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Abstract

Let D be an acyclic digraph. The competition graph of D is a
graph which has the same vertex set as D and has an edge between u
and v if and only if there exists a vertex x in D such that (u,z) and
(v,x) are arcs of D. For any graph G, G together with sufficiently
many isolated vertices is the competition graph of some acyclic di-
graph. The competition number k(G) of G is the smallest number of
such isolated vertices. In general, it is hard to compute the compe-
tition number k(G) for a graph G and it has been one of important
research problems in the study of competition graphs to characterize
a graph by its competition number.

In this paper, we compute the competition numbers of a complete
multipartite graph in which each partite set has two vertices and a
complete multipartite graph in which each partite set has three ver-
tices.
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1 Introduction

Suppose D is an acyclic digraph (for all undefined graph-theoretical terms,
see [1] and [15]). The competition graph of D, denoted by C(D), has the
same set of vertices as D and an edge between vertices v and v if and only if
there is a vertex x in D such that (u,z) and (v, z) are arcs of D. Roberts [14]
observed that if G is any graph, G together with sufficiently many isolated
vertices is the competition graph of an acyclic digraph. Then he defined the
competition number k(G) of a graph G to be the smallest number & such
that G together with k isolated vertices added is the competition graph of
an acyclic digraph.

The notion of competition graph was introduced by Cohen [3] as a means
of determining the smallest dimension of ecological phase space. Since then,
various variations have been defined and studied by many authors (see, for
example, [2, 7,8, 9, 11, 16]). Besides an application to ecology, the concept of
competition graph can be applied to the study of communication over noisy
channel (see Roberts [14] and Shannon [17]) and to problem of assigning
channels to radio or television transmitters (see Cozzens and Roberts [4],
Hale [6], or Opsut and Roberts [13]).

Roberts [14] observed that characterization of competition graph is equiv-
alent to computation of competition number. It does not seem to be easy
in general to compute k(G) for all graphs G, as Opsut [12] showed that the
computation of the competition number of a graph is an NP-hard problem
(see [8, 9] for graphs whose competition numbers are known). It has been
one of important research problems in the study of competition graphs to
characterize a graph by its competition number.

In this paper, we shall compute competition numbers of a complete mul-
tipartite graph in which each partite set has two vertices and a complete
multipartite graph in which each partite set has three vertices.

We denote by K" the complete m-partite graph in which each partite set
has n vertices.

For a digraph D, a sequence vy, vs, ..., v, of the vertices of D is called an
acyclic ordering of D if (v;,v;) € A(D) implies i > j. It is well-known that
a digraph D is acyclic if and only if there exists an acyclic ordering of D.

An edge clique cover (or an ECC for short) of a graph G is a family of
cliques such that each edge of G is contained in some clique in the family.
The smallest size of an ECC of G is called the edge clique cover number
(or the ECC number for short), and is denoted by 6.(G). Opsut [12] gave



bounds of k(G) for a graph G by showing that 0.(G) — |V (G)|+2 < k(G) <
0.(G). Dutton and Brigham [5] characterized the competition graphs of
acyclic digraphs in terms of an ECC as follows:

Theorem 1 ([5]). A graph G is the competition graph of an acyclic digraph
if and only if there exists an ordering vy, ..., v, of the vertices of G and an
ECC{S1,...,5,} of G such that v; € S; implies i < j.

For a vertex v in a graph G, let the open neighborhood of v be denoted

by
Neg(v) = {u | u is adjacent to v}

and the closed neighborhood of v be denoted by Nglv] = Ng(v) U {v}. We
denote the subgraph of G induced by Ng(v) (resp. Ng[v]) by the same
symbol Ng(v) (resp. Ng[v]). For a digraph D, we define N (v) = {w €
V(D) | (w,v) € A(D)} and N} (v) = {w € V(D) | (v,w) € A(D)}.

A wvertex clique cover of a graph G is a family of cliques such that each
vertex of G is contained in some clique in the family. The smallest size of

a vetrex clicque cover of G is called the vertex clique cover number, and is
denoted by 6,(G). Opsut [12] showed the following:

Proposition 2 ([12]). Let G be a graph. Then we have
min{0,(Ng(v)) | v € V(G)} < k(G).

This proposition is true even if each open neighborhood is replaced with the
closed neighborhood.

