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Abstract

We consider the multiflow feasibility problem whose demand graph is
the vertex-disjoint union of two triangles. We show that this problem has
a 1/12-integral solution or no solution under the Euler condition. This
solves a conjecture raised by Karzanov, and completes the classification of
the demand graphs having bounded fractionality. We reduce this problem
to the multiflow maximization problem whose terminal weight is the graph
metric of the complete bipartite graph Kn,m, and show that it always has a
1/12-integral optimal multiflow for every inner Eulerian graph.

1 Introduction

Let G = (V G,EG) be an undirected graph with nonnegative edge capacity c :
EG → R+, and let S ⊆ V G be a set of terminals. Let H = (S,R) be another
(simple) graph on S, which is called a demand graph. A (simple) path P in G is
called an S-path if its ends belong to distinct nodes of S. A multiflow f = (P , λ)
is a pair of a set P of S-paths and its nonnegative flow-value function λ : P → R+

satisfying the capacity constraint∑
{λ(P ) | P ∈ P : P contains e} ≤ c(e) (e ∈ EG).

For a demand function q : R → R+, the multiflow feasibility problem with respect
to (G, c; H, q) is:

(1.1) Find a multiflow f satisfying the demand requirement∑
{λ(P ) | P ∈ P : P is an (s, t)-path} = q(st) (st ∈ R),

or establish that there is no such a multiflow.
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The classical max-flow min-cut theorem, due to Ford-Fulkerson [2], says that if H is
one edge K2 (or a star), c and q are integral and if a feasible solution exists, then an
integral feasible solution also exists. Hu [6] extended this result to two-commodity
flows, saying that if H = K2 +K2 (a matching of size 2), c and q are integral and if
a feasible solution exists, then a half-integral feasible solution also exists. On the
other hand, the 3-commodity flow problem, that corresponds to H = K2+K2+K2

(a matching of size 3), does not have such a property. Lomonosov [14] gave an
infinite series of the feasible integer-capacitated 3-commodity flow problems with
integer demands in which there is no fixed integer k such that all these problems
have a 1/k-integral feasible solution; see [17, Chapter 70, p.1232].

Motivated by these examples, following [9], we define the fractionality of a
(simple) demand graph H by the least positive integer k with the property that for
every integer-capacitated graph having H as a demand graph with every integral
demand a 1/k-integral feasible solution exists whenever a feasible solution exists.
If such a integer k never exists, we define the fractionality to be the infinity.
Karzanov raised the problem:

(1.2) Characterize the demand graph H having bounded fractionality.

Lomonosov’s 3-commodity example above implies that if H has a matching of size
3, then the fractionality of H is infinity. Therefore, for the problem (1.2), we may
restrict to consider the demand graphs without a matching of size 3. Such a graph
(except a star) falls into one of the following three classes:

(i) K4, C5, or the union of two stars.

(ii) K5 or the union of a star and a triangle K3.

(iii) K3 + K3, i.e., the vertex-disjoint sum of two triangles.

For the class (i), the works by Rothschild and Winston [15], Seymour [18] and
Lomonosov [14] imply the following. Here, we say “(G, c; H, q) satisfies the Euler
condition” if the graph G + H = (V G,EG ∪ R) with capacity c + q is Eulerian.

Theorem 1.1 ([15, 18, 14]). Suppose that H is K4, C5, or the union of two stars,
and (G, c; H, q) satisfies the Euler condition. If a feasible multiflow exists, then an
integral feasible multiflow exists.

In particular, the graphs of the class (i) have fractionality 2. Karzanov [8]
showed that the same result holds for the graphs of the class (ii).

Theorem 1.2 ([8]). Suppose that H is K5 or the union of a star and a triangle,
and (G, c; H, q) satisfies the Euler condition. If a feasible multiflow exists, then an
integral feasible multiflow exists.

For the remaining last class (iii): H = K3+K3, it is known that the fractionality
is greater than or equal to 4; see [17, p. 1275]. Karzanov [10] conjectured that
K3+K3 has bounded fractionality, and also conjectured, more strongly, that under
the Euler condition the existence of a feasible multiflow implies the existence of a
half-integral feasible multiflow, and in particular the fractionality of H = K3 +K3
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equals the lower bound 4. These two conjectures are also raised as Problem 52
and Problem 51 in Schrijver’s book [17]; also see p. 1274. The main result of this
paper solves the weaker conjecture (Problem 52) affirmatively as follows.

Theorem 1.3. Suppose that H is K3 + K3, and (G, c; H, q) satisfies the Euler
condition. If a feasible multiflow exists, then a 1/12-integral feasible multiflow
exists.

This result completes the classification of the demand graphs having bounded
fractionality. In particular, the fractionality of H = K3 + K3 is one of 4, 8, 12, 24.
We however do not know whether the constant 1/12 is tight.

Kn,m-metric-weighted maximum multiflow problem. In fact, the multiflow
feasibility problem for H = K3 + K3 reduces to a certain multiflow maximiza-
tion problem. Let G be an undirected graph with nonnegative edge capacity c
and terminals S ⊆ V G. Let Kn,m be the complete bipartite graph having S as
vertices. Consider the following multiflow maximization problem (Kn,m-metric-
weighted maximum multiflow problem):

Maximize
∑
P∈P

distKn,m(sP , tP )λ(P )(1.3)

subject to f = (P , λ): multiflow for (G, c; S),

where sP and tP are the ends of P , and distKn,m denotes the graph metric induced
by Kn,m. Suppose that the bipartition of Kn,m is {A,B}. If a path P ∈ P is an
A-path or a B-path, then P contributes 2λ(P ) for the objective value of (1.3). If
P connects A and B, then P contributes λ(P ). (G, c) is said to be inner Eulerian
(with respect to S) if c is integral and every node except the terminals S has even
degree. For the case of min(n,m) = 2, Karzanov and Mannoussakis [13] showed
that (1.3) has an integral optimal multiflow for every inner Eulerian graph having
S as terminals. For the case of min(n,m) ≥ 3, however, such an integrality result
does not hold. For example, S is a six-set having K3,3, G is a star having S as the
leafs, and all six edges EG have unit capacity. Then (1.3) has no integral optimal
multiflow (although a half-integral optimal multiflow exists). We will derive the
main theorem (Theorem 1.3) from:

Theorem 1.4. Kn,m-metric-weighted maximum multiflow problem (1.3) has a
1/12-integral optimal multiflow for every inner Eulerian graph.

For µ-weighted maximum multiflow problems for a general terminal weight
µ : S × S → R+, we can define the fractionality of µ in a similar way. Hence
distKn,m has bounded fractionality. This result is a step toward the classification
of the terminal weights having bounded fractionality. We will further investigate
this subject in the next paper [5].

This paper is organized as follows. In Section 2, we describe a combinatorial
duality theorem (Theorem 2.1) for (1.3) due to Karzanov [12], and its two op-
timality criterions: the first one (Lemma 2.2) is well-known and the second one
(Proposition 2.3) is new. We explain a reduction of the feasibility problem for
H = K3 + K3 to the maximization problem for K3,3 in Section 2.5. The proof of
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the combinatorial duality theorem together with the second optimality criterion
is given in Section 2.7. Our proof of Theorem 1.4 is based on a fractional varia-
tion of the splitting-off method together with optimality criterions. Section 3 is
devoted to the proof. A basic idea and an overview of the proof are described at
Section 3.1. Section 4 gives some concluding remarks.

Notation. R and R+ denote the sets of reals and nonnegative reals, respec-
tively. Similarly, Z and Z+ denote the sets of integers and nonnegative integers,
respectively. The set of functions from a set V to R (resp. R+) is denoted by RV

(resp. RV
+). For a subset S of V , the characteristic vector χS ∈ RV is defined by:

χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. As usual, χ{s} is denoted by χs for a
singleton set {s}.

In this paper, by a graph we mean an undirected graph with possible parallel
edges and loops. For a graph G, the set of vertices is denoted by V G, and the set
of edges is denoted by EG. For an edge e and vertices x, y, the notation e = xy
means that e connects x and y. If e is a unique edge connecting vertices x and y,
then e is also denoted by xy. We will treat two types of graphs: one is a supply
graph G in which multiflows flow, and the other one is a simple graph Γ that
represents dual variables (potentials) as its vertices. To distinguish the roles of G
and Γ , a vertex of a supply graph G is particularly called a node. A node that is
not a terminal is called an inner node.

A path P in G is an alternating sequence (x1, e1, x2, e2, x3, . . . , xm) of nodes
and edges with ei = xixi+1. Without noted, a path P means a simple path, i.e.,
there are no repeated nodes and edges in P . For two nodes xi and xj (i < j) in
P , the subpath of P between xi and xj is denoted by P (xi, xj). For two paths P
=(x1, e1, . . . , em−1, xm) and Q = (xm, em, . . . , en−1, xn) having exactly one common
end xm, the concatenation (x1, e1 . . . , xm, em, . . . , xn) of P and Q is denoted by
P · Q. When P · Q is nonsimple, we redefine P · Q by its simplification. For
subsets A1, A2, . . . Am of nodes, a path P passing A1, A2, . . . , Am in order is called
an (A1, A2, . . . , Am)-path. As usual, if Aj is a singleton set {aj}, we simply say
that P is an (A1, A2, . . . , aj, . . . , Am)-path. In this paper, the terminal set S is
partitioned into two sets A and B. For a ∈ A and b ∈ B, A \ a and B \ b are
simply denoted by ā and b̄, respectively. Clearly an A-path P is an (a, ā)-path for
some a ∈ A. For a path P and a function d on edges set EG, d(P ) denotes the
sum of d(e) over edges e in P .

For a multiflow f = (P , λ), P is allowed to be a multiset. Without noted,
λ is supposed to be positive, i.e., λ(P ) > 0 for every P ∈ P. When λ(P ) = 0
occurs in some multiflow manipulation, we always delete P from P . For an edge
e, the subset of paths in P passing e is denoted by P(e), and the total sum of its
flow-values is denoted by f e, i.e., f e =

∑
P∈P(e) λ(P ). Similarly, for two edges e, e′,

the subset of paths in P passing both e and e′ is denoted by P(e, e′), and the total
sum of its flow-values is denoted by f e,e′ .

By a metric d on a set S we mean a function defined on S × S satisfying
d(s, t) = d(t, s) ≥ d(t, t) = 0 and the triangle inequalities d(s, t) + d(t, u) ≥ d(s, u)
for s, t, u ∈ S. We often regard a metric d on V G of a graph G as d : EG → R+

by d(e) = d(x, y) for e = xy. For a graph Γ , the shortest path metric on V Γ by
Γ (with unit length) is denoted by distΓ .
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2 Kn,m-metric-weighted

maximum multiflow problem

Let G be a graph with terminals S ⊆ V G. Suppose that the terminal set S is
partitioned into two sets A and B with min{#A, #B} ≥ 3. Let µA,B be the metric
on S defined by

(2.1) µA,B(s, t) =


4 if s 6= t, s, t ∈ A or s, t ∈ B,
2 if (s, t) ∈ A × B or (t, s) ∈ A × B,
0 if s = t.

Namely µA,B is twice the graph metric of the complete bipartite graph with bipar-
tition {A,B}. For a technical reason, instead of (1.3) we consider the following
scaled version:

Maximize
∑
P∈P

µA,B(sP , tP )λ(P )(2.2)

subject to f = (P , λ) is a multiflow for (G, c; S),

where sP and tP are ends of P . The optimal value of (2.2) is denoted by ν(G, c).

2.1 A combinatorial duality theorem

First we describe a combinatorial duality theorem for (2.2), which was (implicitly)
described by Karzanov [12]. Let Γ be a simple graph whose vertices V Γ are

pO, pa, pb, pab ((a, b) ∈ A × B),

and edges EΓ are

pOpab, papab, pbpab ((a, b) ∈ A × B).

Namely, Γ is the graph obtained by subdividing the complete bipartite graph with
bipartition {{pa}a∈A, {pb}b∈B} and joining a new point pO and each subdivided
point pab. See Figure 1. Note that Γ has µA,B as a submetric, i.e.,

(2.3) µA,B(s, t) = distΓ (ps, pt) (s, t ∈ S).

Consider the following discrete location problem (the minimum 0-extension prob-
lem) on Γ :

Minimize
∑

e=xy∈EG

c(e)distΓ (ρ(x), ρ(y))(2.4)

subject to ρ : V G → V Γ,

ρ(s) = ps (s ∈ S = A ∪ B).

Theorem 2.1 ([12]). The maximum value of (2.2) is equal to the minimum value
of (2.4).

Note that the weak duality is easily seen from (2.3). We call a feasible solution
ρ of (2.4) a potential.
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Figure 1: Graph Γ for A = {a1, a2, a3}, B = {b1, b2, b3}

2.2 Optimality criterion I

Second we describe the optimality criterion of primal-dual type, which involves
both multiflow and potential. For a potential ρ, a metric dρ on V G is defined by

dρ(x, y) = distΓ (ρ(x), ρ(y)) (x, y ∈ V G).

For a multiflow f = (P, λ) and a potential ρ, the objective values of (2.2) and
(2.4) are denoted by µA,B ◦f and 〈c, dρ〉 = 〈c, dρ〉G, respectively. The weak duality
states

µA,B ◦ f ≤ 〈c, dρ〉.

The duality gap 〈c, dρ〉 − µA,B ◦ f is given by

(2.5)
∑

e∈EG

dρ(e)(c(e) − f e) +
∑
P∈P

λ(P )(dρ(P ) − µA,B(sP , tP )).

