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Abstract

Let D be an acyclic digraph. The competition graph of D is a
graph which has the same vertex set as D and has an edge between u
and v if and only if there exists a vertex x in D such that (u, x) and
(v, x) are arcs of D. For any graph G, G together with sufficiently
many isolated vertices is the competition graph of some acyclic di-
graph. The competition number k(G) of G is the smallest number of
such isolated vertices. In general, it is hard to compute the compe-
tition number k(G) for a graph G and it has been one of important
research problems in the study of competition graphs to characterize
a graph by its competition number.

In this paper, we compute the competition numbers of a complete
multipartite graph in which each partite set has two vertices and a
complete multipartite graph in which each partite set has three ver-
tices.
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tipartite graphs
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1 Introduction

Suppose D is an acyclic digraph (for all undefined graph-theoretical terms,
see [1] and [15]). The competition graph of D, denoted by C(D), has the
same set of vertices as D and an edge between vertices u and v if and only if
there is a vertex x in D such that (u, x) and (v, x) are arcs of D. Roberts [14]
observed that if G is any graph, G together with sufficiently many isolated
vertices is the competition graph of an acyclic digraph. Then he defined the
competition number k(G) of a graph G to be the smallest number k such
that G together with k isolated vertices added is the competition graph of
an acyclic digraph.

The notion of competition graph was introduced by Cohen [3] as a means
of determining the smallest dimension of ecological phase space. Since then,
various variations have been defined and studied by many authors (see, for
example, [2, 7, 8, 9, 11, 16]). Besides an application to ecology, the concept of
competition graph can be applied to the study of communication over noisy
channel (see Roberts [14] and Shannon [17]) and to problem of assigning
channels to radio or television transmitters (see Cozzens and Roberts [4],
Hale [6], or Opsut and Roberts [13]).

Roberts [14] observed that characterization of competition graph is equiv-
alent to computation of competition number. It does not seem to be easy
in general to compute k(G) for all graphs G, as Opsut [12] showed that the
computation of the competition number of a graph is an NP-hard problem
(see [8, 9] for graphs whose competition numbers are known). It has been
one of important research problems in the study of competition graphs to
characterize a graph by its competition number.

In this paper, we shall compute competition numbers of a complete mul-
tipartite graph in which each partite set has two vertices and a complete
multipartite graph in which each partite set has three vertices.

We denote by Km
n the complete m-partite graph in which each partite set

has n vertices.
For a digraph D, a sequence v1, v2, . . . , vn of the vertices of D is called an

acyclic ordering of D if (vi, vj) ∈ A(D) implies i > j. It is well-known that
a digraph D is acyclic if and only if there exists an acyclic ordering of D.

An edge clique cover (or an ECC for short) of a graph G is a family of
cliques such that each edge of G is contained in some clique in the family.
The smallest size of an ECC of G is called the edge clique cover number
(or the ECC number for short), and is denoted by θe(G). Opsut [12] gave
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bounds of k(G) for a graph G by showing that θe(G)− |V (G)|+ 2 ≤ k(G) ≤
θe(G). Dutton and Brigham [5] characterized the competition graphs of
acyclic digraphs in terms of an ECC as follows:

Theorem 1 ([5]). A graph G is the competition graph of an acyclic digraph
if and only if there exists an ordering v1, . . . , vn of the vertices of G and an
ECC {S1, . . . , Sn} of G such that vi ∈ Sj implies i < j.

For a vertex v in a graph G, let the open neighborhood of v be denoted
by

NG(v) = {u | u is adjacent to v}
and the closed neighborhood of v be denoted by NG[v] = NG(v) ∪ {v}. We
denote the subgraph of G induced by NG(v) (resp. NG[v]) by the same
symbol NG(v) (resp. NG[v]). For a digraph D, we define N−

D (v) = {w ∈
V (D) | (w, v) ∈ A(D)} and N+

D (v) = {w ∈ V (D) | (v, w) ∈ A(D)}.
A vertex clique cover of a graph G is a family of cliques such that each

vertex of G is contained in some clique in the family. The smallest size of
a vetrex clicque cover of G is called the vertex clique cover number, and is
denoted by θv(G). Opsut [12] showed the following:

Proposition 2 ([12]). Let G be a graph. Then we have

min{θv(NG(v)) | v ∈ V (G)} ≤ k(G).

