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Abstract

A unified scheme for quantum measurement processes is formulated
on the basis of Micro-Macro duality as a mathematical expression of the
general idea of quantum-classical correspondence. In this formulation,
we can naturally accommodate the amplification processes necessary
for magnifying quantum state changes at the microscopic end of the
probe system into the macroscopically visible motion of the measuring
pointer. Its essence is exemplified and examined in the concrete model
of the Stern-Gerlach experiment for spin measurement, where the Hel-
gason duality controlling the Radon transform is seen to play essential
roles.

1 Introduction: Micro-Macro Duality and Mea-
surements

In this paper, we present a unified description of a measurement process of
quantum observables together with the amplification process associated with
it. For this purpose, we recall the essence of Micro-Macro duality [1, 2, 3] as a
mathematical expression of the general idea of quantum-classical correspon-
dence which plays crucial roles. In this context, we note that the ‘boundary’
between the quantum and classical levels can be found in the notion of a
sector, in terms of which we can understand, in a clear-cut manner, the mu-
tual relations between the microscopic quantum world and the macroscopic
classical levels. To define a sector, we classify representations and states of
a C*-algebra A of quantum observables according to the quasi-equivalence
π1 ≈ π2 [4] defined by the unitary equivalence of representations π1, π2 up to
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multiplicity, which is equivalent to the isomorphism of von Neumann alge-
bras π1(A)′′ � π2(A)′′ of representatoins π1 and π2. A sector or a pure phase
in the physical context is then defined by a quasi-equivalence class of factor
representations and states corresponding to a von Neumann algebra with
a trivial centre, which is a minimal unit among quasi-equivalence classes.
Representations belonging to different sectors πa and πb are mutually dis-
joint with no non-zero intertwiners: namely, if T is an intertwiner from πa

to πb defined as a bounded operator T from the representation space Hπa

of πa to that Hπb
of πb satisfying the relation Tπa(A) = πb(A)T (∀A ∈ A),

then it vanishes, T = 0.
If π is not a factor representation belonging to one sector, it is called

a mixed phase. In the standard situations where separable Hilbert spaces
are used, a mixed phase can uniquely be decomposed into a direct sum (or
integral) of sectors, through the spectral decomposition of its non-trivial
centre Z(π(A)′′) = π(A)′′ ∩ π(A)′ =: Zπ(A) of π(A)′′ which is a commuta-
tive von Neumann algebra admitting a ‘simultaneous diagonalization’. Each
sector contained in π is faithfully parametrized by the Gel’fand spectrum
Spec(Zπ(A)) of the centre Zπ(A). Thus, commutative classical observables
belonging to the centre physically play the role of macroscopic order pa-
rameters and the central spectrum Spec(Zπ(A)) can be regarded as the
classifying space of sectors to register faithfully all the sectors contained
in π. In this way, we find in a mixed phase π the coexistence of quantum
(=intra-sectorial) and classical systems, the latter of which describes an
inter-sectorial structure in terms of order parameters constituting the cen-
tre Zπ(A). In this way, the ‘boundary’ and the gap between the quantum
world described by non-commutative algebras of quantum variables and the
classical levels with commutative algebras of order parameters can be identi-
fied with a (superselection) sector structure consisting of a family of sectors
or pure phases [1].

Intra-sectorial Analysis by MASA

Since a single sector or a pure phase corresponds to a (quasi-equivalence
class of) factor representation π of a C*-algebra A of quantum observ-
ables, its intra-sectorial structure, the structure inside of a sector, is de-
scribed by the observables belonging to the factor von Neumann algebra
M = π(A)′′ corresponding to π. In this and the next sections, we recapitu-
late the essence of the general scheme to analyze the intra-sectorial structure
[2, 3]. Because of the non-commutativity ofM, what can be experimentally
observed through a measurement is up to a certain maximal abelian sub-
algebra (MASA, for short) A = A′ ∩M (with A′ the commutant of A) of
M: elements of a MASA A can be regarded as macroscopic observables
to visualize some aspects of the microscopic structure of a sector in the
macroscopic form of Spec(A). In fact, a tensor product M⊗ A (acting
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on the tensor product Hilbert space Hω ⊗ L2(Spec(A))) has a centre given
by Z(M⊗A) = Z(M) ⊗ A = 1 ⊗ L∞(Spec(A)), and hence, the spectrum
Spec(A) of a MASA A to be measured can be understood as parametrizing a
conditional sector structure of the composite systemM⊗A of the observed
system M and A, the latter of which can be identified with the measuring
apparatus A in the simplified version [1] of Ozawa’s measurement scheme
[5]. This picture of conditional sector structure is consistent with the phys-
ical essence of a measurement process as ‘classicalization’ of some restricted
aspects A(⊂M) of a quantum system, conditional on the couplingM⊗A
ofM with the apparatus identified with A.

To implement a physical process to measure the observables in A, we
need to specify a dynamical coupling between the observed and measuring
systems, which is accomplished by choosing such a unitary group U in A
as generating A, i.e., A = U ′′. In the standard situation where the relevant
Hilbert space is separable, the abelian von Neumann algebra A on it is
generated by a single element, and hence, we can assume without loss of
generality that U is a locally compact abelian Lie group. Because of the
commutativity of U , the group characters γ of U , γ : U 	 u 
−→ γ(u) ∈ T

(: 1-dimensional torus) s.t. γ(u1u2) = γ(u1)γ(u2), γ(e) = 1, constitute the

dual goup Û satisfying the Fourier-Pontryagin duality ˆ̂U � U . Since the
restriction χ �U to U ⊂ A of an algebraic character χ ∈ Spec(A) of A is
naturally a group character of U , a canonical embedding Spec(A) ↪→ Û can
be defined by Spec(A) 	 χ 
−→ χ �U∈ Û . As the MASA A = A′ ∩ M
is the fixed-point subalgebra A = MAd(U) of M under the adjoint action
of U , our discussion can also be related with the Galois-theoretical context
of the duality between W*-dynamical systems M �

α
U and Mα(U) �

α̂
Û

and between the associated crossed products M �α U and Mα(U) �α̂ Û ,
where the co-action α̂ of U dual to α can be identified with an action of
Û : U �

α
M( � Mα(U) �α̂ Û) � (M �α U) �

α̂
Û . This co-action α̂ plays

important roles in the reconstruction of quantum (microscopic) systems from
the classical macroscopic data.

