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Abstract

Let D be an acyclic digraph. The competition graph of D is a
graph which has the same vertex set as D and has an edge between «
and v if and only if there exists a vertex z in D such that (u,z) and
(v,z) are arcs of D. For any graph G, G together with sufficiently
many isolated vertices is the competition graph of some acyclic di-
graph. The competition number k(G) of G is the smallest number of
such isolated vertices. In general, it is hard to compute the compe-
tition number k(G) for a graph G and it has been one of important
research problems in the study of competition graphs to characterize
a graph by its competition number.

A hole of a graph is a cycle of length at least 4 as an induced
subgraph. Kim [2005] conjectured that the competition number of a
graph with A holes is at most h 4+ 1. In this paper, we show that the
conjecture is true for a graph all of whose holes are mutually edge-
disjoint.
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1 Introduction

Suppose D is an acyclic digraph (for all undefined graph-theoretical terms,
see [1] and [17]). The competition graph of D, denoted by C(D), has the
same set of vertices as D and an edge between vertices u and v if and only if
there is a vertex x in D such that (u, z) and (v, z) are arcs of D. Roberts [16]
observed that if G' is any graph, G together with sufficiently many isolated
vertices is the competition graph of an acyclic digraph. Then he defined the
competition number k(G) of a graph G to be the smallest number k such
that G together with %k isolated vertices added is the competition graph of
an acyclic digraph.

The notion of competition graph was introduced by Cohen [4] as a means
of determining the smallest dimension of ecological phase space. Since then,
various variations have been defined and studied by many authors (see, for
example, [2, 8,10, 12, 13, 18]). Besides an application to ecology, the concept
of competition graph can be applied to the study of communication over noisy
channel (see Roberts [16] and Shannon [19]) and to problem of assigning
channels to radio or television transmitters (see Cozzens and Roberts [5],
Hale [7], or Opsut and Roberts [15]).

Roberts [16] observed that characterization of competition graph is equiv-
alent to computation of competition number. It does not seem to be easy
in general to compute k(G) for all graphs G, as Opsut [14] showed that the
computation of the competition number of a graph is an NP-hard problem
(see [10, 12] for graphs whose competition numbers are known). It has been
one of important research problems in the study of competition graphs to
characterize a graph by its competition number.

We call a cycle of a graph G a chordless cycle of G if it is an induced
subgraph of GG. A chordless cycle of length at least 4 of a graph is called a
hole of the graph and a graph without holes is called a chordal graph.

Cho and Kim [3] studied the competition number of a graph with exactly
one hole and showed that the competition number of a graph with exactly
one hole is at most 2. Kim [11] observed that the graph given in Figure 1
with h holes has competition number /41 and conjectures that h 41 is the
largest competition number that can be achieved by a graph with A holes.

In this paper, we show that the competition number of a graph all of
whose holes are mutually edge-disjoint is at most h + 1 where h is the num-
ber of holes. From this result, it immediately follows that the competition
number of a graph all of whose holes are mutually vertex-disjoint is at most
h + 1 where h is the number of holes.



Figure 1: A graph G with A holes and k(G) = h + 1.

2 Preliminaries

Given a graph GG and a hole C of GG, we denote by X the set of vertices that
are adjacent to every vertex of C'. Given a graph G and a hole C of G, we
call a walk (resp. path) W a C-avoiding walk (resp. C'-avoiding path) if none
of the internal vertices of W are on C or in X .

A set S of vertices of a graph G is called a vertex cut of G if the number
of components of G — S is greater than that of G.

Throughout this paper, we assume that all subscripts of vertices on a
cycle are reduced to modular the length of the cycle.

Lemma 2.1 ([3]). Suppose that a graph G has exactly one hole C. If there
exists a C-avoiding (u,v)-path for some consecutive vertices u, v on C, then
Xc U{u,v} is a vertex cut.

Theorem 2.2 ([3]). If a graph G has ezactly one hole, then k(G) < 2.

