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ABsTRACT. This paper forms the first part of a three-part series in which we treat
various topics in absolute anabelian geometry from the point of view of developing
abstract algorithms, or “software”, that may be applied to abstract profinite groups
that “just happen” to arise as [quotients of] étale fundamental groups from algebraic
geometry. In the present paper, after studying various abstract combinatorial prop-
erties of profinite groups that typically arise as absolute Galois groups or geometric
fundamental groups in anabelian geometry over number fields, mixed-characteristic
local fields, or finite fields, we take a more detailed look at certain p-adic Hodge-
theoretic aspects of the absolute Galois groups of mixed-characteristic local fields.
This allows us, for instance, to derive, from a certain result communicated orally to
the author by A. Tamagawa, a “semi-absolute” Hom-version of the anabelian conjec-
ture for hyperbolic curves over mixed-characteristic local fields. Finally, we generalize
to the case of varieties of arbitrary dimension over arbitrary sub-p-adic fields cer-
tain techniques developed by the author in previous papers over mixed-characteristic
local fields for group-theoretically constructing the étale fundamental group of one
hyperbolic curve from the étale fundamental group of another hyperbolic curve.
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Introduction

The present paper is the first in a series of three papers, in which we continue
our study of absolute anabelian geometry in the style of the following papers: [Mzk6],

[Mzk7], [Mzk8], [Mzk9], [Mzk14], [Mzk10], [Mzk11]. If X is a [geometrically integral]

variety over a field k, and Ilx def 71(X) is the étale fundamental group of X [for

some choice of basepoint|, then roughly speaking, “anabelian geometry” may be
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summarized as the study of the extent to which properties of X — such as, for
instance, the isomorphism class of X — may be “recovered” from [various quotients
of] the profinite group ITx. One form of anabelian geometry is “relative anabelian
geometry” [cf., e.g., [Mzk3]], in which instead of starting from [various quotients of]
the profinite group Ilx, one starts from the profinite group Ilx equipped with the
natural augmentation llx — Gy to the absolute Galois group of k. By constrast,
“absolute anabelian geometry” refers to the study of properties of X as reflected
solely in the profinite group Il x. Moreover, one may consider various “intermediate
variants” between relative and absolute anabelian geometry such as, for instance,
“semi-absolute anabelian geometry”, which refers to the situation in which one starts
from the profinite group Ilx equipped with the kernel of the natural augmentation
I[Ix — Gg.

The new point of view that underlies the various “topics in absolute anabelian
geometry” treated in the present three-part series may be summarized as follows.
In the past, research in anabelian geometry typically centered around the establish-
ment of “fully faithfulness” results — i.e., “Grothendieck Conjecture-type” results
— concerning some sort of “fundamental group functor X +— Ilx” from varieties
to profinite groups. In particular, the term “group-theoretic” was typically used
to refer to properties preserved, for instance, by some isomorphism of profinite
groups Ilx = Ily [i.e., between the étale fundamental groups of varieties X, Y].
By contrast:

In the present series, the focus of our attention is on the development of
“algorithms” — i.e., “software” — which are “group-theoretic” in the
sense that they are phrased in language that only depends on the structure
of the input data as, for instance, a profinite group. Here, the “input data”
is a profinite group that “just happens to arise” from scheme theory as
an étale fundamental group, but which is only of concern to us in its
capacity as an abstract profinite group. That is to say, the algorithms
in question allow one to construct various objects reminiscent of objects
that arise in scheme theory, but the issue of “eventually returning to
scheme theory” — e.g., of showing that some isomorphism of profinite
groups arises from an isomorphism of schemes — is no longer an issue
of primary interest.

This point of view may already be seen in the theory of pro-l cuspidalizations given
in [Mzk14], §3, in which “cuspidalized geometrically pro-l fundamental groups” are
“group-theoretically constructed” from geometrically pro-I fundamental groups of
proper hyperbolic curves without ever addressing the issue of whether or not the
original curve [i.e., scheme] may be reconstructed from the given geometrically pro-
[ fundamental group [of a proper hyperbolic curve]. In some sense, this abstract,
algorithmic point of view is taken even further in [Mzk13], where one works with
certain types of purely combinatorial objects — i.e., “semi-graphs of anabelioids”
— whose definition “just happens to be” motivated by stable curves in algebraic
geometry. On the other hand, the results obtained in [Mzk13] are results concerning
the abstract combinatorial geometry of these abstract combinatorial objects — i.e.,
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one is never concerned with the issue of “eventually returning” to, for instance,
scheme-theoretic morphisms.

)

The main results of the present paper are, to a substantial extent, “generalities’
that will be of use to us in the further development of the theory in the latter two
papers of the present three-part series. These main results may be summarized as
follows:

(1) In §1, we study various notions associated to abstract profinite groups
such as RTF-quotients [i.e., quotients obtained by successive formation
of torsion-free abelianizations — cf. Definition 1.1, (i)], slimness [i.e.,
the property that all open subgroups are center-free], and elasticity [i.e.,
the property that every nontrivial topologically finitely generated closed
normal subgroup of an open subgroup is itself open — cf. Definition 1.1,
(ii)] in the context of the absolute Galois groups that typically appear in
anabelian geometry [cf. Proposition 1.5, Theorem 1.7].

(2) In §2, we begin by formulating the terminology that we shall use in our
discussion of the anabelian geometry of varieties of arbitrary dimension [cf.
Definition 2.1]. We then apply the theory of slimness and elasticity devel-
oped in §1 to study various variants of the notion of “semi-absoluteness”
[cf. Proposition 2.5]. Moreover, in the case of arithmetic base fields that
typically appear in anabelian geometry, we give various “group-theoretic
algorithms” for constructing the quotient of an arithmetic fundamental
group determined by the absolute Galois group of the base field [cf. The-
orem 2.6]. Finally, in the case of hyperbolic orbicurves, we apply the the-
ory of maximal pro-RTF-quotients developed in §1 to give quite explicit
“group-theoretic algorithms” for constructing these quotients [cf. Theorem
2.11).

(3) In §3, we generalize the main result of [Mzkl| concerning the geo-
metricity of arbitrary isomorphisms of absolute Galois groups of mixed-
characteristic local fields that preserve the ramification filtration [cf. The-
orem 3.5]. This generalization allows one to replace the condition of
“preserving the ramification filtration” by various more general condi-
tions, certain of which were motivated by a result orally communicated
to the author by A. Tamagawa [cf. Remark 3.8.1]. Moreover, unlike
the main result of [Mzkl], this generalization may be applied [in certain
cases| to arbitrary open homomorphisms between absolute Galois groups
of mixed-characteristic local fields, hence implies certain semi-absolute
Hom-versions [cf. Corollary 3.8, 3.9] of the relative Hom-versions of the
Grothendieck Conjecture given in [Mzk3|, Theorems A, B. Also, we ob-
serve, in Example 2.13, that the corresponding absolute Hom-version of
these results is false in general. Indeed, it was precisely the discovery of
this countererample to the “absolute Hom-version” that led the author to
the detailed investigation of the “gap between absolute and semi-absolute”
that forms the content of §2.

(4) In §4, we study various “fundamental operations” for passing from one
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algebraic stack to another. In the case of arbitrary dimension, these op-
erations are the operations of “passing to a finite étale covering” and
“passing to a finite étale quotient”; in the case of hyperbolic orbicurves,
we also consider the operations of “forgetting a cusp” and “coarsifying
a non-scheme-like point”. Our main result asserts that if one assumes
certain relative anabelian results concerning the varieties under considera-
tion, then the corresponding absolute anabelian operations on arithmetic
fundamental groups may be described “entirely group-theoretically” [cf.
Theorem 4.7]. This theory, which generalizes the theory of [Mzk9], §2,
and [Mzk14], §2, may be applied not only to hyperbolic orbicurves over
sub-p-adic fields [cf. Example 4.8], but also to “iso-poly-hyperbolic orbisur-
faces” over sub-p-adic fields [cf. Example 4.9]. We also give a tempered
version of this theory [cf. Theorem 4.12].

Finally, in an Appendix, we review, for lack of an appropriate reference, various well-
known facts concerning the theory of Albanese varieties that will play an important
role in the portion of the theory of §2 concerning varieties of arbitrary dimension.
Much of this theory of Albanese varieties is contained in such classical references as
[NS], [Serrel], [Chev], which are written from a somewhat classical point of view.
Thus, in the Appendix, we give a modern scheme-theoretic treatment of this classical
theory, but without resorting to the introduction of motives and derived categories,

as in [BS], [SS].

Acknowledgements:

I would like to thank Akio Tamagawa for many helpful discussions concerning
the material presented in this paper. Also, I would like to thank Brian Conrad for
informing me of the references in the Appendix to [FGA], and Noboru Nakayama
for advice concerning non-smooth normal algebraic varieties.



TOPICS IN ABSOLUTE ANABELIAN GEOMETRY I 5

Section 0: Notations and Conventions

Numbers:

The notation Q will be used to denote the field of rational numbers. The
notation Z C QQ will be used to denote the set, group, or ring of rational integers.
The notation N C Z will be used to denote the set or monoid of nonnegative rational
integers. The profinite completion of the group Z will be denoted 7. Write

Primes

for the set of prime numbers. If p € Primes, then the notation Q, (respectively,
Zp) will be used to denote the p-adic completion of Q (respectively, Z). Also, we
shall write
(x) X
Z0) C 7

for the subgroup 1 + pZ, C Z5 if p > 2, 1 4+ p*Z, C Z) if p = 2. Thus, we have
isomorphisms of topological groups

) x (zx /28 S 2y 780 Sz,
— where the second isomorphism is the isomorphism determined by the p-adic
logarithm; 7. /ZI(,X) = Fyifp>2,ZF /Z](,X) 5 Z/pZ if p = 2.

A finite field extension of Q will be referred to as a number field, or NF, for
short. A finite field extension of QQ, for some p € Primes will be referred to as a
mixed-characteristic nonarchimedean local field, or MLF, for short. A field of finite
cardinality will be referred to as a finite field, or FF, for short. We shall regard the
set of symbols {NF, MLF,FF} as being equipped with a linear ordering

NF > MLF > FF

and refer to an element of this set of symbols as a field type.

Topological Groups:

Let G be a Hausdorff topological group, and H C G a closed subgroup. Let us

write

Za(H) = {geG|g-h=h-g VheH}

for the centralizer of H in G;

def _
Neg(H)={9€G|g-H-g ' =H}

for the normalizer of H in G; and

Ca(H) Lt {9 G| (g~H'g_1)ﬂH has finite index in H, g- H - g~'}
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for the commensurator of H in G. Note that: (i) Zg(H), Ng(H) and Cg(H) are
subgroups of G; (ii) we have inclusions H, Zg(H) C Ng(H) C Cq(H); (iii) H is
normal in Ng(H). If H = Ng(H) (respectively, H = Cg(H)), then we shall say
that H is normally terminal (respectively, commensurably terminal) in G. Note

that Zg(H), Ng(H) are always closed in G, while C(H) is not necessarily closed

in G. Also, we shall write Z(QG) o Zc(G) for the center of G.

Let G be a topological group. Then [cf. [Mzk12], §0] we shall refer to a normal
open subgroup H C G such that the quotient group G/H is a free discrete group
as co-free. We shall refer to a co-free subgroup H C G as minimal if every co-free
subgroup of G contains H. Thus, any minimal co-free subgroup of G is necessarily
unique and characteristic.

We shall refer to a continuous homomorphism between topological groups as
dense (respectively, of DOF-type [cf. [Mzk10], Definition 6.2, (iii)]; of OF-type) if
its image is dense (respectively, dense in some open subgroup of finite index; an
open subgroup of finite index). Let II be a topological group; A a normal closed
subgroup such that every characteristic open subgroup of finite index H C A admits
a minimal co-free subgroup H™ C H. Write II for the profinite completion of 1I.
Let

I — Q
be a quotient of profinite groups. Then we shall refer to as the (Q,A)-co-free
completion of 11, or co-free completion of 11 with respect to [the quotient I -/ Q
and [the subgroup] A C II — where we shall often omit mention of A when it is
fixed throughout the discussion — the inverse limit

HQ/co-fr déf 1&1 ImQ (H/Hco-fr)
H

— where H C A ranges over the characteristic open subgroups of A of finite index;
He ' C 11 is the closure of the image of H° in II; H éo‘fr C @ is the image of
Heofr i Q; “Img(—)” denotes the image in Q/ f[&o‘ﬁ” of the group in parentheses.
Thus, we have a natural dense homomorphism II — T1@Q/co-fr

We shall say that a profinite group G is slim if for every open subgroup H C G,
the centralizer Zg(H) is trivial. Note that every finite normal closed subgroup
N C G of a slim profinite group G is trivial. [Indeed, this follows by observing that
for any normal open subgroup H C G such that N (| H = {1}, consideration of the
inclusion N — G/H reveals that the conjugation action of H on N is trivial, i.e.,
that N C Zg(H) = {1}/]

We shall say that a profinite group G is decomposable if there exists an iso-
morphism of profinite groups H; x Hy — G, where H;, H, are nontrivial profinite
groups. If a profinite group G is not decomposable, then we shall say that it is
mdecomposable.

We shall write G?" for the abelianization of a profinite group G, i.e., the quo-
tient of G' by the closure of the commutator subgroup of G, and

Gab—t
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for the torsion-free abelianization of G, i.e., the quotient of G®® by the closure of
the torsion subgroup of G®". Note that the formation of G&°, G2t is functorial
with respect to arbitrary continuous homomorphisms of profinite groups.

We shall denote the group of automorphisms of a profinite group G by Aut(G).
Conjugation by elements of G determines a homomorphism G — Aut(G) whose
image consists of the inner automorphisms of G. We shall denote by Out(G)
the quotient of Aut(G) by the [normal] subgroup consisting of the inner auto-
morphisms. In particular, if G is center-free, then we have an exract sequence
1 - G — Aut(G) — Out(G) — 1. If, moreover, G is topologically finitely gen-
erated, then it follows immediately that the topology of G admits a basis of charac-
teristic open subgroups, which thus determine a topology on Aut(G), Out(G) with
respect to which the exact sequence 1 — G — Aut(G) — Out(G) — 1 becomes an
exact sequence of profinite groups.

Algebraic Stacks:

We refer to [FC], Chapter I, §4.10, for a discussion of the coarse space associated
to an algebraic stack. We shall say that an algebraic stack is scheme-like if it is, in
fact, a scheme. We shall say that an algebraic stack is generically scheme-like if it
admits an open dense substack which is a scheme.

Curves:

We shall use the following terms, as they are defined in [Mzk14], §0: hyperbolic
curve, family of hyperbolic curves, cusp, tripod. Also, we refer to [Mzk6], the proof
of Lemma 2.1; [Mzk6], the discussion following Lemma 2.1, for an explanation of

the terms “stable reduction” and “stable model” applied to a hyperbolic curve over
an MLF.

If X is a generically scheme-like algebraic stack over a field k that admits a
finite étale Galois covering Y — X, where Y is a hyperbolic curve over a finite
extension of k, then we shall refer to X as a hyperbolic orbicurve over k. [Thus,
when k is of characteristic zero, this definition coincides with the definition of a
“hyperbolic orbicurve” in [Mzk14], §0, and differs from, but is equivalent to, the
definition of a “hyperbolic orbicurve” given in [Mzk7], Definition 2.2, (ii). We refer
to [Mzk14], §0, for more on this equivalence.] Note that the notion of a “cusp of
a hyperbolic curve” given in [Mzk14], §0, generalizes immediately to the notion of
“cusp of a hyperbolic orbicurve”. If X — Y is a dominant morphism of hyperbolic
orbicurves, then we shall refer to X — Y as a partial coarsification morphism if the
morphism induced by X — Y on associated coarse spaces is an isomorphism.

Let X be a hyperbolic orbicurve over an algebraically closed field; denote its
étale fundamental group by Ax. We shall refer to the order of the [manifestly
finite!] decomposition group of a closed point z of X as the order of x. We shall
refer to the [manifestly finite!] least common multiple of the orders of the closed
points of X as the order of X. Thus, it follows immediately from the definitions
that X is a hyperbolic curve if and only if the order of X is equal to 1.
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Section 1: Some Profinite Group Theory

We begin by discussing certain aspects of abstract profinite groups, as they
relate to the Galois groups of finite fields, mized-characteristic nonarchimedean
local fields, and number fields. In the following, let G be a profinite group.

Definition 1.1.

(i) In the following, “RTF” is to be understood as an abbreviation for “recur-
sively torsion-free”. If H C G is a normal open subgroup that arises as the kernel
of a continuous surjection G — @), where () is a finite abelian group, that factors
through the torsion-free abelianization G — Gt of G [cf. §0], then we shall refer
to (G, H) as an RTF-pair. If for some integer n > 1, a sequence of open subgroups

G,CG1C...G1 CGo=G

of G satisfies the condition that, for each nonnegative integer j <n—1, (G;,Gj41)
is an RTF-pair, then we shall refer to this sequence of open subgroups as an RTF-
chain [from G, to G]. If H C G is an open subgroup such that there exists an
RTF-chain from H to G, then we shall refer to H C G as an RTF-subgroup [of G].
If the kernel of a continuous surjection ¢ : G — @, where @ is a finite group, is an
RTF-subgroup of GG, then we shall say that ¢ : G — @ is an RTF-quotient of G. If
¢ : G — @ is a continuous surjection of profinite groups such that the topology of )
admits a basis of normal open subgroups { N, }oc 4 satisfying the property that each
composite G — Q — Q/N, [for a € A] is an RTF-quotient, then we shall say that
¢ : G — @ is a pro-RTF-quotient. If G is a finite (respectively, profinite) group such
that the identity map of G forms an RTF-quotient (respectively, pro-RTF-quotient),
then we shall say that G is an RTF-group (respectively, a pro-RTF-group).

(ii) We shall say that G is elastic if it holds that every topologically finitely
generated closed normal subgroup N C H of an open subgroup H C G of G is
either trivial or of finite index in G. If G is elastic, but not topologically finitely
generated, then we shall say that G is very elastic.

(iii) Let ¥ C Primes [cf. §0] be a set of prime numbers. If G admits an
open subgroup which is pro-Y, then we shall say that G is almost pro-X. We
shall refer to a quotient G — @) as almost pro-X-mazximal if for some normal open
subgroup N C G with maximal pro-X quotient N — P, we have Ker(G — Q) =
Ker(N — P). [Thus, any almost pro-X-maximal quotient of G is almost pro-X.]

When ¥ &' Primes\{p} for some p € Primes, then we shall write “pro-(#£ p)” for
“pro-X”. Write
7/(#p)

for the mazimal pro-(# p) quotient of Z. We shall say that G is pro-omissive (re-
spectively, almost pro-omissive) if it is pro-(# p) for some p € Primes (respectively,
if it admits a pro-omissive open subgroup). We shall say that G is augmented pro-p
if there exists an exact sequence of profinite groups 1 - N — G — 7#P) 1,
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where N is pro-p; in this case, the image of N in G is uniquely determined [i.e.,
as the maximal pro-p subgroup of GJ|; the quotient G — Z#p) [which is well-

defined up to automorphisms of 2(7&7’)] will be referred to as the augmentation of
the augmented pro-p group G. We shall say that G is augmented pro-prime if it
is augmented pro-p for some [not necessarily unique!l] p € Primes. If ¥ = {p} for
some unspecified p € Primes, we shall write “pro-prime” for “pro-X”. When C is
the “full formation” [cf., e.g., [FJ], p. 343] of finite solvable 3-groups, then we shall
refer to a pro-C group as a pro-X-solvable group.

Proposition 1.2. (Basic Properties of Pro-RTF-quotients) Let
¢:G1— G
be a continuous homomorphism of profinite groups. Then:

(i) If H C G5 is an RTF-subgroup of Go, then ¢~ 1(H) C Gy is an RTF-
subgroup of G.

(ii) If H,J C G are RTF-subgroups of G, then so is H()J.

(ii) If H C G is an RTF-subgroup of G, then there exists a normal [open]
RTF-subgroup J C G of G such that J C H.

(iv) Every RTF-quotient G — @Q of G factors through the quotient

G - GRTF L imG/N
N

— where N ranges over the normal [open] RTF-subgroups of G. We shall refer to
this quotient G — GRTF gs the maximal pro-RTF-quotient.

(v) There exists a commutative diagram

G, -5 Gy

| l

RTF ¢ 0 RTF
Gy — G5

— where the vertical arrows are the natural morphisms, and the continuous homo-
morphism ¢RTY is uniquely determined by the condition that the diagram commute.

Proof.  Assertion (i) follows immediately from the definitions, together with the
functoriality of the torsion-free abelianization [cf. §0]. To verify assertion (ii), one
observes that an RTF-chain from H () J to G may be obtained by concatenating
an RTF-chain from H () J to J [whose existence follows from assertion (i) applied
to the natural inclusion homomorphism J — G| with an RTF-chain from J to G.
Assertion (iii) follows by applying assertion (ii) to some finite intersection of conju-
gates of H. Assertion (iv) follows immediately from assertions (ii), (iii). Assertion
(v) follows immediately from assertions (i), (iv). O
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Proposition 1.3. (Basic Properties of Elasticity)

(i) Let H C G be an open subgroup of the profinite group G. Then the elas-
ticity of G implies that of H. If G is slim, then the elasticity of H implies that of
G.

(ii) Suppose that G is nontrivial. Then G is very elastic if and only if it
holds that every topologically finitely generated closed normal subgroup N C H of
an open subgroup H C G of G is trivial.

Proof.  Assertion (i) follows immediately from the definitions, together with the
fact that a slim profinite group has no normal closed finite subgroups [cf. §0]. The
necessity portion of assertion (ii) follows from the fact that the existence of a topo-
logically finitely generated open subgroup of GG implies that G itself is topologically
finitely generated; the sufficiency portion of assertion (ii) follows immediately by

taking N a #{1}. O
Next, we consider Galois groups.

Definition 1.4.  We shall refer to a field k as solvably closed if, for every finite
abelian field extension &’ of k, it holds that k' = k.

Remark 1.4.1. Note that if E~is a solvably closed Galois extension of a field k of
type MLF or FF [cf. §0], then k is an algebraic closure of k. Indeed, this follows

from the well-known fact that the absolute Galois group of a field of type MLF or
FF is pro-solvable [cf., e.g., [NSW], Chapter VII, §5].

Proposition 1.5.  (Pro-RTF-quotients of MLF Galois Groups) Let k be an
algebraic closure of an MILF [cf. §0] k of residue characteristic p; Gy, et Gal(k/k);
Gr — GE™ the maximal pro-RTF-quotient [cf. Proposition 1.2, (iv)] of Gy.
Then:

(i) G is slim.

(ii) There exists an eract sequence 1 — P — GRTF — 7 — 1, where P is a
pro-p group whose image in G}}TF 15 equal to the image of the inertia subgroup

of Gi in GIE‘TF. In particular, G}E‘TF 1s augmented pro-p.

Proof.  Recall from local class field theory [cf., e.g., [Serre2]] that for any open sub-

group H C Gy, corresponding to a subfield kr C k, we have a natural isomorphism
(k)" = H

[where the “A” denotes the profinite completion of an abelian group; “x” denotes
the group of units of a ring]; moreover, H2P fits into an eract sequence

1—>(9,Z<H—>Hab—>z—>1
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[where Oy,, C kp is ring of integers] in which the image of O;° in H b coincides
with the image of the inertia subgroup of H. Observe, moreover, that the quotient
of the abelian profinite group (9,:H by its torsion subgroup is a pro-p group. Thus,
assertion (ii) follows immediately from this observation, together with the definition
of the mazimal pro-RTF-quotient. Next, let us observe that by applying the natural
isomorphism (OkXH) ®Qp = ky, it follows that whenever H is normal in Gy, G/ H
acts faithfully on H**. Thus, assertion (i) follows immediately. O

The following result is well-known.

Proposition 1.6. (Maximal Pro-p Quotients of MLF Galois Groups) Let

k be an algebraic closure of an MLF k of residue characteristic p; G, def Gal(k/k);
Gy — G]gp) the maximal pro-p-quotient of Gi. Then:

(i) Any almost pro-p-maximal quotient G, — @ of Gj is slim.

(ii) Suppose further that k contains a primitive p-th root of unity. Then
for any finite module M annihilated by p equipped with a continuous action by G,gp)
[which thus determines a continuous action by Gy, the natural homomorphism

Gy — G]gp) induces an isomorphism
H (G, M) = HI (Gy, M)

on Galois cohomology modules for all integers 7 > 0.

(iii) If k contains (respectively, does not contain) a primitive p-th root
of unity, then any closed subgroup of infinite index (respectively, any closed

subgroup of arbitrary index) H C G]gp) 1s a free pro-p group.

Proof.  Assertion (i) follows from the argument applied to verify Proposition 1.5,
(). To verify assertion (ii), it suffices to show that the cohomology module

HI(J,M) = lim H’(Gy, M)
k/

[where J et Ker(Gj — G,gp )); k" ranges over the finite Galois extensions of k such
that [k’ : k] is a power of p; Gy C Gy is the open subgroup determined by &'
vanishes for j > 1. By “dévissage”, we may assume that M = F,, with the trivial
Gi-action. Since the cohomological dimension of Gy is equal to 2 [cf. [NSW],
Theorem 7.1.8, (i)], it suffices to consider the cases j = 1,2. For j = 2, since
H?(Gy,F,) 2 F, [cf. [NSW], Theorem 7.1.8, (ii); our hypothesis that &k contains
a primitive p-th root of unity], it suffices, by the well-known functorial behavior of
H?(Gy,Fp) [cf. [NSW], Corollary 7.1.4], to observe that k" always admits a cyclic
Galois extension of degree p [arising, for instance, from an extension of the residue
field of k']. On the other hand, for j = 1, the desired vanishing is a tautology,
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in light of the definition of the quotient Gy — G](f ). This completes the proof of
assertion (ii).

