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1 IntrodutionSuppose D is an ayli digraph (for all unde�ned graph-theoretial terms,see [1℄ and [17℄). The ompetition graph of D, denoted by C(D), has thesame set of verties as D and an edge between verties u and v if and only ifthere is a vertex x in D suh that (u; x) and (v; x) are ars of D. Roberts [16℄observed that if G is any graph, G together with suÆiently many isolatedverties is the ompetition graph of an ayli digraph. Then he de�ned theompetition number k(G) of a graph G to be the smallest number k suhthat G together with k isolated verties added is the ompetition graph ofan ayli digraph.The notion of ompetition graph was introdued by Cohen [4℄ as a meansof determining the smallest dimension of eologial phase spae. Sine then,various variations have been de�ned and studied by many authors (see, forexample, [2, 8, 10, 12, 13, 18℄). Besides an appliation to eology, the oneptof ompetition graph an be applied to the study of ommuniation over noisyhannel (see Roberts [16℄ and Shannon [19℄) and to problem of assigninghannels to radio or television transmitters (see Cozzens and Roberts [5℄,Hale [7℄, or Opsut and Roberts [15℄).Roberts [16℄ observed that haraterization of ompetition graph is equiv-alent to omputation of ompetition number. It does not seem to be easyin general to ompute k(G) for all graphs G, as Opsut [14℄ showed that theomputation of the ompetition number of a graph is an NP-hard problem(see [10, 12℄ for graphs whose ompetition numbers are known). It has beenone of important researh problems in the study of ompetition graphs toharaterize a graph by its ompetition number.We all a yle of a graph G a hordless yle of G if it is an induedsubgraph of G. A hordless yle of length at least 4 of a graph is alled ahole of the graph and a graph without holes is alled a hordal graph.Cho and Kim [3℄ studied the ompetition number of a graph with exatlyone hole and showed that the ompetition number of a graph with exatlyone hole is at most 2. Kim [11℄ observed that the graph given in Figure 1with h holes has ompetition number h+1 and onjetures that h+1 is thelargest ompetition number that an be ahieved by a graph with h holes.In this paper, we show that the ompetition number of a graph all ofwhose holes are mutually edge-disjoint is at most h+ 1 where h is the num-ber of holes. From this result, it immediately follows that the ompetitionnumber of a graph all of whose holes are mutually vertex-disjoint is at mosth+ 1 where h is the number of holes.
2



Figure 1: A graph G with h holes and k(G) = h + 1.2 PreliminariesGiven a graph G and a hole C of G, we denote by XC the set of verties thatare adjaent to every vertex of C. Given a graph G and a hole C of G, weall a walk (resp. path) W a C-avoiding walk (resp. C-avoiding path) if noneof the internal verties of W are on C or in XC .A set S of verties of a graph G is alled a vertex ut of G if the numberof omponents of G� S is greater than that of G.Throughout this paper, we assume that all subsripts of verties on ayle are redued to modular the length of the yle.Lemma 2.1 ([3℄). Suppose that a graph G has exatly one hole C. If thereexists a C-avoiding (u; v)-path for some onseutive verties u, v on C, thenXC [ fu; vg is a vertex ut.Theorem 2.2 ([3℄). If a graph G has exatly one hole, then k(G) � 2.Cho and Kim [3℄ showed that for a hordal graph G, we may onstrutan ayli digraph D with the verties of indegree 0 as many as the numberof a lique so that the ompetition graph of D is G with one more isolatedvertex:Lemma 2.3 ([3℄). If K is a lique of a hordal graph G, then there existsan ayli digraph D suh that C(D) = G [ I1, and the verties of K haveonly outgoing ars in D.This lemma is useful when we onstrut an ayli graph D whose ompeti-tion graph has a nontrivial hordal omponent.Theorem 2.4. Suppose that a graph G has two subgraphs G1 and G2, and alique X satisfying the following property: E(G1)[E(G2) = E(G), V (G1)\V (G2) = X, and G2 is a hordal graph where X is a lique of G2. Then ifk(G1) � k, then k(G) � k + 1. 3



Proof. Let k(G1) � k, there exists an ayli digraph D1 suh that C(D1) =G1 [ fa1; :::; akg where a1, . . . , ak are isolated verties not in V (G).Sine X is a lique in G2 whih is a hordal graph by the hypothesis,there exists an ayli digraph D2 suh that C(D2) = G2 [ fak+1g whereak+1 is an isolated vertex not in V (G) [ fa1; : : : ; akg and the verties in Xhave only outgoing ars in D2 by Lemma 2.3.Now we de�ne a digraph D as follows: V (D) = V (D1) [ V (D2) andA(D) = A(D1) [ A(D2). Firstly, note that V (G1) \ V (G2) = X. Supposethat there is an edge in E(C(D)) but not in E(C(D1)) [ E(C(D2)). Thenthere exist an ar (u; x) in D1 and an ar (v; x) in D2 for some x 2 X.However, this is impossible sine every vertex in X has indegree 0 in D2.Thus E(C(D)) � E(C(D1)) [ E(C(D2)). It is obvious that E(C(D)) �E(C(D1)) [ E(C(D2)) sine E(C(D)) � E(C(Di)) for i = 1, 2. ThusE(C(D)) = E(C(D1)) [ E(C(D2)) = E(G1) [ E(G2) = E(G):Moreover, sine D1 and D2 are ayli, V (G1) \ V (G2) = X, and eahvertex in X has only outgoing ars in D2, it is true that D is ayli. HeneC(D) = G [ fa1; : : : ; ak; ak+1g and so k(G) � k + 1.Given a walk W of a graph G, we denote by W�1 the walk representedby the reverse of vertex sequene of W . We also denote the length of W byjW j.Lemma 2.5. Let C be a hole of a graph G. Suppose that v is a vertex not onC that is adjaent to two non-adjaent verties x and y of C. Then exatlyone of the following is true:(1) v is adjaent to all the verties of C;(2) v is on a hole C� di�erent from C suh that there are at least twoommon edges of C and C� and all the ommon edges are ontained inexatly one of the (x; y)-setions of C.Proof. Suppose that (1) is not true. Then there exists a vertex z on C thatis not adjaent to v. Let P be the (x; y)-setion of C that ontains z. Let w(resp. u) be the �rst vertex right after z along P (resp. P�1) that is adjaentto v. Suh a vertex exists sine v is adjaent to y (resp. x). Then the (u; w)-setion of C ontaining z and uvw form a hole satisfying the property of C�given in (2).Lemma 2.6. Let C = v0v1 � � � vn�1v0 be a hole of a graph G. Suppose thatthere exists a vertex v satisfying the following properties:� v is not on any hole of G. 4