Cho and Kim [3] showed that for a chordal graph G, we may construct
an acyclic digraph D with the vertices of indegree (0 as many as the number
of a clique so that the competition graph of D is G with one more isolated
vertex:

Lemma 2.3 ([3]). If K is a clique of a chordal graph G, then there exists
an acyclic digraph D such that C(D) = G U I, and the vertices of K have
only outgoing arcs in D.

This lemma is useful when we construct an acyclic graph D whose competi-
tion graph has a nontrivial chordal component.

Theorem 2.4. Suppose that a graph G has two subgraphs G, and G35, and a
clique X satisfying the following property: E(G1) U E(Gy) = E(G), V(G1)N
V(Gy) = X, and Gy is a chordal graph where X is a clique of Go. Then if
k(Gy) <k, then k(G) < k+ 1.



Proof. Let k(G1) < k, there exists an acyclic digraph Dy such that C(D;) =
G1U{ay,...,ar} where ay, ..., a; are isolated vertices not in V(G).

Since X is a clique in G5 which is a chordal graph by the hypothesis,
there exists an acyclic digraph Dy such that C(Dy) = G2 U {ag41} where
ak+1 is an isolated vertex not in V(G) U {ay,...,ax} and the vertices in X
have only outgoing arcs in Dy by Lemma 2.3.

Now we define a digraph D as follows: V(D) = V(D;) U V(Ds) and
A(D) = A(Dy) U A(D»). Firstly, note that V(G1) NV (Gy) = X. Suppose
that there is an edge in E(C(D)) but not in E(C(Dy)) U E(C(D3)). Then
there exist an arc (u,z) in D; and an arc (v,z) in Dy for some z € X.
However, this is impossible since every vertex in X has indegree 0 in Ds.
Thus E(C(D)) C E(C(Dy)) U E(C(Dy)). It is obvious that E(C(D)) D
E(C(Dy)) U E(C(Dy)) since E(C(D)) D E(C(D;)) for i =1, 2. Thus

E(C(D)) = E(C(D1)) U E(C(Dy)) = E(G1) U E(Gs) = E(G).

Moreover, since D; and D are acyclic, V(Gy) N V(G2) = X, and each
vertex in X has only outgoing arcs in Dy, it is true that D is acyclic. Hence
C(D)=GU{ay,...,ax a1} and so k(G) < k + 1. O

Given a walk W of a graph G, we denote by W~! the walk represented
by the reverse of vertex sequence of W. We also denote the length of W by
W]

Lemma 2.5. Let C' be a hole of a graph G. Suppose that v is a vertex not on
C that is adjacent to two non-adjacent vertices x and y of C'. Then ezxactly
one of the following is true:

(1) v is adjacent to all the vertices of C;

(2) v is on a hole C* different from C' such that there are at least two
common edges of C' and C* and all the common edges are contained in
ecactly one of the (x,y)-sections of C.

Proof. Suppose that (1) is not true. Then there exists a vertex z on C' that
is not adjacent to v. Let P be the (z,y)-section of C' that contains z. Let w
(resp. u) be the first vertex right after z along P (resp. P~!) that is adjacent
to v. Such a vertex exists since v is adjacent to y (resp. x). Then the (u,w)-
section of C' containing z and uvw form a hole satisfying the property of C*
given in (2). O

Lemma 2.6. Let C' = vyvy - - - v,_1v9 be a hole of a graph G. Suppose that
there exists a verter v satisfying the following properties:

e v is not on any hole of G.



e v is adjacent to v; for some i € {vy,...,v, 1}.
o There is a C-avoiding path from v to a vertex on C other that v;.

Let vj be a vertex with the smallest |i — j| such that there is a C-avoiding
(v,v;)-path and P be the shortest among C-avoiding (v, v;)-paths. Then v; is
adjacent to every internal vertex on P. Moreover, if none of internal vertices
on P belongs to any hole, then j =i —1 ori+ 1.

Proof. Let @ be the shorter (v;,v;)-section of C. Firstly, consider the case
where |P| = 1. If j # i — 1 or i + 1, then the hypothesis of Lemma 2.5 is
satisfied. However, none of (1), (2) holds, which is a contradiction. Thus,
j€{i—1,i+ 1} and we are done.

