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Abstract. Let X be a Fano manifold of Picard number one different from the projective
space. It has been conjectured that a surjective endomorphism X → X must be bijective.
In this article, we will prove a weaker version of the conjecture: a surjective endomorphism
X → X which is étale outside a completely invariant divisor is bijective. As applications
of this result, the conjecture is confirmed in the case where the variety of minimal rational
tangents of X is linear and in the case where X is quasi-homogeneous.

1. Introduction

We will work over the complex number field C. It seems that the following has been a

folklore since 1980’s.

Conjecture 1.1. Let X be a Fano manifold of Picard number one different from the

projective space. Then a surjective endomorphism X → X must be bijective.

Up to our knowledge, no general strategy to this conjecture has been suggested. Even

testing the conjecture for a specifically given Fano manifold of Picard number one is not

easy. For that reason, it is worth studying the conjecture with some additional assump-

tions on X. For example, Conjecture 1.1 was proved for homogeneous spaces in [PS], for

hypersurfaces of the projective space in [Be] and for Fano manifolds containing a rational

curve with trivial normal bundle in [HM03]; the last work solves Conjecture 1.1 in case

dim X = 3.

On the other hand, since Conjecture 1.1 predicts that all surjective endomorphisms are

just automorphisms, it is somewhat artificial and aesthetically repulsive to work on the

conjecture with additional assumptions on the endomorphism. Notwithstanding this, we

will study Conjecture 1.1 for a special class of endomorphisms in this paper. We say that

an endomorphism f : X → X is étale outside a completely invariant divisor if there exists

a reduced divisor D ⊂ X such that f−1(D) := f ∗(D)red = D and f |X\D : X \D → X \D

is étale. We will prove the following.
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Theorem 1.2. Let X be a Fano manifold of Picard number one different from the projective

space. If an endomorphism of X is étale outside a completely invariant divisor, it is

bijective.

In fact, our result is slightly stronger. See Theorem 2.1 for the precise statement.

What is our excuse for making this special assumption on the endomorphism? We believe

that Theorem 1.2 will be useful in attacking Conjecture 1.1. It seems that, for many

examples of X, the geometry of rational curves on X forces an arbitrary endomorphism

X → X to be étale outside a completely invariant divisor. To illustrate this idea, we will

use Theorem 1.2 to prove the following.

Theorem 1.3. Let X be a Fano manifold of Picard number one different from the projective

space. Suppose that the variety of minimal rational tangents of X is linear. Then a

surjective endomorphism X → X is bijective.

See Section 6 for the meaning of the assumption on the variety of minimal rational

tangents. In practice, the only known examples of Fano manifolds of Picard number one

whose variety of minimal rational tangents is linear are those having rational curves with

trivial normal bundles. For the latter class of Fano manifolds, Theorem 1.3 were already

proved in [HM03]. In this sense, Theorem 1.3 is a generalization of a result of [HM03].

However, the proof given here is different from that of [HM03] and conceptually simpler. In

particular, the calculation involving discriminantal orders, which was the hardest part in

[HM03], is not needed here. Moreover, as far as endomorphisms are concerned, Theorem 1.3

has a theoretical advantage which makes it more useful than [HM03]. As an example, we

will use Theorem 1.2 and Theorem 1.3 to prove the following, for which the result of [HM03]

is not sufficient.

Theorem 1.4. Let X be a Fano manifold of Picard number one different from the projective

space. Assume that X is quasi-homogeneous, i.e., the connected component Auto(X) of

the group of biregular automorphisms of X has an open orbit in X. Then a surjective

endomorphism X → X is bijective.

This verifies Conjecture 1.1 for quasi-homogeneous cases. Note that quasi-homogeneous

Fano manifolds of Picard number one cover a large class of examples, much larger than the

homogeneous cases of [PS]. Even when Auto(X) is reductive, this class of Fano manifolds

have not yet been classified.

2. Proof of Theorem 1.2

In this section, we will prove the following stronger version of Theorem 1.2.
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Theorem 2.1. Let X be an n-dimensional Fano manifold of Picard number one and D ⊂
X a reduced divisor. Assume that there exist a non-isomorphic surjective endomorphism

f : X → X such that f−1(D) = D and f |X\D : X \ D → X \ D is étale. Then X is

isomorphic to the projective space Pn and D is a simple normal crossing divisor consisting

of n + 1 hyperplanes.

Given a reduced divisor D in a projective manifold X, we define the sheaf Ω̂1
X(log D) as

follows. Let U ⊂ X be an open subset with codim(X \ U) ≥ 2 and D ∩ U being a smooth

divisor. Denote by Ω1
U(log(D ∩ U)) the locally free sheaf of germs of logarithmic 1-forms

on U with poles only along U ∩D. Using the open immersion j : U ⊂ X, we define

Ω̂1
X(log D) := j∗Ω

1
U(log(D ∩ U)).

This is a reflexive coherent sheaf on X.

Proposition 2.2. In the setting of Theorem 2.1, let A be the ample generator of Pic(X) ∼=
Z and let q > 1 be the integer with f ∗A = qA in Pic(X); in particular, deg f = qn. Then

the following hold.

(i) f ∗(c1(A)i) = qic1(A)i ∈ H2i(X, Z) and f∗(c1(A)j) = qn−jc1(A)j ∈ H2j(X, Z) for any

0 ≤ i, j ≤ n.

(ii) There is a natural isomorphism f ∗Ω̂1
X(log D) ∼= Ω̂1

X(log D). In particular, KX+D =

f ∗(KX + D).

(iii) For any i > 0, ci(Ω̂
1
X(log D)) c1(A)n−i = 0.

