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1 Introdu
tionSuppose D is an a
y
li
 digraph (for all unde�ned graph-theoreti
al terms,see [1℄ and [17℄). The 
ompetition graph of D, denoted by C(D), has thesame set of verti
es as D and an edge between verti
es u and v if and only ifthere is a vertex x in D su
h that (u; x) and (v; x) are ar
s of D. Roberts [16℄observed that if G is any graph, G together with suÆ
iently many isolatedverti
es is the 
ompetition graph of an a
y
li
 digraph. Then he de�ned the
ompetition number k(G) of a graph G to be the smallest number k su
hthat G together with k isolated verti
es added is the 
ompetition graph ofan a
y
li
 digraph.The notion of 
ompetition graph was introdu
ed by Cohen [4℄ as a meansof determining the smallest dimension of e
ologi
al phase spa
e. Sin
e then,various variations have been de�ned and studied by many authors (see, forexample, [2, 8, 10, 12, 13, 18℄). Besides an appli
ation to e
ology, the 
on
eptof 
ompetition graph 
an be applied to the study of 
ommuni
ation over noisy
hannel (see Roberts [16℄ and Shannon [19℄) and to problem of assigning
hannels to radio or television transmitters (see Cozzens and Roberts [5℄,Hale [7℄, or Opsut and Roberts [15℄).Roberts [16℄ observed that 
hara
terization of 
ompetition graph is equiv-alent to 
omputation of 
ompetition number. It does not seem to be easyin general to 
ompute k(G) for all graphs G, as Opsut [14℄ showed that the
omputation of the 
ompetition number of a graph is an NP-hard problem(see [10, 12℄ for graphs whose 
ompetition numbers are known). It has beenone of important resear
h problems in the study of 
ompetition graphs to
hara
terize a graph by its 
ompetition number.We 
all a 
y
le of a graph G a 
hordless 
y
le of G if it is an indu
edsubgraph of G. A 
hordless 
y
le of length at least 4 of a graph is 
alled ahole of the graph and a graph without holes is 
alled a 
hordal graph.Cho and Kim [3℄ studied the 
ompetition number of a graph with exa
tlyone hole and showed that the 
ompetition number of a graph with exa
tlyone hole is at most 2. Kim [11℄ observed that the graph given in Figure 1with h holes has 
ompetition number h+1 and 
onje
tures that h+1 is thelargest 
ompetition number that 
an be a
hieved by a graph with h holes.In this paper, we show that the 
ompetition number of a graph all ofwhose holes are mutually edge-disjoint is at most h+ 1 where h is the num-ber of holes. From this result, it immediately follows that the 
ompetitionnumber of a graph all of whose holes are mutually vertex-disjoint is at mosth+ 1 where h is the number of holes.
2



Figure 1: A graph G with h holes and k(G) = h + 1.2 PreliminariesGiven a graph G and a hole C of G, we denote by XC the set of verti
es thatare adja
ent to every vertex of C. Given a graph G and a hole C of G, we
all a walk (resp. path) W a C-avoiding walk (resp. C-avoiding path) if noneof the internal verti
es of W are on C or in XC .A set S of verti
es of a graph G is 
alled a vertex 
ut of G if the numberof 
omponents of G� S is greater than that of G.Throughout this paper, we assume that all subs
ripts of verti
es on a
y
le are redu
ed to modular the length of the 
y
le.Lemma 2.1 ([3℄). Suppose that a graph G has exa
tly one hole C. If thereexists a C-avoiding (u; v)-path for some 
onse
utive verti
es u, v on C, thenXC [ fu; vg is a vertex 
ut.Theorem 2.2 ([3℄). If a graph G has exa
