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Abstract

The purpose of this paper is twofold. One is to give a survey of our study on the reductions of harmonic
bundles, and the other is to explain a simple application in the study of TERP structure. In particular,
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1 Introduction

In our previous papers [17], [18] and [19], we studied asymptotic behaviour of tame and wild harmonic bundles.
Briefly, one of the main results is the following sequence of reductions of harmonic bundles:

wild tame twistor twistor nilpotent orbit
(irregular) (regular) nilpotent orbit of split type

(1)

A reduced object is simpler than the original one, but it still gives a good approximation of the original one.
And, a twistor nilpotent orbit of split type comes from a variation of polarized pure Hodge structures, whose
asymptotic behaviour was deeply studied by E. Cattani, A. Kaplan, M. Kashiwara, T. Kawai and W. Schmid.
Thus, we can say that the asymptotic behaviour of wild harmonic bundles is understood pretty well.

The main purpose of this paper is twofold. One is to give a survey of these reductions, and the other is to
explain a simple application in the study of TERP structure.

C. Hertling [7] initiated the study of TERP structures inspired by mathematical physics and singularity
theory. The study was further developed by Hertling and C. Sevenheck. For example, they investigated
“nilpotent orbit” [8], asymptotic behaviour of tame variation of TERP structures and classifying spaces [9]. We
refer to the above papers and a survey [10] for more details and precise.

Remark 1.1 Their “nilpotent orbit” is called “HS-orbit” (Hertling-Sevenheck orbit) in this paper. We can
consider several kinds of generalization of “nilpotent orbit” in the theory of TERP structures and twistor struc-
tures. HS-orbit is the one. Another one is twistor nilpotent orbit studied in [18], which we will mainly use in
this paper. |

Remark 1.2 We prefer to regard TERP structure as integrable twistor structure with a real structure and a
pairing studied by C. Sabbah. It is called twistor-TERP structure in this paper. |

We will give an enrichment of the sequence (1) with TERP structures or integrable twistor structures. As an
application, we will study the behaviour of “new supersymmetric index” of variation of pure polarized TERP
structures. Let V be a meromorphic connection of V = Of," admitting a pole at {0,000} of at most order two.
Let d be the natural connection of V. Then, we have the expression V = d + ()\*1 Uy — Q— A 'ng) “dNJ,
where U;, @ € End(V). If (V,V) is equipped with a real structure and a polarization (see Subsection 2.1.5),
there is some more restriction on them. Anyway, Q is called the supersymmetric index of (V,V). We set
X = {(21,--.,2) ||| < 1} and D := (J_;{zi = 0}. Let (V,D2,8, k) be a variation of pure polarized
twistor-TERP structures of weight 0 on P! x (X — D). (See Subsection 2.1.) It is called unramifiedly good
wild (resp. tame), if the underlying harmonic bundle (E, g, 0, h) is so. (See Subsection 6.1.) For each point



P € X — D, we have the new supersymmetric index Qp € End(V@lXp) ~ End(Ep) of (VA,ﬁA)|P1Xp, and
thus we obtain a C*-section Q of End(E). We are interested in the behaviour of Q around (0,...,0). The

result is the following:

e In the case of twistor-TERP nilpotent orbit of split type, the new supersymmetric index can be easily
computed from the data of the corresponding polarized mixed twistor-TERP structure. In particular,
their eigenvalues are constant. (See Section 3.)

e From a twistor-TERP nilpotent orbit (V,IBDA,S,/@), we obtain a twistor-TERP nilpotent orbit of split
type (VO,]D)OA , S0, ko), by taking Gr with respect to the weight filtration. (Precisely, Gr is taken for the
corresponding polarized mixed twistor-TERP structure.) The new supersymmetric index Q of (V,D%)

can be approximated by the new supersymmetric index Qg of (Vo,D5) up to O(Z(—log |zi|)_1/2). In

particular, the eigenvalues of Q are constant up to O(Z(— log |zi|)_5) for some ¢ > 0. (See Section 4.)

e From a tame variation of polarized pure twistor-TERP-structures (V, lﬁ)A, S, k), we obtain a twistor-TERP
nilpotent orbit (Vy, ]D)OA , S0, ko) associated to the limit mixed twistor-TERP structure which was essentially
considered in [9] as an enrichment of the limit mixed twistor structure in [18]. We can approximate the new

supersymmetric index Q of (V,D?) by the new supersymmetric index Qy of (Vo,fD()A ) up to O(Z |zl|5)

for some € > 0. In particular, the eigenvalues of Qq approximate those of Q up to O(Z |zi|€/) for some

€’ > 0. (See Subsection 7.4 for more precise statements.)

e From a wild variation of polarized pure twistor-TERP structures (V, ﬁA, S, k), we obtain a tame variation
of polarized pure twistor-TERP structures (Vp, ]D)OA ,So, ko), by taking Gr with respect to Stokes filtrations.
We can approximate the new supersymmetric index Q of (V,D*) by the new supersymmetric index Qy

of Vo, ]D)OA ) up to a term with exponential decay. In particular, the eigenvalues of Qg approximate those
of Q up to exponential decay. (See Subsection 7.3 for more precise statements.)