2 Measurement Coupling, Kac-Takesaki Operators

and Instrument

We show that the above measurement coupling can be specified by means
of a Kac-Takesaki operator [6] (K-T operator, for short), one of the central
notions in harmonic analysis (where it is called a fundamental operator in
[7] and a multiplicative unitary in [8]). In what follows this operator is seen
to play essential roles in our whole scheme to unify both measurement and
amplification processes. In the regular representation of the group U , a K-T
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operator W is defined by

(Wη)(u, v) := η(v−1u, v)

for η ∈ L2(U × U , du ⊗ du), u, v ∈ U with du the Haar measure of U , char-
acterized by the pentagonal and intertwining relations:

W12W23 = W23W13W12,

W (1⊗ λu) = (λu ⊗ λu)W,

where the suffices 1, 2, 3 indicate the places in the tensor product L2(U , du)⊗
L2(U , du) ⊗ L2(U , du) on which the operators act.

The simplest form of the action α, M �
α
U , of U on M is given by the

adjoint action αu(M) = Adu(M) = uMu−1, as commonly found in many
discussions on the measurement processes. This corresponds physically to
such an approximation to the coupled dynamics of the composite system
M⊗A that the Hamiltonian H0 intrinsic to the observed system is neglected
but the bilinear coupling HI = λ

∑
iXi ⊗ Ai is kept between the system

observables Xi (exp(iXi) ∈ M) and the external forces Ai (exp(iAi) ∈ A).
To retain the effects of the dynamics intrinsic to the observed system, we
take here a more general form of the actionM�

α
U of the measuring system

than the adjoint one under the assumption that α is unitarily implemented,
αu(M) = UuMU−1

u (M ∈ M, u ∈ U), by a unitary representation U of
U on the standard representation Hilbert space L2(M) of M. Then the
representation U(W ) of W corresponding to α = Ad(U) is defined by

(U(W )ξ)(u) := Uu(ξ(u)) for ξ ∈ L2(M) ⊗ L2(U , du),
satisfying the pentagonal and intertwining relations:

U(W )12W23 = W23U(W )13U(W )12,
U(W )(1⊗ λu) = (Uu ⊗ λu)U(W ).

The meaning of U(W ) can be seen in the following heuristic expression in
Dirac’s bra-ket notation:

U(W ) =
∫

u∈U
Uu ⊗ |u〉du〈u|.

This unitary operator U(W ) provides the coupling between the observed
and measuring systems precisely required for measuring the observables in
A. For this purpose, we examine the action of its Fourier transform on
the state vectors of the composite system belonging to L2(M)⊗ L2(U , du).
First, in terms of the Fourier transform (Fξ)(γ) :=

∫
U γ(u)ξ(u)du for ξ ∈

L2(U , du), the Fourier transform V := (F ⊗ F)W ∗(F ⊗ F)−1 of the K-T
operator W on L2(U × U) is defined, which turns out just to be the K-T
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operator of the dual group Û (equipped with the Plancherel measure dû)
satisfying and characterized by the relations:

(V η)(γ, χ) = η(γ, γ−1χ) for η ∈ L2(Û , dû),
V23V12 = V12V13V23,

V (λγ ⊗ 1) = (λγ ⊗ λγ)V.

Similarly, the Fourier transform of U(W ) is defined by Ũ(V ) := (id ⊗
F)U(W )∗(id ⊗ F)−1. Owing to the SNAG theorem due to the abelian-
ness of U , its unitary representation U 	 u 
−→ Uu ∈ U(L2(M)) admits
the spectral decomposition Uu =

∫
χ∈Spec(A)⊂Û χ(u)dE(χ), corresponding to

which Ũ(V ) has the spectral decompostion given by

Ũ(V ) =
∫

χ∈Spec(A)
dE(χ) ⊗ λχ.

In the Dirac notation, the action of Ũ(V ) on L2(M) ⊗ L2(Û) is given for
γ ∈ Û , ξ ∈ L2(M), by

Ũ(V )(ξ ⊗ |γ〉) =
∫

χ∈Spec(A)
dE(χ)ξ ⊗ |χγ〉. (1)

To understand the physical meaning of the above quantities, we introduce
some such vocabularies [5] as ‘probe system’ and ‘neutral position’ in mea-
surement processes: the former means the microscopic end of the measuring
apparatus at its microscopic contact point with the observed system, and
the latter the initial (microscopic) state of the probe system corresponding
to the macroscopically stable position of the measuring pointer realized when
the apparatus is isolated.

To see clearly the essence of the formulation, we assume that Û is discrete
(or, equivalently, U is compact); then we can plug into γ ∈ Spec(A)(⊂ Û)
and ξ ∈ L2(M) in Eq.(1), respectively, the group identity ι ∈ Û and such an
eigenstate ξ = ξχ as Aξχ = χ(A)ξχ (∀A ∈ A) of χ ∈ Spec(A), which gives

Ũ(V )(ξχ ⊗ |ι〉) = ξχ ⊗ |χ〉. (2)

Namely, corresponding to the eigenstate ξχ of A found in the observed sys-
tem, the coupling unitary Ũ(V ) causes such a state change as |ι〉 → |χ〉 in
the probe system. For such a generic state as ξ =

∑
χ∈Spec(A) cχξχ of the

observed system, therefore, we obtain

Ũ(V )(ξ ⊗ |ι〉) =
∑
χ∈ bU

cχξχ ⊗ |χ〉, (3)

that is, the unitary operator Ũ(V ) creates from a decoupled state ξ ⊗ |ι〉 of
M⊗A a ‘perfect correlation’ [9] between states of the observed system and
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of the probe system, which is just required for transmitting the information
from the observed system to the probe system. When the group U is not
compact with Û not being discrete, the identity element ι ∈ Û is not repre-
sented by a normalized vector, |ι〉 /∈ L2(U), but we can choose an invariant
meanmU over U owing to the amenability of the abelian group U which plays
the physically equivalent roles of the neutral position ι. As all what can be
realized in this case is known [5] to be the approximate measurements, the
formula corresponding to Eq.(3) can be given by Eq. (1) and by the use of
mU as seen below in Eq. (4). In this way the K-T operators are seen to fullfil
the necessary tasks for materializing the physical essence of measurements
in the mathematical formulation: the K-T operator U(W ) determines the
coupling between the observed and the measuring systems and its Fourier
transform Ũ(V ) given by Eq.(1) establishes the ‘perfect correlation’ [9].