Proof. (i) is direct from the projection formula. (ii) follows from the fact that f is flat,

f−1(D) = D and f is étale outside D. For (iii), denoting Ω̂1
X(log D) by F , (ii) gives

f ∗(ci(F)) = ci(F) for any i. Then

qn−ici(F)c1(A)n−i = f ∗ci(F)(f ∗c1(A))n−i = (deg f)ci(F)c1(A)n−i = qnci(F)c1(A)n−i

implies ci(F)c1(A)n−i = 0. �

Proposition 2.3. In the setting of Proposition 2.2, the sheaf Ω̂1
X(log D) is semi-stable

with respect to A. In fact, Ω̂1
X(log D) ∼= O⊕n

X .

Proof. Suppose it is not semi-stable with respect to A. Then, there is a non-zero coherent

sheaf F ⊂ Ω̂1(log D) such that

µA(F) :=
c1(F)c1(A)n−1

rankF
> 0.

Then µA(f ∗F) = qµA(F) by f∗(c1(A)n−1) = qc1(A) ∈ H2(X, Z) and by the projection

formula. For the iterated power fk = f◦· · ·◦f (k ≥ 1) of f , we have µA((fk)∗F) = qkµA(F).

Note that the set

{µA(F) | 0 6= F ⊂ Ω̂1(log D)}
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is bounded from above. Since (fk)∗F ⊂ Ω̂1
X(log D) by Proposition 2.2 (ii), we get a

contradiction.

Now if a reflexive sheaf G on a projective manifold X is semi-stable with respect to an

ample line bundle A, satisfying c1(G) = 0 and c2(G)c1(A)n−2 = 0, then G is locally free and

there exists a sequence

0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El = G
of subbundles such that Ei/Ei−1 is a projectively flat vector bundle with c1(Ei/Ei−1) = 0

for any 1 ≤ i ≤ l (cf. [Na, IV.4.1]). We can apply it to G = Ω̂1
X(log D) by Proposition 2.2

(iii). Then, Ω̂1
X(log D) is free, since X is simply connected and

dim Ext1
X(OX ,OX) = dim H1(X,OX) = 0. �

The proof of the following result is taken from [NZ, Lemma 5.3 and Proposition 5.4].

Proposition 2.4. In the setting of Theorem 2.1, there is an open subset U ⊂ X such that

D ∩ U is a normal crossing divisor and codim(X \ U) ≥ 3.

Proof. Let ν : D̃ → D ⊂ X be the normalization of D and c be the conductor of D,

regarded as a Weil divisor on D̃. The adjunction formula gives

K
eD + c = ν∗(KX + D).

There is an endomorphism h : D̃ → D̃ such that ν ◦ h = f ◦ ν and its ramification divisor

Rh is h∗(c) − c. In fact, we have K
eD + c = h∗(K

eD + c) from KX + D = f ∗(KX + D) in

Proposition 2.2 (ii). Moreover, deg h = qn−1 by h∗ν∗(A) = ν∗f ∗(A) = qν∗(A), where q is

as in Proposition 2.2.

We will show that c is reduced. Let Γ be an irreducible component of c and Θ be an

irreducible component of h−1(Γ). We set a := multΘ h∗(Γ). Then

a− 1 = multΘ(Rh) = multΘ(h∗c)−multΘ(c) = a multΓ(c)−multΘ(c).

Consequently,

(1) multΘ(c)− 1 = a (multΓ(c)− 1).

Thus, Θ is contained in c. By considering the number of irreducible components of c,

we infer that Θ 7→ h(Θ) induces a permutation of the set of irreducible components of

c. In particular, h∗(Γ) = aΘ. Replacing h by some iteration hm, we may assume that

h∗(Γ) = aΓ. Since h∗ν∗(A) ∼ qν∗(A) and deg h = qn−1, we have a = q by

qn−1Γν∗(A)n−2 = h∗(Γ)h∗ν∗(A)n−2 = aqn−2Γν∗(A)n−2 > 0.

Thus h∗(Γ) = qΓ and for each positive integer k, (hk)∗(Γ) = qkΓ for the iterated endomor-

phism hk. Then

multΓ(c)− 1 = qk(multΓ(c)− 1)
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by (1). Thus, multΓ(c) = 1, proving that c is reduced.

If a plane curve has a reduced conductor over a singular point, then the singularity is

nodal. Hence, D has only normal crossing singularities in codimension one. �

Now we are ready to prove Theorem 2.1.

Proof of Theorem 2.1. Let U be the open subset in Proposition 2.4. Since codim(X \U) ≥
3, we have an isomorphism

C ∼= H1(X, Ω1
X) ∼= H1(U, Ω1

U).

On the other hand, we have an exact sequence

0 −→ Ω1
U −→ Ω1

U(log(D ∩ U)) −→ ν∗O eD|U −→ 0

for the normalization ν : D̃ → D. Here, D̃ is the disjoint union of the normalizations D̃i

of irreducible components Di of D. Thus, dim H0(U, ν∗O eD) is the number l of irreducible

components of D. The connecting homomorphism

H0(U, ν∗O eD) −→ H1(U, Ω1
U) ∼= H1(X, Ω1

X)

essentially sends a generator 1 of O
eDi

for each component Di to the first Chern class c1(Di).

From

dim H0(U, Ω1
U) = dim H0(X, Ω1

X) = 0, dim H1(U, Ω1
U) = dim H1(X, Ω1

X) = 1,

we get

l − 1 = dim H0(U, Ω1
U(log(D ∩ U))) = dim H0(X, Ω̂1

X(log D)) = n

where the last equality is from Proposition 2.3. Since KX + D = 0 by Proposition 2.3,

−KX = mA for some positive integer m ≥ n + 1. Thus, X ∼= Pn by Kobayashi–Ochiai’s

criterion [KO]. Moreover, m = l = n + 1 implies that each irreducible component Di is

a hyperplane. The normal crossing property of D =
∑

Di is verified in [NZ, Proposition

5.6]. �

3. Free immersed submanifolds with trivial normal bundle

Let X be a non-singular projective variety.