Therefore the optimality criterion is given as:

Lemma 2.2. A multiflow f = (P , λ) and a potential ρ are optimal to (2.2) and
(2.4), respectively, if and only if

∀e = xy ∈ EG : dρ(x, y) > 0 ⇒ f e = c(e),(2.6)

∀P ∈ P : λ(P ) > 0 ⇒ dρ(P ) = µA,B(sP , tP ).

Let f = (P , λ) and ρ be an optimal multiflow and an optimal potential, respec-
tively. Let x be an inner node and P an (s, x, t)-path in P passing x. By (2.6),
the ends s and t of P must satisfy

dρ(s, x) + dρ(x, t) = dρ(s, t) = distΓ (ps, pt).

From this formula, we can determine the ends s, t of P . For example, we have:
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(a) forward (b) backward

Figure 2: (a) forward orientation and (b) backward orientation

(2.7) If ρ(x) = pO, then P is an A-path or a B-path.

If ρ(x) = pa, then P is an (a,B)-path, an (a, ā)-path, or a B-path.

If ρ(x) = pab, then P is an (a, b)-path, an (a, ā)-path, or a (b, b̄)-path.

Let e = xy be an edge with ρ(x) 6= ρ(y) and P an (s, x, y, t)-path in P(e). Similarly,
the ends s and t of P must satisfy

dρ(s, x) + dρ(x, y) + dρ(y, t) = distΓ (ps, pt).

Therefore we have the following.

(2.8) If {ρ(x), ρ(y)} = {pa, pO}, then P is an (a, ā)-path.

If {ρ(x), ρ(y)} = {pab, pO}, then P is an (a, ā)-path or a (b, b̄)-path.

If {ρ(x), ρ(y)} = {pab, pa′b}, then P is an (a, a′)-path.

If {ρ(x), ρ(y)} = {pab, pa′b′}, then P is an (a, a′)-path or a (b, b′)-path.

If {ρ(x), ρ(y)} = {pa, pa′b}, then P is an (a, a′)-path.

If {ρ(x), ρ(y)} = {pa, pa′}, then P is an (a, a′)-path.

2.3 Optimality criterion II

Third we describe the optimality criterion of dual type, involving potentials only.
We endow Γ with two orientations. The forward orientation of Γ is an orientation
such that ps are sinks and pO is the unique source. The backward orientation of
Γ is the reverse of the forward orientation. See Figure 2. For a potential ρ, a
potential ρ′ is called a forward neighbor to ρ if for x ∈ V G with ρ(x) 6= ρ′(x),
−−−−−−→
ρ(x)ρ′(x) is an edge of the forward orientation, or (ρ(x), ρ′(x)) = (pO, ps) for
some s ∈ S. Similarly, a potential ρ′ is called a backward neighbor to ρ if for
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x ∈ V G with ρ(x) 6= ρ′(x),
−−−−−−→
ρ(x)ρ′(x) is an edge of the backward orientation, or

(ρ(x), ρ′(x)) = (ps, pO) for some s ∈ S. A potential ρ′ is called a neighbor to ρ
if ρ′ is a forward neighbor or a backward neighbor to ρ. We give an optimality
criterion to (2.4) using the notion of neighbors as follows.

Proposition 2.3. A potential ρ is optimal to (2.4) if and only if

〈c, dρ〉 ≤ 〈c, dρ′〉

holds for every neighbor ρ′ to ρ.

Namely, if ρ is not optimal, there is another potential ρ′ close to ρ such that
〈c, dρ〉 > 〈c, dρ′〉.

2.4 Euler condition

Recall that a graph (G, c) is called inner Eulerian if c is integral and the degree of
each inner node is even.

Lemma 2.4. For an inner Eulerian graph (G, c) and two potentials ρ, ρ′, we have

〈c, dρ′〉 − 〈c, dρ〉 ∈ 2Z.

Proof. Since (G, c) is inner Eulerian, c ∈ ZEG
+ can be decomposed into the sum of

the characteristic vectors of cycles Ci and S-paths Pj. Then we have

〈c, dρ′〉 − 〈c, dρ〉 =
∑

i

{dρ′(Ci) − dρ(Ci)} +
∑

j

{dρ′(Pj) − dρ(Pj)} = 0 mod 2,

where dρ′(Ci) = dρ(Ci) mod 2 and dρ′(Pj) = dρ(Pj) mod 2 follow from the bi-
partiteness of Γ .

2.5 Reducing the feasibility problem for K3 + K3 to the
maximization problem for K3,3

Here we describe a reduction of the multiflow feasibility problem for H = K3 +K3

to K3,3-metric-weighted maximum multiflow problem (2.2).
Let G be a graph with capacity c. Let H = (S,R) be the demand graph defined

by S = {s1, s2, s3, t1, t2, t3} and R = {sisj}1≤i<j≤3 ∪{titj}1≤i<j≤3, and q : R → R+

a demand function. Construct a new graph (G′, c′) from (G, c) by adding new
terminals S ′ = {a1, a2, a3, b1, b2, b3} with A = {a1, a2, a3}, B = {b1, b2, b3} and
connecting ai and si by an edge with capacity q(sisj) + q(sisk) and connecting bi

and ti by an edge with capacity q(titj) + q(titk) (i = 1, 2, 3; {i, j, k} = {1, 2, 3}).
Then (G′, c′) is inner Eulerian with respect to S ′ if (G, c; H, q) satisfies the Euler
condition. Consider (2.2) for (G′, c′; S ′, µA,B). Let ρ∗ be a potential defined by

(2.9) ρ∗(x) =

{
px if x ∈ S ′,
pO otherwise,

(x ∈ V G).

Then we have the following.
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Figure 3: Reduction of an inner node

Lemma 2.5. The multiflow feasibility problem for (G, c; H, q) is feasible if and only
if potential ρ∗ defined by (2.9) is optimal to (2.4) for (G′, c′; S ′, µA,B). Moreover,
if feasible, then the restriction of any optimal multiflow f∗ to (G, c; S) is a feasible
multiflow.

Proof. Suppose that (G, c; H, q) is feasible. From a feasible multiflow f = (P , λ),
we can construct an optimal multiflow as follows. For each path P ∈ P , if the
ends of P are si and sj (resp. ti and tj), then extend P by adding edges aisi

and sjaj (resp. biti and tjbj). Let f ′ be the resulting multiflow to (G′, c′; S ′). By
construction, aisi and biti for i = 1, 2, 3 are saturated by f ′. Clearly f ′ and ρ∗

satisfies the optimality criterion I (Lemma 2.2).
Conversely, suppose that ρ∗ is optimal. Take an optimal multiflow f ∗. Then

edges siai and tibi for i = 1, 2, 3 are saturated by f∗. By (2.8), each path passing
siai is necessarily an (ai, {aj, ak})-path, and each path passing tibi is necessarily a
(bi, {bj, bk})-path. Then f ∗ consists of (ai, aj)-paths of the total flow-value q(sisj)
for 1 ≤ i < j ≤ 3 and (bi, bj)-paths of the total flow-value q(titj) for 1 ≤ i < j ≤ 3.
Restricting f ∗ to (G, c; S), we obtain a feasible multiflow.

Therefore Theorem 1.4 implies Theorem 1.3.

2.6 Making each inner node have degree four

Here we describe a standard method reducing (2.2) to the problem on a graph with
small-degree; see [3, p. 50] for example. Suppose that (G, c) is inner Eulerian. By
multiplying edges, we can make each edge have unit capacity. Take an inner node
x ∈ V G of degree greater than 4. Transform (G, c) into (G′, c′) by changing the
incidence at x as in Figure 3.

Then we can easily see that any 1/k-integral multiflow in (G′, c′) can be trans-
formed into a 1/k-integral multiflow in (G, c) having the same objective value, and
any 1/k-integral multiflow in (G, c) can also be transformed into a 1/k-integral
multiflow in (G′, c′) having the same objective value. Furthermore,

(2.10) any optimal potential ρ for (G, c) is extended to an optimal potential
ρ for (G′, c′) by setting ρ(x′) := ρ(x) for each new node x′ in (G′, c′),

which is an easy consequence of the optimality criterion I (Lemma 2.2).
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2.7 proof

The combinatorial duality theorem (Theorem 2.1) was essentially given in [12,
p. 241] as a corollary of Karzanov’s modular closure construction together with
the orbit splitting method. Here, we describe a more direct geometric proof by
calculating the explicit coordinate of the tight span of µA,B. This approach is
suitable to prove the optimality criterion II (Proposition 2.3).

2.7.1 T -dual to µ-problem

We start with a general framework. Let µ be a metric defined on the terminals S.
The µ-weighted maximum multiflow problem (for short, µ-problem) is:

(2.11) Maximize
∑
P∈P

µ(sP , tP )λ(P ) over all multiflows f = (P, λ) in (G, c),

where sP and tP are the ends of P . As is well-known in the multiflow theory [14],
the LP-dual to µ-problem (2.11) is given as follows:

Minimize
∑

e∈EG

c(e)d(e)(2.12)

subject to d: metric on V G,

d(s, t) = µ(s, t) (s, t ∈ S).

Since c is nonnegative, we can always take an optimal metric from the minimal set
of the feasible region of (2.12). Such a minimal metric is called a tight extension
of µ. Now let us introduce the formal definitions below. A metric d on V is called
an extension of a metric µ on S if S ⊆ V and d(s, t) = µ(s, t) for s, t ∈ S. An
extension d on V of µ is said to be tight if there is no extension d′ on V of µ with
d′ ≤ d and d′ 6= d. Therefore (2.12) might be regarded as the problem of finding a
tight extension d on V G of µ with 〈c, d〉 minimum.

Isbell [7] and Dress [1] independently showed that for any metric µ there is an
essentially unique universal tight extension of µ such that every tight extension of
µ is a subspace of it. We shall describe it. For a metric µ on S, we define two
polyhedral sets Pµ and Tµ in RS

+ by

Pµ = {p ∈ RS | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)},(2.13)

Tµ = the set of minimal elements of Pµ.

Tµ is called the tight span of µ. For s ∈ S, let µs ∈ RS be a point in Tµ defined by

µs(t) = µ(s, t) (t ∈ S).

Namely, µs is the s-th row vector of distance matrix µ. One can easily see that

‖µs − µt‖∞ = µ(s, t) (s, t ∈ S).

Therefore µ is isometrically embedded into (Tµ, l∞), and thus (Tµ, l∞) is regarded
as an extension of µ. Moreover, every tight extension of µ is embedded into (Tµ, l∞)
as follows.
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Theorem 2.6 ([7, 1]). (Tµ, l∞) is a tight extension of µ. Moreover, for any tight
extension d on V of µ, there is a unique map ρ : V → Tµ such that

(i) ρ(s) = µs for s ∈ S, and

(ii) ‖ρ(x) − ρ(y)‖∞ = µ(x, y) for x, y ∈ V .

In particular, the map ρ is given explicitly as (ρ(x))(s) = d(x, s) for x ∈ V, s ∈ S.

Consider the following continuous location problem on (Tµ, l∞).

Minimize
∑

e=xy∈EG

c(e)‖ρ(x) − ρ(y)‖∞(2.14)

subject to ρ : V G → Tµ (x ∈ V G),

ρ(s) = µs (s ∈ S).

We call it T -dual; see also [4] for a general version. By the previous theorem, we
have a sharper duality theorem for µ-problem:

Corollary 2.7. The maximum value of µ-problem (2.11) is equal to the minimum
value of T -dual (2.14).

A map ρ : V G → Tµ satisfying the constraint of T -dual is called a potential.
The relationship between LP-dual (2.12) and T -dual (2.14) is summarized as fol-
lows:

(2.15) (i) For a metric d minimal in the feasible region of LP-dual (2.12), a map
ρd : V G → RS defined by

ρd(x)(s) = d(s, x) (s ∈ S, x ∈ V G)

is a potential to (2.14).

(ii) For a potential ρ to (2.14), a metric dρ defined by

dρ(x, y) = ‖ρ(x) − ρ(y)‖∞ (x, y ∈ V G)

is minimal in the feasible region to LP-dual (2.12).

In particular, we can always take an optimal solution dρ of the LP-dual for some
potential ρ : V G → Tµ of T -dual.

2.7.2 The tight span for µA,B

Let µA,B be the metric defined by (2.1). Let us calculate TµA,B
explicitly. Let qO,

qa (a ∈ A), qb (b ∈ B) be the points in TµA,B
defined by

qO = 2χS,

qa = qO + 2(−χa + χā) = (µA,B)a,

qb = qO + 2(−χb + χb̄) = (µA,B)b.

Recall ā = A \ a and b̄ = B \ b. Then we have:

11
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Figure 4: (a) TµA,B
and (b) L1 ∩ TµA,B

with graph Γ 1

Lemma 2.8. TµA,B
coincides with

(2.16)
∪

(a,b)∈A×B

convex hull of {qO, qa, qb}.

Proof. For a general metric µ, a point p ∈ Pµ is minimal in Pµ (i.e., p ∈ Tµ) if and
only if p − εχs 6∈ Pµ for any ε > 0 and s ∈ S. From this, to see (2.16) ⊆ TµA,B

is
straightforward. We show the converse. Take p ∈ TµA,B

. By (2.13), there is a′ ∈ A
with p(a′) ≥ 2. By minimality, there is a ∈ A\a′ with p(a′)+p(a) = µA,B(a′, a) = 4.
In particular, p(a) ≤ 2. Again we have p(a′′) ≥ p(a) for a′′ ∈ A \ {a, a′} by
p(a) + p(a′′) ≥ 4. By minimality, p(a′′) = p(a′) holds. Similarly, there is b ∈ B
such that p(b) ≤ 2 and p(b′) = p(b′′) ≥ 2 for b′, b′′ ∈ B \ b. Then we have

qO = p − (2 − p(a))(−χa + χā) − (2 − p(b))(−χb + χb̄).