Finally, we consider assertion (iii). If k& does not contain a primitive p-th root
of unity, then Gép) itself is a free pro-p group [cf. [NSW], Theorem 7.5.8, (i)], so
any closed subgroup H C G](f ) is also free pro-p [cf., e.g., [RZ], Corollary 7.7.5].
Thus, let us assume that k contains a primitive p-th root of unity, so we may
apply the isomorphism of assertion (ii). In particular, if J C G;cp) is an open
subgroup such that H C J, and k; C k is the subfield determined by J, then one
verifies immediately that the quotient G, — J may be identified with the quotient
Gi, — Gg;), so we obtain an isomorphism H?(J,F,) = H?*(Gy,,F,) [where F, is
equipped with the trivial Galois action]|. Thus, to complete the proof that H is free

pro-p, it suffices [by a well-known cohomological criterion for free pro-p groups —
cf., e.g., [RZ], Theorem 7.7.4] to show that the cohomology module

HQ(Hv Fp) = lllc—n;l HQ(GkaFP>

[where F,, is equipped with the trivial Galois action; k; ranges over the finite
extensions of k arising from open subgroups J C G](f ) such that H C J| vanishes.
As in the proof of assertion (ii), this vanishing follows from the well-known functorial
behavior of H*(Gy,,F)p), together with the observation that, by our assumption that
H is of infinite inder in G](Cp ), kj always admits an extension of degree p arising

from an open subgroup of J [where J C G](f ) corresponds to k| containing H. O

Theorem 1.7. (Slimness and Elasticity of Arithmetic Galois Groups)

Let k be a solvably closed Galois extension of a field k; write Gy, o Gal(k/k).
Then:

(i) If k is an FF, then Gj, = 7 is neither elastic nor slim.

(ii) If k is an MLF, then Gy, as well as any almost pro-p-maximal quo-
tient G — Q of Gy, is elastic and slim.

(iii) If k is an NF, then Gy, is very elastic and slim.

Proof. Assertion (i) is immediate from the definitions; assertion (iii) is the content
of [Mzk11], Corollary 2.2; [Mzk11], Theorem 2.4. The slimness portion of assertion
(ii) for Gy is shown, for instance, in [Mzk6], Theorem 1.1.1, (ii) [via the same
argument as the argument applied to prove Proposition 1.5, (i); Proposition 1.6,
(1)]; the slimness portion of assertion (ii) for @ is precisely the content of Proposition
1.6, (i).

To show the elasticity portion of assertion (ii) for @, let N C H be a closed
normal subgroup of infinite indexr of an open subgroup H C @ such that N is
topologically generated by r elements, where r > 1 is an integer. Then it suffices
to show that N is trivial. Since @) has already been shown to be slim [hence has
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no nontrivial finite normal closed subgroups — cf. §0], we may always replace k
by a finite extension of k. In particular, we may assume that H = (), and that
Q is mazimal pro-p. Since [Q : N] is infinite, it follows that there exists an open
subgroup J C @, corresponding to a subfield k; C k, such that N C J, and
[ky:Qp] > r+ 1. Here, we recall from our discussion of local class field theory in
the proof of Proposition 1.5 that dimg, (J** ® Q) = [ky : Q)+ 1 (> r+2). In
particular, we conclude that NV is necessarily a subgroup of infinite index of some
topologically finitely generated closed subgroup P C J such that [J : P] is infinite.
[For instance, one may take P to be the subgroup of J topologically generated by
N, together with an element of J that maps to a non-torsion element of the quotient
of J2P by the image of N3P.] Thus, we conclude from Proposition 1.6, (iii), that P
is a free pro-p group which contains a topologically finitely generated closed normal
subgroup N C P of infinite index. On the other hand, by [a rather easy special
case of| the theorem of Lubotzky-Melnikov-van den Dries [cf., e.g., [FJ], Proposition
24.10.3; [MT], Theorem 1.5], this implies that N is trivial. This completes the proof
of the elasticity portion of assertion (ii) for Q.

To show the elasticity portion of assertion (ii) for Gy, let N C H be a closed
normal subgroup of infinite index of an open subgroup H C Gy such that N is
topologically generated by r elements, where r > 1 is an integer. Then it suffices
to show that IV is trivial. As in the proof of the elasticity of “Q”, we may assume
that H = Gy; also, since [G : N] is infinite, by passing to a finite extension of
k corresponding to an open subgroup of Gy containing N, we may assume that
[k : Qp) > r. But this implies that the image of N in G#> ® Z,, [which is of rank
[k : Qp]+1 > r+1] is of infinite index, hence that the image of N in any almost pro-
p-mazimal quotient G — @Q is of infinite index. Thus, by the elasticity for “Q”,
we conclude that such images are trivial. Since, moreover, the natural surjection

Gy — lim Q)
Q

[where @) ranges over the almost pro-p-maximal quotients of G| is [by the definition
of the term “almost pro-p-maximal quotient”] an isomorphism, this is enough to
conclude that N is trivial, as desired. ()
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Section 2: Semi-absolute Anabelian Geometry

In the present §2, we consider the problem of characterizing “group-theoretically”
the quotient morphism to the Galois group of the base field of the arithmetic fun-
damental group of a variety. In particular, the theory of the present §2 refines the
theory of [Mzk6], Lemma 1.1.4 in two respects: We extend this theory to the case
of varieties of arbitrary dimension [cf. Corollary 2.8], and in the case of hyperbolic
orbicurves, we give a “group-theoretic version” of the numerical criterion of [Mzk6],
Lemma 1.1.4, via the theory of mazimal pro-RTF-quotients developed in §1 [cf.
Corollary 2.12]. The theory of the present §2 depends on the general theory of
Albanese varieties, which we review in the Appendix, for the convenience of the
reader.

Suppose that:

(1) kis a perfect field, k an algebraic closure of k, kCka solvably closed
Galois extension of k, and Gj, Gal(k/k).

(2) X — Spec(k) is a geometrically connected, smooth, separated algebraic
stack of finite type over k.

(3) Y — X is a connected finite étale Galois covering which is a [necessarily
separated, smooth, and of finite type over k| k-scheme such that Gal(Y/X)
acts freely on some nonempty open subscheme of Y [so X is generically
scheme-like — cf. §0].

(4) Y < Y is an open immersion into a connected proper k-scheme Y such

that Y is the underlying scheme of a log scheme V' that is log smooth
over k [where we regard Spec(k) as equipped with the trivial log structure],

and the image of Y in Y coincides with the interior of the log scheme v,

Thus, it follows from the log purity theorem [which is exposed, for instance, in
[Mzk4] as “Theorem B”] that the condition that a finite étale covering Z — Y
be tamely ramified over the height one primes of Y is equivalent to the condition
that the normalization Z of Y in Z determine a log étale morphism 7% 7"
[whose underlying morphism of schemes is Z — Y]; in particular, one concludes
immediately that the condition that Z — Y be tamely ramified over the height

one primes of Y is independent of the choice of “log smooth log compactification”

Y for V. Thus, one verifies immediately [by considering the various Gal(Y/X)-

conjugates of the “log compactification” ?log] that the finite étale coverings of X
whose pull-backs to Y are tamely ramified over [the height one primes of] Y form a
Galois category, whose associated profinite group [relative to an appropriate choice
of basepoint for X] we denote by wt*™¢(X Y, or simply

e (X)
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when Y — X is fixed. In particular, if we use the subscript “k” to denote base-
change from k to k, then by choosing a connected component of YE, we obtain
a subgroup 7{*™¢(Xy) C w{*™¢(X) which fits into a natural ezact sequence 1 —
miame( X)) — miame(X) — Gal(k/k) — 1.

tame

Next, let ¥ C Primes be a set of prime numbers; m*™¢(Xz) - Ax an al-

most pro-X-mazimal quotient of m¥*™¢(X73) whose kernel is normal in 7{*™(X),

hence determines a quotient w{*™¢(X) — IIx; we also assume that the quotient

miPme(X) — Gal(Y/X) admits a factorization w{*™¢(X) — IIx — Gal(Y/X),
and that the kernel of the resulting homomorphism Ay — Gal(Y/X) is pro-X.
Thus, Ker(Ax — Gal(Y/X)) may be identified with the mazimal pro-X quotient
of Ker(n{*™¢(X+) — Gal(Y/X)); we obtain a natural exact sequence

1 — Ax — Iy — Gal(k/k) — 1

— which may be thought of as an extension of the profinite group Gal(k/k).

Definition 2.1.

(i) We shall refer to any profinite group A which is isomorphic to the profinite
group Ax constructed in the above discussion for some choice of data (k, X,Y —
Y, Y) as a profinite group of [almost pro-X] GFG-type [where “GFG” is to be under-
stood as an abbreviation for “geometric fundamental group”]. In this situation, we

shall refer to any surjection 7{*"¢(X7) — A obtained by composing the surjection

mime(X+) — Ax with an isomorphism Ax = A as a scheme-theoretic envelope
for A; we shall refer to (k, X,Y < Y,X) as a collection of construction data for
A. [Thus, given a profinite group of GFG-type, there are, in general, many possible

choices of construction data for the profinite group.]

(ii) We shall refer to any extension 1 — A — IT — G — 1 of profinite groups
which is isomorphic to the extension 1 — Ay — IIx — Gal(k/k) — 1 constructed
in the above discussion for some choice of data (k, X,Y < Y, %) as an extension
of [geometrically almost pro-%] AFG-type [where “AFG” is to be understood as an
abbreviation for “arithmetic fundamental group”)]. In this situation, we shall refer
to any surjection 7i*™°(X) —» II (respectively, mi¥™°(X7z) — A; Gal(k/k) — G)
obtained by composing the surjection 7i*™¢(X) — IIx (respectively, the surjec-
tion m{*™°(X7) — Ax; the identity Gal(k/k) = Gal(k/k)) with an isomorphism
[x = II (respectively, Ax — A; Gal(k/k) = G) arising from an isomorphism of the
extensions 1 — A — Il — G — 1,1 — Ax — IIx — Gal(k/k) — 1 as a scheme-
theoretic envelope for II (respectively, A; G); we shall refer to (k, X, Y — Y, ¥) as
a collection of construction data for this extension. [Thus, given an extension of
AFG-type, there are, in general, many possible choices of construction data for the
extension. |

(iii) Let 1 — A* — II* — G* — 1 be an extension of AFG-type; N C G~
the inverse image of the kernel of the quotient Gal(k/k) — G relative to some
scheme-theoretic envelope G* = Gal(k/k). Suppose further that A* is slim, and
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that the outer action of N on A* [arising from the extension structure] is trivial.
Thus, every element of N C G* lifts to a unique element of IT* that commutes with
A*. In particular, N lifts to a closed normal subgroup Ny C IT*. We shall refer
to any extension 1 — A — II — G — 1 of profinite groups which is isomorphic
to an extension of the form 1 — A* — II*/Ny — G*/N — 1 just constructed as
an extension of [geometrically almost pro-X.] GSAFG-type [where “GSAFG” is to
be understood as an abbreviation for “geometrically slim arithmetic fundamental
group”]. In this situation, we shall refer to any surjection wt*™¢(X) — II (respec-
tively, m{*m°(X7) — A; Gal(k/k) — G) obtained by composing a scheme-theoretic
envelope 7i{*™¢(X) — II* (respectively, m{*™°(Xz) — A*; Gal(k/k) = G*) with
the surjection IT* — II (respectively, A* — A; G* — G) in the above discus-
sion as a scheme-theoretic envelope for II (respectively, A; G); we shall refer to
(k,%, X,Y — Y,%) as a collection of construction data for this extension. [Thus,
given an extension of GSAFG-type, there are, in general, many possible choices of
construction data for the extension.]

(iv) Given construction data “(k, X,Y — Y, %) or “(k,k, X,Y < Y,%)” as
in (i), (ii), (iii), we shall refer to “k” as the construction data field, to “X” as the
construction data base-stack [or base-scheme, if X is a scheme], to “Y” as the con-
struction data covering, to “Y” as the construction data covering compactification,
and to “X” as the construction prime set. Als~o, we shall refer to a portion of the
construction data “(k, X,Y — Y, %) or “(k,k, X,Y — Y ,%)” as in (i), (ii), (iii),
as partial construction data. If every prime dividing the order of a finite quotient
group of A is invertible in k, then we shall refer to the construction data in question
as base-prime.

The following result is well-known, but we give the proof below for lack of an
appropriate reference in the case where [in the notation of the above discussion] X
is not necessarily proper.

Proposition 2.2. (Topological Finite Generation) Any profinite group A
of GFG-type is topologically finitely generated.

Proof. Write (k,X,Y — Y,¥) for a choice of construction data for A. Since
a profinite fundamental group is topologically finitely generated if and only if it
admits an open subgroup that is topologically finitely generated, we may assume
that X = Y'; moreover, by applying de Jong’s theory of alterations [as reviewed,
for instance, in Lemma A.10 of the Appendix], we may assume that Y is projective
[and even k-smooth]. Since we are only concerned with A, we may assume that
k is algebraically closed, hence, in particular, infinite. Thus, since Y is normal
and projective [over k], it follows that there exists a connected, k-smooth, one-
dimensional closed subscheme C C'Y obtained by intersecting Y with dimg (?) -1
sufficiently general hyperplane sections such that C' def COY # 0, and Y is k-
smooth at the points of C. Now if Z — Y is any connected finite étale covering that

is tamely ramified over the divisor D def Y\Y [equipped with the reduced induced
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structure], then write Z — Y for the normalization of Y in Z. Thus, since Z is
tamely ramfied over D [so one may apply “Abhyankar’s lemma” to describe the

local structure of Z — Y], and D intersects C transversely, it follows immediately

that 75 L7 X3 C is k-smooth. On the other hand, since the closed subscheme

Z5 C Z is obtained by forming the intersection of the zero locus dimy(Y) — 1
sections of an ample line bundle on Z, it thus follows [cf., e.g., [SGA2], XII, 2.4]
that 75 is connected. But this connectedness for arbitrary choices of the covering
Z — Y implies that the natural morphism 7{*™¢(C) — 7i*™(Y)) is surjective.
Thus, it suffices to prove Proposition 2.2 in the case where Y is a curve. But in this
case, [as is well-known| Proposition 2.2 follows by deforming Y < Y to a curve in
characteristic zero, in which case, the desired topological finite generation follows
from the well-known structure of the topological fundamental group of a Riemann

surface of finite type. ()

Proposition 2.3. (Slimness and Elasticity for Hyperbolic Orbicurves)

(i) Let A be a profinite group of GFG-type that admits partial construction
data (k,X,X) [consisting of the construction data field, construction data base-
stack, and construction data prime set] such that X is a hyperbolic orbicurve
[cf. §0], and X contains a prime invertible in k. Then A is slim and elastic.

(ii) Let 1 — A — II — G — 1 be an extension of GSAFG-type that
admits partial construction data (k, X, X)) [consisting of the construction data field,
construction data base-stack, and construction data prime set] such that X is a
hyperbolic orbicurve, ¥ # (), and k is either an MLF or an NF. Then II is
slim, but not elastic.

Proof. Assertion (i) is the easily verified “generalization to orbicurves over fields
of arbitrary characteristic” of [MT], Proposition 1.4; [MT], Theorem 1.5 [cf. also
the technique of proof applied to the elasticity portion of Theorem 1.7, (ii)]. The
slimness portion of assertion (ii) follows immediately from the slimness portion of
assertion (i), together with the slimness portion of Theorem 1.7, (ii), (iii); the fact
that I is not elastic follows from the existence of the nontrivial, topologically finitely
generated [cf. Proposition 2.2], closed, normal, infinite index subgroup A C II. O

Definition 2.4. Fori=1,2, let
1—- A, -1, - G; —1
be an extension which is either of AFG-type or of GSAFG-type. Suppose that
¢ : 1} — Il

is a continuous homomorphism of profinite groups. Then:

(i) We shall say that ¢ is absolute if ¢ is open [i.e., has open image].
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(ii) We shall say that ¢ is semi-absolute (respectively, pre-semi-absolute) if ¢
is absolute, and, moreover, the image of (A1) in Gy is trivial (respectively, either
trivial or of infinite index in Gs).

(iii) We shall say that ¢ is strictly semi-absolute (respectively, pre-strictly semi-
absolute) if ¢ is semi-absolute, and, moreover, the subgroup ¢(A;) C Ay is open
(respectively, either open or nontrivial).

Proposition 2.5. (First Properties of Absolute Homomorphisms) For
1=1,2, let
1—- A, -1, —-G; —1

be an extension which is either of AFG-type or of GSAFG-type; (k;, X;,%;)
partial construction data for IT; — G, [consisting of the construction data field,
construction data base-stack, and construction data prime set]. Suppose that

¢ 11 — Il
1s a continuous homomorphism of profinite groups. Then:
(i) The following implications hold:

¢ strictly semi-absolute =—> ¢ pre-strictly semi-absolute —> ¢ semi-absolute
—> ¢ pre-semi-absolute — ¢ absolute.

(ii) Suppose that ko is an NF. Then “p semi-absolute” <= “p pre-semi-
absolute” <= “¢ absolute”.

(iii) Suppose that ko is an MLF. Then “p semi-absolute” <= “p pre-semi-
absolute”.

(iv) Suppose that ki either an FF or an MLF; that X2 is a hyperbolic
orbicurve; and that ¥4 is of cardinality > 1. Then “p pre-strictly semi-absolute”
< “p semi-absolute”.

(v) Suppose that X5 is a hyperbolic orbicurve, and that o contains a
prime invertible in ky. Then “¢ strictly semi-absolute” <= “¢ pre-strictly semi-
absolute”.

Proof.  Assertion (i) follows immediately from the definitions. Since A; is topo-
logically finitely generated [cf. Proposition 2.2], assertion (ii) (respectively, (iii))
follows immediately, in light of assertion (i), from the fact that Go is very elastic
[cf. Theorem 1.7, (iii)] (respectively, elastic [cf. Theorem 1.7, (ii)]). To verify
assertion (iv), it suffices, in light of assertion (i), to consider the case where ¢ is
semi-absolute, but not pre-strictly semi-absolute. Then since Ay is elastic [cf. the
hypothesis on Yo; Proposition 2.3, (i)], and A is topologically finitely generated [cf.
Proposition 2.2], it follows that the subgroup ¢(A;1) C A is either open or trivial.
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Since ¢ is not pre-strictly semi-absolute, we thus conclude that ¢(Aq) = {1}, so ¢
induces an open homomorphism G; — Ils. That is to say, every sufficiently small
open subgroup A5 C Ay admits a surjection Hy — A} for some closed subgroup
H; C G71. On the other hand, since X5 is a hyperbolic orbicurve, and ¥, is of
cardinality > 1, it follows [e.g., from the well-known structure of topological fun-
damental groups of hyperbolic Riemann surfaces of finite type] that we may take

5 such that A} admits quotients A — F’, A5 — F”  where F’ (respectively,
F") is a nonabelian free pro-p’ (respectively, pro-p”) group, for distinct p’,p"” € 5.
But this contradicts the well-known structure of Gy, when k; is either an FF or
an MLF — i.e., the fact that G, hence also Hi, may be written as an extension
of a meta-abelian group by a pro-p subgroup, for some prime p. [Here, we recall
that this fact is immediate if k1 is an FF, in which case G is abelian, and follows,
for instance, from [NSW], Theorem 7.5.2; [NSW], Corollary 7.5.6, (i), when k; is a
MLF.] Assertion (v) follows immediately from the elasticity of Ay [cf. Proposition
2.3, (i)], together with the topological finite generation of A; [cf. Proposition 2.2].

O

Theorem 2.6. (Field Types and Group-theoreticity) Let
1-A—=II—-G—1

be an extension which is either of AFG-type or of GSAFG-type; (k, X, )
partial construction data [consisting of the construction data field, construction
data base-stack, and construction data prime set] for Il - G. Suppose further that
k s either an FF, an MLF, or an NF, and that every prime € ¥ is invertible
in k. If H is a profinite group, j € {1,2}, and | € Primes, write
i def . :
0j (H) = dimg, (H’(H,Qi)) € N U {oo}
j def j
e/ () = sup ;e {6/(J)} €N U {oo}
69(IT) = {1 | ¢ (1) > 3 — j} C Primes
[where J ranges over the open subgroups I1]; also, we set

= oswp {oy(H) - oy (H)} e Z | {oo}

p,p’ EPrimes

C(H)

whenever 6} (H) < oo, VI € Primes. Then:

(i) Suppose that k is an FF. Then II is topologically finitely generated;
the natural surjections
Hab-t s Gab-t, G—» Gab-t

Y

are isomorphisms. In particular, the kernel of the quotient 11 — G may be char-
acterized [“group-theoretically” ] as the kernel of the quotient IT — TI***. More-
over, for every open subgroup H C 11, and every prime number [, (5}(H) =1.

(ii) Suppose that k is an MILF of residue characteristic p. Then 11 is topologi-
cally finitely generated; in particular, for every open subgroup H C 11, and every
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prime number 1, 8] (H) is finite. Moreover, 6} (G) =1 ifl # p, 6,(G) = [k : Qp]+1;
the quantity
o (1) — 6, (@)

is = 04fl ¢ X, and is independent of [ if | € X. Finally, 611)(1_[) = 00; in
particular, the cardinality of 01(II) is always > 1.

(iii) Let k be as in (ii). Then 0?(I1) C X. If, moreover, the cardinality of 6*(I1)
is > 2, then 6%(1) = .

(iv) Let k be as in (ii). Then every almost pro-omissive topologically finitely
generated closed normal subgroup of Il is contained in A. If, moreover, ¥ #
Primes, then the kernel of the quotient II - G may be characterized [“group-
theoretically”/ as the maximal almost pro-omissive topologically finitely gen-
erated closed normal subgroup of 1I.

(v) Let k be as in (ii). If 0(I1) # Primes, then write
O CII

for the maximal almost pro-omissive topologically finitely generated closed nor-
mal subgroup of 11, whenever a unique such maximal subgroup exists; if 0?(I1) =

Primes, or there does not exist a unique such maximal subgroup, set © def {1} C1II.

Then
def

() = ¢(I1/0) = [k : Q]
[cf. the finiteness portion of (ii)]. In particular, the kernel of the quotient I1 — G
may be characterized [“group-theoretically” — since “9%(—)”, “C(—)", “¢(—)”
are “group-theoretic”] as the intersection of the open subgroups H C II such that

C(H)/¢(IT) = [IT = H].

(vi) Suppose that k is an NF. Then the natural surjection II*** — G2t js an
isomorphism. The kernel of the quotient I - G may be characterized [“group-
theoretically”/ as the mazximal topologically finitely generated closed normal sub-
group of II. In particular, 11 is not topologically finitely generated.

Proof. Write X — A for the Albanese morphism associated to X. [We refer to
the Appendix for a review of the theory of Albanese varieties — cf., especially,
Corollary A.11, Remark A.11.2.] Thus, A is a torsor over a semi-abelian variety
over k such that the morphism X — A induces an isomorphism

Aab—t ® Zl ~ Tl(A)

onto the l-adic Tate module T;(A) of A for all [ € ¥. Note, moreover, that A admits
a rational point over some finite extension of k. Thus, by applying the Galois section
arising from such a rational point, we conclude that for [ € X, the image of A in
[12P-t © 7, is given by the quotient

A @ Zy = Ti(A) — Ti(A)/G
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— where we use the notation “/G” to denote the mazimal torsion-free quotient on
which G acts trivially.

Next, whenever k is an MLF, let us write, for [ € X,

Aab—t_»Aab—t®Zl:}E(A)_»Rld:ﬁR@Zl_»Qld:efQ(ng

for the pro-l portion of the quotients T(A) - R — @ of Lemma 2.7, (i), (ii), below
[in which we take “k” to be k and “B” to be the semi-abelian variety over which
A is a torsor|. [Put another way, @); is simply the quotient T;(A)/G considered
above.] Thus, the Z;-ranks of R;, Q; are independent of | € ..

The topological finite generation portion of assertion (i) follows immediately
from the fact that G = Z, together with the topological finite generation of A [cf.
Proposition 2.2]. The remainder of assertion (i) follows immediately from the fact
that T;(A)/G = 0 [a consequence of the “Riemann hypothesis for abelian varieties
over finite fields” — cf., e.g., [Mumf], p. 206]. In a similar vein, assertion (vi)
follows immediately from the fact that T;(A)/G = 0 [again a consequence of the
“Riemann hypothesis for abelian varieties over finite fields”], together with the fact
that G is very elastic [cf. Theorem 1.7, (iii)].

To verify assertion (ii), let us first observe that the topological finite generation
of II follows from that of A [cf. Proposition 2.2], together with that of G [cf. [NSW],
Theorem 7.5.10]. Next, let us recall the well-known fact that

NG =1it1#p, 6L(G) =[k: Q) +1

[cf. our our discussion of local class field theory in the proofs of Proposition 1.5;
Theorem 1.7, (ii)]; in particular, ((G) = [k : Qp]. Moreover, the existence of
a rational point of A over some finite extension of k [which determines a Galois
section of the étale fundamental group of A over some open subgroup of G| implies
that

51 (1) = 5}(G) + dimg, (Q1 ® Q1)

[where we recall that dimg, (Q; ® Q;) is independent of [] for | € ¥, 6} (II) = 6} (G)
for [ ¢ ¥. Thus, by considering extensions of k of arbitrarily large degree, we obtain
that €, (IT) = oo. This completes the proof of assertion (ii).

Next, we consider assertion (iii). First, let us consider the “Fs-term” of the
Leray spectral sequence of the group extension 1 - A — II — G — 1. Since G is
of cohomological dimension 2 [cf., e.g., [NSW], Theorem 7.1.8, (i)], and 6?(G) = 0
for all [ € Primes [cf., e.g., [NSW], Theorem 7.2.6], the spectral sequence yields an
equality 62(I1) = 0 if | ¢ ¥, and a pair of injections

Hl(G7 HOIIl(Rl, Ql)) - Hl(G7 Hom(Aab_tu Ql)) - H2 (H7 Ql)

if | € ¥ [cf. Lemma 2.7, (iii), below]. By applying the analogue of this conclusion
for an arbitrary open subgroup H C II, we thus obtain that 6?(H) = 0 if [ ¢ 3,
ie., that €/(H) = 0 if | ¢ 3; this already implies that if [ ¢ X, then | ¢ 6*(II),
i.e., that 2(I) C X. If the cardinality of #1(II) is > 2, then there exists some
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open subgroup H C II and some [ € Primes such that 6} (H) > 2, | # p. Now
we may assume without loss of generality that H acts trivially on the quotient
R; also to simplify notation, we may replace Il by H and assume that H = II.
Then [since 6} (G) = 1, by assertion (ii)] the fact that §}(II) > 2 implies that
[ € ¥, and dimg, (R; ® Q;) > 1 [cf. our computation in the proof of assertion (ii)].
But this implies that for any I’ € X, we have dimg, (R ® Q) > 1, hence that
HY(G,Hom(Ry;,Qy)) = HY(G,Qr) ® Hom(Ry,Qp) # 0. Thus, by the injections
discussed above, we conclude that €7 (IT) > 62 (II) > 1, sol’ € §?(II). This completes
the proof of assertion (iii).