Definition 3.1. A finite morphism ν : V → X is called an immersion from a projective

manifold if V is a non-singular projective variety with dim V < dim X and ν is unramified

and generically injective. If the normal bundle Nν = NV/X is a trivial bundle of rank

dim X − dim V = codim ν(V ) > 0 in addition, then ν is called an immersion with trivial

normal bundle. In this case, the image ν(V ) is called an immersed submanifold with trivial

normal bundle.
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For an immersion ν : V → X from a projective manifold with trivial normal bundle, we

have an exact sequence

(2) 0 → TV → ν∗TX → NV/X ' O⊕c
V → 0

for c = codim ν(V ). In particular, KV = ν∗KX . Therefore, if X is a Fano manifold, then

so is V . A projective space Pn does not have an immersed submanifold with trivial normal

bundle since the tangent bundle is ample.

Definition 3.2. Let ν : V → X×W be a finite morphism for algebraic schemes V and W .

Let ϕ : V → X and π : V → W be the morphisms induced by projections. If π is a smooth

morphism with connected fibers and ν|Vw = ϕ|Vw : Vw := π−1(w) → X is an immersion,

then ν is called a family of immersions from projective manifolds parametrized by W

Let ν : V → X×W be a family of immersions from projective manifolds. Then, we have

a commutative diagram

(3)

π∗Ω1
W π∗Ω1

Wy y
0 −−−→ N∨

V/X×W −−−→ ν∗Ω1
X×W −−−→ Ω1

V −−−→ 0∥∥∥ y y
0 −−−→ N∨

V/X×W −−−→ ν∗Ω1
X×W/W −−−→ Ω1

V/W −−−→ 0

of exact sequences for the dual N∨
V/X×W of the normal bundle Nν = NV/X×W . For any

point w ∈ W and Vw = π−1(w), we have NVw/X ' NV/X×W |Vw . We can consider ν as

a deformation of the holomorphic map ν|Vw varying the source and fixing the target. In

particular, we have the characteristic map

Tw(W) → H0(Vw, NVw/X)

for the deformation V → X ×W of the non-degenerate holomorphic map ν|Vw in the sense

of Horikawa [Ho], where Tw(W) denotes the tangent space of W at w. On the other hand,

we can consider the push-forward ν∗(Vw) as an algebraic cycle of X associated with the

subvariety ν(Vw) for any w. Moreover, if W is normal, then the push-forward ν∗(V) is

regarded as a family of algebraic cycles of X parametrized by W . Thus, in this case, we

have an associated morphism from W to the Chow variety Chow(X) of X.

Lemma 3.3. Let ν : V → X×W be a finite morphism for algebraic schemes V, W, and let

ϕ : V → X and π : V → W be the morphisms induced from projections. Assume that π is a

smooth morphism with connected fibers. For a given point w ∈ W and V = Vw = π−1(w),

the following three conditions are mutually equivalent :
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(i) ν|V : V → X is an immersion with trivial normal bundle and ϕ : V → X is étale at

a point of V .

(ii) W is non-singular at w, ν is a family of immersions over an open neighborhood

of w in W, ν|V has trivial normal bundle, and the characteristic map Tw(W) →
H0(V, NV/X) is an isomorphism.

(iii) ν is a family of immersions over an open neighborhood of w in W and ϕ is étale

along V .

Proof. (i) ⇒ (ii): Let G be the cokernel of OX×W → ν∗OV . Then dim(Supp(G) ∩ (X ×
{w})) < dim V . Since ν|V is unramified, Supp(Ω1

V/(X×W))∩ V = ∅. Thus, there is an open

neighborhood W ′ of w in W such that

dim Supp(G) ∩ (X × {w′}) < dim V and Supp(Ω1
V/(X×W)) ∩ π−1(w′) = ∅

for any w′ ∈ W ′. Thus, ν is a family of immersions over W ′. We may replace W with W ′.

The composition of the pullback homomorphism ϕ∗Ω1
X → ν∗Ω1

X×W and an homomorphism

ν∗Ω1
X×W → Ω1

V appearing in the diagram (3) is an isomorphism at a point of V , by

assumption. Thus, the composition

Φ: N∨
V/X×W → π∗Ω1

W

of a homomorphism N∨
V/X×W → ν∗Ω1

X×W in the diagram (3) and the natural projection

ν∗Ω1
X×W → π∗Ω1

W is an isomorphism at the point. Therefore, w is a non-singular point

of W , since π∗Ω1
W is a free sheaf at a point over w. Thus, we may assume that W is

non-singular. Then we have an exact sequence

(4) 0 → TV → ν∗TX×W = ϕ∗TX ⊕ π∗TW → NV/X×W → 0

as the dual of the middle exact sequence of the diagram (3). The dual

Φ∨ : π∗TW → NV/X×W

of Φ is related to the characteristic map, i.e., the induced morphism

H0(Φ∨|V ) : Tw(W) = H0(V, π∗TW |V ) → H0(V, NV/X) = H0(V, NV/X×W |V )

is just the characteristic map at w for the deformation ν : V → X ×W . Since Φ∨ is an

isomorphism at a point of V , the characteristic map is injective. Since NV/X ' O⊕c
V for

c = dimW , the characteristic map is an isomorphism.

(ii) ⇒ (iii): By assumption, the restriction

Φ∨|V : π∗TW |V = Tw(W)⊗OV → NV/X×W |V = NV/X

of Φ∨ is an isomorphism. By replacing W with an open neighborhood of w, we may assume

that Φ∨ is surjective. Then Φ∨ is an isomorphism since the rank of NV/X×W equals dimW .
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Hence, TV → ϕ∗TX is an isomorphism by (4). Since V is non-singular along V and X are

non-singular, ϕ is an étale morphism along V .