By calculation, we have

p =

(
p(a) + p(b)

2
− 1

)
qO +

2 − p(a)

2
qa +

2 − p(b)

2
qb.

Since p(a) + p(b) ≥ µA,B(a, b) = 2, all coefficients are nonnegative.

Therefore TµA,B
is isomorphic to the join of one point qO and the complete

bipartite graph with bipartition {{qa}a∈A, {qb}b∈B}; see Figure 4 (a).

2.7.3 Drawing graphs Γ k on TµA,B

Here we draw the graph Γ on TµA,B
. For a positive integer k, let Lk be the lattice

(a discrete subgroup) in RS defined by

Lk = {p ∈ RS | p(s) + p(t) ∈ 2Z/k (s, t ∈ S)}.

Let Γ k be a graph whose vertices are Lk ∩ TµA,B
and edges are given as pq ∈ EΓ k

⇔ ‖p − q‖∞ = 1/k. Then L1 ∩ TµA,B
consists of qO, qs (s ∈ S), and

qab := qO + (−χa + χā) + (−χb + χb̄) ((a, b) ∈ A × B).

12
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q
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q
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b

Figure 5: (a) an apartment, (b) L5∩TµA,B
with Γ 5 on an apartment, and (c) orbit

O3

In particular, Γ 1 is isomorphic to Γ by the natural correspondence q 7→ p, and thus
we can identify a potential ρ of (2.4) with a potential ρ of T -dual (2.14) satisfying
ρ(V G) ⊆ Tµ ∩ L1; see Figure 4 (b).

For (a, b), (a′, b′) ∈ A×B with a 6= a′ and b 6= b′, consider the following subset
of TµA,B

: ∪
(u,v)∈{a,a′}×{b,b′}

convex hull of {qO, qu, qv}.

We call it the (a, b, a′, b′)-apartment; the name stems from the building theory. We
easily see the following properties of apartments:

(2.17) (i) For every pair p, q ∈ TµA,B
, there is an apartment containing both p

and q.

(ii) Each apartment is a geodesic subspace of (TµA,B
, l∞), i.e., each pair of

points p, q in the apartment has a path of length ‖p − q‖∞ within it.

(iii) The projection of the (a, b, a′, b′)-apartment to (R{a,b}, l∞) is an injec-
tive isometry, and its image is a square with edge length 2.

See Figure 5 (a). Recall the well-known fact that the l∞-plane is isomorphic to the
l1-plane by 45-degree rotation. Viewing from the rotated plane, the subgraph of Γ k

induced by the apartment is exactly the grid graph of size (2k, 2k); see Figure 5 (b).
By these observations, we see that the graph Γ k realizes the l∞-distances among
Lk ∩ TµA,B

as follows.

(2.18) ‖p − q‖∞ =
1

k
distΓ k(p, q) (p, q ∈ V Γ k = Lk ∩ TµA,B

).

Indeed, take an apartment containing p, q, and project it as in Figure 5. Then we
can take a zig-zag shortest path in the grid graph induced by the apartment.

2.7.4 Constructing a convex combination

Here we show the following statement.
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(2.19) For any potential ρ : V G → Lk ∩ TµA,B
(= V Γ k), the corresponding

metric dρ can be represented as a convex combination of {dρi} for some
potentials ρi : V G → L1 ∩ TµA,B

(= V Γ 1),

where the metric dρ for a potential ρ is defined by (2.15). This immediately
yields Theorem 2.1. Indeed, for any rational potential ρ, there is k such that
ρ(V G) ⊆ Lk ∩TµA,B

since ZS/l ⊆ L2l. To prove (2.19), we use the notion of orbits
and related concepts introduced by [11]. Two edges e, e′ ∈ EΓ k are called mates if
there is a 4-cycle containing e and e′ as a nonadjacent pair. Two edges e, e′ ∈ EΓ k

are called projective if there is a sequence of edges e = e1, e2, . . . , em = e′ such
that ei and ei+1 are mates. The projectiveness defines an equivalence relation on
the set of edges EΓ k. An equivalence class is called an orbit. Γ k has k orbits
{O1, O2, . . . , Ok}. Here we order O1, O2, . . . , Ok so that

(2.20) Oi is the orbit containing the edge connecting

k − i + 1

k
qO +

i − 1

k
qab and

k − i

k
qO +

i

k
qab.

For an orbit Oi, the orbit graph Γ k
i is the graph obtained by contracting all edges

not in Oi and deleting multiple edges appeared. Then the orbit graph Γ k
i is

isomorphic to Γ 1 = Γ . This construction naturally gives a map φi : Lk ∩ TµA,B
→

L1 ∩ TµA,B
by defining φi(p) to be the contracted point and identifying Γ k

i with
Γ 1 so that φi is identity on L1 ∩ TµA,B

. In particular, if ρ : V G → Lk ∩ TµA,B

is a potential, then the composition φi ◦ ρ is also a potential by φi(q
s) = qs. By

considering each shortest path in some apartment, we easily see that the following
relation holds:

distΓ k(p, q) =
k∑

i=1

distΓ 1(φi(p), φi(q)) (p, q ∈ V Γ k).

This can also be derived from a general property of orbits in the modular graph [12].
By (2.18), for any x, y ∈ V G, we have

dρ(x, y) = ‖ρ(x) − ρ(y)‖∞ =
1

k
distΓ k(ρ(x), ρ(y))(2.21)

=
1

k

k∑
i=1

distΓ 1(φi ◦ ρ(x), φi ◦ ρ(y)) =
1

k

k∑
i=1

dφi◦ρ(x, y).

Then we obtain a desired convex combination.

2.7.5 Proof of Proposition 2.3

Take a potential ρ : V G → V Γ in (2.4). We can identify V Γ with L1 ∩ TµA,B
by

the argument above, and thus we regard ρ as V G → L1 ∩ TµA,B
. Suppose that ρ

is not optimal. Then dρ is not optimal to (2.12). By convexity, there is a rational
metric d′ sufficiently close to dρ such that

14



(a) (b) (c)

Figure 6: Perturbation to dρ

(i) d′ is minimal in the feasible region of (2.12),

(ii) 〈c, d′〉 < 〈c, dρ〉,

(iii) |dρ(x, y) − d′(x, y)| < 1/2 for any x, y ∈ V G.

The property (iii) means that d′ is sufficiently close to dρ. By (i) and the corre-
spondence (2.15), there uniquely exists ρ′ : V G → TµA,B

such that d′ = dρ′ . Since

dρ′ is rational, there is a positive even integer k such that ρ′(V G) ⊆ Lk∩TµA,B
. By

(2.21), we can decompose dρ′ as dρ′ = 1/k
∑k

i=1 dφi◦ρ′ . By (ii), at least one of dφi◦ρ′

satisfies 〈c, dφi◦ρ′〉 < 〈c, dρ〉. By (iii) and (2.15), we have ‖ρ(x) − ρ′(x)‖∞ < 1/2.
Therefore, by (2.20) and by the construction of φi, if 1 ≤ i ≤ k/2, then φi ◦ ρ′ is
a forward neighbor to ρ, and if k/2 < i ≤ k, then φi ◦ ρ′ is a backward neighbor
to ρ. Thus we are done. Figure 6 illustrates this situation restricted to some
apartment. In this figure, a small square box represents ρ′(x), which is sufficiently
close to ρ(x) that belongs to L1 ∩ TµA,B

represented by black dot points. Consider
orbit Oi, which is represented by bold lines in (b) for 1 ≤ i ≤ k/2 and in (c) for
k/2 < i ≤ k. Then (φi ◦ ρ′)(x) 6= ρ(x) if and only if a shortest path between ρ′(x)
and ρ(x) crosses Oi. In (b), the change from ρ(x) to (φi ◦ ρ′)(x) produced by such
a crossing is one of pO → pab, pO → pa, pO → pb, pab → pa, and pab → pb for some
a, b. This implies that φi ◦ ρ′ for 1 ≤ i ≤ k/2 is a forward neighbor. In (c), the
change occurs in the reverse way, which implies that φi ◦ ρ′ for k/2 < i ≤ k is a
backward neighbor.

3 Fractional splitting-off

Let (G, c) be an integer-capacitated graph (allowing multiple edges and loops).
We begin with some notation. For two consecutive edges e and e′ incident to y, a
triple (e, y, e′) is called a fork. If both e and e′ have no multiple edge and e = xy
and e′ = yz, then (e, y, e′) is also simply denoted by xyz. For a fork τ = (e, y, e′),
the splitting-off operation at τ is to decrease the capacity of edges e, e′ by one,
and add a new edge e∗ connecting the end of e and e′ different from y with unit
capacity; see Figure 7. If this operation keeps the optimal value ν(G, c) invariant,
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Figure 8: Construction of (Gτ , c)

then we say that τ is splittable. In addition, if the new graph has a 1/k-integral
optimal multiflow, then so does the original graph. Consequently, if we can succeed
the splitting-off operations until there is no inner node, then the resulting graph
clearly has an integral optimal multiflow (by metricity of µA,B), and so does the
original graph.

As seen in the introduction, our problem (2.2) may have no integral optimal
solution. So we consider a fractional variant of the splitting-off operation. Our
approach is slightly different from Karzanov’s one in [8, 13]. For a fork τ = (e, y, e′)
with e = xy and e′ = yz, consider the graph (Gτ , c) obtained from (G, c) by adding
a new node yτ and a new edge eτ = yyτ and reconnecting e and e′ to yτ . The
capacity of eτ is defined by c(e) + c(e′); see Figure 8. Then multiflows in (G, c)
and in (Gτ , c) are in one-to-one correspondence as follows.

(3.1) (i) For a multiflow f = (P , λ) in (Gτ , c), contract eτ (to y) for each path
in P(eτ ). Then the resulting f is a multiflow to (G, c).

(ii) For a multiflow f = (P , λ) in (G, c), replace subpath (x, e, y) of each
path in P(e) \ P(e′) by (x, e, yτ , eτ , y), replace subpath (z, e′, y) of
each path in P(e′) \ P(e) by (z, e′, yτ , eτ , y), and replace subpath
(x, e, y, e′, z) of each path in P(e, e′) by (x, e, yτ , e′, z). Then the re-
sulting f is a multiflow in (Gτ , c).

We shall often identify a multiflow for (G, c) with a multiflow for (Gτ , c) by this
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correspondence. For also a potential, by optimality criterion I, we have:

(3.2) Let ρ be an optimal potential for (G, c). Extend ρ to V Gτ → V Γ by
setting ρ(yτ ) := ρ(y). Then the resulting ρ is also optimal to (Gτ , c).

Therefore we shall often identify a potential for G with a potential for Gτ by (3.2).
For a fork τ and a nonnegative real α ≤ c(eτ ), we call the operation replacing (G, c)
by (Gτ , c − αχeτ ) the fractional splitting-off operation at τ . Clearly, if ν(G, c) =
ν(Gτ , c − αχeτ ) and (Gτ , c − αχτ ) has a 1/k-integer optimal multiflow, then so
does (G, c). Motivated by this fact, we define the splitting capacity α(τ) = αG,c(τ)
at τ by

α(τ) = max{0 ≤ α ≤ c(eτ ) | ν(Gτ , c − αχeτ ) = ν(G, c)}.
Clearly, for a fork τ = (e, y, e′) with c(e) = c(e′) = 1, τ is splittable if and only if
α(τ) = 2; see Lemma 3.3 for general case. A key to our proof of main result is the
following formula of α(τ) in terms of neighbors.

Proposition 3.1. Let τ be a fork and ρ an optimal potential. Then we have the
following.

(3.3) α(τ) = min

{
〈c, dρ′〉 − 〈c, dρ〉

dρ′(eτ )

∣∣∣∣ ρ′: neighbor to ρ with dρ′(eτ ) > 0

}
,

where ρ is extended to an optimal potential for (Gτ , c) by (3.2). In particular, if
(G, c) is inner Eulerian, then we have

α(τ) ∈
{

0,
1

2
,
2

3
, 1,

4

3
,
3

2
, 2, . . .

}
=

1

2
Z+ ∪ 2

3
Z+.

Proof. For 0 ≤ α ≤ c(eτ ), we have the following equivalence:

(i) α ≤ α(τ), i.e., ν(G, c) = ν(Gτ , c − αχeτ ).

(ii) ρ is optimal to (Gτ , c − αχeτ ) (by regarding ρ as V Gτ → V Γ ).

(iii) For each neighbor ρ′ to ρ with dρ′(eτ ) > 0, we have

〈c − αχeτ , dρ′〉 ≥ 〈c − αχeτ , dρ〉 = 〈c, dρ〉.

(iv) For each neighbor ρ′ to ρ with dρ′(eτ ) > 0, we have

α ≤ 〈c, dρ′〉 − 〈c, dρ〉
dρ′(eτ )

.

The equivalence between (i) and (ii) follows from ν(G, c) = 〈c, dρ〉 = 〈c−αχeτ , dρ〉
by dρ(eτ ) = 0. The equivalence between (ii) and (iii) follows from Proposition 2.3
together with the fact that for each neighbor ρ′ to ρ with dρ′(eτ ) = 0, the inequality
trivially holds by 〈c − αχeτ , dρ′〉 = 〈c, dρ′〉 ≥ 〈c, dρ〉 = 〈c − αχeτ , dρ〉. Hence we
obtain the desired formula. The latter part immediately follows from distΓ (p, q) ∈
{0, 1, 2, 3, 4} and Lemma 2.4.

