-chains [hence
of the same length]

(X0 � . . .� Xn)
∼→ (Y0 � . . .� Yn)
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is defined to be a collection of isomorphisms of generically scheme-like algebraic
stacks Xj

∼→ Yj [for j = 0, . . . , n] that are compatible with the rigidifying mor-
phisms. [Here, we note that the condition of compatibility with the rigidifying
morphisms implies that every automorphism of a X̃/X-chain is given by the iden-
tity, and that every isomorphism of X̃/X-chains of the same length is compatible
with the respective operation morphisms.] Thus, one obtains a category

Chain(X̃/X)

whose objects are the X̃/X-chains [with arbitrary associated type-chain], and whose
morphisms are the isomorphisms between X̃/X-chains [with identical type-chains].
A terminal morphism between two X̃/X-chains [with arbitrary associated type-
chain]

(X0 � . . .� Xn)→ (Y0 � . . .� Ym)

is defined to be a dominant k-morphism Xn → Ym. Thus, one obtains a category

Chaintrm(X̃/X)

whose objects are the X̃/X-chains [with arbitrary associated type-chain], and whose
morphisms are the terminal morphisms between X̃/X-chains; write

Chainiso-trm(X̃/X) ⊆ Chaintrm(X̃/X)

for the subcategory determined by the terminal isomorphisms [i.e., the isomor-
phisms of Chaintrm(X̃/X)]. Thus, it follows immediately from the definitions that
we obtain natural functors Chain(X̃/X)→ Chainiso-trm(X̃/X)→ Chaintrm(X̃/X).

(iii) We shall refer to as an [Π-]chain [of length n] [where n ≥ 0 is an integer]
any finite sequence

Π0 � Π1 � . . .� Πn−1 � Πn

of slim profinite groups Πj [for j = 0, . . . , n], each equipped with an open “rigid-
ifying homomorphism” ρj : Π̃ → Πj [i.e., since we are working with slim profinite
groups, an open homomorphism from some open subgroup of Π to Πj ] satisfying
the following conditions:

(0Π) Π0 = Π [equipped with its natural rigidifying homomorphism Π̃→ Π].

(1Π) There exists a [uniquely determined] surjection Πj � Gj compatible
with ρj , where Gj ⊆ G is an open subgroup.

(2Π) Each kernel
Δj

def= Ker(Πj � Gj ↪→ G)

is slim and nontrivial; every prime dividing the order of a finite quotient
group of Δj is invertible in k.
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(3Π) Suppose that X is a hyperbolic orbicurve [over k]. Then each Δj is a
pro-Σ group. Also, we shall refer to as a cuspidal decomposition group in
Δj any commensurator in Δj of the image via ρj of the inverse image in
Π̃ of the decomposition group in Δ [determined by α] of a cusp of X .

(4Π) Each “Πj � Πj+1” [for j = 0, . . . , n− 1] is an “elementary operation”,
as defined below.

Here, an elementary operation “Πj � Πj+1” is defined to consist of the datum of
an open “operation homomorphism” φ either from Πj to Πj+1 or from Πj+1 to Πj

which is compatible with ρj, ρj+1, and, moreover, is of one of the following four
types:

(a) Type �: In this case, the elementary operation Πj � Πj+1 consists of
an open immersion of profinite groups φ : Πj+1 ↪→ Πj .

(b) Type �: In this case, the elementary operation Πj � Πj+1 consists of
an open immersion of profinite groups φ : Πj ↪→ Πj+1.

(c) Type •: This type of elementary operation is only defined if X is a
hyperbolic orbicurve. In this case, the elementary operation Πj � Πj+1

consists of a surjection of profinite groups φ : Πj � Πj+1, such that Ker(φ)
is topologically normally generated by a cuspidal decomposition group C
in Δj such that C is contained in some normal open torsion-free subgroup
of Δj .

(d) Type �: This type of elementary operation is only defined if X is a
hyperbolic orbicurve and Σ = Primes [which forces the characteristic of k
to be zero]. In this case, the elementary operation Πj � Πj+1 consists
of a surjection of profinite groups φ : Πj � Πj+1, such that Ker(φ) is
topologically normally generated by a finite closed subgroup of Δj .

Thus, any Π-chain determines a sequence of symbols ∈ {�,�, •,�} [corresponding
to the types of elementary operations in the Π-chain], which we shall refer to as the
type-chain associated to the Π-chain.

(iv) An isomorphism between two Π-chains with identical type-chains [hence
of the same length]

(Π0 � . . .� Πn)
∼→ (Ψ0 � . . .� Ψn)

is defined to be a collection of isomorphisms of profinite groups Πj
∼→ Ψj [for

j = 0, . . . , n] that are compatible with the rigidifying homomorphisms. [Here, we
note that the condition of compatibility with the rigidifying homomorphisms implies
[since all of the profinite groups involved are slim] that every automorphism of a
Π-chain is given by the identity, and that every isomorphism of Π-chains of the
same length is compatible with the respective operation homomorphisms.] Thus,
one obtains a category

Chain(Π)
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whose objects are the Π-chains [with arbitrary associated type-chain], and whose
morphisms are the isomorphisms between Π-chains [with identical type-chains].
A terminal homomorphism between two Π-chains [with arbitrary associated type-
chain]

(Π0 � . . .� Πn)→ (Ψ0 � . . .� Ψm)

is defined to be an open outer homomorphism Πn → Ψm that is compatible [up to
composition with an inner automorphism] with the open homomorphisms Πn → G,
Ψm → G. Thus, one obtains a category

Chaintrm(Π)

whose objects are the Π-chains [with arbitrary associated type-chain], and whose
morphisms are the terminal homomorphisms between Π-chains; write

Chainiso-trm(Π) ⊆ Chaintrm(Π)

for the subcategory determined by the terminal isomorphisms [i.e., the isomor-
phisms of Chaintrm(Π)]. Thus, it follows immediately from the definitions that we
obtain natural functors Chain(Π)→ Chainiso-trm(Π)→ Chaintrm(Π).

(v) We shall use the notation

Chainiso-trm(∼){−} ⊆ Chainiso-trm(∼); Chaintrm(∼){−} ⊆ Chaintrm(∼)

— where “(∼)” is either equal to “(X̃/X)” or “(Π)”, and “{−}” contains some
subset of the set of symbols {�,�, •,�}— to denote the respective full subcategories
determined by the chains whose associated type-chain only contains the symbols
that belong to “{−}”. In particular, we shall write:

DLoc(X̃/X) def= Chaintrm(X̃/X){�, •}; DLoc(Π) def= Chaintrm(Π){�, •}
ÉtLoc(X̃/X) def= Chainiso-trm(X̃/X){�,�}; ÉtLoc(Π) def= Chainiso-trm(Π){�,�}
[cf. the theory of [Mzk9], §2; Remark 4.7.1 below].

Remark 4.2.1. Thus, it follows immediately from the definitions that if, in the
notation of Definition 4.2, (i),

X0 � X1 � . . .� Xn−1 � Xn

is an X̃/X-chain, then the resulting profinite groups Πj determine a Π-chain

Π0 � Π1 � . . .� Πn−1 � Πn

with the same associated type-chain. In particular, we obtain natural functors

Chain(X̃/X)→ Chain(Π)

Chainiso-trm(X̃/X)→ Chainiso-trm(Π); Chaintrm(X̃/X)→ Chaintrm(Π)
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which are compatible with the natural functors of Definition 4.2, (ii), (iv).

Remark 4.2.2. Note that in the situation of Definition 4.2, (i), Gj is a slim
profinite group; 1 → Δj → Πj → Gj → 1 is an extension of GSAFG-type that
admits base-prime partial construction data (kj , Xj,Σ), where Xj is a hyperbolic
orbicurve whenever X0 is a hyperbolic orbicurve; α, ρj determine [in light of the
slimness of Πj ] a scheme-theoretic envelope αj : πtame

1 (Xj) � Πj . That is to say,
we obtain, for each j, similar data to the data introduced at the beginning of
Definition 4.2.

Proposition 4.3. (Re-ordering of Chains) In the notation of Definition 4.2,
suppose that Σ = Primes; let X0 � . . . � Xn (respectively, Π0 � . . . � Πn) be
a(n) X̃/X- (respectively, Π-) chain. Then there exists a terminally isomorphic
X̃/X- (respectively, Π-) chain Y0 � . . . � Ym (respectively, Ψ0 � . . . � Ψm)
whose associated type-chain is of the form

�, •, •, . . . , •, (∈ {�,�}), (∈ {�,�}), . . .

— i.e., consists of the symbol �, followed by a sequence of the symbols •, followed
by a sequence of symbols ∈ {�,�}.

Proof. Indeed, let us first observe that it is immediate from the compatibility
with the rigidifying [homo]morphisms that one may always “move the symbol � to
the top of the type-chain”. Thus, one may assume without loss of generality that
the remaining symbols [i.e., the symbols indexed by j ≥ 1] of the type-chain are
∈ {�, •,�}; in particular, one may assume that the operation [homo]morphisms
indexed by j ≥ 1 always have domain indexed by j and codomain indexed by
j + 1. Thus, we may replace the de-cuspidalization operations at arbitrary indices
by de-cuspidalization operations on the finite étale covering indexed by 0 deter-
mined by cusps of this finite étale covering that map to cusps that give rise to
de-cuspidalization operations at subsequent indices. [Note that here, it is useful
to recall the equivalence of definitions of the notion of a “hyperbolic orbicurve”
discussed in §0 — cf. our assumption that Σ = Primes.] This yields a type-chain
of the desired form. ©

On the other hand, as the following example shows, the symbols “�”, “�”
cannot be permuted.

Example 4.4. Non-permutability of Étale Quotients and De-orbifications.
In the notation of Definition 4.2, let us assume further Σ = Primes [so k is of char-
acteristic zero]. Then there exists an X̃/X-chain X0 � X1 � X2 of length 2 with
associated type-chain ∗1, ∗2, where ∗1, ∗2 ∈ {�,�}, ∗1 
= ∗2, which is not terminally
isomorphic to any X̃/X-chain Y0 � Y1 � Y2 of length 2 with associated type-chain
∗2, ∗1. Indeed:
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(i) The case of type-chain �,�: Let X be a hyperbolic curve of type (g, r)
over k equipped with an automorphism σ of the k-scheme X of order 2 that has
precisely one fixed point x ∈ X(k); X0 = X � X1 the elementary operation of type
� given by forming the stack-theoretic quotient of X by the action of σ; x1 ∈ X1(k)
the image of x in X1; X1 � X2 the elementary operation of type � determined by
the point x1 ∈ X1(k). Thus, we assume thatX2 is a hyperbolic curve, whose type we
denote by (g2, r2). On the other hand, sinceX is a scheme, any chain Y0 � Y1 � Y2

of length 2 with associated type-chain �,� satisfies Y0
∼→ Y1 [compatibly with X̃].

Thus, if Y2
∼→ X2 over k, then the coverings X = X0 → X2 [which is ramified,

of degree 2], X ∼→ Y0
∼→ Y1 → Y2 [which is unramified, of some degree d] yield

equations
d · χ2 = χ = 2 · χ2 + 1

[where we write χ def= 2g − 2 + r, χ2
def= 2g2 − 2 + r2] — which imply [since d, χ,

χ2 are positive integers] that d− 2 = χ2 = 1, hence that d = 3, χ2 = 1, χ = 3. In
particular, by choosing X so that χ is > 3 [e.g., X such that g ≥ 3], we obtain a
contradiction.