(iii) ⇒ (i): We may assume that ν is a family of immersions and that ϕ is étale. Then

TV ' ϕ∗TX . This is equivalent to: π∗TW ' NV/X×W by (4). Therefore, NV/X ' Tw(W )⊗
OV . �

A family V → X ×W of immersions from projective manifolds is called étale if the first

projection V → X is étale. Let ν = (ϕ, π) : V → X ×W be an étale family of immersions

from projective manifolds. Then, ν|Vw = ϕ|Vw : Vw = π−1(w) → X is an immersion with

trivial normal bundle for any w ∈ W by Lemma 3.3. Moreover, V → X ×W is a versal

family of the deformation of ν|Vw for any w ∈ W by Lemma 3.3 and [Ho].

Definition 3.4. A positive-dimensional closed subvariety M of Chow(X) is called a com-

ponent of the locus of free immersed submanifolds with trivial normal bundle (FIT, for

short) if M is the closure of the image of W → Chow(X) induced from an étale family

V → X ×W of immersions from projective manifolds. The set of FITs of X is denoted by

FIT(X).

An example of an FIT is provided by the fibers of a surjective morphism X → Y with

dim X > dim Y . More interesting examples arise from minimal rational curves on Fano

manifolds, as we will see in Proposition 6.1. For example, any Fano threefold X of Picard

number one, excepting P3 and the quadric hypersurface X ⊂ P4, admits an FIT, as noted

in [HM03, p.628].

Theorem 3.5. Let X be a Fano manifold. Then FIT(X) is a finite set.

Proof. We recall the fact that the Fano manifolds of fixed dimension are bounded (cf. [Kr,

V.2]). Thus, there exist finitely many smooth families Πi : Xi → Si of Fano manifolds

such that, for any M ∈ FIT(X), there exist an étale family ν = (ϕ, π) : V → X × W
of immersions from projective manifolds defining M as the closure of the image of W →
Chow(X), a morphism σ : W → Si for some i, and an isomorphism V ' Xi ×Si

W over

W . We fix M , ν : V → X ×W , and σ : W → Si. We write Π: X → S for Πi : Xi → Si

for the i. The morphism ν defines a morphism [ν] : W → H into the relative Home

scheme H := HomS(X , X × S) over S. Here, σ = q ◦ [ν] for the structure morphism

q : H → S. Note that H is regarded as an open subscheme of the relative Hilbert scheme

of X ×S (X × S) ' X ×X over S. Let

Λ: X ×S H → (X × S)×S H = X ×H

be the universal family for the Hom scheme H and let

Ψ = Π×S idH : X ×S H → H
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be the second projection. For a point t ∈ H, let

Λt : Xt := Ψ−1(t) = (X ×S H)×H {t} ' Π−1(q(t)) → (X ×H)×H {t} = X

be the base change of Λ by {t} → H.

Claim 3.6. Let T be the set of points t ∈ H such that Λt is an immersion with trivial normal

bundle. Then T is an open subset and Λ: Ψ−1(T ) → X × T is a family of immersions.

Proof. Let t be a point of T . For the proof, we may replace H with an open neighborhood

of t in H. Then Λ is a finite morphism over an open neighborhood of t in H. Moreover,

by an argument in the proof of (i) ⇒ (ii) of Lemma 3.3, Λ is an immersion over an open

neighborhood of t in H. Thus, we may assume that Λ is a family of immersions. It is

enough to show that T is an open subset. For the normal bundle

N := NΛ = NX×SH/X×H

and for the fiber Xt = Ψ−1(t), we have an isomorphism N|Xt ' NXt/X . Since this is trivial

of rank c := dim X − dimXt and Xt is Fano, Hp(Xt,N|Xt) = 0 for any p > 0. Applying

the upper semi-continuity theorem and the base change theorem to Ψ and N , we see that

Ψ∗N is a locally free sheaf of rank c and

Ψ∗N ⊗ C(t) ' H0(Xt,N|Xt).

Thus, Ψ∗Ψ∗N → N is isomorphism along Xt. Therefore, Λt′ is an immersion with trivial

normal bundle for any point t′ of an open neighborhood of t in W . Thus, T is open. �

Claim 3.7. T has only finitely many irreducible components.

Proof. We consider the relative ample divisors −KX on X and p∗1(−KX) on X ×S respec-

tively with respect to S, where p1 : X × S → X denotes the first projection. These two

divisors define a relative ample divisor on X × X over S. Note that −KXt = Λ∗t (−KX)

for t ∈ T . By the boundedness of (−KV )dim V for the Fano manifolds V , for any s ∈ S,

the open subset T ∩ q−1(s) ⊂ Hilb(Π−1(s) × X) is contained in a union of finitely many

projective subvarieties. Thus, the closure T ⊂ HilbS(X ×X) is proper over S. Hence, the

Claim follows. �

Proof of Theorem 3.5 continued. By Claim 3.7, there exist finitely many families of im-

mersions νj = (ϕj, πj) : Uj → X×Tj (j = 1, 2, . . . , m) from projective manifolds satisfying

the following conditions:

• Tj is an irreducible algebraic variety for any j.

• πj : Uj → Tj is a smooth family of Fano manifolds for any j.

• The restriction νj|Ut : Ut → X for Ut := π−1
j (t) is an immersion with trivial normal

bundle for any j and any t ∈ Tj.
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• For any M ∈ FIT(X), there exist an étale family ν : V → X ×W of immersions

from projective manifolds and a morphism W → Tj for some j such that M is the

closure of the image of W → Chow(X) and that ν : V → X×W is just the pullback

of νj by W → Tj.