A neighbor ρ′ that attains (3.3) is called critical. Note that both ρ and ρ′ are
optimal to (Gτ , c − α(τ)χeτ ).
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3.1 A basic idea and an overview of the proof

Here we give a basic idea and an overview to the proof of the main theorem
(Theorem 1.4). The previous proposition (Proposition 3.1) implies that

the splitting properties of a node y depend crucially on the position ρ(y)
in Γ for an optimal potential ρ.

For example, we easily verify (from definition of neighbors) that for a fork τ at y,

(3.4) (i) if ρ(y) = ps or pab and (G, c) is inner Eulerian, then α(τ) ∈ Z+, and

(ii) if ρ(y) = pO, then any critical neighbor ρ′ to ρ at τ is forward.

Motivated by these facts, for an optimal potential ρ, we partition V G into the
following three sets:

Sρ = {x ∈ V G | ρ(x) = ps for some s ∈ S},(3.5)

Mρ = {x ∈ V G | ρ(x) = pab for some (a, b) ∈ A × B},
Cρ = {x ∈ V G | ρ(x) = pO}.

Nodes in Sρ have a particular nice property, which we will show in Section 3.3,
that

(3.6) if y ∈ Sρ, then y has a splittable fork.

An immediate corollary is:

(3.7) if Mρ ∪ Cρ = ∅ for some optimal potential ρ, then there exists an
integral optimal multiflow.

So we have to consider the case where Mρ ∪ Cρ is nonempty. To describe the
basic idea of our proof, we consider an illustrative situation below. Take y ∈ Cρ

and a fork τ at y. Take a critical neighbor ρ′ to ρ with respect to τ . Then ρ′

is necessarily forward by (ii). Suppose α(τ) = 3/2 (say). Then dρ′(eτ ) = 4 and
thus (ρ′(y), ρ′(yτ )) = (pa, pa′

) (or (pb, pb′)). Update (G, c) ← (Gτ , c−α(τ)χeτ ) and
ρ ← ρ′. Then the cardinality of Cρ strictly decreases. Therefore, if Mρ ∪ Cρ = ∅
(luckily), then (G, 4c) has an integral optimal multiflow, and thus the original
graph has a 1/4-integral optimal multiflow. Suppose that there still exists a node
x ∈ Cρ. Again, take a fork τ ′ at x, and consider α(τ ′). Although (G, c) is not
inner Eulerian, the following still holds:

(3.8) α(τ ′) ∈ 1

2
Z+ ∪ 2

3
Z+.

Indeed, take a critical neighbor ρ′ to ρ with respect to τ ′, and compare ρ′ with
ρ. Since ρ′ is forward, (ρ(yτ ), ρ(y)) = (ρ′(yτ ), ρ′(y)) = (pa, pa′

) holds. Therefore
c(eτ )dρ(eτ ) and c(eτ )dρ′(eτ ) cancel out in 〈c, dρ〉 − 〈c, dρ′〉. Since the deletion of eτ

makes (Gτ ′
, c) inner Eulerian, the difference 〈c, dρ〉−〈c, dρ′〉 is an even integer, and

thus (3.8) holds. This observation suggests a possibility to repeat such a procedure
until Mρ ∪ Cρ = ∅ with keeping (G, kc) inner Eulerian for a fixed integer k.
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Our proof will be carried out in this way. We always keep a graph (G, c)
together with its optimal potential ρ; we denote it by (G, c; ρ). We will pick a
node x ∈ Mρ ∪Cρ, and a fork τ at x. If τ is splittable, then apply the splitting-off
operation at τ , update (G, c), and keep ρ, that is also optimal to the new graph
(Lemma 3.4). Suppose that τ is unsplittable. Then take a critical neighbor ρ′,
and update the graph together with the optimal potential as

(G, c; ρ) ← (Gτ , c − α(τ)χeτ ; ρ′).

We call this operation the SPUP (Splitting-off with Potential-UPdate) at τ with
respect to a critical neighbor ρ′. In particular, if ρ′ is forward, the corresponding
SPUP is said to be forward. In the sequential forward SPUP operations, Cρ is
nonincreasing, and Mρ is nonincreasing if Cρ = ∅. We will try to repeat the
forward SPUP operations until Mρ ∪ Cρ = ∅ with keeping (G, kc) Eulerian for a
fixed integer k.

The remaining of this section is organized as follows. Section 3.2 describes
several basic properties of the fractional splitting-off. Section 3.3 proves (3.6).
Section 3.4 introduces two notions “Eulerianness” and “admissibility” for (G, c; ρ)
to keep (3.8) in the forward SPUP. Section 3.5 investigates the splitting properties
at nodes in Mρ, and shows that if Cρ is empty, then there exists a half-integral
optimal multiflow. Section 3.6 shows the existence of a half-integral optimal multi-
flow under Eulerianness and the ring condition, which is reached after the forward
SPUP operations are applied to all nodes of degree four in Cρ starting from the
graph each of whose inner nodes has degree four. The final Section 3.7 completes
the proof by showing that the forward SPUP operations at Cρ succeed with keeping
(G, 6c; ρ) Eulerian until (G, c; ρ) reaches the ring condition.

Remark 3.2. The emptiness of Cρ or Mρ is the property of the face F of the
polyhedron of LP-dual (2.12) that contains dρ as its relative interior. Therefore
a geometric interpretation to (3.6) is: the set of characteristic vectors of S-paths
forms a Hilbert basis of the normal cone at such a face F with respect to the lattice
of inner Eulerian capacities; see [16, Section 22.3].

3.2 Basic properties

In this section, we list several basic properties of the fractional splitting-off. We
first verify:

Lemma 3.3. τ is splittable if and only if α(τ) ≥ 2.

Proof. The only-if part is easy. We show the if part. Let τ = (e, y, e′) with e = xy
and e = yz. Take an optimal multiflow f = (P , λ) for (Gτ , c−2χeτ ), and regard it
as an optimal multiflow for (G, c) (by shrinking eτ to y). Then f eτ

= f e,eτ
+f e′,eτ ≤

c(e) + c(e′) − 2. If both c(e) − f e,eτ
and c(e′) − f e′,eτ

are greater than or equal to
1, then τ is clearly splittable. Suppose that c(e) − f e,eτ

> 1 > c(e′) − f e′,eτ
. Then

the unsaturation c(e)− f e is at least γ = c(e)− c(e′)+ f e′,eτ − f e,eτ
. Let (G′, c′) be

the graph resulted by the splitting-off operation at τ with new edge e∗ = xz. Take
a set Q ⊆ P(e′, eτ ) together with its flow-value function κ : Q → R+ such that
κ(P ) ≤ λ(P ) for P ∈ Q and the total sum of flow-values of Q is γ/2. Then f is
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decomposed into two multiflows (P , λ − κ) and (Q, κ). Replace subpath (z, e′, y)
of each path in Q by (z, e∗, x, e, y), and replace subpath (x, e, y, e′, z) of each path
in P(e, e′) by (x, e∗, z). Then the resulting f is a multiflow to (G′, c′) having the
same objective value, which implies that τ is splittable.

Lemma 3.4. Let ρ be an optimal potential for (G, c) and τ a splittable fork. Then
ρ is also optimal to the graph (G′, c′) obtained by the splitting-off at τ .

Proof. Let τ = (e, y, e′) with e = xy and e′ = yz, and let e∗ = xz. By the triangle
inequality, we have ν(G′, c′) ≤ 〈c−χe−χe′ +χe∗ , d

ρ〉 = 〈c, dρ〉−dρ(x, y)−dρ(y, z)+
dρ(x, z) ≤ 〈c, dρ〉 = ν(G, c) = ν(G′, c′).

For a multiflow f = (P , λ) and a fork τ = (e, y, e′), we note the following
obvious relations:

P(eτ ) = P(e) ∪ P(e′) \ P(e, e′) and f eτ

= f e + f e′ − 2f e,e′ .

Lemma 3.5. Let τ = (e, y, e′) be a fork, and let f be an optimal multiflow. Then
we have

α(τ) ≥ c(eτ ) − f eτ ≥ 2f e,e′ .

Proof. The first inequality is obvious. The second follows from c(eτ ) − f eτ
=

(c(e) − f e) + (c(e′) − f e′) + 2f e,e′ ≥ 2f e,e′ .

Lemma 3.6. Let τ and τ ′ be two forks at distinct nodes, and let (G′, c′) = (Gτ , c−
αG,c(τ)χeτ ). Then we have

αG′,c′(τ ′) ≤ αG,c(τ ′).

Proof. Take an optimal flow f in ((G′)τ ′
, c′ − αG′,c′(τ ′)χeτ ′ ). By shrinking eτ and

eτ ′
, we obtain an optimal flow f in (G, c). Then f eτ ′ ≤ c(eτ ′

) − αG′,c′(τ ′) (in fact
the equality holds). Lemma 3.5 implies the desired inequality.

Lemma 3.7. Let ρ be an optimal potential. Let e be an edge with dρ(e) = 0. If e
is saturated by every optimal multiflow, then there is a neighbor ρ′ to ρ such that
dρ′(e) > 0 and ρ′ is optimal.

Proof. Consider max{0 ≤ α ≤ c(e) | ν(G, c) = ν(G, c − αχe)}. Then this must
be zero by the hypothesis. The same argument as in the proof of Proposition 3.1
implies the existence of such a neighbor.

3.2.1 A key lemma

Let ρ be an optimal potential. For a fork τ , let ρ′ be a critical neighbor to ρ with
respect to τ . Take an optimal multiflow f = (P , λ) for (Gτ , c − α(τ)χeτ ). By
regarding f as a multiflow for (G, c) and by the optimality criterion I, we have:

(3.9) (i) f is also optimal to (G, c),

(ii) f eτ
= c(eτ ) − α(τ), i.e., eτ is saturated in (Gτ , c − α(τ)χeτ ), and

(iii) every path P in P(eτ ) satisfies

dρ′(sP , yτ ) + dρ′(eτ ) + dρ′(y, tP ) = µA,B(sP , tP ),

where P is supposed to be an (sP , yτ , y, tP )-path.
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Conversely,

(3.10) if an optimal multiflow f for (G, c) satisfies α(τ) = 2f e,e′ , then f can
be regarded as an optimal multiflow for (Gτ , c−α(τ)χeτ ), and thus f
satisfies (ii) and (iii) in (3.9) and both e and e′ are saturated.

As will be seen in Section 3.3, (3.10) is a favorable situation for us. Indeed we can
completely determine the ends of paths in P(eτ ) according to (2.8). In many cases,
however, we need to estimate the ingredients of P(eτ ) for an (arbitrary) optimal
flow f = (P , λ) satisfying α(τ) > 2f e,e′ .

For a critical neighbor ρ′ to ρ with respect to τ , we define P(eτ : ρ′) ⊆ P(eτ )
together with its flow-value f eτ :ρ′ by

P(eτ : ρ′) = {P ∈ P(eτ ) | dρ′(sP , yτ ) + dρ′(eτ ) + dρ′(y, tP ) = µA,B(sP , tP )},
f eτ :ρ′ =

∑
{λ(P ) | P ∈ P(eτ : ρ′)},

where P is supposed to be an (sP , yτ , y, tP )-path. The following lemma plays a
crucial role in the sequel.

Lemma 3.8. Let f and ρ be an optimal multiflow and an optimal potential, re-
spectively. Let τ = (e, y, e′) be a fork and ρ′ a critical neighbor to ρ with respect to
τ . Then we have

(3.11) dρ′(eτ )f eτ :ρ′ + (dρ′(eτ ) − 2)(f eτ − f eτ :ρ′) ≥ dρ′(eτ )(c(eτ ) − α(τ)).

In addition, if dρ′(eτ ) ≥ 2, then we have

(3.12) f eτ :ρ′ ≥ c(eτ ) − 2f e,e′ − dρ′(eτ )

2
(α(τ) − 2f e,e′).

Proof. We use the formula (2.5) of the duality gap. By definition of α, we have

ν(G, c) = ν(Gτ , c − α(τ)χeτ ) = 〈dρ′ , c − α(τ)χeτ 〉.

Let f ′ be the multiflow for (Gτ , c−α(τ)χeτ ) obtained by deleting all paths in P(eτ )
from f = (P , λ). Then the duality gap between f ′ and ρ′ in (Gτ , c − α(τ)χeτ ) is

(3.13) 〈dρ′ , c − α(τ)χeτ 〉 − µA,B ◦ f ′ =
∑

P∈P(eτ )

µA,B(sP , tP )λ(P ).

We next estimate the first term δ1 :=
∑

e∈EG dρ′(e)(c(e) − (f ′)e) of (2.5), which
means the unsaturation of edges. Since there is no path passing eτ in (Gτ , c −
α(τ)χeτ ), this contributes dρ′(eτ )(c(eτ )−α(τ)) for δ1. The deletion of an (sP , yτ , y, tP )-
path P ∈ P(eτ ) contributes at least λ(P )(dρ′(sP , yτ ) + dρ′(y, tP )) for the unsatu-
ration of edges except eτ . Therefore we have

δ1 ≥ dρ′(eτ )(c(eτ ) − α(τ)) +
∑

P∈P(eτ )

λ(P ){dρ′(sP , yτ ) + dρ′(y, tP )}.

Since the duality gap (3.13) is greater than or equal to δ1, we have

(3.14)
∑

P∈P(eτ )

λ(P ){µA,B(sP , tP )−dρ′(sP , yτ )−dρ′(y, tP )} ≥ dρ′(eτ )(c(eτ )−α(τ)).
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Figure 9: Flow configuration at an inner node of degree four

Since distΓ (ps, pt) = µA,B(s, t) and Γ is bipartite, we have

dρ′(sP , yτ ) + dρ′(eτ ) + dρ′(y, tP ) − µA,B(sP , tP ) ∈ 2Z+.