Now suppose that |P| > 2. Then v;PQ ! is a cycle of length at least
4. Since v is not on any hole on G, it cannot be a hole and has a chord.
Take an internal vertex w on P. If w is adjacent to a vertex vy for some
k, 1 < |i — k| < |i — j|, then v;, the (v,w)-section of P, and v form a
C-avoiding path, which contradicts the choice of v;. Thus no internal vertex
of P is adjacent to any vertex on the shorter (v;, v;)-section of C' except v;.
Thus v; is adjacent to an internal vertex of P. Let x be the first internal
vertex on P and P’ be the (v, z)-section of P. Then v; P'v; is a hole or a
triangle. However, the former cannot happen by the condition on v. Thus x
immediately follows v on P. By repeating this argument, we can show that
v; is adjacent to every internal vertex on P.

Now assume that none of internal vertices on P does not belong to any
hole. Let y be the vertex immediately preceding v; on P. Then v;yQ ' is
a hole or a triangle. By our assumption, the former does not hold. Thus @
is a path of length 1, that is, v; and v; are adjacent. Hence j = 7 — 1 or
j=1+1. O

3 Properties of hole-edge-disjoint graphs

We call a graph G a hole-edge-disjoint graph if all the holes of G are
mutually edge-disjoint.
Lemma 3.1. Given a hole-edge-disjoint graph G, let C be a hole of G. If
v ¢ V(C) is a vertex adjacent to two non-adjacent vertices of C, then v is
adjacent to all the vertices of C.

Proof. Since G is a hole-edge-disjoint graph G, (2) of Lemma 2.5 cannot
happen. Thus the lemma immediately follows. ]

Lemma 3.2. Let G be a hole-edge-disjoint graph and C be a hole of G. Then
there is no C-avoiding path joining two nonconsecutive vertices of C'.



Proof. By contradiction. Suppose that there is a C-avoiding (v;, v;)-path P
for some i, j € {0,...,m—1} satisfying |i —j| > 2 where C' = vyvy - - - v, 1 0p.
Let P be the shortest among the C-avoiding (v;, v;)-paths. Then there is no
edge joining two nonconsecutive vertices on P. Let P, and P, be the two
(v;,vj)-sections of C' containing v;_; and v, respectively. Then P and P,
form a cycle in G and so do P and P,. By the hypothesis, these cycles cannot
be holes. Then, by the choice of P, an internal vertex of P is adjacent to an
internal vertex on P;. Let u be the first internal vertex on P that is adjacent
to an internal vertex on P;. Then let v be the first internal vertex on P; that
is adjacent to u. Then the (v;, u)-section of P, the edge uv, the (v, v;)-section
of P, form a triangle or a hole. Since it shares an edge with C', it must form
a triangle and so u is the vertex immediately following v; on P and v = v;_;.
By applying a similar argument for P, we can show that u is adjacent to
vir1. Therefore, by Lemma 3.1, u belongs to X¢. However, since P is a
C-avoiding path, v does not belong to X and we reach a contradiction. [

Corollary 3.3. Let G be a hole-edge-disjoint graph and C be a hole of G.
Given a vertex v of C, joining v and every other vertex on C by a new edge
reduces the number of holes of G.

Proof. 1t is obvious that C' is not a hole in the resulting graph. Thus it
is sufficient to show that no new hole has been created. We show it by
contradiction. Suppose that a new hole is created. Then there exists a
vertex w on C such that w is not adjacent to v and there is a C-avoiding
(v, w)-path P in G. This contradicts Lemma 3.2. O

Lemma 3.4. Let G be a hole-edge-disjoint graph and C be a hole of G.
Suppose that G has a C-avoiding (u, v)-path for some consecutive vertices u,
v on C. Then X¢ U {u,v} is a vertezr cut.