� v is adjaent to vi for some i 2 fv0; : : : ; vn�1g.� There is a C-avoiding path from v to a vertex on C other that vi.Let vj be a vertex with the smallest ji � jj suh that there is a C-avoiding(v; vj)-path and P be the shortest among C-avoiding (v; vj)-paths. Then vi isadjaent to every internal vertex on P . Moreover, if none of internal vertieson P belongs to any hole, then j = i� 1 or i+ 1.Proof. Let Q be the shorter (vi; vj)-setion of C. Firstly, onsider the asewhere jP j = 1. If j 6= i � 1 or i + 1, then the hypothesis of Lemma 2.5 issatis�ed. However, none of (1), (2) holds, whih is a ontradition. Thus,j 2 fi� 1; i+ 1g and we are done.Now suppose that jP j � 2. Then viPQ�1 is a yle of length at least4. Sine v is not on any hole on G, it annot be a hole and has a hord.Take an internal vertex w on P . If w is adjaent to a vertex vk for somek, 1 � ji � kj � ji � jj, then vi, the (v; w)-setion of P , and vk form aC-avoiding path, whih ontradits the hoie of vj. Thus no internal vertexof P is adjaent to any vertex on the shorter (vi; vj)-setion of C exept vi.Thus vi is adjaent to an internal vertex of P . Let x be the �rst internalvertex on P and P 0 be the (v; x)-setion of P . Then viP 0vi is a hole or atriangle. However, the former annot happen by the ondition on v. Thus ximmediately follows v on P . By repeating this argument, we an show thatvi is adjaent to every internal vertex on P .Now assume that none of internal verties on P does not belong to anyhole. Let y be the vertex immediately preeding vj on P . Then viyQ�1 isa hole or a triangle. By our assumption, the former does not hold. Thus Qis a path of length 1, that is, vi and vj are adjaent. Hene j = i � 1 orj = i+ 1.3 Properties of hole-edge-disjoint graphsWe all a graph G a hole-edge-disjoint graph if all the holes of G aremutually edge-disjoint.Lemma 3.1. Given a hole-edge-disjoint graph G, let C be a hole of G. Ifv =2 V (C) is a vertex adjaent to two non-adjaent verties of C, then v isadjaent to all the verties of C.Proof. Sine G is a hole-edge-disjoint graph G, (2) of Lemma 2.5 annothappen. Thus the lemma immediately follows.Lemma 3.2. Let G be a hole-edge-disjoint graph and C be a hole of G. Thenthere is no C-avoiding path joining two nononseutive verties of C.5



Proof. By ontradition. Suppose that there is a C-avoiding (vi; vj)-path Pfor some i, j 2 f0; : : : ; m�1g satisfying ji�jj � 2 where C = v0v1 � � � vm�1v0.Let P be the shortest among the C-avoiding (vi; vj)-paths. Then there is noedge joining two nononseutive verties on P . Let P1 and P2 be the two(vi; vj)-setions of C ontaining vi�1 and vi+1, respetively. Then P and P1form a yle in G and so do P and P2. By the hypothesis, these yles annotbe holes. Then, by the hoie of P , an internal vertex of P is adjaent to aninternal vertex on P1. Let u be the �rst internal vertex on P that is adjaentto an internal vertex on P1. Then let v be the �rst internal vertex on P1 thatis adjaent to u. Then the (vi; u)-setion of P , the edge uv, the (v; vi)-setionof P�11 form a triangle or a hole. Sine it shares an edge with C, it must forma triangle and so u is the vertex immediately following vi on P and v = vi�1.By applying a similar argument for P2, we an show that u is adjaent tovi+1. Therefore, by Lemma 3.1, u belongs to XC . However, sine P is aC-avoiding path, u does not belong to XC and we reah a ontradition.Corollary 3.3. Let G be a hole-edge-disjoint graph and C be a hole of G.Given a vertex v of C, joining v and every other vertex on C by a new edgeredues the number of holes of G.Proof. It is obvious that C is not a hole in the resulting graph. Thus itis suÆient to show that no new hole has been reated. We show it byontradition. Suppose that a new hole is reated. Then there exists avertex w on C suh that w is not adjaent to v and there is a