tly one hole, then k(G) � 2.Cho and Kim [3℄ showed that for a 
hordal graph G, we may 
onstru
tan a
y
li
 digraph D with the verti
es of indegree 0 as many as the numberof a 
lique so that the 
ompetition graph of D is G with one more isolatedvertex:Lemma 2.3 ([3℄). If K is a 
lique of a 
hordal graph G, then there existsan a
y
li
 digraph D su
h that C(D) = G [ I1, and the verti
es of K haveonly outgoing ar
s in D.This lemma is useful when we 
onstru
t an a
y
li
 graph D whose 
ompeti-tion graph has a nontrivial 
hordal 
omponent.Theorem 2.4. Suppose that a graph G has two subgraphs G1 and G2, and a
lique X satisfying the following property: E(G1)[E(G2) = E(G), V (G1)\V (G2) = X, and G2 is a 
hordal graph where X is a 
lique of G2. Then ifk(G1) � k, then k(G) � k + 1. 3



Proof. Let k(G1) � k, there exists an a
y
li
 digraph D1 su
h that C(D1) =G1 [ fa1; :::; akg where a1, . . . , ak are isolated verti
es not in V (G).Sin
e X is a 
lique in G2 whi
h is a 
hordal graph by the hypothesis,there exists an a
y
li
 digraph D2 su
h that C(D2) = G2 [ fak+1g whereak+1 is an isolated vertex not in V (G) [ fa1; : : : ; akg and the verti
es in Xhave only outgoing ar
s in D2 by Lemma 2.3.Now we de�ne a digraph D as follows: V (D) = V (D1) [ V (D2) andA(D) = A(D1) [ A(D2). Firstly, note that V (G1) \ V (G2) = X. Supposethat there is an edge in E(C(D)) but not in E(C(D1)) [ E(C(D2)). Thenthere exist an ar
 (u; x) in D1 and an ar
 (v; x) in D2 for some x 2 X.However, this is impossible sin
e every vertex in X has indegree 0 in D2.Thus E(C(D)) � E(C(D1)) [ E(C(D2)). It is obvious that E(C(D)) �E(C(D1)) [ E(C(D2)) sin
e E(C(D)) � E(C(Di)) for i = 1, 2. ThusE(C(D)) = E(C(D1)) [ E(C(D2)) = E(G1) [ E(G2) = E(G):Moreover, sin
e D1 and D2 are a
y
li
, V (G1) \ V (G2) = X, and ea
hvertex in X has only outgoing ar
s in D2, it is true that D is a
y
li
. Hen
eC(D) = G [ fa1; : : : ; ak; ak+1g and so k(G) � k + 1.Given a walk W of a graph G, we denote by W�1 the walk representedby the reverse of vertex sequen
e of W . We also denote the length of W byjW j.Lemma 2.5. Let C be a hole of a graph G. Suppose that v is a vertex not onC that is adja
ent to two non-adja
ent verti
es x and y of C. Then exa
tlyone of the following is true:(1) v is adja
ent to all the verti
es of C;(2) v is on a hole C� di�erent from C su
h that there are at least two
ommon edges of C and C� and all the 
ommon edges are 
ontained inexa
tly one of the (x; y)-se
tions of C.Proof. Suppose that (1) is not true. Then there exists a vertex z on C thatis not adja
ent to v. Let P be the (x; y)-se
tion of C that 
ontains z. Let w(resp. u) be the �rst vertex right after z along P (resp. P�1) that is adja
entto v. Su
h a vertex exists sin
e v is adja
ent to y (resp. x). Then the (u; w)-se
tion of C 
ontaining z and uvw form a hole satisfying the property of C�given in (2).Lemma 2.6. Let C = v0v1 � � � vn�1v0 be a hole of a graph G. Suppose thatthere exists a vertex v satisfying the following properties:� v is not on any hole of G. 4



� v is adja
ent to vi for some i 2 fv0; : : : ; vn�1g.� There is a C-avoiding path from v to a vertex on C other that vi.Let vj be a vertex with the smallest ji � jj su
h that there is a C-avoiding(v; vj)-path and P be the shortest among C-avoiding (v; vj)-paths. Then vi isadja
ent to every internal vertex on P . Moreover, if none of internal verti
eson P belongs to any hole, then j = i� 1 or i+ 1.Proof. Let Q be the shorter (vi; vj)-se