Proof. We prove by induction on the number A of holes of a graph. If a
graph has exactly one hole, then it immediately follows from Lemma 2.1.
Suppose that the lemma holds for any hole-edge-disjoint graph with at most
h — 1 holes for h > 2. Now take a hole-edge-disjoint graph G' with h holes.
Suppose that G has a C-avoiding (u, v)-path for some hole C' of G and some
consecutive vertices u, v on C. Since h > 2, there exists another hole C".
Take a vertex w of C' and join w and every other vertex on C’ by a new
edge. Then by Corollary 3.3, the resulting graph G’ has less than A holes. It
is easy to see that G’ is still a hole-edge-disjoint graph and that C' is a hole
of G'. By the induction hypothesis, X¢ U {u, v} is a vertex cut of G'. Since
G’ is obtained by adding edges to G, it is true that X¢ U {u, v} is a vertex
cut of G. 0

We denote by KJ* a complete multipartite with m parts each of which
has size 2, which is called a ‘cocktail party graph’. We say that a graph is



Figure 2: Kj. Note that K3 is induced by the edges of 3 edge-disjoint holes
of length 4

K3-free if it does not contain a complete tripartite graph K3 as an induced
subgraph (see Figure 2).

The following lemma shows that the subgraph induced by X¢ is a clique
if G is an K3-free hole-edge-disjoint graph:

Lemma 3.5. If a graph G is a K3-free hole-edge-disjoint graph and C is a
hole of G, then X¢ is a clique.

Proof. Suppose that there are two nonadjacent vertices v and w in X¢.
If |C| = 4, then V(C) U {u,w} induces Kj. Thus, |C| > 5. Let C =
VoU1...0m_1v1 for m > 4. Then uvywvyu and uvywws are holes sharing the
edge uvy, which is a contradiction. O

Lemma 3.6. Let G be a Kj-free hole-edge-disjoint graph with exactly h holes
and C = vy -+ vy,_1v9 be a hole of G. Suppose that G has no C'-avoiding path
between v; and v;1q1 for some i € {0,1,...,m —1}. Then G — v;v;41 has at
most h — 1 holes.

Proof. Suppose that G — v;v;;1 has more than h — 1 holes. Then, since C'is
not a hole in G — v;v; 1, there is a hole C' in G — v;v;,1 that is not a hole in
G. Obviously v;v;41 is a chord of C" in G. Since C’ is a hole in G — v;v; 1,
it is true that v;v;,1 is the only chord of C’.

Now consider the two distinct (v, v;41)-sections Py and Py of C'. If |Py| >
3 or |Py| > 3, then Pyvv;1; or Pyvv;yq is a hole in G that shares an edge
with C', which contradicts the hypothesis that G has only edge-disjoint holes.
Thus |P;| = 2 and |P,| = 2. We denote Py, = v;uv;;1 and Py = v;u'v;41. Since
G does not contain a C-avoiding path between v; and v;; by the hypothesis,
it is true that {u,u'} C X¢ U V(C). However, if u € V(C) , then at least
one of v;u, v;y u is a chord of C', which is a contradiction. If u € X, then u
and u’ are adjacent by Lemma 3.5. Then the edge uu' is a chord C’, which
is a contradiction again. Therefore G — v;v;;1 has at most A — 1 holes. [

In the following, we present some results on structures of hole-edge-
disjoint graphs having K3 as an induced subgraph.
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Lemma 3.7. Suppose that a hole-edge-disjoint graph G has K3 as an induced
subgraph. Let m be the mazimum integer such that K3* is an induced subgraph
of G. If X 1s the set of vertices of G each of which is adjacent to every vertex
of KI*, then X s a clique.

Proof. By contradiction. Suppose that there exist two nonadjacent vertices
u and v in X. Then V(K5) U {u,v} induces K3"™' which contradicts the
choice of m. O

Lemma 3.8. Suppose that a hole-edge-disjoint graph G has K3 as an induced
subgraph. Let m be the mazimum integer such that K3* is an induced subgraph
of G and X be the set of vertices of G' each of which is adjacent to every vertex
of Kj*. Then N(u) N N(v) C X UV (KJ") for any nonadjacent vertices u, v
in V(K53).