C-avoiding(v; w)-path P in G. This ontradits Lemma 3.2.Lemma 3.4. Let G be a hole-edge-disjoint graph and C be a hole of G.Suppose that G has a C-avoiding (u; v)-path for some onseutive verties u,v on C. Then XC [ fu; vg is a vertex ut.Proof. We prove by indution on the number h of holes of a graph. If agraph has exatly one hole, then it immediately follows from Lemma 2.1.Suppose that the lemma holds for any hole-edge-disjoint graph with at mosth � 1 holes for h � 2. Now take a hole-edge-disjoint graph G with h holes.Suppose that G has a C-avoiding (u; v)-path for some hole C of G and someonseutive verties u, v on C. Sine h � 2, there exists another hole C 0.Take a vertex w of C 0 and join w and every other vertex on C 0 by a newedge. Then by Corollary 3.3, the resulting graph G0 has less than h holes. Itis easy to see that G0 is still a hole-edge-disjoint graph and that C is a holeof G0. By the indution hypothesis, XC [ fu; vg is a vertex ut of G0. SineG0 is obtained by adding edges to G, it is true that XC [ fu; vg is a vertexut of G.We denote by Km2 a omplete multipartite with m parts eah of whihhas size 2, whih is alled a `oktail party graph'. We say that a graph is6



Figure 2: K32 . Note that K32 is indued by the edges of 3 edge-disjoint holesof length 4K32 -free if it does not ontain a omplete tripartite graph K32 as an induedsubgraph (see Figure 2).The following lemma shows that the subgraph indued by XC is a liqueif G is an K32 -free hole-edge-disjoint graph:Lemma 3.5. If a graph G is a K32 -free hole-edge-disjoint graph and C is ahole of G, then XC is a lique.Proof. Suppose that there are two nonadjaent verties u and w in XC .If jCj = 4, then V (C) [ fu; wg indues K32 . Thus, jCj � 5. Let C =v0v1:::vm�1v1 for m � 4. Then uv0wv2u and uv0wv3 are holes sharing theedge uv0, whih is a ontradition.Lemma 3.6. Let G be a K32 -free hole-edge-disjoint graph with exatly h holesand C = v0 � � � vm�1v0 be a hole of G. Suppose that G has no C-avoiding pathbetween vi and vi+1 for some i 2 f0; 1; : : : ; m � 1g. Then G � vivi+1 has atmost h� 1 holes.Proof. Suppose that G� vivi+1 has more than h� 1 holes. Then, sine C isnot a hole in G� vivi+1, there is a hole C 0 in G� vivi+1 that is not a hole inG. Obviously vivi+1 is a hord of C 0 in G. Sine C 0 is a hole in G� vivi+1,it is true that vivi+1 is the only hord of C 0.Now onsider the two distint (vi; vi+1)-setions P1 and P2 of C 0. If jP1j �3 or jP2j � 3, then P1vivi+1 or P2vivi+1 is a hole in G that shares an edgewith C, whih ontradits the hypothesis that G has only edge-disjoint holes.Thus jP1j = 2 and jP2j = 2. We denote P1 = viuvi+1 and P2 = viu0vi+1. SineG does not ontain a C-avoiding path between vi and vi+1 by the hypothesis,it is true that fu; u0g � XC [ V (C). However, if u 2 V (C) , then at leastone of viu, vi+1u is a hord of C, whih is a ontradition. If u 2 XC , then uand u0 are adjaent by Lemma 3.5. Then the edge uu0 is a hord C 0, whihis a ontradition again. Therefore G� vivi+1 has at most h� 1 holes.In the following, we present some results on strutures of hole-edge-disjoint graphs having K32 as an indued subgraph.7