In each case, we will construct a C*°-map Vy — V, which does not preserve but approximate the additional
structures. (More precisely, Vy should be twisted.) It would be interesting to clarify the precise relation between
these results and the celebrated nilpotent orbit theorem for Hodge structures due to W. Schmid [23]. (See also
9))

As a corollary, we obtain the convergence of the eigenvalues of new supersymmetric indices of wild harmonic
bundles on a punctured disc. In his recent work (Section 3 of [22]), Sabbah studied the eigenvalues of new
supersymmetric indices for polarized wild pure integrable twistor D-modules on curves. Since wild harmonic
bundles are prolonged to polarized wild pure twistor D-modules [19], we can also deduce the above convergence
in the curve case from his results.

We also show that if a TERP-structure induces an HS-orbit, then it is a mixed-TERP structure in the sense
of [8] by using the reduction from wild to tame, which was conjectured by Hertling and Sevenheck.

Outline of this paper In Subsection 2.1 we recall integrable pure twistor structure and TERP structure
and their variations in our convenient way, which were originally studied by Hertling, Sabbah and Sevenheck.
We look at some basic examples in Subsection 2.2. In particular, we introduce the notions of integrable twistor
nilpotent orbit and twistor-TERP nilpotent orbit. In Subsection 2.3, we argue a convergence of integrable pure
twistor structures and new supersymmetric indices. The result will be used in many times. In Subsection 2.4,
we consider a variation of polarized mixed twistor structures. In Subsection 2.4.2, we explain the reduction
from polarized mixed twistor structure to polarized mixed twistor structure of split type. In Subsection 2.4.3,
we give a C'*°-splitting of weight filtrations compatible with nilpotent maps, which is a preparation for Section
4.

In Section 3, we study polarized mixed twistor structure of split type with some additional structures. It is
quite easy to handle. In Section 4, we show the correspondence between twistor nilpotent orbits and polarized
mixed twistor structures. We have already established the way from twistor nilpotent orbits to polarized mixed



twistor structures in [18]. The converse was also established in the curve case. The higher dimensional case is
new. The correspondence is easily enriched with integrability and real structures. We also show that a twistor
nilpotent orbit is approximated with a twistor nilpotent orbit of split type.

In Section 5, we give a review on Stokes structure and reductions for a family of meromorphic A-flat bundles,
studied in Sections 7 and 8 in [19]. We give some minor complementary results on connections along the A-
direction and pseudo-good lattices.

In Section 6, we explain the reduction from unramifiedly good wild harmonic bundles to polarized mixed
twistor structures, studied in [18] and [19]. We give a review on the prolongation of harmonic bundles in
Subsection 6.3. Then, in Subsection 6.4, we review the reduction from unramifiedly good wild bundles to tame
harmonic bundles as the Gr with respect to Stokes filtrations, which is one of the main results in [19], and in
Subsection 6.5, we review the reduction from tame harmonic bundles to polarized mixed twistor structure as
the Gr with respect to KMS-structure, which is one of the main results in [18]. Together with the result in
Section 4, we can regard it as the reduction to nilpotent orbits.

In Section 7, we argue an enrichment of the reductions with integrability and real structure. One of the
main issues is to obtain a meromorphic extension of the connection along the A-direction. For that purpose, we
prepare some estimate in Subsection 7.1. Then, it is easy to obtain the meromorphic prolongment of variations
of integrable twistor structures and the enrichment of the sequence of reductions as in (1). We also show
that the reduced one gives a good approximation of the original one. In particular, we obtain the results on
approximation of the new supersymmetric indices of wild or tame variation of integrable twistor structures.

In Section 8, we study the reduction of HS-orbit.
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2 Preliminary

2.1 Integrable twistor structure

We recall the notion of integrable twistor structures and TERP structures in our convenient way just for our
understanding. See [7], [8] and [21] for the original definitions and for more details. We also recall twistor
structures introduced in [27]. See also [17] and [18].

2.1.1 Some sheaves and differential operators on P! x X

Let P! denote a one dimensional complex projective space. We regard it as the gluing of two complex lines C'y
and C, by A = p~'. We set C} := C, — {0}.

Let X be a complex manifold. We set X := C, x X and X° := {0} x X. Let ?2;(’0 be the C*°-bundle
associated to 25 (log X%) @ O (X?). We put ﬁg(’l = 0%, and we define

ﬁﬁ( = Q;’O D (28(’1, ()X = /\()k

The associated sheaves of C'*°-sections are denoted by the same symbols. Let f[vbg( : §~2'X — Q;l denote the
differential operator induced by the exterior differential d.



Let XT denote the conjugate of X. We set XT := C, x X*t. By the same procedure, we obtain the

C*-bundles QXT with the differential operator ]ﬁ)}f .

Their restrictions to C} x X = C7, x X are naturally isomorphic:
a9 B _ (o (O, D
(D) oy xx = (Qogxxs @) = (Ut DY) o oy
By gluing them, we obtain the C'°°-bundles ﬁﬁnx « With a differential operator HS))A(

Remark 2.1 ]ﬁ)g( and Iﬁ)y are denoted also by d, if there is no risk of confusion. |

We have the decomposition (NZ%M x =&k o (NZ]%M into the X-direction and the P!-direction. The restriction

of ]15)% to the X-direction is denoted by ]D)ﬁ. The restriction to the P!-direction is denoted by dp:. We have the
decomposition