Proposition 3. Let G be a graph. Then we have
min{6,(N[v]) | v € V(G)} < k(G).

Proof. Let t = min{0,(Ng[v]) | v € V(G)} and k = k(G). Let D be an
acyclic digraph such that C(D) = GUI, = GU{z, ..., 2, }. Let z1, ..., 25, v1, ..., Up
be an ordering of D so that (u,v) is an arc of D only if u is on the right hand
side of v in the sequence. Then we have [N} (vy)| > t since 6,(Ng[v1]) > t.
Since N}y (vy) C {21, ..., 21}, we have t < k and thus the proposition holds. [J

For some special graph families, we have explicit formulae for computing
competition numbers. For example, if G is a choral graph with the minimum
degree > 1 then k(G) = 1, and if G is a triangle-free connected graph then

k(@) = |E(G)] = V(G)] +2
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(see [14]). From this formula, it follows that for a complete bipartite graph
Koy nys we have k(K »,) = nina — (ng + ng) + 2. Kim and Sano [10] gave
the exact competition number of a complete tripartite graph K3:

Theorem 4 ([10]). Forn > 2,
k(K?) =n?—3n+4.

Then they proposed an open problem to compute competition numbers of
various types of complete multipartite graphs. To answer their question, we
study K]"'. We give a lower bound for the competition number of K. Then
we make use of it to compute the competition numbers of K3 and K3".

2 A lower bound for the competition number of K™

In this section, we give a lower bound for k(K]") for integers m > 2 and
n>1.
For each positive integer n, we denote the set {1,...,n} by [n].

Proposition 5. For any vertex v of K" with m > 2,
0y (Ngm[v]) > n.

Proof. Let Py denote the kth partite set of K" and let P, = {vg1, ..., Vkn}
for each k € [m]. From the fact that vy is adjacent to all the vertices in
V(K") \ P, and that any two vertices in P, are not adjacent, we know that
at least n cliques are needed to cover the n edges v11vo1, ..., V1102, Which are
incident to v1;. Therefore we have 6,(N. Km [v11]) > n. By symmetry, we can

conclude 0,(Ngm[v]) > n for any v € V(K"). O

Given a digraph D = (V, A), we use a symbol v — v for arc (u,v) in A.
In addition, for S C V, we denote by S — w the arc set {(z,w) | z € S}.

Theorem 6. For an integer m > 2,
k(K]") > 2n — 2.

Proof. Let k be the competition number of K]". Then there exists an acyclic
digraph D such that C(D) = K" U I, where I, = {ay,as,...,a;}. Also, let
a1,0as,...,05,V1,V,...,Un, be an acyclic ordering of D. By Proposition 5,
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we have 0,(Ngm[v;]) > n for i =1, ..., mn. Thus v; has at least n distinct
prey, that is,
[N (vi)] = n. (1)

However, since v; and v, are the vertices of the lowest index and the second
lowest index, respectively,

Nf(v1) C I, and Np(ve) C Iy U{vy}.

Thus,
N (v1) UNS (ve) C I U {og } (2)

Let P, and P, be the partite sets to which v; and v, belong, respectively.
Then P, = P, if v; and v, are nonadjacent, and P, # P, if vy and vy are
adjacent.
Firstly, assume that v; and vy are nonadjacent. Then v, and v, do not
share a prey, that is,
N () A N (ez) = 0. (3)

By (1), (2) and (3),
k> NG (01) U NG (02)] — 1= [N (or)| + [N ()] =1 > 20— 1.
Now suppose that v; and v, are adjacent. Then P, # P,. Let
Ay ={a | ais a common prey of v; and v for v € P, \ {vy}},

Ay = {a| is a common prey of vy and v for v € Py \ {v1}}.

Let b be a common prey of v; and vy. Then b & A; U A,. For, otherwise, vy,
vy, v form a triangle for some v € P; U P,, which is a contradiction. Then
Ay U{b} C NJ(vy) and Ay U {b} C N (vp). Since vy is adjacent to every
vertex of P, and any pair of vertices in P, is nonadjacent, |A;| > n — 1. For
the same reason, |As| > n — 1. Suppose that there is a vertex a belonging to
A;N Ay Then v — a, v1 — a, w — a, v — a for some v € P, \ {v2} and
w € Py \ {v1}. Then vy, vy, v, w form K,. This implies that v; is adjacent
to w and we reach a contradiction. Thus, A; N A = (. Hence

]



3  The competition number of KJ*

In this section, we compute the competition number of KJ*, which is often
called a ‘cocktail party graph’.