tion of C. Firstly, 
onsider the 
asewhere jP j = 1. If j 6= i � 1 or i + 1, then the hypothesis of Lemma 2.5 issatis�ed. However, none of (1), (2) holds, whi
h is a 
ontradi
tion. Thus,j 2 fi� 1; i+ 1g and we are done.Now suppose that jP j � 2. Then viPQ�1 is a 
y
le of length at least4. Sin
e v is not on any hole on G, it 
annot be a hole and has a 
hord.Take an internal vertex w on P . If w is adja
ent to a vertex vk for somek, 1 � ji � kj � ji � jj, then vi, the (v; w)-se
tion of P , and vk form aC-avoiding path, whi
h 
ontradi
ts the 
hoi
e of vj. Thus no internal vertexof P is adja
ent to any vertex on the shorter (vi; vj)-se
tion of C ex
ept vi.Thus vi is adja
ent to an internal vertex of P . Let x be the �rst internalvertex on P and P 0 be the (v; x)-se
tion of P . Then viP 0vi is a hole or atriangle. However, the former 
annot happen by the 
ondition on v. Thus ximmediately follows v on P . By repeating this argument, we 
an show thatvi is adja
ent to every internal vertex on P .Now assume that none of internal verti
es on P does not belong to anyhole. Let y be the vertex immediately pre
eding vj on P . Then viyQ�1 isa hole or a triangle. By our assumption, the former does not hold. Thus Qis a path of length 1, that is, vi and vj are adja
ent. Hen
e j = i � 1 orj = i+ 1.3 Properties of hole-edge-disjoint graphsWe 
all a graph G a hole-edge-disjoint graph if all the holes of G aremutually edge-disjoint.Lemma 3.1. Given a hole-edge-disjoint graph G, let C be a hole of G. Ifv =2 V (C) is a vertex adja
ent to two non-adja
ent verti
es of C, then v isadja
ent to all the verti
es of C.Proof. Sin
e G is a hole-edge-disjoint graph G, (2) of Lemma 2.5 
annothappen. Thus the lemma immediately follows.Lemma 3.2. Let G be a hole-edge-disjoint graph and C be a hole of G. Thenthere is no C-avoiding path joining two non
onse
utive verti
es of C.5



Proof. By 
ontradi
tion. Suppose that there is a C-avoiding (vi; vj)-path Pfor some i, j 2 f0; : : : ; m�1g satisfying ji�jj � 2 where C = v0v1 � � � vm�1v0.Let P be the shortest among the C-avoiding (vi; vj)-paths. Then there is noedge joining two non
onse
utive verti
es on P . Let P1 and P2 be the two(vi; vj)-se
tions of C 
ontaining vi�1 and vi+1, respe
tively. Then P and P1form a 
y
le in G and so do P and P2. By the hypothesis, these 
y
les 
annotbe holes. Then, by the 
hoi
e of P , an internal vertex of P is adja
ent to aninternal vertex on P1. Let u be the �rst internal vertex on P that is adja
entto an internal vertex on P1. Then let v be the �rst internal vertex on P1 thatis adja
ent to u. Then the (vi; u)-se
tion of P , the edge uv, the (v; vi)-se
tionof P�11 form a triangle or a hole. Sin
e it shares an edge with C, it must forma triangle and so u is the vertex immediately following vi on P and v = vi�1.By applying a similar argument for P2, we 
an show that u is adja
ent tovi+1. Therefore, by Lemma 3.1, u belongs to XC . However, sin
e P is aC-avoiding path, u does not belong to XC and we rea
h a 
ontradi
tion.Corollary 3.3. Let G be a hole-edge-disjoint graph and C be a hole of G.Given a vertex v of C, joining v and every other vertex on C by a new edgeredu
es the number of holes of G.Proof. It is obvious that C is not a hole in the resulting graph. Thus itis suÆ
ient to show that no new hole has been 
reated. We show it by
ontradi
tion. Suppose that a new hole is 