(ii) The case of type-chain �,�: Let X be a proper hyperbolic orbicurve over
k; X → C the coarse space associated to the algebraic stack X . Let us assume
further that C is a [proper] hyperbolic curve over k; that the morphism X → C is a
non-isomorphism which restrict to an isomorphism away from some point c ∈ C(k);
and that there exists a finite étale covering ε : C → D of degree 2 [so D is also
a proper hyperbolic curve over k, which is not isomorphic to C]. [It is easy to
construct such objects by starting from D and then constructing C, X .] Now we
take X0 = X � X1

def= C to be the elementary operation of type � determined by
the unique point of x ∈ X(k) lying over c ∈ C(k); C = X1 � X2

def= D to be the
elementary operation of type � determined by the finite étale covering ε : C → D.
On the other hand, let us suppose that Y0 � Y1 � Y2 is a chain of length 2 with
associated type-chain �,� such that X2

∼→ Y2 over k. Then since D = X2
∼→ Y2 is

a scheme, it follows that the hyperbolic orbicurve Y1 admits a point y1 ∈ Y1(k) such
that Y1 is a scheme away from y1. Note that if Y1 is a scheme, then the finite étale
covering X = Y0 of Y1 is as well, a contradiction. Thus, we conclude that Y1 is not
a scheme at y1. Next, let us observe that if the finite étale morphism Y0 → Y1 is not
an isomorphism [i.e., of degree ≥ 2], then Y0 fails to be a scheme at some k-étale
divisor of Y0 [namely, the inverse image of y1] of degree ≥ 2; thus, since Y0 = X
in fact fails to be a scheme only at the unique point x ∈ X(k), we thus conclude
that this finite étale covering is, in fact, an isomorphism X = Y0

∼→ Y1. But this
implies that Y2 is isomorphic to the coarse space associated to X , i.e., we have an
isomorphism Y2

∼→ C, hence an isomorphism D = X2
∼→ Y2

∼→ C, a contradiction.

Next, we recall the group-theoretic characterization of the cuspidal decomposi-
tion groups of a hyperbolic [orbi]curve given in [Mzk13].

Lemma 4.5. (Cuspidal Decomposition Groups) Let G be a slim profinite
group;

1→ Δ→ Π→ G→ 1
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an extension of GSAFG-type that admits base-prime [cf. Definition 2.1,
(iv)] partial construction data (k, k̃, X,Σ), where X is a hyperbolic orbicurve;
α : πtame

1 (X)� Π a scheme-theoretic envelope; l ∈ Σ a prime such that the cy-
clotomic character χcyclo

G : G→ Z×
l [i.e., the character whose composite with α is

the usual cyclotomic character πtame
1 (X)� Gal(k̃/k)→ Z×

l ] has open image [i.e.,
in the terminology of [Mzk13], “the outer action of G on Δ is l-cyclotomically
full”]. We recall from [Mzk13] that a character χ : G→ Z×

l is called Q-cyclotomic
[of weight w ∈ Q] if there exist integers a, b, where b > 0, such that χb = (χcyclo

G )a,
w = 2a/b [cf. [Mzk13], Definition 2.3, (i), (ii)]. Then:

(i) X is non-proper if and only if every torsion-free pro-Σ open subgroup of
Δ is free pro-Σ.

(ii) Let M be a finite-dimensional Ql-vector space equipped with a continuous
G-action. Then we shall say that this action is quasi-trivial if it factors through a
finite quotient of G [cf. [Mzk13], Definition 2.3, (i)]. We shall write τ(M) for the
Ql-dimension of the maximal quasi-trivial Ql-subspace of M . If χ : G → Z×

l

is a character, then we shall write

dχ(M) def= τ(M(χ−1))− τ(HomQl
(M,Ql))

[where “M(χ−1)” denotes the result of “twisting” M by the character χ−1]. We
shall say that two characters G → Z×

l are power-equivalent if there exists a
positive integer n such that the n-th powers of the two characters coincide. Then
dχ(M), regarded as a function of χ, depends only on the power-equivalence
class of χ.

(iii) Suppose that X is not proper [cf. (i)]. Then the character G → Z×
l

arising from the determinant of the G-module Hab ⊗ Ql, where H ⊆ Δ is a
characteristic open subgroup such that Hab ⊗ Ql 
= 0, is Q-cyclotomic of posi-
tive weight. Moreover, for every sufficiently small characteristic open subgroup
H ⊆ Δ, the power-equivalence class of the cyclotomic character χcyclo

G may be
characterized as the unique power-equivalence class of characters χ : G→ Z×

l of the
form χ = χ∗ ·χ∗, where χ∗ : G→ Z×

l (respectively, χ∗ : G→ Z×
l ) is a Q-cyclotomic

character of maximal (respectively, minimal) weight such that τ(M(χ−1)) 
= 0 for
some subquotient G-module M of (Hab⊗Ql)⊕Ql [where the final direct summand
Ql is equipped with the trivial G-action]. Moreover, in this situation, if χ = χcyclo

G ,
then the divisor of cusps of the covering of X ×k k̃ determined by H is a disjoint
union of dχ(Hab ⊗Ql) + 1 copies of Spec(k̃).

(iv) Suppose that X is not proper [cf. (i)]. Let H ⊆ Δ be a torsion-free
pro-Σ characteristic open subgroup; H � H∗ the maximal pro-l quotient of H.
Then the decomposition groups of cusps ⊆ H∗ may be characterized [“group-
theoretically”] as the maximal closed subgroups I ⊆ H∗ isomorphic to Zl which
satisfy the following condition: We have

dχcyclo
G

(Jab ⊗Ql) + 1 = [I · J : J ] · dχcyclo
G

((I · J)ab ⊗Ql) + 1
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for every characteristic open subgroup J ⊆ H∗.

(v) Let X, H, H∗ be as in (iv). Then the set of cusps of the covering of X×k k̃
determined by H is in natural bijective correspondence with the set of conjugacy
classes in H∗ of decomposition groups of cusps [as described in (iv)]. Moreover,
this correspondence is functorial in H and compatible with the natural actions
by Π on both sides. In particular, by allowing H to vary, this yields a [“group-
theoretic”] characterization of the decomposition groups of cusps in Π.

(vi) Let I ⊆ Π be a decomposition group of a cusp. Then I = CΠ(I
⋂

Δ)
[cf. §0].

Proof. Assertion (i) may be reduced to the case of hyperbolic curves via Lemma
4.1, (iv), in which case it is well-known [cf., e.g., [Mzk13], Remark 1.1.3]. Assertion
(ii) makes sense in light of our assumption of “l-cyclotomic fullness” on χcyclo

G , and
its content is immediate from the definitions. Assertion (iii) follows immediately
from [Mzk13], Proposition 2.4, (iv), (vii); the proof of [Mzk13], Corollary 2.7, (i).
Assertion (iv) is [in light of assertion (iii)] precisely a summary of the argument of
[Mzk13], Theorem 1.6, (i). Finally, assertions (v), (vi) follow immediately from the
commensurable terminality of [Mzk13], Proposition 1.2, (ii). ©

Definition 4.6.

(i) Let V (respectively, F; S) be a set of isomorphism classes of algebraic
stacks (respectively, set of isomorphism classes of fields; set of nonempty subsets of
Primes);

D ⊆ V× F× S

a subset of the direct product set V × F × S, which we shall think of as a set of
collections of partial construction data. In the following discussion, we shall use
“[−]” to denote the isomorphism class of “−”. We shall say that D is chain-full if
for every extension 1 → Δ → Π → G → 1 of GSAFG-type, where G is slim, that
admits base-prime partial construction data (X, k,Σ) such that ([X ], [k],Σ) ∈ D [cf.
Definition 4.2], it follows that every “Xj, kj” [cf. Definition 4.2, (i)] appearing in
an X̃/X-chain [where X̃ → X is the pro-finite étale covering of X determined by
some scheme-theoretic envelope for Π] determines an element ([Xj], [kj],Σ) ∈ D.

(ii) Let D be as in (i); suppose that D is chain-full. Then we shall say that
rel-isom-DGC holds [i.e., “the relative isomorphism version of the Grothendieck
Conjecture for D holds”] (respectively, rel-hom-DGC holds [i.e., “the relative homo-
morphism version of the Grothendieck Conjecture for D holds”]), or that, rel-isom-
GC holds for D (respectively, rel-hom-GC holds for D) if the following condition is
satisfied: For i = 1, 2, let

1→ Δi → Πi → Gi → 1

be an extension of GSAFG-type, where Gi is slim, that admits base-prime partial
construction data (ki, Xi,Σi) such that ([Xi], [ki],Σi) ∈ D; αi : πtame

1 (Xi) � Πi a
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scheme-theoretic envelope; ζk : k1
∼→ k2 an isomorphism of fields that induces, via

the αi, an outer isomorphism ζG : G1
∼→ G2. Then the natural map

Isomk1,k2(X1, X2)→ Isomout
G1,G2

(Π1,Π2)

(respectively, Homdom
k1,k2(X1, X2)→ Homout-open

G1,G2
(Π1,Π2))

determined by the αi from the set of isomorphisms of schemes X1
∼→ X2 lying over

ζk : k1
∼→ k2 (respectively, the set of dominant morphisms of schemes X1 → X2

lying over ζk : k1
∼→ k2) to the set of outer isomorphisms of profinite groups Π1

∼→Π2

lying over ζG : G1
∼→ G2 (respectively, the set of open outer homomorphisms of

profinite groups Π1 → Π2 lying over ζG : G1
∼→ G2) is a bijection.

Remark 4.6.1. Of course, in a similar vein, one may also formulate the notions
that “the absolute isomorphism version of the Grothendieck Conjecture holds for
D”, “the absolute homomorphism version of the Grothendieck Conjecture holds for
D”, “the semi-absolute isomorphism version of the Grothendieck Conjecture holds
for D”, “the semi-absolute homomorphism version of the Grothendieck Conjecture
holds for D”, etc. Since we shall not use these versions in the discussion to follow,
we leave the routine details of their formulation to the interested reader.

Theorem 4.7. (Semi-absoluteness of Chains of Elementary Operations)
Let D be a chain-full set of collections of partial construction data [cf. Def-
inition 4.6, (i)] such that the rel-isom-DGC holds [cf. Definition 4.6, (ii)]. For
i = 1, 2, let Gi be a slim profinite group;

1→ Δi → Πi → Gi → 1

an extension of GSAFG-type that admits base-prime [cf. Definition 2.1,
(iv)] partial construction data (ki, k̃i, Xi,Σi) such that ([Xi], [ki],Σi) ∈ D; αi :
πtame

1 (Xi)� Πi a scheme-theoretic envelope. Also, let us suppose further that
the following conditions are satisfied:

(a) if either X1 or X2 is a hyperbolic orbicurve, then both X1 and X2

are hyperbolic orbicurves;

(b) if either X1 or X2 is a non-proper hyperbolic orbicurve, then there
exists a prime number l ∈ Σ1

⋂
Σ2 such that for i = 1, 2, the cyclo-

tomic character Gi → Z×
l [i.e., the character whose composite with αi

is the usual cyclotomic character πtame
1 (Xi)� Gal(k̃/k)→ Z×

l ] has open
image.

Let
φ : Π1

∼→ Π2

be an isomorphism of profinite groups that induces isomorphisms φΔ : Δ1
∼→ Δ2,

φG : G1
∼→ G2. Then:
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(i) The natural functors [cf. Remark 4.2.1]

Chain(X̃i/Xi)→ Chain(Πi); Chainiso-trm(X̃i/Xi)→ Chainiso-trm(Πi)

ÉtLoc(X̃i/Xi)→ ÉtLoc(Πi)

are equivalences of categories that are compatible with passing to type-chains.

(ii) The isomorphism φ induces equivalences of categories

Chain(Π1)
∼→ Chain(Π2); Chainiso-trm(Π1)

∼→ Chainiso-trm(Π2)

ÉtLoc(Π1)
∼→ ÉtLoc(Π2)

that are compatible with passing to type-chains and functorial in φ.

