RIMS-1644

On competition numbers of complete multipartite graphs with partite sets of equal size

By

Boram PARK, Suh-Ryung KIM, and Yoshio SANO

October 2008

京都大学 数理解析研究所

RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES
KYOTO UNIVERSITY, Kyoto, Japan

On competition numbers of complete multipartite graphs with partite sets of equal size

BORAM PARK^{a,*}, Suh-Ryung Kim^{a,*†}, and Yoshio Sano^{b‡}

- ^a Department of Mathematics Education, Seoul National University, Seoul 151-742, Korea
 - b Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606-8502, Japan

October 2008

Abstract

Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x in D such that (u, x) and (v, x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices. In general, it is hard to compute the competition number k(G) for a graph G and it has been one of important research problems in the study of competition graphs to characterize a graph by its competition number.

In this paper, we compute the competition numbers of a complete multipartite graph in which each partite set has two vertices and a complete multipartite graph in which each partite set has three vertices.

Keywords: competition graphs, competition numbers, complete multipartite graphs

^{*}This work was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD) (KRF-2008-531-C00004).

[†]corresponding author: srkim@snu.ac.kr

[‡]The third author was supported by JSPS Research Fellowships for Young Scientists.

1 Introduction

Suppose D is an acyclic digraph (for all undefined graph-theoretical terms, see [1] and [15]). The competition graph of D, denoted by C(D), has the same set of vertices as D and an edge between vertices u and v if and only if there is a vertex x in D such that (u, x) and (v, x) are arcs of D. Roberts [14] observed that if G is any graph, G together with sufficiently many isolated vertices is the competition graph of an acyclic digraph. Then he defined the competition number k(G) of a graph G to be the smallest number k such that G together with k isolated vertices added is the competition graph of an acyclic digraph.

The notion of competition graph was introduced by Cohen [3] as a means of determining the smallest dimension of ecological phase space. Since then, various variations have been defined and studied by many authors (see, for example, [2, 7, 8, 9, 11, 16]). Besides an application to ecology, the concept of competition graph can be applied to the study of communication over noisy channel (see Roberts [14] and Shannon [17]) and to problem of assigning channels to radio or television transmitters (see Cozzens and Roberts [4], Hale [6], or Opsut and Roberts [13]).

Roberts [14] observed that characterization of competition graph is equivalent to computation of competition number. It does not seem to be easy in general to compute k(G) for all graphs G, as Opsut [12] showed that the computation of the competition number of a graph is an NP-hard problem (see [8, 9] for graphs whose competition numbers are known). It has been one of important research problems in the study of competition graphs to characterize a graph by its competition number.

In this paper, we shall compute competition numbers of a complete multipartite graph in which each partite set has two vertices and a complete multipartite graph in which each partite set has three vertices.

We denote by K_n^m the complete m-partite graph in which each partite set has n vertices.

For a digraph D, a sequence v_1, v_2, \ldots, v_n of the vertices of D is called an acyclic ordering of D if $(v_i, v_j) \in A(D)$ implies i > j. It is well-known that a digraph D is acyclic if and only if there exists an acyclic ordering of D.

An edge clique cover (or an ECC for short) of a graph G is a family of cliques such that each edge of G is contained in some clique in the family. The smallest size of an ECC of G is called the edge clique cover number (or the ECC number for short), and is denoted by $\theta_e(G)$. Opsut [12] gave

bounds of k(G) for a graph G by showing that $\theta_e(G) - |V(G)| + 2 \le k(G) \le \theta_e(G)$. Dutton and Brigham [5] characterized the competition graphs of acyclic digraphs in terms of an ECC as follows:

Theorem 1 ([5]). A graph G is the competition graph of an acyclic digraph if and only if there exists an ordering v_1, \ldots, v_n of the vertices of G and an ECC $\{S_1, \ldots, S_n\}$ of G such that $v_i \in S_j$ implies i < j.