Proof. Take a vertex w € N(u) N N(v) that is not in V(K7%"). Then take a
vertex z in V(KJ') \ {u,v}. By the definition of K, = is adjacent to both
uw and v. If w is not adjacent to x, then vwvru and uyvru are holes where y
is a vertex of KJ* that belongs to the same partite set as . This contradicts
the hypothesis that G is a hole-edge-disjoint graph. Thus w is adjacent to x.
Since z is chosen arbitrarily from V(KJ"), it is true that w € X. O

4 The competition number of a hole-edge-disjoint graph

In this section, we shall show that the competition number of a hole-edge-
disjoint graph G does not exceed h + 1 where A is the number of holes of G.
This result partially answers the conjecture given by Kim [11]. In order to
do so, we need the following notations: Let G be a hole-edge-disjoint graph
with exactly A holes Cy, Cy, ..., Cy. Foreach t =1, ..., h, we let

Cy = Ut,0Ut,1---Ut,m;—1Ut,05

where my is the length of the hole C};. We denote X¢, by X, for short.
If there exists a Cy-avoiding (v, vy;+1)-path for some ¢ € [h], where [h]
denotes the set {1,...,h}, and for some i € {0,...,m; — 1}, then the set

{v € V(G) | v vvi41 is a Cp-avoiding path}

is not empty by Lemma 2.6. We denote it by A, ;. By Lemma 3.4, {v;;, vt 1 }U
X, is a vertex cut. For simplicity, we denote {v;;, vy ;11 }UX; by X, ;. Let Qy;
be the component of G — {v;;,v;11} — X, containing V(Cy) \ {vi, viit1}-
Among the components of G — {vy;, v 41} — X; other than @Qy;, we take
the components each of which contains a vertex in A;;. Then we denote
the union of such components by G;. It is easy to see that A;; C V(Gy,).
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Figure 3: A hole-edge-disjoint graph G, X1, = {vi1,v12} U {21}, 4iq =
{wy, w3}, Q1,1 together with the components of G — X;; containing wy or
ws.



Also note that A;; N X; = 0 for any ¢ € {0,...,m; — 1}. We summarize the
notations introduced above in Table 1. See Figure 4 for illustration.
Now we are ready to present the following lemma:

Lemma 4.1. Let G be a K3-free hole-edge-disjoint graph with exactly h holes
Ch, Cy, ..., Cy. Suppose that G has a Cy-avoiding (vy;, vyi41)-path for each
t € [h| and for each i € {0,...,my — 1}. Suppose that for some t* € [h| and
i*€{0,...,mp—1}, GIV(Gp j») UXys i+ contains a hole. Then for any hole
Cy in G[V(Gy =) U Xy i+, the following are true:

(1) If there exists a verter u in Asj not belonging to V(G ) U Xp= i for
some j € {0,...,ms — 1}, then vs juvs jy1 is a Cg-avoiding path and

{Uszj7 vsyj+1} - Xt*ai*;

(2) i | Asj CV(Ge )} 2 ms = 2;

(3) For some k € {j | Asj C V(G 4+)}, there is no Cs-avoiding path from
any verter in Ay to any vertex in Xy 4« in G.

(4) For some k € {j | As; CV(Gp )},

V(Gs,k) U Xs,k g V(Gt*,i*) U Xt*,i*-

Proof. We show (1) as follows. Since u is in A, j, it is true that v, juv, 11 is
a Us-avoiding path. Suppose that one of v, ;, v, j41 is not contained in X ;-.
We may assume that v, ; is not in X;- ;«. Then v, ; is contained in V(G- ;+)
since Cy is contained in V(G- ;+) U Xy 4+. Since u € X+ ;» by the hypothesis,
u and vy ; are still adjacent in G — X~ ;«. However, note that u ¢ V(G- ;)
by the hypothesis while v, ; € V(G- ;+). This implies that they belong to
distinct components in G — X« ;~ and so we reach a contradiction. Thus,
{Us,ja vs,j+1} C Xt*,z'*-

We show (2) by contradiction. Suppose that |[{j | As; C V(G40)} <
ms — 2. Then |{j | As; & V(Gp i)} > ms — (mg — 2) and so there exist
p, ¢ € {0,...,ms — 1} such that there exist vertices u, and u, of G' such