(iii) Suppose further that the rel-hom-DGC holds [cf. Definition 4.6, (ii)],
and that for i = 1, 2, Xi is a hyperbolic orbicurve. Then the natural functors
[cf. Remark 4.2.1]

Chaintrm(X̃i/Xi)→ Chaintrm(Πi); DLoc(X̃i/Xi)→ DLoc(Πi)

are equivalences of categories that are compatible with passing to type-chains.

(iv) In the situation of (iii), the isomorphism φ induces equivalences of cat-
egories

Chaintrm(Π1)
∼→ Chaintrm(Π2); DLoc(Π1)

∼→ DLoc(Π2)

that are compatible with passing to type-chains and functorial in φ.

Proof. First, we consider the natural functor

Chain(X̃i/Xi)→ Chain(Πi)

of Remark 4.2.1. To conclude that this functor is an equivalence of categories,
it follows immediately from the definitions of the categories involved that it suf-
fices to verify that the X̃/X-chain and Π-chain versions of the four types of el-
ementary operations �, �, •, � described in Definition 4.2, (i), (iii), correspond
bijectively to one another. This is immediate from the definitions (respectively,
the cuspidal portion of Lemma 4.1, (i), (v); the “closed point of X” portion of
Lemma 4.1, (iii), (v)) for � (respectively, •; �). [Here, we note that in the case
of •, �, the “kj+1-rationality” of the cusp or non-scheme-like point in question
follows immediately from Lemma 4.1, (vi) [by taking “xB” to be the various Galois
conjugates of this point].] Finally, the desired correspondence for � follows from
our assumption that the rel-isom-DGC holds by applying this “rel-isom-DGC” as
was done in the proofs of [Mzk7], Theorem 2.4; [Mzk9], Theorem 2.3, (i). This
completes the proof that the natural functor Chain(X̃i/Xi) → Chain(Πi) is an
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equivalence. A similar application of the “rel-isom-DGC” then yields the equiva-
lences Chainiso-trm(X̃i/Xi)

∼→ Chainiso-trm(Πi), ÉtLoc(X̃i/Xi)
∼→ ÉtLoc(Πi). In

a similar vein, the “rel-hom-DGC” [cf. assertion (iii)] implies the equivalences
Chaintrm(X̃/X) ∼→ Chaintrm(Π), DLoc(X̃/X) ∼→ DLoc(Π). This completes the
proof of assertions (i), (iii).

Finally, to obtain the equivalences of assertions (ii), (iv), it suffices to observe
that the definitions of the various categories involved are entirely “group-theoretic”.
Here, we note that the “group-theoreticity” of the elementary operations of type
�, �, � is immediate; the “group-theoreticity” of the elementary operations of
type • follows immediately from Lemma 4.5, (v) [in light of our assumptions (a),
(b)]. Also, we observe that Σi may be recovered “group-theoretically” from Δi [i.e.,
as the unique minimal subset Σ′ ⊆ Primes such that Δi is almost pro-Σ′]. This
completes the proof of assertions (ii), (iv). ©

Remark 4.7.1. The portion of Theorem 4.7 concerning the categories “ÉtLoc(−)”
[cf. also Example 4.8 below; Corollary 2.8, (ii)] and “DLoc(−)” allows one to relate
the theory of the present §4 to the theory of [Mzk9], §2 [cf., especially, [Mzk9],
Theorem 2.3].

Example 4.8. Hyperbolic Orbicurves. Let p be a prime number; S the set
of subsets of Primes containing p; V the set of isomorphism classes of hyperbolic
orbicurves over fields of cardinality ≤ the cardinality of Qp.

(i) Let F be the set of isomorphism classes of generalized sub-p-adic fields [i.e.,
subfields of finitely generated extensions of the quotient field of the ring of Witt
vectors with coefficients in an algebraic closure of Fp — cf. [Mzk5], Definition 4.11];
D = V× F× S. Then let us observe that:

The hypotheses of Theorem 4.7, (i), (ii), are satisfied relative to this D.

Indeed, it is immediate that D is chain-full; the rel-isom-DGC follows from [Mzk5],
Theorem 4.12; the prime p clearly serves as a prime “l” as in the statement of
Theorem 4.7. Moreover, we recall that from [Mzk5], Lemma 4.14, that the absolute
Galois group of a generalized sub-p-adic field is always slim.

(ii) Let F be the set of isomorphism classes of sub-p-adic fields [i.e., subfields of
finitely generated extensions of Qp — cf. [Mzk3], Definition 15.4, (i)]; D = V×F×S.
Then let us observe that:

The hypotheses of Theorem 4.7, (iii), (iv), are satisfied relative to this D.

Indeed, it is immediate that D is chain-full; the rel-hom-DGC follows from [Mzk3],
Theorem A; the prime p clearly serves as a prime “l” as in the statement of Theorem
4.7. Moreover, we recall that from [Mzk3], Lemma 15.8, that the absolute Galois
group of a sub-p-adic field is always slim.
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Example 4.9. Iso-poly-hyperbolic Orbisurfaces.

(i) Let k be a field of characteristic zero. Then we recall from [Mzk3], Definition
a2.1, that a smooth k-scheme X is called a hyperbolically fibred surface if it is admits
the structure of a family of hyperbolic curves [cf. §0] over a hyperbolic curve Y over
k. If X is a smooth, generically scheme-like, geometrically connected algebraic
stack over k, then we shall say that X is an iso-poly-hyperbolic orbisurface [cf. the
term “poly-hyperbolic” as it is defined in [Mzk4], Definition 4.6] if X admits a finite
étale covering which is a hyperbolically fibred surface over some finite extension of
k.

(ii) Let p be a prime number; S
def= {Primes} [where we regard Primes as the

unique non-proper subset of Primes]; F the set of isomorphism classes of sub-p-adic
fields; V the set of isomorphism classes of iso-poly-hyperbolic orbisurfaces [cf. (i)]
over sub-p-adic fields; D = V× F× S. Then let us observe that:

The hypotheses of Theorem 4.7, (i), (ii), are satisfied relative to this D.

Indeed, it is immediate that D is chain-full; the rel-isom-DGC follows from [Mzk3],
Theorem D. Moreover, we recall that from [Mzk3], Lemma 15.8, that the absolute
Galois group of a sub-p-adic field is always slim.

(iii) Let k be a sub-p-adic field; X the moduli stack of hyperbolic curves of type
(0, 5) [i.e., the moduli stack of smooth curves of genus 0 with 5 distinct, unordered
points] over k; X̃ → X a “universal” pro-finite étale covering of X ; k the algebraic
closure of k determined by X̃ → X . Then one verifies immediately that X is an
iso-poly-hyperbolic orbisurface over k. Write 1→ Δ→ Π→ G→ 1 for the GSAFG-
extension defined by the natural surjection π1(X) = Gal(X̃/X)� Gal(k/k) [which
we regard as equipped with the tautological scheme-theoretic envelope given by the
identity]. Then we have an equivalence of categories

ÉtLoc(X̃/X) ∼→ ÉtLoc(Π)

[cf. (ii); Theorem 4.7, (i)]; the object of these categories determined by X , Π [i.e.,
by the unique chain of length 0] is terminal [cf. [Mzk2], Theorem C] — i.e., a “core”
[cf. the terminology of [Mzk7], §2; [Mzk8], §2].

Finally, we observe that the theory of the present §4 admits a “tempered ver-
sion”, in the case of hyperbolic orbicurves over MLF’s. We begin by recalling basic
facts concerning tempered fundamental groups. Let k be an MLF of residue char-
acteristic p; k an algebraic closure of k; X a hyperbolic orbicurve over k. We shall
use a subscript k to denote the result of a base-change from k to k. Write

πtp
1 (X); πtp

1 (Xk)

for the tempered fundamental groups of X , Xk [cf. [André], §4; [Mzk10], Exam-
ples 3.10, 5.6]. Thus, the profinite completion of πtp

1 (X) (respectively, πtp
1 (Xk))
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is naturally isomorphic to the usual étale fundamental group π1(X) (respectively,
π1(Xk)). If H ⊆ πtp

1 (Xk) is an open subgroup of finite index, then recall that the
minimal co-free subgroup of H

Hco-fr ⊆ H
[cf. §0] is precisely the subgroup of H with the property that the quotient H �
H/Hco-fr corresponds to the tempered covering of Xk determined by the universal
covering of the dual graph of the special fiber of a stable model of Xk — cf. [André],
proof of Lemma 6.1.1.

Proposition 4.10. (Basic Properties of Tempered Fundamental Groups)
In the notation of the above discussion, suppose further that φ : X → Y is a mor-
phism of hyperbolic orbicurves over k. For Z = X, Y , let us write

Πtp
Z

def= πtp
1 (Z); Δtp

Z
def= πtp

1 (Zk)

and denote the profinite completions of Πtp
Z , Δtp

Z by Π̂tp
Z , Δ̂tp

Z , respectively; in
the following, all “co-free completions” [cf. §0] of open subgroups of finite index in
Πtp
X (respectively, Δtp

X ) will be with respect to the subgroup Δtp
X ⊆ Πtp

X (respectively,
Δtp
X ⊆ Δtp

X ). Then:

(i) The natural homomorphism Πtp
X → Π̂tp

X
∼→ π1(X) (respectively, Δtp

X →
Δ̂tp
X

∼→ π1(Xk)) is injective. In fact, if H ⊆ Δtp
X is any characteristic open

subgroup of finite index, then Πtp
X/H

co-fr, Δtp/Hco-fr inject into their respective
profinite completions. In particular, πtp

1 (X) (respectively, πtp
1 (Xk)) is naturally

isomorphic to its π1(X)-co-free completion (respectively, π1(Xk)-co-free com-
pletion) [cf. §0].

(ii) Πtp
X (respectively, Δtp

X ) is normally terminal in Π̂tp
X (respectively, Δ̂tp

X ).

(iii) Suppose that φ is either a de-cuspidalization morphism [i.e., an open
immersion whose image is the complement of a single k-valued point of Y — cf.
Definition 4.2, (i), (c)] or a de-orbification morphism [i.e., a partial coarsification
morphism which is an isomorphism over the complement of a single k-valued point
of Y — cf. Definition 4.2, (i), (d)]. Then the natural homomorphism Πtp

X → Πtp
Y

(respectively, Δtp
X → Δtp

Y ) may be reconstructed — “group-theoretically” —
from its profinite completion Π̂tp

X � Π̂tp
Y (respectively, Δ̂tp

X � Δ̂tp
Y ) as the natural

morphism from Πtp
X (respectively, Δtp

X ) to the co-free completion of Πtp
X with

respect to Π̂tp
Y (respectively, Δ̂tp

Y ) [cf. §0].

(iv) Let l ∈ Primes. If J ⊆ Δtp
X is an open subgroup of finite index, write

J → J [l] for the co-free completion of J with respect to the maximal pro-l
quotient of the profinite completion of J . Let H ⊆ Δtp

X be an open subgroup of
finite index. Suppose that l 
= p. Then the dual graph ΓH of the special fiber of a
stable model of the covering of Xk corresponding to H determines verticial and
edge-like subgroups of H [l] [i.e., decomposition groups of the vertices and edges
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of ΓH — cf. [Mzk10], Theorem 3.7, (i), (iii)]. The verticial (respectively, edge-
like) subgroups of H [l] may be characterized — “group-theoretically” — as the
maximal compact subgroups (respectively, nontrivial intersections of two
distinct maximal compact subgroups) of H [l]. In particular, the graph ΓH
may be reconstructed — “group-theoretically” — from the verticial and edge-
like subgroups of H [l], together with their various mutual inclusion relations.