This proposition is true even if each open neighborhood is replaced with the
closed neighborhood.

Proposition 3. Let G be a graph. Then we have

min{θv(NG[v]) | v ∈ V (G)} ≤ k(G).

Proof. Let t = min{θv(NG[v]) | v ∈ V (G)} and k = k(G). Let D be an
acyclic digraph such that C(D) = G∪Ik = G∪{z1, ..., zk}. Let z1, ..., zk, v1, ..., vn

be an ordering of D so that (u, v) is an arc of D only if u is on the right hand
side of v in the sequence. Then we have |N+

D (v1)| ≥ t since θv(NG[v1]) ≥ t.
Since N+

D (v1) ⊆ {z1, ..., zk}, we have t ≤ k and thus the proposition holds.

For some special graph families, we have explicit formulae for computing
competition numbers. For example, if G is a choral graph with the minimum
degree ≥ 1 then k(G) = 1, and if G is a triangle-free connected graph then

k(G) = |E(G)| − |V (G)| + 2
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(see [14]). From this formula, it follows that for a complete bipartite graph
Kn1,n2 , we have k(Kn1,n2) = n1n2 − (n1 + n2) + 2. Kim and Sano [10] gave
the exact competition number of a complete tripartite graph K3

n:

Theorem 4 ([10]). For n ≥ 2,

k(K3
n) = n2 − 3n + 4.

Then they proposed an open problem to compute competition numbers of
various types of complete multipartite graphs. To answer their question, we
study Km

n . We give a lower bound for the competition number of Km
n . Then

we make use of it to compute the competition numbers of Km
2 and Km

3 .

2 A lower bound for the competition number of Km
n

In this section, we give a lower bound for k(Km
n ) for integers m ≥ 2 and

n ≥ 1.
For each positive integer n, we denote the set {1, . . . , n} by [n].

Proposition 5. For any vertex v of Km
n with m ≥ 2,

θv(NKm
n

[v]) ≥ n.

Proof. Let Pk denote the kth partite set of Km
n and let Pk = {vk1, . . . , vkn}

for each k ∈ [m]. From the fact that v11 is adjacent to all the vertices in
V (Km

n ) \ P1 and that any two vertices in P2 are not adjacent, we know that
at least n cliques are needed to cover the n edges v11v21, ..., v11v2n which are
incident to v11. Therefore we have θv(NKm

n
[v11]) ≥ n. By symmetry, we can

conclude θv(NKm
n

[v]) ≥ n for any v ∈ V (Km
n ).

Given a digraph D = (V,A), we use a symbol u → v for arc (u, v) in A.
In addition, for S ⊂ V , we denote by S → w the arc set {(x,w) | x ∈ S}.

Theorem 6. For an integer m ≥ 2,

k(Km
n ) ≥ 2n − 2.

Proof. Let k be the competition number of Km
n . Then there exists an acyclic

digraph D such that C(D) = Km
n ∪ Ik where Ik = {a1, a2, . . . , ak}. Also, let

a1, a2, . . . , ak, v1, v2, . . . , vmn be an acyclic ordering of D. By Proposition 5,
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we have θv(NKm
n

[vi]) ≥ n for i = 1, . . . , mn. Thus vi has at least n distinct
prey, that is,

|N+
D (vi)| ≥ n. (1)

However, since v1 and v2 are the vertices of the lowest index and the second
lowest index, respectively,

N+
D (v1) ⊂ Ik and N+

D (v2) ⊂ Ik ∪ {v1}.