Assertion (iv) follows immediately from the existence of a surjection G — i/
[cf., e.g., Proposition 1.5, (ii)], together with the elasticity of G [cf. Theorem 1.7,
(ii)], and the topological finite generation of A [cf. Proposition 2.2].

Next, we consider assertion (v). First, let us observe that whenever ¥ =
Primes, it follows from assertion (ii) that ((II) = ((G) = [k : Qp].

Now we consider the case 6?(I1) = Primes. In this case, © = {1} [by def-
inition], and #?(II) = ¥ = Primes |[by assertion (iii)]. Thus, we obtain that
¢II) = ¢(II/©) = [k : Qp], as desired [cf. [Mzk6], Lemma 1.1.4, (ii)]. Next,
we consider the case OY(I1) # {p} [i.e., OL(II) is of cardinality > 2 — cf. as-
sertion (ii)], 02(II) # Primes. In this case, by assertion (iii), we conclude that
¥ = 62(I1) # Primes. Thus, by assertion (iv), © = A, s0 ((II/O) = ((G) = [k : Q]
as desired.

Finally, we consider the case §*(I1) = {p} [i.e., O1(II) is of cardinality one],
62(I1) # Primes. If ¥ # Primes, then it follows from the definition of O, together
with assertion (iv), that ® = A, hence that ((II/0) = ((G) = [k : Q,], as desired.
If, on the other hand, ¥ = Primes, then since #1(II) = {p}, it follows [cf. the
computation in the proof of assertion (ii)] that dimg,(Q; ® Q;) = 0 for all primes
I # p, hence that dimg, (Q, ® @,) = 0; but this implies that ¢ (II) = 6, (G) for
all I € Primes. Now since © C A [by assertion (iv)], it follows that ] (II) >
61 (I1/©) > 6} (G) for all I € Primes, so we obtain that 4§} (II) = §; (II/O) = &} (G)
for all | € Primes. But this implies that ((II) = ((II/0) = ((G) = [k : Q,], as
desired. This completes the proof of assertion (v). O

Remark 2.6.1. When [in the notation of Theorem 2.6] X is a smooth proper
variety, the portion of Theorem 2.6, (ii), concerning “d} (II) — 6} (G)” is essentially
equivalent to the main result of [Yoshi.

Lemma 2.7. (Combinatorial Quotients of Tate Modules) Suppose that
k is an MLF [so k = k/. Let B be a semi-abelian variety over k. Write

T(B) ' Hom(Q/Z, B(R))
for the Tate module of B. Then:

(i) The mazimal torsion-free quotient module T'(B) — Q of T(B) on which
G} acts trivially is a finitely generated free Z-module.
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(i) There ezists a quotient Gj-module T(B) — R such that the following

properties hold: (a) R is a finitely generated free Z-module; (b) the action of Gy,
on R factors through a finite quotient; (c¢) no nonzero torsion-free subquotient S of

the G.-module N def Ker(T(B) — R) satisfies the property that the resulting action
of G, on S factors through a finite quotient.

(iii) If R is as in (ii), then the natural map
H'(Gy,Hom(R,Z)) — HY(G},, Hom(T(B),Z))

1s injective.

Proof.  Assertion (i) is literally the content of [Mzk6|, Lemma 1.1.5. Assertion
(ii) follows immediately from the proof of [Mzk6], Lemma 1.1.5 [more precisely, the
[ “combinatorial”] quotient “Tion” of loc. cit.]. Assertion (iii) follows by considering
the long exact cohomology sequence associated to the short exact sequence 0 —
Hom(R, Z) — Hom(T(B),Z) — Hom(N, 2) — 0, since the fact that N has no
nonzero torsion-free subquotients on which G acts through a finite quotient implies
that H°(Gj, Hom(N,Z)) = 0. O

Corollary 2.8. (Field Types and Absolute Homomorphisms) Fori = 1,2,
let1 - A; = 1I; - G, — 1, ki, X5, X, ¢ : 111 — Iy be as in Proposition 2.5.
Suppose further that k; is either an FF, an MLF, or an NF, and that every prime
€ Y, is invertible in k;. Then:

(i) The field type of ki is > [cf. §0] the field type of k.

(ii) Suppose further that ¢ is an isomorphism. Then the field types of k1,
ko coincide, and ¢ is strictly semi-absolute. If, moreover, fori=1,2, k; is an
MLF of residue characteristic p;, then p1 = ps.

Proof.  Assertion (i) follows immediately from the topological finite generation
portions of Theorem 2.6, (i), (ii), (vi), together with the estimates of “&;(—)”,
“e/(—)” in Theorem 2.6, (i), (ii). Next, we consider assertion (ii). The fact that
the field types of ki, ko coincide follows from assertion (i) applied to ¢, ¢~1. To
verify that ¢ is strictly semi-absolute, let us first observe that every semi-absolute
isomorphism whose inverse is also semi-absolute is necessarily strictly semi-absolute.
Thus, since the inverse to ¢ satisfies the same hypotheses as ¢, to complete the
proof of Corollary 2.8, it suffices to verify that ¢ is semi-absolute. If kq, ko are
FF’s (respectively, MLF’s; NF’s), then this follows immediately from the “group-
theoretic” characterizations of 1I; — G; in Theorem 2.6, (i) (respectively, Theorem
2.6, (v); Theorem 2.6, (vi)). Finally, if, for i = 1,2, k; is an MLF of residue
characteristic p;, then since ¢ induces an isomorphism G; — G, the fact that
p1 = p2 follows, for instance, from [Mzk6], Proposition 1.2.1, (i). O

Remark 2.8.1. In the situation of Corollary 2.8, suppose further that k, is an
MLF of residue characteristic py, and that o C {p2}. Then it is not clear to the
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author at the time of writing [but of interest in the context of the theory of the
present §2!] whether or not it is possible for there to exist a continuous surjective

homomorphism
G1 — H2

[in which case, by Corollary 2.8, (i), k; is either an NF or an MLF].

The general theory discussed so far for arbitrary X becomes substantially sim-
pler and more explicit, when X is a hyperbolic orbicurve.

Definition 2.9. Let G be a profinite group. Then we shall refer to as an aug-free
decomposition of G any pair of closed subgroups Hy, Ho C G that determine an
isomorphism of profinite groups

H1XH2$G

such that H; is a slim, topologically finitely generated, augmented pro-prime |cf.
Definition 1.1, (iii)] profinite group, and Hs is either trivial or a nonabelian pro-%-
solvable free group for some set 3 C Primes of cardinality > 2. In this situation,
we shall refer to Hy as the augmented subgroup of this aug-free decomposition and
to Hy as the free subgroup of this aug-free decomposition. If G admits an aug-free
decomposition, then we shall say that G is of aug-free type. If G is of aug-free type,
with nontrivial free subgroup, then we shall say that G is of strictly aug-free type.

Proposition 2.10. (First Properties of Aug-free Decompositions) Let
H1 X HQ = G

be an aug-free decomposition of a profinite group G, in which Hy is the aug-
mented subgroup, and Hs is the free subgroup. Then:

(i) Let J be a topologically finitely generated, augmented pro-prime
group; ¢ : J — G a continuous homomorphism of profinite groups such that ¢(J)
is normal in some open subgroup of G. Then ¢(J) C Hj.

(ii) Aug-free decompositions are unique — i.e., if J; x Jo — G is any aug-
free decomposition of G, in which Jy is the augmented subgroup, and Jy is the free
subgroup, then J; = Hy, Jo = Hs.

Proof. First, we consider assertion (i). Suppose that ¢(.J) is not contained in Hj.
Then the image I C Hy of ¢(J) in Hs is a nontrivial, topologically finitely generated
closed subgroup which is normal in an open subgroup of Hs. Since Hs is elastic [cf.
[MT], Theorem 1.5], it follows that I is open in Hs, hence that I is a nonabelian
pro-Y free group for some set ¥ C Primes of cardinality > 2. On the other hand,
since [ is a quotient of the augmented pro-prime group J, it follows that there exists
a p € Primes such that the maximal pro-(# p) quotient of I is abelian. But this
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implies that ¥ C {p}, a contradiction. Next, we consider assertion (ii). By assertion
(i), J1 € Hy, Hy C Ji. Thus, H; = J;. Now since Hy = J; is slim, it follows that
the centralizer Zy, (G) (respectively, Z;, (G)) is equal to Hs (respectively, Jz), so
Hy, = Js, as desired. ()

Theorem 2.11. (Maximal Pro-RTF-quotients for Hyperbolic Orbi-
curves) Let

1-A—=1IT—-G—1

be an extension of AFG-type; (k, X,3) partial construction data [consisting
of the construction data field, construction data base-stack, and construction data
prime set] for IL - G. Suppose that k is an MLF of residue characteristic p; X is
a hyperbolic orbicurve; ¥ # (). For [ € Brimes, write

m[] C 1

for the maximal almost pro-l topologically finitely generated closed normal sub-
group of I1, whenever a unique such mazximal subgroup exists; if there does not exist

a unique such mazximal subgroup, then set TI[l] et {1}.

In the following, we shall use a subscript “G” to denote the quotient of a
closed subgroup of 11 determined by the quotient I — G; we shall use the super-
script “RTF” to denote the maximal pro-RTF-quotient and the superscripts
‘RTF-aug”, “RTF-free” to denote the augmented and free subgroups of the max-
imal pro-RTF-quotient whenever this maximal pro-RTF-quotient is of aug-free
type. Then:

(i) Suppose that I1[l] # {1} for some | € Primes. Then I[l] = A, ¥ = {l};
II[I'] = {1} for all I € Primes such that I' # 1.

(11) Suppose that I1[l] = {1} for alll € Primes. Then ¥ is of cardinality > 2.
Moreover, for every open subgroup J C II, there exists an open subgroup H C J
which is characteristic as a subgroup of I such that HRXTY is of aug-free type.
In particular, the subquotients HRTF-aue  [RTF-free of 1T gre characteristic.

(i1i) Suppose that II[l] = {1} for all I € Primes. Suppose, moreover, that
H C I is an open subgroup that corresponds to a finite étale covering Z — X,
where Z 1is a hyperbolic curve, defined over a finite extension kz of k such
that Z has stable reduction [cf. §0] over the ring of integers Oy, of kz; that
Z(kz) # 0; that the dual graph T'z of the geometric special fiber of the resulting
model [cf. §0] over Oy, has either trivial or nonabelian topological fundamental
group; and that the Galois action of G on I'y s trivial. Thus, the finite Galois
coverings of the graph I'z of degree a product of primes € ¥ determine a pro-X
“combinatorial” quotient H — A®©™; write A®°™ — AC™-°l for the maximal
pro-solvable quotient of A°™. Then the quotient

H — HgTF % Acom—sol
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may be identified with the maximal pro-RTF-quotient H — HY'Y of H; more-
over, this product decomposition determines an aug-free decomposition of HXTF,
Finally, for any open subgroup J C 11, there exists an open subgroup H C J which
is characteristic as a subgroup of 11 and, moreover, satisfies the above hypotheses
on “H7”.

(iv) Suppose that 11[I] = {1} for all Il € Primes. Let H C J C II be open
subgroups of I1 such that HRX™Y | JRTF gre of aug-free type. Then we have iso-
morphisms

JRTF—aug :) Jé{TF JRTF—free :) Ker(JRTF — JETF)

I

HRTF N

[arising from the natural morphisms involved]; the open homomorphism
JRTY induced by ¢ maps HRTF-298 (respectively, HRTF-e) onto an open subgroup
of JRTF-aug (respectively, JRTF-free )

Proof.  Since A is elastic [cf. Proposition 2.3, (i)], every nontrivial topologically
finitely generated closed normal subgroup of A is open, hence almost pro-Y’ for
Y C Primes if and only if X' DO X. Also, let us observe that by Theorem 2.6, (iv),
II[l] € A for all I € Primes. Thus, if II[l] # {1} for any [ € Primes, then it follows
that ¥ = {{}, II[l]] = A, and that II[l] is finite, hence trivial [since A is slim — cf.
Proposition 2.3, (i)] for primes I’ # [. Also, we observe that if ¥ is of cardinality
one, i.e., ¥ = {l} for some [ € Primes, then A = II[/] # {1} [cf. Theorem 2.6,
(iv)]. This completes the proof of assertion (i), as well as of the portion of assertion
(ii) concerning . Also, we observe that the remainder of assertion (ii) follows
immediately from assertion (iii).

Next, we consider assertion (iii). Suppoes that H C II satisfies the hypotheses
given in the statement of assertion (iii). Thus, one has the quotient H — A™,
where A®™ is either trivial or a nonabelian pro-% free group, where X is of cardi-
nality > 2 [cf. the portion of assertion (ii) concerning ¥]. Write A2P = A3bt — R
for the maximal pro-X quotient of the quotient “R” of Lemma 2.7, (ii), associated
to the Albanese variety of Z.

Now I claim that the quotient A — R coincides with the quotient A —»
(Acem)ab Rirst let us observe that by the definition of R [cf. Lemma 2.7, (ii)], it
follows that the quotient A —» (A™)2b factors through the quotient A — R. In
particular, since, for [ € ¥, the modules R ® Z;, (A°™)3 ® 7; are Z;-free modules
of rank independent of | € ¥ [cf. Lemma 2.7, (ii); the fact that A®™ is pro-X free],
it suffices to show that these two ranks are equal, for some [ € ¥. Moreover, let
us observe that for the purpose of verifying this claim, we may enlarge 3. Thus, it
suffices to show that the two ranks are equal for some [ € ¥ such that [ # p. But
then the claim follows immediately from the [well-known] fact that by the “Rie-
mann hypothesis for abelian varieties over finite fields” [cf., e.g., [Mumf], p. 206],
all powers of the Frobenius element in the absolute Galois group of the residue
field of k act with eigenvalues # 1 on the pro-l abelianizations of the fundamental
groups of the geometric irreducible components of the smooth locus of the special
fiber of the stable model of Z over Oy,. This completes the proof of the claim.



TOPICS IN ABSOLUTE ANABELIAN GEOMETRY I 27

Now let us write H — H™ for the quotient of H by Ker(A — A®™). Then
by applying the above claim to various open subgroups of H, we conclude that
the quotient H — HR'F factors through the quotient H —» H™ [i.e., we have a
natural isomorphism HRTF = (Heom)RTF] - On the other hand, since Z(kz) # 0,
it follows that H — H¢, hence also H°™ — Hg admits a section s : Hg — H™
whose image lies in the kernel of the quotient H™ — A®™ [cf. the situation of
[Mzk3], Lemma 1.4]. In particular, we conclude that the conjugation action of Hg
on A™ = Ker(H®™ — Hg) C H®™ arising from s is trivial. Thus, s determines
a direct product decomposition

Hcom :) HG X Acom

— hence a direct product decomposition HRTYF = (feom)RTE I frRTE (A com)RTE,
Moreover, since A°™ is either trivial or nonabelian pro-X free, it follows immedi-
ately that the quotient A®™ — (A™)RTF may be identified with the quotient
Acom _; Acom-sol ' where ACOm-s0l ig either trivial or nonabelian pro-X-solvable free.
Since HE'™ is slim, augmented pro-prime, and topologically finitely generated [cf.
Proposition 1.5, (i), (ii); Theorem 2.6, (ii)], we thus conclude that we have obtained
an aug-free decomposition of HRTY  as asserted in the statement of assertion (iii).

Finally, given an open subgroup J C II, the existence of an open subgroup
H C J which satisfies the hypotheses on “H” in the statement of assertion (iii)
follows immediately from well-known facts concerning stable curves over discretely
valued fields [cf., e.g., the “stable reduction theorem” of [DM]; the fact that ¥ is
of cardinality > 2, so that one may assume that I'z is as large as one wishes by
passing to admissible coverings]. The fact that one can choose H to be characteristic
follows immediately from the characteristic nature of A [cf., e.g., Corollary 2.8,
(ii)], together with the fact that A, II are topologically finitely generated [cf., e.g.
Proposition 2.2; Theorem 2.6, (ii)]. This completes the proof of assertion (iii).

Finally, we consider assertion (iv). First, we observe that since the augmented
and free subgroups of any aug-free decomposition are slim [cf. Definition 2.9; [MT],
Proposition 1.4], hence, in particular, do not contain any nontrivial closed normal fi-
nite subgroups, we may always replace H by an open subgroup of H that satisfies the
same hypotheses as H. In particular, we may assume that H is an open subgroup
“H” as in assertion (iii) [which ezists, by assertion (iii)]. Then by Proposition 2.10,
(i), the image of HRTF-aue in JRTY ig contained in JRTF-218 50 we obtain a mor-
phism HRTF-ave _, jRTF-aug By agsertion (iii), HRTF-ree = Ker(HRY — HETT),
and the natural morphism HRMF-aue — HETY ig an isomorphism. Since Hg — Jg,
hence also HE™Y — JETY is clearly an open homomorphism, we thus conclude
that the natural morphism HRTF-aus _, JGRTF, hence also the natural morphism
JRTF-aug _, JGRTF, is open. Thus, the image of JRTF-free jp JGRTF commutes with an
open subgroup of JEIF [i.e., the image of JRTF-2u8 in JBIF] 50 by the slimness of
JETF [cf. Proposition 1.5, (i)], we conclude that JETF-free € Ker(JRTF —, JETF),

In particular, we obtain a surjection JRTF-2ug _, JgTF, hence an ezact sequence

1— N — JRTF-aug N JGRTF -1

[where we write N o Ker(JRTF-aug _, JRIF) C jRTF-aug C JRTF] Note, more-
over, that since JE'Y is an augmented pro-p group [cf. Proposition 1.5, (ii)] which
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JRTF

admits a surjection J3'" — Z, x Z, [cf. the computation of “4}(—)” in Theorem

2.6, (ii)], it follows immediately that [the augmented pro-prime group] JRTF-2us
is an augmented pro-p group whose augmentation factors through JGRTF; in par-

ticular, we conclude that N is pro-p. Also, we observe that since the composite
HRTF-free _, HETF — JETF is trivial, it follows that the projection under the
quotient JRTF — JRTF-aug of the image of HRTF-free i JRTF is contained in N.

Now I claim that to complete the proof of assertion (iv), it suffices to verify
that N = {1} [or, equivalently, since JRTF-3u8 is slim, that N is finite]. Indeed,
if N = {1}, then we obtain immediately the isomorphisms JRTt-aus = jETE
JRTE-free & Ker(JRTE — JBTF). Moreover, by the above discussion, if N = {1},
then it follows that the image of HRTF-free in JRTF is contained in JRTF-free Since
the homomorphism HR'F — JRTF i5 open, this implies that the open homomor-
phism HRTF — JRTF induced by ¢ maps HETF-2u8 (respectively, HRTF-ree) onto
an open subgroup of JRTF-2u8 (respectively, JETF-free) " as desired. This completes
the proof of the claim.

Next, let J C J be an open subgroup that arises as the inverse image in J
of an [open] RTF-subgroup J. C Jg [so the notation “J.” does not lead to any
contradictions]. Then one verifies immediately from the definitions that any RTF-
subgroup of J (respectively, J) determines an RTF-subgroup of Jg (respectively,
J). Thus, the natural morphisms

JRIF _, jRTF,  jRTF _ jRTF

I

are injective. Moreover, the subgroups JRTF-aue M J RTF, JRTF-free ¢ yRTE

determine an aug-free decomposition of JR'¥. Thus, from the point of view of
verifying the finiteness of N, we may replace J by J [and H by an appropriate
smaller open subgroup contained in J and satisfying the hypotheses of the “H” of
(iii)]. In particular, since [by the definition of “RTF” and of the subgroup N!| there
exists a J such that N C JRTF2U8 hag nontrivial image in (JRTF'a“g)ab‘t
assume without loss of generality that N has nontrivial image in (
Thus, we have

clearly

, We may
JRTF—aug)ab—t

(A7) ) BR(TRTE0E) > 51 (ET) = ()
[cf. the notation of Theorem 2.6], i.c., s; oy (JETFaue) — §L(JETF) > 0. By
Theorem 2.6, (ii), this already implies that p € X.

In a similar vein, let J C J be an open subgroup that arises as the inverse
image in J of an [open] RTF-subgroup JRT¥-free ¢ JRTF-free  Then one verifies
immediately from the definitions that any RTF-subgroup of J determines an RTF-
subgroup of J. Thus, the natural morphism J®TY — JRTF ig injective, with image
equal to JRTF-aug s jRIF-free £poregver, the subgroups JRTF-aug  jRTF-free ¢ yRTE
clearly determine an aug-free decomposition of J®' [so the notation «JRTF-ree»
does not lead to any contradictions]. Since [by the above discussion applied to
J instead of J] JRTF® maps to the identity in J (R;TF, we thus obtain a pro-
RTF quotient JNTF — jRTFave — jRTF-aug _, jRIF hence a pro-RTF quotient
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JRTE _, JRTF-aug _, %TF in which the image of J[)A is a finite normal closed
subgroup, hence trivial [since J %TF is slim — cf. Proposition 1.5, (i)]. That is to say,
the pro-RTF quotient J —» JRTFaue . j& RTE factors through Jg, hence through
JRTF. Thus, we obtain a surjection JRTF lgTF whose composite JRTF —»
Ja e — Jé{TF with the natural morphism induced by the inclusion J — J is the
identity [since all of these maps “lie under a fixed JRTF-2u8”]  But this implies
that the natural morphism i%TF — JGRTF is an isomorphism. In particular, we
have an isomorphism of kernels Ker(JXF-218 —, J3TF) 5 Ker(JRTF-aug _, jRTF)
Thus, from the point of view of verifying the finiteness of N, we may replace J by
J [and H by an appropriate smaller open subgroup contained in J and satisfying
the hypotheses of the “H” of (iii)]. In particular, since JRF-2ue & jRTF-aug e
may assume without loss of generality that the rank r; of the pro-X j-solvable free
group JRTF-free [for some subset ¥; C Primes of cardinality > 2] is either 0 or >
6;(JRTF‘aug). In particular, if [ € ¥, then either r; = 0 or r; = ¢} (JRIF-ree) >
611)(JRTF—aug> > 5.

Now we compute: Since ¥ is of cardinality > 2, let | € 3 be a prime # p. Then:

5l1(JRTF—free) — 5l1(JRTF—free) + 51(JRTF—aug) 5 (JRTF)
=0 (JH) =6/ (J&T) = 6/ (J) = 6] (Je)
= 53(J) — 6}(J) = SH(IVTF) — 5L(JET)
1 RTF-free 1/ 7RTF-au RTF 1/ yRTF-free
= 5L( VTP gl (JRTERE) LT = gL (SRR 4

[where we apply the “independence of 1” of Theorem 2.6, (ii)]. Thus, we conclude
that Sy = 6l1<JRTF—free) _5;<JRTF—f1ree)7 where 5l1(JRTF—free)7 511)<JRTF—free) c {O, 7’]}
[depending on whether or not I, p belong to X;], is a positive integer. But this
implies that s; € {0,r;, —r;}, hence that s; = r; > 0 — in contradiction to the
inequality s; < ry [which holds if r; > 0]. This completes the proof of assertion

(iv). O

Remark 2.11.1. One way of thinking about the content of Theorem 2.11,
(iv), is that it asserts that “aug-free decompositions of maximal pro-RTF-
quotients play an analogous [though somewhat more complicated] role for absolute
Galois group of MLLF s to the role played by torsion-free abelianizations for
absolute Galois groups of FF’s” [cf. Theorem 2.6, (i)].

Corollary 2.12. (Group-theoretic Semi-absoluteness via Maximal Pro-
RTF-qllOtieIltS) For i = 1,2, let 1 — Az — Hz — Gz — 1, ki, Xz'; Ei, gb :
I, — Iy be as in Proposition 2.5. Suppose further that k; is an MLF; X; is a
hyperbolic orbicurve; 3; # (. Also, fori=1,2, let us write

0; CII;

for the maximal almost pro-prime topologically finitely generated closed normal

subgroup of I1; if such a maximal subgroup exists; if such a mazximal subgroup does

not exist, then we set ©; = {1}. Then:
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(i) For i = 1,2, ©;, C A;; O, # {1} if and only if ¥; is of cardinality
one; if ©; # {1}, then ©; = A;. Finally, $(01) C O3 [so ¢ induces a morphism
Hl/@1 — HQ/@Q/

(ii) In the notation of Theorem 2.11, ¢ is semi-absolute [or, equivalently,
pre-semi-absolute — cf. Proposition 2.5, (iii)] if and only if the following [“group-
theoretic”/ condition holds:

(x52P) For i = 1,2, let H; C 11;/©; be an open subgroup such that HFTF is
of aug-free type, and [the morphism induced by] ¢ maps Hy into Hs.
Then the open homomorphism

HFT F N H;T F

RTF-free RTF-free
Hl H2 .

induced by ¢ maps mto
(1ii) If, moreover, 3o is of cardinality > 2, then ¢ is semi-absolute if and only
if it is strictly semi-absolute [or, equivalently, pre-strictly semi-absolute —

cf. Proposition 2.5, (v)].

Proof.  First, we consider assertion (i). By Theorem 2.6, (iv), any almost pro-
prime topologically finitely generated closed normal subgroup of II; — hence, in
particular, ©®; — is contained in A;. Thus, by Theorem 2.11, (i), (ii), ©; # {1}
if and only if ¥; is of cardinality one; if ©; # {1}, then ©; = A;. Now to show
that ¢(0©1) C O., it suffices to consider the case where ¢(©1) # {1} [so ¥; is of
cardinality one]. Then, by Theorem 2.6, (iv), we have ¢(©1) C As. Thus, we may
assume that ©y = {1} [so X is of cardinality > 2]. But then the elasticity of Aqy
[cf. Proposition 2.3, (i)] implies that ¢(©1) is an open subgroup of A,, hence that
#(01) is almost pro-3s [for some Y5 of cardinality > 2|, which contradicts the fact
that ¢(01) is almost pro-3; [for some X1 of cardinality one]. This completes the
proof of assertion (i).