(v) The prime number p may be characterized — “group-theoretically”
— as the unique prime number l such that their exist open subgroups H, J ⊆ Δtp

X

of finite index, together with distinct prime numbers l1, l2, satisfying the following
properties: (a) H is a normal subgroup of J of index l; (b) for i = 1, 2, the outer
action of J on H [li] [cf. (iv)] fixes [the conjugacy class in H [li] of] and induces
the trivial outer action on some maximal compact subgroup of H [li] [cf.
(iv)].

(vi) Let l be a prime number 
= p; H ⊆ Δtp
X an open subgroup of finite index.

Then the set of cusps of the covering of Xk corresponding to H may be charac-
terized — “group-theoretically” — as the set of conjugacy classes in H [l] of the
commensurators in H [l] of the images in H [l] of edge-like subgroups of J [l] [cf.
(iv)], where J ⊆ H is an open subgroup of finite index, which are not contained
in edge-like subgroups of H [l]. In particular, by allowing H to vary, this yields a
[“group-theoretic”] characterization of the decomposition groups of cusps
in Δtp

X , Πtp
X [i.e., a “tempered version” of Lemma 4.5, (v)].

Proof. Assertion (i) follows immediately from the discussion at the beginning of
[Mzk10], §6 [cf. also the discussion of [André], §4.5]. Assertion (ii) is the content
of [Mzk10], Lemma 6.1, (ii), (iii) [cf. also [André], Corollary 6.2.2]. Assertion (iii)
follows immediately from assertion (i). Assertion (iv) follows immediately from
[Mzk10], Theorem 3.7, (iv); [Mzk10], Corollary 3.9 [cf. also the proof of [Mzk10],
Corollary 3.11]. Assertions (v), (vi) amount to summaries of the relevant portions
of the proof of [Mzk10], Corollary 3.11. Here, in assertion (v), we observe that at
least one of the li is 
= p; thus, for this choice of li, the action of J fixes and induces
the trivial outer action on some verticial subgroup of H [li]. ©

Remark 4.10.1. It is not clear to the author at the time of writing how to prove
a version of Proposition 4.10, (vi), for decomposition of closed points which are not
cusps [i.e., a “tempered version” of Lemma 4.1, (iii)].

Remark 4.10.2. A certain fact applied in the portion of the proof of [Mzk10],
Corollary 3.11 summarized in Proposition 4.10, (vi), is only given a somewhat
sketchy proof in loc. cit. A more detailed treatment of this fact is given in [Mzk15],
Corollary 2.11.

Now we are ready to state the tempered version of Definition 4.2.
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Definition 4.11. In the notation of the above discussion, let

1→ Δ→ Π→ G→ 1

be an extension of topological groups that is isomorphic to the natural extension
1 → πtp

1 (Xk) → πtp
1 (X) → Gal(k/k) → 1 via some isomorphism α : πtp

1 (X) ∼→ Π,
which we shall refer to as a scheme-theoretic envelope. Write Π̂ for the profinite
completion of Π, X̃ → X for the pro-finite étale covering of X determined by
the completion of α [so Π̂ = Gal(X̃/X)]; k̃ for the resulting field extension of k.
In a similar vein, we shall write Π̃ for the projective system of topological groups
determined by the open subgroups of finite index of Π [cf. Definition 4.2]. Then:

(i) We shall refer to as an [Π-]chain [of length n] [where n ≥ 0 is an integer]
any finite sequence

Π0 � Π1 � . . .� Πn−1 � Πn

of topological groups Πj [for j = 0, . . . , n] with slim profinite completions Π̂j , each
equipped with a “rigidifying homomorphism” ρj : Π̃ → Πj which is of DOF-type
[i.e., which maps some member of the projective system Π̃ onto a dense subgroup of
an open subgroup of finite index of Πj — cf. §0] satisfying the following conditions:

(0tp) Π0 = Π [equipped with its natural rigidifying homomorphism Π̃→ Π].

(1tp) There exists a [uniquely determined] surjection Πj � Gj compatible
with ρj , where Gj ⊆ G is an open subgroup.

(2tp) Each kernel

Δj
def= Ker(Πj � Gj ↪→ G)

has a slim, nontrivial profinite completion Δ̂j .

(3tp) The topological groups Πj , Δj are residually finite. We shall refer to
as a cuspidal decomposition group in Δ̂j any Δ̂j-conjugate of the com-
mensurator in Δ̂j of the image via ρj of the inverse image in Π̃ of the
decomposition group in Δ [determined by α] of a cusp of X .

(4tp) Each “Πj � Πj+1” [for j = 0, . . . , n− 1] is an “elementary operation”,
as defined below.

Here, an elementary operation “Πj � Πj+1” is defined to consist of the datum of
an “operation homomorphism” φ of DOF-type either from Πj to Πj+1 or from Πj+1

to Πj which is compatible with ρj, ρj+1, and, moreover, is of one of the following
four types:

(a) Type �: In this case, the elementary operation Πj � Πj+1 consists of
an immersion of OF-type [cf. §0] φ : Πj+1 ↪→ Πj.
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(b) Type �: In this case, the elementary operation Πj � Πj+1 consists of
an immersion of OF-type [cf. §0] φ : Πj ↪→ Πj+1.

(c) Type •: In this case, the elementary operation Πj � Πj+1 consists
of a dense homomorphism φ : Πj → Πj+1 which is isomorphic to the
co-free completion of Πj with respect to the induced profinite quotient
φ̂ : Π̂j � Π̂j+1 [and the subgroup Δj ], such that Ker(φ̂) is topologically
normally generated by a cuspidal decomposition group C in Δ̂j such that
C is contained in some normal open torsion-free subgroup of Δ̂j .

(d) Type �: In this case, the elementary operation Πj � Πj+1 consists
of a dense homomorphism φ : Πj → Πj+1 which is isomorphic to the
co-free completion of Πj with respect to the induced profinite quotient
φ̂ : Π̂j � Π̂j+1 [and the subgroup Δj ], such that Ker(φ̂) is topologically
normally generated by a finite closed subgroup of Δ̂j .

Thus, any Π-chain determines a sequence of symbols ∈ {�,�, •,�} [corresponding
to the types of elementary operations in the Π-chain], which we shall refer to as the
type-chain associated to the Π-chain.

(ii) An isomorphism between two Π-chains with identical type-chains [hence of
the same length]

(Π0 � . . .� Πn)
∼→ (Ψ0 � . . .� Ψn)

is defined to be a collection of isomorphisms of topological groups Πj
∼→ Ψj [for

j = 0, . . . , n] that are compatible with the rigidifying homomorphisms. [Here, we
note that the condition of compatibility with the rigidifying homomorphisms implies
[since all of the topological groups involved are residually finite with slim profinite
completions] that every automorphism of a Π-chain is given by the identity, and that
every isomorphism of Π-chains of the same length is compatible with the respective
operation homomorphisms.] Thus, one obtains a category

Chain(Π)

whose objects are the Π-chains [with arbitrary associated type-chain], and whose
morphisms are the isomorphisms between Π-chains [with identical type-chains].
A terminal homomorphism between two Π-chains [with arbitrary associated type-
chain]

(Π0 � . . .� Πn)→ (Ψ0 � . . .� Ψm)

is defined to be an outer homomorphism of DOF-type [cf. [Mzk10], Theorem 6.4]
Πn → Ψm that is compatible [up to composition with an inner automorphism] with
the open homomorphisms Πn → G, Ψm → G. Thus, one obtains a category

Chaintrm(Π)

whose objects are the Π-chains [with arbitrary associated type-chain], and whose
morphisms are the terminal homomorphisms between Π-chains; write

Chainiso-trm(Π) ⊆ Chaintrm(Π)
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for the subcategory determined by the terminal isomorphisms [i.e., the isomor-
phisms of Chaintrm(Π)]. Thus, it follows immediately from the definitions that we
obtain natural functors Chain(Π) → Chainiso-trm(Π) → Chaintrm(Π). Finally, we
obtain (sub)categories

Chainiso-trm(Π){−} ⊆ Chainiso-trm(Π); Chaintrm(Π){−} ⊆ Chaintrm(Π)

DLoc(Π) def= Chaintrm(Π){�, •}; ÉtLoc(Π) def= Chainiso-trm(Π){�,�}

[cf. Definition 4.2, (v)].

Remark 4.11.1. Just as in the profinite case [i.e., Remark 4.2.1], we have natural
functors

Chain(X̃/X)→ Chain(Π)→ Chain(Π̂)

Chainiso-trm(X̃/X)→ Chainiso-trm(Π)→ Chainiso-trm(Π̂)

Chaintrm(X̃/X)→ Chaintrm(Π)→ Chaintrm(Π̂)

— where the second arrow in each line is the natural functor obtained by profinite
completion; the various composite functors of the two functors in each line are the
natural functors of Remark 4.2.1.

Remark 4.11.2. A similar remark to Remark 4.2.2 applies in the present tem-
pered case.

Theorem 4.12. (Tempered Chains of Elementary Operations) For i =
1, 2, let ki be an MLF of residue characteristic pi; ki an algebraic closure of ki;
Xi a hyperbolic orbicurve over ki;

1→ Δi → Πi → Gi → 1

an extension of topological groups that is isomorphic to the natural exten-
sion 1 → πtp

1 ((Xi)ki
) → πtp

1 (Xi) → Gal(ki/ki) → 1 via some scheme-theoretic
envelope αi : πtp

1 (Xi)
∼→ Πi. Let

φ : Π1
∼→ Π2

be an isomorphism of topological groups. Then:

(i) The natural functors [cf. Remark 4.2.1]

Chain(X̃i/Xi)→ Chain(Πi); Chainiso-trm(X̃i/Xi)→ Chainiso-trm(Πi)

ÉtLoc(X̃i/Xi)→ ÉtLoc(Πi)

Chaintrm(X̃i/Xi)→ Chaintrm(Πi); DLoc(X̃i/Xi)→ DLoc(Πi)
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are equivalences of categories that are compatible with passing to type-chains.

(ii) We have p1 = p2; the isomorphism φ induces isomorphisms φΔ : Δ1
∼→ Δ2,

φG : G1
∼→ G2, as well as equivalences of categories

Chain(Π1)
∼→ Chain(Π2); Chainiso-trm(Π1)

∼→ Chainiso-trm(Π2)

ÉtLoc(Π1)
∼→ ÉtLoc(Π2)

Chaintrm(Π1)
∼→ Chaintrm(Π2); DLoc(Π1)

∼→ DLoc(Π2)

that are compatible with passing to type-chains and functorial in φ.

Proof. In light of Proposition 4.10, (iii), together with the “tempered anabelian
theorem” of [Mzk10], Theorem 6.4, the proof of Theorem 4.12 is entirely similar
to the proof of Theorem 4.7. [Here, we note that in the case of de-cuspidalization
operations, instead of applying the de-cuspidalization portion of Proposition 4.10,
(iii), one may instead apply the “group-theoretic” characterization of Proposition
4.10, (vi).] Also, we recall that the portion of assertion (ii) concerning, “p1 = p2”,
“φΔ”, “φG” follows immediately [by considering the profinite completion of φ] from
Theorem 2.14, (i). ©

Remark 4.12.1. A similar remark to Remark 4.7.1 applies in the present tem-
pered case [cf. [Mzk10], Theorem 6.8].
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Appendix: The Theory of Albanese Varieties

In the present Appendix, we review the basic theory of Albanese varieties [cf.,
e.g., [NS], [Serre1], [Chev], [BS], [SS]], as it will be applied in the present paper.
One of our aims here is to present the theory in modern scheme-theoretic language
[i.e., as opposed to [NS], [Serre1], [Chev]], but without resorting to the introduction
of motives and derived categories, as in [BS], [SS]. Put another way, although there
is no doubt that the content of the present Appendix is implicit in the literature,
the lack of an appropriate reference that discusses this material explicitly seemed
to the author to constitute sufficient justification for the inclusion of a detailed
discussion of this material in the present paper.

