ON ENDOMORPHISMS OF FANO MANIFOLDS OF PICARD
NUMBER ONE

JUN-MUK HWANG* AND NOBORU NAKAYAMA

ABSTRACT. Let X be a Fano manifold of Picard number one different from the projective
space. It has been conjectured that a surjective endomorphism X — X must be bijective.
In this article, we will prove a weaker version of the conjecture: a surjective endomorphism
X — X which is étale outside a completely invariant divisor is bijective. As applications
of this result, the conjecture is confirmed in the case where the variety of minimal rational
tangents of X is linear and in the case where X is quasi-homogeneous.

1. INTRODUCTION

We will work over the complex number field C. It seems that the following has been a
folklore since 1980’s.

Conjecture 1.1. Let X be a Fano manifold of Picard number one different from the
projective space. Then a surjective endomorphism X — X must be bijective.

Up to our knowledge, no general strategy to this conjecture has been suggested. Even
testing the conjecture for a specifically given Fano manifold of Picard number one is not
easy. For that reason, it is worth studying the conjecture with some additional assump-
tions on X. For example, Conjecture 1.1 was proved for homogeneous spaces in [PS], for
hypersurfaces of the projective space in [Be| and for Fano manifolds containing a rational
curve with trivial normal bundle in [HMO03]; the last work solves Conjecture 1.1 in case
dim X = 3.

On the other hand, since Conjecture 1.1 predicts that all surjective endomorphisms are
just automorphisms, it is somewhat artificial and aesthetically repulsive to work on the
conjecture with additional assumptions on the endomorphism. Notwithstanding this, we
will study Conjecture 1.1 for a special class of endomorphisms in this paper. We say that
an endomorphism f: X — X is étale outside a completely invariant divisor if there exists
a reduced divisor D C X such that f~'(D) := f*(D)wea = D and f|x\p: X\ D — X\ D
is étale. We will prove the following.
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Theorem 1.2. Let X be a Fano manifold of Picard number one different from the projective
space. If an endomorphism of X is étale outside a completely invariant divisor, it is

bijective.

In fact, our result is slightly stronger. See Theorem 2.1 for the precise statement.

What is our excuse for making this special assumption on the endomorphism? We believe
that Theorem 1.2 will be useful in attacking Conjecture 1.1. It seems that, for many
examples of X, the geometry of rational curves on X forces an arbitrary endomorphism
X — X to be étale outside a completely invariant divisor. To illustrate this idea, we will
use Theorem 1.2 to prove the following.

Theorem 1.3. Let X be a Fano manifold of Picard number one different from the projective
space. Suppose that the variety of minimal rational tangents of X is linear. Then a

surjective endomorphism X — X is bijective.

See Section 6 for the meaning of the assumption on the variety of minimal rational
tangents. In practice, the only known examples of Fano manifolds of Picard number one
whose variety of minimal rational tangents is linear are those having rational curves with
trivial normal bundles. For the latter class of Fano manifolds, Theorem 1.3 were already
proved in [HMO3]. In this sense, Theorem 1.3 is a generalization of a result of [HMO03].
However, the proof given here is different from that of [HMO03] and conceptually simpler. In
particular, the calculation involving discriminantal orders, which was the hardest part in
[HMO3], is not needed here. Moreover, as far as endomorphisms are concerned, Theorem 1.3
has a theoretical advantage which makes it more useful than [HMO03]. As an example, we
will use Theorem 1.2 and Theorem 1.3 to prove the following, for which the result of [HMO03]
is not sufficient.

Theorem 1.4. Let X be a Fano manifold of Picard number one different from the projective
space. Assume that X is quasi-homogeneous, i.e., the connected component Aut,(X) of
the group of biregular automorphisms of X has an open orbit in X. Then a surjective

endomorphism X — X s bijective.

This verifies Conjecture 1.1 for quasi-homogeneous cases. Note that quasi-homogeneous
Fano manifolds of Picard number one cover a large class of examples, much larger than the
homogeneous cases of [PS]. Even when Aut,(X) is reductive, this class of Fano manifolds

have not yet been classified.

2. PROOF OF THEOREM 1.2

In this section, we will prove the following stronger version of Theorem 1.2.
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Theorem 2.1. Let X be an n-dimensional Fano manifold of Picard number one and D C
X a reduced divisor. Assume that there exist a non-isomorphic surjective endomorphism
f: X — X such that f~Y(D) = D and flx\p: X \ D — X \ D is étale. Then X is
isomorphic to the projective space P, and D is a simple normal crossing divisor consisting

of n+ 1 hyperplanes.

Given a reduced divisor D in a projective manifold X, we define the sheaf Q% (log D) as
follows. Let U C X be an open subset with codim(X \ U) > 2 and D NU being a smooth
divisor. Denote by Qf;(log(D N U)) the locally free sheaf of germs of logarithmic 1-forms
on U with poles only along U N D. Using the open immersion j: U C X, we define

QL (log D) := 7.0 (log(D N U)).
This is a reflexive coherent sheaf on X.