X | {veinvip f U Xy

Api | {v € V(Q) | vvvii41 is a Cp-avoiding path}

(Qi; | the component of G — X, ; containing V(Cy) \ {vii, vgi+1}

G'; | the union of the components of G — X, ; — V(Q,,;) each of which
contains a vertex in A ;

Table 1: Notations needed to prove Lemma 4.1 and Theorems 4.2 and 4.3.
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that u, € A,, and u, € A,,, but u, ¢ V(G- ;-) and u, ¢ V(G- 4-). Then
Vs pUpUs pt1 and Vg qu,Vs 441 are Cy-avoiding paths. Since there are at least
two vertices in S = {vsp, Uspi1, Usg, Usgr1} Which are not adjacent, there
exists a vertex in S not in X« ;-. Without loss of generality, we may assume
that vy, & Xy i By (1), Asp C V(G i) U Xy j=. Since A; , NV (G i) = 0,
A, C Xpo - and so u, € Xy 4. Suppose that u, € Xy ;-. Since G[Xy- ;-]
is a clique by Lemma 3.5, u, and u, are adjacent. Then there exist both a
Cs-avoiding (vsp, vs4)-path and a Cg-avoiding (vs,, vs 4+1)-path, contradict-
ing Lemma 3.2. Thus u; & Xy ;. Then uy, & V(G o) U X i« By (1),
{vs,gsVsg+1} C V(G i) U Xpe 4. This implies that v, ,u,vs 4 and v pupvs g1
are Cs-avoiding paths, which contradicts Lemma 3.2.

Now we show (3) in the following. By (2), there exist two distinct integers
kand [ in {j | As; C V(Gp4)}. That is, Agp C V(Gp4-) and Ay C
V(Gt*,i*)-

Suppose that there exist Cs-avoiding paths P and ) from wy to a vertex
X4+ and from w; to a vertex Y- ;- in G, respectively, for some wy, € A,
and w; € As;. Then PQ™! contains a Cs-avoiding (wy,w;)-path. How-
ever, this path extends to a Cs-avoiding (vsk, vs+1)-path, which contradicts
Lemma 3.2. This argument implies that for at least one of A,;, A,;, there
is no Cs-avoiding path from any of its vertices to any vertex belonging to
X4+ in G. Without loss of generality, we may assume that A, ; satisfies this
property (for, otherwise, we can relabel the vertices on Cy so that the vertex
v, is labeled as vy).

Finally we show (4). By (3), there exists k € {j | A;; C V(G- )} such
that there is no C,-avoiding path from any vertex in A, to any vertex in
X4« in G. Since V(Cy) C V(G- 3+) U Xy 4= by the hypothesis, it holds that
{vs.k, Vs 1} C V(G i+) U Xy . Now take a vertex x in X,. If v & Xy 4o,
then z is still adjacent to a vertex on Cy in G — Xy ;= and so & € V(G j+).
Thus Xy C V(Gp ;) U X= - and therefore X, = X, U {vsp, Vs o1} C
V(G i) U Xy 4= Now it remains to show that V(Gyg) C V(G jo) U Xpe o
Take a vertex y in G ;. Then y belongs to a component W of G' — X, ;.. By
the definition of G, V(W) N Az # 0. Take z € V(W) N A . Then, since
any vertex in W and z belong to a component of G, any vertex in W and z
are connected by a Cs-avoiding path. Thus, by (3), W N X« = 0 and so W
is a connected subgraph of G — X;- ;. Since Ay, C V(G 4+), it is true that
z € V(G 4+). Therefore, V(W) C V(Gy-4-) since z belongs to W, which
is connected in G — Xy ;-. Since y € V(W), it is true that y € V(G ;).
We have just shown that V(Gsy) C V(Gi-4-). Hence V(Gy) U Xgp C
V(G iv) U Xy e

Furthermore by (2), there is another [ € {0,...,m; — 1} such that A, C
V(G 4+). Now take w; in Ag;. Then w; € V(G ;+) U Xpe 4« However,
w; & V(G ) U Xy since wy is still adjacent to at least one of vy, vs;41 in
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G — Xs,k- Thus V(Gs,k) U Xs,lc g V(Gt*,i*) U Xt*,i* and (4) follows. U

Given a K3-free hole-edge-disjoint graph G, we say that G has the chordal
property if there exist ¢ € [h] and i € {0,...,m; — 1} such that G[V(G;) U
Xy U{vei, vri41}] is chordal.