Thus,
N+

D (v1) ∪ N+
D (v2) ⊂ Ik ∪ {v1}. (2)

Let P1 and P2 be the partite sets to which v1 and v2 belong, respectively.
Then P1 = P2 if v1 and v2 are nonadjacent, and P1 6= P2 if v1 and v2 are
adjacent.

Firstly, assume that v1 and v2 are nonadjacent. Then v1 and v2 do not
share a prey, that is,

N+
D (v1) ∩ N+

D (v2) = ∅. (3)

By (1), (2) and (3),

k ≥ |N+
D (v1) ∪ N+

D (v2)| − 1 = |N+
D (v1)| + |N+

D (v2)| − 1 ≥ 2n − 1.

Now suppose that v1 and v2 are adjacent. Then P1 6= P2. Let

A1 = {a | a is a common prey of v1 and v for v ∈ P2 \ {v2}},

A2 = {a | is a common prey of v2 and v for v ∈ P1 \ {v1}}.

Let b be a common prey of v1 and v2. Then b 6∈ A1 ∪A2. For, otherwise, v1,
v2, v form a triangle for some v ∈ P1 ∪ P2, which is a contradiction. Then
A1 ∪ {b} ⊂ N+

D (v1) and A2 ∪ {b} ⊂ N+
D (v2). Since v1 is adjacent to every

vertex of P2 and any pair of vertices in P2 is nonadjacent, |A1| ≥ n − 1. For
the same reason, |A2| ≥ n− 1. Suppose that there is a vertex a belonging to
A1 ∩ A2. Then v → a, v1 → a, w → a, v2 → a for some v ∈ P2 \ {v2} and
w ∈ P1 \ {v1}. Then v1, v2, v, w form K4. This implies that v1 is adjacent
to w and we reach a contradiction. Thus, A1 ∩ A2 = ∅. Hence

k ≥ |N+
D (v1) ∪ N+

D (v2)| − 1 ≥ (|A1 ∪ A2| + 1) − 1 = |A1| + |A2| ≥ 2n − 2.
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3 The competition number of Km
2

In this section, we compute the competition number of Km
2 , which is often

called a ‘cocktail party graph’.

Theorem 7. For m ≥ 2,
k(Km

2 ) = 2.

Proof. By Theorem 6, it is true that k(Km
2 ) ≥ 2. Now we show that k(Km

2 ) ≤
2. If m = 2, then K2

2 is a 4-cycle and it is well-known that k(K2
2) = 2. Now

suppose that m ≥ 3. Let {xi, yi} be the ith partite set of Km
2 for each i ∈ [m].

We let

S1 = {x1, x2, x3, . . . , xm};
S2 = {x1, y2, y3, . . . , ym};
S3 = {y1, x2, y3, . . . , ym};
S4 = {y1, y2, x3, . . . , ym};

...

Sm+1 = {y1, y2, y3, . . . , xm}.

We denote by S the family of those sets just defined. Since no two vertices
in Si belong to the same partite set, it is true that Si forms a clique in Km

2

for each i ∈ [m+1]. Now we take an edge e of Km
2 . Then e = xixj, e = xiyj,

or e = yiyj for some i, j ∈ [m], i 6= j. If e = xixj, then e is covered by the
set S1. If e = xiyj, then e is covered by Si+1. If e = yiyj, then e is covered
by Sk for some k ∈ [m] \ {1, i + 1, j + 1}. Thus S is an ECC of Km

2 .
We construct a digraph D as follows:

V (D) = V (Km
2 ) ∪ {a, b};

A(D) = {(u, a) | u ∈ S1} ∪ {(u, b) | u ∈ S2} ∪
m+1∪
i=3

{(u, xi−2) | u ∈ Si}.

Since xi is not contained in Sj for any j ≥ i+2, it is true that D is acyclic.
For each x ∈ V (D), either N−

D (x) = ∅ or N−
D (x) = Si for some i ∈ [m + 1].