Proposition 2.2. In the setting of Theorem 2.1, let A be the ample generator of Pic(X) =
Z and let ¢ > 1 be the integer with f*A = qA in Pic(X); in particular, deg f = ¢". Then
the following hold.
(i) f*(ci(A)) = ¢'er(A) € H*(X,Z) and f.(c1(A)) = ¢" e (AY € H¥ (X, Z) for any
0<4,j<n.
(i) There is a natural isomorphism f*Q% (log D) = Q4 (log D). In particular, Kx+D =
["(Kx + D). A
(iii) For any i > 0, ¢;(Q%(log D)) ¢;(A)"* = 0.

Proof. (i) is direct from the projection formula. (ii) follows from the fact that f is flat,
f7Y(D) = D and f is étale outside D. For (iii), denoting Q% (log D) by F, (ii) gives
f*(ci(F)) = ¢;(F) for any i. Then

¢""'ei(F)er(A)" T = fra(F)(fre(A)" T = (deg fei(F)e(A)" ™ = ¢"ei(Fer(A)"
implies ¢;(F)ci(A)" " = 0. O
Proposition 2.3. In the setting of Proposition 2.2, the sheaf Q% (log D) is semi-stable
with respect to A. In fact, Qk(log D)~ 0",
Proof. Suppose it is not semi-stable with respect to A. Then, there is a non-zero coherent
sheaf F c Q' (log D) such that
L cl(]:)cl(A)"_l

HalF) = rank F

Then pa(f*F) = qua(F) by fu(ci(A)") = qei(A) € H*(X,Z) and by the projection
formula. For the iterated power f* = fo---of (k > 1) of f, we have ua((f*)*F) = ¢*ua(F).
Note that the set

> 0.

{pa(F)|0#F c Q'(log D)}
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is bounded from above. Since (f*)*F c QL (log D) by Proposition 2.2 (ii), we get a
contradiction.

Now if a reflexive sheaf G on a projective manifold X is semi-stable with respect to an
ample line bundle A, satisfying ¢;(G) = 0 and ¢3(G)ci(A)"2 = 0, then G is locally free and
there exists a sequence

0c&cé&c---cgE=6
of subbundles such that &;/&;_; is a projectively flat vector bundle with ¢ (&;/&_1) = 0
for any 1 <i <1 (cf. [Na, IV.4.1]). We can apply it to G = Q%(log D) by Proposition 2.2
(iii). Then, Q% (log D) is free, since X is simply connected and

dim Ext} (Ox, Ox) = dim H* (X, Ox) = 0. O
The proof of the following result is taken from [NZ, Lemma 5.3 and Proposition 5.4].

Proposition 2.4. In the setting of Theorem 2.1, there is an open subset U C X such that
DNU is a normal crossing divisor and codim(X \ U) > 3.

Proof. Let v: D — D C X be the normalization of D and ¢ be the conductor of D,
regarded as a Weil divisor on D. The adjunction formula gives

Kz +c=v(Kx+ D).
There is an endomorphism h: D — D such that vo h = f ov and its ramification divisor
Ry is h*(c) — c. In fact, we have K3 4+ ¢c = h*(Kp + ¢) from Kx + D = f*(Kx + D) in
Proposition 2.2 (ii). Moreover, degh = ¢~ by h*v*(A) = v*f*(A) = qu*(A), where ¢ is
as in Proposition 2.2.

We will show that c is reduced. Let I' be an irreducible component of ¢ and © be an
irreducible component of h~(T"). We set a := multg A*(T"). Then

a — 1 =multg(R;) = multg(h*c) — multg(c) = a multr(c) — multg(c).
Consequently,
(1) multg(c) — 1 = a (multr(c) — 1).

Thus, © is contained in c¢. By considering the number of irreducible components of c,
we infer that © — h(O) induces a permutation of the set of irreducible components of
c. In particular, h*(I') = a®. Replacing h by some iteration h™, we may assume that
h*(T') = al'. Since h*v*(A) ~ qv*(A) and degh = ¢" !, we have a = ¢ by

" TV (A)" 2 = B (D) v*(A)" 2 = ag" *Tv* (A)" 2 > 0.

Thus h*(T") = ¢I" and for each positive integer k, (h¥)*(T") = ¢*T for the iterated endomor-
phism h*. Then
multp(c) — 1 = ¢"(multp(c) — 1)



by (1). Thus, multr(c) = 1, proving that c is reduced.
If a plane curve has a reduced conductor over a singular point, then the singularity is

nodal. Hence, D has only normal crossing singularities in codimension one. O
Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let U be the open subset in Proposition 2.4. Since codim(X \U) >
3, we have an isomorphism

C = H'(X,04) = H(U, ).
On the other hand, we have an exact sequence
0— Qy — Q(log(DNU)) — v.05|p — 0

for the normalization v: D — D. Here, D is the disjoint union of the normalizations 5,
of irreducible components D; of D. Thus, dim H’(U, v.05) is the number [ of irreducible
components of D. The connecting homomorphism

HY (U, v.05) — HY(U, Q) 2 H'(X, Q%)

essentially sends a generator 1 of Op for each component D; to the first Chern class c1(D;).