QL = (2 - {0, 00}) @ QY
into the (1,0)-part and the (0, 1)-part, where 7 denotes the projection P* x X — P!. We have the corresponding

decomposition dp1 = Op1 + Op1.
Let v : P! — P! be a diffeomorphism. Assume v satisfies one of the following:
(A1) v is holomorphic with v(0) = 0 and v(c0) = cc.
(A2) v is anti-holomorphic with v(0) = co and v(c0) = 0.
In particular, we will often use the maps o, v and j:
o([z0:21]) = [-Z1: 2], [z0:2]) =[Z1:Z0), J([20: 21]) = [—20 : 2]
The induced diffeomorphism P' x X — P! x X is also denoted by v. In the case (A1), we have the natural

isomorphism ®,, : v*Qpy >~ Qpy  of C°°-vector bundles given by the ordinary pull back. In the case (A2),

the multiplication of C°°-functions on V*ﬁﬁﬂxx is twisted as g - v*(w) = v*(v*(g) - w) for a function g and
Q) 0

a section w of ﬁﬁnxx. Then, we have the C'*°-isomorphism &, :
conjugate and the ordinary pull back

Qp1y v =~ Qpiy o given by the complex

D, (v'w) = v*(w).
It is easy to check that ®, o v* (]f))ﬁ) = ﬁ))% o ®,. Similar relations hold for ]D)ﬁ and dpi. If we are given an
additional bundle F, the induced isomorphism F ® v* (Qﬁ,,lxx) ~ F ® Qpi , y is also denoted by @,,.

2.1.2 Definitions and some remarks

Variation of twistor structures Let V be a C*-vector bundle on P! x X. We use the same symbol to
denote the associated sheaf of C-sections. A P'-holomorphic structure of V is defined to be a differential
operator
d]'Pfly V—Ve® ﬁ*Q]%’ll
satisfying (i) dijy v (f+s) = f-df ,(s)+9p (f)-s for a C>®-function f and a section s of V, (ii) dfj, i, odf: 1, = 0.
Such a tuple (V,dp, /) is called a P'-holomorphic vector bundle.
A TT-structure of (V, dy, ) is a differential operator

DSV — V ek

such that (i) ]D)ﬁ(f -8) = f~D€(s) —l—D)A((f) -s for a C°°-function f and a section s of V, (ii) (dp: —HD)‘%)2 =0.
Such a tuple (V, d]’}§17v,]1])€) is called a TT-structure in [7], or a variation of P'-holomorphic vector bundles in
[18]. In this section, we prefer to call it variation of twistor structures.

If X is a point, it is just a holomorphic vector bundle on P!,
Remark 2.2 We will often omit to specify dI/Pil,V when we consider P*-holomorphic bundles or variations of
twistor structures (variations of Pt-holomorphic bundles). |



Variation of integrable twistor structures A TT E-structure of V is a differential operator
]f])ﬁ Vv _)V®S~21%’1xx

satisfying (i) ﬁ)‘%(f -8) = ﬁ))%(f) s+ f- ﬁ)ﬁ(s) for a C*°-function f and a section s of V, (ii) Iﬁ)ﬁ o f[v))‘% =0.
Such a tuple (V, ﬁ)ﬁ) is called a variation of integrable twistor structures.

If X is a point, it is equivalent to a holomorphic vector bundle V on P! with a meromorphic connection V
which admits a pole at {0,000} with at most order 2, i.e.,

V(V)cVeQ'(2-{0,00}).

In this case, it is simply called an integrable twistor structure.

Morphisms A morphism of variation of twistor structures F': (V7, dI’Pfl,Vl , ]D)‘%l) — (Va, d]’Pfl,VQ , D@) is defined
to be a morphism of the associated sheaves of C*°-sections, compatible with the differential operators. If X is
a point, it is equivalent to an Op:-morphism. _ _

A morphism of variation of integrable twistor structures F : (Vl,D‘%l) — (VQ,D%) is defined to be a
morphism of the associated sheaves of C'*°-sections, compatible with the differential operators. If X is a point,
it is equivalent to an Opi-morphism compatible with the meromorphic connections.

Some functoriality Let (V, ]ﬁ)‘%) be a variation of integrable twistor structures. Let f : Y — X be a
holomorphic map of complex manifolds. Then, we have the naturally induced variation of integrable twistor
structures f*(V, ID)‘%) as in the case of ordinary connections.

Let v : P! — P! be a diffeomorphism satisfying one of (A1) or (A2) above. Then, v*V is naturally equipped
with a TT E-structure ﬁﬁv given as follows:

ﬁ)ﬁ«v (@, (v*s)) = @, (V* (ﬁ)ﬁ(s)))

Here, s denotes a section of V ® QX.
We also have the pull back of variation of twistor structures via f and v as above.

Pure and mixed Let (V,dy, /) be a P'-holomorphic vector bundle on P! x X. It is called pure of weight w
if the restrictions Vp := (V d]/Pfllv)‘]plX{P} are pure twistor structures of weight w for any P € X, i.e., Vp are
isomorphic to direct sums of Op: (w). A variation of (integrable) twistor structures is called pure of weight w,
if the underlying P*-holomorphic vector bundle is pure of weight w.

Let W be a filtration of V' by vector subbundles indexed by integers. We say that W is P'-holomorphic,
if each W,, are preserved by d]IP{I,V' We have induced P'-holomorphic vector bundles Gr! (V, dfpfl’v). Then,
(V,dl,, W) is called mixed, if each Gr) (V, dp1 1) is pure of weight n. When (V,dp:) is equipped with TT-
structure ]D)ﬁ (resp. TT E-structure ]]3)6), we say that W is D‘A,‘—ﬂat (resp. Iﬁ)‘%—ﬂat) or more simply flat, if
each W, is preserved by the operator. In that case, (V, d[’P{17V’D6’ W) (resp. (V, Iﬁ)ﬁ, W)) is called mixed, if
(V,dy,, W) is mixed.