For a vertex v in a graph G, let the open neighborhood of v be denoted by

$$N_G(v) = \{u \mid u \text{ is adjacent to } v\}$$

and the closed neighborhood of v be denoted by $N_G[v] = N_G(v) \cup \{v\}$. We denote the subgraph of G induced by $N_G(v)$ (resp. $N_G[v]$) by the same symbol $N_G(v)$ (resp. $N_G[v]$). For a digraph D, we define $N_D^-(v) = \{w \in V(D) \mid (w, v) \in A(D)\}$ and $N_D^+(v) = \{w \in V(D) \mid (v, w) \in A(D)\}$.

A vertex clique cover of a graph G is a family of cliques such that each vertex of G is contained in some clique in the family. The smallest size of a vetrex clique cover of G is called the vertex clique cover number, and is denoted by $\theta_v(G)$. Opsut [12] showed the following:

Proposition 2 ([12]). Let G be a graph. Then we have

$$\min\{\theta_v(N_G(v)) \mid v \in V(G)\} \le k(G).$$

This proposition is true even if each open neighborhood is replaced with the closed neighborhood.

Proposition 3. Let G be a graph. Then we have

$$\min\{\theta_v(N_G[v]) \mid v \in V(G)\} \le k(G).$$

Proof. Let $t = \min\{\theta_v(N_G[v]) \mid v \in V(G)\}$ and k = k(G). Let D be an acyclic digraph such that $C(D) = G \cup I_k = G \cup \{z_1, ..., z_k\}$. Let $z_1, ..., z_k, v_1, ..., v_n$ be an ordering of D so that (u, v) is an arc of D only if u is on the right hand side of v in the sequence. Then we have $|N_D^+(v_1)| \geq t$ since $\theta_v(N_G[v_1]) \geq t$. Since $N_D^+(v_1) \subseteq \{z_1, ..., z_k\}$, we have $t \leq k$ and thus the proposition holds. \square

For some special graph families, we have explicit formulae for computing competition numbers. For example, if G is a choral graph with the minimum degree ≥ 1 then k(G) = 1, and if G is a triangle-free connected graph then

$$k(G) = |E(G)| - |V(G)| + 2$$

(see [14]). From this formula, it follows that for a complete bipartite graph K_{n_1,n_2} , we have $k(K_{n_1,n_2}) = n_1 n_2 - (n_1 + n_2) + 2$. Kim and Sano [10] gave the exact competition number of a complete tripartite graph K_n^3 :

Theorem 4 ([10]). For $n \ge 2$,

$$k(K_n^3) = n^2 - 3n + 4.$$

Then they proposed an open problem to compute competition numbers of various types of complete multipartite graphs. To answer their question, we study K_n^m . We give a lower bound for the competition number of K_n^m . Then we make use of it to compute the competition numbers of K_2^m and K_3^m .

2 A lower bound for the competition number of K_n^m

In this section, we give a lower bound for $k(K_n^m)$ for integers $m \geq 2$ and $n \geq 1$.

For each positive integer n, we denote the set $\{1, \ldots, n\}$ by [n].

Proposition 5. For any vertex v of K_n^m with $m \geq 2$,

$$\theta_v(N_{K_r^m}[v]) \ge n.$$

Proof. Let P_k denote the kth partite set of K_n^m and let $P_k = \{v_{k1}, \ldots, v_{kn}\}$ for each $k \in [m]$. From the fact that v_{11} is adjacent to all the vertices in $V(K_n^m) \setminus P_1$ and that any two vertices in P_2 are not adjacent, we know that at least n cliques are needed to cover the n edges $v_{11}v_{21}, \ldots, v_{11}v_{2n}$ which are incident to v_{11} . Therefore we have $\theta_v(N_{K_n^m}[v_{11}]) \geq n$. By symmetry, we can conclude $\theta_v(N_{K_n^m}[v]) \geq n$ for any $v \in V(K_n^m)$.