From
dim H(U, Q) = dim H(X, Q%) =0, dimH'(U,Q},) = dim H'(X, Q%) =1,

we get
| —1=dimH(U,Q} (log(D N TU))) = dim H*(X, Q% (log D)) = n

where the last equality is from Proposition 2.3. Since Kx + D = 0 by Proposition 2.3,
—Kx = mA for some positive integer m > n + 1. Thus, X = P, by Kobayashi—Ochiai’s
criterion [KO]. Moreover, m = [ = n + 1 implies that each irreducible component D; is
a hyperplane. The normal crossing property of D = > D; is verified in [NZ, Proposition
5.6]. O

3. FREE IMMERSED SUBMANIFOLDS WITH TRIVIAL NORMAL BUNDLE

Let X be a non-singular projective variety.

Definition 3.1. A finite morphism v: V' — X is called an immersion from a projective
manifold if V' is a non-singular projective variety with dim V' < dim X and v is unramified
and generically injective. If the normal bundle N, = Ny, x is a trivial bundle of rank
dim X — dimV = codimv(V) > 0 in addition, then v is called an immersion with trivial
normal bundle. In this case, the image v(V') is called an immersed submanifold with trivial

normal bundle.



For an immersion v: V' — X from a projective manifold with trivial normal bundle, we

have an exact sequence
(2) O—>TV—>1/*TX—>NV/X2(’)§,BC—>O

for ¢ = codimv(V'). In particular, Ky = v*Ky. Therefore, if X is a Fano manifold, then
so is V. A projective space P, does not have an immersed submanifold with trivial normal
bundle since the tangent bundle is ample.

Definition 3.2. Let v: V — X x W be a finite morphism for algebraic schemes V and W.
Let p: V — X and 7: V — W be the morphisms induced by projections. If 7 is a smooth
morphism with connected fibers and vy, = ¢|v,: Vi := 7 '(w) — X is an immersion,

then v is called a family of immersions from projective manifolds parametrized by W

Let v: V — X x W be a family of immersions from projective manifolds. Then, we have

a commutative diagram

(3) 0 — Nyxow — Vg —— O —— 0
0 ’ N\\///XXW ’ V*Qﬁ(xvv/w 5 lez/w > 0

of exact sequences for the dual Ny X W of the normal bundle N, = Ny,xyw. For any
point w € W and V,, = = }(w), we have Ny, ,x ~ Ny xxwlv,. We can consider v as
a deformation of the holomorphic map v|y, varying the source and fixing the target. In
particular, we have the characteristic map

T.,(W) — H°(V,y, Ny, /x)

for the deformation ¥V — X x W of the non-degenerate holomorphic map v|y, in the sense
of Horikawa [Hol, where T,,(WV) denotes the tangent space of W at w. On the other hand,
we can consider the push-forward v,(},,) as an algebraic cycle of X associated with the
subvariety v(V,,) for any w. Moreover, if WV is normal, then the push-forward v, (V) is
regarded as a family of algebraic cycles of X parametrized by WW. Thus, in this case, we
have an associated morphism from W to the Chow variety Chow(X) of X.

Lemma 3.3. Letv: V — X xW be a finite morphism for algebraic schemesV, W, and let
p:V — X andm: YV — W be the morphisms induced from projections. Assume that w is a
smooth morphism with connected fibers. For a given point w € W and V =V, = 7 }(w),

the following three conditions are mutually equivalent:
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(i) vly: V — X is an immersion with trivial normal bundle and p: V — X is étale at
a point of V.

(ii) W is non-singular at w, v is a family of immersions over an open neighborhood
of w in W, vl|y has trivial normal bundle, and the characteristic map T,,(W) —
H°(V, Ny/x) is an isomorphism.

(i) v is a family of immersions over an open neighborhood of w in W and ¢ is étale
along V.

Proof. (i) = (ii): Let G be the cokernel of Oxxyw — v.Oy. Then dim(Supp(G) N (X x
{w})) < dim V. Since v|y is unramified, Supp(Q2y,(x, ) NV = 0. Thus, there is an open
neighborhood W’ of w in W such that

dim Supp(G) N (X x {w'}) < dimV and Supp(Qb/(XXw)) Nrt(w) =0

for any w’ € W'. Thus, v is a family of immersions over YW'. We may replace YW with W'.
The composition of the pullback homomorphism ¢*Q% — v*Q% ., and an homomorphism
Qo — Q) appearing in the diagram (3) is an isomorphism at a point of V, by
assumption. Thus, the composition

D N%XXW — W*Qll,v

of a homomorphism Ny v, — v*Q% .,y in the diagram (3) and the natural projection
Q% — TQ5, is an isomorphism at the point. Therefore, w is a non-singular point
of W, since 7*Q), is a free sheaf at a point over w. Thus, we may assume that W is
non-singular. Then we have an exact sequence

(4) 0 =Ty — vTxxw=¢Tx ®1"Tyy — Ny,xxw — 0
as the dual of the middle exact sequence of the diagram (3). The dual
OV Ty — Ny xxw
of @ is related to the characteristic map, i.e., the induced morphism
H(®V|y): T,,(W) = H'(V, 7*Tw|v) — H(V, Ny;x) = H'(V, Ny xw|v)

is just the characteristic map at w for the deformation v: ¥V — X x W. Since ®" is an
isomorphism at a point of V, the characteristic map is injective. Since Ny, x =~ Oy° for
¢ = dim W, the characteristic map is an isomorphism.