New supersymmetric index Let (V,V) be a pure integrable twistor structure of weight 0. We have a
global trivialization V =~ (’)g?ﬂ which is uniquely determined up to obvious ambiguity. Let d denote the natural
connection of (’)];‘?1". Then, we have the decomposition

(2)

where Uy,Us, Q € H°(P',End(V)), The operator Q is called the new supersymmetric index. If (V,V) is
equipped with a polarization (Subsection 2.1.4), Uy and U; are adjoint with respect to the induced hermitian
metric, as observed by Hertling and Sabbah.

If we are given a variation of polarized pure integrable twistor structures, we obtain such operators in family.

V=d+ (A*lul—QfAuz)%



2.1.3 Simple examples

We recall some simplest examples of integrable pure twistor structures.

Example (Tate object) Let T(w) be a Tate object in the theory of twistor structures. (See [27] and
Subsection 3.3.1 of [18].) It is isomorphic to Op: (—2w), and it is equipped with the distinguished frames

T(w)‘cx =0c¢, - t(()w), T(’LU)|C# = OC“ -tég)), T(’w)|0§\ = OC; . tgw).
The transformation is given by
167 = (V=T ) = (—v=Tp

In particular, (\/—lA)_théw) = t{). We have the meromorphic connection Vr(w) on T(w) determined by

Vit =0, Veuts” =15 (w : )\) , Vit =) (w : :) :

In the following, the connection of T(w) is always given as above, and hence we often omit to specify it explicitly.
We may identify T(w) with Op: (—w 0—w- oo) by the correspondence tgw) «—— 1, up to constant multipli-
cation. In particular, we implicitly use the identification of T(0) with Op: by tgo) «—— 1. We will also implicitly

use the identification T(m) ® T(n) ~ T(m + n) given by ™ @ £ s ¢t

Example In Subsection 3.3.2 of [18], we considered a line bundle O(p,q) on P!, which is isomorphic to
Op1 (p + q) and equipped with the distinguished frames:

Op.9)ic, = Oc, - 1, O.a)ie, = Oc, - [V, Op,q)jc; = Oc - [P7.

The transformation is given by

190 = (VEITP A, = (=T

In particular, (\/flA)pﬂfép’Q) = 29, We have the meromorphic connection Vo(p,g) on O(p,q) determined
by
X du
Vowa/i™™ =0, Vouals™” = 15" (_pA) . Voo fE? = f29 <_qu)
In the following, the connection of O(p, q) is always given as above, and hence we will often omit to specify it
explicitly.

We may naturally identify O(p,q) with Opi(p - 0 + g - o©) by the correspondence fl(p’q) «—— 1, up to
constant multiplication. We will implicitly use the identification O(p,q) ® O(p',¢') ~ O(p+p',q+ ¢’) given by
fc(bp’q) ® f(gp ) f§p+p 9+ We will also implicitly identify T(w) with O(—w, —w) by ) = fé_w’_w) for
a=0,1,00.

Let X be a complex manifold. We have the pull back of T(w) and O(p, q) via the map from X to a point.
They are denoted by T(w)x and O(p, q)x, respectively. We will often omit to denote X, if there is no risk of
confusion.

2.1.4 Polarization

Recall that we have the isomorphism ([18])
() : 0 T(w) ~ T(w),
given by the natural identification U*O(—w 0—w- oo) ~ O(—w 0—w- oo) via 0*(1) < 1, or equivalently,

O'*tgw) — t:(Lw)7 O'*téw) — (=1 -t((Jw), U*t((;f) — (=1)¥ -t((;f’).



It preserves the flat connections, i.e., tp(yw) : 0 (T(w), Va(w)) =~ (T(w), Vi)
For a variation of integrable twistor structures (V, ]D)ﬁ) on P! x X, a morphism

S: (V,Dy) ® o*(V,Dyy) — T(—w)x
is called a pairing of weight w, if it is (—1)"¥-symmetric in the following sense:
1T (—w) ©0"S = (—1)"S o exchange : 0™V @ V — T(~w)x

Here, exchange denotes the natural morphism ¢*V®V — V®c*V induced by the exchange of the components.
Similarly, we have the notion of pairing for variations of twistor structures.

Definition 2.3 Let (V, ﬁ)‘%) be a variation of integrable pure twistor structure of weight w on P! x X. Let
S:(V, D‘%) ®o*(V, D‘%) — T(—w)x be a pairing of weight w. We say that S is a polarization of (V, ]D)‘%), if
Sp := Sjp1xypy is a polarizations of Vp := (V,dp,)p1x(p} for each P € X. Namely, the following holds:

o Ifw =0, the induced Hermitian pairing H°(Sp) of H°(P', Vp) is positive definite.

o In the general case, the induced pairing Sp @ So,—w of Vp ® O(0, —w) is a polarization of the pure twistor
structure. (See Example 2 below for Sp _y,.)

The notion of polarization for variation of pure twistor structures is defined in a similar way. |

Example 1 The identification tr(, induces the flat morphism Sr(, : T(w) ® o*T(w) — T(2w), which is a
polarization of T(w) of weight —2w.

Example 2 The flat isomorphism ¢, 4) : 0*O(p, q) ~ O(q, p) in [18] is given by

a*f(gp’Q) NN (\/jl)PJrlIfég’P)’ U*fég’Q) — (7\/f1)p+qféq,p)’ U*fl(p,q) N (\/jl)qufl(q’p).

Hence, we obtain the morphism S, 4 : O(p,q) ® 0*O(p, ¢) — T(—p— q), which is a polarization of weight p+g.

