
A Simple Combinatorial Algorithm for

Submodular Function Minimization

Satoru Iwata ∗ James B. Orlin †

June 2008

Abstract

This paper presents a new simple algorithm for minimizing submodular functions.
For integer valued submodular functions, the algorithm runs in O(n6EO log nM)
time, where n is the cardinality of the ground set, M is the maximum absolute value
of the function value, and EO is the time for function evaluation. The algorithm can
be improved to run in O((n4EO+n5) log nM) time. The strongly polynomial version
of this faster algorithm runs in O((n5EO + n6) log n) time for real valued general
submodular functions. These are comparable to the best known running time bounds
for submodular function minimization. The algorithm can also be implemented in
strongly polynomial time using only additions, subtractions, comparisons, and the
oracle calls for function evaluation. This is the first fully combinatorial submodular
function minimization algorithm that does not rely on the scaling method.

1 Introduction

Let V be a finite nonempty set of cardinality n. A function f defined on the subsets of
V is submodular if it satisfies

f(X) + f(Y) ≥ f(X ∩ Y) + f(X ∪ Y), ∀X,Y ⊆ V.

Submodular functions are discrete analogues of concave functions, but they have algo-
rithmic properties that behave similarly to convex functions [15]. Examples include cut
capacity functions, matroid rank functions, and entropy functions.

The first polynomial-time algorithm for submodular function minimization is due to
Grötschel, Lovász, and Schrijver [9]. A strongly polynomial algorithm has also been
described in [10]. These algorithms employ the ellipsoid method.

Recently, combinatorial strongly polynomial algorithms have been developed by [4,
12, 14, 19, 21]. These algorithms build on the works of Cunningham [1, 2]. The current
best strongly polynomial bound due to [19] is O(n5EO + n6), where EO is the time for
function evaluation.

∗Research Institute for Mathematical Scienes, Kyoto University, Kyoto 606-8502, Japan

(iwata@kurims.kyoto-u.ac.jp).
†Sloan School of Management, MIT, Cambridge, MA 02139, USA (jorlin@mit.edu).

1

In this paper, we present a simple combinatorial algorithm for submodular function
minimization. The initial variant of the algorithm minimizes integer-valued submodular
functions in O(n6EO log nM) time, where M is the maximum absolute value of the
function values. The algorithm achieves this complexity without relying on the scaling
technique nor on Gaussian elimination. It does not rely on augmenting paths or flow
techniques either. Instead, it works with distance labels and potential functions.

With the aid of the Gaussian elimination procedure, the algorithm can be improved
to run in O((n4EO+n5) log nM) time, which matches the best weakly polynomial bound
of [12] for instances in which log n = O(log M). An advantage of the present algorithm
over the previous scaling algorithms is that it obtains the unique maximal minimizer,
which is often required in applications of submodular function minimization [4, 8, 18].
The strongly polynomial version of this algorithm runs in O((n5EO + n6) log n) time,
which is quite close to the best known strongly polynomial bound of [19].

These combinatorial algorithms perform multiplications and divisions, although the
definition of submodular functions does not involve those operations. Schrijver [21]
asks if one can minimize submodular functions in strongly polynomial time using only
additions, subtractions, comparisons, and oracle calls for the function value. Such an
algorithm is called “fully combinatorial.” This problem was settled in [11] by developing a
fully combinatorial variant of the strongly polynomial algorithm of [14]. A faster version,
which runs in O(n8 log2 nEO) time, is presented in [12].

The new algorithm as well as its strongly polynomial version can be turned into
fully combinatorial algorithms. The running time bounds of the resulting algorithms
are O(n6(EO + log nM) log nM) and O((n7EO + n8) log n). These are the first fully
combinatorial algorithms that do not rely on the scaling method. Moreover, the latter
algorithm improves the best previous bound by a factor of n.

The outline of this paper is as follows. Section 2 provides preliminaries on submodu-
lar functions and base polyhedra. In Section 3, we present our prototype algorithm that
runs in weakly polynomial time. In Section 4, we present the faster version of our weakly
polynomial algorithm. Section 5 presents an extension to submodular function minimiza-
tion on ring families, which is then used in the strongly polynomial algorithm presented
in Section 6. Finally, in Section 7, we discuss fully combinatorial implementations of
these algorithms.

2 Base polyhedra

This section provides preliminaries on submodular functions. See [7, 13, 15, 16] for more
details and general background.