reated. Then there exists avertex w on C su
h that w is not adja
ent to v and there is a C-avoiding(v; w)-path P in G. This 
ontradi
ts Lemma 3.2.Lemma 3.4. Let G be a hole-edge-disjoint graph and C be a hole of G.Suppose that G has a C-avoiding (u; v)-path for some 
onse
utive verti
es u,v on C. Then XC [ fu; vg is a vertex 
ut.Proof. We prove by indu
tion on the number h of holes of a graph. If agraph has exa
tly one hole, then it immediately follows from Lemma 2.1.Suppose that the lemma holds for any hole-edge-disjoint graph with at mosth � 1 holes for h � 2. Now take a hole-edge-disjoint graph G with h holes.Suppose that G has a C-avoiding (u; v)-path for some hole C of G and some
onse
utive verti
es u, v on C. Sin
e h � 2, there exists another hole C 0.Take a vertex w of C 0 and join w and every other vertex on C 0 by a newedge. Then by Corollary 3.3, the resulting graph G0 has less than h holes. Itis easy to see that G0 is still a hole-edge-disjoint graph and that C is a holeof G0. By the indu
tion hypothesis, XC [ fu; vg is a vertex 
ut of G0. Sin
eG0 is obtained by adding edges to G, it is true that XC [ fu; vg is a vertex
ut of G.We denote by Km2 a 
omplete multipartite with m parts ea
h of whi
hhas size 2, whi
h is 
alled a `
o
ktail party graph'. We say that a graph is6



Figure 2: K32 . Note that K32 is indu
ed by the edges of 3 edge-disjoint holesof length 4K32 -free if it does not 
ontain a 
omplete tripartite graph K32 as an indu
edsubgraph (see Figure 2).The following lemma shows that the subgraph indu
ed by XC is a 
liqueif G is an K32 -free hole-edge-disjoint graph:Lemma 3.5. If a graph G is a K32 -free hole-edge-disjoint graph and C is ahole of G, then XC is a 
lique.Proof. Suppose that there are two nonadja
ent verti
es u and w in XC .If jCj = 4, then V (C) [ fu; wg indu
es K32 . Thus, jCj � 5. Let C =v0v1:::vm�1v1 for m � 4. Then uv0wv2u and uv0wv3 are holes sharing theedge uv0, whi
h is a 
ontradi
tion.Lemma 3.6. Let G be a K32 -free hole-edge-disjoint graph with exa
tly h holesand C = v0 � � � vm�1v0 be a hole of G. Suppose that G has no C-avoiding pathbetween vi and vi+1 for some i 2 f0; 1; : : : ; m � 1g. Then G � vivi+1 has atmost h� 1 holes.Proof. Suppose that G� vivi+1 has more than h� 1 holes. Then, sin
e C isnot a hole in G� vivi+1, there is a hole C 0 in G� vivi+1 that is not a hole inG. Obviously vivi+1 is a 
hord of C 0 in G. Sin
e C 0 is a hole in G� vivi+1,it is true that vivi+1 is the only 
hord of C 0.Now 
onsider the two distin
t (vi; vi+1)-se
tions P1 and P2 of C 0. If jP1j �3 or jP2j � 3, then P1vivi+1 or P2vivi+1 is a hole in G that shares an edgewith C, whi
h 
ontradi
ts the hypothesis that G has only edge-disjoint holes.Thus jP1j = 2 and jP2j = 2. We denote P1 = viuvi+1 and P2 = viu0vi+1. Sin
eG does not 
ontain a C-avoiding path between vi and vi+1 by the hypothesis,it is true that fu; u0g � XC [ V (C). However, if u 2 V (C) , then at leastone of viu, vi+1u is a 
hord of C, whi
h is a 
ontradi
tion. If u 2 XC , then uand u0 are adja
ent by Lemma 3.5. Then the edge uu0 is a 
hord C 0, whi
his a 
ontradi
tion again. Therefore G� vivi+1 has at most h� 1 holes.In the following, we present some results on stru
tures of hole-edge-disjoint graphs having K32 as an indu
ed subgraph.7



Lemma 3.7. Suppose that a hole-edge-disjoint graph G has K32 as an indu
edsubgraph. Let m be the maximum integer su
h that Km2 is an indu
ed subgraphof G. If X is the set of verti