Integrating all the ingredients relevant to our measurement scheme, we
define an instrument I as a completely positive operation-valued measure
as follows:

I(Δ|ωξ)(B) := (ωξ ⊗mU )
(
Ũ(V )∗(B ⊗ χΔ)Ũ(V )

)
= (〈ξ| ⊗ 〈ι|)Ũ (V )∗(B ⊗ χΔ)Ũ (V )(|ξ〉 ⊗ |ι〉)

=
∫

Δ

√
dE(γ)
dμ(γ)

B

√
dE(γ)
dμ(γ)

dμ(γ) =:
∫

Δ

√
dE(γ)B

√
dE(γ), (4)

where ωξ s.t. ωξ(B) = 〈ξ|Bξ〉 is an initial state of the observed system,
dμ(γ) an arbitrary probability measure with respect to which the spectral
measure dE(γ) of U is absolutely continuous: dE(γ) � dμ(γ), and χΔ

the indicator function of a Borel set Δ ⊂ Spec(A) to which the measured
values of A belongs. The spectral measure dE(γ) is just the effect of the
measurement, from which our K-T operator Ũ(V ) can be reconstructed by
Ũ(V ) =

∫
χ∈Spec(A) dE(χ) ⊗ λχ. In this sense, the three notions, the K-T

operator Ũ(V ), the effect dE(γ) and the instrument I(Δ|ωξ), are all mutu-
ally equivalent. The most important essence of the statistical interpretation
in the measurement processes is summarized in this notion of instrument as
follows: the probability distribution for measured values of observables in A
to be found in a Borel set Δ ⊂ Spec(A) is given by p(Δ|ω) = I(Δ|ω)(1) and,
associated with this, the initial state ω of the observed system is changed by
the read-out of measured values in Δ into a final state given in such a form
as I(Δ|ωξ)/p(Δ|ωξ) [5], according to which a process of the so-called ‘reduc-
tion of wave packets’ is described. Incidentally, the reason for the relevance
of the Fourier transform from U(W ) to Ũ(V ) = (id⊗ F)U(W )∗(id⊗ F)−1

can naturally be understood in relation with the duality between the (alge-
bra of) observables and the states: when the group U acts on the algebraM
of the observed system, the corresponding states can be parametrized by Û
as “eigenstates” w.r.t. the action U of U , which should also be read out as
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the measured values.
By means of the instrument I, a measurement process is described as

the process of state changes due to the measurement coupling α = Ad(U)
which transforms an initial state ω of the observed system decoupled from
the probe system into final ones of the same nature, in parallel with the
scattering processes described in terms of the incoming and outgoing asymp-
totic states of free particles. The algebra describing the composite system
is the tensor algebra M ⊗ A = M ⊗ L∞(Spec(A)) realized in the ini-
tial and final stages, respectively, before and after the measuring processes
according to the switching-on and -off of the coupling α = Ad(U). As
incoming and outgoing asymptotic fields, ϕin and ϕout, in quantum field
theory are interpolated by interacting Heisenberg fields ϕH , we can con-
sider a similar description of the composite system of M and A with the
coupled dynamics α incorporated at the level of the algebra which inter-
polates the initial and final decoupled system M ⊗ A. This is given by
the notion of the crossed products M �α U of the algebra due to the
action α of U on M, in terms of which the effect of the measuring cou-
pling in the measurement process can be seen in such a form as M⊗A =
M �α=idM U → M �α U → M ⊗ A, in parallel with the scattering pro-
cesses, ϕin → ϕH → ϕout. In terms of the K-T operators, the crossed
product M�α U as an important notion in the Fourier-Galois duality is
defined on L2(M)⊗L2(U) in the following two equivalent ways: either as a
von Neumann algebra λM(L1(U ,M))′′ generated by the Fourier transform
λM(F̂ ) :=

∫
U F̂ (u)U(u)du of M-valued L1-functions F̂ ∈ L1(U ,M) with

the convolution product, (F̂1 ∗ F̂2)(u) =
∫
U F̂1(v)αv(F̂2(v−1u))dv, mapped

by λM into λM(F̂1 ∗ F̂2) = λM(F̂1)λM(F̂2), or, as a von Neumann algebra
πα(M) ∨ (1⊗ λ(U)) generated by 1⊗ λ(U) and by

πα(M) := {πα(M) := Ad(U(W )∗)(M ⊗ 1); M ∈M}.

These two versions are related by the mapping α(W ) := Ad(U(W )),

λM(L1(U ,M))′′ = (M⊗ 1) ∨ {Uu ⊗ λu;u ∈ U}
α(W )−1

�
α(W )

πα(M)∨ (1⊗ λ(U)),

which can be understood as the Schrödinger and Heisenberg pictures: the
former (M ⊗ 1) ∨ {Uu ⊗ λu;u ∈ U} is in the Schrödinger picture with
unchanged microscopic observables M⊗ 1 and with the coupling Uu ⊗ λu

to change macroscopic states, while, in the latter, all the coupling effects
are concentrated in the observables πα(M) in contrast to the kinematical
changes of macroscopic states caused by λ(U).