Therefore∑
P∈P(eτ :ρ′)

λ(P )dρ′(eτ ) +
∑

P∈P(eτ )\P(eτ :ρ′)

λ(P )(dρ′(eτ ) − 2) ≥ LHS of (3.14).

Thus we obtain the first inequality (3.11). The second (3.12) follows from substi-
tuting f eτ

= f e + f e′ − 2f e,e′ ≤ c(e) + c(e′) − 2f e,e′ = c(eτ ) − 2f e,e′ to (3.11).

3.2.2 Splitting at an inner node of degree four

As seen in Section 2.6, we may consider the problem (2.2) for an inner Eulerian
graph with unit capacity all of whose inner node have degree four. Here we consider
splitting properties at an inner node of degree four. Let (G, c) be an integer-
capacitated graph. Let y ∈ V G be an inner node of degree four. We easily see
that

(3.15) if y has multiple edges, then y has a splittable fork.

Suppose that y has no splittable fork. Then the four nodes incident to y are
all distinct. We assume that y is incident to four nodes x, x1, x2, x3 by edges
e = xy, e1 = x1y, e2 = x2y, e3 = x3y. The right of Figure 9 represents a flow
configuration at y, where each line represents a path or a subset of P for some
multiflow f = (P , λ). We shall often use such a figure. We note the following
symmetry.

(3.16) Since (Gτ , c) is identified with (Gτ̌ , c) for τ = (e, y, e1) and τ̌ =
(e2, y, e3), we have α(τ) = α(τ̌), and an optimal potential ρ for
(Gτ , c) is regarded as an optimal potential for (Gτ̌ , c) by replacing
(y, yτ ; ρ(y), ρ(yτ )) by (yτ̌ , y; ρ(yτ̌ ), ρ(y)).

Therefore it suffices to consider three forks τi = (e, y, ei) (i = 1, 2, 3). By (3.1), we
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have

(3.17) P(eτi) = P(e, ej) ∪ P(e, ek) ∪ P(ei, ej) ∪ P(ei, ek)

for {i, j, k} = {1, 2, 3}.

(3.18) For a optimal multiflow f = (P, λ) for (Gτ1 , c − α(τ1)χeτ1 ), if P(eτ1)
consists of either (a, ā)-paths or (b, b̄)-paths, then we have

max{α(τ2), α(τ3)} ≥ 2 − α(τ1).

By the condition, the restriction of f to P(eτ1) is regarded as a single commodity
flow. Therefore we can rearrange f with keeping optimality so that

max{f e,e2 , f e,e3 , f e1,e2 , f e1,e3} ≥ 1 − α(τ1)/2.

Indeed, by f eτ1 = f eτ1 ,e + f eτ1 ,e1 = f eτ1 ,e2 + f eτ1 ,e3 = 2 − α(τ1), we may assume
f eτ1 ,e2 ≥ f eτ1 ,e ≥ 1−α(τ1)/2 ≥ f eτ1 ,e1 ≥ f eτ1 ,e3 by relabeling and symmetry (3.16).
Take two paths P1 ∈ P(e, e3) and P2 ∈ P(e1, e2). We may assume that P1 is an
(a, x, y, x3, a

′)-path and P2 is an (a, x1, y, x2, a
′′)-path.

(3.19) (i) Decrease λ(P1) and λ(P2) by ε := min(λ(P1), λ(P2)).

(ii) Append two paths P ′
1 = P1(a, y) ·P2(y, a′′) and P ′

2 = P2(a, y) ·P1(y, a′)
with flow-values λ(P ′

1) = λ(P ′
2) = ε.

Clearly, the resulting f is a multiflow having the same objective value. We can
repeat it until P(e, e3) = ∅ by f e1,e2−f e,e3 = f eτ1 ,e2−f eτ1 ,e ≥ 0. By f e,eτ1 = f e,e2 +
f e,e3 , we have f e,e2 = f e,eτ1 ≥ 1−α(τ1)/2. By Lemma 3.5, we have α(τ2) ≥ 2−α(τ1).

3.3 Splitting at Sρ

Recall the partition {Sρ,Mρ, Cρ} of V G defined by (3.5).

Proposition 3.9. Let (G, c) be an inner Eulerian graph and ρ an optimal poten-
tial. For a node y ∈ Sρ of degree four, there is a splittable fork at y.

Corollary 3.10. Let (G, c) be an inner Eulerian graph, and let ρ be an optimal
potential. If Mρ ∪ Cρ = ∅, then there exists an integral optimal multiflow.

Proof. Make each node in Sρ have degree four by the method in Section 2.6 to-
gether with (2.10), and apply the previous proposition.

It suffices to show the statement for the case ρ(y) = pa for some a ∈ A. By
(3.15), we may assume that y is incident to four distinct nodes x, x1, x2, x3; we
use the notation of Section 3.2.2. Figure 10 (a) illustrates the graph structure of
Γ around pa; this is the complete bipartite graph K2,m. Then we can combine
our idea of neighbors (Proposition 3.1) and Karzanov’s splitting-off proof used in
[8, 13].

We can take a fork τ at y with α(τ) > 0. Indeed, if α(τ) = 0, then f eτ
= 2 and

thus y has another fork τ ′ = (e, y, e′) with f e,e′ > 0 for an optimal multiflow f ,
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Figure 11: Flow configuration at y

and α(τ ′) > 0 (by Lemma 3.5). By (3.4), we have α(τ) ∈ {1, 2}. We may assume
that τ1 = (e, y, e1) is unsplittable and thus α(τ1) = 1. Take a critical neighbor ρ′

to ρ with respect to τ1. Then ρ′ is necessarily backward and satisfies

(i) {ρ′(yτ1), ρ′(y)} = {pO, pa} or

(ii) {ρ′(yτ1), ρ′(y)} = {pab, pab′} for distinct b, b′ ∈ B.

See Figure 10 (b). Note that if {ρ′(yτ1), ρ′(y)} = {pa, pab}, then dρ′(eτ ) = 1, α(τ) =
2, and τ is splittable. Take an optimal multiflow f = (P , λ) for (Gτ1 , c − χeτ1 )
such that

∑
e∈EGτ1 f e is minimum, and regard it as an optimal multiflow for (G, c).

By (2.8), the restriction of f to P(eτ1) is a single commodity flow; P(eτ1) consists
of (a, ā)-paths for the case (i) and consists of (b, b′)-paths for the case (ii). By
f eτ1 = 1, as in Section 3.2.2, we can rearrange f (with keeping the optimality and
the minimality) so that

f e,e2 ≥ 1/2 ≥ f e1,e2 + f e1,e3 and f e,e3 = 0

by relabeling x, x1, x2, x3 if necessary; see Figure 11 for case (i). We may assume
that f e,e2 is equal to 1/2. Otherwise α(τ2) > 1 (by Lemma 3.5) and τ2 = (e, y, e2)
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Figure 12: Flow modification

is splittable. Suppose the case (i) with (ρ′(yτ1), ρ′(y)) = (pO, pa). Then P(eτ1)
consists of (ā, yτ , y, a)-paths of flow-value 1. First we show:

(3.20) P(e, e1) cannot contain A-paths.

Indeed, suppose to the contrary that P(e, e1) contain an A-paths P1. By (2.7),
P1 is necessarily an (ā, a)-path, say, P1 is an (a, x, y, x1, a

′)-path for a′ 6= a (by
changing roles of x and x1 if necessarily). P(e, e2) is nonempty. Take a path P2

from P(e, e2) ⊆ P(eτ1); recall (3.17). Then P2 is an (a′′, x, y, x2, a)-path for a′′ 6= a.

(3.21) (i) Decrease λ(P1) and λ(P2) by ε := min(λ(P1), λ(P2)).

(ii) Append two paths P ′
1 = P1(a, x) ·P2(x, a′′) and P ′

2 = P2(a, y) ·P1(y, a′)
with flow-values λ(P ′

1) = λ(P ′
2) = ε.

Then the resulting f ′ is also optimal; see Figure 12. However (f)′e < f e contradicts
to the minimality assumption.

Since α(τ2) = 2f e,e2 = 1, by (3.10), f is also optimal to (Gτ2 , c − χeτ2 ). Then
f eτ2 = 1, and e, e2, and e1 are all saturated. In particular f e,e1 = 1/2. Take
a critical neighbor ρ′′ to ρ with respect to τ2. Suppose f e1,e2 > 0. Then P(eτ ′′

)
contains A-paths, and therefore ρ′′ is of the case (i). Then P(e, e1) consists of
A-paths, which contradicts to (3.20).

Therefore we have f e,e2 = f e1,e3 = f e,e1 = f e2,e3 = 1/2, and ρ′′ is of the case (ii)
Then both P(eτ1) = P(e, e2)∪P(e1, e3) and P(eτ2) = P(e2, e3)∪P(e, e1) are single
commodity flows. We can rearrange f so that f e,e3 = f e1,e2 = 1 as in Figure 13.
Then τ3 = (e, y, e3) is splittable.

For the other cases, e.g., (ρ′(yτ1), ρ′(y)) = (pa, pO) and {ρ′(yτ1), ρ′(y)} = {pab, pab′},
the completely same argument (by changing roles of ā, a, b, b′) implies that τ3 is
splittable.

3.4 Keeping α(τ) half- or 2/3-integral

Let (G, c) be a graph and ρ an optimal potential. (G, c; ρ) is called Eulerian if c
is integral and each node in Mρ ∪ Cρ has even degree.

Lemma 3.11. Suppose that (G, c; ρ) is Eulerian. For a fork τ , if a critical neighbor
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Figure 13: Flow modification

ρ′ to ρ with respect to τ is forward, then we have 〈c, dρ′〉 − 〈c, dρ〉 ∈ 2Z+, and thus
α(τ) is half- or 2/3-integral.

We prove it under a more general condition. We give three definitions below.
An edge e = xy ∈ EG is called mixed if it satisfies

(1) (ρ(x), ρ(y)) = (pab, pa′b′) for some a 6= a′ and b 6= b′, and

(2) for every optimal flow f = (P , λ), P(e) contains both A-paths and B-paths.

An inner node x is called tri-fixed if it satisfies

(0) degree of x is odd,

(1) ρ(x) = pO, and

(2) there exist distinct a, a′, a′′ ∈ A or distinct b, b′, b′′ ∈ B such that every
optimal flow has (a, a′)-, (a′, a′′)-, and (a′′, a)-paths passing x, or (b, b′)-,
(b′, b′′)-, and (b′′, b)-paths passing x.

For a graph (G, c) together with an optimal potential ρ, (G, c; ρ) is called admissible
if it satisfies:

(1) each edge incident to Mρ ∪ Cρ has integer capacity, and

(2) for some set Ẽ of mixed edges, each node in Mρ ∪ Cρ except tri-fixed nodes
has even degree in the graph obtained by deleting Ẽ from G.

Clearly, if (G, c; ρ) is Eulerian, then it is also admissible since there is no tri-fixed
node and Ẽ can be taken to be empty.

Lemma 3.12. Suppose that (G, c; ρ) is admissible. Let y be an inner node that is
not tri-fixed. For a fork τ at y, if a critical neighbor ρ′ to ρ with respect to τ is
forward, then we have 〈c, dρ′〉−〈c, dρ〉 ∈ 2Z+, and thus α(τ) is half- or 2/3-integral.

Proof. First, we claim that for a mixed edge e we have

(3.22) dρ′(e) = dρ(e) = 2.

Indeed, the possible situations are dρ′(e) = 2, 3, and 4 by the definition of forward
neighbors. The case dρ′(e) ∈ {3, 4} implies that for every optimal flow f to (Gτ , c−
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α(τ)χeτ ), f is a single commodity flow on edge eτ by (2.8). Since f can also be
regarded as an optimal multiflow to (G, c), this is a contradiction to the definition
of mixed edges.

Second, we claim that

(3.23) for each tri-fixed node x, its potentials ρ(x) and ρ′(x) belong to the
same color class of bipartite graph Γ .

Indeed, if f contains (a, a′)-, (a′, a′′)-, and (a′′, a)-paths passing x, then ρ′(x) must
be pO or pb for some b ∈ B by (2.7).

Third, for each s ∈ S, contract all nodes x with ρ(x) = ps into s, and delete Ẽ
and all edges connecting nodes x, y ∈ Sρ with ρ(x) 6= ρ(y). The resulting graph is
denoted by (G′, c′). By (3.22) and the fact that ρ′ is forward, we have

〈c, dρ′〉G − 〈c, dρ〉G = 〈c′, dρ′〉G′ − 〈c′, dρ〉G′ ,

where we restrict ρ′ and ρ to V G′ (well-defined). The set of tri-fixed nodes is
denoted by T . By construction, (G′, c′) is inner Eulerian with respect to S ∪ T .
Therefore c′ is decomposed into the integral sum of the characteristic vectors of
cycles Ci and (S ∪ T )-paths Pj.

〈c′, dρ′〉G′ − 〈c′, dρ〉G′ =
∑

i

(dρ′(Ci) − dρ(Ci)) +
∑

j

(dρ′(Pj) − dρ(Pj)) = 0 mod 2,

where the last equality follows from the bipartiteness of Γ and the fact (3.23).

3.5 Splitting at Mρ

Here we study the splitting properties of nodes in Mρ.