For a vector x ∈ RV and a subset Y ⊆ V , we denote x(Y) =
∑

u∈Y x(u). We
also denote by x+ and x− the vectors in RV with x+(u) = max{x(u), 0} and x−(u) =
min{x(u), 0}, respectively. For each u ∈ V , let χu denote the vector in RV with χu(u) = 1
and χu(v) = 0 for v ∈ V \ {u}. Throughout this paper, we adopt the convention that
the maximum over the empty set is −∞ and the minimum over the empty set is ∞.

2

For a submodular function f : 2V → R with f(∅) = 0, we consider the base polyhedron

B(f) = {x | x ∈ RV , x(V) = f(V), ∀Y ⊆ V : x(Y) ≤ f(Y)}.

A vector in B(f) is called a base. In particular, an extreme point of B(f) is called an
extreme base. An extreme base can be computed by the greedy algorithm of Edmonds [3]
and Shapley [22] as follows.

Let L = (v1, · · · , vn) be a linear ordering of V . For any vj ∈ V , we denote L(vj) =
{v1, · · · , vj}. The greedy algorithm with respect to L generates an extreme base yL ∈
B(f) by

yL(u) = f(L(u))− f(L(u)\{u}). (1)

Conversely, any extreme base can be obtained in this way with an appropriate linear
ordering.

For any base x ∈ B(f) and any subset Y ⊆ V , we have x−(V) ≤ x(Y) ≤ f(Y). The
following theorem shows that these inequalities are in fact tight for appropriately chosen
x and Y .

Theorem 2.1 For a submodular function f : 2V → R, we have

max{x−(V) | x ∈ B(f)} = min{f(Y) | Y ⊆ V }.

Moreover, if f is integer-valued, then the maximizer x can be chosen from among integral
bases.

This theorem is immediate from the vector reduction theorem on polymatroids due
to Edmonds [3]. It has motivated combinatorial algorithms for minimizing submodular
functions.

If X and Y are minimizers of a submodular function f , then both X ∩ Y and X ∪ Y

minimize f as well. Therefore, a submodular function has a unique maximal/minimal
minimizer.

The minimum-norm base of f is a base x ∈ B(f) that minimizes
∑

v∈V x(v)2. The
following theorem due to Fujishige [5, 6] will be used later in the analysis of our algorithm.

Theorem 2.2 Let x∗ be the minimum-norm base of f . Then, for each v ∈ V , we have

x∗(v) =
f(Yv)− f(Zv)
|Yv \ Zv| ,

where Yv = {u | u ∈ V, x∗(u) ≤ x∗(v)} and Zv = {u | u ∈ V, x∗(u) < x∗(v)}.

A recent paper of Nagano [17] shows that the minimum-norm base attains the mini-
mum value of

∑
v∈V g(x(v)) in B(f) for any univariate convex function g.

3

3 A new weakly polynomial algorithm

This section presents a combinatorial algorithm for minimizing a submodular function
f : 2V → Z. In order to measure the running time, we use M = max{|f(X)| | X ⊆ V }.

The algorithm keeps a set Λ of linear orderings of the elements in V . We denote
v ¹L u if v precedes u in a linear ordering L or v = u. Each linear ordering L generates
an extreme base yL ∈ B(f) by the greedy algorithm. The algorithm also keeps a base
x ∈ B(f) as a convex combination x =

∑
L∈Λ λLyL of the extreme bases. Initially,

Λ = {L} with an arbitrary linear ordering L and λL = 1.
The algorithm keeps a label dL : V → Z for each L ∈ Λ. The set of labels is valid if

the following properties are satisfied.

• If x(u) ≤ 0, then dL(u) = 0 for any L ∈ Λ.

• If u ¹L v, then dL(u) ≤ dL(v).

• For any L,K ∈ Λ and u ∈ V , |dL(u)− dK(u)| ≤ 1.

For each u ∈ V , we denote dmin(u) = min{dL(u) | L ∈ Λ}.
The set of labels is said to have a gap at level k > 0 if there is an element v ∈ V

with dmin(v) = k and no element u ∈ V with dmin(u) = k − 1. The following lemma is
comparable to [19, Lemma 2].

Lemma 3.1 Suppose that the set of labels is valid. If there is a gap at level k, then an
arbitrary minimizer of f does not contain any element v ∈ V with dmin(v) ≥ k.

Proof. The set Y = {v | v ∈ V, dmin(v) < k} satisfies yL(Y) = f(Y) for each L ∈ Λ, and
hence x(Y) = f(Y). Let X ⊆ V be an arbitrary subset with X 6⊆ Y . Since x(v) > 0 for
any v ∈ V \Y , we have x(Y) < x(X∪Y) ≤ f(X∪Y). Thus we obtain f(Y) < f(X∪Y).
By the submodularity of f , this implies f(X) > f(X ∩ Y). Therefore, any minimizer of
f must be a subset of Y .