In the case of the instrument, the effects of the measurement coupling
Ũ(V ) are encoded in the form of macroscopic state changes recorded in
the spectrum of the non-trivial centre Z(M⊗A) = A = L∞(Spec(A)) of
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M⊗A, playing the same roles as the order parameters to specify sectors
in the inter-sectorial context. For these reasons, the most natural physical
essence of the formalism in terms of an instrument I can be found in the
interaction picture, whose coupling term Ũ(V ) = (id⊗F)U(W )∗(id⊗F)−1

is responsible for deforming the decoupled algebra M⊗ A into the above
crossed productM�α U .

To clarify the natural meaning of the above scheme, we note a useful
analogy of the duality coupling to the familiar complementarity of DNA
between A(denine) and T(hymine) and between G(uanine) and C(ytosine),
repectively: the role of the coupling between dE(χ) and λχ in the K-T
operator Ũ(V ) =

∫
χ∈Spec(A) dE(χ)⊗λχ is just similar to that of the comple-

mentarity of A-T and G-C, as the former implements the transcription of
the data χ in the object system to the probe system in the form of λχ : ι→ χ
similarly to the latter case.

At this point, we note that the above standard description of measure-
ment processes in terms of an instrument implicitly presupposes that the
quantum-theoretical processes, ξ → ξχ and ι → χ, taking place at the
microscopic contact point of the observed and the probe systems can be
directly interpreted as the measured data χ identifiable with a position of
the measuring pointer visible at the macroscopic level. There exist certain
mathematical and/or physical gaps between these two levels which need be
filled up: to adjust theoretical descriptions to the realistic experimental sit-
uations, we need to discuss how these changes of probe systems dynamically
propagate into macroscopic motions of the measuring pointer. This is just
the problem of the amplification processes to amplify the invisible quan-
tum state changes in the probe system into the macroscopic data registered
in some visible form of suitable order parameters. (Continuuing the above
analogy to the DNA, the aspect of amplification can naturally be compared
with the process of PCR[= polymer chain reaction] to amplify the sequen-
tial data of DNA.) In the next section, we formulate its general and abstract
essence in mathematical terms, by which the notion of the instrument need
be supplemented. In view of the inevitable noises in the actual experiment
situations, it is also necessary to show how the relevant information survives
to reach the macroscopically visible level, which requires the estimates of
the disturbance terms in the form of adiabaticity condition as will be done
in §4.

3 Unified Description of Measurements and Am-
plifications

We note here such a remarkable property inherent in the regular representa-
tion of Û as the mutual quasi-equivalence, λ⊗m ≈ λ⊗n (∀m,n ∈ N), among
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its arbitrary tensor powers λ⊗n := (Û 	 γ 
−→ λγ ⊗ · · · ⊗ λγ︸ ︷︷ ︸
n

∈ U(L2(Û))⊗n),

as seen by the repeated use of the intertwining relation V (λγ ⊗ 1) = (λγ ⊗
λγ)V of the K-T operator V :

VN,N+1 · · ·V23V12(λγ ⊗ 1⊗N )
= VN,N+1 · · ·V23V12((λγ ⊗ 1)⊗ · · · ⊗ 1)
= VN,N+1 · · ·V23((λγ ⊗ λγ)⊗ 1⊗ · · · ⊗ 1)V12

= VN,N+1 · · ·V23(λ⊗2
γ ⊗ 1⊗(N−1))V12

= · · · = VN,N+1 · · ·Vn,n+1(λ⊗n
γ ⊗ 1⊗(N−n+1))Vn−1,n · · ·V23V12

= λ⊗(N+1)
γ VN,N+1 · · ·V23V12.

On this basis, we can formulate a dynamical process of amplification [10]
in terms of a unitary action TN of N on the tensor algebra M⊗ (⊗L∞(Û))
with ⊗L∞(Û) := lim−→

N

L∞(Û)⊗ L∞(Û)⊗ · · · ⊗ L∞(Û)︸ ︷︷ ︸
N

defined by

TN (A⊗ f2 ⊗ · · · ⊗ fN+1)

:= Ũ(V )∗12V
∗
23 · · ·V ∗

N,N+1(A⊗ f2 ⊗ · · · ⊗ fN+1)VN,N+1 · · ·V23Ũ(V )12

= Ad(Ũ (V )∗12)Ad(V
∗
23) · · ·Ad(V ∗

N,N+1)(A⊗ f2 ⊗ · · · ⊗ fN+1)

= Ad(Ũ (V )∗)(A⊗Ad(V ∗)(f2 ⊗Ad(V ∗)(· · · ⊗Ad(V ∗)(fN ⊗ fN+1))) · · · )
for A ∈M and fi ∈ L∞(Û),

which is similar to the formulation of quantum Markov chain due to Accardi
[11]. When Û is discrete, this process can be seen in a more clear-cut way
in the Schrödinger picture:

UN := VN,N+1 · · · V23Ũ(V )12;

UN (ξ ⊗ |ι〉⊗N ) =
∑

γ∈Spec(A)

cγVN,N+1 · · ·V34V23(ξγ ⊗ |γ〉 ⊗ |ι〉 ⊗ · · · ⊗ |ι〉)

=
∑

γ∈Spec(A)

cγVN,N+1 · · ·V34(ξγ ⊗ |γ〉 ⊗ |γ〉 ⊗ |ι〉 ⊗ · · · ⊗ |ι〉)

= · · · =
∑

γ∈Spec(A)

cγξγ ⊗
[|γ〉⊗N

]
,

where ξ =
∑

χ∈Spec(A) cχξχ is a generic state ξ ∈ L2(M) of the observed
system. According to the general basic idea of ‘quantum-classical correspon-
dence’, a classical macroscopic object is to be identified with a condensed
state of infinite number of quanta, as well exemplified by the macroscopic
magnetization of Ising or Heisenberg ferromagnets described by the aligned
states | ↑〉⊗N of ‘infinite number’ N � 1 of microscopic spins. Likewise, the

9



states |ι〉⊗N := |ι〉 ⊗ |ι〉 ⊗ · · · ⊗ |ι〉︸ ︷︷ ︸
N

and |γ〉⊗N := |γ〉 ⊗ |γ〉 ⊗ · · · ⊗ |γ〉︸ ︷︷ ︸
N

(with

N � 1) can physically be interpreted as representing macroscopic positions
of the measuring pointer corresponding, respectively, to the initial and fi-
nal probe states parametrized by ι and γ. Thus the above repeated action
VN,N+1 · · ·V23Ũ(V )12 of the K-T operator V describes a cascade process or
a domino effect of ‘decoherence’, which, triggered by the initial data ξγ of
the observed system, amplifies a probe state change |ι〉 → |γ〉 at the micro-
scopic end of the apparatus to be transferred into the macroscopic classical
motion ι→ γ of the measuring pointer.