Theorem 4.2. Let G be a K;-free hole-edge-disjoint graph with ezactly h
holes Cy, Cy, ..., Ch. Suppose that G has a Cy-avoiding (v, veit1)-path
for each t € [h] and for each i € {0,...,my — 1}. Then G has the chordal
property.

Proof. By contradiction. Suppose that G does not have the chordal property.
Then given ¢ € [h], and i € {0,...,m;—1}, G[V(G};) U X,,;] contains a hole.
We denote the set of such holes by C;;. Take a hole Cs € C;, where £; = 1.
We denote t and s by ¢; and ts, respectively. By Lemma 4.1 (4), there exists
ko € {] | At2,j C V(th,l)} such that V(Gt2,k2) U Xt2,k2 - V(th,kl) U th,k1'
Again, by our assumption that G does not have the chordal property, there
exists a hole Cy, € Cy, ,- Then, by Lemma 4.1 (4), there exists k3 € {j |
At3,j C V(Gh’]@)} such that V(Gt3,kz) U Xt3,k3 g_ V(Gtz,kz) U th,kg-

Repeating this process, we have t1, to, ..., t;,...and ky, ko ..., k;, ... such
that

G V(Gtz;kz) U Xti,ki GG V(Gt2,k2) U Xt2,k2 - V(th,kl) U th,/ﬂv

=

which is impossible since V(Gy k) U Xy, g, is finite. This completes the
proof. O

Now we are ready to present our main theorem:

Theorem 4.3. If G is a hole-edge-disjoint graph with exactly h holes, then
k(G) < h+1.

Proof. We prove by induction on h. The case h = 1 corresponds to Theo-
rem 2.2. Suppose that the statement holds for any hole-edge-disjoint graph
with exactly h — 1 holes for A > 2. Let G be a hole-edge-disjoint graph with
exactly h holes (1, ..., C.

Firstly we suppose that G is K3-free. Then assume that there exist ¢ and
such that G has no Cp-avoiding (vy;, vyi+1)-path. By Lemma 3.6, G —v; ;v 41
has at most h — 1 holes. By induction hypothesis, there exists a digraph D’
such that C'(D') = (G — v v,41) U I where I = {ay, ag, ..., a3} is the set of
newly added isolated vertices. Then we construct an acyclic digraph D from
D' as follows:

V(D) = V(D) U {ans};

A(D) = A(D') U {(t15, ans)s (i1, anin) .

12



Then it is easy to check that D is acyclic and that C'(D) = GU{ay, ag, ..., ap41}-

Now suppose that G has a Ci-avoiding (v, vy ;4+1)-path for any ¢ in [A]
and for any ¢ in {0,...,my; — 1}. Then, by Lemma 4.2, G has the chordal
property. That is, there exist ¢ € [n] and ¢ € {0,...,m; — 1} such that
GV (Gy;) U X, U{vgs, vei41}] is chordal.

Let Hy; be the subgraph of G induced by V(G) \ V(Gy;). Then H;; does
not contain any Cy-avoiding path by the definition of G;. Moreover, H,; is
K3-free. Thus H; — v vy 541 contains at most A — 1 holes by Lemma 3.6.
We denote H;; — vy v 41 by H;. Then, by the induction hypothesis, we
have k(H{;) < h. Denote G[V (Gy;) U Xy U{vs s, vp5114] by Gf;. Then Gy, is
a chordal graph and X; U {vy;, vgiq1} is a clique of G} ;.

Moreover, E(H{,) U E(G;;) = E(G), and V(H;;) N V(G};) = X, U
{vi, vei41}. Hence, by Theorem 2.4, k(G) < h + 1.