Lemma 3.7. Suppose that a hole-edge-disjoint graph G has K32 as an induedsubgraph. Let m be the maximum integer suh that Km2 is an indued subgraphof G. If X is the set of verties of G eah of whih is adjaent to every vertexof Km2 , then X is a lique.Proof. By ontradition. Suppose that there exist two nonadjaent vertiesu and v in X. Then V (Km2 ) [ fu; vg indues Km+12 , whih ontradits thehoie of m.Lemma 3.8. Suppose that a hole-edge-disjoint graph G has K32 as an induedsubgraph. Let m be the maximum integer suh that Km2 is an indued subgraphof G and X be the set of verties of G eah of whih is adjaent to every vertexof Km2 . Then N(u) \N(v) � X [ V (Km2 ) for any nonadjaent verties u, vin V (Km2 ).Proof. Take a vertex w 2 N(u) \ N(v) that is not in V (Km2 ). Then take avertex x in V (Km2 ) n fu; vg. By the de�nition of Km2 , x is adjaent to bothu and v. If w is not adjaent to x, then uwvxu and uyvxu are holes where yis a vertex of Km2 that belongs to the same partite set as x. This ontraditsthe hypothesis that G is a hole-edge-disjoint graph. Thus w is adjaent to x.Sine x is hosen arbitrarily from V (Km2 ), it is true that w 2 X.4 The ompetition number of a hole-edge-disjoint graphIn this setion, we shall show that the ompetition number of a hole-edge-disjoint graph G does not exeed h+ 1 where h is the number of holes of G.This result partially answers the onjeture given by Kim [11℄. In order todo so, we need the following notations: Let G be a hole-edge-disjoint graphwith exatly h holes C1, C2, . . . , Ch. For eah t = 1, . . . , h, we letCt = vt;0vt;1:::vt;mt�1vt;0;where mt is the length of the hole Ct. We denote XCt by Xt for short.If there exists a Ct-avoiding (vt;i; vt;i+1)-path for some t 2 [h℄, where [h℄denotes the set f1; : : : ; hg, and for some i 2 f0; : : : ; mt � 1g, then the setfv 2 V (G) j vt;ivvt;i+1 is a Ct-avoiding pathgis not empty by Lemma 2.6. We denote it by At;i. By Lemma 3.4, fvt;i; vt;i+1g[Xt is a vertex ut. For simpliity, we denote fvt;i; vt;i+1g[Xt by Xt;i. Let Qt;ibe the omponent of G � fvt;i; vt;i+1g � Xt ontaining V (Ct) n fvt;i; vt;i+1g.Among the omponents of G � fvt;i; vt;i+1g � Xt other than Qt;i, we takethe omponents eah of whih ontains a vertex in At;i. Then we denotethe union of suh omponents by Gt;i. It is easy to see that At;i � V (Gt;i).8
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Also note that At;i \Xt = ; for any i 2 f0; : : : ; mt � 1g. We summarize thenotations introdued above in Table 1. See Figure 4 for illustration.Now we are ready to present the following lemma:Lemma 4.1. Let G be a K32 -free hole-edge-disjoint graph with exatly h holesC1, C2, . . . , Ch. Suppose that G has a Ct-avoiding (vt;i; vt;i+1)-path for eaht 2 [h℄ and for eah i 2 f0; : : : ; mt � 1g. Suppose that for some t� 2 [h℄ andi� 2 f0; : : : ; mt� �1g, G[V (Gt�;i�)[Xt�;i�℄ ontains a hole. Then for any holeCs in G[V (Gt�;i�) [Xt�;i�℄, the following are true:(1) If there exists a vertex u in As;j not belonging to V (Gt�;i�) [Xt�;i� forsome j 2 f0; : : : ; ms � 1g, then vs;juvs;j+1 is a Cs-avoiding path andfvs;j; vs;j+1g � Xt�;i�;(2) jfj j As;j � V (Gt�;i�)gj � ms � 2;(3) For some k 2 fj j As;j � V (Gt�;i�)g, there is no Cs-avoiding path fromany vertex in As;k to any vertex in Xt�;i� in G.