In view of the above aspects, we define a unified version of the instrument
combined with the amplification process:

ÎN (Δ|ωξ) = (ωξ ⊗mU⊗N )(U∗
N ((−)⊗ χ⊗N

Δ )UN ),

in terms of which we can give an affirmative answer to the question posed at
the end of the previous section, §2, concerning the realistic meaning of the
quantity Δ as the actual data to be read out from the measuring pointer.
To this end, we show the equality

I(Δ|ωξ) = ÎN(Δ|ωξ)

between the usual and the above instruments as follows: assuming the dis-
creteness of Û for simplicity, we calculate for B ∈M,

ÎN (Δ|ωξ)(B) = (ωξ ⊗mU⊗N )(U∗
N (B ⊗ χ⊗N

Δ )UN )

=

⎛⎝ ∑
χ1∈Spec(A)

c∗χ1
〈ξχ1| ⊗ 〈χ1|⊗N

⎞⎠(B ⊗ χ⊗N
Δ

)⎛⎝ ∑
χ2∈Spec(A)

cχ2 |ξχ2〉 ⊗ |χ2〉⊗N

⎞⎠
=
∑

χ∈Δ
|cχ|2〈ξχ|B|ξχ〉χΔ(χ)N =

∑
χ∈Δ
|cχ|2〈ξχ|B|ξχ〉

= I(Δ|ωξ)(B)

which reduces for Δ = {γ}(⊂ Spec(A)) to such a familiar result as

I({γ}|ωξ)(B) = ÎN ({γ}|ωξ)(B) = |cγ |2〈ξγ |B|ξγ〉;
p({γ}|ωξ) = I({γ}|ωξ)(1) = ÎN({γ}|ωξ)(1)

= |cγ |2 for ∀N ∈ N, γ ∈ Spec(A). (5)

Since |cγ |2 gives precisely the probability of finding a macroscopic state
|γ〉⊗N , we have observed just the agreement of the probability distributions
between the one arising from the microscopic system-probe coupling and
the final result realized through the amplification process. This fact ensures
the pertinence of instruments for the description of measurements, giving a
clear-cut version of quantum-classical correspondence.
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Infinite divisibility and Lévy process

The unitarity of the above amplification process is guaranteed by the quasi-
equivalence relations among arbitrary tensor powers λ⊗n = λ ⊗ · · · ⊗ λ of
the regular representation λ of Û . It can also explain the possibility of the
recurrent quantum interference even after the contact of a quantum system
with the measuring apparatus when the number N of repetition need not
be regarded as a real infinity. This point is evident from Eq.(5) which is
valid independently of N ∈ N. In general, the problem as to whether the
situation is made ‘completely’ classical or not depends highly on the relative
configurations among many large or small numbers, which can consistently
be described in the framework of the non-standard analysis (see, for instance,
[12]).

In close relation to this, it is also interesting to note that the above
amplification process is related to a Lévy process through its ‘infinite divis-
ibility’ as follows: similarly to the affine property f(λx + μy) = λf(x) +
μf(y) (∀λ, μ > 0) of a map f defined on a convex set following from
the additivity f(x + y) = f(x) + f(y), we can extrapolate the relation
λm ≈ λn (∀m,n ∈ N) into λ ≈ λn/m, which means the infinite divisibil-
ity (Ad(V ))t+s ≈ (Ad(V ))t(Ad(V ))s (t, s > 0) of the process induced by
the above transformation. In this way, we see that simple individual mea-
surements with definite measured values are connected without gaps with
discrete and/or continuous repetitions of measurements [13]. If this formu-
lation exhausts the essence of the problem, the remaining tasks reduce to
its physical and/or technical implementation through suitable choices of the
media connecting the microscopic contact point between the system and the
apparatus to the measuring pointer. In such contexts, we need to examine
some aspects concerning the stability of the information transmitted from
microscopic to macroscopic levels, as will be seen in the next section.

4 Example Case of Stern-Gerlach Experiment

In this section we apply the scheme developed so far to the experimental
situation of Stern-Gerlach type to check the validity of its general essence and
to attain a deeper understanding of it through the concrete example. We will
find also the necessity of some generalization or modification for adapting the
scheme to actual situations. The essence of Stern-Gerlach experiments1 [14,
15] can be found in the coupling between the (spin and/or orbital) angular
momentum of the quantum particles (such as atoms or electrons) and the
inhomogeneous external magnetic field, according to which the microscopic
differences in the quantized directions of angular momentum are amplified
into the macroscopic distance of the arriving points of the particle. For

1Suggested by O.Stern & W.Gerlach in 1922
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simplicity, we consider here the spin σ = (σx, σy, σz) of an electron (with spin
s = 1/2), whose associated magnetic moment μσ couples to the magnetic
field via the interaction term μσ·B(x): through the x-dependence of B(x)
due to its inhomogeneity, this coupling causes the orbital change of the
electron according to its spin direction (up or down) with respect to the
defined axis (see Fig. 1 in §4.1). Thus the magnetic field B(x) is seen to
play a double role; the coupling μσ·B causes, on the one hand, the spectral
decomposition of the quantum spin σ, and it causes, on the other hand, the
amplification process through its dependence on x. Through the process,
we can ‘see’ the quantum spin variable of the electron as the separation
of its spatial orbits (or, more directly, the arriving points on the screen).
Thus the two states | ↑〉 and | ↓〉, respectively, of spin up and down, can be
distinguished through the amplification process caused by the Stern-Gerlach
measurement apparatus.