2.1.5 Real structure and twistor-TERP structure

Definition 2.4 A real structure of a variation of integrable twistor structure (V, Iﬁ)ﬁ) 1s defined to be an iso-
morphism
w1 THA XA
ki (V.B9) ~ (V.DE)
such that v*(k) o k = id. |

We fix the real structure () of T(w) given by the correspondence

(w) (w)

’y*tl — 1, 'y*tgw) — tf)gj), 'y*t((;j) — t(()w).

Definition 2.5 Let (V, ﬁﬁ) be a variation of integrable twistor structures equipped with a pairing S of weight
w and a real structure k. We say that k and S are compatible, if the following diagram is commutative:

YV @y oV 2 T(—w)

K®U*KJ/ HT(—U})J

VooV —S T(—w)

Namely, kr(—y)y 0 7*S =S o (k®c*k) holds. In that case, we also say that  is a real structure of (V, HS)‘%,S),
or that S is a pairing of (V, D‘%, K) with weight w. |



Definition 2.6 Let (V, I’Dv)‘%) be a variation of integrable twistor structure equipped with a pairing S of weight w

and a real structure k. The tuple (V, ﬁ)é,S, K, —w) 1is called a variation of twistor-TERP structure, if (i) S is
perfect, (i) S and k are compatible.
If X is a point, it is called a twistor-TERP structure. |

It is easy to observe that twistor-TERP structure is just an expression of TERP structure [7] in terms of
twistor structures, which we will explain later.

Definition 2.7 A variation of twistor-TERP structures (V, ]ﬁﬁ, S, k,—w) is called pure, if (V, HS)‘%) is pure with
weight w. It is called polarized, if (V, ]D)‘%, S) is polarized. |

Remark 2.8 If a variation of twistor-TERP structure (V, ]ﬁ)ﬁ, S, k, —w) is pure, we also say that “(V, ]ﬁ)ﬁ, S, k)
is a variation of pure twistor-TERP structure of weight w.” |

Example A Tate object (T(w), VT(w)> ST(w)s KT(w)> Qw) is a pure polarized twistor-TERP structure.

2.1.6 Gluing construction
Variation of integrable twistor structures We can describe a variation of integrable twistor structures as
gluing. We set X := C) x X, X% := {0} x X, XT:=C,, x XT and X1 := {0} x XT.

Let Vj be a holomorphic vector bundle on X with a meromorphic flat connection (7' E-structure [7])

Vi, : Vo — Vo @ Q5% (log X°) @ O (X°).

We use the same symbol to denote the associated differential operator Vo — V0®S~2}Y in the C*°-category. (The
holomorphic structure d"’,O is also included.) Let V., be a holomorphic vector bundle on Xt with a meromorphic

flat connection (’f E-structure [7])

Vit Voo — Voo ® Q50 (log X1%) @ O (X10).

We use the same symbol to denote the associated differential operator Voo — Voo ® ﬁﬁd in the C*°-category.
Assume that we are given an isomorphism ® of C'*°-flat bundles:

® - (V(LVVO)\C;xX ~ (Voo,va)|c;xXT

We obtain the C*°-vector bundle V on P! x X by gluing V; and V., via ®. Since ® is flat, Vy, and Vy_
induce the TT E-structure D‘% V—V® Q%,l X Thus, we obtain a variation of integrable twistor structures
XA
(V,Dy).
Conversely, we naturally obtain a tuple of (Vo, Vv, ), (Voo, Vv, ) and @ as above from a variation of integrable
twistor structures (V, ID)‘%) as the restriction to X and X', respectively. In this situation, we set

Glue((Vo, Vi), (Voo Vi), @) == (V, D3).

Pairing and real structure Note that we have the natural isomorphisms v*QL,; ~ Q% and v*Q} ~ QL
for anti-holomorphic diffeomorphism v : Cy — C,, or C,, — C'y, as in the case of ﬁﬂlj,lxx. Let Vy be a
holomorphic vector bundle on X with a T E-structure Vy,. By the above isomorphisms, 7*V, and o*V; are
naturally equipped with T E-structure Vy+v, and Vg+y, . Similarly, if we are given a holomorphic vector bundle

Vs on XT with TE—structure, 0*Vy and v*V, are naturally equipped with T E-structures. We remark that
there exist the natural isomorphisms:

Glue(’y*(voov vVoo)v ’y*(‘/Oa vVo)a 7*(1)71) =~ ’7* Glue((Vg, VVO)’ (V007 vVoo)a (I))

Glue(o*(Veo, Vv, ), 0% (Vo, Vip, ), 0" @7 1) = 0™ Glue((Vo, Vv ), (Voo, Vv, ), @)



A real structure of variation of integrable twistor structure corresponds to a pair of isomorphisms
KO : 'Y*(Voo» VVOO) =~ (%7 VVo)a KOO : V*(V(); VVO) =~ (VOO7 VVOO)
such that (i) v*ko = k3, (ii) the following commutativity holds on C% x X:

Y Veo e Vo

ol
TV —— Vo
A pairing of weight w corresponds to
So: (Vo, Vig) ® 0" (Veo, Vi) — T(—w)jxs  Soo t (Veo, Vi) ® 07 (Vo, Viig) — T(—w)|

such that (i) tp(_yw) 0 0*Soe = (—1)"Sp 0 exchange, (ii) it is compatible with the gluing. Compatibility of S and
K 18 KT(—w) © 7V Soc = Sp © (Ho ® U*Iioo).