Thus C(D) = Km
2 ∪ {a, b}.
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4 The competition number of Km
3

In this section, we compute k(Km
3 ) for any m ≥ 2. As K2

3 is triangle-free,
it is true that k(K2

3) = 9 − 6 + 2 = 5. For m ≥ 3, we present the following
theorem.

Theorem 8. For m ≥ 3,
k(Km

3 ) = 4.

Proof. Given an integer m ≥ 3, there exist a positive integer t and an integer
r such that m = 3t + r and r ∈ {0, 1, 2}. Now we take 3t partite sets
of Km

3 and put them into t groups so that each group contains 3 partite
sets. For each i ∈ [t], we denote the jth partite set in the ith group by
Pij = {xij, yij, zij} for each j = 1, 2, 3. In case of r > 0, we have r remaining
partite sets and denote them by Pt+1,j = {xt+1,j, yt+1,j, zt+1,j} for j ∈ [r].

Let Qi = Pi1 ∪ Pi2 ∪ Pi3 for each i ∈ [t] and Qt+1 = Pt+1,1 ∪ · · · ∪ Pt+1,r.
Note that, for i ∈ [t], the subgraph of Km

3 induced by Qi is isomorphic to
K3

3 , and the subgraph of Km
3 induced by Qt+1 is isomorphic to Kr

3 .
For each i ∈ [t], we let

S(xi1) = {xi1, yi2, yi3}, S(yi1) = {yi1, zi2, zi3}, S(zi1) = {zi1, xi2, xi3},
S(xi2) = {xi2, yi1, yi3}, S(yi2) = {yi2, zi1, zi3}, S(zi2) = {zi2, xi1, xi3},
S(xi3) = {xi3, yi1, yi2}, S(yi3) = {yi3, zi1, zi2}, S(zi3) = {zi3, xi1, xi2}.

We denote the collection of 9 sets defined above by Si. Note that any two
vertices in each set in Si belong to distinct partite sets. Thus each of the
above sets forms a clique in Km

3 . It is also easy to check that Si is an ECC
of K3

3 induced by Qi. If r > 0, then we define 9 more sets: If r = 1, then

S(xt+1,1) = {xt+1,1}, S(yt+1,1) = {yt+1,1}, S(zt+1,1) = {zt+1,1},
S(xt+1,2) = {yt+1,1}, S(yt+1,2) = {zt+1,1}, S(zt+1,2) = {xt+1,1},

S(xt+1,3) = S(xt+1,2), S(yt+1,3) = S(yt+1,2), S(zt+1,3) = S(zt+1,2).

If r = 2, then

S(xt+1,1) = {xt+1,1, yt+1,2}, S(yt+1,1) = {yt+1,1, zt+1,2},
S(zt+1,1) = {zt+1,1, xt+1,2}, S(xt+1,2) = {yt+1,1, xt+1,2},
S(yt+1,2) = {zt+1,1, yt+1,2}, S(zt+1,2) = {xt+1,1, zt+1,2},
S(xt+1,3) = {yt+1,1, yt+1,2}, S(yt+1,3) = {zt+1,1, zt+1,2},
S(zt+1,3) = {xt+1,1, xt+1,2}.
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It is easy to check that the above sets form an ECC of Kr
3 induced by Qt+1.

For convenience, if r = 0, then we let

S(xt+1,1) = S(yt+1,1) = S(zt+1,1) = S(xt+1,2) = S(yt+1,2) = S(zt+1,2)

= S(xt+1,3) = S(yt+1,3) = S(zt+1,3) = ∅.