In §3 the amplification process was formulated in its idealized abstract
form in terms of the homogeneous repetition by a K-T operator. In the
present case of Stern-Gerlach experiment, however, the coupling between
the electron and the inhomogeneous magnetic field depends on the posi-
tion of the moving electron, owing to which the unitary coupling term
V = exp[ it

~
μσ⊗B(x)] depends on the position x of the electron along its

trajectory. At the same time, any amplification processes cannot get rid
of noise effects to disturb the ideal separations between upward and down-
ward electron beams corresponding to macroscopically distinguishable states
| ↑〉⊗∞ and | ↓〉⊗∞, respectively. For these reasons, it is necessary to exam-
ine whether the possible spin-flips during the travel of electron through the
magnetic field can sufficiently be suppressed. Otherwise, frequent spin-flips
may destroy the meaningful connection between the spin variables of the
electrons and the points on the screen to detect them. Therefore, to ensure
the distinguishability and the stability in the separations of final results,
some physical conditions need be supplemented to ensure that these ‘error
probability’ is small enough. This can be understood as a kind of ‘adiabatic-
ity condition’ related with the validity of adiabatic approximation to treat
the varying and fluctuating background field.

4.1 Applying the scheme to Stern-Gerlach experiment

The standard setting of the Stern-Gerlach experiment is shown below (see
Fig. 1 to illustrate the apparatus); we prepare a given type of metal which
emits the electron beam through the thermal oscillation. The thermal elec-
tronic beam enters in the inhomogeneous magnetic field B(x) generated
between magnetic poles which covers a spatial region with a length scale of
the order of a meter. The orbital motion of each electron is bent upward
or downward according to the directions of its spin coupled to the magnetic
field; the microscopic state determined by the direction of electron spin as

12



an invisible internal degree of freedom is thus converted into the visible
macroscopic form of spatial separations of the spots on the screen caused by
the electrons.

From here, we focus on the situation for detecting the spin direction
consisting of an electron with spin s = 1/2, mass m, charge e, magnetic
moment μ(= e�/2μ0mc with magnetic permeability μ0 of vacuum) and of
the external magnetic field whose direction is supposed to be fixed in the
z-axis.

e

N

S

electron
beam

magnetic pole

screen

x

y

z

Figure 1: The settings of Stern-Gerlach experiment with single pair of magnetic
poles

For applying our general scheme, we should proceed in the following
steps:

0) To find the algebra which describes the physical system.

1) To extract the basic ingredients relevant to Micro-Macro duality (MASA,
unitary group and their duals) from the algebra found in 0).

2) To identify the K-T operator in terms of these ingredients.

0) To find the algebra which describes the physical system. The
physical variables of the electron constitute the algebra M2(C)⊗B(L2(R3))
consisting of the spin variables M2(C) = Lin(σx, σy, σz)′′ and the algebra
B(L2(R3)) of the canonical commutation relations (a CCR algebra, for short,
or, a Heisenberg algebra) generated, respectively, by Pauli matrices σi and
by the spatial coordinates x, y, z and the momenta px, py, pz. According to
the general framework in §1, we can take M = M2(C) ⊗ B(L2(R3)) as the
algebra describing the system to be observed (as a von Neumann algebra of
type I).
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1) To extract basic ingredients relevant to Micro-Macro duality.
We can find the MASA as

A = A′ = Diag(2,C) ⊗ L∞(R3),

up to unitary conjugacy, where Diag(2,C) denotes the set of 2× 2 diagonal

matrices
(
α 0
0 β

)
(α, β ∈ C). This algebra is generated by the group

U = U(A) of its unitary elements:

U = U(A) = T2 ⊗ U(L∞(R3)) = T2 ⊗ L∞(R3,T).

The dual objects are also determined as follows:

Spectrum: Spec(A) = {±1} × R3;

Dual group: Û = Z2 ⊗ L1(R3,Z),

where L1(R3,Z) consists of compactly supported Z-valued step functions on
R3, namely, each element f ∈ L1(R3,Z) takes a constant integer value ci ∈ Z

on each Δi of a finite number of non-intersecting Borel sets Δ1, · · · ,Δr in

R3 and vanishes outside of
⋃

i=1,··· ,rΔi: f(x) =
{
ci for x ∈ Δi,
0 otherwise.

We note that it is possible to extract the information on the spin degrees
of freedom of the observed system from the spin algebra only, ignoring the
orbital part described by the CCR. In this context, the relevant MASA {σz}′′
is just the Cartan subalgebra of the Lie algebra su(2) = Lin(σx, σy, σz) (as
is familiar in the theory of semi-simple Lie algebras), where the spectrum
Z2 = {±1} ⊂ Spec(A) can be identified with its root system. Physically
they correspond to the spin up/down states with respect to the z-axis. In
contrast to Spec(A) having no identity element in itself, we can identify
the unit element (0, 0) ∈ Z2 of the dual group Z2 as the neutral position of
the measuring system, which can also be identified with the Haar measure
dt1dt2 of T2 or the constant function 1 on T2. While this neutral position
does not exist as a position of measuring pointer, operationally it represents
a situation of no click on either of upper or lower detector. Generic states
of electron spin to be measured are represented by arbitrary superpositions
c+|↑〉+ c−|↓〉 (c+, c− ∈ C, |c+|2 + |c−|2 = 1) of two eigenstates |↑〉, |↓〉 of σz.
According to the result in §2, the coefficient c± gives the transition amplitude
from the above ‘state’ of neutral position (of the measuring pointer) to either
of the ‘amplified’ macroscopic states |↑〉⊗N and |↓〉⊗N .