For a given M ∈ FIT(X), let ν = (ϕ, π) : V → X ×W and W → Tj be as above. We shall

show that M is just the closure of the image of the morphism Tj → Chow(X) associated

with the family νj of immersions. If this is proved, then the finiteness of FIT(X) follows.

Let t ∈ Tj be the image of w ∈ W by W → Tj and let V be the fiber π−1(w) = π−1
j (t).

Now, ν : V → X ×W is a versal family of the deformation of the immersion ϕ|V : V → X.

Thus, Uj → Tj is isomorphic to the pullback of the versal family on an analytic open

neighborhood T ]
j of t in Tj. Hence, the image of T ]

j → Chow(X) is contained in the image

of W → Chow(X). Therefore, the closure of the image of Tj → Chow(X) is M . Thus, we

are done. �

4. Divisors univalent with respect to an FIT

We will use the notation of the previous section. Let M be an FIT of X and let

V → X ×W be an étale family of immersions from projective manifolds defining M . Let

Z → M be the normalization. Then W → M ⊂ Chow(X) factors through Z. There is a

family Y of algebraic cycles of X parametrized by Z. For a point w ∈ W and its image z

in Z, Y ∩ (X × {z}) coincides with the cycle ν∗(Vw). Let Y be the normalization of the

irreducible component of Supp(Y) which dominates Z. Then we have a finite birational

morphism V → Y ×Z W . In particular, V → X × W is determined by the morphism

W → Z. Let Y → X × Z be the induced generically injective morphism. Let µ : Y → X

and ρ : Y → Z be the morphisms induced from the projections. We define Zo ⊂ Z to be

the maximum open subset such that ρ : Yo → Zo is smooth and µ : Yo → X is étale for

Yo := ρ−1(Zo). Then Zo is a non-singular dense Zariski open subset of Z and Yo → X ×Zo

is an étale family of immersions.

Definition 4.1. The morphism (µ, ρ) : Y → X ×Z above is called the normalized realiza-

tion of M . The étale family Yo → X × Zo of immersions is called the smooth realization

of M . A smooth member of M means the immersion µ : ρ−1(z) → X with trivial normal

bundle for a point z ∈ Zo.

Lemma 4.2. Let X be a Fano manifold of Picard number one. Let (µ, ρ) : Y → X ×Z be

the normalized realization of an FIT of X. Then deg µ > 1.

Proof. Assume that µ is birational. Then µ : Yo → X is an open immersion. For a non-zero

effective Cartier divisor Θ of Z, we have

µ∗µ∗ρ
∗(Θ) = ρ∗(Θ) + E
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for an effective divisor E supported on Y \Yo. The non-zero effective divisor µ∗(ρ
∗(Θ)) is not

ample since it does not intersect µ(ρ−1(z)) for a point z ∈ Zo \Θ. This is a contradiction.

Thus, deg µ > 1. �

Definition 4.3. Let M be an FIT of X and let (µ, ρ) : Y → X × Z be the normalized

realization of M .

(i) For a prime divisor H of X, let µ∗(H) = Hh + Hv be the decomposition into the

horizontal part Hh and the vertical part Hv with respect to ρ : Y → Z. Then,

ρ(Supp Hv) 6= Z and any irreducible component of Hh dominates Z.

(ii) A prime divisor H is said to be univalent with respect to M if Hh is irreducible

and µ induces a birational morphism Hh → H.

Lemma 4.4. Let H be a univalent prime divisor with respect to an FIT M . Then, for

a general point x ∈ H, there exists a unique smooth member ν : V → X of M such that

x ∈ ν(V ) and ν(V ) 6⊂ H. Moreover, the image ν(V ) is non-singular at x.

Proof. Let (µ, ρ) : Y → X×Z be the normalized realization of M . Let D be an irreducible

component of Hv such that D ∩ Yo 6= ∅. Then D ∩ Yo = ρ−1(ρ(D) ∩ Zo) since ρ is smooth

over Zo. Therefore,

µ∗(H)|Yo = Hh|Yo + ρ∗(Θ)

for an effective divisor Θ on Zo. Let x ∈ H∩µ(Yo) be a general point. Then µ−1(x)∩Hh =

{y} for a unique point y ∈ Yo. If y′ ∈ µ−1(x) \ {y}, then y′ ∈ ρ−1(Θ), ρ−1(ρ(y′)) ⊂ Hv and

µ(ρ−1(ρ(y′))) ⊂ H. Thus, ρ−1(ρ(y)) → X is the unique smooth member ν : V → X of M

with x ∈ ν(V ) and ν(V ) 6⊂ H. Since ρ−1(y) ∩ µ−1(x) = {y}, x is a non-singular point of

ν(V ) = µ(ρ−1(ρ(y))). �

Let f : X̃ → X be a generically finite surjective morphism from another projective

manifold X̃. We consider pulling back of FITs of X to X̃. Let M be an FIT of X and

(µ, ρ) : Y → X × Z the normalized realization of M . Let Ỹ be the normalization of an

irreducible components of the fiber product X̃×X Y which dominates Y and let µ̃ : Ỹ → X̃

and fY : Ỹ → Y be the induced morphisms. As the Stein factorization of the composition

ρ ◦ fY : Ỹ → Y → Z, we have a proper surjective morphism ρ̃ : Ỹ → Z̃ to a normal

projective variety Z̃ with connected fibers and a finite morphism fZ : Z̃ → Z such that

fZ ◦ ρ̃ = ρ ◦ fY .