(ii) = (iii): By assumption, the restriction
Y|y : mTwly = Tw(W) @ Oy — Ny xxwlvy = Nyyx

of ®¥ is an isomorphism. By replacing W with an open neighborhood of w, we may assume
that ®V is surjective. Then ®" is an isomorphism since the rank of Ny, x«w equals dim W .
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Hence, Ty, — ¢*Tx is an isomorphism by (4). Since V is non-singular along V' and X are
non-singular, ¢ is an étale morphism along V.

(iii) = (i): We may assume that v is a family of immersions and that ¢ is étale. Then
Ty ~ ¢*Tx. This is equivalent to: 7Ty ~ Ny /xxw by (4). Therefore, Ny, x ~ T,(W) ®
Oy. O

A family ¥V — X x W of immersions from projective manifolds is called étale if the first
projection ¥V — X is étale. Let v = (p,7): V — X X W be an étale family of immersions
from projective manifolds. Then, v|y, = ¢|v,: Vi = 7 '(w) — X is an immersion with
trivial normal bundle for any w € W by Lemma 3.3. Moreover, ¥V — X x W is a versal
family of the deformation of v|y,, for any w € YW by Lemma 3.3 and [Ho].

Definition 3.4. A positive-dimensional closed subvariety M of Chow(X) is called a com-
ponent of the locus of free immersed submanifolds with trivial normal bundle (FIT, for
short) if M is the closure of the image of YW — Chow(X) induced from an étale family
Y — X x W of immersions from projective manifolds. The set of FITs of X is denoted by
FIT(X).

An example of an FIT is provided by the fibers of a surjective morphism X — Y with
dim X > dimY. More interesting examples arise from minimal rational curves on Fano
manifolds, as we will see in Proposition 6.1. For example, any Fano threefold X of Picard
number one, excepting P; and the quadric hypersurface X C P4, admits an FIT, as noted
in [HMO3, p.628].

Theorem 3.5. Let X be a Fano manifold. Then FIT(X) is a finite set.

Proof. We recall the fact that the Fano manifolds of fixed dimension are bounded (cf. [Kr,
V.2]). Thus, there exist finitely many smooth families II;: X; — S; of Fano manifolds
such that, for any M € FIT(X), there exist an étale family v = (p,7): V — X x W
of immersions from projective manifolds defining M as the closure of the image of W —
Chow(X), a morphism o: W — §; for some ¢, and an isomorphism V ~ X; xs, W over
W. Wefix M, v:V - X xW,and o: W — S;. We write I[I: X — S for II;: X; — S;
for the i. The morphism v defines a morphism [v]: W — H into the relative Home
scheme H := Homg(X, X x S§) over S. Here, 0 = ¢ o [v] for the structure morphism
q: H — S. Note that 'H is regarded as an open subscheme of the relative Hilbert scheme
of ¥ xg (X x8)~ X x X over S. Let

A:XXSHH(XXS) XsH=XxH
be the universal family for the Hom scheme H and let

U =Tl xgidy: X xs H — H



be the second projection. For a point t € 'H, let
A X =0t = (X xgH) xp {ty ~ T qt) = (X xH) xy {t} =X
be the base change of A by {t} — H.

Claim 3.6. Let 7T be the set of points ¢t € H such that A; is an immersion with trivial normal
bundle. Then 7 is an open subset and A: ¥~1(7) — X x 7 is a family of immersions.

Proof. Let t be a point of 7. For the proof, we may replace H with an open neighborhood
of t in H. Then A is a finite morphism over an open neighborhood of ¢ in H. Moreover,
by an argument in the proof of (i) = (ii) of Lemma 3.3, A is an immersion over an open
neighborhood of ¢ in H. Thus, we may assume that A is a family of immersions. It is
enough to show that 7 is an open subset. For the normal bundle

N := Na = Nxxgr/xxn

and for the fiber X; = ¥~(¢), we have an isomorphism N[y, >~ Nu,/x. Since this is trivial
of rank ¢ := dim X — dim &, and X is Fano, H?(X;, N|x,) = 0 for any p > 0. Applying
the upper semi-continuity theorem and the base change theorem to ¥ and N, we see that

U, N is a locally free sheaf of rank ¢ and
VN @ C(t) ~ H (X, Nx,).

Thus, V*W, N — N is isomorphism along X;. Therefore, Ay is an immersion with trivial

normal bundle for any point ¢’ of an open neighborhood of ¢ in W. Thus, 7 is open. [
Claim 3.7. T has only finitely many irreducible components.