2) To identify the K-T operator. Our aim here is to understand the
role of the coupling Hamiltonian μσ⊗B(x) in relation with a K-T operator
and its associated instrument. For this purpose, we consider a (trivial) vector
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bundle E := R3 × C2 � R3 over a base space R3 spanned by the electron
coordinates x with a fibre C2 	 ψ(x) describing spin states of the electron at
x; E has group actions on its base space and its standard fibre, respectively,
by the 3-dimensional motion group M(3) = R3 �

Ad
SU(2) =: G and by

the spin rotations SU(2) =: H, where �
Ad

means the semi-direct product

w.r.t. the adjoint action of SU(2) on R3 � {X ∈ M2(C);Tr(X) = 0,X∗ =
X}. It is important here to note that E is a homogeneous bundle over the
homogeneous space G/H � R3, according to which a representation of G can
be induced from that of its subgroupH. Therefore, the geometry involved in
the Stern-Gerlach experiment (as an intra-sectorial version) can be related
to the measurement scheme [1, 16] for a sector bundle G ×

H
Ĥ � G/H

over G/H consisting of the degenerate vacua associated to a spontaneous
symmetry breaking of G into an unbroken subgroup H with the standard
fibre Ĥ describing the sector structure associated with H:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

MH � Ĝ �M� (̂H\G) =⇒ read-out data in Spec(centre)
(I) = G/H: degenerate vacua

⇑
Ĝ � [M�H �MH ]
: coupling (I)

=⇒ read-out data in Spec(centre)
(II) = Ĥ: sectors on a vacuum

⇑
coupling (II): H �M

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The interpretation of each step of (I) and (II) in this diagram is just in
parallel with our measurement scheme: the unbroken subgroupH acts on the
algebraM of observables of the system through the coupling (II), according
to which the associated sector structure over a fixed vacuum can be read
off (II) in terms of Ĥ realized as the spectrum of the centre of M � H,
and, similarly, the coupling (I) to implement the co-action of G on the
crossed product M � H makes it possible to observe the sector structure
(I) of the degenerate vacua parametrized by G/H. From this viewpoint, the

interaction Hamiltonian σ⊗μB(x) =σz⊗μBz(x) =
(
μBz(x) 0

0 −μBz(x)

)
can be interpreted as follows: the coupling term exp[ it

~
σz⊗μBz] exhibits, via

spectral decomposition, the ‘sector’ structure σz = ±1 parametrized by the
roots ±1 of H = SU(2) similarly to the above (II) within a fibre. When
we recall the x-dependence of Bz = Bz(x),x ∈ R3 = G/H, the aspects (I)
of the degenerate vacua as condensed states shows up in relation with the
base space G/H = R3. To see this, we consider such an approximation of
the inhomogeneus magnetic field Bz(x) as

Bz(x) � B0 +
∂Bz

∂z
z = B0 +B1z.
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This allows us to interpret the above coupling term exp[ i
~
Δtσz⊗μBz] (for a

time interval Δt) as another K-T operator relevant to (I):

exp[
i

�
Δtσz ⊗ μBz(x)] =

(
exp[ i

~
μBz(x)Δt] 0

0 exp[− i
~
μBz(x)Δt]

)
� e i

~
σzμB0Δt

(
e

i
~
μB1zΔt 0
0 e−

i
~
μB1zΔt

)
,

which describes the (co-)action of the z-axis R ⊂ G/H on M to gener-
ate M � (̂H\G) (an augmented algebra introduced in [1]). To understand
this, it is sufficient to note that the exponent ± i

~
μB1zΔt of matrix elements

exp(± i
~
μB1zΔt) in the above coupling unitary exp( i

~
Δtσz ⊗ μBz) can be

seen as the spectral value of the K-T operator exp( i
~
p̂z⊗ ẑ) =

∫
dE(pz)⊗ λ̂pz

corresponding to the (generalized) eigenvalue pz = ±μB1Δt of the momen-
tum operator p̂z:

Δpz = ±μB1Δt : corresponding to the eigenvalue ± 1 of σz, (6)

In the context of group representations, two representations of G = R3 �
Ad

SU(2) are induced from the two representations of H = SU(2) correspond-
ing to the eigenvalues σz = ±1, which are restricted to another subgroup R3

and then to the z-axis ⊂ R3, corresponding to (approximately) plane waves
with pz = ±μB1Δt, which reach the upper/lower detectors, respectively:

G = R3 �
Ad
SU(2)

(induction : ) ↗ ↘ (: restriction)

σz −→ G/R3 = SU(2) ←→
Helgason duality

G/H = R3 −→ p̂z .

In this way, the spin σ and the orbital motion described by x,p are cou-
pled by the inhomogeneity of the external magnetic field Bz(x) � B0 +B1z,
according to which the microscopic directions σz = ±1 of the former is am-
plified into the macroscopic directions pz = ±μB1Δt in the orbital motion.
These latter directions can be understood as the ‘amplified’ states, | ↑〉⊗N

and |↓〉⊗N with the upper/lower points on the target screen.

Comment 1 The ‘Helgason duality’ above is a special case of the duality
between the two homogeneous spaces, K\G and G/H, constituting a double
fibration K\G � G � G/H, which plays important roles in the context of
Radon transforms [17].

It is remarkable that the coupling unitary exp
[

it
~
σz ⊗ μBz(x)

]
charac-

teristic of the Stern-Gerlach experiment contains the two kinds of K-T op-
erators, the one, exp(i

σz

2
⊗ θ̂), to couple the quantum observable σ with the
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angle variable θ̂ = 2tμBz/� and the other one, exp( i
~
p̂z⊗ẑ), corresponding to

the translations z → z+a of z due to the z-dependence of Bz(x) � B0+B1z,
the latter of which is responsible for the direct amplification of the former
coupling. This explains a dynamical mechanism to transcribe the informa-
tion on the spin direction into the momentum change in the orbital motion
of the electron, which allows us to achieve the quantitative estimation as
shown above.