Theorem 7. For m > 2,
k(K3 = 2.

Proof. By Theorem 6, it is true that k(K3*) > 2. Now we show that k(KJ") <
2. If m = 2, then K2 is a 4-cycle and it is well-known that k(KZ) = 2. Now
suppose that m > 3. Let {x;, y;} be the ith partite set of KI* for each i € [m].
We let

S1 = A{xy,z0,23,. .., Ty };
Sy = {T1,Y2, Y31 Ym};
Sz = {Y1, T2, Y3, Ym};
Sy = Ay, v2,3, - Um};

Sm+1 = {?/17927937---737771}»

We denote by S the family of those sets just defined. Since no two vertices
in 5; belong to the same partite set, it is true that .S; forms a clique in KJ"
for each ¢ € [m+1]. Now we take an edge e of KJ*. Then e = x;z;, e = x;y;,
or e = y;y; for some i, j € [m], i # j. If e = z;x;, then e is covered by the
set S1. If e = z;y;, then e is covered by S;11. If e = y,y;, then e is covered
by Sy for some k € [m] \ {1,i+ 1,7+ 1}. Thus S is an ECC of K}".

We construct a digraph D as follows:

V(D) = V(K3") U {a,b};

m+1
A(D) ={(u,a) |u e S1}U{(u,b) | ue Sy} U U {(u,z;—9) | u € S;}.
=3
Since z; is not contained in S; for any j > ¢+2, it is true that D is acyclic.
For each z € V(D), either N, (z) = 0 or Ny (z) = S; for some i € [m + 1].
Thus C(D) = K" U {a, b}. O



4  The competition number of K"

In this section, we compute k(K%") for any m > 2. As K2 is triangle-free,
it is true that k(K2) =9 — 6+ 2 = 5. For m > 3, we present the following
theorem.

Theorem 8. For m > 3,
k(K') = 4.

Proof. Given an integer m > 3, there exist a positive integer ¢t and an integer
r such that m = 3t +r and r € {0,1,2}. Now we take 3t partite sets
of Ki" and put them into ¢ groups so that each group contains 3 partite
sets. For each i € [t], we denote the jth partite set in the ith group by
P, = {xij, yij, zi;} for each j =1, 2, 3. In case of r > 0, we have r remaining
partite sets and denote them by Py ; = {41, Yr+1,4, 2e41,5§ for j € [r].

Let Q; = Py U Pip U Ps for each i € [t] and Qi1 = Prpra U+ - U Py .
Note that, for ¢ € [t], the subgraph of K3* induced by @); is isomorphic to
K3, and the subgraph of K" induced by Q41 is isomorphic to K3.

For each i € [t], we let

S(wa) =z, iz, Yiz},  S(in) = {yin, 2i2, 23}, S(zin) = {21, iz, Tiz},

S(%z) = {%2,3/1‘17%3}, S(yiz) = {yi272ilazi3}; S(Zi2) = {212,%1,%3},

S(wiz) = {wis, vir, Yin}, SWis) = {Yis, 2in, zin},  S(ziz) = {23, Tin, va }-
We denote the collection of 9 sets defined above by §;. Note that any two
vertices in each set in S; belong to distinct partite sets. Thus each of the

above sets forms a clique in K3'. It is also easy to check that §; is an ECC
of K3 induced by Q;. If r > 0, then we define 9 more sets: If r = 1, then

S(It+1,1) = {$t+1,1}, S(yt+1,1) = {Z/t+1,1}7 S(Zt+1,1) = {Zt+1,1}7
S(It+1,2) = {yt+1,1}7 S(yt+1,2) = {Zt+171}7 S(zt+1,2) = {$t+1,1}7
S(It+1,3) = S(«'Et+1,2), S(yt+1,3) = S(yt+1,2)7 S(Zt+1,3) = S(Zt+1,2>-

If r = 2, then

(13t+1 1) { Ti41,15 Yi+1 2} S(yt+1,1) {yt+1 15 Zt4+1 2}
S(Zt+1 1) { Zt+1,15 Lt41 2} S(-Tt-i-l,Z) {yt—H 15 Lt41, 2}
S(yes12) = {z11, Yer12}, S(z12) = {Te11, 212},
S($t+1,3) { Yi+1,15 Yi+1 2} S(th+1,3) {th 15 Rt+1, 2}
S(Zt+1 3) { Ti41,15 Ti4+1 2}



It is easy to check that the above sets form an ECC of K73 induced by Q;41.
For convenience, if r = 0, then we let

S(weq11) = S(Yer11) = S(2e41,1) = S(Te112) = S(Wev12) = S(2e41,2)
= 5($t+1,3) = S(yt+1,3) = S(Zt+1,3> = 0.