Proof. We consider the relative ample divisors —Ky on X and pj(—Kx) on X x S respec-
tively with respect to S, where p;: X x § — X denotes the first projection. These two
divisors define a relative ample divisor on X x X over §. Note that —Ky, = Aj(—Kx)
for t € 7. By the boundedness of (—Ky )4V for the Fano manifolds V, for any s € S,
the open subset 7 N ¢ !(s) C Hilb(IT"!(s) x X) is contained in a union of finitely many
projective subvarieties. Thus, the closure 7 C Hilbs(X x X) is proper over S. Hence, the
Claim follows. U

Proof of Theorem 3.5 continued. By Claim 3.7, there exist finitely many families of im-
mersions v; = (p;,m;): Uy — X xT; (j =1, 2, ..., m) from projective manifolds satisfying
the following conditions:

e 7; is an irreducible algebraic variety for any j.

e m;: U; — 7T; is a smooth family of Fano manifolds for any j.

e The restriction v;ly, : Uy — X for Uy := ;' (t) is an immersion with trivial normal

bundle for any j and any t € 7;.
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e For any M € FIT(X), there exist an étale family v: V — X x W of immersions
from projective manifolds and a morphism W — 7, for some j such that M is the
closure of the image of W — Chow(X) and that v: V — X x W is just the pullback
of v; by W — T;.

For a given M € FIT(X), let v = (¢, m): V — X x W and W — 7, be as above. We shall
show that M is just the closure of the image of the morphism 7; — Chow(X) associated
with the family v; of immersions. If this is proved, then the finiteness of FIT(X) follows.
Let t € 7; be the image of w € W by W — 7; and let V be the fiber 7' (w) = 7rj_1(t).
Now, v: V — X x W is a versal family of the deformation of the immersion ¢|y: V — X.
Thus, U; — 7; is isomorphic to the pullback of the versal family on an analytic open
neighborhood ’]}ﬁ of t in 7;. Hence, the image of ’Z}ﬁ — Chow(X) is contained in the image
of W — Chow(X). Therefore, the closure of the image of 7, — Chow(X) is M. Thus, we
are done. U

4. DIVISORS UNIVALENT WITH RESPECT TO AN FIT

We will use the notation of the previous section. Let M be an FIT of X and let
Y — X x W be an étale family of immersions from projective manifolds defining M. Let
Z — M be the normalization. Then W — M C Chow(X) factors through Z. There is a
family ) of algebraic cycles of X parametrized by Z. For a point w € W and its image z
in Z, YN (X x {z}) coincides with the cycle v.(V,,). Let Y be the normalization of the
irreducible component of Supp()) which dominates Z. Then we have a finite birational
morphism V — Y xz W. In particular, V — X x W is determined by the morphism
W — Z. Let Y — X X Z be the induced generically injective morphism. Let pu: Y — X
and p: Y — Z be the morphisms induced from the projections. We define Z, C Z to be
the maximum open subset such that p: Y, — Z, is smooth and u: Y, — X is étale for
Y, := p~1(Z,). Then Z, is a non-singular dense Zariski open subset of Z and Y, — X x Z,

is an étale family of immersions.

Definition 4.1. The morphism (i, p): Y — X x Z above is called the normalized realiza-
tion of M. The étale family Y, — X x Z, of immersions is called the smooth realization
of M. A smooth member of M means the immersion u: p~'(2) — X with trivial normal
bundle for a point z € Z,.

Lemma 4.2. Let X be a Fano manifold of Picard number one. Let (u,p): Y — X X Z be
the normalized realization of an FIT of X. Then degpu > 1.

Proof. Assume that p is birational. Then p: Y, — X is an open immersion. For a non-zero

effective Cartier divisor © of Z, we have

Wpp(©) = p(©) + E
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for an effective divisor £ supported on Y'\Y,. The non-zero effective divisor y.(p*(0)) is not
ample since it does not intersect u(p~'(z)) for a point z € Z, \ ©. This is a contradiction.
Thus, deg pu > 1. U

Definition 4.3. Let M be an FIT of X and let (u,p): Y — X x Z be the normalized
realization of M.

(i) For a prime divisor H of X, let u*(H) = H" + H" be the decomposition into the
horizontal part H”" and the vertical part HY with respect to p: Y — Z. Then,
p(Supp H?) # Z and any irreducible component of H" dominates Z.

(ii) A prime divisor H is said to be univalent with respect to M if H" is irreducible

and p induces a birational morphism H" — H.

Lemma 4.4. Let H be a univalent prime divisor with respect to an FIT M. Then, for
a general point x € H, there exists a unique smooth member v:V — X of M such that

xev(V) and v(V) ¢ H. Moreover, the image v(V') is non-singular at x.

Proof. Let (i, p): Y — X X Z be the normalized realization of M. Let D be an irreducible
component of H? such that D NY, # (. Then DNY, = p~(p(D) N Z,) since p is smooth
over Z,. Therefore,
W (H)ly, = H"ly, +p*(O)

for an effective divisor © on Z,. Let x € HNu(Y,) be a general point. Then p~(z)NH" =
{y} for a unique point y € Y,. If ¢/ € p~(x) \ {y}, then ¢/ € p=1(O), p~(p(y/)) C H” and
w(p~Hp(y'))) € H. Thus, p~!(p(y)) — X is the unique smooth member v: V — X of M
with € v(V) and v(V) ¢ H. Since p~'(y) N u~'(z) = {y}, = is a non-singular point of
v(V) = pulp~ (p(y)))- O