The algorithm keeps a subset W ⊆ V , starting with W = V . Whenever there is a
gap at some level k, the algorithm identifies the set T = {v | v ∈ W,dmin(v) ≥ k} and
puts dL(v) = n for all v ∈ T and L ∈ Λ. The set of labels remains valid. Then the
algorithm deletes T from W . Lemma 3.1 guarantees that the resulting W includes all
the minimizers of f .

In each iteration, the algorithm computes η = max{x(v) | v ∈ W}. If η < 1/n,
then the algorithm returns W as the unique maximal minimizer of f . Otherwise, it
computes δ = η/4n, and finds a value µ with δ ≤ µ < η such that there is no element
v ∈ W that satisfies µ − δ < x(v) < µ + δ. The algorithm then finds an element u

that attains the minimum value of dmin among those satisfying x(u) > µ. Let ` be this
minimum value and let L ∈ Λ be a linear ordering with dL(u) = `. The algorithm applies
New Permutation(L, µ, `) to obtain a linear ordering L′, and then it applies Push(L,L′).

The procedure New Permutation(L, µ, `) yields a linear ordering L′ from L by the
following rule. The set S = {v | v ∈ V, dL(v) = `} are consecutive elements in L. The set
S can be partitioned into R = {v | v ∈ S, x(v) > µ} and Q = {v | v ∈ S, x(v) < µ}. The

4

procedure moves the elements in R to the place after the elements in Q without changing
the relative orders in Q and in R. The labeling dL′ for L′ is given by dL′(v) = dL(v) for
v ∈ V \R and dL′(v) = dL(v) + 1 for v ∈ R.

The procedure Push(L,L′) increases λL′ and decreases λL by the same amount α,
which is chosen to be the largest value that is at most λL and so that after the mod-
ification x(v) ≤ µ for v ∈ Q and x(v) ≥ µ for v ∈ R. This means α = min{λL, β},
where

β = min{ x(v)− µ

yL(v)− yL′(v)
| v ∈ Q ∪R, yL(v) 6= yL′(v)}.

If α is chosen to be λL, then we call this push operation a saturating push. Otherwise,
it is a nonsaturating push.

We are now ready to describe the new algorithm.

Algorithm SFM

Step 0: Let L be an arbitrary linear ordering. Compute an extreme base yL by the
greedy algorithm. Put x := yL, λL := 1, Λ := {L}, dL(u) := 0 for u ∈ V , and
W := V .

Step 1: Compute η := max{x(v) | v ∈ W}. If η < 1/n, then return W as the unique
maximal minimizer of f . Find µ with δ ≤ µ < η such that there is no u ∈ W with
µ− δ < x(u) < µ + δ, where δ := η/4n.

Step 2: Find u := arg min{dmin(v) | v ∈ W,x(v) > µ}, and put ` := dmin(u). Let L ∈ Λ
be a linear ordering with dL(u) = dmin(u).

Step 3: Obtain a linear ordering L′ by New Permutation(L, µ, `) and apply Push(L,L′).

Step 4: If there is a gap at some level k, then put T := {v | v ∈ W,dmin(v) ≥ k},
W := W \ T , and dL(v) := n for all v ∈ T and L ∈ Λ. Go to Step 1.

Whenever the algorithm updates W , the new W satisfies yL(W) = f(W) for each
L ∈ Λ, and hence x(W) = f(W). Once an element v ∈ V is deleted from W , then the
algorithm will never change x(v). Thus, x(W) = f(W) holds throughout the algorithm.

Let x∗ be the minimum-norm base of the restriction of f on W . Then it follows from
Theorem 2.2 that x∗(v) ≥ 1/n or x∗(v) ≤ 0 for v ∈ W . Therefore, when the algorithm
terminates with η < 1/n, we may assert that there is a base z ∈ B(f) such that z(v) ≤ 0
for v ∈ W and z(v) = x(v) > 0 for v ∈ V \W . Then z−(V) = z(W) = f(W) holds, and
hence z and W form a pair of optimal solutions in Theorem 2.1. Since W is shown to
include all the minimizers, W itself must be the unique maximal minimizer of f .

We now analyze the running time of this algorithm. The number of linear orderings
the algorithm keeps in Λ increases only when the algorithm performs a nonsaturating
push. In order to bound the number of nonsaturating pushes, we introduce a potential

Φ(x) =
∑

v∈W

x+(v)2

and show its geometric convergence.

5

Lemma 3.2 Suppose that a nonsaturating push moves a base x to x′. Then we have
Φ(x)− Φ(x′) ≥ Φ(x)/16n3.