Next, we consider assertion (ii). By Proposition 2.5, (iii), one may replace
the term “semi-absolute” in assertion (ii) by the term “pre-semi-absolute”. By
assertion (i), for ¢ = 1,2, either ©;, = {1} or ©; = A;; in either case, it follows from
Theorem 2.11, (iv) [cf. also Proposition 1.5, (i), (ii)], that [in the notation of (x52P)]
the projection HXTY —» HiRTF'aug may be identified with the projection HXTY —»
(H;)§TF [which is an isomorphism whenever ©; = A;]. Thus, the condition (+*2P)
may be thought of as the condition that the morphism H{''F — HRTF be compatible
with the projection morphisms HRTF —» (HZ)&TF From this point of view, it
follows immediately that the semi-absoluteness of ¢ implies (¥*2P), and that (x*2P)
implies [in light of the existence of Hy, Hy — cf. Theorem 2.11, (ii)] the pre-semi-
absoluteness of ¢. Assertion (iii) follows from Proposition 2.5, (iv), (v). O

Remark 2.12.1. The criterion of Corollary 2.12, (ii), may be thought of as a
“group-theoretic Hom-version”, in the case of hyperbolic orbicurves, of the numerical

criterion “C(H)/¢(I1) = [II : H]” of Theorem 2.6, (v).
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Example 2.13. A Non-pre-semi-absolute Absolute Homomorphism.

(i) In the situation of Theorem 2.11, suppose that ¥ = Primes. Fix a natural
number N [which one wants to think of as being “large”]. By replacing IT by an
open subgroup of II, we may assume that II satisfies the hypotheses of the subgroup
“H” of Theorem 2.11, (iii). Thus, we have a “combinatorial” quotient IT — A™
where A°™ is a nonabelian profinite free group. In particular, there exists an open
subgroup of A®™ which is a profinite free group on > N generators. Thus, by
replacing II by an open subgroup of II arising from an open subgroup of A®™, we
may assume from the start that A°™ is a profinite free group on > N generators.

(ii) Now let
1-A*=II" -G —>1

be an extension of AFG-type that admits a construction data field which is an MLF.
Thus, IT* is topologically finitely generated [cf. Theorem 2.6, (ii)], so it follows that
there exists a I as in (i), together with a surjection of profinite groups

I — IT°

that factors through the quotient IT — A®™. Thus, v is an absolute homomorphism
which is not pre-semi-absolute [hence, a fortiori, not semi-absolute].

In light of the appearance of the “combinatorial quotient” in Theorem 2.11,
(iii), we pause to recall the following result [cf. [Mzk6], Lemma 2.3, in the profinite
case].

Theorem 2.14. (Graph-theoreticity for Hyperbolic Curves) Fori = 1,2,
let 1 - A; —1II;, - G; — 1, ki, Xi, 2, ¢ : II; — Ils be as in Proposition 2.5.
Suppose further that k; is an MLF of residue characteristic p;; that ¥; contains a
prime # p;; that ¢ is an isomorphism; and that X; is a hyperbolic curve with
stable reduction over the ring of integers Ok, of k;. Write I'; for the dual semi-
graph with compact structure [i.e., the dual graph, together with additional
open edges corresponding to the cusps — cf. [Mzk6], Appendix] of the geometric
special fiber of the stable model of X; over Oy,. Then:

(i) We have py = pa, 1 = Xo; ¢ induces isomorphisms A1 = Ag, G1 = Ga;
¢ induces an isomorphism of semi-graphs ¢r : I'1 = I's which is functorial
in ¢. In particular, the natural Galois action of Gy on I'1 is compatible, relative to
or, with the natural Galois action of Go on I's.

(ii) For i = 1,2, suppose that the action of G; on I'; is trivial. Write II; —
AS™ for the pro-Y; “combinatorial” quotient determined by the finite Galois
coverings of the semi-graph I'; of degree a product of primes € ;. Then ¢ is
compatible with the quotients II; — A§°™.

Proof. First, we consider assertion (i). By Corollary 2.8, (ii), py = p2, and ¢
induces isomorphisms A; = Ay, Gi = G5. Since [by the well-known structure
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of geometric fundamental groups of hyperbolic curves] ¥; is the unique minimal

3 C Primes such that A; is almost pro-X, we thus conclude that ¥; = ¥5. Write

p L =y, ¥ S = 5y let I € ¥ be such that I # p. Then it follows

immediately from the “Riemann hypothesis for abelian varieties over finite fields”
[cf., e.g., [Mumf], p. 206] that the action of G; on the mazimal pro-l quotient A; —

Agl) is — in the terminology of [Mzk13] — “I-graphically full”. Thus, by [Mzk13],
Corollary 2.7, (ii), the isomorphism A(ll) = Aél) is — again in the terminology
of [Mzk13] — “graphic”, hence induces a functorial isomorphism of semi-graphs
'y = Ty, as desired.

Next, we consider assertion (ii). First, we observe that, by assertion (i), the
condition that the action of G; on I'; be trivial is compatible with ¢. Also, let us
observe that if H; C II; is an open subgroup corresponding to a finite étale covering
Z; — X; of X;, then the condition that Z; have stable reduction is compatible with
¢ [cf. [Mzk6], the proof of Lemma 2.1; our assumption that there exists an [ € ¥;
such that | # {p;}|. Next, I claim that:

A finite étale Galois covering Z; — X; of X, arises from AJ°™ if and only
if Z; has stable reduction, and the action of Gal(Z;/X;) on the dual semi-
graph with compact structure of the geometric special fiber of the stable
model of Z; is free.

Indeed, the necessity of this criterion is clear. To verify the sufficiency of this
criterion, observe that, by considering the non-free actions of inertia subgroups of
the Galois covering Z; — X;, it follows immediately that this criterion implies
that all of the inertia groups arising from irreducible components of the geometric
special fiber of a stable model of X; are trivial, hence [cf., e.g., [Tamal], Lemma 2.1,
(iii)] that the covering Z; — X; extends to an admissible covering of the respective
stable models. On the other hand, once one knows that the covering Z;, — X;
admits such an admissible extension, the sufficiency of this criterion is immediate.
This completes the proof of the claim. Now assertion (ii) follows immediately, by
applying the functorial isomorphisms of semi-graphs of assertion (i). O
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Section 3: Absolute Open Homomorphisms of Local Galois Groups

In the present §, we give various generalizations of the main result of [Mzkl]
concerning isomorphisms between Galois groups of MLF’s. One aspect of these
generalizations is the substitution of the condition given in [Mzkl] for such an
isomorphism to arise geometrically — a condition that involves the higher ram-
ification filtration — by various other conditions [cf. Theorem 3.5]. Certain of
these conditions were motivated by a recent result of A. Tamagawa [cf. Remark
3.8.1] concerning Lubin-Tate groups and abelian varieties with complex multiplica-
tion; other conditions [cf. Corollary 3.7] were motivated by a certain application of
the theory of the present §3 to be discussed in [Mzk15]. Another aspect of these
generalizations is that certain of the conditions studied below allow one to prove
a “Hom-version” [i.e., involving open homomorphisms, as opposed to just isomor-
phisms — cf. Theorem 3.5] of the main result of [Mzk1]. Finally, this Hom-version
of the main result of [Mzk1] implies certain semi-absolute Hom-versions [cf. Corol-
lary 3.8, 3.9 below] of the absolute Isom-version of the Grothendieck Conjecture
given in [Mzk14], §2, and the relative Hom-version of the Grothendieck Conjecture
for function fields given in [Mzk3|, Theorem B.

Let k be an MLF of residue characteristic p; k an algebraic closure of k; G, def

Gal(k/k); k the p-adic completion of k; E an MLF of residue characteristic p all of

whose Q,-conjugates are contained in k. Write I, C G}, (respectively, I]Z"Hd C Iy) for

the inertia subgroup (respectively, wild inertia subgroup) of Gy; Gi™e def Gy /I¥Y,

G G /n (27).

Definition 3.1.

(i) Let A be an abelian topological group; p,p’ : Gx, — A characters [i.e.,
continuous homomorphisms|. Then we shall write p = p’ and say that p, p’ are
wnertially equivalent if, for some open subgroup H C Ij, the restricted characters
pla, p'la coincide [cf. [Serre3], 111, §A.5].

(ii) Write Emb(E, k) for the set of field embeddings o : E — k. Let o €
Emb(E, k). Then if 7 is a uniformizer of k, then we shall denote by xo » : G, — E*
the composite homomorphism

G — G 5 ()N 5 Of xZ - Of — 0f C E~

” is the isomor-

— where the “A” denotes the profinite completion; the first “ =
phism arising from local class field theory [cf., e.g., [Serre2]]; the second “ =
is the splitting determined by 7; the second “—” is the projection to the factor
O;, composed with the inverse automorphism on O;° [cf. Remark 3.1.1 below];
the homomorphism O} — Oj is the norm map associated to the field embed-
ding o. Since [as is well-known, from local class field theory| Iy C G} surjects to

OF x {1} C O x Z, it follows immediately that the inertial equivalence class of

7



34 SHINICHI MOCHIZUKI

Xo,x 18 independent of the choice of . Thus, we shall often write x, to denote x4«
for some unspecified choice of 7.

(iii) Let p : G — E* be a character. Then we shall say that p is of ¢LT-
type [i.e., “quasi-Lubin-Tate” type] if there exists an open subgroup H C G,
corresponding to a field extension kg of k, and a field embedding o : £ < kg such
that p|g = Xo; in this situation, we shall refer to [E : Q,] as the dimension of p.
We shall say that p is of 01-type if it is Hodge-Tate, and, moreover, every weight
appearing in its Hodge-Tate decomposition € {0,1}. Write

cyclo | X

for the cyclotomic character associated to G. We shall say that p is of ICD-type
[i.e., “inertially cyclotomic determinant” type] if its determinant det(p) : G, — Q,

[i.e., the composite of p with the norm map E* — Q)] is inertially equivalent to
cyclo

k

(iv) For i = 1,2, let k; be an MLF of residue characteristic p;; k; an algebraic

closure of k;; k; the p;-adic completion of k;. We shall use similar notation for the
various subquotients of the absolute Galois group Gy, Lt Gal(k;/k;) of k; to the
notation already introduced for Gj. Let

(b:le —>Gk2

be an open homomorphism. Then we shall say that ¢ is of gLT-type (respectively, of
01-qLT-type) if p1 = p2, and, moreover, for every pair of open subgroups H; C Gy, ,
Hy; C Gy, such that ¢(Hy) C Ha, and every character p : Hy — F* of qLT-type
[where F'is an MLF of residue characteristic p; = po all of whose conjugates are
contained in the fields determined by Hy, Hs|, the restricted character p|g, : H; —
F* [obtained by restricting via ¢] is of qLT-type (respectively, of 01-type). We
shall say that ¢ is of HT-type [i.e., “Hodge-Tate” type] if p; = po, and, moreover,
the topological Gi,-module [but not necessarily the topological field!] obtained by

composing ¢ with the natural action of G}, on ky is isomorphic [as a topological

Gk, -module] to ki. We shall say that ¢ is of CHT-type [i.e., “cyclotomic Hodge-
Tate” type] if ¢ is of HT-type, and, moreover, the cyclotomic characters of Gy, ,

Gy, satisfy X?Ido = XZZCIO o ¢. We shall say that ¢ is geometric if it arises from an

isomorphism of fields ko — k; that maps ko into k; [which implies, by considering
the divisibility of the k*, that p; = po].

(v) Let 1 = A — II — Gy — 1 be an extension of AFG-type. Then we shall
say that this extension IT — G}, [or, when there is no danger of confusion, that II] is
of A-qLT-type [i.e., “Albanese-quasi-Lubin-Tate” type] if for every open subgroup
H C Gy, and every character p : H — F* of qLT-type [where F is an MLF of
residue characteristic p all of whose conjugates are contained in the field determined

by H], there exists an open subgroup J C II x¢, (Ix()H) [so one has an outer

action of the image Jg of J in Gy on Ja o J (N A] such that the Jg-module V,
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obtained by letting Jg act on F' via p|j. is isomorphic to some subquotient S of
the Jg-module ng ® Qp.

Remark 3.1.1. As is well-known, the p that arises from a Lubin-Tate group is
of gLT-type — cf., e.g., [Serre3|, III, §A.4, Proposition 4. This is the reason for the
terminology “quasi-Lubin-Tate”.

We begin by reviewing some well-known facts.

Proposition 3.2.  (Characterization of Hodge-Tate Characters) Let p :
Gy — E be a character; write V, for the Gi-module obtained by letting G}, act
on E via p. Then p is Hodge-Tate if and only if

p= 11 x

c€Emb(E,k)
for somen, € Z. Moreover, in this case, we have an isomorphism of k|Gy]-modules:

Voo, k= P ko)
c€Emb(E,k)

[where the “(—)” denotes a Tate twist].

Proof. 1Indeed, this criterion for the character p to be Hodge-Tate is precisely the
content of [Serre3], III, §A.5, Corollary. The Hodge-Tate decomposition of V, then
follows immediately the Hodge-Tate decomposition of “V,” in the case where one
takes “p” to be x, [cf. [Serre3], III, §A.5, proof of Lemma 2]. O

Proposition 3.3. (Characterization of Quasi-Lubin-Tate Characters)
Let p, V,, be as in Proposition 3.2. Then the following conditions on p are equiv-
alent:

(i) p is of qLT-type.

~

(ii) We have an isomorphism on[Gk]-modules: V, ®q, ke 2(1) DkD.. .@2.

(iii) p is of ICD-type and Hodge-Tate; the resulting n, ’s of Proposition 3.2
are € {0,1}.

(iv) p is of ICD-type and of 01-type.

Proof. The fact that (i) implies (ii) follows immediately from the description of
the Hodge-Tate decomposition of “V,” in the case where one takes “p” to be x,
[cf. [Serre3], III, §A.5, proof of Lemma 2]. Next, let us assume that (ii), (iii), or
(iv) holds. In either of these cases, it follows that p, hence also the determinant
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det(p) : Gy, — Q, of p, is Hodge-Tate. Then by applying Proposition 3.2 to p, we
obtain that the associated n,’s are € {0, 1}; by applying Proposition 3.2 to det(p)
[in which case one takes “E” to be Q,], we obtain that det(p) is inertially equivalent
to the (32, ny)-th power of x{Y"°. But this allows one to conclude [either from
the explicit Hodge-Tate decomposition of (ii), or from the assumption that p is
of ICD-type in (iii), (iv)] that ) _ n, = 1, hence that there exists precisely one
o € Emb(E, k) such that n, = 1, nys = 0 for 0’ # 0. Thus, [sorting through the
definitions| we conclude that (i), (ii), (iii), and (iv) hold. This completes the proof
of Proposition 3.3. O

Proposition 3.4. (Preservation of Tame Quotients) In the notation of
Definition 3.1, (iv), let ¢ : Gy, — Gg, be an open homomorphism. Then
p1 = p2, and there exists a commutative diagram

G, - G

l l

Gtame ¢tame Gtame
kl kZ

— where the vertical arrows are the natural surjections; ¢'¥™° is an injective
homomorphism.

Proof. We may assume without loss of generality that ¢ is surjective. Next, let
H; C Gy, be an open subgroup, H; def ¢~ 1(Hs) C Gg,. Then if def p1 # pa,
then [since we have a surjection Hy — H;| 1 = 6} (Hs) > 6} (H1) > 2 for | = p;
[cf. Theorem 2.6, (ii)]; thus, we conclude that p; = py. Write p def p1 = pa. Since
Game = Z#P)(1) x Z [for some faithful action of Z on Z(#P) (1) — cf., e.g., [NSW],
Theorem 7.5.2], it follows immediately that every closed normal pro-p subgroup of
Gy2™e is trivial. Thus, the image of ¢(I') in GJ2™° is trivial, so we conclude that
¢ induces a surjection ¢**™° : Gi2™° — G2™°. Since, for i = 1,2, the quotient
Gpme — Gt = 7 may be characterized as the quotient Gime — (Gjame)ab-t it
thus follows immediately that ¢**™¢ induces continuous homomorphisms

Loy =7 ZOP(1) 2 Iy, /TP — 1, /I = 270 (1)

— the first of which is surjective, hence an isomorphism [since, as is well-known,
every surjective endomorphism of a profinite group is an isomorphism|. But this
implies that the second displayed homomorphism is also surjective, hence an iso-
morphism. This completes the proof of Proposition 3.4. ()

Theorem 3.5. (Criteria for Geometricity) For i = 1,2, let k; be an MLF

of residue characteristic p;; ki an algebraic closure of k;; k; the p;-adic completion
of ki. We shall use similar notation for the various subquotients of the absolute



TOPICS IN ABSOLUTE ANABELIAN GEOMETRY I 37

Galois group Gy, et Gal(k;/k;) of k; to the notation introduced at the beginning of
the present §3 for Gy. Let
(b : le — Gk2

be an open homomorphism. Then:

(i) The following conditions on ¢ are equivalent: (a) ¢ is of CHT-type; (b)
¢ is of 01-qLT-type; (¢) ¢ is of qLT-type; (d) ¢ is geometric.

(ii) Suppose that ¢ is an isomorphism. Then ¢ is geometric if and only if
it is of HT-type.

(iii) Fori=1,2, let 1 — A; — II; — Gk, — 1 be an extension of AFG-type;
W1l — Tl

a semi-absolute [or, equivalently, pre-semi-absolute — cf. Proposition 2.5,
(1ii)] homomorphism that lifts ¢. Suppose that 11y is of A-qLT-type. Then ¢ is
geometric.

Proof. First, we observe that by Proposition 3.4, it follows that p; = ps; write

P def p1 = p2. Also, we may always assume without loss of generality that ¢ is

surjective. In the following, we will use a superscript “Gy,” [where i = 1,2] to
denote the submodule of Gy, -invariants of a Gj,-module.

Next, we consider assertion (i). First, we observe that it is immediate that
condition (d) implies condition (a). Next, let us suppose that condition (a) holds.

~Gy,
Since k; = k;  is finite-dimensional over ), it follows that, for ¢ = 1,2, any Gy, -
module M which is finite-dimensional over Q,, is Hodge-Tate with weights € {0, 1}
if and only if

=~ o~ ~Gy,
dimg, (M © k;)%) + dimg, (M(~1) ® k;)*) = dimg, (M) - dimg, (k; )

[where the tensor products are over Q,]. Now suppose that M is a Gj,-module
that arises as a “V,” for some character p : Gy, — E* of qLT-type [so M is
Hodge-Tate with weights € {0,1} — cf. Proposition 3.3, (i) = (iv)]; write M, for
the G,-module M, obtained by composing the Gy,-action on M with ¢. Thus,
it follows immediately from our assumption that ¢ is of CHT-type that the above
condition concerning Q,-dimensions for M implies the above condition concerning
Qp-dimensions for My. Applying this argument to corresponding open subgroups
of Gi,, G, thus shows that ¢ is of 01-qLT-type, i.e., that condition (b) holds.

cyclo __ _ cyclo

Next, let us assume that condition (b) holds. First, I claim that x;”"" = x> "0

¢. Indeed, by condition (b), it follows that the character y&° o ¢ : Gy, — QX is
ko 1 P

cyclo Cyclo>
1

of 01-type. Thus, by Proposition 3.2, we conclude that x;’ =" o ¢ = (X% ™. for

cyclo

some n € {0,1}. On the other hand, the restriction of Xy, 0 I, clearly has open

image; since ¢ is open, it thus follows that the restrction of X?;Clo o ¢ to Iy, has
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open image. This rules out the possibility that n = 0, hence completes the proof
of the claim. Now, by applying this claim, together with Proposition 3.3, (i) <=
(iv), we conclude that ¢ is of qLT-type, i.e., that condition (c¢) holds.

Next, let us assume that condition (c) holds. First, I claim that this already
implies that ¢ is injective [i.e., an isomorphism|. Indeed, let v € Ker(¢) C G, be
such that v # 1. Then there exists an open subgroup J; C Gy, C Gq, satisfying
the following conditions: (1) v ¢ Ji; (2) J1 is characteristic as a subgroup Gg,; (3)
the extension E of @, determined by J; contains all Q,-conjugates of k. Fix an
embedding o9 : ko — E; write Ha C Gy, for the corresponding open subgroup. Let
Hy; C J; C Gy, be an open subgroup which is normal in G, such that ¢(H;) C
Hy; for i = 1,2, write kg, for the extension of k; determined by H;. Thus, the
embedding o : £ — kp, given by the identity F = kg, (respectively, o1 : E — kg,
determined by the inclusion Hy; C J;) determines a character py : Hy — E*
(respectively, p; : Hy — E*) of qLT-type [i.e., the character “x,,” (respectively,
“Xoi)]- Moreover, by condition (c), the character poo(p|g,) : H1 — E* is of ¢LT-
type, hence is inertially equivalent to Topy : Hy — E* for some 7 € Gal(E/Q)). In
particular, by replacing oo by 02 o 7, we may assume that 7 is the identity, hence
that p2 o (¢|m,) = p1. On the other hand, since v ¢ Jy, hence acts nontrivially on
the subfield E C kg, [relative to the embedding o], it follows that p; o Ky =00p1,
where we write . for the automorphism of H; given by conjugating by -, and
d € Gal(E/Qy) is not equal to the identity. But since ¢(y) = 1 € Gy,, we thus
conclude that § o p1 = p1 0 ky = p2 0 (P|m,) 0 Ky = p2 0 (|u,) = p1, which [since
p1 has open image| contradicts the fact that ¢ € Gal(E/Q,) is not equal to the
tdentity. This completes the proof of the claim. Thus, we may assume that ¢ is
an isomorphism of qLT-type, i.e., we are, in effect, in the situation of [Mzkl1], §4.
In particular, the fact that ¢ is geometric, i.e., that condition (d) holds, follows
immediately via the argument of [Mzk1], §4. This completes the proof of assertion

(i).

Next, we consider assertion (ii). Since ¢ is an isomorphism, it follows [cf.
[Mzk1], Proposition 1.1; [Mzk6], Proposition 1.2.1, (vi)] that XZXCIO = X?Q'Clo o¢. In
particular, ¢ is of HT-type if and only if ¢ is of CHT-type. Thus, assertion (ii)
follows from the equivalence of (a), (d) in assertion (i).

Finally, we consider assertion (iii). First, let us recall that by a well-known

result of Tate [cf. [Tate|, §4, Corollary 2], if J C II; is an open subgroup with image

Ja C Gj, and intersection Ja def J() A1, then the Jg-module ng ® Q) is always

Hodge-Tate with weights € {0,1}. Thus, the condition that Iy is of A-qLT-type
implies that ¢ is of 01-qLT-type, hence, by assertion (i), geometric. This completes
the proof of assertion (iii). O

Definition 3.6.

(i) If H C Gy, is an open subgroup corresponding to an extension field kg of
k, then by local class field theory [cf., e.g., [Serre2]], we have a natural isomorphism

Or. = Tor(H)
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— where we write Tor(H) [i.e., the “toral portion of H”] for the image of I, [ H
in H2P. Thus, by applying the p-adic logarithm O]:H — kp, we obtain a natural

isomorphism Ay : Tor(H) ® Q, = kg.

(ii) We shall refer to a collection {Np }m, where H ranges over a collection of
open subgroups of G that form a basis of the topology of Gy, as a uniformly toral
neighborhood of Gy, if there exist nonnegative integers a,b [which are independent
of H!] such that [in the notation of (i)] Ny C Tor(H) ® Q, is an open subgroup
such that p® - Ok, C Ag(Ng) Cp~°- Ok, C kn.

(iii) Let ¢ : Gy, — G4, be an isomorphism of profinite groups. Then we shall
say that ¢ is uniformly toral if G, admits a uniformly toral neighborhood { Ny} g
such that {¢(Ng)} g forms a uniformly toral neighborhood of Gy,. We shall say
that ¢ is RF-preserving [i.e., “ramification filtration preserving”] if ¢ is compatible
with the filtrations on Gy, , G, given by the [positively indexed| higher ramification
groups in the upper numbering [cf., [Mzk1]|, Theorem].

Corollary 3.7. (Uniform Torality and Geometricity) In the situation
of Theorem 3.5, suppose further that ¢ is an isomorphism. Then the following
conditions on ¢ are equivalent: (a) ¢ is RF-preserving; (b) ¢ is uniformly
toral; (c) ¢ is geometric.

Proof. First, we observe that by Proposition 3.4, it follows that p; = po; write

P def p1 = p2. Also, we observe that it is immediate that condition (c) implies

condition (a). Next, we recall that the fact that condition (a) implies condition
(b) is precisely the content of the discussion preceding [Mzkl], Proposition 2.2.
That is to say, for ¢ = 1,2, the images of appropriate higher ramification groups
in Tor(H) ® Q, [for open subgroups H C Gy,] multiplied by appropriate integral
powers of p yield a uniformly toral neighborhood of Gy, that is compatible with ¢
whenever ¢ is RF-preserving.

Next, let us assume that condition (b) holds. For i = 1,2, let {N}}y be
a uniformly toral neighborhood of Gy,. Again, we take the point of view of the
discussion preceding [Mzk1], Proposition 2.2. That is to say, we think of k; as the
inductive limit

I; def lim Tor(H)® Q,
H

— where H ranges over the open subgroups C Gy, involved in {N%}y; the mor-
phisms in the inductive system are those induced by the Verlagerung, or transfer,
map. Write N; C I; for the subgroup generated by the N, C Tor(H) ® Q,. Then
relative to the isomorphism [of abstract modules!] A; : I; = k,; determined by the
Ag’s, we have

p"-Op CAN(N;) Cp " Op Chi

for some nonnegative integers a, b [cf. Definition 3.6, (ii)]. In particular, it follows
that the topology on I; determined by the submodules p - N;, where ¢ > 0 is an
integer, coincides, relative to \;, with the p-adic topology on k; [i.e., the topology
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determined by the p°© - OE’ where ¢ > 0 is an integer|. Write fz for the completion
of I; relative to the topology determined by the p®- N;. Thus, \; determines an

1somorphism of topological G, -modules fz = k;. In particular, the assumption that
¢ is uniformly toral implies that ¢ is of HT-type. Thus, by Theorem 3.5, (ii), we
conclude that ¢ is geometric, i.e., that condition (c) holds. This completes the proof
of Corollary 3.7. O

Remark 3.7.1. In fact, one verifies immediately that the argument applied in the
proof of Corollary 3.7 implies that the equivalences of Corollary 3.7 [as well as the
definitions of Definition 3.6] continue to hold when ¢ is replaced by an isomorphism
of profinite groups between the maximal pro-p quotients of the G,. We leave the
routine details to the reader.