Given a digraph D = (V, A), we use a symbol $u \to v$ for arc (u, v) in A. In addition, for $S \subset V$, we denote by $S \to w$ the arc set $\{(x, w) \mid x \in S\}$.

Theorem 6. For an integer $m \geq 2$,

$$k(K_n^m) \ge 2n - 2.$$

Proof. Let k be the competition number of K_n^m . Then there exists an acyclic digraph D such that $C(D) = K_n^m \cup I_k$ where $I_k = \{a_1, a_2, \dots, a_k\}$. Also, let $a_1, a_2, \dots, a_k, v_1, v_2, \dots, v_{mn}$ be an acyclic ordering of D. By Proposition 5,

we have $\theta_v(N_{K_n^m}[v_i]) \geq n$ for i = 1, ..., mn. Thus v_i has at least n distinct prey, that is,

$$|N_D^+(v_i)| \ge n. \tag{1}$$

However, since v_1 and v_2 are the vertices of the lowest index and the second lowest index, respectively,

$$N_D^+(v_1) \subset I_k$$
 and $N_D^+(v_2) \subset I_k \cup \{v_1\}.$

Thus,

$$N_D^+(v_1) \cup N_D^+(v_2) \subset I_k \cup \{v_1\}.$$
 (2)

Let P_1 and P_2 be the partite sets to which v_1 and v_2 belong, respectively. Then $P_1 = P_2$ if v_1 and v_2 are nonadjacent, and $P_1 \neq P_2$ if v_1 and v_2 are adjacent.

Firstly, assume that v_1 and v_2 are nonadjacent. Then v_1 and v_2 do not share a prey, that is,

$$N_D^+(v_1) \cap N_D^+(v_2) = \emptyset.$$
 (3)

By (1), (2) and (3),

$$k \ge |N_D^+(v_1) \cup N_D^+(v_2)| - 1 = |N_D^+(v_1)| + |N_D^+(v_2)| - 1 \ge 2n - 1.$$

Now suppose that v_1 and v_2 are adjacent. Then $P_1 \neq P_2$. Let

$$A_1 = \{a \mid a \text{ is a common prey of } v_1 \text{ and } v \text{ for } v \in P_2 \setminus \{v_2\}\},$$

$$A_2 = \{a \mid \text{ is a common prey of } v_2 \text{ and } v \text{ for } v \in P_1 \setminus \{v_1\}\}.$$

Let b be a common prey of v_1 and v_2 . Then $b \notin A_1 \cup A_2$. For, otherwise, v_1 , v_2 , v form a triangle for some $v \in P_1 \cup P_2$, which is a contradiction. Then $A_1 \cup \{b\} \subset N_D^+(v_1)$ and $A_2 \cup \{b\} \subset N_D^+(v_2)$. Since v_1 is adjacent to every vertex of P_2 and any pair of vertices in P_2 is nonadjacent, $|A_1| \geq n - 1$. For the same reason, $|A_2| \geq n - 1$. Suppose that there is a vertex a belonging to $A_1 \cap A_2$. Then $v \to a$, $v_1 \to a$, $v_2 \to a$ for some $v \in P_2 \setminus \{v_2\}$ and $v \in P_1 \setminus \{v_1\}$. Then v_1, v_2, v , $v_1 \to v_2$ form $v_2 \to v_3$. This implies that v_1 is adjacent to $v_1 \to v_2$ and we reach a contradiction. Thus, $v_1 \to v_2 \to v_3$. Hence

$$k \ge |N_D^+(v_1) \cup N_D^+(v_2)| - 1 \ge (|A_1 \cup A_2| + 1) - 1 = |A_1| + |A_2| \ge 2n - 2.$$

3 The competition number of K_2^m

In this section, we compute the competition number of K_2^m , which is often called a 'cocktail party graph'.