Proof. Note that x(v) ≤ x′(v) for v ∈ Q and x(v) ≥ x′(v) for v ∈ R. Let Q+ denote the
set Q+ = {v | v ∈ Q, x′(v) > 0}. Then we have

Φ(x)− Φ(x′) =
∑

v∈R∪Q+

[x+(v)2 − x′(v)2]

=
∑

v∈R∪Q+

(x+(v)− x′(v))(x+(v) + x′(v))

≥
∑

v∈Q+

(x+(v)− x′(v))(2µ− δ) +
∑

v∈R

(x(v)− x′(v))(2µ + δ)

≥
∑

v∈Q+

(x′(v)− x+(v))δ +
∑

v∈R

(x(v)− x′(v))δ,

where the last inequality follows from x(Q+∪R) = x′(Q+∪R). Since |x+(v)−x′(v)| ≥ δ

for some v ∈ R ∪Q+, we obtain Φ(x)− Φ(x′) ≥ δ2 ≥ Φ(x)/16n3.
At the start of this algorithm, Φ(x) ≤ 4nM2 holds. Therefore, by Lemma 3.2, after

O(n3 log nM) nonsaturating pushes, Φ(x) becomes smaller than 1/n2. Then η must be
smaller than 1/n and the algorithm terminates. This implies that the number of linear
orderings in Λ is also O(n3 log nM).

We now consider another potential

Γ(Λ) =
∑

L∈Λ

∑

v∈V

[n− dL(v)].

Each saturating push decreases Γ(Λ) by at least one. Each nonsaturating push leads
to an increase in the size of Λ, and increases Γ(Λ) by at most n2. Thus the total
increase in Γ(Λ) over all iterations is O(n5 log nM), and the number of saturating pushes
is O(n5 log nM). Since each execution of Push requires O(n) oracle calls for function
evaluation, the algorithm runs in O(n6EO log nM) time.

Theorem 3.1 Algorithm SFM finds the unique maximal minimizer in O(n6EO log nM)
time.

4 A faster weakly polynomial algorithm

This section presents a faster version of the algorithm SFM for minimizing a submodular
function f : 2V → Z.

The algorithm differs from the algorithm SFM in two points. The first one is the
use of Reduce(Λ) that computes an expression of x as a convex combination of affinely
independent extreme bases chosen from the currently used ones. This procedure is used
in common with other combinatorial algorithms for submodular function minimization
[1, 2, 4, 12, 14, 19, 21].

The other difference is in the way of selecting µ in Step 1 of SFM. The new algorithm
employs the procedure Update(µ) that replaces µ by the smallest value of µ′ with µ′ ≥ µ

such that there is no u ∈ W with µ′ − δ < x(u) < µ′ + δ, where δ = η/4n.

6

The entire algorithm is described as follows.

Algorithm SFMwave

Step 0: Let L be an arbitrary linear ordering. Compute an extreme base yL by the
greedy algorithm. Put x := yL, λL := 1, Λ := {L}, dL(u) := 0 for u ∈ V , and
W := V .

Step 1: Compute η := max{x(v) | v ∈ W}. If η < 1/n, then return W as the unique
maximal minimizer of f . Put µ := δ, where δ := η/4n.

Step 2: Repeat the following (2-1) to (2-3) until µ > η or dmin(v) increases for some
element v ∈ W .

(2-1) If x(v) = µ for some v ∈ W , then apply Update(µ).

(2-2) Find an element u := arg min{dmin(v) | v ∈ W,x(v) > µ}, and put ` :=
dmin(u). Let L ∈ Λ be a linear ordering with dL(u) = dmin(u).

(2-3) Obtain a linear ordering L′ by New Permutation(L, µ, `) and apply Push(L,L′).

Step 3: If there is a gap at some level k, then put T := {v | v ∈ W,dmin(v) ≥ k},
W := W \ T , and dL(v) := n for all v ∈ T and L ∈ Λ. Apply Reduce(Λ). Go to
Step 1.

Each outer iteration is called a wave. A wave starts with µ = δ, and the value of µ

never decreases in a wave. As a result of Update(µ), the value of µ increases exactly by δ

unless there is some v ∈ W such that µ < x(v) < µ+2δ. Therefore, Update(µ) is applied
at most 4n times in a wave. In addition, if dmin(v) does not change at any v ∈ W in the
wave, the Update(µ) is applied at least n times.