Corollary 3.8. (Geometricity of Semi-absolute Homomorphisms for

Hyperbolic Orbicurves) Fori = 1,2, let k;, k;, ks, p;, Gi, [and its subquotients]
be as in Theorem 3.5; 1 — A, — 1I; — Gj, — 1 an extension of AFG-type;
(k;, X;,%;) partial construction data [consisting of the construction data field,
construction data base-stack, and construction data prime set] for Il; — Gy, ; «; :
m(X;) = wt*me(X;) — II; a scheme-theoretic envelope compatible with the
natural projections 71 (X;) - Gy, , Il; - Gy, ;

Y I — 1o

a semi-absolute [or, equivalently, pre-semi-absolute — cf. Proposition 2.5,
(7ii)] homomorphism that lifts a homomorphism ¢ : G1 — Go. Suppose further
that Xo is a hyperbolic orbicurve, that po € Yo, and that one of the following
conditions holds:

(a) ¢ is of CHT-type;

(b) ¢ is of 01-qLT-type;

(c) ¢ is of qLT-type;

(d) ¢ is an isomorphism of HT-type;
(e) ¢ is a uniformly toral isomorphism;
(f) ¢ is an RF-preserving isomorphism;
(g9) Il is of A-qLT-type.

(h) ¢ is geometric;

Then 1 is geometric, i.e., arises [relative to the «;] from a unique dominant
morphism of schemes X; — Xy lying over a morphism Spec(k1) — Spec(ks).

Proof. Indeed, by Theorem 3.5, (i), (ii), (iii); Corollary 3.7, it follows that any of
the conditions (a), (b), (c), (d), (e), (), (g), (h) implies condition (h). Thus, since
X5 is a hyperbolic orbicurve, and ps € 3o, the fact that ¢ is geometric follows from
[Mzk3], Theorem A. O
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Remark 3.8.1. One important motivation for the theory of the present §3 is the
following result, orally communicated to the author by A. Tamagawa:

(xA-9LTY Let X be a hyperbolic orbicurve over k that admits a finite étale covering

Y — X by a hyperbolic curve Y such that Y admits a dominant k-
morphism Y — P, where P is the projective line minus three points
over k [i.e., a tripod — cf. §0]. Then the arithmetic fundamental group
m1(X) = G of X is of A-qLT-type.

In particular, it follows that:

Corollary 3.8 may be applied [in the sense that condition (g) is satisfied]

whenever X, satisfies the conditions placed on the hyperbolic orbicurve

“X of (*A—qLT>.
Indeed, Tamagawa’s original motivation for considering (+*-9“T) was precisely the
goal of applying the methods of [Mzkl] to obtain an “isomorphism version” of
Corollary 3.8, (g). Upon learning of these ideas of Tamagawa, the author proceeded
to re-examine the theory of [Mzkl]. This led the author to the discovery of the
various generalizations of [Mzk1] — and, in particular, the Hom-version of Corollary
3.8, (g) — given in the present §3. Tamagawa derives (**-9“T) from the following
result:

(x*“M)  Given a character p : G — E* of qLT-type, there exists an abelian
variety with complex multiplication A over some finite extension k4 of k
such that P‘GM is tnertially equivalent to some character whose associated
G ,-module appears as a subquotient of the Gy ,-module given by the p-
adic Tate module of A.

Indeed, to derive (¥2-9ET) from (*®™), one reasons as follows: Every abelian variety
with complex multiplication A is defined over a number field, hence arises as a
quotient of a Jacobian of a smooth proper curve Z over a number field. Moreover,
by considering Belyi maps, it follows that some open subscheme Uy C Z arises as
a finite étale covering of the projective line minus three points. Thus, any Galois
module that appears as a subquotient of the p-adic Tate module of A also appears
as a subquotient of the p-adic Tate module of the Jacobian of some finite étale
covering of the curve P of (+A9MT) hence, a fortiori, as a subquotient of the p-adic
Tate module of the Jacobian of some finite étale covering of the curves Y, X of

(xA-9LT)  Thus, we conclude that 71(X) is of A-qLT-type, as desired.

Corollary 3.9. (Geometricity of Strictly Semi-absolute Homomor-
phisms for Function Fields) Assume that the result (+*9%T) of Remark 3.8.1
holds. Fori =1,2, let k; be an MLF, K; a function field of transcendence degree

> 1 over k; [so k; is algebraically closed in K;], K; an algebraic closure of K;, k;

the algebraic closure of k; determined by K;, I, def Gal(K;/K;), G; def Gal(k; /k;),

A; def Ker(Il; - G;). Then every open homomorphism

11y — Iy
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that induces an open homomorphism ¥ : A1 — Ag [hence also an open homomor-
phism ¢ : G1 — G2 is geometric, i.e., arises from a unique embedding of fields
Ky — Ky that induces an embedding of fields ko — kq of finite degree.

Proof.  Since every function field of transcendence degree > 1 over ko contains
the function field of a tripod over ky, it follows from (**-9T) that there exists

a hyperbolic curve X over ko with function equal to K5 such that if we write

I, — I3 def m1(X) for the resulting surjection, then I3 is of A-qLT-type. Now

we wish to apply a “birational analogue” of Corollary 3.8, (g), to the composite
homomorphism II; — Iy — I3 [where the first arrow is 1.

To verify that such an analogue holds, it suffices to verify that ¢ is of 01-qLT-

type [cf. Theorem 3.5, (i), (b) = (d)]. To this end, set k3 def ko, G def G,

As def Ker(Il3 — Gg3); let us suppose, for ¢ = 1,3, that H; C A;, J; C G;

are characteristic open subgroups such that ¢a(Hy1) C Hs, ¢(J1) C Js3. Thus, if
we write p for the common residue characteristic of kq, k3 [cf. Proposition 3.4],
then we obtain a surjection H®® ® Q, — HZ> ® Q, that is compatible with ¢.
Moreover, it follows immediately from Corollary A.11 [cf. also Proposition A.3,
(v)] of the Appendix that the J;-module H#*' @ Z,, admits a quotient J;-module
Ht Z, — Q1 such that @ is the p-adic Tate module of some abelian variety
over a finite extension of k1, and, moreover, the kernel Ker(H"* @ Z, — Q1) is
topologically generated by topologically cyclic subgroups [i.e., “copies of Z,”] on
which some open subgroup of J; [which may depend on the cyclic subgroup] acts via
the cyclotomic character. Next, let us observe that if V3 is any J3-module associated
to a character of qLT-type of dimension > 2, then V3 does not contain any sub-Js-
modules of dimension 1 over Q,. From this observation, it follows immediately that
any subquotient [cf. Definition 3.1, (v)] of the J3-module H2*®Q, that is isomorphic
to the J3-module associated to a character of gLT-type of dimension > 2 determines
a subquotient [not only of the J;-module H** @ Q,, but also] of the Ji-module
Q1 ® Qp. Thus, we conclude that any such subquotient of the Ji;-module Q1 ® Q)
is Hodge-Tate with weights € {0,1}. Moreover, by considering determinants of such
subquotients, one concludes that the pull-back of the cyclotomic character J3 — Z;
is a character J; — Z; which is Hodge-Tale, and whose unique weight w is > 0. If
w > 2, then the fact that the Js-module determined by the cyclotomic character of
Js occurs as a subquotient of HgP ®Q, [for sufficiently small Hs], hence determines
a Ji-module that occurs as a subquotient [not only of the Ji-module Hi** ® Q,,
but also, in light of our assumption that w > 2!] of the Ji-module Q1 ® Q, leads to
a contradiction [since the J;-module @1 ® Q,, is Hodge-Tate with weights € {0,1}].
Thus, we conclude that ¢ : G; — G5 = G35 is of 01-qLT-type, hence geometric,
i.e., arises from a unique embedding of fields ky — k; of finite degree. Finally,
the geometricity of ¢ implies that the geometricity of 1) may be derived from the
“relative” result given in [Mzk3], Theorem B. O

Remark 3.9.1. The proof given above of Corollary 3.9 shows that the “II5” of
Corollary 3.9 may, in fact, be taken to be a “IIy” as in Corollary 3.8, (g).
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Section 4: Chains of Elementary Operations

In the present §4, we generalize [cf. Theorems 4.7, 4.12; Remarks 4.7.1, 4.12.1
below] the theory of “categories of dominant localizations” discussed in [Mzk9],
§2 [cf. also the tempered versions of these categories, discussed in [Mzk10], §6],
to include “localizations” obtained by more general “chains of elementary opera-
tions” — i.e., the operations of passing to a finite étale covering, passing to a finite
étale quotient, “de-cuspidalization”, and “de-orbification” [cf. Definition 4.2 below;
[Mzk14], §2] — which are applied to some given algebraic stack over a field. The
field and algebraic stack under consideration are quite general in nature [by com-
parison, e.g., to the theory of [Mzk9], §2; [Mzk14], §2], but are subject to various
assumptions. One key assumption asserts that the algebraic stack satisfies a certain
relative version of the “Grothendieck Conjecture”.

Before proceeding, we recall the following immediate consequence of [Mzk14],
Lemma 2.1; [Mzk13], Proposition 1.2, (ii).

Lemma 4.1. (Decomposition Groups of Hyperbolic Orbicurves) Let
be a nonempty set of prime numbers, A a pro-Y group of GFG-type that admits
base-prime [cf. Definition 2.1, (iv)] partial construction data (k, X,X) [consisting
of the construction data field, construction data base-stack, and construction data
prime set] such that X is a hyperbolic orbicurve [cf. §0/, and k is algebraically
closed. Let x4 (respectively, xp # xa) be either a closed point or a cusp /cf.
80/ of X; A C A (respectively, B C A) the decomposition group [well-defined
up to congugation in AJ of xx (respectively, xp). Then:

(i) A, B are pro-cyclic groups; A(\B = {1}. If x4 is a closed point of
X, and A # {1}, then A is a finite, normally terminal [cf. §0] subgroup of A.
If x A is a cusp, then A is a torsion-free, commensurably terminal [cf. §0/
infinite subgroup of A.

(ii) The order of every finite cyclic closed subgroup C C A divides the
order of X [cf. §0].

(iii) Every finite nontrivial closed subgroup C C A is contained in a
decomposition group of a unique closed point of X. In particular, the non-
trivial decomposition groups of closed points of X may be characterized [“group-
theoretically”/ as the maximal finite nontrivial closed subgroups of A.

(iv) X is a hyperbolic curve if and only if A is torsion-free.

(v) Suppose that the quotient Y4 : A — Ay of A by the closed normal sub-
group of A topologically generated by A is slim and nontrivial. If x4 is a closed
point of X (respectively, a cusp), then we suppose further that ¥ = Primes [which
forces the characteristic of k to be zero] (respectively, that A C J for some normal
open torsion-free subgroup J of A). Then A4 is a profinite group of GFG-type
that admits base-prime partial construction data (k, X a,%) [consisting of the con-
struction data field, construction data base-stack, and construction data prime set/
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such that X o is a hyperbolic orbicurve equipped with a dominant k-morphism
pa: X — X4 that is uniquely determined [up to a unique isomorphism/ by the
property that it induces [up to composition with an inner automorphism/ ) a. More-
over, if x4 is a closed point of X (respectively, a cusp), then ¢4 is a partial
coarsification morphism /[cf. §0/ which is an isomorphism either over X4 or
over the complement in X 4 of the point of X o determined by x 4 (respectively, is an
open immersion whose image is the complement of the point of X 4 determined

by z4).

(vi) In the notation of (v), if B # {1}, then ¥4 (B) # {1}.

Proof.  First, we recall that by the definition of a profinite group of GFG-type
[cf. the discussion at the beginning of §2], it follows that there exists a normal
open subgroup H C A such that if we write Xy — X for the corresponding
Galois covering, then Xy is a hyperbolic curve. Next, let us observe that, in light
of our assumption that the partial construction data is base-prime, we may lift
the entire situation to characteristic zero, hence assume, at least for the proof of
assertions (i), (ii), (iii), (iv), that k is of characteristic zero. Thus, assertions (i),
(ii), (iii) when z 4, x g are closed points (respectively, cusps) of X follow immediately
from [Mzk14], Lemma 2.1 (respectively, [Mzk13], Proposition 1.2, (ii)). Next, we
consider assertion (iv). First, we observe that the necessity portion of assertion
(iv) follows immediately from assertion (iii). To verify sufficiency, let us suppose
that A is torsion-free. Let w{*™¢(X) — A be a scheme-theoretic envelope of A.
Then since Xy is a scheme, it follows that the nontrivial [finite closed] subgroups
of 7i*™M¢(X) that arise as decomposition groups of closed points map injectively,
via the composite surjection 7{*™¢(X) - A — A/H, into A/H, hence, a fortiori,
injectively via the surjection 7i*™°(X) —» A, into A [which is torsion-free]. Thus,
the decomposition groups in 71 (X) = 7i*™°(X) [cf. our assumption that k is
algebraically closed of characteristic zero] of closed points of X are trivial. But this
implies [by considering, for instance, the Galois covering Xy — X]| that X is a

scheme, as desired. This completes the proof of assertion (iv).

Next, we consider assertion (v). First, let us observe that X 4 admits a finite
étale covering Y4 — X 4 arising from a normal open subgroup of A 4 such that Yy, is
a curve, which will necessarily be hyperbolic, in light of the slimness and nontriviality
of A4. Indeed, when x 4 is a closed point of X [so ¥ = Primes; k is of characteristic
zero|, this follows immediately from the equivalence of definitions of a “hyperbolic
orbicurve” discussed in §0; when x4 is a cusp, this follows from assertion (iv) and
our assumption of the existence of the subgroup J C A. Now the remainder of
assertion (v) follows immediately from the definitions. This completes the proof of
assertion (v). Finally, we consider assertion (vi). Assertion (vi) is immediate if zp
is a cusp [cf. assertion (i)]; thus, we may assume that xp is a closed point of X.
If Y4(B) = {1}, then it follows that the decomposition group C A4 of the image
of zp in X4 is trivial. Since [by assertion (v)] X4 admits a finite étale covering
Y4 — X 4 arising from an open subgroup of X 4 such that Y, is a hyperbolic curve,
we thus conclude that X 4 is scheme-like in a neighborhood of the image of xp in
X 4, hence [in light of the explicit description of the morphism ¢4 in the statement
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of assertion (v)] that X is scheme-like in a neighborhood of zp. But this implies
that B = {1}. This completes the proof of assertion (vi). O

Remark 4.1.1. Note that Lemma 4.1, (iv), is false if we only assume that A is
almost pro-Y. Indeed, such an example may be constructed by taking X to be a
hyperbolic curve over an algebraically closed field k of characteristic zero, Y — X a
finite étale Galois covering of degree prime to 3, and A to be the quotient of 71 (X)
by the kernel of the surjection (71(X) D) 71(Y) — 71 (Y)®) to the mazimal pro-%.
quotient w1 (Y)*) of w1 (Y). Then for any prime p dividing the order of Gal(Y/X)
[so p & 3], it follows by considering Sylow p-subgroups that A contains an element
of order p, despite the fact that X is a curve.

Definition 4.2. Let G be a slim profinite group;
1-A—-II—-G—1

an extension of GSAFG-type that admits base-prime partial construction data
(k, X, %), where ¥ # 0; o : wi*™¢(X) — II a scheme-theoretic envelope. Thus,
if we write 7{*™¢(X) — G}, for the quotient given by the absolute Galois group Gy,
of k, then « determines a scheme-theoretic envelope 3 : G — G. Write~)~( — X
for the pro-finite étale covering of X determined by the surjection «; k for the
resulting field extension of k. In a similar vein, we shall write II for the projective
system of profinite groups determined by the open subgroups of II. [Thus, one
may consider homomorphisms between II and a profinite group by thinking of the
profinite group as a trivial projective system of profinite groups — cf. the theory
of “pro-anabelioids”, as in [Mzk8|, Definition 1.2.6.] Then:

(i) We shall refer to as an [X /X -Jchain [of length n] [where n > 0 is an integer]
any finite sequence
Xg~~>X{~ ...~ X,_1~X,

of generically scheme-like algebraic stacks X [for j =0, ..., n|, each equipped with
a dominant “rigidifying morphism” p; : X — X satisfying the following conditions:

(0x) Xo = X [equipped with its natural rigidifying morphism X > X .

(1x) There exists a [uniquely determined] morphism X; — Spec(k;) com-
patible with p;, where k; C k is a finite extension of k such that X; is
geometrically connected over k;.

(2x) Each p; determines a mazimal pro-finite étale covering )?j — X such
that X — X; admits a factorization X — X; — X,. The kernel A; of
the resulting natural surjection

1, ¥ Gal(X;/X,) - G; < Gal(k/k;)
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is slim and nontrivial; every prime dividing the order of a finite quotient
group of A; is invertible in k.

(3x) Suppose that X is a hyperbolic orbicurve [over k|. Then each X is also
a hyperbolic orbicurve [over k;|. Moreover, each A; is a pro-X group.

(4x) Each “X; ~» X, 117 [for j =0,...,n— 1] is an “elementary operation”,
as defined below.

Here, an elementary operation “X; ~ X; 1" is defined to consist of the datum of

a dominant “operation morphism” ¢ either from X; to X 11 or from X; i to X;
which is compatible with p;, pj+1, and, moreover, is of one of the following four

types:

(a) Type A: In this case, the elementary operation X; ~» X;i; consists
of a finite étale covering ¢ : X411 — X;. Thus, ¢ determines an open
immersion of profinite groups I, — II;.

(b) Type Y: In this case, the elementary operation X, ~» X;;1 consists of
a finite étale morphism ¢ : X; — X, — i.e., a “finite étale quotient”.
Thus, ¢ determines an open immersion of profinite groups II; < II;4.

(¢) Type o: This type of elementary operation is only defined if X is a
hyperbolic orbicurve. In this case, the elementary operation X; ~~ X, ¢
consists of an open immersion ¢ : X; — X;41 [so k; = kjy1] —i.e., a “de-
cuspidalization” — such that the image of ¢ is the complement of a single
kj41-valued point of X ;i whose decomposition group in A; is contained
in some normal open torsion-free subgroup of A;. Thus, ¢ determines a
surjection of profinite groups IT; —» II;4 ;.

(d) Type @: This type of elementary operation is only defined if X is a
hyperbolic orbicurve and ¥ = Primes [which forces the characteristic of k
to be zero|. In this case, the elementary operation X; ~» X, consists
of a partial coarsification morphism [cf. §0] ¢ : X; — X1 [so k; =
kjy1] — ie., a “de-orbification” — such that ¢ is an isomorphism over
the complement in X;1; of some k;;i-valued point of X;,;. Thus, ¢
determines a surjection of profinite groups IT; — II,,4.

Thus, any X /X -chain determines a sequence of symbols € { A, Y, e, @} [correspond-
ing to the types of elementary operations in the X /X-chain], which we shall refer
to as the type-chain associated to the X /X-chain.

(ii) An isomorphism between two X /X -chains with identical type-chains [hence
of the same length]

(Xg~ ...~ X)) > Yo~ ...~ 1)
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is defined to be a collection of isomorphisms of generically scheme-like algebraic
stacks X; = Yj [for j = 0,...,n] that are compatible with the rigidifying mor-
phisms. [Here, we note that the condition of compatibility with the rigidifying
morphisms implies that every automorphism of a X /X -chain is given by the iden-
tity, and that every isomorphism of X /X -chains of the same length is compatible
with the respective operation morphisms.] Thus, one obtains a category

Chain(X /X))

whose objects are the X / X-chains [with arbitrary associated type-chain], and whose
morphisms are the isomorphisms between X /X -chains [with identical type-chains].
A terminal morphism between two X /X-chains [with arbitrary associated type-
chain]

(Xo~ ... X)) = (Yo~ ...~ Y,)

is defined to be a dominant k-morphism X,, — Y,,,. Thus, one obtains a category
Chain"™ (X / X)

whose objects are the X /X -chains [with arbitrary associated type-chain], and whose
morphisms are the terminal morphisms between X /X-chains; write

Chain’*""™ (X /X) C Chain"™ (X /X)

for the subcategory determined by the terminal isomorphisms [i.e., the isomor-
phisms of Chain'"™ (X /X)]. Thus, it follows immediately from the definitions that
we obtain natural functors Chain(X/X) — Chain***™ (X /X) — Chain"™ (X /X).

(iii) We shall refer to as an [II-/chain [of length n] [where n > 0 is an integer]
any finite sequence
IIg ~ Iy ~~ ...~ 11,1 ~ 11,
of slim profinite groups II; [for j = 0,...,n], each equipped with an open “rigid-
ifying homomorphism” p; : I — IT; [i.e., since we are working with slim profinite
groups, an open homomorphism from some open subgroup of II to II;] satisfying
the following conditions:

(Orp) IIp =1I [equipped with its natural rigidifying homomorphism I — I1].

(Irr) There exists a [uniquely determined] surjection II; — G, compatible
with p;, where G; C G is an open subgroup.

(211) Each kernel

A L Ker(Il; - G; — Q)

is slim and nontrivial; every prime dividing the order of a finite quotient
group of A; is invertible in k.
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(3r1) Suppose that X is a hyperbolic orbicurve [over k]. Then each A; is a
pro-Y group. Also, we shall refer to as a cuspidal decomposition group in
Aj any commensurator in A; of the image via p; of the inverse image in

II of the decomposition group in A [determined by a] of a cusp of X.

(4rr) Each “II; ~ II;4;” [for j =0,...,n — 1] is an “elementary operation”,
as defined below.

Here, an elementary operation “II; ~» 1I;11” is defined to consist of the datum of
an open “operation homomorphism” ¢ either from 1I; to Il;4; or from II;44 to II;
which is compatible with p;, p;41, and, moreover, is of one of the following four

types:

(a) Type A: In this case, the elementary operation II; ~» II;;; consists of
an open immersion of profinite groups ¢ : I1; 1 — II;.

(b) Type Y: In this case, the elementary operation II; ~» II;1 1 consists of
an open immersion of profinite groups ¢ : 11; — I1;4;.

(c) Type o: This type of elementary operation is only defined if X is a
hyperbolic orbicurve. In this case, the elementary operation II; ~» II,;4q
consists of a surjection of profinite groups ¢ : II; — 11,11, such that Ker(¢)
is topologically normally generated by a cuspidal decomposition group C
in A, such that C' is contained in some normal open torsion-free subgroup

Of Aj.

(d) Type @: This type of elementary operation is only defined if X is a
hyperbolic orbicurve and ¥ = Primes [which forces the characteristic of k
to be zero|. In this case, the elementary operation II; ~~ II; 4 consists
of a surjection of profinite groups ¢ : II; — Il;y;, such that Ker(¢) is
topologically normally generated by a finite closed subgroup of A;.

Thus, any II-chain determines a sequence of symbols € {A, Y, e, @} [corresponding
to the types of elementary operations in the II-chain|, which we shall refer to as the
type-chain associated to the II-chain.

(iv) An isomorphism between two II-chains with identical type-chains [hence
of the same length]

(g ~ ...~ I1,) = (Ug o o U

is defined to be a collection of isomorphisms of profinite groups II; = ¥; [for
j =0,...,n] that are compatible with the rigidifying homomorphisms. [Here, we
note that the condition of compatibility with the rigidifying homomorphisms implies
[since all of the profinite groups involved are slim| that every automorphism of a
[I-chain is given by the identity, and that every isomorphism of Il-chains of the
same length is compatible with the respective operation homomorphisms.] Thus,
one obtains a category

Chain(II)
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whose objects are the II-chains [with arbitrary associated type-chain]|, and whose
morphisms are the isomorphisms between II-chains [with identical type-chains].
A terminal homomorphism between two Il-chains [with arbitrary associated type-
chain]

(Mg ~> ...~ I0,) — (P~ oo~ U,

is defined to be an open outer homomorphism II,, — ¥, that is compatible [up to
composition with an inner automorphism| with the open homomorphisms II,, — G,
V,, — G. Thus, one obtains a category

Chain"™ (11)

whose objects are the II-chains [with arbitrary associated type-chain|, and whose
morphisms are the terminal homomorphisms between Il-chains; write

Chain™**"™ (1) C Chain"™ (II)

for the subcategory determined by the terminal isomorphisms [i.e., the isomor-
phisms of Chain"™ (IT)]. Thus, it follows immediately from the definitions that we
obtain natural functors Chain(IT) — Chain™*"™(II) — Chain"™ (IT).

(v) We shall use the notation
Chainiso-trm(w){_} g Chainiso-trm(w); Chaintrm(w){—} g Chaintrm(w)

— where “(~)” is either equal to “(X/X)” or “(I)”, and “{—}” contains some
subset of the set of symbols { A, Y, e, ©} — to denote the respective full subcategories
determined by the chains whose associated type-chain only contains the symbols
that belong to “{—}”. In particular, we shall write:

DLoc(X/X) & Chain™™ (X /X){A,e}; DLoc(Il) % Chain"™ (II){ A, e}
EtLoc(X/X) %' Chain™ "™ (X /X){ A, ¥}; EtLoc(IT) &' Chain®™ "™ (I1){A, Y}

[cf. the theory of [Mzk9], §2; Remark 4.7.1 below].

Remark 4.2.1. Thus, it follows immediately from the definitions that if, in the
notation of Definition 4.2, (i),

Xo~» X1~ ...~ X,_1~X,
is an X /X -chain, then the resulting profinite groups 11, determine a II-chain
Mg ~ 11§ ~ ...~ 11,1 ~ 11,

with the same associated type-chain. In particular, we obtain natural functors
Chain(X /X ) — Chain(II)
Chain®***™ (X /X) — Chain®*™(II); ~Chain"™ (X /X) — Chain"™ (II)
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which are compatible with the natural functors of Definition 4.2, (ii), (iv).