Proposition 3.13. Let (G, c) be a graph and ρ an optimal potential. Suppose that
(G, c; ρ) is Eulerian. For a node y ∈ Mρ of degree four with ρ(y) = pab, at least
one of the following holds:

(0) there is a splittable fork at y.

(1) there is an optimal forward neighbor ρ′ to ρ with ρ′(y) 6= ρ(y).

(2) there is a fork τ at y such that a critical neighbor ρ′ to ρ with respect to τ
is forward and satisfies α(τ) = 1 and {ρ′(yτ ), ρ′(y)} = {pa, pb}, and thus the
corresponding SPUP is forward and keeps (G, c; ρ) Eulerian.

Corollary 3.14. Let (G, c) be a graph and ρ its optimal potential. Suppose that
(G, c; ρ) is Eulerian and Cρ = ∅. Then there exists a half-integer optimal multiflow.

Proof. Make each node in Mρ have degree four. According to the previous proposi-
tion. for each node in Mρ, apply the splitting-off or the forward SPUP, or replace
ρ by its optimal forward neighbor, which keeps (G, c; ρ) Eulerian. Since Cρ is
empty, the set Mρ strictly decreases. Repeat this process until Mρ ∪ Cρ is empty.
Now (G, 2c) is inner Eulerian with Mρ ∪ Cρ = ∅. By Corollary 3.10, (G, c) has a
half-integral optimal multiflow, and so does the original graph.
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We may assume that y has four distinct nodes x, x1, x2, x3; we use the notation
of Section 3.2.2. We first show the following statement.

(3.24) Suppose that y has no splittable fork. Then (2) in Proposition 3.13
occurs, or there is a fork τ at y with α(τ) = 0.

Suppose to the contrary that each fork τ at y satisfies 0 < α(τ) < 2 and any
critical neighbor ρ′ to ρ with respect to τ is backward. Therefore we have

{ρ′(yτ ), ρ′(y)} = {pO, pab}.

In particular, dρ′(eτ ) = 1 and α(τ) = 1 since c is integral (and not necessarily
inner Eulerian) and thus 〈c, dρ′〉 − 〈c, dρ〉 ∈ Z+. Let τi = (e, y, ei) for i = 1, 2, 3.
Let ρi be a critical backward neighbor to ρ with respect to τi for i = 1, 2, 3. By
relabeling and symmetry (3.16), we may assume that

(i) (ρi(y
τi), ρi(y)) = (pO, pab) for i = 1, 2, 3, or

(ii) (ρi(y
τi), ρi(y)) = (pab, pO) for i = 1, 2, 3.

We show a contradiction for the first case (i); a contradiction for the second (ii) can
be obtained by interchanging roles of (a, b) and (ā, b̄). Take an optimal multiflow
f for (Gτ1 , c − χeτ1 ) and regard it as an optimal multiflow for (G, c). Then, by
(2.8), P(eτ1) consists of (ā, yτ1 , y, a)-paths and (b̄, yτ1 , y, b)-paths. Decompose f e,e1

into (f e,e1)i (i = 1, 2) defined by

(f e,e1)1 =
∑

P∈P(e,e1)

{λ(P ) | P is an (ā, x, y, x1, a)-path or a (b̄, x, y, x1, b)-path},

(f e,e1)2 =
∑

P∈P(e,e1)

{λ(P ) | P is an (a, x, y, x1, ā)-path or a (b, x, y, x1, b̄)-path}.

Note that P(e, e1) has no (a, b)-paths by ρ1(y
τ1) = pO and (2.7). Similarly, decom-
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Figure 15: Flow configuration at y

pose f e2,e3 into:

(f e2,e3)0 =
∑

P∈P(e2,e3)

{λ(P ) | P is an (a, b)-path},

(f e2,e3)1 =
∑

P∈P(e2,e3)

{λ(P ) | P is an (ā, x2, y, x3, a)-path or a (b̄, x2, y, x3, b)-path},

(f e2,e3)2 =
∑

P∈P(e2,e3)

{λ(P ) | P is an (a, x2, y, x3, ā)-path or a (b, x2, y, x3, b̄)-path}.

See Figure 15. We use the inequality (3.11) in Lemma 3.8 for (τ2, ρ2) and (τ3, ρ3).
Since P(eτi : ρi) consists of (ā, yτi , y, a)- and (b̄, yτi , y, b)-paths for i = 2, 3 by (i)
and (2.8), we have f eτ2 :ρ2 = f e,e3 +(f e,e1)1 +(f e2,e3)1 and f eτ3 :ρ3 = f e,e2 +(f e,e1)1 +
(f e2,e3)2 (by (3.17)). By dρi(eτi) = 1, α(τi) = 1, and c(eτi) = 2, the inequality
(3.11) yields

f e,e3 + (f e,e1)1 + (f e2,e3)1 − f e1,e2 − (f e,e1)2 − (f e2,e3)0 − (f e2,e3)2 ≥ 1,

f e,e2 + (f e,e1)1 + (f e2,e3)2 − f e1,e3 − (f e,e1)2 − (f e2,e3)0 − (f e2,e3)1 ≥ 1.

Summing up the two inequalities yields

f e,e3 + f e,e2 + 2(f e,e1)1 ≥ 2 + f e1,e2 + f e1,e3 + 2(f e,e1)2 + 2(f e2,e3)0.

Substitute f e,e2 + f e,e3 + f e1,e2 + f e1,e3 = f eτ1 = 1. Then we have

f e,e3 + f e,e2 + (f e,e1)1 ≥ 3/2 + (f e,e1)2 + (f e2,e3)0.

However, this contradicts to f e,e3 + f e,e2 + (f e,e1)1 + (f e,e1)2 = f e ≤ 1.
Suppose that (0) and (2) in Proposition 3.13 do not occur. Then, by (3.24),

there is a fork τ with α(τ) = 0. We may assume τ = τ1 = (e, y, e1). In this case,
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Figure 16: Flow configuration at y when α(τ) = 0 occurs

the flow configuration at y can be completely determined as follows.

(3.25) For any optimal multiflow f , we have

f e,e1 = f e2,e3 = 0 and f e,e2 = f e,e3 = f e1,e2 = f e1,e3 = 1/2.

Indeed, α(τ1) = 0 implies f eτ1 = 2, and thus f e,e1 = f e2,e3 = 0 and f e,e2 + f e,e3 =
f e1,e2 + f e1,e3 = 1. f e,e2 > 1/2 > f e,e3 implies that (e, y, e2) is splittable. Then
we obtain (3.25). Let τ2 = (e, y, e2). Take a critical neighbor ρ2 w.r.t. τ2. By
the assumption, ρ2 is backward. We may assume that (ρ2(y

τ ), ρ2(y)) = (pO, pab)
by symmetry (3.16). By α(τ2) = 2f e,e2 = 1, f can be regarded as an optimal
multiflow for (Gτ2 , c − χeτ2 ). Therefore, by (3.10) with a help of (2.8), P(eτ2)
consists of (ā, yτ2 , y, a)-paths and (b̄, yτ2 , y, b)-paths. If both P(e, e3) and P(e1, e2)
contain (ā, a)-paths (or (b̄, b)-paths), then we can rearrange f (as in (3.21)) so that
f e,e1 > 0 and this is a contradiction to α(τ1) = 0. Therefore, we have

(3.26) (i) P(e, e3) consists of (ā, x, y, x3, a)-paths and P(e1, e2) consists of
(b, x1, y, x2, b̄)-paths, or

(ii) P(e, e3) consists of (b̄, x, y, x3, a)-paths and P(e1, e2) consists of
(a, x1, y, x2, ā)-paths.

See Figure 16. Now the edge eτ1 in (Gτ1 , c) is saturated by every optimal multiflow
by α(τ1) = 0. By Lemma 3.7, we can take an optimal neighbor ρ′ to ρ with
ρ(yτ1) 6= ρ(y). Suppose ρ′ is backward. Then P(eτ1) consists of (ā, yτ1 , y, a)-
paths and (b̄, yτ1 , y, b)-paths if (ρ′(yτ1), ρ′(y)) = (pO, pab), and P(eτ1) consists of
(a, yτ1 , y, ā)-paths and (b, yτ1 , y, b̄)-paths if (ρ′(yτ1), ρ′(y)) = (pab, pO). Both cases
contradict to both (i) and (ii) in (3.26). Therefore ρ′ is necessarily forward. We
may assume that ρ′(y) = pa or pb, say, ρ′(y) = pa. In (Gτ1 , c), node yτ1 has
three incident edges e, e1, e

τ1 with c(eτ1) = 2. Then, fork (e, yτ1 , eτ1) is (trivially)
splittable by (3.15). After the splitting-off at (e, yτ1 , eτ1) (and (e1, y

τ1 , eτ1)), the
resulting graph coincides with (G, c) and ρ′ is an optimal forward neighbor to ρ
with ρ′(y) 6= ρ(y).
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3.6 Half-integrality under the ring condition

For a graph (G, c) and its optimal potential ρ, consider the following condition.

(3.27) The connected components of the subgraph of G induced by Cρ consist
of paths and cycles.

We call it the ring condition.

Proposition 3.15. Let (G, c) be a graph and ρ its optimal potential. Suppose
that (G, c; ρ) is Eulerian and satisfies the ring condition. Then there exists a half-
integral optimal multiflow.

Let us explain a motivation behind it. We start with inner Eulerian graph
(G, c) each of whose inner nodes has degree four. Let ρ be an optimal potential.
Apply (necessarily forward) SPUP at each node of degree four in Cρ until no such
a node exists. Then each node in Cρ is one of y and yτ produced by the SPUP.
Therefore each node in Cρ has three incident nodes with at least one of them not
belonging to Cρ. Then each node in the subgraph induced by Cρ has at most two
incident nodes. Therefore (G, c; ρ) satisfies the ring condition, and (G, kc; ρ) is
Eulerian for some integer k. In Section 3.7, we will show that k can be taken as 6.

Now we begin the proof. We use the induction on the sum of capacity of
edges incident to Cρ. If Cρ = ∅, then we are done by Corollary 3.14. Suppose
Cρ 6= ∅. By using the method in Section 2.6 together with (2.10), make each
node in Mρ have degree four. According to Proposition 3.13, at each node in Mρ,
apply the splitting-off or the forward SPUP, or replace ρ to an optimal forward
neighbor until Mρ = ∅. Note that the forward SPUP never increases Cρ. In this
process, if the cardinality of Cρ strictly decreases, then (G, c; ρ) still satisfies the
condition of Proposition 3.15 and the induction follows. We may assume that Cρ

keeps invariant. Consider (G, 2c), which is inner Eulerian, and apply splitting-off
to each node in Sρ in (G, 2c; ρ); it is always applicable by Proposition 3.9. Then c
is half-integer. Make (G, c) simple. Then (G, c; ρ) again satisfies the condition of
Proposition 3.15, and

(3.28) each inner node belongs to Cρ, i.e., V G = S ∪ Cρ.

Here (G, c) is simple, and thus we will use a simplified notation xyz for a fork
(xy, y, yz) in the following. We may assume that

(3.29) any fork τ = syu for s ∈ S, y ∈ Cρ, u ∈ V G is unsplittable, and thus

α(τ) ∈
{

0,
1

2
,
2

3
, 1,

4

3
,
3

2

}
by the Eulerianness of (G, c) (Lemma 3.11) and Lemma 3.3.

Otherwise, the graph resulted by the splitting-off at τ clearly satisfies the ring
condition and the induction follows.
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(3.30) For a fork τ = aya′ with y ∈ Cρ and a, a′ ∈ A, if 0 < α(τ) < 2, then
any critical neighbor ρ′ w.r.t. τ satisfies (ρ′(yτ ), ρ′(y)) = (pO, pa′′

) or
(pb, pa′′

) for a′′ ∈ A \ {a, a′} and b ∈ B, and thus α(τ) = 1.

Proof. Take an optimal multiflow f for (Gτ , c−α(τ)χeτ ). Then edges ayτ , a′yτ , and
eτ are all saturated, and thus fayτ ,eτ

, fa′yτ ,eτ
, and fayτ ,yτ a′

are all nonzero. Then
P(ayτ , eτ ), P(a′yτ , eτ ), and P(ayτ , yτa′) consists of (a,A \ {a, a′})-paths, (a′, A \
{a, a′})-paths, and (a, a′)-paths, respectively. Indeed, if P(ayτ , eτ ) has an (a, a′)-
path, then we can rearrange f (as in Figure 12) to make eτ unsaturated, which
contradicts to dρ′(eτ ) > 0 and the optimality criterion I. By (2.8), (ρ′(yτ ), ρ′(y)) is
(pO, pa′′

) or (pb, pa′′
).

If (ρ′(yτ ), ρ′(y)) = (pb, pa′′
), then (Gτ , c − χeτ ; ρ′) satisfies the assumption of

Proposition 3.15; the corresponding SPUP succeeds, #Cρ′ < #Cρ, and thus the
induction follows. Suppose that (ρ′(yτ ), ρ′(y)) = (pO, pa′′

). Replace ρ′(yτ ) by pb

for arbitrary b ∈ B. Then the resulting ρ′ is also optimal, and it reduces to the
case above.

Therefore, we may assume that

(3.31) any fork τ = syt for y ∈ Cρ, s, t ∈ S satisfies α(τ) = 0.

By dρ(a, y) + dρ(y, b) > dρ(a, b) for (a, b) ∈ A × B, there is no optimal multiflow
passing a, y, b in order. From this, we have α(ayb) = 0.

(3.32) An inner node y ∈ Cρ is incident to exactly two nodes in Cρ, and is
incident to at least two terminals.