Theorem 7. For $m \geq 2$,

$$k(K_2^m) = 2.$$

Proof. By Theorem 6, it is true that $k(K_2^m) \ge 2$. Now we show that $k(K_2^m) \le 2$. If m = 2, then K_2^2 is a 4-cycle and it is well-known that $k(K_2^2) = 2$. Now suppose that $m \ge 3$. Let $\{x_i, y_i\}$ be the *i*th partite set of K_2^m for each $i \in [m]$. We let

$$S_{1} = \{x_{1}, x_{2}, x_{3}, \dots, x_{m}\};$$

$$S_{2} = \{x_{1}, y_{2}, y_{3}, \dots, y_{m}\};$$

$$S_{3} = \{y_{1}, x_{2}, y_{3}, \dots, y_{m}\};$$

$$S_{4} = \{y_{1}, y_{2}, x_{3}, \dots, y_{m}\};$$

$$\vdots$$

$$S_{m+1} = \{y_{1}, y_{2}, y_{3}, \dots, x_{m}\}.$$

We denote by S the family of those sets just defined. Since no two vertices in S_i belong to the same partite set, it is true that S_i forms a clique in K_2^m for each $i \in [m+1]$. Now we take an edge e of K_2^m . Then $e = x_i x_j$, $e = x_i y_j$, or $e = y_i y_j$ for some $i, j \in [m]$, $i \neq j$. If $e = x_i x_j$, then e is covered by the set S_1 . If $e = x_i y_j$, then e is covered by S_{i+1} . If $e = y_i y_j$, then e is covered by S_k for some $k \in [m] \setminus \{1, i+1, j+1\}$. Thus S is an ECC of K_2^m .

We construct a digraph D as follows:

$$V(D) = V(K_2^m) \cup \{a, b\};$$

$$A(D) = \{(u, a) \mid u \in S_1\} \cup \{(u, b) \mid u \in S_2\} \cup \bigcup_{i=3}^{m+1} \{(u, x_{i-2}) \mid u \in S_i\}.$$

Since x_i is not contained in S_j for any $j \ge i+2$, it is true that D is acyclic. For each $x \in V(D)$, either $N_D^-(x) = \emptyset$ or $N_D^-(x) = S_i$ for some $i \in [m+1]$. Thus $C(D) = K_2^m \cup \{a, b\}$.

4 The competition number of K_3^m

In this section, we compute $k(K_3^m)$ for any $m \ge 2$. As K_3^2 is triangle-free, it is true that $k(K_3^2) = 9 - 6 + 2 = 5$. For $m \ge 3$, we present the following theorem.

Theorem 8. For $m \geq 3$,

$$k(K_3^m) = 4.$$

Proof. Given an integer $m \geq 3$, there exist a positive integer t and an integer r such that m = 3t + r and $r \in \{0, 1, 2\}$. Now we take 3t partite sets of K_3^m and put them into t groups so that each group contains 3 partite sets. For each $i \in [t]$, we denote the jth partite set in the ith group by $P_{ij} = \{x_{ij}, y_{ij}, z_{ij}\}$ for each j = 1, 2, 3. In case of r > 0, we have r remaining partite sets and denote them by $P_{t+1,j} = \{x_{t+1,j}, y_{t+1,j}, z_{t+1,j}\}$ for $j \in [r]$.

Let $Q_i = P_{i1} \cup P_{i2} \cup P_{i3}$ for each $i \in [t]$ and $Q_{t+1} = P_{t+1,1} \cup \cdots \cup P_{t+1,r}$. Note that, for $i \in [t]$, the subgraph of K_3^m induced by Q_i is isomorphic to K_3^3 , and the subgraph of K_3^m induced by Q_{t+1} is isomorphic to K_3^r .