Remark 4.2.2. Note that in the situation of Definition 4.2, (i), G, is a slim
profinite group; 1 — A; — II; — G; — 1 is an extension of GSAFG-type that
admits base-prime partial construction data (kj, X;,3), where X; is a hyperbolic
orbicurve whenever X is a hyperbolic orbicurve; o, p; determine [in light of the
slimness of II;] a scheme-theoretic envelope «; : wi*™¢(X ;) — II;. That is to say,
we obtain, for each j, similar data to the data introduced at the beginning of
Definition 4.2.

Proposition 4.3. (Re-ordering of Chains) In the notation of Definition 4.2,
suppose that ¥ = Primes; let Xg ~ ... ~ X, (respectively, Iy ~ ... ~ 11, ) be
a(n) X /X - (respectively, II-) chain. Then there exists a terminally isomorphic
X/X- (respectively, I1-) chain Yo ~ ... ~ Yy, (respectively, Uy ~> ... ~» U, )
whose associated type-chain is of the form

Ao e ... 0 (c{Y,0}),(e{Y,0}),...

— 1.e., consists of the symbol A, followed by a sequence of the symbols e, followed
by a sequence of symbols € {Y, ®}.

Proof. Indeed, let us first observe that it is immediate from the compatibility
with the rigidifying [homo/morphisms that one may always “move the symbol A to
the top of the type-chain”. Thus, one may assume without loss of generality that
the remaining symbols [i.e., the symbols indexed by j > 1] of the type-chain are
€ {Y,e,®}; in particular, one may assume that the operation [homo/morphisms
indexed by 5 > 1 always have domain indexed by j and codomain indexed by
J + 1. Thus, we may replace the de-cuspidalization operations at arbitrary indices
by de-cuspidalization operations on the finite étale covering indexed by 0 deter-
mined by cusps of this finite étale covering that map to cusps that give rise to
de-cuspidalization operations at subsequent indices. [Note that here, it is useful
to recall the equivalence of definitions of the notion of a “hyperbolic orbicurve”
discussed in §0 — cf. our assumption that ¥ = Primes.] This yields a type-chain
of the desired form. O

On the other hand, as the following example shows, the symbols “Y”, “©®”
cannot be permuted.

Example 4.4. Non-permutability of Etale Quotients and De-orbifications.
In the notation of Definition 4.2, let us assume further ¥ = Primes [so k is of char-
acteristic zero]. Then there exists an X /X-chain X ~ X1 ~» X3 of length 2 with
associated type-chain %1, %o, where 1, %9 € {Y, ®}, %1 # %o, which is not terminally
1somorphic to any X /X-chain Yy ~» Y7 ~ Y5 of length 2 with associated type-chain
x9, %1. Indeed:
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(i) The case of type-chain Y,®: Let X be a hyperbolic curve of type (g,r)
over k equipped with an automorphism o of the k-scheme X of order 2 that has
precisely one fized point x € X (k); Xg = X ~» X; the elementary operation of type
Y given by forming the stack-theoretic quotient of X by the action of o; 1 € X5 (k)
the image of x in X7; X7 ~» X5 the elementary operation of type © determined by
the point 1 € X7 (k). Thus, we assume that X5 is a hyperbolic curve, whose type we
denote by (g2, 72). On the other hand, since X is a scheme, any chain Y ~ Y] ~ Y5
of length 2 with associated type-chain ©, Y satisfies Y; — Y7 [compatibly with X ].
Thus, if Yo = X5 over k, then the coverings X = Xy — Xy [which is ramified,
of degree 2], X = Yy = Y; — Y5 [which is unramified, of some degree d] yield
equations

d-xo=x=2-x2+1

[where we write x et 29 — 2+, xo def 2g2 — 2 + ro] — which imply [since d, Yy,
X2 are positive integers| that d —2 = y2 = 1, hence that d =3, xo =1, x =3. In
particular, by choosing X so that x is > 3 [e.g., X such that g > 3|, we obtain a
contradiction.

(ii) The case of type-chain ©, Y: Let X be a proper hyperbolic orbicurve over
k; X — C the coarse space associated to the algebraic stack X. Let us assume
further that C is a [proper/| hyperbolic curve over k; that the morphism X — C'is a
non-isomorphism which restrict to an isomorphism away from some point ¢ € C'(k);
and that there exists a finite étale covering e : C — D of degree 2 [so D is also
a proper hyperbolic curve over k, which is not isomorphic to C|. [It is easy to
construct such objects by starting from D and then constructing C, X.] Now we
take Xg = X ~ X3 1 0 to be the elementary operation of type © determined by
the unique point of x € X (k) lying over ¢ € C(k); C = X7 ~ Xo ' D to be the
elementary operation of type Y determined by the finite étale covering € : C' — D.
On the other hand, let us suppose that Yy ~» Y; ~» Y5 is a chain of length 2 with
associated type-chain Y, ® such that X, = Y5 over k. Then since D = X, = Y5 is
a scheme, it follows that the hyperbolic orbicurve Y; admits a point y; € Y3 (k) such
that Y7 is a scheme away from y;. Note that if Y7 is a scheme, then the finite étale
covering X =Y, of Y7 is as well, a contradiction. Thus, we conclude that Y7 is not
a scheme at y;. Next, let us observe that if the finite étale morphism Yy — Y7 is not
an isomorphism [i.e., of degree > 2|, then Y fails to be a scheme at some k-étale
divisor of Yy [namely, the inverse image of y1] of degree > 2: thus, since Yy = X
in fact fails to be a scheme only at the unique point = € X (k), we thus conclude
that this finite étale covering is, in fact, an isomorphism X = Yy = Y;. But this
implies that Y5 is isomorphic to the coarse space associated to X, i.e., we have an
isomorphism Ys = C, hence an isomorphism D = Xy = Y5 — C, a contradiction.

Next, we recall the group-theoretic characterization of the cuspidal decomposi-
tion groups of a hyperbolic [orbi]Jcurve given in [Mzk13].

Lemma 4.5. (Cuspidal Decomposition Groups) Let G be a slim profinite

group;
1-A—=1II—-G—1



52 SHINICHI MOCHIZUKI

an extension of GSAFG-type that admits base-prime [cf. Definition 2.1,
(iv)] partial construction data (k,k, X,3), where X is a hyperbolic orbicurve;

o : 8me( X)) — I a scheme-theoretic envelope; [ € X a prime such that the cy-
clotomic character X‘gdo : G — Z [i.e., the character whose composite with « is

the usual cyclotomic character 7™°(X) — Gal(k/k) — Z; ] has open image [i.e.,
in the terminology of [Mzk13], “the outer action of G on A is l-cyclotomically
full”]. We recall from [Mzk13] that a character x : G — Z;° is called Q-cyclotomic
[of weight w € Q] if there exist integers a, b, where b > 0, such that x° = (XCGydO)“,

w = 2a/b [cf. [Mzk13], Definition 2.3, (i), (ii)]. Then:

(i) X is non-proper if and only if every torsion-free pro-X. open subgroup of
A is free pro-X.

(ii) Let M be a finite-dimensional Q;-vector space equipped with a continuous
G-action. Then we shall say that this action is quasi-trivial if it factors through a
finite quotient of G [cf. [Mzk13], Definition 2.3, (i)]. We shall write 7(M) for the
Qq-dimension of the maximal quasi-trivial Q;-subspace of M. If x : G — L}
1s a character, then we shall write

dy (M) = 7(M(x™")) — 7(Homg, (M, Q1))

[where “M(x~1)” denotes the result of “twisting” M by the character x~']. We
shall say that two characters G — Z;° are power-equivalent if there exists a
positive integer n such that the n-th powers of the two characters coincide. Then
dy (M), regarded as a function of x, depends only on the power-equivalence
class of x.

(iii) Suppose that X is not proper [cf. (i)]. Then the character G — L)
arising from the determinant of the G-module H* ® Q;, where H C A is a
characteristic open subgroup such that H*® @ Q; # 0, is Q-cyclotomic of posi-
tive weight. Moreover, for every sufficiently small characteristic open subgroup
H C A, the power-equivalence class of the cyclotomic character XCGyClo may be
characterized as the unique power-equivalence class of characters x : G — Z;* of the
form x = x* - x«, where x* : G — Z; (respectively, x. : G — Z,° ) is a Q-cyclotomic
character of maximal (respectively, minimal) weight such that 7(M(x~1)) # 0 for
some subquotient G-module M of (H* ® Q) ®Q; [where the final direct summand

cyclo

Qi is equipped with the trivial G-action]. Moreover, in this situation, if x = X2 .,
then the divisor of cusps of the covering of X Xy k determined by H is a disjoint
union of dy(H* ® Q) + 1 copies of Spec(k).

(iv) Suppose that X is not proper [cf. (i)]. Let H C A be a torsion-free
pro-Y characteristic open subgroup; H — H* the mazximal pro-l quotient of H.
Then the decomposition groups of cusps C H* may be characterized [“group-
theoretically”/ as the maximal closed subgroups I C H* isomorphic to Z; which
satisfy the following condition: We have

dXEyCIO(Jab ®Ql) + 1 - [I J . J] ‘chGyclo((I' J)&b ®Ql) + 1
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for every characteristic open subgroup J C H*.

(v) Let X, H, H* be as in (iv). Then the set of cusps of the covering of X 1. k
determined by H is in natural bijective correspondence with the set of conjugacy
classes in H* of decomposition groups of cusps [as described in (iv)]. Moreover,
this correspondence is functorial in H and compatible with the natural actions
by I on both sides. In particular, by allowing H to vary, this yields a [“group-
theoretic”/ characterization of the decomposition groups of cusps in II.

(vi) Let I C1I be a decomposition group of a cusp. Then [ = C(I(A)
[cf. §0].

Proof. Assertion (i) may be reduced to the case of hyperbolic curves via Lemma
4.1, (iv), in which case it is well-known [cf., e.g., [Mzk13]|, Remark 1.1.3]. Assertion
(ii) makes sense in light of our assumption of “I-cyclotomic fullness” on XCGyClO, and
its content is immediate from the definitions. Assertion (iii) follows immediately
from [Mzk13], Proposition 2.4, (iv), (vii); the proof of [Mzk13], Corollary 2.7, (i).
Assertion (iv) is [in light of assertion (iii)] precisely a summary of the argument of
[Mzk13], Theorem 1.6, (i). Finally, assertions (v), (vi) follow immediately from the

commensurable terminality of [Mzk13], Proposition 1.2, (ii). O

Definition 4.6.

(i) Let V (respectively, F; S) be a set of isomorphism classes of algebraic
stacks (respectively, set of isomorphism classes of fields; set of nonempty subsets of
Primes);

DCVxFxS

a subset of the direct product set V x F x S, which we shall think of as a set of
collections of partial construction data. In the following discussion, we shall use
“[—=]” to denote the isomorphism class of “—”. We shall say that D is chain-full if
for every extension 1 — A — Il — G — 1 of GSAFG-type, where G is slim, that
admits base-prime partial construction data (X, k, X)) such that ([X], [k],X) € D [cf.
Definition 4.2], it follows that every “X;, k;” [cf. Definition 4.2, (i)] appearing in
an X /X-chain [where X — X is the pro-finite étale covering of X determined by
some scheme-theoretic envelope for II] determines an element ([X}], [k;],X) € D.

(ii) Let D be as in (i); suppose that D is chain-full. Then we shall say that
rel-isom-DGC holds [i.e., “the relative isomorphism version of the Grothendieck
Conjecture for D holds”] (respectively, rel-hom-DGC holds [i.e., “the relative homo-
morphism version of the Grothendieck Conjecture for D holds”]), or that, rel-isom-
GC holds for D (respectively, rel-hom-GC holds for D) if the following condition is
satisfied: For i = 1,2, let

1—-A; -1, -G —1

be an extension of GSAFG-type, where G; is slim, that admits base-prime partial
construction data (k;, X;,Y;) such that ([X;], [ki], ;) € D; «; @ 78™me(X;) — II; a
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scheme-theoretic envelope; (i, : k1 — ko an isomorphism of fields that induces, via
the oy, an outer isomorphism (g : G1 = G5. Then the natural map

Isomy, k, (X1, X2) — Isomg!’ o, (111, 1)

(respectively, Homg?EQ(Xl, Xs) — Hom%ult"ggen(ﬂl, I15))

determined by the a; from the set of isomorphisms of schemes X; = X lying over
Gt k1 = ko (respectively, the set of dominant morphisms of schemes X; — Xs
lying over (i, : k1 — k2) to the set of outer isomorphisms of profinite groups I1; — II,
lying over (g : G1 — Gy (respectively, the set of open outer homomorphisms of
profinite groups II; — I, lying over (g : G1 — Gs) is a bijection.

Remark 4.6.1. Of course, in a similar vein, one may also formulate the notions
that “the absolute isomorphism version of the Grothendieck Conjecture holds for
D”, “the absolute homomorphism version of the Grothendieck Conjecture holds for
D”, “the semi-absolute isomorphism version of the Grothendieck Conjecture holds
for D", “the semi-absolute homomorphism version of the Grothendieck Conjecture
holds for D", etc. Since we shall not use these versions in the discussion to follow,
we leave the routine details of their formulation to the interested reader.

Theorem 4.7. (Semi-absoluteness of Chains of Elementary Operations)
Let D be a chain-full set of collections of partial construction data [cf. Def-
inition 4.6, (i)] such that the rel-isom-DGC holds [cf. Definition 4.6, (ii)]. For
1=1,2, let G; be a slim profinite group;

1- A, -1, - G; —1

an extension of GSAFG-type that admits base-prime [cf. Definition 2.1,
(iv)] partial construction data (k;, ki, X;,%:) such that ([X;], [k, ) € D; oy
miame( X.) — II; a scheme-theoretic envelope. Also, let us suppose further that
the following conditions are satisfied:

(a) if either X, or X5 is a hyperbolic orbicurve, then both X; and Xo
are hyperbolic orbicurves;

(b) if either X1 or X5 is a non-proper hyperbolic orbicurve, then there
exists a prime number | € X1 (X2 such that for i = 1,2, the cyclo-
tomic character G; — Z; [i.e., the character whose composite with o
is the usual cyclotomic character ©t*™°(X;) — Gal(k/k) — Z; | has open
image.

Let
oI, = 1,

be an isomorphism of profinite groups that induces isomorphisms da : A1 = Ao,
¢G . G1 :> GQ. Then:
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(i) The natural functors [cf. Remark 4.2.1]
Chain(X;/X;) — Chain(Il;); Chain™"™(X,/X;) — Chain™*""™(II,)
EtLoc(X;/X;) — EtLoc(Il;)
are equivalences of categories that are compatible with passing to type-chains.

(ii) The isomorphism ¢ induces equivalences of categories
Chain(II;) 5 Chain(Ily); Chain™*™(II;) 5 Chain™°""™(II,)
EtLoc(IT;) & EtLoc(Ily)
that are compatible with passing to type-chains and functorial in ¢.

(iii) Suppose further that the rel-hom-DGC holds [cf. Definition 4.6, (ii)],
and that for i =1,2, X; is a hyperbolic orbicurve. Then the natural functors
[cf. Remark 4.2.1]

Chain"™(X,/X;) — Chain"™(II;); DLoc(X;/X;) — DLoc(IL;)
are equivalences of categories that are compatible with passing to type-chains.

(iv) In the situation of (iii), the isomorphism ¢ induces equivalences of cat-
egories

Chain"™™(I1;) = Chain"™(II,); DLoc(II;) = DLoc(Il,)

that are compatible with passing to type-chains and functorial in ¢.

Proof. First, we consider the natural functor
Chain(X;/X;) — Chain(IL;)

of Remark 4.2.1. To conclude that this functor is an equivalence of categories,
it follows immediately from the definitions of the categories involved that it suf-
fices to verify that the X /X-chain and TI-chain versions of the four types of el-
ementary operations A, Y, e, © described in Definition 4.2, (i), (iii), correspond
bijectively to one another. This is immediate from the definitions (respectively,
the cuspidal portion of Lemma 4.1, (i), (v); the “closed point of X” portion of
Lemma 4.1, (iii), (v)) for A (respectively, o; ®). [Here, we note that in the case
of o, ©, the “kjii-rationality” of the cusp or non-scheme-like point in question
follows immediately from Lemma 4.1, (vi) [by taking “zp” to be the various Galois
conjugates of this point].] Finally, the desired correspondence for Y follows from
our assumption that the rel-isom-DGC holds by applying this “rel-isom-DGC” as
was done in the proofs of [Mzk7]|, Theorem 2.4; [Mzk9], Theorem 2.3, (i). This

completes the proof that the natural functor Chain(X;/X;) — Chain(IL;) is an
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equivalence. A similar application of the “rel-isom-DGC” then yields the equiva-
lences Chain™**"™ (X, /X;) = Chain®""™(IL,), EtLoc(X;/X;) = EtLoc(Il;). In
a similar vein, the “rel-hom-DGC” [cf. assertion (iii)] implies the equivalences
Chain'™ (X /X) = Chain®™™(II), DLoc(X/X) = DLoc(II). This completes the
proof of assertions (i), (iii).

Finally, to obtain the equivalences of assertions (ii), (iv), it suffices to observe
that the definitions of the various categories involved are entirely “group-theoretic”.
Here, we note that the “group-theoreticity” of the elementary operations of type
A, Y, ©® is immediate; the “group-theoreticity” of the elementary operations of
type e follows immediately from Lemma 4.5, (v) [in light of our assumptions (a),
(b)]. Also, we observe that 3; may be recovered “group-theoretically” from A; [i.e.,
as the unique minimal subset ¥’ C Primes such that A; is almost pro-YX'|. This
completes the proof of assertions (ii), (iv). O

Remark 4.7.1. The portion of Theorem 4.7 concerning the categories “EtLoc(—)”
[cf. also Example 4.8 below; Corollary 2.8, (ii)] and “DLoc(—)” allows one to relate
the theory of the present §4 to the theory of [Mzk9], §2 [cf., especially, [Mzk9],
Theorem 2.3].

Example 4.8. Hyperbolic Orbicurves. Let p be a prime number; S the set
of subsets of Primes containing p; V the set of isomorphism classes of hyperbolic
orbicurves over fields of cardinality < the cardinality of Q,.

(i) Let F be the set of isomorphism classes of generalized sub-p-adic fields [i.e.,
subfields of finitely generated extensions of the quotient field of the ring of Witt
vectors with coefficients in an algebraic closure of F), — cf. [Mzk5], Definition 4.11];
D=V xF xS. Then let us observe that:

The hypotheses of Theorem 4.7, (i), (ii), are satisfied relative to this D.

Indeed, it is immediate that D is chain-full; the rel-isom-DGC follows from [Mzk5],
Theorem 4.12; the prime p clearly serves as a prime “I” as in the statement of
Theorem 4.7. Moreover, we recall that from [Mzk5], Lemma 4.14, that the absolute
Galois group of a generalized sub-p-adic field is always slim.

(ii) Let TF be the set of isomorphism classes of sub-p-adic fields [i.e., subfields of
finitely generated extensions of Q, — cf. [Mzk3], Definition 15.4, (i)]; D = VxF xS.
Then let us observe that:

The hypotheses of Theorem 4.7, (iii), (iv), are satisfied relative to this D.

Indeed, it is immediate that D is chain-full; the rel-hom-DGC follows from [Mzk3],
Theorem A; the prime p clearly serves as a prime “I” as in the statement of Theorem
4.7. Moreover, we recall that from [Mzk3], Lemma 15.8, that the absolute Galois
group of a sub-p-adic field is always slim.



TOPICS IN ABSOLUTE ANABELIAN GEOMETRY I 57

Example 4.9. Iso-poly-hyperbolic Orbisurfaces.

(i) Let k be a field of characteristic zero. Then we recall from [Mzk3], Definition
a2.1, that a smooth k-scheme X is called a hyperbolically fibred surface if it is admits
the structure of a family of hyperbolic curves [cf. §0] over a hyperbolic curve Y over
k. If X is a smooth, generically scheme-like, geometrically connected algebraic
stack over k, then we shall say that X is an iso-poly-hyperbolic orbisurface [cf. the
term “poly-hyperbolic” as it is defined in [Mzk4], Definition 4.6] if X admits a finite
étale covering which is a hyperbolically fibred surface over some finite extension of
k.

(ii) Let p be a prime number; S def {Primes} [where we regard Primes as the
unique non-proper subset of Primes|; F the set of isomorphism classes of sub-p-adic
fields; V the set of isomorphism classes of iso-poly-hyperbolic orbisurfaces [cf. (i)]
over sub-p-adic fields; D =V x F x S. Then let us observe that:

The hypotheses of Theorem 4.7, (i), (ii), are satisfied relative to this D.

Indeed, it is immediate that D is chain-full; the rel-isom-DGC follows from [Mzk3],
Theorem D. Moreover, we recall that from [Mzk3], Lemma 15.8, that the absolute
Galois group of a sub-p-adic field is always slim.

(iii) Let k& be a sub-p-adic field; X the moduli stack of hyperbolic curves of type
(0,5) [i.e., the moduli stack of smooth curves of genus 0 with 5 distinct, unordered
points] over k; X — X a “universal” pro-finite étale covering of X; k the algebraic
closure of k determined by X — X. Then one verifies immediately that X is an
iso-poly-hyperbolic orbisurface over k. Write 1 — A — Il — G — 1 for the GSAFG-
extension defined by the natural surjection 71(X) = Gal(X /X ) — Gal(k/k) [which
we regard as equipped with the tautological scheme-theoretic envelope given by the
identity]. Then we have an equivalence of categories

EtLoc(X /X) = EtLoc(II)

[cf. (ii); Theorem 4.7, (i)]; the object of these categories determined by X, II [i.e.,
by the unique chain of length 0] is terminal [cf. [Mzk2], Theorem C] — i.e., a “core”
[cf. the terminology of [Mzk7], §2; [Mzk8§], §2].

Finally, we observe that the theory of the present §4 admits a “tempered ver-
sion”, in the case of hyperbolic orbicurves over MLF’s. We begin by recalling basic
facts concerning tempered fundamental groups. Let k be an MLF of residue char-
acteristic p; k an algebraic closure of k; X a hyperbolic orbicurve over k. We shall
use a subscript k to denote the result of a base-change from k to k. Write

mP(X); mP(X%)

for the tempered fundamental groups of X, Xz [cf. [André], §4; [Mzk10], Exam-
ples 3.10, 5.6]. Thus, the profinite completion of m°(X) (respectively, m"(X7))
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is naturally isomorphic to the usual étale fundamental group m1(X) (respectively,
m(Xy)). f H C WEP(XE) is an open subgroup of finite index, then recall that the
minimal co-free subgroup of H

Hco—fr CH

[cf. §0] is precisely the subgroup of H with the property that the quotient H —»
H/H corresponds to the tempered covering of X7z determined by the universal
covering of the dual graph of the special fiber of a stable model of X3 — cf. [André],
proof of Lemma 6.1.1.

Proposition 4.10. (Basic Properties of Tempered Fundamental Groups)
In the notation of the above discussion, suppose further that ¢ : X — Y is a mor-
phism of hyperbolic orbicurves over k. For Z = X,Y, let us write

ny Ea(z); A7 E ()

and denote the profinite completions of Hth, Ath by ﬁth, ﬁtzp, respectively; in
the following, all “co-free completions” [cf. §0] of open subgroups of finite index in
H%‘; (resg?cectively, AE‘;) will be with respect to the subgroup AE‘; C HE‘; (respectively,
AP CAY). Then:

R (i) The natural homomorphism % — ﬁg? 5 om(X) (respectively, AY —
AE‘; = m(Xy)) is injective. In fact, if H C AE‘; is any characteristic open
subgroup of finite index, then H?/Hco‘fr, AW /HT inject into their respective
profinite completions. In particular, ﬂp(X ) (respectively, Wip(XE) ) is naturally
isomorphic to its m (X )-co-free completion (respectively, 71 (X73)-co-free com-

pletion) [cf. §0].
(i) TIY (respectively, A'¥) is normally terminal in ﬁg? (respectively, ﬁgg ).

(iii) Suppose that ¢ is either a de-cuspidalization morphism [i.e., an open
immersion whose image is the complement of a single k-valued point of Y — cf.
Definition 4.2, (i), (¢)] or a de-orbification morphism [i.e., a partial coarsification
morphism which is an isomorphism over the complement of a single k-valued point
of Y — ¢f. Definition 4.2, (i), (d)]. Then the natural homomorphism 1% — T}
(respectively, At}() — Ag}) ) may be rfconstructed — “group-f\heoretically” —
from its profinite completion Hg? —» Hgﬁ) (respectively, AE? —» Agﬁ)) as the natural
morphism from HE? (respectively, AE? ) to the co-free completion of HE? with
respect to IIyY (respectively, A ) [ef. §0].

(iv) Let I € Primes. If J C AE‘; is an open subgroup of finite index, write
J — JW for the co-free completion of J with respect to the maximal pro-I
quotient of the profinite completion of J. Let H C AE? be an open subgroup of
finite index. Suppose that | # p. Then the dual graph I'y of the special fiber of a
stable model of the covering of Xt corresponding to H determines verticial and
edge-like subgroups of HY [i.e., decomposition groups of the vertices and edges
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of 'y — cf. [Mzk10], Theorem 3.7, (i), (iii)]. The verticial (respectively, edge-
like) subgroups of HY may be characterized — “group-theoretically” — as the
maximal compact subgroups (respectively, nontrivial intersections of two
distinct maximal compact subgroups) of H W, In particular, the graph Ty
may be reconstructed — “group-theoretically” — from the verticial and edge-
like subgroups of HW, together with their various mutual inclusion relations.

(v) The prime number p may be characterized — “group-theoretically”
— as the unique prime number | such that their exist open subgroups H,J C Ag?
of finite index, together with distinct prime numbers ly, la, satisfying the following
properties: (a) H is a normal subgroup of J of index l; (b) for i = 1,2, the outer
action of J on HW [cf. (iv)] fixes [the conjugacy class in H%] of] and induces
the trivial outer action on some maximal compact subgroup of HU! [cf.

(iv)].

(vi) Let | be a prime number # p; H C AE‘; an open subgroup of finite index.
Then the set of cusps of the covering of Xt corresponding to H may be charac-
terized — “group-theoretically” — as the set of conjugacy classes in HY of the
commensurators in HY of the images in HY of edge-like subgroups of J! [cf.
(iv)], where J C H is an open subgroup of finite index, which are not contained
in edge-like subgroups of H. In particular, by allowing H to vary, this yields a
[“group-theoretic” ] characterization of the decomposition groups of cusps
in AR, TIY [i.e., a “tempered version” of Lemma 4.5, (v)].