Proof. Suppose that y is incident to exactly one inner node x. For an optimal
multiflow f , we have c(sy) = f sy = f sy,yx by (3.31). Therefore syx is splittable,
which contradicts to (3.29). Suppose that y is incident to exactly one terminal s.
y is incident to exactly two nodes x, z ∈ Cρ. By Eulerianness, we may assume that
c(zy) > c(xy). Then syz is (trivially) splittable. A contradiction to (3.29)

Therefore, we may assume that

(3.33) for a node y ∈ Cρ incident to x, z ∈ Cρ and s ∈ S and every optimal
multiflow f , we have

c(sy) = f sy = f sy,yz + f sy,yx, and f sy,yz > 0, f sy,yx > 0.

In particular, c(sy) = 1.

Indeed, c(sy) ≥ 2 implies that max{f sy,yz, f sy,yx} ≥ 1 and thus one of syz an syx
is splittable (a contradiction to (3.29)).

(3.34) Each fork τ = syz for s ∈ S, y, z ∈ Cρ satisfies α(τ) = 1.
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Figure 17: Nodes x, y, z, a, a′ and flow modification

Proof. We may assume that s = a for a ∈ A. Take a critical neighbor ρ′. Suppose
to the contrary that dρ′(eτ ) = 3 or 4. If dρ′(eτ ) = 3, then (ρ′(yτ ), ρ′(y)) = (pa, pa′b)
or (pab, pa′

) for some a′ ∈ ā and b ∈ B. If dρ′(eτ ) = 4, then (ρ′(yτ ), ρ′(y)) =
(pa, pa′

) for a′ ∈ ā. Indeed, take an optimal multiflow f to (Gτ , c−α(τ)χτ ). Then
fayτ ,eτ

> 0, which implies dρ′(a, y) = dρ′(a, yτ ) + dρ′(yτ , y), and thus ρ′(y) and
ρ′(yτ ) are determined as above. In both cases, P(eτ ) consists of (a, a′)-paths. By
(3.32) and (3.33), y has another terminal s′ with f s′y,eτ

= f s′y,yz > 0, which implies
s′ = a′. Then we can rearrange f so that fay,ya′

> 0 as in Figure 17. This is a
contradiction to (3.31).

In particular, f sy,yz = f sy,yx = 1/2 necessarily holds for every optimal multiflow
f . By α(syx) = 2f sy,yx = 1 from (3.34) and by (3.10), yx is saturated by every
optimal multiflow. By Lemma 3.7, we can take an optimal neighbor ρ′ to ρ with
dρ′(yx) > 0, which is necessarily forward. Then #Cρ′ < #Cρ holds, and the
induction follows.

3.7 Splitting at Cρ

Here we complete the proof of Theorem 1.4. Let (G, c) be an inner Eulerian graph.
By using the method in Section 2.6, we may assume that each edge has unit
capacity and each inner node has degree four. Apply the splitting-off operations
to all inner nodes if applicable. We may assume that there is no splittable fork.
Take an optimal potential ρ. If Cρ is empty, then there exists a half-integer optimal
multiflow by Corollary 3.14. Therefore we may assume that Cρ is nonemtpy.

We will repeat the forward SPUP operations to nodes of degree four in Cρ

keeping the following condition:

(3.35) (G, 3c; ρ) is admissible and (G, 6c; ρ) is Eulerian.

In this process, an inner node x is said to be untouched if x has not been split yet,
or equivalently, x has degree four. In the initial step, the subset Ẽ of mixed edges
is set to be empty. If there is no untouched node in Cρ, then (G, c; ρ) necessarily
satisfies the ring condition (3.27), as described in the previous subsection.

Now we begin the proof. Take an (untouched) inner node y ∈ Cρ. We may
assume that 0 < α(τ) < 2 for every fork τ at y. Indeed, if α(τ) = 0, then we
can take an optimal neighbor ρ′ to ρ with #Cρ′ < #Cρ by the same argument as
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that in the proof of Proposition 3.13 (1). By Proposition 3.1 and Lemma 3.3, the
possible values of α(τ) are

1

2
,
2

3
, 1,

4

3
,
3

2
.

Let ρ′ be a critical neighbor to ρ with respect to τ .

(3.36) If dρ′(eτ ) = 4, then the SPUP at τ keeps (G, c) admissible (with Ẽ = ∅)
and (G, 2c) Eulerian.

Indeed, this immediately follows from {ρ′(y), ρ′(yτ )} = {pa, pa′} or {pb, pb′} and
α(τ) ∈ {1/2, 1, 3/2}.

Apply the SPUP to all such forks τ with dρ′(eτ ) = 4 if exists. At this moment,
if Cρ is empty, then there exists a 1/4-integral optimal multiflow.

We may assume that Cρ is nonempty. Then, by Lemma 3.6,

(3.37) any fork τ at any untouched node in Cρ satisfies α(τ) < 3/2.

Now suppose (G, 3c; ρ) is admissible (with Ẽ) and (G, 6c; ρ) is Eulerian. In the
SPUP, if some edge e = xy in Ẽ moves, i.e., (ρ′(x), ρ′(y)) 6= (ρ(x), ρ(y)), then
update Ẽ by deleting all such edges; both ρ′(x) and ρ′(y) fall into Sρ.

Let τ be a fork at an untouched node y ∈ Cρ. Let ρ′ be a critical neighbor to
ρ with respect to τ . Then, by Lemma 3.12, we have

α(τ) ∈ 1

dρ′(eτ )

2

3
Z+.

Therefore the possible situations of ρ′ are classified into the following; also see
Figure 18.
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(1) {ρ′(yτ ), ρ′(y)} = {pO, pab}, dρ′(eτ ) = 1, and α(τ) ∈
{

2

3
,
4

3

}
.

(2-1) {ρ′(yτ ), ρ′(y)} = {pab, pab′} or {pab, pa′b}, dρ′(eτ ) = 2, and α(τ) ∈
{

2

3
, 1,

4

3

}
.

(2-2) {ρ′(yτ ), ρ′(y)} = {pO, ps}, dρ′(eτ ) = 2, and α(τ) ∈
{

2

3
, 1,

4

3

}
.

(2-3) {ρ′(yτ ), ρ′(y)} = {pab, pa′b′}, dρ′(eτ ) = 2, and α(τ) ∈
{

1

3
,
2

3
, 1,

4

3

}
.

(2-4) {ρ′(yτ ), ρ′(y)} = {pa, pb}, dρ′(eτ ) = 2, and α(τ) ∈
{

1

3
,
2

3
, 1,

4

3

}
.

(3) {ρ′(yτ ), ρ′(y)} = {pa, pa′b} or {pb, pab′}, dρ′(eτ ) = 3, and α(τ) ∈
{

2

3
,
8

9
,
10

9
,
4

3

}
.

(4) {ρ′(yτ ), ρ′(y)} = {pa, pa′} or {pb, pb′}, dρ′(eτ ) = 4, and α(τ) ∈
{

2

3
,
5

6
, 1,

7

6
,
4

3

}
.

In the statements, a and a′ (resp. b and b′) are distinct. Here α(τ) < 3/2 = 1.5
necessarily holds by (3.37). Therefore α(τ) ≥ 5/3 = 1.666 · · · never occurs in the
cases (2-1), (2-2), (2-3), and (2-4). Similarly, α(τ) ≥ 14/9 = 1.555 · · · never occurs
in the case (3). In the cases (2-1), (2-2), (3), and (4), α(τ) ≤ 1/2 never occurs.
Otherwise, by (2.8) and (3.18), y has another fork τ ′ with α(τ ′) ≥ 3/2.

There are several cases such that the SPUP at τ succeeds, i.e., it keeps (3.35).
(1), (4), and (2-4) are such cases. Also, in all cases, if α(τ) ∈ {2/3, 4/3}, then
the SPUP is clearly successful. If the case (2-3) with α(τ) = 1 occurs and eτ is
mixed in (Gτ , c−α(τ)χeτ ; ρ′), then the SPUP succeeds with adding eτ to Ẽ. In the
case (2-3) with α(τ) = 1/3, if eτ is not mixed in (Gτ , c − α(τ)χeτ ; ρ′), then y has
another fork τ ′ such that α(τ ′) ≥ 5/3 > 3/2 by (3.18), and this is a contradiction
to (3.37). Therefore if the case (2-3) with α(τ) = 1/3 occurs, then eτ is necessarily
mixed in (Gτ , c − α(τ)χeτ ; ρ′) and thus the SPUP succeeds with adding eτ to Ẽ.

Apply SPUP at all such forks. Now, if there is no untouched node in Cρ, then
(G, 6c; ρ) satisfies the condition of Proposition 3.15, and thus we are done. Suppose
that Cρ still has an untouched node y. For each fork τ at y, the remaining possible
situations are the following.

(2-1) {ρ′(yτ ), ρ′(y)} = {pab, pab′} or {pab, pa′b}, dρ′(eτ ) = 2, and α(τ) = 1.

(2-2) {ρ′(yτ ), ρ′(y)} = {pO, ps}, dρ′(eτ ) = 2, and α(τ) = 1.

(2-3) {ρ′(yτ ), ρ′(y)} = {pab, pa′b′}, dρ′(eτ ) = 2, α(τ) = 1,
and eτ is not mixed in (Gτ , c − χeτ ; ρ′).

(3) {ρ′(yτ ), ρ′(y)} = {pa, pa′b} or {pb, pab′}, dρ′(eτ ) = 3, and α(τ) ∈
{

8

9
,
10

9

}
.

We show that (2-1), (2-3), and (3) never occur.
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Figure 19: Flow configurations at y

The case (2-3). First we show that (2-3) never occurs. An untouched inner node
y ∈ Cρ has four distinct node x, x1, x2, x3 with edges e = xy, e1 = x1y, e2 = x2y,
e3 = x3y. Suppose to the contrary that (2-3) occurs for τ1 = (e, y, e1). Take a crit-
ical neighbor ρ1 to ρ w.r.t. τ1. We may assume that (ρ1(y

τ1), ρ1(y)) = (pa′b′ , pab).
We can take an optimal multiflow f for (Gτ1 , c − χeτ1 ) such that

(3.38) (i) P(eτ1) consists of (a′, yτ1 , y, a)-paths (by changing roles of A and B if
necessarily), and

(ii) among such optimal multiflows,
∑

e∈EGτ1 f e is minimum.

We may assume that f e2,eτ1 ≥ f e,eτ1 ≥ 1/2 ≥ f e1,eτ1 ≥ f e3,eτ1 by relabeling. By
rearranging P(eτ1) as (3.19) in Section 3.2.2, we have f e,e2 = f e,eτ1 ≥ 1/2, and
f e,e3 = 0 (, which keeps the minimality); see Figure 19. By the minimality assump-
tion in (3.38) and by the same argument as that used for (3.20) in Section 3.3,

(3.39) both P(e, e1) and P(e2, e3) cannot contain A-paths.

Consider fork τ2 = (e, y, e2). Then α(τ2) ≥ 1 by f e,e2 ≥ 1/2 (Lemma 3.5). There-
fore,

α(τ2) ∈ {1, 10/9}.

Suppose α(τ2) = 10/9 (case (3)). Take a critical neighbor ρ2 w.r.t. τ2. Put
ε = f e,e2 − 1/2 ≥ 0. Applying the inequality (3.12) in Lemma 3.8 for (τ2, ρ2), we
have

f eτ2 :ρ2 ≥ 2 − 2(1/2 + ε) − (3/2)(10/9 − 2(1/2 + ε)) = 5/6 + ε.

If {ρ2(y
τ2), ρ2(y)} = {pa′′

, pa′′′b′′}, then P(eτ2 : ρ2) consists of A-paths of flow-value
at least 5/6 + ε, and thus P(e, e1) also contains A-paths (of flow-value at least
5/6 + ε− (1− f e,e2) = 5/6− 1/2 + 2ε > 0), which contradicts to (3.39). Therefore
we may assume that {ρ2(y

τ2), ρ2(y)} = {pb′′ , pa′′b′′′}. Then P(eτ2 : ρ2) consists
of B-paths of flow-value at least 5/6 + ε. Since P(e1, e2) consists of A-paths (if
nonempty), we have P(eτ2 : ρ2) ⊆ P(e, e1)∪P(e2, e3); recall (3.17). Therefore both
P(e, e1) and P(e2, e3) have B-paths of flow-value at least 5/6+ε−(1−f e,e2) = 5/6−
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1/2+2ε = 1/3+2ε. We can rearrange f so that f e1,e2 ≥ 1/3+2ε+1/2−ε = 5/6+ε
as in Figure 20. Then α(τ3) ≥ 5/3. A contradiction.

Suppose α(τ2) = 1. Then f e,e2 = α(τ2)/2 = 1/2 and f is also optimal for
(Gτ2 , c − χeτ2 ). By (3.10) and (3.39), P(e, e1) consists of B-paths of flow-values
1/2, and P(e2, e3) consists B-paths of 1/2 − f e1,e2 . Put g = f e1,e2 . We can
rearrange f so that f e1,e2 = 1/2 + 1/2 − g = 1 − g. Therefore 4/9 ≤ g ≤ 1/2. Let
τ3 = (e, y, e3). P(eτ3) consists of A-paths of flow-value g and B-paths of flow-value
g. Suppose α(τ3) = 10/9, i.e., the case (3). Applying the inequality (3.11) in
Lemma 3.11 for (τ3, ρ3), we obtain

2 ≥ 2g + 2g ≥ 2f eτ3 :ρ3 + f eτ3 ≥ 3(2 − 10/9) = 8/3 > 2,

where f eτ3 :ρ3 ≤ g, f eτ3 = 2g, and g ≤ 1/2. A contradiction.
Therefore α(τ3) = 1, and g = f e1,e2 = 1/2 (g < 1/2 implies f e1,e2 > 1/2 and

α(τ3) > 1). Then both a critical neighbor ρ2 w.r.t. τ2 and a critical neighbor ρ3

w.r.t. τ3 are necessarily the case (2-3) since both (2.1) and (2.2) implies that P(eτ2)
(or P(eτ3)) is single commodity paths. We may assume that (ρ2(y

τ2), ρ2(y)) =

(pab̃′ , pa′b̃) with b̃ 6= b̃′. Then P(e, e1) consists of (b̃, b̃′)-paths of flow-value 1/2.