Lemma 4.5. In this situation, let Z[ ⊂ Zo be the maximum open subset over which

ρ ◦ fY : Ỹ → Z is smooth. Set Y[ = ρ−1(Z[), Z̃[ = f−1
Z (Z[), and Ỹ[ = f−1

Y (Y[). Then

(µ̃, ρ̃) : Ỹ[ → X̃ × Z̃[ is an étale family of immersions from projective manifolds and the

associated morphism Z̃[ → Chow(X̃) is generically injective. Let M̃ be the FIT of X̃ de-

fined by Ỹ[ → X̃× Z̃[. If f is a finite morphism, then (µ̃, ρ̃) : Ỹ → X̃× Z̃ is the normalized

realization of M̃ .
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Proof. By a property of the fiber product, we see that (µ̃, ρ◦fY ) : Ỹ → X̃×Z is generically

injective. Thus so is (µ̃, ρ̃) : Ỹ → X̃ × Z̃. Considering the Stein factorization of a smooth

morphism, we see that ρ̃ is smooth over Z̃[ and fZ is étale over Z[. Since X̃ ×X Yo → X̃

is étale, Ỹ[ → X̃ ×X Y[ is an isomorphism onto a connected component, and µ̃ : Ỹ[ → X̃ is

étale. Therefore, (µ̃, ρ̃) : Ỹ[ → X̃ × Z̃[ is an étale family of immersions. We shall show that

the associated morphism Z̃[ → Chow(X̃) is generically injective. Let Z ′
[ ⊂ Z[ be an open

dense subset such that Z ′
[ → Chow(X) is injective. Assume that µ̃(ρ̃−1(z1)) = µ̃(ρ̃−1(z2))

for two points z1, z2 of Z̃[ such that fZ(z1), fZ(z2) ∈ Z ′
[. There exist points y1 ∈ ρ̃−1(z1)

and y2 ∈ ρ̃−1(z2) such that µ̃(y1) = µ̃(y2). Thus, y1 and y2 define the same point in

X̃×X Y . Since Ỹ[ is a connected component of the fiber product X̃×X Y[, we have y1 = y2

and z1 = z2. Hence, Z̃[ → Chow(X̃) is generically injective.

The closure M̃ of the image of Z̃[ → Chow(X̃) is an FIT of X̃. We have a morphism

j : Z̃[ → Z for the normalization Z of M̃ . We shall prove that j extends to an isomorphism

Z̃ → Z provided that f is finite. It is enough for the proof of the rest. Since f is finite,

considering the push-forward f∗ of cycles, we have a finite morphism f∗ : Z → Z such that

f∗ ◦ j coincides with the composition of fZ : Z̃[ → Z[ and Z[ ⊂ Z. Thus, j extends to a

finite morphism Z̃ → Z since Z̃ → Z is also a finite morphism. Hence, Z̃ ' Z since it is a

birational morphism of normal projective varieties. Thus, we are done. �

Let f : X̃ → X be a generically finite surjective morphism between non-singular projec-

tive varieties. Let X̃ → X → X be the Stein factorization. The branch locus B of the

finite morphism X → X is purely of codimension one. We call B the branch divisor of f .

Lemma 4.6. Let f : X̃ → X, M , (µ, ρ) : Y → X×Z be the same as before. For the branch

divisor B of f , assume that the horizontal part Bh of B with respect to ρ : Y → Z is not

zero. Then there is an irreducible component of X̃ ×X Y such that, for the normalization

Ỹ of the component and for the induced morphisms fY : Ỹ → Y , fZ : Z̃ → Z as above, the

inequality deg(Ỹ /Y ) > deg(Z̃/Z) holds.

Proof. Assume that deg(Ỹ /Y ) = deg(Z̃/Z) for any Ỹ . Then

Ỹ[ ' Y[ ×Z[
Z̃[,

since everything is smooth over Z[. Thus, fY : Ỹ[ → Y[ is étale over ρ−1(Z ′
[) for a non-empty

Zariski open subset Z ′
[ ⊂ Z[. Since it holds for any Ỹ , the divisor µ−1(B) ∩ Y[ does not

dominate Z[. This is a contradiction to the assumption: Bh 6= 0. �

Proposition 4.7. Let X be a Fano manifold of Picard number one. For a given M ∈
FIT(X), there exist at most finitely many univalent prime divisors of X with respect to M .

Proof. Let (µ, ρ) : Y → X×Z be the normalized realization of M . We apply Lemmata 4.5

and 4.6 to the generically finite morphism µ = f : Y = X̃ → X. Let Ỹ → X̃ × Z̃ be the
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same as in Lemma 4.6. Also let the symbol [ be as in Lemma 4.5. Let U be the open subset

X \ µ(Y \ Y[). Then µ−1(U) ⊂ Y[. It is enough to show that U ∩H = ∅ for any univalent

divisor H of X with respect to M . Assume the contrary. Since µ∗(H) = Hh + Hv and

deg µ > 1, there is an irreducible component D ⊂ Hv such that µ(D) = H and D∩Y[ 6= ∅.
Then D ∩ Y[ = ρ−1(Θ ∩ Z[) for the prime divisor Θ = ρ(D) since ρ is smooth over Z[.

There is an irreducible component Γ[ of f ∗Y (D ∩ Y[) such that the closure of µ̃(Γ[) is Hh

for the induced morphism µ̃ : Ỹ → X̃. Then Γ[ → D ∩ Y[ is a non-birational generically

finite morphism by Lemma 4.6. On the other hand, Γ[ → D ∩ Y[ is birational, since

Γ[ ⊂ Hh ×X (D ∩ Y[) ⊂ X̃ ×X Y[

and Hh → H is birational. This is a contradiction. Hence, any univalent divisor with

respect to M is an irreducible component of X \ U . Thus, we are done. �

5. Webs and tangentially special divisors

Let X be a non-singular projective variety.

Definition 5.1. Let M be an FIT and let ν = (µ, ρ) : Yo → X × Zo be the smooth

realization of M . We call M a web if the following two conditions are satisfied for an open

dense subset UM ⊂ X :

(i) For any y ∈ µ−1(UM) ∩ Yo, µ(y) is a non-singular point of µ(ρ−1(ρ(y)).