es of G ea
h of whi
h is adja
ent to every vertexof Km2 , then X is a 
lique.Proof. By 
ontradi
tion. Suppose that there exist two nonadja
ent verti
esu and v in X. Then V (Km2 ) [ fu; vg indu
es Km+12 , whi
h 
ontradi
ts the
hoi
e of m.Lemma 3.8. Suppose that a hole-edge-disjoint graph G has K32 as an indu
edsubgraph. Let m be the maximum integer su
h that Km2 is an indu
ed subgraphof G and X be the set of verti
es of G ea
h of whi
h is adja
ent to every vertexof Km2 . Then N(u) \N(v) � X [ V (Km2 ) for any nonadja
ent verti
es u, vin V (Km2 ).Proof. Take a vertex w 2 N(u) \ N(v) that is not in V (Km2 ). Then take avertex x in V (Km2 ) n fu; vg. By the de�nition of Km2 , x is adja
ent to bothu and v. If w is not adja
ent to x, then uwvxu and uyvxu are holes where yis a vertex of Km2 that belongs to the same partite set as x. This 
ontradi
tsthe hypothesis that G is a hole-edge-disjoint graph. Thus w is adja
ent to x.Sin
e x is 
hosen arbitrarily from V (Km2 ), it is true that w 2 X.4 The 
ompetition number of a hole-edge-disjoint graphIn this se
tion, we shall show that the 
ompetition number of a hole-edge-disjoint graph G does not ex
eed h+ 1 where h is the number of holes of G.This result partially answers the 
onje
ture given by Kim [11℄. In order todo so, we need the following notations: Let G be a hole-edge-disjoint graphwith exa
tly h holes C1, C2, . . . , Ch. For ea
h t = 1, . . . , h, we letCt = vt;0vt;1:::vt;mt�1vt;0;where mt is the length of the hole Ct. We denote XCt by Xt for short.If there exists a Ct-avoiding (vt;i; vt;i+1)-path for some t 2 [h℄, where [h℄denotes the set f1; : : : ; hg, and for some i 2 f0; : : : ; mt � 1g, then the setfv 2 V (G) j vt;ivvt;i+1 is a Ct-avoiding pathgis not empty by Lemma 2.6. We denote it by At;i. By Lemma 3.4, fvt;i; vt;i+1g[Xt is a vertex 
ut. For simpli
ity, we denote fvt;i; vt;i+1g[Xt by Xt;i. Let Qt;ibe the 
omponent of G � fvt;i; vt;i+1g � Xt 
ontaining V (Ct) n fvt;i; vt;i+1g.Among the 
omponents of G � fvt;i; vt;i+1g � Xt other than Qt;i, we takethe 
omponents ea
h of whi
h 
ontains a vertex in At;i. Then we denotethe union of su
h 
omponents by Gt;i. It is easy to see that At;i � V (Gt;i).8
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Also note that At;i \Xt = ; for any i 2 f0; : : : ; mt � 1g. We summarize thenotations introdu
ed above in Table 1. See Figure 4 for illustration.Now we are ready to present the following lemma:Lemma 4.1. Let G be a K32 -free hole-edge-disjoint graph with exa
tly h holesC1, C2, . . . , Ch. Suppose that G has a Ct-avoiding (vt;i; vt;i+1)-path for ea
ht 2 [h℄ and for ea
h i 2 f0; : : : ; mt � 1g. Suppose that for some t� 2 [h℄ andi� 2 f0; : : : ; mt� �1g, G[V (Gt�;i�)[Xt�;i�℄ 
ontains a hole. Then for any holeCs in G[V (Gt�;i�) [Xt�;i�℄, the following are true:(1) If there exists a vertex u in As;j not belonging to V (Gt�;i�) [Xt�;i� forsome j 2 f0; : : : ; ms � 1g, then vs;juvs;j+1 is a Cs-avoiding path andfvs;j; vs;j+1g � Xt�;i�;(2) jfj j As;j � V (Gt�;i�)gj � ms � 2;(3) For some k 2 fj j As;j � V (Gt�;i�)g, there is no Cs-avoiding path fromany vertex in As;k to any vertex in Xt�;i� in G.(4) For some k 2 fj j As;j � V (Gt�;i�)g,V (Gs;k) [Xs;k ( V (Gt�;i�) [Xt�;i�:Proof. We show (1) as follows. Sin
e u is in As;j, it is true that vs;juvs;j+1 isa Cs-avoiding path. Suppose that one of vs;j, vs;j+1 is not 
ontained in Xt�;i�.We may assume that vs;j is not in Xt�;i�. Then vs;j is 