In the following discussion, we fix a perfect field k, together with an algebraic
closure k of k. The result of base-change [of k-schemes and morphisms of k-schemes]
from k to k will be denoted by means of a subscript “k”. Write Gk

def= Gal(k/k) for
the absolute Galois group of k.

We will apply basic well-known properties of commutative group schemes of
finite type over k without further explanation. In particular, we recall the following:

(I) The category of such group schemes is abelian [cf., e.g., [SGA3-1], VIA,
5.4]; subgroup schemes are always closed [cf., e.g., [SGA3-1], VIB, 1.4.2];
reduced group schemes over k are k-smooth [cf., e.g., [SGA3-1], VIA, 1.3.1].

(II) Every connected reduced subquotient of a semi-abelian variety over k [i.e.,
an extension of an abelian variety by a torus] is itself a semi-abelian variety
over k. [Indeed, this may be verified easily by reducing to the correspond-
ing fact for tori [cf., e.g., [SGA3-2], IX, 8.1] and abelian varieties.]

(III) Let φ : B → A be a connected finite étale Galois covering of a semi-
abelian variety A over k, with identity element 0A ∈ A(k), such that
(φ−1(0A))(k) 
= ∅, and the degree of φ is prime to the characteristic of
k. Then each element of b ∈ (φ−1(0A))(k) determines on B a unique
structure of semi-abelian variety over k on B such that b is the identity
element of the group B(k), and φ is a homomorphism of group schemes
over k. [Indeed this may be verified easily by reducing to the corresponding
fact for tori and abelian varieties.] Note, moreover, that in this situation,
if k = k, then we obtain an inclusion Gal(B/A) ↪→ B(k), which implies,
in particular, that the covering φ is abelian, and, moreover, appears as
a subcovering of a covering A → A given by multiplication by some n
invertible in k.

Definition A.1.

(i) A variety over k, or k-variety, is defined to be a geometrically integral
separated scheme of finite type over k. A k-variety will be called complete if it is
proper over k. We shall refer to a pair (V, v), where V is a k-variety and v ∈ V (k),
as a pointed variety over k; a morphism of pointed varieties over k, or pointed k-
morphism, (V, v)→ (W,w) [which we shall often simply write V → W , when v, w
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are fixed] is a morphism of k-varieties that maps v �→ w. Any reduced group scheme
G over k has a natural structure of pointed variety over k determined by the identity
element 0G ∈ G(k). If G, H are group schemes over k, then we shall refer to a
k-morphism G→ H as a [k-]trans-homomorphism if it factors as the composite of a
homomorphism of group schemes G→ H over k with an automorphism of H given
by translation by an element of H(k). If V is a k-variety, then we shall use the
notation π1(V ) to denote the étale fundamental group [relative to an appropriate
choice of basepoint] of V . Thus, we have a natural exact sequence of fundamental
groups 1 → π1(V ⊗k k) → π1(V ) → Gk → 1. Let Σk ⊆ Primes [cf. §0] be the set
of primes invertible in k; use the superscript “(Σk)” to denote the maximal pro-Σk
quotient of a profinite group; if V is a k-variety, then we shall write

ΔV
def= π1(Vk)

(Σk)); ΠV
def= π1(V )/Ker(π1(Vk)� π1(Vk)

(Σk))

for the resulting geometrically pro-Σk fundamental groups, so we have a natural
exact sequence of fundamental groups 1→ ΔV → ΠV → Gk → 1.

(ii) Let C be a class of commutative group schemes of finite type over k. If A
is a group scheme over k that belongs to the class C, then we shall write A ∈ C. If
(V, v) is a pointed k-variety, then we shall refer to a morphism of pointed k-varieties

φ : V → A

as a C-Albanese morphism if A ∈ C [so A is equipped with a point 0A ∈ A(k), as
discussed in (i)], and, moreover, for any pointed k-morphism φ′ : V → A′, where
A′ ∈ C, there exists a unique homomorphism ψ : A → A′ of group schemes over k
such that φ′ = ψ ◦ φ. In this situation, A will also be referred to as the C-Albanese
variety of V . We shall write Cabk for the class of abelian varieties over k and Cs-abk for
the class of semi-abelian varieties over k. When C = Cs-abk , the term “C-Albanese”,
will often be abbreviated “Albanese”.

(iii) If X is a k-variety (respectively, noetherian scheme) which admits a log
structure such that the resulting log scheme X log is log smooth over k [where we
regard Spec(k) as equipped with the trivial log structure] (respectively, log regular
[cf. [Kato]]), then we shall refer to X as k-toric (respectively, absolutely toric)
and to X log as a torifier, or torifying log scheme, for X . [Thus, “k-toric” implies
“absolutely toric”.]

(iv) If k is of positive characteristic, then, for any k-scheme X and integer
n ≥ 1, we shall write XFn

for the result of base-changing X by the n-th iterate
of the Frobenius morphism on k; thus, we obtain a k-linear relative Frobenius
morphism ΦnX : X → XFn

. If k is of characteristic zero, then we set XFn def= X ,

ΦnX
def= idX , for integers n ≥ 1. If φ : X → Y is a morphism of k-schemes, then

we shall refer to φ as a sub-Frobenius morphism if, for some integer n ≥ 1, there
exists a k-morphism ψ : Y → XFn

such that ψ ◦ φ = ΦnX , φF
n ◦ψ = ΦnY . [Thus, in

characteristic zero, a sub-Frobenius morphism is simply an automorphism.]

Remark A.1.1. As is well-known, if V is a k-variety, then ΦnV induces an
isomorphism ΠV

∼→ ΠV Fn , for all integers n ≥ 1. Note that this implies that every
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sub-Frobenius morphism V → W of k-varieties induces isomorphisms ΠV
∼→ ΠW ,

ΔV
∼→ ΔW .

Before proceeding, we review the following well-known result.

Lemma A.2. (Morphisms to Abelian and Semi-abelian Schemes) Let
S be a noetherian scheme; X an S-scheme whose underlying scheme is absolutely
toric; A an abelian scheme over S (respectively, a semi-abelian scheme over
S which is an extension of an abelian scheme B → S by a torus T → S); V ⊆ X
an open subscheme whose complement in X is of codimension ≥ 1 (respectively,
≥ 2) in X. Then any morphism of S-schemes V → A extends uniquely to X.

Proof. First, we consider the case where A is an abelian scheme. If X is regular,
then Lemma A.2 follows from [BLR], §8.4, Corollary 6. When X is an arbitrary
absolutely toric scheme with torifier X log, we reduce immediately to the case where
X is strictly henselian, hence admits a resolution of singularities [cf., e.g., [Mzk4],
§2]

Y log → X log

— i.e., a log étale morphism of log schemes which induces an isomorphism UY
∼→ UX

between the respective interiors such that Y log arises from a divisor with normal
crossings in a regular scheme Y . Since the “regular case” has already been settled,
we may assume that UX ⊆ V ; also, it follows that the restriction UY → A to
UY of the resulting morphism UX → A extends uniquely to a morphism Y → A.
The image of this morphism determines a closed subscheme Z ⊆ AY

def= A ×S Y .
Moreover, by considering the image of Z under the morphism AY → AX

def= A×S
X of proper X-schemes, we conclude from “Zariski’s main theorem” [since X is
normal] that to obtain the [manifestly unique, since V is schematically dense in
X ] desired extension X → A, it suffices to show that the fibers of Y → X map
to points of A. On the other hand, as is observed in the discussion of [Mzk4], §2,
each irreducible component of the fiber of Y → X at a point x ∈ X is a rational
variety over the residue field k(x) at x, hence maps to a point in the abelian variety
Ax

def= A ×S k(x) [cf., e.g., [BLR], §10.3, Theorem 1, (b), (c)]. This completes the
proof of Lemma A.2 in the non-resp’d case. Thus, to complete the proof of Lemma
A.2 in the resp’d case, we may assume that A = T is a torus over S. In fact, by étale
descent, we may even assume that T is a split torus over S. Then it suffices to show
that if L is any line bundle on X that admits a generating section sV ∈ Γ(V,L),
then it follows that sV extends to a generating section of L over X . But since X is
normal, this follows immediately from [SGA2], XI, 3.4; [SGA2], XI, 3.11. ©

Proposition A.3. (Basic Properties of Albanese Varieties) Let C ∈
{Cabk , Cs-abk }; φV : V → A, φW : W → B C-Albanese morphisms. Then:

(i) (Base-change) Let k′ be an algebraic field extension of k; denote the
result of base-change [of k-schemes and morphisms of k-schemes] from k to k′ by
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means of a subscript “k′”. If C = Cabk (respectively, C = Cs-abk ), then set C′ = Cabk′
(respectively, C′ = Cs-abk′ ). Then (φV )k′ : Vk′ → Ak′ is a C′-Albanese morphism.

(ii) (Functoriality) Given any k-morphism βV : V → W , there exists a
unique k-trans-homomorphism βA : A → B such that φW ◦ βV = βA ◦ φV . If,
moreover, βV is pointed, then βA is a homomorphism.

(iii) (Relative Frobenius Morphisms) For any integer n ≥ 1, φF
n

V : V F
n →

AF
n

is a C-Albanese morphism. If, moreover, in (ii), φW = φF
n

V , βV = ΦnV ,
then βA = ΦnA.

(iv) (Sub-Frobenius Morphisms) If, in (ii), βV is a sub-Frobenius mor-
phism, then so is βA.

(v) (Toric Open Immersions) Suppose, in (ii), that βV is an open im-
mersion, that W is k-toric, and that if C = Cabk (respectively, C = Cs-abk ), then
the codimension of the complement of the image of βV in W is ≥ 1 (respectively,
≥ 2). Then βA is an isomorphism.

(vi) (Dominant Quotients) If, in (ii), βV is dominant, then βA is surjec-
tive.

(vii) (Surjectivity of Fundamental Groups) The [outer] homomorphisms
ΠφV

: ΠV → ΠA, ΔφV
: ΔV → ΔA induced by φV are surjective.

(viii) (Semi-abelian versus Abelian Albanese Morphisms) Suppose that
C = Cs-abk . Write A� Aab for the maximal quotient of group schemes over k such
that Aab ∈ Cabk . Then the composite morphism V → A � Aab is a Cabk -Albanese
morphism.

(ix) (Group Law Generation) For integers n ≥ 1, write

ζn : V ×k . . .×k V → A

(v1, . . . , vn) �→
∑n
j=1 vj

for the morphism from the product over k of n copies of V to A given by adding
the images under φV of the points in the n factors. Then there exists an integer N
such that ζn is surjective for all n ≥ N . In particular, if V is proper, then so is
A.

Proof. To verify assertion (i), we may assume that k′ is a finite [hence necessarily
étale, since k is perfect] extension of k. Then assertion (i) follows immediately
by considering the Weil restriction functor Wk′/k(−) from k′ to k. That is to
say, it is immediate that Wk′/k(−) takes objects in C′ to objects in C. Thus, to
give a k′-morphism Vk′ → A′ (respectively, Ak′ → A′) is equivalent to giving a
k-morphism V → Wk′/k(A′) (respectively, A → Wk′/k(A′)). This completes the
proof of assertion (i). Assertions (ii), (iii) follow immediately from the definition of
a “C-Albanese morphism”; assertion (iv) follows immediately from assertion (iii).
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Assertion (v) follows immediately from the definition of a “C-Albanese morphism”,
in light of Lemma A.2.