Suppose that x is the base at the time when current µ is selected, and that x′ is the
base at the time when the sequence of pushes ends with x′(v) = µ for some v ∈ W . It
follows from the same argument as in the proof of Lemma 3.2 that the potential function
Φ has decreased by at least a factor of 1/16n3, namely Φ(x) − Φ(x′) ≥ Φ(x)/16n3.
Therefore, if x is the base at the beginning of a wave and x′′ is the base at the end with
µ > η, then we have

Φ(x′′) ≤
(

1− 1
16n3

)n

Φ(x).

Therefore, the number of waves that do not change dmin is O(n2 log nM). The changes
in dmin occur O(n2) times throughout the algorithm. Thus the total number of waves in
the entire algorithm is O(n2 log nM).

Since Update(µ) is applied at most 4n times in a wave, the number of nonsaturating
pushes during a wave is O(n). After at most |Λ| = O(n) consecutive saturating pushes,
the algorithm performs a nonsaturating push or dmin(u) increases for the element u ∈ W

selected in Step 2-2. Thus the number of saturating pushes during a wave is O(n2).
During a wave, we may create as many as O(n2) different permutations that get

added to Λ. Potentially, each permutation can take O(nEO) steps to create, and thus

7

the bound from this is O(n3EO) per wave. However, we will show that the time to create
all permutations is O(n2EO) per wave.

The time to create permutations that lead to nonsaturating pushes is O(n2EO) per
wave. We now focus on saturating pushes. The algorithm creates a new permutation L′

from L by modifying the position of elements in S. We refer to L′ as a child of L, and
further children of L′ are called descendents of L. The time to perform Push(L,L′) is
O(|S|EO). Since dL′(v) = dL(v) + 1 for all v ∈ S with x(v) > µ, these elements will not
change positions in any descendents of L′ during the wave. Moreover, the elements in
S with x(v) < µ will not change positions in any descendent of L′. Since the algorithm
keeps O(n) permutations, the time to perform saturating pushes is O(n2EO) per wave.

At the end of each wave, the algorithm applies Reduce(Λ), which takes O(n3) time.
Thus each wave takes O(n2EO + n3) time, and the total running time of the entire
algorithm is O((n4EO + n5) log nM).

5 SFM on ring families

This section is devoted to minimization of submodular functions defined on ring families.
A similar method has been presented in [19, §8].

A family D ⊆ 2V is called a ring family if X ∩ Y ∈ D and X ∪ Y ∈ D for any pair
of X, Y ∈ D. A compact representation of D is given as follows. Let D = (V, F) be a
directed graph with the arc set F . A subset Y ⊆ V is called an ideal of D if no arc leaves
Y in D. Then the set of ideals of D forms a ring family. Conversely, any ring family
D ⊆ 2V with ∅, V ∈ D can be represented in this way. Moreover, contracting strongly
connected components of D to single vertices, we may assume without loss of generality
that D is acyclic. Furthermore, if (u, v) ∈ F and (v, w) ∈ F , adding an arc (u,w) to F

does not change the set of ideals in D. Thus, we may assume that D is transitive. A
linear ordering L of V is said to be consistent if v ¹L u holds for any (u, v) ∈ F .

Let D be a ring family represented by a transitive directed acyclic graph D = (V, F).
For each vertex v ∈ V , let R(v) denote the set of vertices reachable from v in D. For
minimizing a submodular function f on D, we introduce another submodular function f̂

defined on all the subsets of V . Consider first a vector z given by

z(v) = f(R(v))− f(R(v) \ {v})

for each v ∈ V . For any subset X ⊆ V , let X denote the largest member of D contained
in X. Let f̂ be the function on 2V defined by

f̂(X) = f(X) + z+(X \X).

Then it can be shown that

f̂(X) = min{f(Y) + z+(X \ Y) | Y ⊆ X,Y ∈ D}.

Therefore, f̂ is a submodular function. Note that f̂(X) ≥ f(X) holds for any X ⊆ V .
In particular, the inequality is tight for X ∈ D. Thus, minimizing f in D is equivalent
to minimizing f̂ among all the subsets of V .

8

When applying SFM or SFMwave to f̂ , one needs to compute the function values of f̂ .
The function value is required in the process of finding the extreme base. For example,
in the initialization step, we need to compute an extreme base yL for an arbitrary linear
ordering L. To accomplish this efficiently, we compute yL(v) in the reverse order of
L. Apparently, we have V = V . If L(v) is already known, then it is easy to find
L(v) \ {v}. In fact, all we have to do is to delete the vertices u with (u, v) ∈ F from
L(v). This requires only O(n) time. As a result, finding an extreme base yL can be
done in O(nEO + n2) time, where EO is the time for evaluating the function value of
f . Function evaluation of f̂ in New Permutation can be implemented in a similar way,
so that the amortized complexity for computing the function value of f̂ is O(EO + n).
Thus, algorithms SFM and SFMwave are extended to submodular function minimization
on ring families. The resulting running time bounds are O((n6EO + n7) log nM) and
O((n4EO + n5) log nM).