ontained in V (Gt�;i�)sin
e Cs is 
ontained in V (Gt�;i�)[Xt�;i�. Sin
e u 62 Xt�;i� by the hypothesis,u and vs;j are still adja
ent in G �Xt�;i�. However, note that u 62 V (Gt�;i�)by the hypothesis while vs;j 2 V (Gt�;i�). This implies that they belong todistin
t 
omponents in G � Xt�;i� and so we rea
h a 
ontradi
tion. Thus,fvs;j; vs;j+1g � Xt�;i�.We show (2) by 
ontradi
tion. Suppose that jfj j As;j � V (Gt�;i�)gj <ms � 2. Then jfj j As;j 6� V (Gt�;i�)gj > ms � (ms � 2) and so there existp, q 2 f0; : : : ; ms � 1g su
h that there exist verti
es up and uq of G su
hXt;i fvt;i; vt;i+1g [XtAt;i fv 2 V (G) j vt;ivvt;i+1 is a Ct-avoiding pathgQt;i the 
omponent of G�Xt;i 
ontaining V (Ct) n fvt;i; vt;i+1gGt;i the union of the 
omponents of G�Xt;i�V (Qt;i) ea
h of whi
h
ontains a vertex in At;iTable 1: Notations needed to prove Lemma 4.1 and Theorems 4.2 and 4.3.10



that up 2 As;p and uq 2 As;q, but up =2 V (Gt�;i�) and uq 62 V (Gt�;i�). Thenvs;pupvs;p+1 and vs;quqvs;q+1 are Cs-avoiding paths. Sin
e there are at leasttwo verti
es in S = fvs;p, vs;p+1, vs;q, vs;q+1g whi
h are not adja
ent, thereexists a vertex in S not in Xt�;i�. Without loss of generality, we may assumethat vs;p 62 Xt�;i�. By (1), As;p � V (Gt�;i�)[Xt�;i�. Sin
e As;p\V (Gt�;i�) = ;,As;p � Xt�;i� and so up 2 Xt�;i�. Suppose that uq 2 Xt�;i�. Sin
e G[Xt�;i�℄is a 
lique by Lemma 3.5, up and uq are adja
ent. Then there exist both aCs-avoiding (vs;p; vs;q)-path and a Cs-avoiding (vs;p; vs;q+1)-path, 
ontradi
t-ing Lemma 3.2. Thus uq 62 Xt�;i�. Then uq 62 V (Gt�;i�) [ Xt�;i�. By (1),fvs;q; vs;q+1g � V (Gt�;i�) [Xt�;i�. This implies that vs;pupvs;q and vs;pupvs;q+1are Cs-avoiding paths, whi
h 
ontradi
ts Lemma 3.2.Now we show (3) in the following. By (2), there exist two distin
t integersk and l in fj j As;j � V (Gt�;i�)g. That is, As;k � V (Gt�;i�) and As;l �V (Gt�;i�).Suppose that there exist Cs-avoiding paths P and Q from wk to a vertexXt�;i� and from wl to a vertex Yt�;i� in G, respe
tively, for some wk 2 As;kand wl 2 As;l. Then PQ�1 
ontains a Cs-avoiding (wk; wl)-path. How-ever, this path extends to a Cs-avoiding (vs;k; vs;l+1)-path, whi
h 
ontradi
tsLemma 3.2. This argument implies that for at least one of As;k, As;l, thereis no Cs-avoiding path from any of its verti
es to any vertex belonging toXt�;i� in G. Without loss of generality, we may assume that As;k satis�es thisproperty (for, otherwise, we 
an relabel the verti
es on Cs so that the vertexvl is labeled as vk).Finally we show (4). By (3), there exists k 2 fj j As;j � V (Gt�;i�)g su
hthat there is no Cs-avoiding path from any vertex in As;k to any vertex inXt�;i� in G. Sin
e V (Cs) � V (Gt�;i�)[Xt�;i� by the hypothesis, it holds thatfvs;k; vs;k+1g � V (Gt�;i�) [ Xt�;i�. Now take a vertex x in Xs. If x 62 Xt�;i�,then x is still adja
ent to a vertex on Cs in G�Xt�;i� and so x 2 V (Gt�;i�).Thus Xs � V (Gt�;i�) [ Xt�;i� and therefore Xs;k = Xs [ fvs;k; vs;k+1g �V (Gt�;i�) [Xt�;i�. Now it remains to show that V (Gs;k) � V (Gt�;i�) [Xt�;i�.Take a vertex y in Gs;k. Then y belongs to a 
omponent W of G�Xs;k. Bythe de�nition of Gs;k, V (W ) \ As;k 6= ;. Take z 2 V (W ) \ As;k. Then, sin
eany vertex inW and z belong to a 
omponent of Gs;k, any vertex inW and zare 
onne
ted by a Cs-avoiding path. Thus, by (3), W \Xt�;i� = ; and so Wis a 
onne
ted subgraph of G�Xt�;i�. Sin
e As;k � V (Gt�;i�), it is true thatz 2 V (Gt�;i�). Therefore, V (W ) � V (Gt�;i�) sin