(4) For some k 2 fj j As;j � V (Gt�;i�)g,V (Gs;k) [Xs;k ( V (Gt�;i�) [Xt�;i�:Proof. We show (1) as follows. Sine u is in As;j, it is true that vs;juvs;j+1 isa Cs-avoiding path. Suppose that one of vs;j, vs;j+1 is not ontained in Xt�;i�.We may assume that vs;j is not in Xt�;i�. Then vs;j is ontained in V (Gt�;i�)sine Cs is ontained in V (Gt�;i�)[Xt�;i�. Sine u 62 Xt�;i� by the hypothesis,u and vs;j are still adjaent in G �Xt�;i�. However, note that u 62 V (Gt�;i�)by the hypothesis while vs;j 2 V (Gt�;i�). This implies that they belong todistint omponents in G � Xt�;i� and so we reah a ontradition. Thus,fvs;j; vs;j+1g � Xt�;i�.We show (2) by ontradition. Suppose that jfj j As;j � V (Gt�;i�)gj <ms � 2. Then jfj j As;j 6� V (Gt�;i�)gj > ms � (ms � 2) and so there existp, q 2 f0; : : : ; ms � 1g suh that there exist verties up and uq of G suhXt;i fvt;i; vt;i+1g [XtAt;i fv 2 V (G) j vt;ivvt;i+1 is a Ct-avoiding pathgQt;i the omponent of G�Xt;i ontaining V (Ct) n fvt;i; vt;i+1gGt;i the union of the omponents of G�Xt;i�V (Qt;i) eah of whihontains a vertex in At;iTable 1: Notations needed to prove Lemma 4.1 and Theorems 4.2 and 4.3.10



that up 2 As;p and uq 2 As;q, but up =2 V (Gt�;i�) and uq 62 V (Gt�;i�). Thenvs;pupvs;p+1 and vs;quqvs;q+1 are Cs-avoiding paths. Sine there are at leasttwo verties in S = fvs;p, vs;p+1, vs;q, vs;q+1g whih are not adjaent, thereexists a vertex in S not in Xt�;i�. Without loss of generality, we may assumethat vs;p 62 Xt�;i�. By (1), As;p � V (Gt�;i�)[Xt�;i�. Sine As;p\V (Gt�;i�) = ;,As;p � Xt�;i� and so up 2 Xt�;i�. Suppose that uq 2 Xt�;i�. Sine G[Xt�;i�℄is a lique by Lemma 3.5, up and uq are adjaent. Then there exist both aCs-avoiding (vs;p; vs;q)-path and a Cs-avoiding (vs;p; vs;q+1)-path, ontradit-ing Lemma 3.2. Thus uq 62 Xt�;i�. Then uq 62 V (Gt�;i�) [ Xt�;i�. By (1),fvs;q; vs;q+1g � V (Gt�;i�) [Xt�;i�. This implies that vs;pupvs;q and vs;pupvs;q+1are Cs-avoiding paths, whih ontradits Lemma 3.2.Now we show (3) in the following. By (2), there exist two distint integersk and l in fj j As;j � V (Gt�;i�)g. That is, As;k � V (Gt�;i�) and As;l �V (Gt�;i�).Suppose that there exist Cs-avoiding paths P and Q from wk to a vertexXt�;i� and from wl to a vertex Yt�;i� in G, respetively, for some wk 2 As;kand wl 2 As;l. Then PQ�1 ontains a Cs-avoiding (wk; wl)-path. How-ever, this path extends to a Cs-avoiding (vs;k; vs;l+1)-path, whih ontraditsLemma 3.2. This argument implies that for at least one of As;k, As;l, thereis no Cs-avoiding path from any of its verties to any vertex belonging toXt�;i� in G. Without loss of generality, we may assume that As;k satis�es thisproperty (for, otherwise, we an relabel the verties on Cs so that the vertexvl is labeled as vk).Finally we show (4). By (3), there exists k 2 fj j As;j � V (Gt�;i�)g suhthat there is no Cs-avoiding path from any vertex in As;k to any vertex inXt�;i� in G. Sine V (Cs) � V (Gt�;i�)[Xt�;i� by the hypothesis, it holds thatfvs;k; vs;k+1g � V (Gt�;i�) [ Xt�;i�. Now take a vertex x in Xs. If x 62 Xt�;i�,then x is still adjaent to a vertex on Cs in G�Xt�;i� and so x 2 V (Gt�;i�).Thus Xs � V (Gt�;i�) [ Xt�;i� and therefore Xs;k = Xs [ fvs;k; vs;k+1g �V (Gt�;i�) [Xt�;i�. Now it remains to show that V (Gs;k) � V (Gt�;i�) [Xt�;i�.Take a vertex y in Gs;k. Then y belongs to a omponent W of G�Xs;k. Bythe de�nition of Gs;k, V (W ) \ As;k 6= ;. Take z 2 V (W ) \ As;k. Then, sineany vertex inW and z belong to a omponent of Gs;k, any vertex inW and zare onneted by a Cs-avoiding path. Thus, by (3), W \Xt�;i� = ; and so Wis a onneted subgraph of G�Xt�;i�. Sine As;k � V (Gt�;i�), it is true thatz 2 V (Gt�;i�). Therefore, V (W ) � V (Gt�;i�) sine z belongs to W , whihis onneted in G � Xt�;i�. Sine y 2 V (W ), it is true that y 2 V (Gt�;i�).We have just shown that V (Gs;k) � V (Gt�;i�). Hene V (Gs;k) [ Xs;k �V (Gt�;i�) [Xt�;i�.Furthermore by (2), there is another l 2 f0; : : : ; ms� 1g suh that As;l �V (Gt�;i�). Now take wl in As;l. Then wl 2 V (Gt�;i�) [ Xt�;i�. However,wl 62 V (Gs;k) [ Xs;k sine wl is still adjaent to at least one of vs;l, vs;l+1 in11