For each $i \in [t]$, we let

$$S(x_{i1}) = \{x_{i1}, y_{i2}, y_{i3}\}, \quad S(y_{i1}) = \{y_{i1}, z_{i2}, z_{i3}\}, \quad S(z_{i1}) = \{z_{i1}, x_{i2}, x_{i3}\},$$

$$S(x_{i2}) = \{x_{i2}, y_{i1}, y_{i3}\}, \quad S(y_{i2}) = \{y_{i2}, z_{i1}, z_{i3}\}, \quad S(z_{i2}) = \{z_{i2}, x_{i1}, x_{i3}\},$$

$$S(x_{i3}) = \{x_{i3}, y_{i1}, y_{i2}\}, \quad S(y_{i3}) = \{y_{i3}, z_{i1}, z_{i2}\}, \quad S(z_{i3}) = \{z_{i3}, x_{i1}, x_{i2}\}.$$

We denote the collection of 9 sets defined above by S_i . Note that any two vertices in each set in S_i belong to distinct partite sets. Thus each of the above sets forms a clique in K_3^m . It is also easy to check that S_i is an ECC of K_3^3 induced by Q_i . If r > 0, then we define 9 more sets: If r = 1, then

$$S(x_{t+1,1}) = \{x_{t+1,1}\}, \quad S(y_{t+1,1}) = \{y_{t+1,1}\}, \quad S(z_{t+1,1}) = \{z_{t+1,1}\},$$

 $S(x_{t+1,2}) = \{y_{t+1,1}\}, \quad S(y_{t+1,2}) = \{z_{t+1,1}\}, \quad S(z_{t+1,2}) = \{x_{t+1,1}\},$
 $S(x_{t+1,3}) = S(x_{t+1,2}), \quad S(y_{t+1,3}) = S(y_{t+1,2}), \quad S(z_{t+1,3}) = S(z_{t+1,2}).$

If r=2, then

$$S(x_{t+1,1}) = \{x_{t+1,1}, y_{t+1,2}\}, \quad S(y_{t+1,1}) = \{y_{t+1,1}, z_{t+1,2}\},$$

$$S(z_{t+1,1}) = \{z_{t+1,1}, x_{t+1,2}\}, \quad S(x_{t+1,2}) = \{y_{t+1,1}, x_{t+1,2}\},$$

$$S(y_{t+1,2}) = \{z_{t+1,1}, y_{t+1,2}\}, \quad S(z_{t+1,2}) = \{x_{t+1,1}, z_{t+1,2}\},$$

$$S(x_{t+1,3}) = \{y_{t+1,1}, y_{t+1,2}\}, \quad S(y_{t+1,3}) = \{z_{t+1,1}, z_{t+1,2}\},$$

$$S(z_{t+1,3}) = \{x_{t+1,1}, x_{t+1,2}\}.$$

It is easy to check that the above sets form an ECC of K_3^r induced by Q_{t+1} . For convenience, if r = 0, then we let

$$S(x_{t+1,1}) = S(y_{t+1,1}) = S(z_{t+1,1}) = S(x_{t+1,2}) = S(y_{t+1,2}) = S(z_{t+1,2})$$

= $S(x_{t+1,3}) = S(y_{t+1,3}) = S(z_{t+1,3}) = \emptyset$.

We also let $S(x_{t+2,j}) = S(y_{t+2,j}) = S(z_{t+2,j}) = \emptyset$ for j = 1, 2, 3. Now we define a digraph D as follows:

$$V(D) = V(K_3^m) \cup \{a_1, a_2, a_3, a_4\}$$

$$A(D) = \bigcup_{i=1}^{t+1} A_i$$

where A_i is the union of arc sets

$$\bigcup_{\ell=1}^{t+1} S(x_{\ell 1}) \to a_{1}, \qquad S(x_{i2}) \cup \bigcup_{\ell=i+1}^{t+1} S(y_{\ell 1}) \to x_{i1},
S(x_{i3}) \cup \bigcup_{\ell=i+1}^{t+1} S(z_{\ell 1}) \to x_{i2}, \qquad S(y_{i1}) \cup \bigcup_{\ell=i+1}^{t+1} S(x_{\ell 1}) \to x_{i3},
S(y_{i2}) \cup \bigcup_{\ell=i+1}^{t+1} S(y_{\ell 1}) \to y_{i1}, \qquad S(y_{i3}) \cup \bigcup_{\ell=i+1}^{t+1} S(z_{\ell 1}) \to y_{i2},
S(z_{i1}) \cup \bigcup_{\ell=i+1}^{t+1} S(x_{\ell 1}) \to z_{i-1,1}, \qquad S(z_{i2}) \cup \bigcup_{\ell=i+1}^{t+1} S(y_{\ell 1}) \to z_{i-1,2},
S(z_{i3}) \cup \bigcup_{\ell=i+1}^{t+1} S(z_{\ell 1}) \to z_{i-1,3}.$$