We also let S(xt+2,j) = S(yt+2,j) = S(zt+2,j) = ∅ for j = 1, 2, 3.
Now we define a digraph D as follows:

V (D) = V (Km
3 ) ∪ {a1, a2, a3, a4}

A(D) =
t+1∪
i=1

Ai

where Ai is the union of arc sets

t+1∪
`=1

S(x`1) → a1, S(xi2) ∪
t+1∪

`=i+1

S(y`1) → xi1,

S(xi3) ∪
t+1∪

`=i+1

S(z`1) → xi2, S(yi1) ∪
t+1∪

`=i+1

S(x`1) → xi3,

S(yi2) ∪
t+1∪

`=i+1

S(y`1) → yi1, S(yi3) ∪
t+1∪

`=i+1

S(z`1) → yi2,

S(zi1) ∪
t+1∪

`=i+1

S(x`1) → zi−1,1, S(zi2) ∪
t+1∪

`=i+1

S(y`1) → zi−1,2,

S(zi3) ∪
t+1∪

`=i+1

S(z`1) → zi−1,3.

where z01 = a2, z02 = a3, and z03 = a4.
We denote by Di the subdigraph of D induced by Qi ∪ {a1, zi−1,1, zi−1,2, zi−1,3}

for each i ∈ [t + 1]. Now we order the vertices of Di as follows:

a1, zi−1,1, zi−1,2, zi−1,3, xi1, xi2, xi3, yi1, yi2, yi3, zi1, zi2, zi3.

Then we can easily check that u → v in Di only if v is on the left hand side of
u in the above sequence. Thus Di is acyclic for each i ∈ [t+1]. Furthermore,
an arc goes from a vertex in the jth partite set Qj to the ith partite set Qi

in D only if i ≤ j. Therefore D is acyclic.
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Two nonadjacent vertices in G belong to Qi for a unique i ∈ [t + 1].
Moreover they cannot belong to the same clique in Si. However, no two
vertices from distinct cliques in Si prey on a common vertex in D and so
they are nonadjacent in C(D). Therefore E(C(D)) ⊂ E(Km

3 ).
We show that E(C(D)) ⊃ E(Km

3 ) in the following. We note that for each
vertex v in Di, N−

Di
(v) is either a clique in Si or an empty set and that each

clique in Si is the neighborhood of a vertex in Di for each i ∈ [t]. Thus, the
competition graph of Di is K3

3 ∪ {a1, zi−1,1, zi−1,2, zi−1,3} if i ∈ [t]. Similarly,
C(Dt+1) = Kr

3 ∪ {a1, zt,1, zt,2, zt,3} if r > 0.
It remains to show that a vertex in Qi and a vertex in Qj are adjacent in

C(D) for i, j ∈ [t] with i < j. We note that for any i ∈ [t] and k = 1, 2, 3, it
holds that Qi is the disjoint union of S(xik), S(yik) and S(zik). Now we take
a vertex u ∈ Qj. Then u ∈ S(xj1) or u ∈ S(yj1) or u ∈ S(zj1).

Firstly consider the case u ∈ S(xj1). Then in D,

S(xi1) ∪ {u} → a1, S(yi1) ∪ {u} → xi3, and S(zi1) ∪ {u} → zi−1,1.

Thus u is adjacent to every vertex in Qi.
Now suppose that u ∈ S(yj1). Then in D,

S(xi2) ∪ {u} → xi1, S(yi2) ∪ {u} → yi1, and S(zi2) ∪ {u} → zi−1,2.

Thus u is adjacent to every vertex in Qi.
Finally suppose that u ∈ S(zj1). Then in D,

S(xi3) ∪ {u} → xi2, S(yi3) ∪ {u} → yi2, and S(zi3) ∪ {u} → zi−1,3.

Thus u is adjacent to every vertex in Qi. Therefore, E(C(D)) ⊃ E(Km
3 ).

This competes the proof that C(D) = Km
3 ∪{a1, a2, a3, a4}. Hence k(Km

3 ) ≤
4. From Theorem 6, it follows that k(Km

3 ) = 4.

5 Concluding remarks

In this paper, we give bounds for Km
n and computed the competition numbers

of Km
3 and Km

2 . Note that k(Km
3 ) = k(K3

3) = 4 for m ≥ 3 and k(Km
2 ) =

k(K2
2) = 2 for m ≥ 2. We conjecture that k(Km

n ) = k(Kn
n) for m ≥ n.
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