G�Xs;k. Thus V (Gs;k) [Xs;k ( V (Gt�;i�) [Xt�;i� and (4) follows.Given a K32 -free hole-edge-disjoint graph G, we say that G has the hordalproperty if there exist t 2 [h℄ and i 2 f0; : : : ; mt � 1g suh that G[V (Gt;i) [Xt [ fvt;i; vt;i+1g℄ is hordal.Theorem 4.2. Let G be a K32 -free hole-edge-disjoint graph with exatly hholes C1, C2, . . . , Ch. Suppose that G has a Ct-avoiding (vt;i; vt;i+1)-pathfor eah t 2 [h℄ and for eah i 2 f0; : : : ; mt � 1g. Then G has the hordalproperty.Proof. By ontradition. Suppose that G does not have the hordal property.Then given t 2 [h℄, and i 2 f0; : : : ; mt� 1g, G[V (Gt;i)[Xt;i℄ ontains a hole.We denote the set of suh holes by Ct;i. Take a hole Cs 2 Ct;k1 where k1 = 1.We denote t and s by t1 and t2, respetively. By Lemma 4.1 (4), there existsk2 2 fj j At2;j � V (Gt1;1)g suh that V (Gt2;k2) [Xt2;k2 ( V (Gt1;k1) [Xt1;k1 .Again, by our assumption that G does not have the hordal property, thereexists a hole Ct3 2 Ct2;k2. Then, by Lemma 4.1 (4), there exists k3 2 fj jAt3;j � V (Gt2;k2)g suh that V (Gt3;k2) [Xt3;k3 ( V (Gt2;k2) [Xt2;k2.Repeating this proess, we have t1, t2, . . . , ti, . . . and k1, k2 . . . , ki, . . . suhthat� � � ( V (Gti;ki) [Xti;ki ( � � � ( V (Gt2;k2) [Xt2;k2 ( V (Gt1;k1) [Xt1;k1;whih is impossible sine V (Gt1;k1) [ Xt1;k1 is �nite. This ompletes theproof.Now we are ready to present our main theorem:Theorem 4.3. If G is a hole-edge-disjoint graph with exatly h holes, thenk(G) � h+ 1.Proof. We prove by indution on h. The ase h = 1 orresponds to Theo-rem 2.2. Suppose that the statement holds for any hole-edge-disjoint graphwith exatly h� 1 holes for h � 2. Let G be a hole-edge-disjoint graph withexatly h holes C1; :::; Ch.Firstly we suppose that G isK32 -free. Then assume that there exist t and isuh that G has no Ct-avoiding (vt;i; vt;i+1)-path. By Lemma 3.6, G�vt;ivt;i+1has at most h� 1 holes. By indution hypothesis, there exists a digraph D0suh that C(D0) = (G � vt;ivt;i+1) [ I where I = fa1; a2; :::; ahg is the set ofnewly added isolated verties. Then we onstrut an ayli digraph D fromD0 as follows: V (D) = V (D0) [ fah+1g;A(D) = A(D0) [ f(vt;i; ah+1); (vt;i+1; ah+1)g:12



Then it is easy to hek thatD is ayli and thatC(D) = G[fa1; a2; :::; ah+1g.Now suppose that G has a Ct-avoiding (vt;i; vt;i+1)-path for any t in [h℄and for any i in f0; : : : ; mt � 1g. Then, by Lemma 4.2, G has the hordalproperty. That is, there exist t 2 [n℄ and i 2 f0; : : : ; mt � 1g suh thatG[V (Gt;i) [Xt [ fvt;i; vt;i+1g℄ is hordal.Let Ht;i be the subgraph of G indued by V (G) nV (Gt;i). Then Ht;i doesnot ontain any Ct-avoiding path by the de�nition of Gt;i. Moreover, Ht;i isK32 -free. Thus Ht;i � vt;ivt;i+1 ontains at most h � 1 holes by Lemma 3.6.We denote Ht;i � vt;ivt;i+1 by H�t;i. Then, by the indution hypothesis, wehave k(H�t;i) � h. Denote G[V (Gt;i) [Xt [ fvt;i; vt;i+1g℄ by G�t;i. Then G�t;i isa hordal graph and Xt [ fvt;i; vt;i+1g is a lique of G�t;i.Moreover, E(H�t;i) [ E(G�t;i) = E(G), and V (H�t;i) \ V (G�t;i) = Xt [fvt;i; vt;i+1g. Hene, by Theorem 2.4, k(G) � h+ 1.Now onsider the ase where G ontains K32 as an indued subgraph. Letm be the maximum integer suh that G ontainsKm2 as an indued subgraph.Then m � 3. Now take two verties u and v in the same partite set in Km2 .Then they are nonadjaent and we join them by adding a new edge e. Weall the resulting graph G0. Lemma 3.2 assures that G0 does not ontain anynew hole. In fat, u and v belong to at least two distint holes of length 4in Km2 and these holes beome 4-yles with hord uv in G0. Thus G0 has atmost 2 holes less than G. Therefore, by indution hypothesis, there existsan ayli digraph D0 suh that C(D0) = G0 [ Ih�1.In the following, we shall onstrut an ayli digraphD suh thatC(D) =G[ I` by using D0 for some positive integer ` � h. If jN+D0(u)\N+D0(v)j = 1,then we onstrut D as follows:V (D) = V (D0) [ fag;A(D) = A(D0)nf(x; w) j (x; w) 2 A(D0)g[f(x; w) j x 2 Y1g[f(x; a) j x 2 Y2gwhere N+D0(u) \N+D0(v) = fwg, and Y1, Y2 are the two liques resulting fromdeleting e from N�D0(w) whih forms a lique in G0. Sine Y1 � N�D0(w), Dis still ayli. From the onstrution, it an easily be heked that C(D) =G [ Ih.Now assume that jN+D0(u)\N+D0(v)j � 2. LetN+D0(u)\N+D0(v) = fw1; : : : ; wpgfor some integer p � 2. For eah i 2 f1; : : : ; pg, N�D0(wi) forms a lique inG0. Thus the edges of the subgraph of G indued by N�D0(wi) are overed byexatly two liques N�D0(wi)nfug and N�D0(wi)nfvg. For simpliity, we denoteN�D0(wi)nfvg by Y ui and N�D0(wi)nfug by Y vi . Note that Y ui nfug = Y vi nfvgand that N�D0(wi) = Y vi [ fug.Furthermore, as N�D0(wi) forms a lique ontaining u and v in G0,p[i=1Y vi [ fug = p[i=1N�D0(wi) � NG(u) \NG(v) [ fu; vg:13



By Lemma 3.8, NG(u) \ NG(v) � X [ V (Km2 ) where X is the lique eahvertex of whih is adjaent to every vertex of Km2 in G. ThusY vi = NG(v) \ p[i=1N�D0(wi) � NG(v) \ [X [ V (Km2 )℄:The verties in NG(v)\ [X [V (Km2 )℄ are overed by exatly two liques. Wedenote those liques by Z1 and Z2.We de�ne a digraph D as follows:V (D) = V (D0) [ fa; bg;A(D) =A(D0) n p[i=1N�D0(wi) [ p[i=1f(x; wi) j x 2 Y ui g[ f(x; a) j x 2 Z1g [ f(x; b) j x 2 Z2g [ f(v; a); (v; b)g:Sine Y ui � N�D0(wi) for eah i 2 f1; : : : ; pg, the ayliity of D is guaranteedby that of D0.It is easy to see that E(C(D)) � E(G). To show that E(C(D)) � E(G),take an edge f = yz in G. If fy; zg 6� N�D0(wi) for any i 2 f1; : : : ; pg,then learly f 2 E(C(D)). Now suppose that fy; zg � N�D0(wi) for somei 2 f1; : : : ; pg. If y 6= v and z 6= v, then fy; zg � Y ui and so (y; wi) 2 A(D)and (z; wi) 2 A(D). Thus f 2 E(C(D)). If y = v or z = v, then we mayassume that y = v without loss of generality. Then z 6= u. Then z 2 Z1 orz 2 Z2. That is, (z; a) 2 A(D) or (z; b) 2 A(D). Sine (v; a) 2 A(D) and(v; b) 2 A(D), it holds that f 2 E(C(D)). Thus C(D) = G [ Ih+1 and sok(G) � h+ 1.The upper bound given in Theorem 4.3 is sharp as the graph given inFigure 1 has h holes and ompetition number h+ 1.5 Closing RemarksIn this paper, we have shown that the ompetition number of a hole-edge-disjoint graph with exatly h holes is at most h + 1, whih strongly impliesthat Kim's onjeture might be true. It would be natural to see whether theonjeture is true for a graph with two holes.Referenes[1℄ J. A. Bondy and U. S. R. Murty, Graph Theory with Appliations, NorthHolland, New York, 1976. 14
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