Assertion (vi) follows from the definition of a “C-Albanese morphism”, by ar-
guing as follows: First, we observe that βV is an epimorphism in the category of
schemes. Also, we may assume without loss of generality that βV is pointed. Now
consider the composite β ◦ φW : W → B/C of φW : W → B with the natural
quotient morphism β : B � B/C, where we write C def= Im(βA) ⊆ B [so C ∈ C].
Since β ◦ φW has the same restriction [via βV ] to V as the constant pointed mor-
phism W → B/C, we thus conclude that β ◦φW is constant, i.e., that Im(φW ) ⊆ C.
But, by the definition of a “C-Albanese morphism”, this implies the existence of a
section B → C of the natural inclusion C ↪→ B, hence that B = C, as desired. In a
similar vein, assertion (vii) follows from the definition of a “C-Albanese morphism”,
by observing that if ΠφV

: ΠV → ΠA fails to surject, then [after possibly replac-
ing k by a finite extension of k, which is possible, by assertion (i)] it follows that
φV : V → A factors V → C → A, where the morphism C → A is a nontrivial finite
étale Galois covering, with C geometrically connected over k, so C ∈ C. But this
implies, by the definition of a “C-Albanese morphism”, the existence of a section
A → C of the surjection C � A, hence that this surjection is an isomorphism
C

∼→ A, a contradiction.

Next, we observe that assertion (viii) follows immediately from the definitions,
in light of the well-known fact that any homomorphism G → H of group schemes
over k, where G is a torus and H is an abelian variety, is trivial [cf., e.g., [BLR],
§10.3, Theorem 1, (b), (c)].

Finally, we consider assertion (ix). First, let us observe that we may assume
without loss of generality that k = k. Next, let us observe that since the image
of φV contains 0A ∈ A(k), it follows that for n ≥ m, the image In ⊆ A(k) of ζn
contains the image Im of ζm. Write Fn ⊆ A for the [reduced closed subscheme given
by the] closure of In. Since the domain of ζn is irreducible, it follows immediately
that Fn is irreducible. Thus, the ascending sequence . . . ⊆ Fm ⊆ . . . ⊆ Fn ⊆ . . .

terminates, i.e., we have Fn = Fm for all n,m ≥ N ′, for some N ′; write F def= FN ′ .
Since IN ′ is constructible, it follows that IN ′ contains a nonempty open subset U
of [the underlying topological space of] F ; let u ∈ U(k). Now let us write I ′n for
the union of the translates of U by elements of In; thus, one verifies immediately
that I ′n is open in F , that I ′n ⊆ In+N′ , and that u+ In ⊆ I ′n. Since F is noetherian,
it thus follows that the ascending sequence . . . ⊆ I ′m ⊆ . . . ⊆ I ′n ⊆ . . . terminates,
i.e., that for some N ′′ > N ′, we have I ′n = I ′m for all n,m ≥ N ′′; write I ⊆ F
for the resulting open subscheme. Thus, for n ≥ N ′′, u+ I ⊆ u+ In+N′ ⊆ I. On
the other hand, again since F is noetherian, it follows that the ascending sequence
I ⊆ I − u ⊆ I − 2u ⊆ . . . terminates, hence that u+ I = I. In particular, for some
N ′′′ > N ′′, we have In = I, for n ≥ N ′′′. Next, let us observe that for any j ∈ I(k),
it follows from the definition of the In that j + I ⊆ I, hence [as in the case where
j = u], we have j + I = I. Since 0A ∈ I, it thus follows that I is closed under
the group operation on A, as well as taking inverses in A. Thus, it follows that
I is a subgroup scheme of A, hence that I is a closed subscheme of A [so I = F ].
But this implies, by the definition of a “C-Albanese morphism”, the existence of a
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homomorphism A → I whose composite with the inclusion I ↪→ A is the identity
on A. Thus, we conclude that the inclusion I ↪→ A is a surjection, i.e., that I = A,
as desired. ©

A proof of the following result may be found, in essence, in [NS] [albeit in
somewhat archaic language], as well as in [FGA], 236, Théorème 2.1, (ii) [albeit
in somewhat sketchy form]. Various other approaches [e.g., via Weil divisors] to
this result are discussed in [Klei], Theorem 5.4 and the discussion following [Klei],
Theorem 5.4.

Theorem A.4. (Properness of the Identity Component of the Picard
Scheme) The identity component of the Picard scheme

Pic0
V/k

[cf., e.g., [BLR], §8.2, Theorem 3; [BLR], §8.4] associated to a complete normal
variety V over a field k is proper.

Proof. Write G for the reduced group scheme (Pic0
V/k)red over k. Then by a well-

known theorem of Chevalley [cf., e.g., [Con], for a treatment of this result in modern
language], it follows that to show that G [hence also Pic0

V/k] is proper, it suffices to
show that G does not contain any copies of the multiplicative group (Gm)k or the
additive group (Ga)k. On the other hand, since (Gm)k, (Ga)k may be thought of
as open subschemes of the affine line A1

k, this follows immediately from Lemma A.5
below [i.e., by applying the functorial interpretation of Pic0

V/k — cf., e.g., [BLR],
§8.1, Proposition 4]. ©

Lemma A.5. (Rational Families of Line Bundles) Let V be a normal
variety over k; U ⊆ A1

k a nonempty open subscheme of the affine line A1
k. Then

every line bundle LU on V ×k U arises via pull-back from a line bundle Lk on V .

Proof. In the following, let us regard A1
k as an open subscheme A1

k ⊆ P1
k of the

projective line [obtained in the standard way by removing the point at infinity
∞k ∈ P1

k(k)]. First, let us verify Lemma A.5 under the further hypothesis that
V is smooth over k. Then it follows immediately that V ×k P1

k is smooth over k,
hence locally factorial [cf., e.g., [SGA2], XI, 3.13, (i)]. Thus, LU extends to a line
bundle LP on P

def= V ×k P1
k (⊇ V ×k A1

k ⊇ V ×k U). Moreover, by tensoring
with line bundles associated to multiples of the divisor on P arising from ∞k, we
may assume that the degree of LP on the fibers of the trivial projective bundle
f : P → V is zero. Thus, the natural morphism f∗f∗LP → LP is an isomorphism,
which exhibits LP , hence also LU , as a line bundle Lk pulled back from V .

Now we return to the case of an arbitrary normal variety V . As is well-known,
V contains a dense open subscheme W ⊆ V which is smooth over k and such that
the closed subscheme F def= V \W [where we equip F with the reduced induced
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structure] is of codimension ≥ 2 in V [cf., e.g., [SGA2], XI, 3.11, applied to the
geometric fiber of V → Spec(k)]. Thus, by the argument given in the smooth case,
we conclude that MU

def= LU |W×kU arises from a line bundleMk on W . Next, let
us write ιk : W ↪→ V , ιU : W ×k U ↪→ V ×k U for the natural open immersions.
Since U is k-flat, it follows immediately that we have a natural isomorphism

((ιk)∗Mk)|V×kU
∼→ (ιU )∗MU

[arising, for instance, by computing the right-hand side by means of an affine cov-
ering of W ×k U obtained by taking the product over k with U of an affine cov-
ering of W ]. On the other hand, since V ×k U is normal and F ×k U ⊆ V ×k U
is a closed subscheme of codimension ≥ 2, it follows from the definition of MU

that (ιU )∗MU
∼→ LU [cf., e.g., [SGA2], XI, 3.4; [SGA2], XI, 3.11], i.e., that

((ιk)∗Mk)|V×kU is a line bundle on V ×kU . On the other hand, since the morphism
U → Spec(k), hence also the projection morphism V ×k U → V , is faithfully flat,
we thus conclude that Lk def= (ιk)∗Mk is a line bundle on V whose pull-back to
V ×k U is isomorphic to LU , as desired. ©

Proposition A.6. (Duals of Picard Varieties as Albanese Varieties)
Let V be a complete normal variety over k; Pic0

V/k the identity component of

the associated Picard scheme; A the dual abelian variety to G def= (Pic0
V/k)red

[which is an abelian variety by Theorem A.4]; v ∈ V (k). Then the universal
line bundle PV [cf., e.g., [BLR], §8.1, Proposition 4] on V ×k G relative to the
rigidification determined by v [i.e., such that PV |{v}×G is trivial] determines [by
the definition of A] a morphism of pointed k-varieties

φ : V → A

such that the pull-back of the Poincaré bundle PA on A ×k G via φ ×k G : V ×k
G → A ×k G is isomorphic to PV [in a fashion compatible with the respective
rigidifications]. Moreover:

(i) The morphism φ is a Cabk -Albanese morphism.

(ii) Suppose, in the situation of Proposition A.3, (ii), that W is also complete
and normal, and that βV is pointed and birational. Then the dual morphism
βG : H → G to βA : A → B is a closed immersion. In particular, βA is an
isomorphism if and only if dimk(A) ≤ dimk(B).

(iii) The morphism φ induces an injection H1(A,OA) ↪→ H1(V,OV ).

(iv) The morphism φ induces an isomorphism Δab-t
V

∼→ ΔA [where we refer
to §0 for the notation “ab-t”].

Proof. First, we consider assertion (i). Let ψV : V → C be a morphism of pointed
k-varieties, where C ∈ Cabk . Now by the functoriality of “Pic0

(−)/k”, ψV induces a
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morphism D
def= Pic0

C/k → Pic0
V/k [so D is the dual abelian variety to C], hence a

morphism ψD : D → G, whose dual gives a morphism ψA : A → C. The fact that
ψV = ψA◦φ : V → C follows by thinking of morphisms as classifying morphisms for
line bundles and considering the following [a priori, not necessarily commutative]
diagram of morphisms between varieties equipped with [isomorphism classes of] line
bundles:

(V ×k D,L) id−→ (V ×k D,L)
V×kψD−→ (V ×k G,PV )⏐⏐�ψV ×kD

⏐⏐�φ×kD

⏐⏐�φ×kG

(C ×k D,PC)
ψA×kD←− (A×k D,M)

A×kψD−→ (A×k G,PA)

— where we write L def= (ψV ×kD)∗PC ;M def= (ψA×kD)∗PC ∼= (A×kψD)∗PA. That
is to say, the desired commutativity of the left-hand square follows by computing:

(φ×k D)∗(ψA ×k D)∗PC ∼= (φ×k D)∗(A×k ψD)∗PA
∼= (V ×k ψD)∗(φ×k G)∗PA
∼= (V ×k ψD)∗PV
∼= (ψV ×k D)∗PC

— which implies that ψV = ψA ◦ φ. Finally, the uniqueness of such a “ψA” follows
immediately by applying “Pic0

(−)/k” to the condition “ψV = ψA ◦φ : V → A→ C”.
This completes the proof of assertion (i).

Next, we consider assertion (ii). First, observe that there exists a k-smooth
open subscheme U ⊆ W such that W\U has codimension ≥ 2 in W [cf., e.g.,
[SGA2], XI, 3.11, as it was applied in the proof of Lemma A.5], and, moreover,
βV : V → W admits a section σ : U → V over U . Note, moreover, that if S is any
local artinian finite k-scheme, and we write ιS : US

def= U ×k S ↪→ WS
def= W ×S k

for the natural inclusion, then for any line bundle L on WS , we have a natural
isomorphism (ιS)∗(ι∗SL) ∼→ L [cf., e.g., [SGA2], XI, 3.4; [SGA2], XI, 3.11]. Thus, by
applying this natural isomorphism, together with the section σ, we conclude that
the map Pic0

W/k(S) → Pic0
V/k(S) [induced by βV ] is an injection, which implies

that the kernel group scheme of βG : H → G is trivial, hence that βG is a closed
immersion, as desired. This completes the proof of assertion (ii).