(ii) For any point (y1, y2) ∈ (Yo ×X Yo) \ (Y ×Z Y ) with x = µ(y1) = µ(y2) ∈ UM ,

(5) µ∗Ty1(V1) ∩ µ∗Ty2(V2) = 0 in Tx(X),

where Vi = ρ−1(ρ(yi)) for i = 1, 2.

Remark 5.2. The condition (i) of Definition 5.1 is equivalent to that the projection ν(Yo)∩
(UM × Zo) → Zo is smooth for the image ν(Yo). The condition (ii) of Definition 5.1 is

equivalent to that the composition

(6) TYo×Yo/Zo×Zo |Yo×XYo → TYo×Yo |Yo×XYo → NYo×XYo/Yo×Yo

of natural homomorphisms is injective and has maximal rank at any point (y1, y2) ∈ (Yo×X

Yo) \ (Y ×Z Y ) with x = µ(y1) = µ(y2) ∈ UM . Indeed, the fiber of the homomorphism (6)

at (y1, y2) ∈ (Yo ×X Yo) \ (Y ×Z Y ) is expressed as

Ty1(V1)⊕ Ty2(V2) 3 (v1, v2) 7→ µ∗(v1)− µ∗(v2) ∈ Tx(X),

where x = µ(y1) = µ(y2) ∈ X and Vi = ρ−1(ρ(yi)) for i = 1, 2. This is because

µ∗ : Tyi
(Y ) → Tx(X) is an isomorphism for i = 1, 2 and the tangent space T(x,x)(∆X)

of the diagonal locus ∆X ⊂ X ×X at (x, x) is just the diagonal locus of Tx(X)⊕ Tx(X) =

T(x,x)(X ×X).
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Definition 5.3. Let M be a web and let (µ, ρ) : Y → X×Z be the normalized realization

of M . A prime divisor H of X is called tangentially special if Hh 6= ∅ (cf. Definition 4.3)

and there is a coherent subsheaf L of TX |H of rank one satisfying the following conditions:

(i) L ∩ TH = 0 for the subsheaf TH ⊂ TX |H .

(ii) µ∗HL∩ (TYo/Zo |Hh
o
) is of rank one on Hh

o := Hh ∩Yo for the restriction µH : Hh
o → H

of µ and for the subsheaf

TYo/Zo |Hh
o
⊂ TYo |Hh

o
' µ∗(TX)|Hh

o
' µ∗H(TX |H).

Remark. In the situation of Definition 5.3, the injection L⊕TH ⊂ TX |H is an isomorphism

over an open dense subset of H. Thus, L ⊗ C(x) = Lx ⊗OH,x
C(x) is a one-dimensional

subspace of Tx(X) for general x ∈ X.

Lemma 5.4. For a web M and for the open subset UM in Definition 5.1, if H is a tan-

gentially special prime divisor with respect to M with UM ∩ H 6= ∅, then H is univalent

with respect to M .

Proof. Let H be a tangentially special prime divisor with respect to M . Let L be the

subsheaf of TX |H as in Definition 5.3. For a smooth point x ∈ H ∩ UM , assume that the

image of L⊗C(x) is a one-dimensional subspace of Tx(X) and that x = µ(y1) = µ(y2) for

two points y1, y2 ∈ Hh
o . For i = 1, 2, let vi be a non-zero element of(

µ∗HL ∩ (TYo/Zo |Hh
o
)
)
⊗ C(yi) ⊂ TYo/Zo ⊗ C(yi) = Tyi

(Vi),

where Vi := ρ−1(ρ(yi)). Then the images µ∗(v1) and µ∗(v2) in Tx(X) are non-zero elements

contained in L ⊗ C(x). Therefore, the equality (5) is not satisfied. Hence, ρ(y1) = ρ(y2).

Thus, µ(V1) = µ(V2) is singular at x. This is a contradiction to the condition (i) of

Definition 5.1. Therefore, Hh → H is birational. �

Corollary 5.5. If X is a Fano manifold of Picard number one, then, for a given web,

there exist at most finitely many tangentially special prime divisors.

Proof. A tangentially special divisor is an irreducible component of X \ UM or univalent

with respect to M by Lemma 5.4. Thus, the assertion follows from Proposition 4.7. �

Lemma 5.6. Let M be a web of X. Let f : X̃ → X be a finite surjective morphism from

another non-singular projective variety X̃. Let M̃ be an FIT of X̃ arising from M and f

as in Lemma 4.5. Then M̃ is a web.

Proof. Let UM̃ be the open subset f−1(UM \ B) for the branch divisor B of f . Then the

condition (i) of Definition 5.1 is satisfied for M̃ and UM̃ , since f−1(X \B) → X \B is étale.

Let (µ̃, ρ̃) : Ỹo → X̃×Z̃o be the smooth realization of M̃ . For (ỹ1, ỹ2) ∈ (Ỹo×X̃ Ỹo)\(Ỹ ×Z̃ Ỹ )

with x̃ = µ̃(ỹ1) = µ̃(ỹ2) ∈ UM̃ , if we set y1 = fY (ỹ1) and y2 = fY (ỹ2), then (y1, y2) ∈
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(Yo ×X Yo) \ (Y ×Z Y ) with x = f(x̃) = µ(y1) = µ(y2) ∈ UM . Since f is unramified at x̃,

(5) implies that

µ̃∗Tỹ1(Ṽ1) ∩ µ̃∗Tỹ2(Ṽ2) = 0 in Tx̃(X̃)

where Ṽi = ρ̃−1(ρ̃(ỹi)) for i = 1, 2. Thus, the condition (ii) of Definition 5.1 is also satisfied

for M̃ . �

Lemma 5.7. In the situation of Lemma 5.6, let H̃ be a prime divisor of X̃ such that

Hh 6= 0 for H := f(H̃). Either if f is ramified along H̃ or if f(H̃) is tangentially special

with respect to M , then H̃ is tangentially special with respect to any web M̃ obtained as in

Lemma 5.6.