6 A new strongly polynomial algorithm

This section presents a new strongly polynomial algorithm for minimizing a submodular
function based on the following proximity lemma.

Lemma 6.1 Suppose x ∈ B(f) and η = max{x(u) | u ∈ V } > 0. If x(v) < −nη for
some v ∈ V , then v is contained in all the minimizers of f .

Proof. Starting with y = x and P = {u | x(u) > 0}, repeat the following procedure until
P becomes empty. Select an element u ∈ P , compute the exchange capacity

c̃(y, v, u) = min{f(X)− y(X) | v ∈ X ⊆ V \ {u}}

to determine the step length σ = min{y(u), c̃(y, v, u)}, update y := y + σ(χv − χu), and
delete u from P . Since σ ≤ η in each iteration, the resulting y satisfies y(v) < 0.

At the end of each iteration, we obtain y(u) = 0 or a set X such that v ∈ X ⊆ V \{u}
and y(X) = f(X). This tight set X remains tight in the rest of the procedure. Therefore,
at the end of the procedure, the set S obtained as the intersection of these tight sets
satisfies y(S) = f(S), v ∈ S, and y(u) ≤ 0 for every u ∈ S. If there is no iteration that
yields a tight set, then y(u) ≤ 0 holds for every u ∈ V , and thus the entire set V serves
as the set S.

For any subset Y ⊆ V with v /∈ Y , we have f(S) = y(S) < y(S ∩ Y) ≤ f(S ∩ Y),
which implies by the submodularity of f that f(S ∪ Y) < f(Y). Thus v is contained in
all the minimizers of f .

We now present the algorithm SPM(D, f) for minimizing a submodular function
f : D → R on a ring family D ⊆ 2V that consists of the set of ideals of a directed acyclic
graph D = (V, F). The algorithm keeps a base x ∈ B(f̂) as a convex combination of
extreme bases yL for L ∈ Λ and a subset W ⊆ V that is guaranteed to include all the
minimizers of f . The algorithm adds an arc (u, v) to F whenever it detects an implication
that a minimizer of f including element u must include element v as well.

9

At the beginning of each iteration, the algorithm computes η = max{x(u) | u ∈ W}.
If η ≤ 0, then W is the unique maximal minimizer of f . If x(v) < −nη, for some v ∈ V ,
then it follows from Lemma 6.1 that v is included in the unique maximal minimizer of
f . We then apply the algorithm recursively to the contraction fv defined by

fv(Y) = f(Y ∪R(v))− f(R(v))

for all ideals Y that include R(v). If f(R(u)) > n2η for some u ∈ W , the algorithm finds
an element v that is contained in all the minimizers of fu. Then the algorithm adds a
new arc (u, v) to F . The rest of each iteration is the same as the wave in the algorithm
SFMwave.

The algorithm SPM(D, f) is now described as follows.

Algorithm SPM(D, f)

Step 0: Let L be an arbitrary consistent linear ordering. Compute an extreme base yL

by the greedy algorithm. Put x := yL, λL := 1, Λ := {L}, dL(u) := 0 for u ∈ V ,
and W := V .

Step 1: Compute η := max{x(v) | v ∈ W}. Do the following (1-1) to (1-3).

(1-1) If η ≤ 0, then return W as the unique maximal minimizer of f .

(1-2) If x(v) < −nη for some v ∈ W , then delete all the vertices in R(v) as well
as incident arcs from D, apply SPM(D, fv) to obtain the unique maximal
minimizer Y of fv, and return Y ∪R(v).

(1-3) If f(R(u)) > n2η for some u ∈ W , then construct a base x′ ∈ B(f̂u) by x′ :=∑
L∈Λ λLyL′ , where each L′ is a linear ordering obtained from L by removing

the elements in R(u). For each element v ∈ W \ R(u) with x′(v) < −nη,
add an arc (u, v) to F . If this yields a directed cycle C in D, then contract
C to a single vertex vC , and apply SPM(D, f) to obtain the unique maximal
minimizer Y of f . Then return Y after expanding vC to C.

Step 2: Put µ := δ, where δ := η/4n. Repeat the following (2-1) to (2-3) until µ > η

or dmin(v) increases at some element v ∈ W .

(2-1) If x(v) = µ for some v ∈ W , then apply Update(µ).

(2-2) Find u := arg min{dmin(v) | v ∈ W,x(v) > µ}, and put ` := dmin(u). Let
L ∈ Λ be a linear ordering with dL(u) = dmin(u).