Let f: X — X be a generically finite surjective morphism from another projective

manifold X. We consider pulling back of FITs of X to X. Let M be an FIT of X and
(11,p): Y — X x Z the normalized realization of M. Let Y be the normalization of an
irreducible components of the fiber product X x x Y which dominates Y and let iL: Y - X
and fy:Y — Y be the induced morphisms. As the Stein factorization of the composition
po fy: Y — Y — Z, we have a proper surjective morphism p: Y — Z to a normal
projective variety Z with connected fibers and a finite morphism f;: Z — Z such that
fzop=po fy.
Lemma 4.5. In this situation, let Z, C Z, be the maximum open subset over which
pofy:Y — Z is smooth. SetY, = p~Z,), Z, = f;%(Z,), and Y, = f;1(V;). Then
(@i, p): Y, — X X Z, is an étale family of immersions from projective manifolds and the
associated morphism Z, — Chow(f() is generically injective. Let M be the FIT of X de-
fined by Y, — X x Z,. If f is a finite morphism, then (i1, p): Y — X x Z is the normalized
realization of M.
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Proof. By a property of the fiber product, we see that (i, po fy): Y — X x Z is generically
injective. Thus so is (ji,): Y — X x Z. Considering the Stein factorization of a smooth
morphism, we see that p is smooth over Z, and f; is étale over Z,. Since X xx Y, — X
is étale, Y, — X xx Y, is an isomorphism onto a connected component, and b Y, — X is
étale. Therefore, (ji,p): Yy — X X Z, is an étale family of immersions. We shall show that
the associated morphism Z, — Chow(X) is generically injective. Let Z, C Zy be an open
dense subset such that Z] — Chow(X) is injective. Assume that i(p~'(z1)) = fa(p~'(22))
for two points z1, 29 of Z, such that f2(z1), fz(22) € Z]. There exist points y; € p~*(21)
and y, € pY(z2) such that fi(y;) = fi(y2). Thus, y; and y, define the same point in
X xx Y. Since Y} is a connected component of the fiber product X x x Y;, we have y; = 45
and z; = 2. Hence, Z, — Chow(X) is generically injective.

The closure M of the image of Z, — Chow(X) is an FIT of X. We have a morphism
VE Z, — Z for the normalization Z of M. We shall prove that J extends to an isomorphism
Z — Z provided that f is finite. It is enough for the proof of the rest. Since f is finite,
considering the push-forward f, of cycles, we have a finite morphism f,: Z — Z such that
f. o j coincides with the composition of fz: Z, — Z, and Z, C Z. Thus, j extends to a
finite morphism Z — Z since Z — Z is also a finite morphism. Hence, Z ~ Z since it is a
birational morphism of normal projective varieties. Thus, we are done. U

Let f: X — X be a generically finite surjective morphism between non-singular projec-
tive varieties. Let X — X — X be the Stein factorization. The branch locus B of the
finite morphism X — X is purely of codimension one. We call B the branch divisor of f.

Lemma 4.6. Let f: X — X, M, (1, p): Y — X X Z be the same as before. For the branch
divisor B of f, assume that the horizontal part B" of B with respect to p: Y — Z is not
zero. Then there is an irreducible component of X xx Y such that, for the normalization
Y of the component and for the induced morphisms fy:Y — Y, fz: Z — Z as above, the
inequality deg(Y/Y) > deg(Z/Z) holds.

Proof. Assume that deg(Y /Y) = deg(Z/Z) for any Y. Then
}'}b = }/l; XZ,, Zb?

since everything is smooth over Z,. Thus, fy: Y, — Y, is étale over p~1(Z]) for a non-empty
Zariski open subset Z C Z,. Since it holds for any Y, the divisor x~*(B) N'Y;, does not
dominate Z,. This is a contradiction to the assumption: B" # 0. U

Proposition 4.7. Let X be a Fano manifold of Picard number one. For a given M &€
FIT(X), there exist at most finitely many univalent prime divisors of X with respect to M.

Proof. Let (i, p): Y — X X Z be the normalized realization of M. We apply Lemmata 4.5
and 4.6 to the generically finite morphism g = f: Y = X — X. Let Y — X x Z be the
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same as in Lemma 4.6. Also let the symbol , be as in Lemma 4.5. Let U be the open subset
X\ (Y \Y;). Then p~1(U) CY,. Tt is enough to show that U N H = @ for any univalent
divisor H of X with respect to M. Assume the contrary. Since p*(H) = H" + H? and
deg 1 > 1, there is an irreducible component D C H" such that u(D) = H and DNY, # (.
Then DNY, = p~(© N Z,) for the prime divisor © = p(D) since p is smooth over Z,.
There is an irreducible component T, of f3-(D N'Y;) such that the closure of f(T,) is H"
for the induced morphism fi: ¥ — X. Then I, — D NY, is a non-birational generically
finite morphism by Lemma 4.6. On the other hand, I', — D N'Y, is birational, since

I, C H'xx (DNY;) c X xx Y

and H" — H is birational. This is a contradiction. Hence, any univalent divisor with
respect to M is an irreducible component of X \ U. Thus, we are done. Il

5. WEBS AND TANGENTIALLY SPECIAL DIVISORS

Let X be a non-singular projective variety.