where $z_{01} = a_2$, $z_{02} = a_3$, and $z_{03} = a_4$.

We denote by D_i the subdigraph of D induced by $Q_i \cup \{a_1, z_{i-1,1}, z_{i-1,2}, z_{i-1,3}\}$ for each $i \in [t+1]$. Now we order the vertices of D_i as follows:

$$a_1, z_{i-1,1}, z_{i-1,2}, z_{i-1,3}, x_{i1}, x_{i2}, x_{i3}, y_{i1}, y_{i2}, y_{i3}, z_{i1}, z_{i2}, z_{i3}.$$

Then we can easily check that $u \to v$ in D_i only if v is on the left hand side of u in the above sequence. Thus D_i is acyclic for each $i \in [t+1]$. Furthermore, an arc goes from a vertex in the jth partite set Q_j to the ith partite set Q_i in D only if $i \leq j$. Therefore D is acyclic.

Two nonadjacent vertices in G belong to Q_i for a unique $i \in [t+1]$. Moreover they cannot belong to the same clique in S_i . However, no two vertices from distinct cliques in S_i prey on a common vertex in D and so they are nonadjacent in C(D). Therefore $E(C(D)) \subset E(K_3^m)$.

We show that $E(C(D)) \supset E(K_3^m)$ in the following. We note that for each vertex v in D_i , $N_{D_i}^-(v)$ is either a clique in S_i or an empty set and that each clique in S_i is the neighborhood of a vertex in D_i for each $i \in [t]$. Thus, the competition graph of D_i is $K_3^3 \cup \{a_1, z_{i-1,1}, z_{i-1,2}, z_{i-1,3}\}$ if $i \in [t]$. Similarly, $C(D_{t+1}) = K_3^r \cup \{a_1, z_{t,1}, z_{t,2}, z_{t,3}\}$ if t > 0.

It remains to show that a vertex in Q_i and a vertex in Q_j are adjacent in C(D) for $i, j \in [t]$ with i < j. We note that for any $i \in [t]$ and k = 1, 2, 3, it holds that Q_i is the disjoint union of $S(x_{ik}), S(y_{ik})$ and $S(z_{ik})$. Now we take a vertex $u \in Q_j$. Then $u \in S(x_{j1})$ or $u \in S(y_{j1})$ or $u \in S(z_{j1})$.

Firstly consider the case $u \in S(x_{i1})$. Then in D,

$$S(x_{i1}) \cup \{u\} \to a_1, \quad S(y_{i1}) \cup \{u\} \to x_{i3}, \quad \text{and} \quad S(z_{i1}) \cup \{u\} \to z_{i-1,1}.$$

Thus u is adjacent to every vertex in Q_i .

Now suppose that $u \in S(y_{i1})$. Then in D,

$$S(x_{i2}) \cup \{u\} \to x_{i1}, \quad S(y_{i2}) \cup \{u\} \to y_{i1}, \quad \text{and} \quad S(z_{i2}) \cup \{u\} \to z_{i-1,2}.$$

Thus u is adjacent to every vertex in Q_i .

Finally suppose that $u \in S(z_{i1})$. Then in D,

$$S(x_{i3}) \cup \{u\} \to x_{i2}, \quad S(y_{i3}) \cup \{u\} \to y_{i2}, \quad \text{and} \quad S(z_{i3}) \cup \{u\} \to z_{i-1,3}.$$

Thus u is adjacent to every vertex in Q_i . Therefore, $E(C(D)) \supset E(K_3^m)$. This competes the proof that $C(D) = K_3^m \cup \{a_1, a_2, a_3, a_4\}$. Hence $k(K_3^m) \leq 4$. From Theorem 6, it follows that $k(K_3^m) = 4$.