Next, we consider assertion (iii). The morphism H1(A,OA) → H1(V,OV ) in
question may be interpreted as the morphism induced by φ on tangent spaces to the
Picard scheme, i.e., as the morphism

G(k[ε]/(ε2)) = Pic0
A/k(k[ε]/(ε

2))→ Pic0
V/k(k[ε]/(ε

2))

[cf., e.g., [BLR], §8.4, Theorem 1, (a)]. But, by the definition of G, this morphism
arises from a closed immersion G ↪→ Pic0

V/k, hence is an injection, as desired.

Finally, we consider assertion (iv). The surjectivity portion of assertion (iv)
follows immediately from Proposition A.3, (vii). To verify the fact that the sur-
jection Δab-t

V � ΔA is an isomorphism, we reason as follows: First, we recall that
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a line bundle L on V such that L⊗n [where n ≥ 1 is an integer invertible in k]
is trivial may be interpreted [via the Kummer exact sequence in étale cohomol-
ogy] as a continuous homomorphism ΔV → (Z/nZ)(1) [where the “(1)” denotes
a “Tate twist”]. On the other hand, by [BLR], §8.4, Theorem 7, there exists an
integer m ≥ 1 such that for every integer n ≥ 1, the cokernel of the inclusion
nG(k) ↪→ nPicV/k(k) [where the “n” preceding an abelian group denotes the kernel
of multiplication by n] is annihilated by m. In light of the functorial interpretation
of the inclusion G ↪→ Pic0

V/k ⊆ PicV/k, this implies that the cokernel of the homo-
morphism Hom(ΔA,Q/Z)→ Hom(ΔV ,Q/Z) is annihilated by m. But, by applying
Hom(−,Q/Z), this implies that the induced homomorphism Δab

V → ΔA has finite
kernel, hence [in light of the surjectivity already verified] induces an isomorphism
upon passing to “ab-t”. ©

Remark A.6.1. The content of Proposition A.6, (i), is discussed in [FGA], 236,
Théorème 3.3, (iii).

Remark A.6.2. Suppose that we are in the situation of Proposition A.6, (ii).
Then it is not necessarily the case that the induced morphism βA is an isomorphism.
This phenomenon already appears in the work of Chevalley — cf. [Chev]; the
discussion of [Klei], p. 248; Example A.7 below.

Example A.7. Albanese Varieties and Resolution of Singularities. For
simplicity, suppose that k = k. Write P2

k = Proj(k[x1, x2, x3]) [i.e., where we
consider k[x1, x2, x3] as a graded ring, in which x1, x2, x3 are of degree 1]. Let
f ∈ k[x1, x2, x3] be a homogeneous polynomial that defines a smooth plane curve
X ⊆ P2

k of genus ≥ 1. Thus, any x ∈ X(k) determines an embeddingX ↪→ J , where

J is the Jacobian variety of X . Set Y def= Spec(k[x1, x2, x3]/(f )); write y ∈ Y (k)
for the origin, UY

def= Y \{y}. Thus, we have a natural morphism Y ⊇ UY → X ;
UY → X is a Gm-torsor over X . In particular, UY is k-smooth. Thus, since Y
is clearly a local complete intersection [hence, in particular, Cohen-Macaulay], it
follows from Serre’s criterion of normality [cf., e.g., [SGA2], XI, 3.11] that Y is
normal. Let Z → Y be the blow-up of Y at the origin y. Thus, we obtain an
isomorphism UZ

def= Z ×Y UY
∼→ UY . Moreover, one verifies immediately that

the morphism UZ
∼→ UY → X extends to a morphism Z → X which has the

structure of an A1-bundle, in which E
def= Z ×Y {y} ⊆ Z forms a “zero section”

[so E ∼→ X ]. Thus, Z admits a natural compactification Z ↪→ Z∗ to a P1-bundle
Z∗ → X . Moreover, by gluing Z∗\E to Y along Z\E = UZ

∼→ UY ⊆ Y , we obtain a
compactification Y ↪→ Y ∗ such that the blow-up morphism extends to a morphism
Z∗ → Y ∗ [which may be thought of as the blow-up of Y ∗ at y ∈ Y (k) ⊆ Y ∗(k)].
On the other hand, note that the composite Z∗ → X ↪→ J determines a closed
immersion Z∗ ⊇ E

∼→ X ↪→ J . Thus, the restriction UY
∼→ UZ → J of this

morphism Z∗ → J to UY
∼→ UZ does not extend to Y or Y ∗. In particular, it follows

that if we write Y ∗ → AY , Z∗ → AZ for the Cabk -Albanese varieties of Proposition
A.6, (i), then the surjection AY � AZ induced by Y ∗ → Z∗ [cf. Proposition A.6,
(ii)] is not an isomorphism.
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Proposition A.8. (Albanese Varieties of Complements of Divisors with
Normal Crossings) Let Z be a smooth projective variety over k; D ⊆ Z a
divisor with normal crossings; Y def= Z\D ⊆ Z; y ∈ Y (k);

D =
r⋃

n=1

Dn

[for some integer r ≥ 1] the decomposition of D into irreducible comonents; M the
free Z-module [of rank r] of divisors supported on D; P ⊆ M the submodule of
divisors that determine a line bundle ∈ Pic0

Z/k(k). Then:

(i) (Y, y) admits an Albanese morphism Y → AY .

(ii) Suppose that each of the Dn is geometrically irreducible. Then the AY
of (i) may be taken to be an extension of the abelian variety AZ given by the
dual to GZ

def= (Pic0
Z/k)red [cf. Propositions A.3, (viii); A.6, (i)] by a torus whose

character group is naturally isomorphic to P .

(iii) The morphism Y → AY of (i) induces an isomorphism Δab-t
Y

∼→ ΔAY
.

Proof. By étale descent [with respect to finite extensions of k], it follows immedi-
ately that to verify assertion (i), it suffices to verify assertion (ii). Next, we consider
assertion (ii). Again, by étale descent, we may assume without loss of generality
that k = k. Note that the tautological homomorphism P → GZ(k) determines an
extension

0→ TY → AY → AZ → 0

of AZ by a split torus TY with character group P . Now the fact that AY serves
as an Albanese variety for Y is essentially a tautology: Indeed, since any pointed
morphism from Y to an abelian variety C extends [cf. Lemma A.2] to a pointed
morphism Z → C, and, moreover, we already know that AZ is a Cabk -Albanese
variety for Z [cf. Proposition A.6, (i)], it follows that it suffices to consider pointed
morphisms Y → B, where B is an extension of AZ by a [split] torus. In fact, for
simplicity, we may even assume that this torus is simply (Gm)k. Thus, it suffices
to consider pointed morphisms Y → B, where B is an extension of AZ by (Gm)k,
determined by some extension class κB ∈ GZ(k). Then the datum of a morphism
Y → B corresponds precisely to an invertible section of the restriction to Y of the
line bundle L on Z given by pulling back the Gm-torsor B → AZ via the Albanese
morphism Z → AZ . Note that such an invertible section of L|Y may be thought of
as the datum of an isomorphism OZ(E) ∼→ L for some divisor E supported on D.
That is to say, since the isomorphism class of L is precisely the class determined
by the element κB ∈ GZ(k) ⊆ PicZ/k(k), it thus follows that E ∈ P , and that κB
is the image of E ∈ P in Pic0

Z/k(k) = GZ(k). Thus, in summary, the datum of
a pointed morphism Y → B, where B is an extension of AZ by a [split] torus, is
equivalent [in a functorial way] to the datum of a homomorphism AY → B lying
over the identity morphism of AZ . In particular, the identity morphism AY → AY
determines a morphism Y → AY . This completes the proof of assertion (ii).
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Finally, we consider assertion (iii). We may assume without loss of generality
that k = k. Let F ⊆ D be a closed subscheme of codimension ≥ 1 in D such that
Z ′ def= Z\F ⊆ Z, D′ def= D\F ⊆ D are k-smooth. Then one has the associated Gysin
sequence in étale cohomology

0→ H1
ét(Z

′,Zl(1))→ H1
ét(Y,Zl(1))→M ⊗ Zl → H2

ét(Z
′,Zl(1))

for l ∈ Σk [cf. [Milne], p. 244, Remark 5.4, (b)]. Moreover, we have natural isomor-
phismsHj

ét(Z
′,Zl(1)) ∼→Hj

ét(Z,Zl(1)), for j = 1, 2. [Indeed, by applying noetherian
induction, it suffices to verify these isomorphisms in the case where F is k-smooth,
in which case these isomorphisms follow from [Milne], p. 244, Remark 5.4, (b).]
Note, moreover, that the morphism M ⊗ Zl → H2

ét(Z
′,Zl(1)) ∼→ H2

ét(Z,Zl(1)) is
precisely the “fundamental class map”, hence factors through the natural inclusion

PicZ/k(k)∧ ↪→ H2
ét(Z,Zl(1))

[where the “∧” denotes the pro-l completion] arising from the Kummer exact se-
quence on Z. On the other hand, since Pic0

Z/k(k) is l-divisible, and the quotient
PicZ/k(k)/Pic0

Z/k(k) is finitely generated [cf. [BLR], §8.4, Theorem 7], it follows
that we have an isomorphism

(PicZ/k(k)/Pic0
Z/k(k))⊗ Zl

∼→ PicZ/k(k)∧

— i.e., that the kernel of the morphism M⊗Zl → H2
ét(Z

′,Zl(1)) is precisely P ⊗Zl.
In particular, the isomorphism Δab-t

Z
∼→ ΔAZ

of Proposition A.6, (iv), implies [in
light of the above exact sequence] that H1

ét(Y,Zl(1)) [i.e., Hom(Δab-t
Y ,Zl(1))], hence

also Δab-t
Y ⊗ Zl, is a free Zl-module of rank dimk(AY ). Thus, we conclude that the

surjection Δab-t
Y � ΔAY

of Proposition A.3, (vii), is an isomorphism, as desired.
©

Remark A.8.1. A sharper version [in the sense that it includes a computation of
the torsion subgroup of Δab

Y ] of Proposition A.8, (iii), is given in [SS], Proposition
4.2. The discussion of [SS] involves the point of view of 1-motives. On the other
hand, such a sharper version may also be obtained directly from the Gysin sequence
argument of the above proof of Proposition A.8, (iii), by working with torsion
coefficients.

The following result is elementary and well-known.

Lemma A.9. (Descending Chains of Subgroup Schemes) Let G be a
[not necessarily reduced] commutative group scheme of finite type over k;

. . . ⊆ Gn ⊆ . . . ⊆ G1 ⊆ G0 = G

a descending chain of [not necessarily reduced!] subgroup schemes of G, indexed
by the nonnegative integers. Then there exists an integer N such that Gn = Gm
for all n,m ≥ N .
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Proof. First, let us consider the case where all of the Gn, for n ≥ 0, are reduced
and connected. Then since all of the Gn are closed irreducible subschemes of G, it
follows immediately that if we take any integer N such that dimk(Gn) = dimk(Gm)
for all n,m ≥ N , then Gn = Gm for all n,m ≥ N . Now we return to the general
case. By what we have done so far, we may assume without loss of generality that
(G0)red = (Gn)red for all n ≥ 0. Thus, by forming the quotient by (G0)red, we
may assume that all of the Gn are finite over Spec(k). Then Lemma A.9 follows
immediately. ©

Before proceeding, we recall the following result of de Jong.