Definition 5.1. Let M be an FIT and let v = (u,p): Y, — X x Z, be the smooth
realization of M. We call M a web if the following two conditions are satisfied for an open
dense subset Uy C X :

(i) For any y € u=Y(Upr) NY,, pu(y) is a non-singular point of u(p~(p(y)).

(i) For any point (y1,42) € (Yo xx Yo) \ (Y Xz Y) with # = u(y1) = p(y2) € Un,

(5) Ly, (Vi) VT, (V2) =0 in To(X),
where V; = p~1(p(y;)) for i = 1, 2.

Remark 5.2. The condition (i) of Definition 5.1 is equivalent to that the projection v(Y,)N
(Up X Zy) — Z, is smooth for the image v(Y,). The condition (ii) of Definition 5.1 is
equivalent to that the composition

(6) TyoxYO/Z,,xZJYOXXYO - TYOxYOIYOxXYO - NYOXXY,,/YOXYO

of natural homomorphisms is injective and has maximal rank at any point (y1,vy2) € (Y, X x
Yo)\ (Y xzY) with x = pu(y1) = u(y2) € Ups. Indeed, the fiber of the homomorphism (6)
at (y1,y2) € (Yo xx Y,) \ (Y Xz Y) is expressed as

Ty (Vi) © Ty, (V2) 3 (v1,02) = pra(v1) = pra(v2) € To(X),

where z = pu(y1) = p(y2) € X and V; = p~*(p(y;)) for i = 1, 2. This is because
ps: Ty (Y) — T,(X) is an isomorphism for ¢ = 1, 2 and the tangent space T(;.)(Ax)
of the diagonal locus Ax C X x X at (x, ) is just the diagonal locus of T,(X) ® T,.(X) =
T(x’m)(X X X)
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Definition 5.3. Let M be a web and let (i, p): Y — X x Z be the normalized realization
of M. A prime divisor H of X is called tangentially special if H" # () (cf. Definition 4.3)

and there is a coherent subsheaf £ of T'x |y of rank one satisfying the following conditions:

(i) LN Ty = 0 for the subsheaf Ty C T'x|g.
(i) LN (T, z,1n) is of rank one on H' := H"NY, for the restriction ug: H} — H
of ;1 and for the subsheaf

Ty, /z,|un C Ty, |gn =~ 0" (Tx)|gr = wy(Tx | #)-

Remark. In the situation of Definition 5.3, the injection L@ Ty C Tx |y is an isomorphism
over an open dense subset of H. Thus, L ® C(z) = L, ®o,, C(z) is a one-dimensional

subspace of T,(X) for general z € X.

Lemma 5.4. For a web M and for the open subset Uy in Definition 5.1, f H s a tan-
gentially special prime divisor with respect to M with Uy N H # 0, then H is univalent
with respect to M.

Proof. Let H be a tangentially special prime divisor with respect to M. Let £ be the
subsheaf of T'x|y as in Definition 5.3. For a smooth point x € H N Uy, assume that the
image of £L ® C(x) is a one-dimensional subspace of T,,(X) and that = = u(y;) = p(ys) for
two points yy, y» € H". For i =1, 2, let v; be a non-zero element of

(L0 (Ty, )z, m0)) © Clys) C Ty, 2, @ Cly;) = Ty, (V7),

where V; := p~1(p(y;)). Then the images . (v;) and p.(v2) in T,(X) are non-zero elements
contained in £ ® C(x). Therefore, the equality (5) is not satisfied. Hence, p(y1) = p(y2).
Thus, u(Vi) = p(Vs) is singular at xz. This is a contradiction to the condition (i) of
Definition 5.1. Therefore, H" — H is birational. O

Corollary 5.5. If X is a Fano manifold of Picard number one, then, for a given web,

there exist at most finitely many tangentially special prime divisors.

Proof. A tangentially special divisor is an irreducible component of X \ Ujp; or univalent
with respect to M by Lemma 5.4. Thus, the assertion follows from Proposition 4.7. U

Lemma 5.6. Let M be a web of X. Let f: X — X be a finite surjective morphism from
another non-singular projective variety X. Let M be an FIT of X arising from M and f

as in Lemma 4.5. Then M is a web.

Proof. Let Uy; be the open subset f~'(Uy \ B) for the branch divisor B of f. Then the
condition (i) of Definition 5.1 is satisfied for M and Uy, since f~1(X\ B) — X \ B is étale.
Let (fi, p) : Y, — X x Z, be the smooth realization of M. For (1, 72) € (Yox ¢ Yo)\ (Y x;Y)
with ¥ = ji(§1) = (g2) € Uy, if we set y1 = fy(91) and y2 = fy(32), then (y1,42) €
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(Yo xx Yo) \ (Y xzY) with = f(Z) = u(y1) = p(y2) € Up. Since f is unramified at z,
(5) implies that

Ty, (Vi) N T, (Vo) =0 in - T(X)
where V; = 5~'(p(i;)) for i = 1, 2. Thus, the condition (ii) of Definition 5.1 is also satisfied
for M. O

Lemma 5.7. In the situation of Lemma 5.6, let H be a prime divisor of X such that
H" #0 for H := f(H). Either if f is ramified along H or if f(H) is tangentially special
with respect to M, then H is tangentially special with respect to any web M obtained as in
Lemma 5.6.