Proof. The horizontal part H̃h with respect to ρ̃ is not zero for the normalized realization

(µ̃, ρ̃) : Ỹ → X̃ × Z̃ of M̃ .

Assume that f is ramified along H̃. The kernel L̃ of

TX̃ |H̃ → f ∗TX |H̃
is of rank one and L̃ ∩ TH̃ = 0. Let H̃h

[ be the open subset H̃h ∩ Ỹ[. Then

Ker(TỸ /Z̃ |H̃h → f ∗Y TY/Z |H̃h)|H̃h
[

= Ker(TỸ |H̃h → f ∗Y TY |H̃h)|H̃h
[
' µ̃∗

H̃
L̃

for the morphism µ̃H̃ : H̃h
[ → H̃ induced from µ̃, since fZ : Z̃[ → Z[ and µ̃ : Ỹ[ → Ỹ are

étale. Thus, H̃ is tangentially special with respect to M̃ .

Next assume that H is tangentially special with respect to M and that f is not ramified

along H̃. Let Ũ ⊂ X̃ be an open subset such that f : Ũ → X is étale and Ũ ∩ H̃ 6= ∅. Let

L be the subsheaf of TX |H in Definition 5.3. For the induced morphism fH : H̃ → H, we

set

L̃ := f ∗HL ∩ TX̃ |H̃ ⊂ f ∗TX |H̃ = f ∗H(TX |H).

Then L̃ ∩ TH̃ = 0 and L̃ is of rank one, since TX̃ → f ∗TX is isomorphism over Ũ . Since

Ỹ[ → Y[ is étale along µ̃−1(Ũ), the condition (ii) of Definition 5.3 also holds for L̃ and

Ỹ → X̃ × Z̃. Thus, we are done. �

Theorem 5.8. Let X be a Fano manifold of Picard number one admitting a web. Then

any surjective endomorphism X → X is bijective.

Proof. For a web M of X, let EM be the union of tangentially special prime divisors with

respect to M . Then EM is a divisor by Corollary 5.5. The set of webs of X is a finite set

by Proposition 4.7. Thus, the union E of EM for all the webs M of X is also a divisor.

Suppose that there is a surjective endomorphism f : X → X of degree > 1. Then any

irreducible component of the ramification divisor of f is contained in E and f−1(E) ⊂ E

by Lemma 5.7. Thus, f−1(E) = E and f : X \E → X \E is étale. Then X is a projective

space by Theorem 1.2. This contradicts that X has a web. �
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6. Proofs of Theorems 1.3 and 1.4

Let X be a Fano manifold of Picard number one. An irreducible component K of the

space RatCurves(X) of rational curves (in the sense of [Kr]) on X is called a minimal

component if for a general point x ∈ X, the subscheme Kx of K consisting of members

passing through x is non-empty and complete. In this case, the subvariety Cx of the

projectivized tangent space PTx(X) consisting of the tangent directions at x of members

of Kx is called the variety of minimal rational tangents at x (see [HM04] for more details).

We say that the variety of minimal rational tangents of X is linear if Cx is a union of linear

subspaces of PTx(X) for a general x ∈ X. This includes the case when Cx is a finite set.

Then we have the following results from [Hw, Propositions 2.1 and 2.2].

Proposition 6.1. Let X be a Fano manifold of Picard number one different from the

projective space. Suppose that the variety of minimimal tangents of X is linear of dimension

p ≥ 0. Then X has a web M such that the projection ρ : Yo → Zo is a Pp+1-bundle for the

smooth realization (µ, ρ) : Yo → X × Zo of M .

Therefore, we have completed the proof of Theorem 1.3 by Theorem 5.8 and Proposi-

tion 6.1.

We recall the following result from [HM04, p. 62, Corollary 2].

Proposition 6.2. Let f : X ′ → X be a surjective generically finite morphism from a

projective manifold X ′ to a Fano manifold X of Picard number one. Assume that the

variety of minimal rational tangents of X is not linear. Then any holomorphic vector field

on X ′ descends to a holomorphic vector field on X such that f is equivariant with respect

to the 1-parameter groups of automorphisms of X ′ and X generated by the holomorphic

vector fields.

Combining Theorem 1.3 and Proposition 6.2, we have the following.

Proposition 6.3. Let X be a Fano manifold of Picard number one different from the

projective space. Let f : X → X be a surjective endomorphism. Then f is equivariant with

respect to Auto(X), in the sense that it induces a homomorphism Φ: Auto(X) → Auto(X)

such that f(σx) = Φ(σ)f(x) for σ ∈ Auto(X) and x ∈ X.

Proof. If the variety of minimal rational tangents of X is linear, f is biregular by Theo-

rem 1.3. Otherwise, we apply Proposition 6.2 to get the equivariance. �

A projective manifold X is quasi-homogeneous if Auto(X) has an open orbit Xo ⊂ X.

The complement of Xo is called the boundary of X. Now Proposition 6.3 implies the

following, which proves Theorem 1.4 by Theorem 1.2.
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Corollary 6.4. Let X be a quasi-homogeneous Fano manifold of Picard number one with

the boundary E ⊂ X. Then any surjective endomorphism f : X → X satisfies f−1(E) = E

and f |X\E is étale.

Let us finish with a final remark. As noted in [HM04, p. 62], the variety of minimal

rational tangents is not linear for homogeneous spaces of Picard number one, excepting

the projective space. However, it is linear for some quasi-homogeneous Fano manifolds of

Picard number one (e.g. [HM03, Corollary 2]). So it is essential to use Theorem 1.3 for the

proof of Theorem 1.4.
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