Lemma A.10. (Equivariant Alterations) Suppose that k = k; let V be
a variety over k. Then there exists a smooth projective variety Z over k, a
finite group Γ of automorphisms of Z over k, a divisor with normal crossings
D ⊆ Z fixed by Γ, and a Γ-equivariant [relative to the trivial action of Γ on V ]
dominant, proper, generically quasi-finite morphism

Y
def= Z\D → V

such that if we write k(Z), k(V ) for the respective function fields of Z, V , then the
subfield of Γ-invariants k(Z)Γ ⊆ k(Z) forms a purely inseparable extension of
k(V ).

Proof. This is the content of [deJong], Theorem 7.3. ©

We are now ready to prove the main result of the present Appendix, the first
portion of which [i.e., Corollary A.11, (i)] is due to Serre [cf. [Serre1]].

Corollary A.11. (Albanese Varieties of Arbitrary Varieties)

(i) Every pointed variety (V, v) over k admits an Albanese morphism
V → A.

(ii) Let φ : V → A be an Albanese morphism, where (V, v) is a k-toric
pointed variety. Then φ induces an isomorphism Δab-t

V
∼→ ΔA.

Proof. First, we consider assertion (i). By applying étale descent, we may assume
without loss of generality that k = k. Let Z ⊇ Y → V be as in Lemma A.10,
y ∈ Y (k) a point that maps to v ∈ V (k) [where we observe that, as is easily verified,
the existence of an Albanese morphism as desired is independent of the choice of
v]. Then by Proposition A.8, (i), it follows that Y admits an Albanese morphism
Y → B. Thus, every pointed morphism ν : V → C, where C ∈ Cs-abk , determines,
by restriction to Y , a homomorphism B → C, whose kernel is a subgroup scheme
Hν ⊆ B. In particular, the pointed morphisms ν : V → C determine a projective
system of subgroup schemes Hν ⊆ B which is filtered [a fact that is easily verified by
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considering product morphisms V → C1 ×k C2 of pointed morphisms ν1 : V → C1,
ν2 : V → C2]. Moreover, by Lemma A.9, this projective system admits a cofinal
subsystem which is constant, i.e., given by a single subgroup scheme H ⊆ B. Now
it is a tautology that the composite morphism Y → B � B/H factors uniquely
[where we observe that uniqueness follows from the fact that Y → V is dominant]
through a morphism V → B/H which serves as an Albanese morphism for V .

Next, we consider assertion (ii). First, let us observe that, by Proposition
A.3, (i), we may assume without loss of generality that k = k. Let Z ⊇ Y → V ,
Γ be as in Lemma A.10; write Y → V ′ → V for the factorization through the
normalization V ′ → V of V in the purely inseparable extension k(Z)Γ of k(V ). Let
V → A, V ′ → A′ be Albanese morphisms [which exist by assertion (i)]. Since V is
normal, it follows immediately that V ′ → V is a sub-Frobenius morphism. Thus,
by Proposition A.3, (iv) [cf. also Remark A.1.1], it follows that V ′ → V induces
isomorphisms Δab-t

V ′
∼→ Δab-t

V , ΔA′
∼→ ΔA. In particular, by replacing V by V ′, we

may assume without loss of generality that Y → V is generically étale.

Next, let us observe that since V is k-toric, it follows that there exists a closed
subscheme F ⊆ V of codimension ≥ 2 such that U def= V \F is k-smooth [cf., e.g.,
[SGA2], XI, 3.11]. Note, moreover, that the composite U → V → A is an Albanese
morphism for U [cf. Proposition A.3, (v)]. Thus, we have surjections

Δab-t
U � Δab-t

V � ΔA

[cf. Proposition A.3, (vii)]. In particular, if the surjection Δab-t
U � ΔA is an

isomorphism, then so is the surjection Δab-t
V � ΔA. Thus, we may assume without

loss of generality that V is k-smooth.

Next, let Y → B be an Albanese morphism for B [cf. Proposition A.8, (i)].
Then, by Proposition A.3, (ii), the action of Γ on Y extends to a compatible action
of Γ on B by k-trans-homomorphisms. This action of Γ on B may be thought of
as the combination of an action of Γ on the group scheme B [i.e., via group scheme
automorphisms], together with a twisted homomorphism χ : Γ → B(k) [where Γ
acts on B(k) via the group scheme action of Γ on B]. Write B � C′ for the quotient
semi-abelian scheme of B by the group scheme action Γ, i.e., the quotient of B by
the subgroup scheme generated by the images of the group scheme endomorphisms
(1 − γ) : B → B, for γ ∈ Γ. Thus, χ determines a homomorphism χ′ : Γ → C′(k);
write C′ → C for the quotient semi-abelian scheme of C by the finite subgroup
scheme of C′ determined by the image of χ′. Note that every trans-homomorphism
of semi-abelian schemes B → D which is Γ-equivariant with respect to the trivial
action of Γ on D and the trans-homomorphism action of Γ of B factors uniquely
through B � C. Note, moreover, that the composite Y → B � C factors uniquely
through V . [Indeed, this is clear generically; then since V is normal, one may extend
such a factorization [uniquely] to points of height 1 of V by applying the properness
of Y → V ; finally, since V is smooth, one may extend such a factorization [uniquely]
to the entire scheme V by applying Lemma A.2.] Thus, it is a tautology that the
resulting morphism V → C is an Albanese morphism for V . In particular, we may
assume without loss of generality that V → A is V → C. Also, let us observe that
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it follows immediately from the description of finite étale coverings of semi-abelian
schemes reviewed at the beginning of the present Appendix that, for l ∈ Σk, the
surjection ΔB ⊗Ql � ΔA ⊗Ql induces an isomorphism

(ΔB ⊗Ql)/Γ
∼→ ΔA ⊗Ql

[where the “/Γ” denotes the maximal quotient on which Γ acts trivially].

On the other hand, by Proposition A.8, (iii), it follows that we have a natural
isomorphism Δab-t

Y
∼→ ΔB , hence, in particular, a natural isomorphism

(Δab-t
Y ⊗Ql)/Γ

∼→ (ΔB ⊗Ql)/Γ
∼→ ΔA ⊗Ql

for l ∈ Σk. Moreover, since Y → V is dominant, it induces an open homomorphism
ΔY → ΔV , hence a surjection Δab-t

Y ⊗ Ql � Δab-t
V ⊗ Ql which is Γ-equivariant

[with respect to the trivial action of Γ on Δab-t
V ⊗Ql]. In particular, we obtain that

the natural isomorphism (Δab-t
Y ⊗ Ql)/Γ

∼→ ΔA ⊗ Ql factors as the composite of
surjections

(Δab-t
Y ⊗Ql)/Γ� Δab-t

V ⊗Ql � ΔA ⊗Ql

[cf. Proposition A.3, (vii)]. Thus, we conclude that these surjections are isomor-
phisms, hence that the surjection Δab-t

V � ΔA of Proposition A.3, (vii), is an
isomorphism, as desired. ©

Remark A.11.1. In fact, given any variety V over k, one may construct an
“Albanese morphism” V → A, where A is a torsor over a semi-abelian variety over
k, by passing to a finite [separable] extension k′ of k such that V (k′) 
= ∅, applying
Corollary A.11, (i), over k′, and then descending back to k. This morphism V → A
will then satisfy the universal property for morphisms V → A′ to torsors A′ over
semi-abelian varieties over k [i.e., every such morphism V → A′ admits a unique
factorization V → A→ A′, where the morphism A→ A′ is a k-morphism that base-
changes to a trans-homomorphism over k]. In the present Appendix, however, we
always assumed the existence of rational points in order to simplify the discussion.

Remark A.11.2. One may further generalize Remark A.11.1, as follows. If V is a
geometrically integral separated algebraic stack of finite type over k that is obtained
by forming the quotient, in the sense of stacks, of some variety W over k by the
action of a finite group of automorphisms Γ ⊆ Aut(W ), then, by applying Remark
A.11.1 to W to obtain an Albanese morphism W → B for W , one may construct
an “Albanese morphism”

V → A

for V [i.e., which satisfies the universal property described in Remark A.11.1] by
forming the quotient B → A of B as in the proof of Corollary A.11, (ii): That
is to say, after reducing, via étale descent, to the case k = k, the action of Γ on
W induces an action of Γ by k-trans-homomorphisms on B, hence an action of
Γ by group scheme automorphisms on B, together with a twisted homomorphism
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χ : Γ → B(k). Then we take B � A′ to be the quotient by the images of the
group scheme endomorphisms [arising from the group scheme action of Γ on B]
(1 − γ) : B → B, for γ ∈ Γ, and A′ � A to be the quotient by the image of the
homomorphism χ′ : Γ→ A′(k) determined by χ. Moreover, just as in the proof of
Corollary A.11, (ii), we obtain a natural isomorphism

Δab-t
V

∼→ ΔA

[where we use the notation “Δ(−)” to denote the evident stack-theoretic general-
ization of this notation for varieties].

The content of more classical works [cf., e.g., [NS], [Chev]] written from the
point of view of birational geometry may be recovered via the following result.

Corollary A.12. (Albanese Varieties and Birational Geometry)

(i) Let βV : V ′ → V be a proper birational morphism of normal varieties

over k which restricts to an isomorphism βU : U ′ def= V ′ ×V U
∼→ U over some

nonempty open subscheme U ⊆ V ; βA : A′ → A the induced morphism on Al-
banese varieties [cf. Corollary A.11, (i)]; W ⊆ V a k-toric open subscheme.
Then the composite morphism U

⋂
W ↪→ U

∼→ U ′ ↪→ V ′ → A′ extends uniquely
to a morphism W → A′ which induces a surjection ΔW � ΔA′ .

(ii) Let
. . .→ Vn → . . .→ V1 → V0 = V

be a sequence [indexed by the nonnegative integers] of birational morphisms of
complete normal varieties over k. Then there exists an integer N such that
for all n,m ≥ N , where n ≥ m, the induced morphism on Albanese varieties
An → Am is an isomorphism. If V is k-toric, then one may take N = 0.

Proof. First, we consider assertion (i). We may assume without loss of generality
that U ⊆ W . Then since V ′ → V is proper, and W is normal, it follows that
the morphism U

∼→ U ′ ↪→ V ′ extends uniquely to an open subset W\F ⊆ W ,
where F is a closed subscheme of codimension ≥ 2 in W . Thus, the fact that the
resulting morphism W\F → V ′ → A′ extends uniquely to W follows immediately
from Lemma A.2. To verify the surjectivity of ΔW → ΔA′ , it suffices to verify the
surjectivity of ΔU → ΔA′ , i.e., of ΔU ′ → ΔV ′ → ΔA′ . On the other hand, this
follows from the surjectivity of ΔV ′ → ΔA′ [cf. Proposition A.3, (vii)], together
with the surjectivity of ΔU ′ → ΔV ′ [cf. the fact that U ′ ⊆ V ′ is a nonempty open
subscheme of the normal variety V ′].

Next, we consider assertion (ii). By Proposition A.6, (i), (ii) [cf. also Propo-
sition A.3, (viii), (ix); Corollary A.11, (i)], each induced morphism on Albanese
varieties An → Am, for n ≥ m, is a surjection of abelian varieties which is an
isomorphism if and only if dimk(An) ≤ dimk(Am). On the other hand, if W ⊆ V is
any nonempty k-toric [e.g., k-smooth] open subscheme whose Albanese morphism
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[cf. Corollary A.11, (i)] we denote by W → AW , then assertion (i) yields a mor-
phism W → An that induces a surjection ΔW � ΔAn

, hence, in particular, a
morphism AW → An that induces a surjection ΔAW

� ΔAn
. But this implies that

dimk(An) ≤ dimk(AW ), hence that for some integer N , dimk(An) = dimk(Am), for
all n,m ≥ N . In particular, if W = V , then dimk(An) ≤ dimk(A0), for all n ≥ 0.
©
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