Proof. Assertion (i) follows immediately from the discussion at the beginning of
[Mzk10], §6 [cf. also the discussion of [André|, §4.5]. Assertion (ii) is the content
of [Mzk10], Lemma 6.1, (ii), (iii) [cf. also [André], Corollary 6.2.2]. Assertion (iii)
follows immediately from assertion (i). Assertion (iv) follows immediately from
[Mzk10], Theorem 3.7, (iv); [Mzk10], Corollary 3.9 [cf. also the proof of [Mzk10],
Corollary 3.11]. Assertions (v), (vi) amount to summaries of the relevant portions
of the proof of [Mzk10], Corollary 3.11. Here, in assertion (v), we observe that at
least one of the [; is # p; thus, for this choice of [;, the action of J fizes and induces
the trivial outer action on some verticial subgroup of H1. O

Remark 4.10.1. It is not clear to the author at the time of writing how to prove
a version of Proposition 4.10, (vi), for decomposition of closed points which are not
cusps [i.e., a “tempered version” of Lemma 4.1, (iii)].

Remark 4.10.2. A certain fact applied in the portion of the proof of [Mzk10],
Corollary 3.11 summarized in Proposition 4.10, (vi), is only given a somewhat
sketchy proof in loc. cit. A more detailed treatment of this fact is given in [Mzk15],
Corollary 2.11.

Now we are ready to state the tempered version of Definition 4.2.
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Definition 4.11. In the notation of the above discussion, let
1-A—-1I—-G—1

be an extension of topological groups that is isomorphic to the natural extension
1 — mP(Xg) — mP(X) — Gal(k/k) — 1 via some isomorphism « : m;P(X) = 1I,
which we shall refer to as a scheme-theoretic envelope. Write II for the profinite
completion of II, X — X for the pro-finite étale covering of X determined by
the completion of a [so II = Gal(X/X)]; k for the resulting field extension of k.
In a similar vein, we shall write II for the projective system of topological groups
determined by the open subgroups of finite index of II [cf. Definition 4.2]. Then:

(i) We shall refer to as an [II-/chain [of length n] [where n > 0 is an integer]
any finite sequence
IIg ~ II{ ~ ...~ 11,1 ~ 11,

of topological groups II; [for j =0, ... ,n] with slim profinite completions ﬁj, each
equipped with a “rigidifying homomorphism” p; : I — II; which is of DOF-type
[i.e., which maps some member of the projective system II onto a dense subgroup of
an open subgroup of finite index of II; — cf. §0] satisfying the following conditions:

(Otp) IIp =1I [equipped with its natural rigidifying homomorphism I — 1I1].

(ltp) There exists a [uniquely determined] surjection II, — G compatible
with p;, where G; C G is an open subgroup.

(2¢p) Each kernel

A o Ker(Il; - G; — Q)

has a slim, nontrivial profinite completion ﬁj.

(3tp) The topological groups II;, A; are residually finite. We shall refer to
as a cuspidal decomposition group in ﬁj any ﬁj—conjugate of the com-
mensurator in ﬁj of the image via p; of the inverse image in II of the
decomposition group in A [determined by «] of a cusp of X.

(4¢p) Each “II; ~» II;41” [for j =0,...,n — 1] is an “elementary operation”,
as defined below.

Here, an elementary operation “II; ~» 11;11” is defined to consist of the datum of
an “operation homomorphism” ¢ of DOF-type either from II; to 114 or from I
to II; which is compatible with p;, p;j41, and, moreover, is of one of the following
four types:

a) Type A: In this case, the elementary operation II. ~ II..{ consists of
(a) Typ : y op j i+
an immersion of OF-type [cf. §0] ¢ : 1,41 — II,.
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(b) Type Y: In this case, the elementary operation II; ~» II;1 1 consists of
an immersion of OF-type [cf. §0] ¢ : II; — II, ;.

(c) Type o: In this case, the elementary operation II; ~» II;y; consists
of a dense homomorphism ¢ : II; — II;;1 which is isomorphic to the
co-free completion of 1I; with respect to the induced profinite quotient

o ﬁj — ﬁj+1 [and the subgroup Aj], such that Ker(a) is topologically
normally generated by a cuspidal decomposition group C' in A; such that
C' is contained in some normal open torsion-free subgroup of A;.

(d) Type @: In this case, the elementary operation II; ~» II;;; consists
of a dense homomorphism ¢ : II; — II;;1 which is isomorphic to the
co-free completion of 11; with respect to the induced profinite quotient
b ﬁj —» ﬁj+1 [and the subgroup A,], such that Ker(gg) is topologically
normally generated by a finite closed subgroup of ﬁj.

Thus, any II-chain determines a sequence of symbols € {A, Y, e, @} [corresponding
to the types of elementary operations in the II-chain|, which we shall refer to as the
type-chain associated to the II-chain.

(ii) An isomorphism between two II-chains with identical type-chains [hence of
the same length]
(Mg ~ ...~ 10,) = (Ug o o U

is defined to be a collection of isomorphisms of topological groups IT; = W¥; [for
j =0,...,n] that are compatible with the rigidifying homomorphisms. [Here, we
note that the condition of compatibility with the rigidifying homomorphisms implies
[since all of the topological groups involved are residually finite with slim profinite
completions| that every automorphism of a II-chain is given by the identity, and that
every isomorphism of II-chains of the same length is compatible with the respective
operation homomorphisms.] Thus, one obtains a category

Chain(II)

whose objects are the II-chains [with arbitrary associated type-chain|, and whose
morphisms are the isomorphisms between II-chains [with identical type-chains].
A terminal homomorphism between two II-chains [with arbitrary associated type-
chain]

(Ig ~> ...~ 10,) — (T~ oo U,

is defined to be an outer homomorphism of DOF-type [cf. [Mzk10], Theorem 6.4]
I1,, — W,, that is compatible [up to composition with an inner automorphism| with
the open homomorphisms II,, — G, ¥,,, — G. Thus, one obtains a category

Chain™™ (11)

whose objects are the II-chains [with arbitrary associated type-chain]|, and whose
morphisms are the terminal homomorphisms between II-chains; write

Chain™*"*™(II) C Chain"™ (II)
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for the subcategory determined by the terminal isomorphisms [i.e., the isomor-
phisms of Chain"™ (IT)]. Thus, it follows immediately from the definitions that we
obtain natural functors Chain(IT) — Chain***"™(II) — Chain"™(II). Finally, we
obtain (sub)categories

Chain™**"™ (IT){~} C Chain**"™(IT); Chain™™(I1){-} C Chain"™ (IT)
DLoc(IT) % Chain™™ (I { A, o};  EtLoc(IT) %' Chain™*™ () {1, Y}

[cf. Definition 4.2, (v)].

Remark 4.11.1. Just as in the profinite case [i.e., Remark 4.2.1], we have natural
functors

Chain(X /X) — Chain(IT) — Chain(II)
Chain®""™ (X /X) — Chain*>""(II) — Chain™*""™(II)
Chain™ (X /X) — Chain®™(II) — Chaintrm(ﬁ)

— where the second arrow in each line is the natural functor obtained by profinite
completion; the various composite functors of the two functors in each line are the
natural functors of Remark 4.2.1.

Remark 4.11.2. A similar remark to Remark 4.2.2 applies in the present tem-
pered case.

Theorem 4.12. (Tempered Chains of Elementary Operations) For i =
1,2, let k; be an MILF of residue characteristic p;; k; an algebraic closure of k;;
X,; a hyperbolic orbicurve over k;;

1—- A, -1, - G; —1

an extension of topological groups that is isomorphic to the natural exten-
sion 1 — ﬂp((Xz-)Ei) — mP(X;) — Gal(k;/k;) — 1 via some scheme-theoretic
envelope «; : 7" (X;) = TI;. Let
¢: 1 = 1y

be an isomorphism of topological groups. Then:

(i) The natural functors [cf. Remark 4.2.1]

Chain(X;/X;) — Chain(Il;); Chain®"™(X,/X;) — Chain™*""™(II,)

EtLoc(X;/X;) — EtLoc(IT;)
Chain"™(X;/X;) — Chain"™(II;); DLoc(X;/X;) — DLoc(IL;)
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are equivalences of categories that are compatible with passing to type-chains.

(ii) We have p1 = pa; the isomorphism ¢ induces isomorphisms ¢a : Ay — Ay,
dc : G1 = Ga, as well as equivalences of categories

Chain(II;) & Chain(Ily); Chain™*™(II;) & Chain™°"™(II,)
EtLoc(II;) = EtLoc(IT,)
Chain"™™(II;) = Chain"™(II,); DLoc(II;) = DLoc(I,)

that are compatible with passing to type-chains and functorial in ¢.

Proof. 1In light of Proposition 4.10, (iii), together with the “tempered anabelian
theorem” of [Mzk10], Theorem 6.4, the proof of Theorem 4.12 is entirely similar
to the proof of Theorem 4.7. [Here, we note that in the case of de-cuspidalization
operations, instead of applying the de-cuspidalization portion of Proposition 4.10,
(iii), one may instead apply the “group-theoretic” characterization of Proposition
4.10, (vi).] Also, we recall that the portion of assertion (ii) concerning, “p; = pa”,
“On”, “¢g” follows immediately [by considering the profinite completion of ¢] from
Theorem 2.14, (i). O

Remark 4.12.1. A similar remark to Remark 4.7.1 applies in the present tem-
pered case [cf. [Mzk10], Theorem 6.8].
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Appendix: The Theory of Albanese Varieties

In the present Appendix, we review the basic theory of Albanese varieties [cf.,
e.g., [NS], [Serrel], [Chev], [BS], [SS]], as it will be applied in the present paper.
One of our aims here is to present the theory in modern scheme-theoretic language
[i.e., as opposed to [NS], [Serrel], [Chev]], but without resorting to the introduction
of motives and derived categories, as in [BS], [SS]. Put another way, although there
is no doubt that the content of the present Appendix is implicit in the literature,
the lack of an appropriate reference that discusses this material explicitly seemed
to the author to constitute sufficient justification for the inclusion of a detailed
discussion of this material in the present paper.

In the following discussion, we fix a perfect field k, together with an algebraic
closure k of k. The result of base-change [of k-schemes and morphisms of k-schemes]

from k to k will be denoted by means of a subscript “k”. Write G, ot Gal(k/k) for
the absolute Galois group of k.

We will apply basic well-known properties of commutative group schemes of
finite type over k without further explanation. In particular, we recall the following:

(I) The category of such group schemes is abelian [cf., e.g., [SGA3-1], V4,
5.4]; subgroup schemes are always closed [cf., e.g., [SGA3-1], VIg, 1.4.2];
reduced group schemes over k are k-smooth [cf., e.g., [SGA3-1], VI4, 1.3.1].

(IT) Every connected reduced subquotient of a semi-abelian variety over k [i.e.,
an extension of an abelian variety by a torus] is itself a semi-abelian variety
over k. [Indeed, this may be verified easily by reducing to the correspond-
ing fact for tori [cf., e.g., [SGA3-2], IX, 8.1] and abelian varieties.]

(ITT) Let ¢ : B — A be a connected finite étale Galois covering of a semi-
abelian variety A over k, with identity element 04 € A(k), such that
(¢71(04))(k) # 0, and the degree of ¢ is prime to the characteristic of
k. Then each element of b € (¢~1(04))(k) determines on B a unique
structure of semi-abelian variety over k on B such that b is the identity
element of the group B(k), and ¢ is a homomorphism of group schemes
over k. [Indeed this may be verified easily by reducing to the corresponding
fact for tori and abelian varieties.] Note, moreover, that in this situation,
if k = k, then we obtain an inclusion Gal(B/A) — B(k), which implies,
in particular, that the covering ¢ is abelian, and, moreover, appears as
a subcovering of a covering A — A given by multiplication by some n
invertible in k.

Definition A.1.

(i) A wvariety over k, or k-variety, is defined to be a geometrically integral
separated scheme of finite type over k. A k-variety will be called complete if it is
proper over k. We shall refer to a pair (V,v), where V' is a k-variety and v € V(k),
as a pointed variety over k; a morphism of pointed varieties over k, or pointed k-
morphism, (V,v) — (W, w) [which we shall often simply write V' — W, when v, w
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are fized] is a morphism of k-varieties that maps v — w. Any reduced group scheme
G over k has a natural structure of pointed variety over k determined by the identity
element 0 € G(k). If G, H are group schemes over k, then we shall refer to a
k-morphism G — H as a [k-/trans-homomorphism if it factors as the composite of a
homomorphism of group schemes G — H over k with an automorphism of H given
by translation by an element of H(k). If V is a k-variety, then we shall use the
notation 71(V') to denote the étale fundamental group [relative to an appropriate
choice of basepoint] of V. Thus, we have a natural exact sequence of fundamental
groups 1 — m (V @p k) — 71 (V) — G — 1. Let X3 C Primes [cf. §0] be the set
of primes invertible in k; use the superscript “(Xx)” to denote the mazximal pro-X
quotient of a profinite group; if V' is a k-variety, then we shall write

def

Ay Em(Vp)®); Ty Eow (V) /Ker(m (V) — m (V) )

for the resulting geometrically pro-Xj fundamental groups, so we have a natural
exact sequence of fundamental groups 1 — Ay — [y — G — 1.

(ii) Let C be a class of commutative group schemes of finite type over k. If A
is a group scheme over k that belongs to the class C, then we shall write A € C. If
(V,v) is a pointed k-variety, then we shall refer to a morphism of pointed k-varieties

p:V—-A

as a C-Albanese morphism if A € C [so A is equipped with a point 04 € A(k), as
discussed in (i)], and, moreover, for any pointed k-morphism ¢’ : V' — A’, where
A’ € C, there exists a unique homomorphism v : A — A’ of group schemes over k
such that ¢’ =1 o ¢. In this situation, A will also be referred to as the C-Albanese
variety of V. We shall write C;:b for the class of abelian varieties over k and Cz‘ab for
the class of semi-abelian varieties over k. When C = CZ‘ab, the term “C-Albanese”,
will often be abbreviated “Albanese”.

(iii) If X is a k-variety (respectively, noetherian scheme) which admits a log
structure such that the resulting log scheme X'°8 is log smooth over k [where we
regard Spec(k) as equipped with the trivial log structure| (respectively, log regular
[cf. [Kato]]), then we shall refer to X as k-toric (respectively, absolutely toric)
and to X'°8 as a torifier, or torifying log scheme, for X. [Thus, “k-toric” implies
“absolutely toric”.]

(iv) If k is of positive characteristic, then, for any k-scheme X and integer
n > 1, we shall write X¥" for the result of base-changing X by the n-th iterate

of the Frobenius morphism on k; thus, we obtain a k-linear relative Frobenius

morphism ®% : X — XF" If k is of characteristic zero, then we set X" def X,

O 244 x, for integers n > 1. If ¢ : X — Y is a morphism of k-schemes, then

we shall refer to ¢ as a sub-Frobenius morphism if, for some integer n > 1, there
exists a k-morphism ) : Y — X" such that ¢ o ¢ = ®%, ¢ 0tp = ®L. [Thus, in
characteristic zero, a sub-Frobenius morphism is simply an automorphism.|

Remark A.1.1. As is well-known, if V is a k-variety, then ®7, induces an
isomorphism IIy, = I, #», for all integers n > 1. Note that this implies that every
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sub-Frobenius morphism V. — W of k-varieties induces isomorphisms Iy, = Tly,
Ay = Ay

Before proceeding, we review the following well-known result.

Lemma A.2. (Morphisms to Abelian and Semi-abelian Schemes) Let
S be a noetherian scheme; X an S-scheme whose underlying scheme is absolutely
toric; A an abelian scheme over S (respectively, a semi-abelian scheme over
S which is an extension of an abelian scheme B — S by a torus T — S); V C X
an open subscheme whose complement in X is of codimension > 1 (respectively,
>2)in X. Then any morphism of S-schemes V' — A extends uniquely to X.

Proof. First, we consider the case where A is an abelian scheme. If X is reqular,
then Lemma A.2 follows from [BLR], §8.4, Corollary 6. When X is an arbitrary
absolutely toric scheme with torifier X'°8, we reduce immediately to the case where
X is strictly henselian, hence admits a resolution of singularities [cf., e.g., [Mzk4],
§2]

Ylog N Xlog

—i.e., alog étale morphism of log schemes which induces an isomorphism Uy = Ux
between the respective interiors such that Y18 arises from a divisor with normal
crossings in a regular scheme Y. Since the “regular case” has already been settled,
we may assume that Ux C V' also, it follows that the restriction Uy — A to

Uy of the resulting morphism Ux — A extends uniquely to a morphism Y — A.

The image of this morphism determines a closed subscheme Z C Ay e 4 XgY.

Moreover, by considering the image of Z under the morphism Ay — Ax df 4 X g

X of proper X-schemes, we conclude from “Zariski’s main theorem” [since X is
normal] that to obtain the [manifestly unique, since V' is schematically dense in
X] desired extension X — A, it suffices to show that the fibers of ¥ — X map
to points of A. On the other hand, as is observed in the discussion of [Mzk4], §2,
each irreducible component of the fiber of Y — X at a point = € X is a rational

variety over the residue field k(x) at =, hence maps to a point in the abelian variety

A, ¥ A xg k(x) [cf., e.g., [BLR], §10.3, Theorem 1, (b), (c)]. This completes the

proof of Lemma A.2 in the non-resp’d case. Thus, to complete the proof of Lemma
A2 in the resp’d case, we may assume that A = T is a torus over S. In fact, by étale
descent, we may even assume that 7" is a split torus over S. Then it suffices to show
that if £ is any line bundle on X that admits a generating section sy € T'(V, L),
then it follows that sy extends to a generating section of L over X. But since X is
normal, this follows immediately from [SGAZ2], XI, 3.4; [SGAZ2], XI, 3.11. O

Proposition A.3. (Basic Properties of Albanese Varieties) Let C €
{cab by oy V — A, ¢w : W — B C-Albanese morphisms. Then:

(i) (Base-change) Let k' be an algebraic field extension of k; denote the
result of base-change [of k-schemes and morphisms of k-schemes] from k to k' by
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means of a subscript “k'”. If C = C (respectively, C = Ci?P), then set C' = C2P
(respectively, C' = C5;*"). Then (¢v )i : Viw — Aps is a C'-Albanese morphism.

(i) (Functoriality) Given any k-morphism By : V. — W, there exists a
unique k-trans-homomorphism 4 : A — B such that ¢w o By = a0 ¢y. If,
moreover, By is pointed, then B4 is a homomorphism.

(iii) (Relative Frobenius Morphisms) For any integern > 1, ¢, : VF" —
AF" is a C-Albanese morphism. If, moreover, in (i), opw = ¢, , By = O,
then B4 = ®7}.

(iv) (Sub-Frobenius Morphisms) If, in (ii), By is a sub-Frobenius mor-
phism, then so is (4.

(v) (Toric Open Immersions) Suppose, in (i), that By is an open im-
mersion, that W is k-toric, and that if C = C® (respectively, C = Cy2P), then
the codimension of the complement of the image of By in W is > 1 (respectively,
>2). Then 34 is an isomorphism.

(vi) (Dominant Quotients) If, in (ii), Sy is dominant, then 34 is surjec-
tive.

(vii) (Surjectivity of Fundamental Groups) The [outer] homomorphisms
Iy, Iy — 14, Ay, : Ay — Ay induced by ¢y are surjective.

(viii) (Semi-abelian versus Abelian Albanese Morphisms) Suppose that
C =C5ab. Write A — A®P for the mazimal quotient of group schemes over k such
that A*P € C2. Then the composite morphism V — A — A®P is a C2’-Albanese
morphism.

(iz) (Group Law Generation) For integers n > 1, write
CnZVXk...XkVHA
(’Ul, cee 7Un> = Z?:l Uj

for the morphism from the product over k of n copies of V' to A given by adding
the images under ¢y of the points in the n factors. Then there exists an integer N
such that ¢, is surjective for alln > N. In particular, if V is proper, then so is

A.

Proof. To verify assertion (i), we may assume that k" is a finite [hence necessarily
étale, since k is perfect] extension of k. Then assertion (i) follows immediately
by considering the Weil restriction functor Wy (=) from k' to k. That is to
say, it is immediate that W /(=) takes objects in C’ to objects in C. Thus, to
give a k’-morphism Vi, — A’ (respectively, Ay — A’) is equivalent to giving a
k-morphism V' — W, 1, (A") (respectively, A — Wy, (A’)). This completes the
proof of assertion (i). Assertions (ii), (iii) follow immediately from the definition of
a ‘C-Albanese morphism”; assertion (iv) follows immediately from assertion (iii).
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Assertion (v) follows immediately from the definition of a “‘C-Albanese morphism”,
in light of Lemma A.2.

Assertion (vi) follows from the definition of a “C-Albanese morphism”, by ar-
guing as follows: First, we observe that By is an epimorphism in the category of
schemes. Also, we may assume without loss of generality that (v is pointed. Now
consider the composite 3o ¢y : W — B/C of ¢y : W — B with the natural

quotient morphism 3 : B — B/C, where we write C' oot Im(B4) C B [so C € C|.
Since 3 o ¢y has the same restriction [via By] to V' as the constant pointed mor-
phism W — B/C, we thus conclude that fo ¢y is constant, i.e., that Im(¢w ) C C.
But, by the definition of a “C-Albanese morphism”; this implies the existence of a
section B — C' of the natural inclusion C' — B, hence that B = (, as desired. In a
similar vein, assertion (vii) follows from the definition of a “C-Albanese morphism”,
by observing that if I, : IIyy — Il4 fails to surject, then [after possibly replac-
ing k£ by a finite extension of k, which is possible, by assertion (i)] it follows that
¢y : V — A factors V — C — A, where the morphism C — A is a nontrivial finite
étale Galois covering, with C' geometrically connected over k, so C € C. But this
implies, by the definition of a ‘C-Albanese morphism”, the existence of a section
A — C of the surjection C' — A, hence that this surjection is an isomorphism
C = A, a contradiction.

Next, we observe that assertion (viii) follows immediately from the definitions,
in light of the well-known fact that any homomorphism G — H of group schemes

over k, where G is a torus and H is an abelian variety, is trivial [cf., e.g., [BLR],
§10.3, Theorem 1, (b), (c)].

Finally, we consider assertion (ix). First, let us observe that we may assume
without loss of generality that k& = k. Next, let us observe that since the image
of ¢y contains 04 € A(k), it follows that for n > m, the image I,, C A(k) of ¢,
contains the image I,,, of ,,,. Write F,, C A for the [reduced closed subscheme given
by the] closure of I,,. Since the domain of ¢, is irreducible, it follows immediately
that F), is irreducible. Thus, the ascending sequence ... C F,, C ... C F,, C ...

terminates, i.e., we have F,, = F,, for all n,m > N’, for some N’; write F’ def Fn.
Since Iy is constructible, it follows that In/ contains a nonempty open subset U
of [the underlying topological space of] F’; let u € U(k). Now let us write I}, for
the union of the translates of U by elements of I,,; thus, one verifies immediately
that I, is open in F, that I], C I,,4 v, and that w4+ I,, C I],. Since F' is noetherian,
it thus follows that the ascending sequence ... C I/ C ... C I/ C ... terminates,
i.e., that for some N” > N’ we have I/, = I/ for all n,m > N"; write I C F
for the resulting open subscheme. Thus, for n > N, u+ I Cu+ I, n C I. On
the other hand, again since F' is noetherian, it follows that the ascending sequence
ICI—uCI—2uC... terminates, hence that u+ I = I. In particular, for some
N"" > N" wehave I,, = I, for n > N"’. Next, let us observe that for any j € I(k),
it follows from the definition of the I,, that j + I C I, hence [as in the case where
j = u], we have j + I = I. Since 04 € I, it thus follows that I is closed under
the group operation on A, as well as taking inverses in A. Thus, it follows that
I is a subgroup scheme of A, hence that I is a closed subscheme of A [so I = F]|.
But this implies, by the definition of a “C-Albanese morphism”, the existence of a
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homomorphism A — I whose composite with the inclusion I < A is the identity
on A. Thus, we conclude that the inclusion I <— A is a surjection, i.e., that I = A,
as desired. O

A proof of the following result may be found, in essence, in [NS] [albeit in
somewhat archaic language], as well as in [FGA], 236, Théoreme 2.1, (ii) [albeit
in somewhat sketchy form|. Various other approaches [e.g., via Weil divisors] to
this result are discussed in [Klei], Theorem 5.4 and the discussion following [Klei],
Theorem 5.4.

Theorem A .4. (Properness of the Identity Component of the Picard
Scheme) The identity component of the Picard scheme

[cf., e.qg., [BLR], §8.2, Theorem 3; [BLR], §8.4] associated to a complete normal
variety V' owver a field k is proper.

Proof. Write G for the reduced group scheme (Pic(‘)/ /k)red over k. Then by a well-
known theorem of Chevalley [cf., e.g., [Con], for a treatment of this result in modern
language], it follows that to show that G' [hence also Pic!, /i) 18 proper, it suffices to
show that G does not contain any copies of the multiplicative group (Gy,)x or the
additive group (G,)g. On the other hand, since (G, )i, (Ga)r may be thought of
as open subschemes of the affine line A}, this follows immediately from Lemma A.5
below [i.e., by applying the functorial interpretation of Pic?//k — cf,, e.g., [BLR],
§8.1, Proposition 4]. O

Lemma A.5. (Rational Families of Line Bundles) Let V' be a normal
variety over k; U C A} a nonempty open subscheme of the affine line A}. Then
every line bundle Ly on'V X U arises via pull-back from a line bundle L, on V.

Proof. In the following, let us regard A, as an open subscheme Al C Pl of the
projective line [obtained in the standard way by removing the point at infinity
oo € PL(k)]. First, let us verify Lemma A.5 under the further hypothesis that
V' is smooth over k. Then it follows immediately that V x, P} is smooth over k,
hence locally factorial [cf., e.g., [SGA2], XI, 3.13, (i)]. Thus, Ly extends to a line
bundle £p on P &' v %, P. (O V xx Al DO V x4 U). Moreover, by tensoring
with line bundles associated to multiples of the divisor on P arising from ooy, we
may assume that the degree of Lp on the fibers of the trivial projective bundle
f P — Vs zero. Thus, the natural morphism f*f.Lp — Lp is an isomorphism,
which exhibits L£p, hence also Ly, as a line bundle £ pulled back from V.