Variation of twistor structures The above gluing description is essentially the same as that for a variation
of twistor structures in [27], which we recall in the following. See also [18]. We have the decomposition
Q} = fQ%ﬂX @ Q¢, into the X-direction and the C-direction. Let dx denote the restriction of the exterior

differential to the X-direction. Similarly, we have the decomposition ﬁiﬁ = fﬁﬁ(‘ it P (NZCH, and the restriction

of ]ﬁ)}f to the X-direction is denoted by dx+. The notions of Cy-holomorphic bundles or C,-holomorphic
bundles are defined as in the case of P'-holomorphic bundles.
Let (Vo,d¢, v,) be a Cx-holomorphic bundle on X'. A T-structure [7] of V; is a differential operator

Dy, : Vo — Vo ® QK x

satisfying (i) D{,O(f c8)=dxf-s+f- ]Dé0 (s) for a function f and a~section sof V, (ii) ( Civo T ]1){0/0)2 =0.
Let (Voo,d¢, v..) be a Cy-holomorphic vector bundle on X f. A T-structure [7] is defined to be a differential

operator
D}t Voo — Voo ® EQ

satisfying conditions similar to (i) and (ii) above.
Assume that we are given an isomorphism ®:
®: (Vo, dé, vy DY) iosxx = (Voor A, v, DU )0t (3)
We obtain the C*°-vector bundle V on P! x X by gluing Vj and V. via ®. By the condition (3), d'(’;MV0 and
gu,Voo give P'-holomorphic structure dp -, and ]D)(/O and DI/C]; induce the TT-structure D‘%. Thus, we obtain
a variation of twistor structures (V,dp, , Dy).

Conversely, we naturally obtain such a tuple of (Vo,d¢, v, , ID){,O), (Voo dICIJM,Voc , Di/fo ) and ® from a variation

of twistor structures (V,dy, , ID)‘%) as the restriction to X and X', respectively. In this situation, we set

| | .
Glue((Vo, d&, . DY), (Voo ds, v, DIL), @) == (V, DY)

Remark 2.9 Let py be the projection X — X . Under the natural isomorphism
% x = APy @ py O = R o py Y = py 0,
a T-structure ]D)(/O induces a holomorphic family of flat A-connections Dy, . Similarly, a T-structure of ]D)I/i

naturally induces a holomorphic family of flat u-connections ID);T/OO. Hence, a variation of twistor structure is
regarded as the gluing of families of A-flat bundles and p-flat bundles. |



2.1.7 Relation with harmonic bundles

We recall a fundamental equivalence due to Hertling and Sabbah. Let X be a complex manifold. Let (€2, ]ﬁ)A, S)
be a variation of pure polarized integrable twistor structures of weight 0 on P! x X. By the equivalence between
harmonic bundles and variations of pure polarized twistor structures due to Simpson, we have the underlying
harmonic bundle (E,dg, 0, h) on X. Moreover, it is equipped with C>-sections ¢/ and Q of End(E) satisfying
the following equations:

AU =0, U,00=0, Q=20 (4)

OpU — 0,01 +60 =0, IpQ+[0,U']=0 (5)

Here, U and Q|g (Q € X) are obtained as in (2), and YT and Q' denote the adjoint of ¢ and Q with respect
to h, respectively. Conversely, we obtain a variation of polarized pure integrable twistor structures (E4,D4,S)
from a harmonic bundle (E,0p,0,h) with U and Q satisfying (4) and (5). Let p : P! x X — X be the
projection. We set £2 := p~'E on which we have the natural connection dp: along the P'-direction. We set

Vi = dp +(>\‘1~L{—Q—)\-L{T)?

It gives a flat connection of £2 along the P!-direction. Then, we obtain a TT E-structure
D% = (O + M) + (05 + A710) + VA : €2 — £2 @ Qb y-
The pairing S is induced by S(u ® o*v) = h(u,o*v).

Let us also see the gluing construction of the above (£2, IBDA, S). Let (E,0g,0,h,U, Q) be as above. Let py
be the projection X — X. Let £ be the holomorphic vector bundle (pglE, Op + 0T + EA), where 9, denotes
the natural A\-holomorphic structure of £. We have the family of flat A-connections D = 0 + )\QT + A\0g + 0 of
£. The associated family of flat connections is given by Df = 9g + \0' + 95 + A\~10. Then, D/ := D/ + VvV,
gives a meromorphic flat connection of £.

Let p, be the projection X7 — XT. Let £ be the holomorphic vector bundle (p,'E, dg + uf + 9,.),
where 0, denotes the natural p-holomorphic structure of £7. We have the family of flat u-connections DT =
O + pb + pdg + 07 of ET. The associated family of flat connections is given by D'/ = g + pb + dp + p =167,
Then, Dff := DI/ + V¥, gives a meromorphic flat connection of &F.

We have the induced pairings Sp : € ® g*c‘ﬁ — Ox and S : Et ® 0*€ — O+ induced by h. Then,
(£4,D4,S) is obtained as the gluing of (£,Df), (£7,Df) and (Sy, Soe) by the procedure in Subsection 2.1.6.

2.1.8 TERP and twistor-TERP

Let us observe that the notions of TERP-structure and twistor-TERP structure are equivalent. First, let us
introduce a pairing P induced by x and §. Then, we argue the equivalence in the case that X is a point, for
simplicity. We give a remark for the family case in the end.

The induced pairing P We set j := yo 0 = ¢ o+, which is a holomorphic involution of P!. We have the
induced isomorphisms
o'k J T(w) ~ 0" T(w), j*k:0"T(w) =~ j*T(w).