We also let S(z142) = S(Yit2;) = S(zt42;) =0 for j =1, 2, 3.
Now we define a digraph D as follows:

V(D) = V(Kgn) U {ala a2, Aas, a4}
t+1

AD) = |J4A

where A; is the union of arc sets

t41 t+1
U S@a) — a1, S(zi)U |J S(yn) — i,
=1 l=i+1
t4+1 t4+1
S(zis) U ] S(zn) — wia, Swn)u | Sn) — s,
l=i+1 l=i+1
t+1 t4+1
Sw)U |J Swa) — v, Swis)U | S(za1) = wia,
l=i+1 l=i+1
t4+1 t4+1
Sz)U | S@n) — zi-1a, S(zi2)U | J Slya) = zi-12,
l=i+1 l=i+1
t41
S(zis)U | S(zn) = 2zic1s.
l=i+1

where zg1 = a9, 2o = asz, and zp3 = ay.
We denote by D; the subdigraph of D induced by Q); U{a1, zi—11, Zi—1.2, Zi—13}
for each i € [t + 1]. Now we order the vertices of D; as follows:

A1, 2i-1,15 2i—1,25 Zi—1,3, Lil, Li2, i3, Yi1, Yi2, Yi3, Zil,y Zi2, Z4i3-

Then we can easily check that u — v in D; only if v is on the left hand side of
u in the above sequence. Thus D; is acyclic for each i € [t +1]. Furthermore,
an arc goes from a vertex in the jth partite set ); to the ith partite set @);
in D only if ¢ < j. Therefore D is acyclic.
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Two nonadjacent vertices in G belong to @); for a unique i € [t + 1].
Moreover they cannot belong to the same clique in S;. However, no two
vertices from distinct cliques in §; prey on a common vertex in D and so
they are nonadjacent in C'(D). Therefore E(C(D)) C E(KY").

We show that E(C(D)) D E(K3") in the following. We note that for each
vertex v in D;, Np, (v) is either a clique in S; or an empty set and that each
clique in §; is the neighborhood of a vertex in D; for each i € [t]. Thus, the
competition graph of D; is K3 U {a1, zi_11,2i-12,2i-13} if i € [t]. Similarly,
C(Dt+1) = Kg U {CLl, 2,15 21,2, Zt’3} if r > 0.

It remains to show that a vertex in ); and a vertex in (); are adjacent in
C(D) for i,j € [t] with i < j. We note that for any i € [t] and k = 1,2,3, it
holds that @; is the disjoint union of S(x;), S(yi) and S(z;x). Now we take
a vertex u € Q;. Then v € S(xj1) or u € S(y;1) or u € S(z;1).

Firstly consider the case u € S(x;1). Then in D,

S(xin)U{u} — a1, Sya)U{u} — a3, and S(za)U{u} — zi_11.

Thus u is adjacent to every vertex in @);.
Now suppose that v € S(y;1). Then in D,

S(l’,g) U {U} — i1, S(yzg) U {U} — Yi1, and S(ZZQ) U {u} — Zi_l’g.

Thus u is adjacent to every vertex in @);.
Finally suppose that v € S(z;;). Then in D,

S(l’zg) U {U} — T2, S(yzg) U {U} — Y2, and S(Zzg) U {U,} — Zi—1,3-
Thus u is adjacent to every vertex in @);. Therefore, F(C(D)) D E(K}).
This competes the proof that C(D) = K§* U {ay, as, as,as}. Hence k(K1) <
4. From Theorem 6, it follows that k(K3") = 4. O
5 Concluding remarks
In this paper, we give bounds for K" and computed the competition numbers

of K" and KI". Note that k(K%3') = k(K3) = 4 for m > 3 and k(K1) =
k(K2) = 2 for m > 2. We conjecture that k(K™) = k(K") for m > n.
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