Aside from the Stern-Gerlach case, a unitary coupling of the similar na-
ture has been found in [18]2. Our focus here is, however, to clarify the
universal essence of such couplings via external fields, which seems impossi-
ble without the use of K-T operators.

4.2 Adiabatic perturbation and adiabaticity condition

In the above discussion for deriving the momentum change of the electron,

we neglected such secondary effects as the terms come from Bx or
∂Bx

∂z
.

Since these effects are outside the scope of the above ideal situation of am-
plification, we need to estimate them as correction terms in the next step.
Without the necessity to develop the general method for treating these sec-
ondary terms, we already know some of typical methodology for these esti-
mation; in some cases (including the Stern-Gerlach case) it would be called
‘adiabaticity conditions’. For Stern-Gerlach experiment, this condition can
be interpreted as the one under which the effect of spin-flips caused by the

factor
∂Bx

∂z
remains small enough compared with that of Bz. In this section,

we confirm that the adiabaticity condition surely gives the consistency in
the present context by an elementary discussion.

‘Adiabatic perturbation’ originally means a coupling of a quantum sys-
tem with an external force which changes the system slowly enough in com-
parison to the typical time scales of intrinsic transitions among quantum
states but whose changes along the direction of condensed order parameters
can eventually accumulate into a visible size. The general essence of the
adiabaticity can be formulated in such a condition as |Ufi| � 1, in terms of
the rate of change of the matrix elements of Hamiltonian H defined by

Ufi :=
�

(Ef − Ei)2

(
∂H

∂t

)
fi

,

between the initial and final states with the energies Ei and Ef , respectively.
The physical meaning of the quantity Ufi can be understood by the following

2The paper by Prof. G. Emch has been brought to our attention by Prof. Ohya, to
whom we express our gratitudes.
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reformulation of it:

Ufi =
(ΔH)fi

(ΔE)fi
=

(
∂H

∂t
Δt
)

fi

Ef − Ei
=

(
∂H

∂t

)
fi

ω−1
fi

Ef − Ei
,

with Δt :=
�

Ef − Ei
=: ω−1

fi which sets up the standard time scale for the

comparison. The requirement |Ufi| � 1 can now be understood as the self-
consistency condition for a process to change the values of the order param-
eters describing a given inter-sectorial structure of the quantum-classical
composite system, without destroying the whole sector structure: if the

change rate
∂H

∂t
of the Hamiltonian is very small, it should be almost per-

pendicular to the main ‘tangential direction’ of the changes caused by the
external force in favour of the change in the order parameters. Therefore,
Δt can be interpreted as the ‘almost intrinsic’ time scale of the microscopic
motions of the intra-sectorial quantum system put in a background with
slowly changing order parameters, in which ωfi can represent, for instance,
the frequency of the light emitted in the transition. Then the numerator in

Ufi =
(ΔH)fi

(ΔE)fi
is the change (ΔH)fi =

(
∂H

∂t
Δt
)

fi

of the matrix element

of H from the initial i to final states f caused by the adiabatic perturbation
during the time interval Δt, which is to be compared with the denominator
(ΔE)fi = Ef − Ei given by the energy difference almost intrinsic to the
quantum system.

Going back to the Stern-Gerlach case, the interaction Hamiltonian is
given by

H̃I =
e�

2μ0mc
B·σ =

e�

2μ0mc
(Bxσx +Bzσz),

The decomposition of the external magnetic field into its z-component Bz

and the remaining Bx can be understood as the one into the directions to
preserve and to disturb the sector structure according to the eigenvalues of
σz. Therefore, the dominant term in this Hamiltonian to disturb the spin
direction due to the spin-flips is identified with

HI =
e�

2μ0mc
Bxσx.

The size of the effect due to this term should be estimated to preserve the
visibility aspect due to Bz.

As each trajectory of electron can be considered as a smooth curve in
R3 parameterized by the time parameter t, the time derivative of HI is
calculated as

∂HI

∂t
=

e�

2μ0mc

dx

dt

∂Bx

∂x
σx.
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Here we introduce an approximation Bx � Bx(z = 0) +
∂Bx

∂z
z. In terms of

a basis of eigenstates of σz, we can estimate and obtain a representation of
off-diagonal matrix elements(

∂HI

∂t

)
fi

=
e�

2μ0mc
vz
∂2Bx

∂x∂z

∫
ψf (x)σxψi(x)dx,

under the assumption that the velocity dx/dt of the electron can be replaced
by the typical velocity v of thermal electrons. Owing to the first condition
for ∂H/∂t to be adiabatic, the derivative of the external magnetic field can
be approximated in the context of the estimate by ∂Bx/∂z ∼ Bz/(Δx),
where Δx represents the range in which the magnetic field exists.

In terms of the Larmor frequency of the thermal electron ω = eBz/2μ0mc,
the changing rate in which we are interested is essentially given by

Ufi =
vz ∂

∂x

(
Bz
Δx

)
ωBz

= v
z

ωΔx
1
Bz

∂Bx

∂z
.

in the use of the rotation-free condition
∂Bz

∂x
=
∂Bx

∂z
of the magnetic field

B. Thus the adiabaticity condition |Ufi| � 1 can be written down as

∂Bx

∂z
� ω

v
Bz. (7)

This inequality is nothing but the condition imposed on the arrangement of
external magnetic field in order to guarantee the ideal amplification of spin
variables.

5 Summary

In this paper we have formulated a unified scheme of measurement and am-
plification processes based on the notion of Micro-Macro duality. In this con-
text, the duality relation (or, in more general contexts, adjunction) between
M as the microscopic system and Spec(A) as the macroscopic observational
data controlled by the K-T operator has played the essential role, on the
basis of which we have obtained a clear understanding of how microscopic
states are amplified into macroscopic level as discussed in §3. We hope that
this essence of amplification processes will shed some new lights on various
problems involving different scales or levels (especially, ‘Micro’ and ‘Macro’)
such as the coexistence of different phases and their boundaries, the problem
of emergence of macroscopic structures from microscopic worlds, and so on.
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