We have the following equality:
oc'koj'k = j*('y*n o /<;) =j*(id) =id

We will use similar relations implicitly. We also remark the commutativity of the following diagram, which can
be checked by a direct calculation:

i T(w) =2 5*T(w)
U*/{T(w)l “T(u’)l
o*T(w) —s  T(w)
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The composite j*T(w) — T(w) is denoted by pr(y)-
Let (V, Dﬁ, S, k, —w) be a variation of twistor-TERP structure. We define a pairing P : V®j*V — T(—w)
by
P:=(-1)"-So(l®c* k). (6)

Lemma 2.10 P is (—1)%-symmetric in the sense that the following diagram is commutative:

L%

VeV LI, T(—w)
exchangeJr PT(—w) l
VeV S0 )

Namely, pr(—w) o j*P = (—1)" - P o exchange. Here, exchange denotes the natural morphism exchanging the
components.

Proof We have the following equality:
Pr(—w) © 5 P = (V=1)"Kp(—w) © Y ir(—w) 0 5" S 0 (1 ® j*o*k)
= (V=1)"Kr(—w) Y tr(—w) © (Y0'8) 0 (1 @ 7*K) = (V—1)"Kp(—w) 07" (LT(_w) o U*S) o(1®v"k) (7)
By using the compatibility of S and k, we obtain
(—=1)“Poexchange = (vV—1)"(—1)"So(1®0"k)oexchange = (vV—1)"(—1)"So(k®0c™ K)o (7" k®1)oexchange
= (VD) Rpow 07" ((~1)*S o exchange) o (L@ 7"x)  (8)
Thus, we are done. 1
Lemma 2.11 The following diagram is commutative:

YV Qo*V P, ¥*T(—w)

l€®j*f€l "éwr(fw)i

(-1)vP

Vei*v T(—w)
Namely, (=1)"P o (k® j*k) = Kp(—w) © 7" P.
Proof We have the following equalities:
(VET) P o (k@ k) = So (1@ 0" k) o (k@ j*K) = S o (k® 0" k) o (18§ K) (9)
Fr(—w) © 7 (V=1)""P) = kir(—uw) 07 (S0 (1 ® 07K)) = Kp(—w) © (v*S) 0 (1 @ j*K) (10)
Then, the claim of the lemma follows from the compatibility of S and «. |

From twistor-TERP to TERP Let (V,V,S, s, —w) be a twistor-TERP structure. Let us explain how to
associate a TERP structure (H, Hg, V, P, —w) in the sense of Hertling. We set H := V¢, and H’' := Vies-
In general, for a C-vector bundle U, let U denote the conjugate of U, i.e., U = U as an R-vector bundle, and
the multiplication of v/—1 on U is given by the multiplication of —v/—1 on U. Note that Y (H))x for A # 0 is
naturally identified with H Pt
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The following diagram for A # 0 is commutative by the flatness of &:

|A
le—ll J{KM (11)
!
Hz —— H)j

. ~1 .
Here, 1T denotes the parallel transform along the segment connecting A and A , as often used in [7]. A flat
isomorphism &’ : H\cy ~ H|cy is given by the composite of the morphisms, i.e., ,%T)\ = Ky o lI\. Because
v*k o k = id, the composite
— Az _
Hy) — H|X71 SN H\»\

is the identity. Let us check k' o &’ = id by using the commutativity (11):

Kkhokh = (kaolly) o (IIy'o K‘Xq) =KAO K51 = id

Hence, «’ gives a flat real structure of H’. Thus, we obtain a real flat subbundle Hp of H |c;- By restricting
P, we obtain a pairing:

P, t H®j*H — T(-w)c, = Oc, - (V=1N)"#{""

By taking the coefficients of t(l_w), we obtain a flat morphism

P H' ®j"H — Ocs
such that A* - P’ induces a perfect pairing H ® j*H — O¢,. By Lemma 2.10, P’ is (—1)"-symmetric.
Lemma 2.12 P'(Hp ®g j*HR) C (V=1)"R.
Proof Note that x gives real structures s, : H7|a ~ H, for a = 1,—1. By Lemma 2.11, we have
(V=1)"- Py o (k1 ® Kj—1) = (Fr—w)p © (V=1)"Pp). (12)
We obtain Pl'1 (H|1 ® H|_1) C (vV=1)”R. Then, the claim of the lemma follows from the flatness of P’. |

Thus, we obtain a TERP-structure (H, Hg, V, P, —w).

From TERP to twistor-TERP Conversely, we obtain a twistor-TERP structure (V,V,k,S, —w) from a
TERP structure (H, Hg,V, P/, —w). We set V) := H and V, := v*H. We have the flat isomorphism

Treal - H|C’>"\ = "Y*(H|C§\)a

obtained as the composite of the conjugate with respect to the real structure and the parallel transform along

the segment connecting A and 2L By gluing (H,V) and v*(H, V) via Tyeal, we obtain an integrable twistor
structure (V, V).