Proof. The horizontal part H” with respect to f is not zero for the normalized realization
(ji,p): Y — X x Z of M.
Assume that f is ramified along H. The kernel £ of
T¢lg — ["Txlg
is of rank one and £ N Ty =0. Let ﬁbh be the open subset H" NY,. Then
Ker(Ty 7l gn — ' Tyvjzlgn)lan = Ker(Ty | gn — STy gn)lgn = iz £
for the morphism /i : ﬁbh — H induced from i, since fz: Z, — Z, and fi: Y, — Y are
6tale. Thus, H is tangentially special with respect to M.

Next assume that H is tangentially special with respect to M and that f is not ramified
along H. Let U C X be an open subset such that f: U — X is étale and U N H # (. Let
L be the subsheaf of Tx |y in Definition 5.3. For the induced morphism fy : H—H , We
set

L:=[plnTg|g C [Txlg = fa(Tx|n)-
Then £ N Ty =0 and L is of rank one, since T’ v — f*Tx is isomorphism over U. Since
Y, — Y, is étale along ji~'(U), the condition (ii) of Definition 5.3 also holds for £ and
Y — X x Z. Thus, we are done. U

Theorem 5.8. Let X be a Fano manifold of Picard number one admitting a web. Then
any surjective endomorphism X — X 1is bijective.

Proof. For a web M of X, let E); be the union of tangentially special prime divisors with
respect to M. Then FE); is a divisor by Corollary 5.5. The set of webs of X is a finite set
by Proposition 4.7. Thus, the union E of E,; for all the webs M of X is also a divisor.
Suppose that there is a surjective endomorphism f: X — X of degree > 1. Then any
irreducible component of the ramification divisor of f is contained in F and f~'(F) C E
by Lemma 5.7. Thus, f~}(F) = F and f: X\ E — X \ E is étale. Then X is a projective
space by Theorem 1.2. This contradicts that X has a web. U
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6. PROOFS OF THEOREMS 1.3 AND 1.4

Let X be a Fano manifold of Picard number one. An irreducible component I of the
space RatCurves(X) of rational curves (in the sense of [Kr]) on X is called a minimal
component if for a general point x € X, the subscheme K, of K consisting of members
passing through z is non-empty and complete. In this case, the subvariety C, of the
projectivized tangent space PT,(X) consisting of the tangent directions at = of members
of K, is called the variety of minimal rational tangents at x (see [HMO4] for more details).
We say that the variety of minimal rational tangents of X is linear if C, is a union of linear
subspaces of PT,(X) for a general z € X. This includes the case when C, is a finite set.
Then we have the following results from [Hw, Propositions 2.1 and 2.2].

Proposition 6.1. Let X be a Fano manifold of Picard number one different from the
projective space. Suppose that the variety of minimimal tangents of X is linear of dimension
p > 0. Then X has a web M such that the projection p: Y, — Z, is a Pyyq-bundle for the
smooth realization (u,p): Y, — X X Z, of M.

Therefore, we have completed the proof of Theorem 1.3 by Theorem 5.8 and Proposi-
tion 6.1.
We recall the following result from [HMO04, p. 62, Corollary 2].

Proposition 6.2. Let f: X' — X be a surjective generically finite morphism from a
projective manifold X' to a Fano manifold X of Picard number one. Assume that the
variety of minimal rational tangents of X is not linear. Then any holomorphic vector field
on X' descends to a holomorphic vector field on X such that f is equivariant with respect
to the 1-parameter groups of automorphisms of X' and X generated by the holomorphic
vector fields.

Combining Theorem 1.3 and Proposition 6.2, we have the following.

Proposition 6.3. Let X be a Fano manifold of Picard number one different from the
projective space. Let f: X — X be a surjective endomorphism. Then f is equivariant with
respect to Aut,(X), in the sense that it induces a homomorphism ®: Aut,(X) — Aut,(X)
such that f(ox) = ®(o)f(z) for o € Aut,(X) and x € X.

Proof. If the variety of minimal rational tangents of X is linear, f is biregular by Theo-
rem 1.3. Otherwise, we apply Proposition 6.2 to get the equivariance. U

A projective manifold X is quasi-homogeneous if Aut,(X) has an open orbit X, C X.
The complement of X, is called the boundary of X. Now Proposition 6.3 implies the
following, which proves Theorem 1.4 by Theorem 1.2.
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Corollary 6.4. Let X be a quasi-homogeneous Fano manifold of Picard number one with
the boundary E C X. Then any surjective endomorphism f: X — X satisfies f~'(E) = E
and f|x\g s étale.

Let us finish with a final remark. As noted in [HMO04, p. 62], the variety of minimal
rational tangents is not linear for homogeneous spaces of Picard number one, excepting
the projective space. However, it is linear for some quasi-homogeneous Fano manifolds of
Picard number one (e.g. [HMO03, Corollary 2]). So it is essential to use Theorem 1.3 for the
proof of Theorem 1.4.
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