(2-3) Obtain a linear ordering L′ by New Permutation(L, µ, `) and apply Push(L,L′).

Step 3: If there is a gap at some level k, then put T := {v | v ∈ W,dmin(v) ≥ k},
W := W \ T , and dL(v) := n for all v ∈ T and L ∈ Λ. Apply Reduce(Λ). Go to
Step 1.

In Step (1-2), if f(R(u)) > n2η, then x′(V \R(u)) = f(V)−f(R(u)) < −(n2−n)η, and
so there is an element v ∈ V \R(u) with x′(v) < −nη. Then it follows from Lemma 6.1

10

that v is contained in all the minimizers of fu. As this operation increases the size of F ,
it can happen at most n2 times over all iterations.

For the sake of analysis, we partition the iterations of this algorithm into phases.
Each phase is a block of consecutive iterations that reduces the value of the potential
function Φ(x) by half. After 3 log n phases, the potential function Φ(x) is decreased by
a factor of n3. As a consequence, the value of η is decreased by at least a factor of n.

We say that an element v is big at an iteration if x(v) > δ = η/4n. A big element
v satisfies x(v) ≤ f̂({v}) = f(R(v)) − f(R(v) \ {v}), and hence either f(R(v)) ≥ δ/2
or f(R(v) \ {v}) < −δ/2 holds. In the former case, after O(log n) phases, we will get
f(R(v)) > n2η, which leads to an increase of R(v). On the other hand, in the latter case,
after O(log n) phases, there will be an element u ∈ R(v) \ {v} such that x(u) < −nη,
which leads to the contraction of R(u).

We now analyze the number of waves in a phase. Let b be the number of elements
that are big at some iteration during this phase. At the beginning of each wave, we have
Φ(x) ≤ (n− b)δ2 + 16n2bδ2 ≤ 17n2bδ2. Recall that each iteration improves the potential
by at least δ2. If x′′ is the base at the end of the wave with µ > η, we have

Φ(x′′) ≤
(

1− 1
17n2b

)n

Φ(x).

Therefore, the number of waves in a phase is O(nb). Let bj be the number of elements
that are big at some wave during the j-th phase. The total number of waves in the entire
algorithm is O(n

∑
j bj).

For each element v ∈ V , once v becomes big, then after O(log n) phases R(v) will
get enlarged or D will get reduced. Therefore, each element can be a big element in
O(n log n) phases, which implies

∑
j bj = O(n2 log n). Thus the algorithm performs

O(n3 log n) waves in total. Since each wave requires O(n2EO + n3) time, the overall
running time of SPM is O((n5EO + n6) log n), which is within a factor of log n of the
best strongly polynomial bound.

The strongly polynomial scaling algorithms [12, 14] require O(n2 log n) scaling phases
instead of the O(log M) phases in their weakly polynomial versions. In contrast, the
present result converts the O(n2 log nM) bound on the number of waves to O(n3 log n).
Thus, we improve over the strongly polynomial scaling algorithms by a factor of n.

7 Fully combinatorial algorithms

A fully combinatorial algorithm consists of oracle calls for function evaluation and funda-
mental operations including additions, subtractions, and comparisons. Such an algorithm
is strongly polynomial if the total number of oracle calls and fundamental operations is
bounded by a polynomial in the dimension n of the problem. In the design of a fully com-
binatorial, strongly polynomial algorithm, we are allowed to multiply an integer which
is bounded by a polynomial in n. We are also allowed to compute an integer rounding
of a ratio of two numbers, provided that the answer is bounded by a polynomial in n.

In this section, we present fully combinatorial implementations of the algorithms SFM

and SPM. The key idea is to choose the step length α so that all the coefficients λL should

11

be integer multiples of 1/κ for some specified integer κ.
At the start of SFM, compute τ = max{f({v}) + f(V \ {v}) − f(V) | v ∈ V }. In

Push(L,L′), we have |yL(v)− yL′(v)| ≤ τ holds for any v ∈ V . Since η ≥ 1/n during the
algorithm, we have δ ≥ 1/4n2. Therefore, β ≥ 1/4n2τ holds unless yL = yL′ .

We now set κ = 4n2τ , and redefine the step length α to be the largest integer multiple
of 1/κ that is at most β and λL. Then the resulting coefficients are also integer multiples
of 1/κ. Thus we can implement SFM in a fully combinatorial manner.

The computation of α in a nonsaturating push requires O(n log nM) fundamental
operations. In a saturating push, however, keeping the convex combination also requires
O(n log nM) fundamental operations. Therefore, the overall time complexity of this fully
combinatorial version of SFM is O(n6(EO + log nM) log nM).