Now we return to the case of an arbitrary normal variety V. As is well-known,
V' contains a dense open subscheme W C V which is smooth over k and such that

the closed subscheme F &' VAW [where we equip F' with the reduced induced
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structure] is of codimension > 2 in V [cf.; e.g., [SGA2], XI, 3.11, applied to the

geometric fiber of V' — Spec(k)]. Thus, by the argument given in the smooth case,

we conclude that My, def Ly|wx, v arises from a line bundle My, on W. Next, let

us write 1 : W — V, 1y : W X, U — V X3 U for the natural open immersions.
Since U is k-flat, it follows immediately that we have a natural isomorphism

((Lk)*Mk)‘kaU = (LU)*MU

[arising, for instance, by computing the right-hand side by means of an affine cov-
ering of W X U obtained by taking the product over k with U of an affine cov-
ering of WJ]. On the other hand, since V' x; U is normal and F x, U CV x;, U
is a closed subscheme of codimension > 2, it follows from the definition of My,
that (1)« My = Ly [cf., eg., [SGA2], XI, 3.4; [SGA2], XI, 3.11], i.e., that
((tk)«Mp)|v v is a line bundle on V x;, U. On the other hand, since the morphism
U — Spec(k), hence also the projection morphism V' x, U — V, is faithfully flat,
we thus conclude that £, def (tk)« My is a line bundle on V whose pull-back to
V' X U is isomorphic to Ly, as desired. ()

Proposition A.6. (Duals of Picard Varieties as Albanese Varieties)
Let V' be a complete normal variety over k; Pic?//k the identity component of

the associated Picard scheme; A the dual abelian variety to G Lo (Pic(‘)//k)red
[which is an abelian variety by Theorem A.4]; v € V (k). Then the universal
line bundle Py [cf., e.g., [BLR], §8.1, Proposition 4] on V xj G relative to the
rigidification determined by v [i.e., such that Py|(,yxq s trivial] determines [by
the definition of A] a morphism of pointed k-varieties

p:V—-A

such that the pull-back of the Poincaré bundle Pa on A X G via ¢ X G : V Xy,
G — A xi G is isomorphic to Py [in a fashion compatible with the respective
rigidifications]. Moreover:

i) The morphism ¢ is a C2P-Albanese morphism.
k

(ii) Suppose, in the situation of Proposition A.3, (ii), that W is also complete
and normal, and that By is pointed and birational. Then the dual morphism
OBa : H— G topBsa: A— B is aclosed immersion. In particular, B4 is an
isomorphism if and only if dimy(A) < dimg(B).

(iii) The morphism ¢ induces an injection H'(A,O4) — H(V,Oy).
(iv) The morphism ¢ induces an isomorphism AP 5 A, [where we refer

to §0 for the notation “ab-t”].

Proof. First, we consider assertion (i). Let 1y : V' — C be a morphism of pointed
k-varieties, where C' € Czb. Now by the functoriality of “Pic(()_) /K Yv induces a
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morphism D &' Picg, K= Pic}, /i [s0 D is the dual abelian variety to C], hence a
morphism ¥p : D — G, whose dual gives a morphism ¢4 : A — C. The fact that
Yy =Ya0¢: V — C follows by thinking of morphisms as classifying morphisms for
line bundles and considering the following [a priori, not necessarily commutative]

diagram of morphisms between varieties equipped with [isomorphism classes of] line
bundles:

VxpD,L) -5 (VxpD,£) "ESY(Vx, G Py)
lwvka léXkD l¢XkG
(C xx D,Pe) P (Ax, D,M) P (A xp G Pa)

— where we write £ % (Y xxD)*Pe; M L (1h4 x,D)*Pe = (Ax1bp)*Pa. That
is to say, the desired commutativity of the left-hand square follows by computing:

(¢ Xk D)* (a4 xp D)*Pc =

[acd

¢ xp D)*
V Xk ¢¥p
V Xk ¢¥p
Yv X D

—

A Xk Yp) Pa
(¢ x1 G)"Pa
“py,
“Pe

>~

o~~~ o~

~

— which implies that ¥y = ¥4 o ¢. Finally, the uniqueness of such a “y 4" follows
immediately by applying “Pic?_) sk to the condition “¢y =ppo0dp: V — A — C7.
This completes the proof of assertion (i).

Next, we consider assertion (ii). First, observe that there exists a k-smooth
open subscheme U C W such that W\U has codimension > 2 in W [cf., e.g.,
[SGA2], XI, 3.11, as it was applied in the proof of Lemma A.5], and, moreover,

By : V. — W admits a section o0 : U — V over U. Note, moreover, that if S is any

local artinian finite k-scheme, and we write tg : Ug f i X S — Wg e i Xg k

for the natural inclusion, then for any line bundle £ on Wg, we have a natural
isomorphism (1s)«(L5L) = L [cf., e.g., [SGA2], X, 3.4; [SGA2], XI, 3.11]. Thus, by
applying this natural isomorphism, together with the section o, we conclude that
the map Pic%//k(S) — Pic(‘)//k(S) [induced by By] is an injection, which implies
that the kernel group scheme of G5 : H — G is trivial, hence that Bq is a closed
immersion, as desired. This completes the proof of assertion (ii).

Next, we consider assertion (iii). The morphism H!(A4,04) — HY(V,0Oy) in
question may be interpreted as the morphism induced by ¢ on tangent spaces to the
Picard scheme, i.e., as the morphism

G(k[e]/(€)) = Picy . (k[e]/(¢*)) — Picy,(k[e] /(€*))

[cf., e.g., [BLR], §8.4, Theorem 1, (a)]. But, by the definition of G, this morphism
arises from a closed immersion G — Pic}, /1> hence is an injection, as desired.

Finally, we consider assertion (iv). The surjectivity portion of assertion (iv)
follows immediately from Proposition A.3, (vii). To verify the fact that the sur-
jection APt — A, is an isomorphism, we reason as follows: First, we recall that
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a line bundle £ on V such that £®" [where n > 1 is an integer invertible in k|
is trivial may be interpreted [via the Kummer exact sequence in étale cohomol-
ogy] as a continuous homomorphism Ay — (Z/nZ)(1) [where the “(1)” denotes
a “Tate twist”]. On the other hand, by [BLR], §8.4, Theorem 7, there exists an
integer m > 1 such that for every integer n > 1, the cokernel of the inclusion
2G(k) — ,Picy (k) [where the “,” preceding an abelian group denotes the kernel
of multiplication by n] is annihilated by m. In light of the functorial interpretation
of the inclusion G — Pic?//k C Picyyy, this implies that the cokernel of the homo-
morphism Hom(A 4, Q/Z) — Hom(Ay,Q/Z) is annihilated by m. But, by applying
Hom(—, Q/Z), this implies that the induced homomorphism A2 — A4 has finite
kernel, hence [in light of the surjectivity already verified] induces an isomorphism
upon passing to “ab-t”. O

Remark A.6.1. The content of Proposition A.6, (i), is discussed in [FGA], 236,
Théoreme 3.3, (iii).

Remark A.6.2. Suppose that we are in the situation of Proposition A.6, (ii).
Then it is not necessarily the case that the induced morphism 34 is an isomorphism.
This phenomenon already appears in the work of Chevalley — cf. [Chev]; the
discussion of [Klei], p. 248; Example A.7 below.

Example A.7. Albanese Varieties and Resolution of Singularities. For
simplicity, suppose that k = k. Write P2 = Proj(k[z1, xa,z3]) [i.e., where we
consider k[zq,xo,x3] as a graded ring, in which x1, xo, x3 are of degree 1]. Let
f € k[z1,x2,x3] be a homogeneous polynomial that defines a smooth plane curve
X C P? of genus > 1. Thus, any € X (k) determines an embedding X — .J, where

J is the Jacobian variety of X. Set Y ot Spec(k[z1, z2,z3]/(f)); write y € Y (k)

for the origin, Uy oo Y\{y}. Thus, we have a natural morphism Y D Uy — X;
Uy — X is a Gy, -torsor over X. In particular, Uy is k-smooth. Thus, since Y
is clearly a local complete intersection [hence, in particular, Cohen-Macaulay], it
follows from Serre’s criterion of normality [cf., e.g., [SGA2], XI, 3.11] that Y is
normal. Let Z — Y be the blow-up of Y at the origin y. Thus, we obtain an

1somorphism Uy def Z xy Uy = Uy. Moreover, one verifies immediately that
the morphism U; = Uy — X extends to a morphism Z — X which has the

structure of an Al-bundle, in which E L7 xy {y} C Z forms a “zero section”
[so E = X]|. Thus, Z admits a natural compactification Z — Z* to a P*-bundle
Z* — X. Moreover, by gluing Z*\E to Y along Z\E = Uz = Uy C Y, we obtain a
compactification Y — Y* such that the blow-up morphism extends to a morphism
Z* — Y* [which may be thought of as the blow-up of Y* at y € Y (k) C Y*(k)].
On the other hand, note that the composite Z* — X — J determines a closed
immersion Z* O E = X < J. Thus, the restriction Uy — Uy — J of this
morphism Z* — J to Uy — Uy does not extend to Y or Y*. In particular, it follows
that if we write Y* — Ay, Z* — Ay for the Cgb -Albanese varieties of Proposition
A.6, (i), then the surjection Ay — Az induced by Y* — Z* [cf. Proposition A.6,
(ii)] is not an isomorphism.
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Proposition A.8. (Albanese Varieties of Complements of Divisors with
Normal Crossings) Let Z be a smooth projective variety over k; D C Z a

divisor with normal crossings; Y Lef Z\D C Z;yeY(k);
D=|J D,
n=1

[for some integer r > 1] the decomposition of D into irreducible comonents; M the
free Z-module [of rank r] of divisors supported on D; P C M the submodule of
divisors that determine a line bundle € Pic%/k(k:). Then:

(i) (Y,y) admits an Albanese morphism Y — Ay.

(ii) Suppose that each of the D,, is geometrically irreducible. Then the Ay
of (i) may be taken to be an extension of the abelian variety Ay given by the

dual to Gz %' (Pic%/k)red [cf. Propositions A.3, (viii); A.6, (i)] by a torus whose
character group is naturally isomorphic to P.

(i4i) The morphism Y — Ay of (i) induces an isomorphism AP* = A, .

Proof. By étale descent [with respect to finite extensions of k], it follows immedi-
ately that to verify assertion (i), it suffices to verify assertion (ii). Next, we consider
assertion (ii). Again, by étale descent, we may assume without loss of generality
that k = k. Note that the tautological homomorphism P — Gz (k) determines an
extension

0—-Ty - Ay — Az — 0

of Az by a split torus Ty with character group P. Now the fact that Ay serves
as an Albanese variety for Y is essentially a tautology: Indeed, since any pointed
morphism from Y to an abelian variety C' extends [cf. Lemma A.2] to a pointed
morphism Z — C, and, moreover, we already know that Az is a C3-Albanese
variety for Z [cf. Proposition A.6, (i)], it follows that it suffices to consider pointed
morphisms Y — B, where B is an extension of Az by a [split] torus. In fact, for
simplicity, we may even assume that this torus is simply (Gy,)x. Thus, it suffices
to consider pointed morphisms Y — B, where B is an extension of Az by (G, )k,
determined by some extension class kg € Gz(k). Then the datum of a morphism
Y — B corresponds precisely to an invertible section of the restriction to Y of the
line bundle £ on Z given by pulling back the G,-torsor B — Ay via the Albanese
morphism Z — Az. Note that such an invertible section of £|y may be thought of
as the datum of an isomorphism Oz(E) = L for some divisor E supported on D.
That is to say, since the isomorphism class of L is precisely the class determined
by the element kp € Gz(k) C Picg,;(k), it thus follows that E/ € P, and that xp
is the image of £ € P in Pic%/k(k:) = Gz(k). Thus, in summary, the datum of
a pointed morphism Y — B, where B is an extension of Az by a [split] torus, is
equivalent [in a functorial way|] to the datum of a homomorphism Ay — B lying
over the identity morphism of Ay. In particular, the identity morphism Ay — Ay
determines a morphism Y — Ay . This completes the proof of assertion (ii).
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Finally, we consider assertion (iii). We may assume without loss of generality
that £ = k. Let F C D be a closed subscheme of codimension > 1 in D such that

7' I\FCZ, D ! D\F C D are k-smooth. Then one has the associated Gysin
sequence in étale cohomology

0— HL{(Z',7,(1)) — HL(Y, Z)(1)) — M @ Zy — H(Z',7,(1))

for [ € ¥, [cf. [Milne], p. 244, Remark 5.4, (b)]. Moreover, we have natural isomor-
phisms Hgt(Z’, Z,(1)) = Hgt(Z, Z,(1)), for j = 1,2. [Indeed, by applying noetherian
induction, it suffices to verify these isomorphisms in the case where F' is k-smooth,
in which case these isomorphisms follow from [Milne|, p. 244, Remark 5.4, (b).]
Note, moreover, that the morphism M ® Z; — HZ(Z',Z,(1)) = H2(Z,7Z:(1)) is
precisely the “fundamental class map”, hence factors through the natural inclusion

PiCz/k(k)/\ — HéQt(Z7 Zl(l))

[where the “A” denotes the pro-l completion| arising from the Kummer exact se-
quence on Z. On the other hand, since Pic% /k(k) is l-divisible, and the quotient
PiCZ/k(k)/Pic%/k(k‘) is finitely generated [cf. [BLR], §8.4, Theorem 7|, it follows
that we have an isomorphism

(Piczk(k)/Picy (k) @ Zi = Picg, (k)"

— i.e., that the kernel of the morphism M ®Z; — HZ(Z',7Z,(1)) is precisely PQZ,.
In particular, the isomorphism A%* 5 A4, of Proposition A.6, (iv), implies [in
light of the above exact sequence] that HZ (Y, Z;(1)) [i.e., Hom (A%t Z,(1))], hence
also A*;,b‘t ® Zi, is a free Z;-module of rank dimy(Ay ). Thus, we conclude that the
surjection At — A4, of Proposition A.3, (vii), is an isomorphism, as desired.

O

Remark A.8.1. A sharper version [in the sense that it includes a computation of
the torsion subgroup of A%P] of Proposition A.8, (iii), is given in [SS], Proposition
4.2. The discussion of [SS] involves the point of view of 1-motives. On the other
hand, such a sharper version may also be obtained directly from the Gysin sequence
argument of the above proof of Proposition A.8, (iii), by working with torsion
coefficients.

The following result is elementary and well-known.

Lemma A.9. (Descending Chains of Subgroup Schemes) Let G be a
[not necessarily reduced] commutative group scheme of finite type over k;

.CG,C...CG1CGy =G

a descending chain of [not necessarily reduced!] subgroup schemes of G, indexed
by the nonnegative integers. Then there exists an integer N such that G, = G,,
for alln,m > N.
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Proof. First, let us consider the case where all of the G,,, for n > 0, are reduced
and connected. Then since all of the G,, are closed irreducible subschemes of G, it
follows immediately that if we take any integer IV such that dimg(G),) = dimg(G,,)
for all n,m > N, then G,, = G,, for all n,m > N. Now we return to the general
case. By what we have done so far, we may assume without loss of generality that
(Go)red = (Gp)rea for all n > 0. Thus, by forming the quotient by (Gp)reqa, We
may assume that all of the G,, are finite over Spec(k). Then Lemma A.9 follows
immediately. O

Before proceeding, we recall the following result of de Jong.

Lemma A.10. (Equivariant Alterations) Suppose that k = k; let V be
a variety over k. Then there exists a smooth projective variety Z over k, a
finite group I' of automorphisms of Z over k, a divisor with normal crossings
D C Z fized by T', and a T-equivariant [relative to the trivial action of T on V]
dominant, proper, generically quasi-finite morphism

Yy 2DV

such that if we write k(Z), k(V') for the respective function fields of Z, V', then the
subfield of T-invariants k(Z)'' C k(Z) forms a purely inseparable extension of
kE(V).

Proof. This is the content of [deJong], Theorem 7.3. O

We are now ready to prove the main result of the present Appendix, the first
portion of which [i.e., Corollary A.11, (i)] is due to Serre [cf. [Serrel]].

Corollary A.11. (Albanese Varieties of Arbitrary Varieties)

(i) Every pointed variety (V,v) over k admits an Albanese morphism
V — A

(ii) Let ¢ : V. — A be an Albanese morphism, where (V,v) is a k-toric
pointed variety. Then ¢ induces an isomorphism APt = A 4.

Proof. First, we consider assertion (i). By applying étale descent, we may assume
without loss of generality that & = k. Let Z O Y — V be as in Lemma A.10,
y € Y (k) a point that maps to v € V (k) [where we observe that, as is easily verified,
the existence of an Albanese morphism as desired is independent of the choice of
v]. Then by Proposition A.8, (i), it follows that Y admits an Albanese morphism
Y — B. Thus, every pointed morphism v : V — C, where C' € C{®P, determines,
by restriction to Y, a homomorphism B — C', whose kernel is a subgroup scheme
H,, C B. In particular, the pointed morphisms v : V' — (' determine a projective
system of subgroup schemes H,, C B which is filtered [a fact that is easily verified by
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considering product morphisms V' — C; xj C5 of pointed morphisms v; : V — Cf,
vy : V. — (Cs]. Moreover, by Lemma A.9, this projective system admits a cofinal
subsystem which is constant, i.e., given by a single subgroup scheme H C B. Now
it is a tautology that the composite morphism Y — B — B/H factors uniquely
[where we observe that uniqueness follows from the fact that Y — V' is dominant]
through a morphism V' — B/H which serves as an Albanese morphism for V.

Next, we consider assertion (ii). First, let us observe that, by Proposition
A.3, (i), we may assume without loss of generality that k = k. Let Z DY — V,
I’ be as in Lemma A.10; write Y — V’ — V for the factorization through the
normalization V' — V of V in the purely inseparable extension k(Z)'' of k(V). Let
V — A, V! — A’ be Albanese morphisms [which exist by assertion (i)]. Since V is
normal, it follows immediately that V' — V is a sub-Frobenius morphism. Thus,
by Proposition A.3, (iv) [cf. also Remark A.1.1], it follows that V' — V induces
isomorphisms At = APt A 4 5 A . In particular, by replacing V by V', we
may assume without loss of generality that Y — V' is generically étale.

Next, let us observe that since V' is k-toric, it follows that there exists a closed

subscheme F C V of codimension > 2 such that U %' V\F is k-smooth [cf., e.g.,

[SGA2], XI, 3.11]. Note, moreover, that the composite U — V — A is an Albanese
morphism for U [cf. Proposition A.3, (v)]. Thus, we have surjections

Az[ajb—t —»A%/b_t _»AA

[cf. Proposition A.3, (vii)]. In particular, if the surjection AP — Ay is an
isomorphism, then so is the surjection A" — A 4. Thus, we may assume without
loss of generality that V' is k-smooth.

Next, let Y — B be an Albanese morphism for B [cf. Proposition A.8, (i)].
Then, by Proposition A.3, (ii), the action of I" on Y extends to a compatible action
of I' on B by k-trans-homomorphisms. This action of I' on B may be thought of
as the combination of an action of I" on the group scheme B [i.e., via group scheme
automorphisms|, together with a twisted homomorphism x : I' — B(k) [where I'
acts on B(k) via the group scheme action of I on B]. Write B — C” for the quotient
semi-abelian scheme of B by the group scheme action T, i.e., the quotient of B by
the subgroup scheme generated by the images of the group scheme endomorphisms
(1—7):B — B, for v € I'. Thus, x determines a homomorphism x' : T' — C’(k);
write C' — C for the quotient semi-abelian scheme of C by the finite subgroup
scheme of C’ determined by the image of x’. Note that every trans-homomorphism
of semi-abelian schemes B — D which is I'-equivariant with respect to the trivial
action of I' on D and the trans-homomorphism action of I' of B factors uniquely
through B — C. Note, moreover, that the composite Y — B — C' factors uniquely
through V. [Indeed, this is clear generically; then since V' is normal, one may extend
such a factorization [uniquely| to points of height 1 of V' by applying the properness
of Y — V; finally, since V' is smooth, one may extend such a factorization [uniquely]
to the entire scheme V' by applying Lemma A.2.] Thus, it is a tautology that the
resulting morphism V' — C' is an Albanese morphism for V. In particular, we may
assume without loss of generality that V' — A is V' — C. Also, let us observe that
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it follows immediately from the description of finite étale coverings of semi-abelian
schemes reviewed at the beginning of the present Appendix that, for [ € X, the
surjection Ag ® Q; - A4 ® Q; induces an isomorphism

(Ap@Q)/T S A2 Q

[where the “/T” denotes the mazimal quotient on which T acts trivially].

On the other hand, by Proposition A.8, (iii), it follows that we have a natural
isomorphism A2P® 5 Ap. hence, in particular, a natural isomorphism

(AP @ Q)/T 5 (Ap@Q)/T = Ay ©Q

for | € Xj.. Moreover, since Y — V' is dominant, it induces an open homomorphism
Ay — Ay, hence a surjection APt ® Q; - A ® Q; which is T'-equivariant
[with respect to the trivial action of I' on A%t ® Q). In particular, we obtain that
the natural isomorphism (A%,b‘t ® Q)/T 5 A4 ® Qq factors as the composite of
surjections

(AP RQ)/T - AP 0 Q - As®Q

[cf. Proposition A.3, (vii)]. Thus, we conclude that these surjections are isomor-
phisms, hence that the surjection AP — A, of Proposition A.3, (vii), is an
isomorphism, as desired. ()

Remark A.11.1. In fact, given any variety V over k, one may construct an
“Albanese morphism” V' — A, where A is a torsor over a semi-abelian variety over
k, by passing to a finite [separable] extension k' of k such that V (k') # 0, applying
Corollary A.11, (i), over k’, and then descending back to k. This morphism V' — A
will then satisfy the universal property for morphisms V' — A’ to torsors A’ over
semi-abelian varieties over k [i.e., every such morphism V — A’ admits a unique
factorization V' — A — A’, where the morphism A — A’ is a k-morphism that base-
changes to a trans-homomorphism over k]. In the present Appendix, however, we
always assumed the existence of rational points in order to simplify the discussion.

Remark A.11.2. One may further generalize Remark A.11.1, as follows. If V' is a
geometrically integral separated algebraic stack of finite type over k that is obtained
by forming the quotient, in the sense of stacks, of some variety W over k by the
action of a finite group of automorphisms I' C Aut(W), then, by applying Remark
A.11.1 to W to obtain an Albanese morphism W — B for W, one may construct
an “Albanese morphism”

VoA

for V' [i.e., which satisfies the universal property described in Remark A.11.1] by
forming the quotient B — A of B as in the proof of Corollary A.11, (ii): That
is to say, after reducing, via étale descent, to the case k = k, the action of I' on
W induces an action of I' by k-trans-homomorphisms on B, hence an action of
I' by group scheme automorphisms on B, together with a twisted homomorphism
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X : I' = B(k). Then we take B — A’ to be the quotient by the images of the
group scheme endomorphisms [arising from the group scheme action of T' on B|
(1—5):B — B, fory eI, and A’ — A to be the quotient by the image of the
homomorphism x' : I' — A’(k) determined by x. Moreover, just as in the proof of
Corollary A.11, (ii), we obtain a natural isomorphism

~

AP S Ay

[where we use the notation “A(_)” to denote the evident stack-theoretic general-
ization of this notation for varieties].

The content of more classical works [cf., e.g., [NS], [Chev]] written from the
point of view of birational geometry may be recovered via the following result.

Corollary A.12. (Albanese Varieties and Birational Geometry)

(i) Let By : V! — V be a proper birational morphism of normal varieties

over k which restricts to an isomorphism Gy : U’ ety xyv U = U over some
nonempty open subscheme U C V; 34 : A* — A the induced morphism on Al-
banese varieties [cf. Corollary A.11, (i)]; W C V a k-toric open subscheme.
Then the composite morphism U (W — U = U’ — V' — A’ extends uniquely
to a morphism W — A’ which induces a surjection Ay — A /.

(ii) Let
oV, V= Vy=V

be a sequence [indexed by the nonnegative integers| of birational morphisms of
complete normal varieties over k. Then there exists an integer N such that
for all n,m > N, where n > m, the induced morphism on Albanese varieties
A, — A, is an isomorphism. IfV is k-toric, then one may take N = 0.

Proof. First, we consider assertion (i). We may assume without loss of generality
that U C W. Then since V! — V is proper, and W is normal, it follows that
the morphism U = U’ < V' extends uniquely to an open subset W\F C W,
where F' is a closed subscheme of codimension > 2 in W. Thus, the fact that the
resulting morphism W\F — V' — A’ extends uniquely to W follows immediately
from Lemma A.2. To verify the surjectivity of Ay — A4/, it suffices to verify the
surjectivity of Ay — Ay, ie., of Ayr — Ay — A, On the other hand, this
follows from the surjectivity of Ay, — Ay [cf. Proposition A.3, (vii)], together
with the surjectivity of Ayr — Ay [cf. the fact that U’ C V' is a nonempty open
subscheme of the normal variety V'].

Next, we consider assertion (ii). By Proposition A.6, (i), (ii) [cf. also Propo-
sition A.3, (viii), (ix); Corollary A.11, (i)], each induced morphism on Albanese
varieties A, — A, for n > m, is a surjection of abelian varieties which is an
isomorphism if and only if dimy(A4,,) < dimg(A,,). On the other hand, if W C V' is
any nonempty k-toric [e.g., k-smooth] open subscheme whose Albanese morphism
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[cf. Corollary A.11, (i)] we denote by W — Ay, then assertion (i) yields a mor-
phism W — A, that induces a surjection Ay — A4, hence, in particular, a
morphism Ay, — A, that induces a surjection A4, — A4, . But this implies that
dimg(A,) < dimg(Aw ), hence that for some integer N, dimy (A,) = dimg(A,,), for
all n,m > N. In particular, if W = V| then dimy(A4,,) < dimg(4yp), for all n > 0.

O
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