e z belongs to W , whi
his 
onne
ted in G � Xt�;i�. Sin
e y 2 V (W ), it is true that y 2 V (Gt�;i�).We have just shown that V (Gs;k) � V (Gt�;i�). Hen
e V (Gs;k) [ Xs;k �V (Gt�;i�) [Xt�;i�.Furthermore by (2), there is another l 2 f0; : : : ; ms� 1g su
h that As;l �V (Gt�;i�). Now take wl in As;l. Then wl 2 V (Gt�;i�) [ Xt�;i�. However,wl 62 V (Gs;k) [ Xs;k sin
e wl is still adja
ent to at least one of vs;l, vs;l+1 in11



G�Xs;k. Thus V (Gs;k) [Xs;k ( V (Gt�;i�) [Xt�;i� and (4) follows.Given a K32 -free hole-edge-disjoint graph G, we say that G has the 
hordalproperty if there exist t 2 [h℄ and i 2 f0; : : : ; mt � 1g su
h that G[V (Gt;i) [Xt [ fvt;i; vt;i+1g℄ is 
hordal.Theorem 4.2. Let G be a K32 -free hole-edge-disjoint graph with exa
tly hholes C1, C2, . . . , Ch. Suppose that G has a Ct-avoiding (vt;i; vt;i+1)-pathfor ea
h t 2 [h℄ and for ea
h i 2 f0; : : : ; mt � 1g. Then G has the 
hordalproperty.Proof. By 
ontradi
tion. Suppose that G does not have the 
hordal property.Then given t 2 [h℄, and i 2 f0; : : : ; mt� 1g, G[V (Gt;i)[Xt;i℄ 
ontains a hole.We denote the set of su
h holes by Ct;i. Take a hole Cs 2 Ct;k1 where k1 = 1.We denote t and s by t1 and t2, respe
tively. By Lemma 4.1 (4), there existsk2 2 fj j At2;j � V (Gt1;1)g su
h that V (Gt2;k2) [Xt2;k2 ( V (Gt1;k1) [Xt1;k1 .Again, by our assumption that G does not have the 
hordal property, thereexists a hole Ct3 2 Ct2;k2. Then, by Lemma 4.1 (4), there exists k3 2 fj jAt3;j � V (Gt2;k2)g su
h that V (Gt3;k2) [Xt3;k3 ( V (Gt2;k2) [Xt2;k2.Repeating this pro
ess, we have t1, t2, . . . , ti, . . . and k1, k2 . . . , ki, . . . su
hthat� � � ( V (Gti;ki) [Xti;ki ( � � � ( V (Gt2;k2) [Xt2;k2 ( V (Gt1;k1) [Xt1;k1;whi
h is impossible sin
e V (Gt1;k1) [ Xt1;k1 is �nite. This 
ompletes theproof.Now we are ready to present our main theorem:Theorem 4.3. If G is a hole-edge-disjoint graph with exa
tly h holes, thenk(G) � h+ 1.Proof. We prove by indu
tion on h. The 
ase h = 1 
orresponds to Theo-rem 2.2. Suppose that the statement holds for any hole-edge-disjoint graphwith exa
tly h� 1 holes for h � 2. Let G be a hole-edge-disjoint graph withexa
tly h holes C1; :::; Ch.Firstly we suppose that G isK32 -free. Then assume that there exist t and isu
h that G has no Ct-avoiding (vt;i; vt;i+1)-path. By Lemma 3.6, G�vt;ivt;i+1has at most h� 1 holes. By indu
tion hypothesis, there exists a digraph D0su
h that C(D0) = (G � vt;ivt;i+1) [ I where I = fa1; a2; :::; ahg is the set ofnewly added isolated verti
es. Then we 
onstru
t an a
y
li
 digraph D fromD0 as follows: V (D) = V (D0) [ fah+1g;A(D) = A(D0) [ f(vt;i; ah+1); (vt;i+1; ah+1)g:12



Then it is easy to 
he
k thatD is a
y
li
 and thatC(D) = G[fa1; a2; :::; ah+1g.Now suppose that G has a Ct-avoiding (vt;i; vt;i+1)-path for any t in [h℄and for any i in f0; : : : ; mt � 1g. Then, by Lemma 4.2, G has the 
hordalproperty. That is, there exist t 2 [n℄ and i 2 f0; : : : ; mt � 1g su
h thatG[V (Gt;i) [Xt [ fvt;i; vt;i+1g℄ is 
hordal.Let Ht;i be the subgraph of G indu
ed by V (G) nV (Gt;i). Then Ht;i doesnot 
ontain any Ct-avoiding path by the de�nition of Gt;i. Moreover, Ht;i isK32 -free. Thus Ht;i � vt;ivt;i+1 
ontains at most h � 1 holes by Lemma 3.6.We denote Ht;i � vt;ivt;i+1 by H�t;i. Then, by the indu
tion hypothesis, wehave k(H�t;i) � h. Denote G[V (Gt;i) [Xt [ fvt;i; vt;i+1g℄ by G�t;i. Then G�t;i isa 
hordal graph and Xt [ fvt;i; vt;i+1g is a 