We now turn to the strongly polynomial algorithm obtained from SPM by replacing
Step 2 by that of SFM. Since f(R(u)) ≤ n2η and f(R(u)\{u}) ≥ x(R(u)\{u}) ≥ −n2η,
we have yL(u) ≤ 2n2η for any element u ∈ V and any consistent linear ordering L. Since
f(V) ≥ −n2η, this implies yL(u) ≥ −2n3η. Thus |yL(u)− yL′(u)| ≤ 2(n3 + n2)η ≤ 4n3η

holds, and we have β ≥ δ/4n3η = 1/16n4η unless yL = yL′ .
We now set κ = 16n4, and redefine the step length α to be the largest integer multiple

of 1/κ that is at most β and λL. The computation of α in a nonsaturating push requires
O(n log n) fundamental operations. Keeping the convex combination in a saturating
push also requires O(n log n) fundamental operations. Therefore, the total running time
of this fully combinatorial version of SPM is O((n7EO + n8) log n).

Acknowledgements

The authors are grateful to Tom McCormick for helpful comments on the manuscript.
The first author thanks the Asahi Glass Foundation for supporting this work. The second
author gratefully acknowledges support through ONR grant N00014-08-1-0029.

References

[1] W. H. Cunningham: Testing membership in matroid polyhedra, J. Combin. Theory,
B36 (1984), 161–188.

[2] W. H. Cunningham: On submodular function minimization, Combinatorica, 5
(1985), 185–192.

[3] J. Edmonds: Submodular functions, matroids, and certain polyhedra, Combinatorial
Structures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schönheim,
eds., Gordon and Breach, 69–87, 1970.

[4] L. Fleischer and S. Iwata: A push-relabel framework for submodular function min-
imization and applications to parametric optimization, Discrete Appl. Math., 131
(2003), 311–322.

12

[5] S. Fujishige: Lexicographically optimal base of a polymatroid with respect to a
weight vector, Math. Oper. Res., 5 (1980), 186–196.

[6] S. Fujishige: Submodular systems and related topics, Math. Programming Study, 22
(1984), 113–131.

[7] S. Fujishige: Submodular Functions and Optimization, Elsevier, 2005.

[8] M. X. Goemans and V. S. Ramakrishnan: Minimizing submodular functions over
families of sets, Combinatorica, 15 (1995), 499–513.

[9] M. Grötschel, L. Lovász, and A. Schrijver: The ellipsoid method and its conse-
quences in combinatorial optimization, Combinatorica, 1 (1981), 169–197.

[10] M. Grötschel, L. Lovász, and A. Schrijver: Geometric Algorithms and Combinatorial
Optimization, Springer-Verlag, 1988.

[11] S. Iwata: A fully combinatorial algorithm for submodular function minimization, J.
Combin. Theory, B84 (2002), 203–212.

[12] S. Iwata: A faster scaling algorithm for minimizing submodular functions, SIAM J.
Comput., 32 (2003), 833–840.

[13] S. Iwata: Submodular function minimization, Math. Programming, 112 (2008), 45–
64.

[14] S. Iwata, L. Fleischer, and S. Fujishige: A combinatorial strongly polynomial algo-
rithm for minimizing submodular functions, J. ACM, 48 (2001), 761–777.

[15] L. Lovász: Submodular functions and convexity. Mathematical Programming — The
State of the Art, A. Bachem, M. Grötschel and B. Korte, eds., Springer-Verlag, 1983,
235–257.

[16] S. T. McCormick: Submodular function minimization, Discrete Optimization (K.
Aardal, G. Nemhauser, R. Weismantel, eds., Handbooks in Operations Research,
12, Elsevier, 2005), 321–391.

[17] K. Nagano: On convex minimization over base polytopes, Proceedings of the
Twelfth Conference on Integer Programming and Combinatorial Optimization,
LNCS, Springer-Verlag, 2007, pp. 252–266.

[18] K. Nagano: A strongly polynomial algorithm for line search in submodular polyhe-
dra, Discrete Optim., to appear.

[19] J. B. Orlin: A faster strongly polynomial time algorithm for submodular function
minimization, Math. Programming, to appear.

[20] M. Queyranne: Minimizing symmetric submodular functions, Math. Programming,
82 (1998), 3–12.

13

[21] A. Schrijver: A combinatorial algorithm minimizing submodular functions in
strongly polynomial time, J. Combin. Theory, B80 (2000), 346–355.

[22] L. S. Shapley: Cores of convex games, Int. J. Game Theory, 1 (1971), 11–26.

14