See Figure 22. This implies (ρ3(y
τ3), ρ3(y)) = (pa′b̃′ , pab̃) (by regarding f as an
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optimal multiflow to (Gτ3 , c − χeτ3 )). By the assumption that eτ2 is not mixed in
(Gτ2 , c−χeτ2 ; ρ2), we can take an optimal multiflow f2 = (P2, λ2) for (Gτ2 , c−χeτ2 )
such that P2(e

τ2) consists of either (a, a′)-paths or (b̃, b̃′)-paths. We take such f2

with
∑

e∈EGτ2 (f2)
e minimum. By the same arguments above, the possible flow con-

figurations of f2 at y are classified into the eight patterns in Figure 23, where the
bold lines and the broken lines represent A-paths and B-paths of flow-value 1/2,
respectively, and the positions of y, x, x1, x2, x3 are the same as in Figure 22. f2

can be regarded as an optimal multiflow for (Gτ1 , c − χeτ1 ) and (Gτ3 , c − χeτ3 ).

(ρ3(y
τ3), ρ3(y)) = (pa′b̃′ , pab̃) implies that P2(e

τ3) consists of (a′, yτ3 , y, a)-paths
and (b̃′, yτ3 , y, b̃)-paths. Here, recall the relation (3.17). Then (a-2), (a-4), (b-
1), and (b-3) are impossible. Similarly, (a-1) contradicts to (ρ1(y

τ1), ρ1(y)) =
(pa′b′ , pab). For (b-4), (ρ1(y

τ1), ρ1(y)) = (pa′b′ , pab) implies that P2(e1, e3) consists

of (a′, x1, y, x3, a)-paths. On the other hand, (ρ3(y
τ3), ρ3(y)) = (pa′b̃′ , pab̃) implies

that P2(e1, e3) consists of (a, x1, y, x3, a
′)-paths. A contradiction. Therefore, f2 is

necessarily (b-2) or (a-3). If f2 is (b-2), then (ρ1(y
τ1), ρ1(y)) = (pa′b′ , pab) implies

that P2(e1, e2) consists of (b′, x1, y, x2, b)-paths, and thus (b̃, b̃′) = (b′, b). Similarly,
if f2 is (a-3), then P2(e1, e3) consists of (b′, x1, y, x3, b)-paths by (ρ1(y

τ1), ρ1(y)) =

(pa′b′ , pab) and also consists of (b̃, x1, y, x3, b̃′)-paths by (ρ3(y
τ3), ρ3(y)) = (pa′b̃′ , pab̃),

and thus (b̃, b̃′) = (b′, b). Consequently, in the both cases, we have

(b̃, b̃′) = (b′, b).

In particular, P(e, e1) consists of (b, x, y, x1, b
′)-paths (see Figure 22).

Again we can take an optimal multiflow f3 for (Gτ3 , c − χeτ3 ) such that eτ3

are saturated by either (a, a′)-paths or (b̃, b̃′)-paths ((b′, b)-paths). We take such
f3 = (P3, λ3) with

∑
e∈EGτ3 (f3)

e minimum. By the same argument above, the
possible flow configurations of f3 at y are classified into the eight patterns in
Figure 24. Again (a-1),(a-4), (b-2), and (b-3) contradict to (ρ1(y

τ1), ρ1(y)) =
(pa′b′ , pab), and (b-1) and (a-2) contradict to (ρ2(y

τ2), ρ2(y)) = (pab, pa′b′). For
(b-4), (ρ1(y

τ1), ρ1(y)) = (pa′b′ , pab) implies that P3(e, e3) consists of (a′, x, y, x3, a)-
paths. However, (ρ2(y

τ2), ρ2(y)) = (pab, pa′b′) implies that P3(e, e3) consists of
(a, x, y, x3, a

′)-paths. A contradiction. For (a-3), (ρ2(y
τ2), ρ2(y)) = (pab, pa′b′) im-

plies that P3(e, e3) consists of (b, x, y, x3, b
′)-paths, and (ρ1(y

τ1), ρ1(y)) = (pa′b′ , pab)
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implies that P3(e, e3) consists of (b′, x, y, x3, b)-paths. A contradiction.

The cases (2-1). Second, we show that (2-1) never occurs. Suppose to the
contrary that the case (2-1) occurs for τ1 = (e, y, e1). Take a critical neighbor ρ1

to ρ w.r.t. τ1. We may assume that (ρ1(y
τ1), ρ1(y)) = (pab, pa′b). Take an optimal

multiflow f for (Gτ1 , c−χeτ1 ). Then P(eτ1) consists of (a′, a)-paths. The situation
is exactly the same as the case (2-2). Therefore we can apply the same argument
above (more easy).

The case (3). Third, we show that (3) never occurs. Suppose to the contrary
that the case (3) occurs for τ1 = (e, y, e1). Let ρ1 be a critical neighbor to ρ w.r.t.
τ1. Then we may assume that (ρ1(y

τ1), ρ1(y)) = (pa′
, pab) or (pa′b, pa). Take an op-

timal multiflow f for (Gτ1 , c−α(τ1)χeτ1 ) with
∑

e∈EGτ1 f e minimum. Then P(eτ1)
consists of (a′, yτ1 , y, a)-paths (by (2.8)). Again, by the minimality,

(3.40) P(e, e1) cannot contain A-paths.

Case 1: α(τ1) = 8/9. Then f eτ1 = 10/9. We may assume that f e,e1 = 5/9 and
f e,e3 = 0. Then α(τ2) = 2f e,e1 = 10/9, and f is also optimal to (Gτ2 , c−α(τ2)χeτ2 ).
Then f eτ2 = 8/9. If a critical neighbor ρ2 w.r.t. τ2 satisfies {ρ2(y

τ2), ρ2(y)} =
{pa′′b′′ , pa′′′}, then P(e, e1) is saturated by A-paths, and this is a contradiction to
(3.40). Therefore ρ2 satisfies {ρ2(y

τ2), ρ2(y)} = {pa′′b′′ , pb′′′}, and f e1,e2 is neces-
sarily zero. Then we can rearrange f so that f e,e3 = 1 as in Figure 13, and thus
(e, y, e3) is splittable. A contradiction.
Case 2: α(τ1) = 10/9. Then f eτ1 = 8/9. Therefore we may assume that f e,e2 ≥ 4/9
and f e,e3 = 0. Then α(τ2) ∈ {8/9, 1, 10/9}. The case α(τ2) = 8/9 reduces to Case
1 above.
Case 2-1: α(τ2) = 1. Take a critical neighbor ρ2 w.r.t. τ2. Then {ρ2(y

τ ), ρ2(y)} =
{pO, ps} for some s ∈ A∪B (case (2.2)). If s ∈ A, then, by Lemma 3.8, P(eτ2 : ρ2)
consists of A-paths of flow-value at least 1, and thus P(e, e1) has A-paths, which
contradicts to (3.40). Therefore s = b ∈ B. Then P(eτ2 : ρ2) consists of B-
paths of flow-value at least 1. Since P(e1, e2) consists of A-paths (if nonempty),
P(eτ2 : ρ2) ⊆ P(e, e1) ∪ P(e2, e3) necessarily holds. Put ε = f e,e2 − 4/9 ≥ 0.
Both P(e, e1) and P(e2, e3) contain B-paths of flow-value at least 1− (1− f e,e2) =
1−5/9+ε = 4/9+ε. Then we can rearrange f so that f e1,e2 ≥ 4/9−ε+4/9+ε > 2/3;
see Figure 25. Thus α(τ3) > 4/3. A contradiction.
Case 2-2: α(τ2) = 10/9. Take a critical neighbor ρ2 w.r.t. τ2. Then we have:

(i) {ρ2(y
τ2), ρ2(y)} = {pa′′b′ , pa′′′} for distinct a′′, a′′′ ∈ A and b′ ∈ B, or

(ii) {ρ2(y
τ2), ρ2(y)} = {pa′′b′ , pb′′} for distinct b′, b′′ ∈ B and a′′ ∈ A.

Put ε = f e,e2 − 4/9 ≥ 0. By Lemma 3.8, we have

f eτ2 :ρ2 ≥ 2 − 2(4/9 + ε) − (3/2)(10/9 − 2(4/9 + ε)) = 7/9 + ε.

If (i) occurs, then P(eτ2 : ρ2) consists of A-paths of flow-value at least 7/9+ ε, and
consequently P(e, e1) must have A-paths (of flow-value at least 7/9+ε−(1−f e,e2) =
2/9+2ε) and this contradicts to (3.40). Therefore (ii) occurs. By (3.40), P(eτ2 : ρ2)
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consists of B-paths of flow-value at least 7/9+ε. Since P(e1, e2) consists of A-paths
(if nonempty), we have P(eτ2 : ρ2) ⊆ P(e, e1) ∪ P(e2, e3). Then both P(e, e1) and
P(e2, e3) have B-paths of flow-values at least 7/9 + ε− (1− f e,e2) = 2/9 + 2ε. We
can rearrange f so that f e1,e2 ≥ 4/9− ε + 2/9 + 2ε = 2/3 + ε; see Figure 26. Then
α(τ3) ≥ 4/3. A contradiction.

The case (2-2). Therefore, for any fork τ at any untouched node y ∈ Cρ, any
critical neighbor ρ′ to ρ is of type (2-2):

(2-2) {ρ′(yτ ), ρ′(y)} = {pO, ps}, dρ′(eτ ) = 2, and α(τ) = 1.

By symmetry (3.16) and by changing roles of A and B, we may assume that
(ρ1(y

τ1), ρ1(y)) = (pO, pa) for a critical neighbor ρ1 to ρ w.r.t. τ1. Take an arbitrary
optimal multiflow f = (P , λ) for (G, c). By Lemma 3.8, P(eτ1 : ρ1) consists
of (ā, yτ1 , y, a)-paths of flow-value at least 1. By rearranging A-paths in P(eτ1),
we have f e,e2 ≥ 1/2. Therefore f e,e2 = 1/2 since f e,e2 > 1/2 implies that τ2 is
splittable. Consider the fork τ2 = (e, y, e2). Then α(τ2) = 2f e,e2 = 1. f is also
optimal for (Gτ2 , c−χeτ2 ). Then both e2 and e are saturated. If both P(e, e1) and
P(e2, e3) are nonempty, then we can rearrange f so that f e,e3 > 1/2 and α(τ3) > 1,
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and this is a contradiction. Therefore one of P(e, e1) and P(e2, e3) is empty. Then
the possible flow configurations at y are:

(i) f e,e2 = f e1,e2 = f e,e1 = 1/2 and f e3 = 0, or

(ii) f e,e2 = f e,e3 = f e2,e3 = 1/2 and f e1 = 0.

See Figure 27. In fact, (ii) is impossible. Indeed, consider a critical neighbor ρ2

w.r.t. τ2. Then it satisfies {ρ2(y
τ2), ρ2(y)} = {pO, pã} for ã ∈ A since P(eτ2) con-

tains A-paths. Therefore, P(e2, e3) consists of A-paths. By a rearrangement simi-
lar to Figure 12, we can modify f so that f e,e2 > 1/2 or f e,e3 > 1/2, which yields a
contradiction. Suppose the case (i). Then P(e, e1) consists of (a′, x, y, x1, a

′′)-paths
for distinct a′, a′′ ∈ A with a′ 6= a and a′′ 6= a. Otherwise, we can modify f so that
f e,e2 > 1/2 or f e1,e2 > 1/2 by a rearrangement similar to Figure 12. Similarly,
P(e, e2) consists of (a′, x, y, x2, a)-paths and P(e1, e2) consists of (a′′, x1, y, x2, a)-
paths. Recall that f is an arbitrary optimal multiflow. Then yτ1 is a tri-fixed
in (Gτ , c − χτ1 ; ρ1); recall the definition of tri-fixed nodes given in Section 3.4.
Therefore the SPUP succeeds at each nodes in Cρ.

We now arrive at the goal where Cρ has no untouched nodes and (G, c; ρ)
keeps (3.35). Then (G, 6c; ρ) satisfies the condition of Proposition 3.15. Therefore
(G, c) has a 1/12-integral optimal multiflow, and so does the original graph. This
completes the proof of Theorem 1.4.

4 Concluding remarks

In this paper, we prove that the multiflow feasibility problems for demand graph
K3 + K3 and Kn,m-metric weighted maximum multiflow problems have bounded
fractionality. However, we do not know whether the constant k = 1/12 (under
the Euler condition) is tight. The main obstruction is an occurrence of the SPUP
corresponding to α(τ) ∈ {4/3, 3/2} at Cρ in our proof, which causes the violation
of the Eulerianness to (G, c; ρ). If one could avoid such a SPUP, then the exis-
tence of a half-integral optimal multiflow would follow, which implies the stronger
conjecture (k = 2). Unfortunately, we could not do it.

42



Our approach is applicable to prove the existence of a 1/12-integral optimal
multiflow for a larger class of maximum multiflow problems [5].
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