lique of G�t;i.Moreover, E(H�t;i) [ E(G�t;i) = E(G), and V (H�t;i) \ V (G�t;i) = Xt [fvt;i; vt;i+1g. Hen
e, by Theorem 2.4, k(G) � h+ 1.Now 
onsider the 
ase where G 
ontains K32 as an indu
ed subgraph. Letm be the maximum integer su
h that G 
ontainsKm2 as an indu
ed subgraph.Then m � 3. Now take two verti
es u and v in the same partite set in Km2 .Then they are nonadja
ent and we join them by adding a new edge e. We
all the resulting graph G0. Lemma 3.2 assures that G0 does not 
ontain anynew hole. In fa
t, u and v belong to at least two distin
t holes of length 4in Km2 and these holes be
ome 4-
y
les with 
hord uv in G0. Thus G0 has atmost 2 holes less than G. Therefore, by indu
tion hypothesis, there existsan a
y
li
 digraph D0 su
h that C(D0) = G0 [ Ih�1.In the following, we shall 
onstru
t an a
y
li
 digraphD su
h thatC(D) =G[ I` by using D0 for some positive integer ` � h. If jN+D0(u)\N+D0(v)j = 1,then we 
onstru
t D as follows:V (D) = V (D0) [ fag;A(D) = A(D0)nf(x; w) j (x; w) 2 A(D0)g[f(x; w) j x 2 Y1g[f(x; a) j x 2 Y2gwhere N+D0(u) \N+D0(v) = fwg, and Y1, Y2 are the two 
liques resulting fromdeleting e from N�D0(w) whi
h forms a 
lique in G0. Sin
e Y1 � N�D0(w), Dis still a
y
li
. From the 
onstru
tion, it 
an easily be 
he
ked that C(D) =G [ Ih.Now assume that jN+D0(u)\N+D0(v)j � 2. LetN+D0(u)\N+D0(v) = fw1; : : : ; wpgfor some integer p � 2. For ea
h i 2 f1; : : : ; pg, N�D0(wi) forms a 
lique inG0. Thus the edges of the subgraph of G indu
ed by N�D0(wi) are 
overed byexa
tly two 
liques N�D0(wi)nfug and N�D0(wi)nfvg. For simpli
ity, we denoteN�D0(wi)nfvg by Y ui and N�D0(wi)nfug by Y vi . Note that Y ui nfug = Y vi nfvgand that N�D0(wi) = Y vi [ fug.Furthermore, as N�D0(wi) forms a 
lique 
ontaining u and v in G0,p[i=1Y vi [ fug = p[i=1N�D0(wi) � NG(u) \NG(v) [ fu; vg:13



By Lemma 3.8, NG(u) \ NG(v) � X [ V (Km2 ) where X is the 
lique ea
hvertex of whi
h is adja
ent to every vertex of Km2 in G. ThusY vi = NG(v) \ p[i=1N�D0(wi) � NG(v) \ [X [ V (Km2 )℄:The verti
es in NG(v)\ [X [V (Km2 )℄ are 
overed by exa
tly two 
liques. Wedenote those 
liques by Z1 and Z2.We de�ne a digraph D as follows:V (D) = V (D0) [ fa; bg;A(D) =A(D0) n p[i=1N�D0(wi) [ p[i=1f(x; wi) j x 2 Y ui g[ f(x; a) j x 2 Z1g [ f(x; b) j x 2 Z2g [ f(v; a); (v; b)g:Sin
e Y ui � N�D0(wi) for ea
h i 2 f1; : : : ; pg, the a
y
li
ity of D is guaranteedby that of D0.It is easy to see that E(C(D)) � E(G). To show that E(C(D)) � E(G),take an edge f = yz in G. If fy; zg 6� N�D0(wi) for any i 2 f1; : : : ; pg,then 
learly f 2 E(C(D)). Now suppose that fy; zg � N�D0(wi) for somei 2 f1; : : : ; pg. If y 6= v and z 6= v, then fy; zg � Y ui and so (y; wi) 2 A(D)and (z; wi) 2 A(D). Thus f 2 E(C(D)). If y = v or z = v, then we mayassume that y = v without loss of generality. Then z 6= u. Then z 2 Z1 orz 2 Z2. That is, (z; a) 2 A(D) or (z; b) 2 A(D). Sin
e (v; a) 2 A(D) and(v; b) 2 A(D), it holds that f 2 E(C(D)). Thus C(D) = G [ Ih+1 and sok(G) � h+ 1.The upper bound given in Theorem 4.3 is sharp as the graph given inFigure 1 has h holes and 
ompetition number h+ 1.5 Closing RemarksIn this paper, we have shown that the 
ompetition number of a hole-edge-disjoint graph with exa
tly h holes is at most h + 1, whi
h strongly impliesthat Kim's 
onje
ture might be true. It would be natural to see whether the
onje
ture is true for a graph with two holes.Referen
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