5 Concluding remarks

In this paper, we give bounds for K_n^m and computed the competition numbers of K_3^m and K_2^m . Note that $k(K_3^m) = k(K_3^3) = 4$ for $m \ge 3$ and $k(K_2^m) = k(K_2^2) = 2$ for $m \ge 2$. We conjecture that $k(K_n^m) = k(K_n^n)$ for $m \ge n$.

References

- [1] J. A. Bondy and U. S. R. Murty, *Graph Theory with Applications*, North Holland, New York (1976).
- [2] C. Cable, K. F. Jones, J. R. Lundgren, and S. Seager, "Niche graphs," Discrete Appl. Math. 23 (1989) 231-241.
- [3] J. E. Cohen, "Interval Graphs and Food Webs: A Finding and a Problem," RAND Corporation Document 17696-PR, Santa Monica, CA (1968).
- [4] M. B. Cozzens and F. S. Roberts, "T-Colorings of Graphs and the Channel Assignment Problem," *Congressus Numerantium* **25** (1982) 191-208.
- [5] R. D. Dutton and R. C. Brigham, "A characterization of competition graphs," *Discrete Appl. Math.* **6** (1983) 315-317.
- [6] W. K. Hale, "Frequency Assignment: Theory and Application," Proc. IEEE 68 (1980) 1497-1514.
- [7] P. C. Fishburn and W. V. Gehrlein, "Niche numbers," *J. Graph Theory* **16** (1992) 131-139.
- [8] S.-R. Kim, "The Competition Number and Its Variants," in *Quo Vadis*, Graph Theory?, (J. Gimbel, J. W. Kennedy, and L. V. Quintas, eds.), Annals of Discrete Mathematics 55, North Holland B. V., Amsterdam, the Netherlands, (1993) 313-326.
- [9] S. -R. Kim and F. S. Roberts, "Competition numbers of graphs with a small number of triangles," *Discrete Appl. Math.* **78** (1997) 153-162.
- [10] S.-R. Kim and Y. Sano, "The competition numbers of complete tripartite graphs", *Discrete Appl. Math.*, to appear (Available online from 18 June 2008).
- [11] J. R. Lundgren, "Food Webs, Competition Graphs, Competition-Common Enemy Graphs, and Niche Graphs," in Applications of Combinatorics and Graph Theory to the Biological and Social Sciences, (F. S. Roberts, ed.), IMH Volumes in Mathematics and Its Application, Vol. 17, Springer-Verlag, New York (1989) 221-243.

- [12] R. J. Opsut, "On the Computation of the Competition Number of a Graph," SIAM J. Alg. Discr. Meth. 3 (1982) 420-428.
- [13] R. J. Opsut and F. S. Roberts, "On the Fleet Maintenance, Mobile Radio frequency, Task Assignment and Traffic phasing Problem," The Theory and Applications of Graphs, (G. Chartrand, Y. Alavi, D. L. Goldsmith, L. Lesniak-Foster, and D. R. Lick, eds.), Wiley, New York (1981) 479-492.
- [14] F. S. Roberts, "Food Webs, Competition Graphs, and the Boxicity of Ecological Phase Space," *Theory and Applications of Graphs*, (Y. Alavi and D. Lick, eds.), Springer Verlag, New York (1978) 477-490.
- [15] F. S. Roberts, Graph Theory and Its Applications to Problems of Society, SIAM, Pennsylvania (1978).
- [16] D. Scott, "The competition-common enemy graph of a digraph," Discrete Appl. Math. 17 (1987) 269-280.
- [17] C. E. Shannon, "The Zero Error Capacity of a Noisy Channel," *IRE Trans. Inform. Theory* **IT-2** (1956) 8-19.