Now consider the case where G contains K3 as an induced subgraph. Let
m be the maximum integer such that G contains K3* as an induced subgraph.
Then m > 3. Now take two vertices u and v in the same partite set in KJ3".
Then they are nonadjacent and we join them by adding a new edge e. We
call the resulting graph G’. Lemma 3.2 assures that G’ does not contain any
new hole. In fact, v and v belong to at least two distinct holes of length 4
in K7" and these holes become 4-cycles with chord wv in G'. Thus G’ has at
most 2 holes less than G. Therefore, by induction hypothesis, there exists
an acyclic digraph D’ such that C(D') = G' U I},_,.

In the following, we shall construct an acyclic digraph D such that C(D) =
G U Iy by using D' for some positive integer ¢ < h. If [N}, (u) N N, (v)] = 1,
then we construct D as follows:

V(D) = V(D) U{a};

AD) = AAD)N\{(z, w) | (z,w) € AD)V{(w,w) | = € Y1}U{(z,a) [z € Y2}

)
where N}, (u) N N, (v) = {w}, and Y}, Y5 are the two cliques resulting from
deleting e from N, (w) which forms a clique in G’. Since Y; C Np, (w), D
is still acyclic. From the construction, it can easily be checked that C'(D) =
GU Ih-

Now assume that [N}, (u)NN}, (v)| > 2. Let N5, (u)NNJ, (v) = {wy, ..., w,}
for some integer p > 2. For each i € {1,...,p}, Np (w;) forms a clique in
G'. Thus the edges of the subgraph of G induced by N, (w;) are covered by
exactly two cliques N, (w;)\{u} and N, (w;)\{v}. For simplicity, we denote
Np(wi) \{v} by ¥;* and Ny, (wi) \ {u} by Y;". Note that ¥;*\{u} = ¥;"\{v}
and that N, (w;) = Y;" U{u}.

Furthermore, as Np, (w;) forms a clique containing v and v in G,

U VYU {u} = U N3, (w;) € Ng(u) N Ng(v) U {u, v}

13



By Lemma 3.8, Ng(u) N Ng(v) € X U V(KY') where X is the clique each
vertex of which is adjacent to every vertex of K7* in G. Thus

Y)" = Ng(v) N LPJND’(wi) C Ne(v) N[X UV(K)].

=1

The vertices in Ng(v) N [X UV (K7J")] are covered by exactly two cliques. We
denote those cliques by Z; and Z,.
We define a digraph D as follows:

V(D) =V(D")U{a,b};

AWD) =AW\ U N5 () 0 (e w) |« € 1)

U {(x,a)_| ve ZiyU{(x,b) |z € Zy} U{(v,a),(v,b)}.

Since Y;* C Np, (w;) for each ¢ € {1,...,p}, the acyclicity of D is guaranteed
by that of D'.

It is easy to see that E(C(D)) C E(G). To show that E(C(D)) D E(G),
take an edge f = yz in G. If {y,z} ¢ Np (w;) for any i € {1,...,p},
then clearly f € E(C(D)). Now suppose that {y,z} C Np (w;) for some
ie{l,...,p}. lf y# vand z # v, then {y,z} C Y;* and so (y,w;) € A(D)
and (z,w;) € A(D). Thus f € E(C(D)). If y = v or z = v, then we may
assume that y = v without loss of generality. Then z # u. Then z € Z; or
z € Zy. That is, (z,a) € A(D) or (z,b) € A(D). Since (v,a) € A(D) and
(v,b) € A(D), it holds that f € E(C(D)). Thus C(D) = G U I;;; and so
k(G) < h+1. O

The upper bound given in Theorem 4.3 is sharp as the graph given in
Figure 1 has h holes and competition number h + 1.
5 Closing Remarks

In this paper, we have shown that the competition number of a hole-edge-
disjoint graph with exactly h holes is at most h + 1, which strongly implies
that Kim’s conjecture might be true. It would be natural to see whether the
conjecture is true for a graph with two holes.
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