By construction, we have v*(Tyeal) = -1

T,eal> and the following diagram is commutative:

Hcy S v (Hicy)

y |

*

-1
VT
v (v Hiey) —% 7*Hcs

Hence, a morphism « : v*(V,V) ~ (V,V) is given by the gluing of v*V,, ~ Vj and v*Vy ~ V., induced by
the identity. Clearly it satisfies v*x o k = id. The restriction x|y : 'y*(V)‘c; — Vcy is identified with

-1
Treal

12



Let Py : Vo ® 5*Voy — Oc¢, -téﬁw) be given by
Py=P -t =P (V=N .
We have the induced morphism
K(—w) 0V Po t Ve ® j* Voo — Og, - t55™).
We obtain the following equalities for linear maps H;; @ H_; — T(—w); from P'(Hp®grj*Hg) C (V-1)"R:
(V=1)" Pop o (5 @ k1) = (we(-w))ip @ (V=1)"Popn) = (=V=1)"(kr(-w))p © (v Fopn)

Here, we have used the natural identification Fy; = (v*Po)1- The first and third terms are obtained as the

restrictions of morphisms (V, ® j*Voo)|C; — Ocy - tgfw) to the fiber over 1. By flatness, we obtain the

following equality on C}:

(71)111 . PO ] (KZ ®]*Ii) = H'H‘(—w) o ’y*P() (13)
Hence, the pairings Py and (—1)"kq(—w) © 7v*F induce P : V ® j*V — T(—~w). Since P’ is (—1)"-symmetric,
P is also (—1)"-symmetric in the sense of Lemma 2.10. From (13), we obtain

(=1)" - Po (k®j*K) = Kp(—u) 0¥ P. (14)

The pairing S is constructed from P and k by the relation (6). The compatibility of £ and S follows from
(9), (10) and (14). The pairing S is (—1)"-symmetric, which follows from (7), (8) and the compatibility with
. Thus, we obtain a twistor-TERP structure (V,V,S, k, —w).

Hertling’s vector bundle Let (H,Hpy,V,P,—w) be a TERP-structure corresponding to a twistor-TERP
structure (V,V,S, k, —w). Recall that Hertling constructed an integrable twistor structure (H,V) from a
TERP-structure (H, Hg, V, P, —w) by gluing H and v*H via a map 7. (See [7].) We do not recall 7 and his
construction here, but His naturally isomorphic to V' ® O(0, —w) by the following correspondence:

H=Vy e Vo®0(0,~w), a-ad "™

Y H 7V ® 00, ~w)ee, b 7b® (V=)W FLT
According to [7] and [8], (H, Hg,V, P, —w) is defined to be pure if (H,V) is pure of weight 0. They consider
the hermitian pairing h of H°(P!, H) given by A% - P'o(1®7), and (H, Hg, V, P, —w) is defined to be polarized
if h is positive definite.
Lemma 2.13 (H,Hg,V, P,—w) is pure (polarized), if and only if (V,V,S, Kk, —w) is pure (polarized).
Proof The claim for purity is obvious. Let us consider polarizability. We have only to show that A is the

hermitian pairing induced by § := S ® Sp,—w, under the identification of H and V' ® O(0, —w).
Let a,b € HY(P!, H). Under the identification Hc, = H and H|c, = 7" H, the sections a and b of H are

determined by a := @|¢, and y*b:= /B‘Cu' By definition, we have
h(@,b) = X" P'(a, j*b)
Let us look at g\cx- Under the above identification, the pairing of @ and b is given by
g(a 2 7 o (b @ (\/jl)wfég’fw))) = S(a,0*(v*b)) - 15" = S(a,5*b) - t&) =: So(a, j*D)

Let us compare A" P’'(a, j*b) and Sy (a,j*b). Since k¢, is the same as the identity Voo = v*H — v*Vp =
v*H, we have
Pc, = (V-1)"So(1®0"k)c, = (V-1)"Sic,
Hence, we have the following equality:
P'(a,°b) - 17" = P(a,j*b) = S(a,5°b) - (V=1)" = (V=1)" - So(a, 5*b) - t§ " = A""So(a, j*b) - 11~

Thus, we obtain \* - P'(a, j*b) = Sy(a, j*b). Therefore, S induces h. 1
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Family version The correspondence is generalized in the family case. We set H := V|c, xx- It is equipped

with T E-structure V obtained as the restriction of ﬁﬁ As in the previous case, we obtain a flat C-anti-linear
isomorphism &’ : Hicixx ~ Hioyxx and a flat pairing P : H ® j*H — Oc+xx. It is easy to check
that (H,Hpy,V,P,—w) is a variation of TERP structures. The converse can be constructed similarly. The
correspondence preserves “pure” and “polarized”, for which we have only to check the case in which X is a
point.

2.2 Basic examples
2.2.1 Example associated to a holomorphic function

Let a be a holomorphic function on a complex manifold X. We set
Vo :=0c,xx e, Vyle)=e- d(/\_1 . a),

Voo 1= Oc, xx1 el Vv, (eT) =ef -d(u_l -ﬁ).

We put s := exp(—A~'a) - e and s := exp(—p~'d) - €', which are flat sections of Vojoyxx and Vgion xxt,
respectively. A gluing @ : Vpjo5xx =~ Voo|c;xXT is given by ®(s) = s, in other words,

d(e) =exp(A\'a—p ') ef.

Let V' be the C*°-bundle obtained as the gluing of Vy and V. via ®, which is equipped with TT E-structure.
For each point P € X, the restriction Vjp1,(p} is isomorphic to Op1, and hence (V, ]D)‘%) is pure of weight 0. A
real structure & is given by s(y*e!) = e and k(y*e) = ef. We can check that x actually gives a flat isomorphism
v*V ~ V. A pairing S of V with weight 0 is given by e ® o*el — téo) and ef ® o*e — tf,g). It is easy to
check that S actually gives a symmetric flat pairing V ® ¢*V — T(0) x. The compatibility of S and x can be
checked by a direct calculation:

KT(0) © v*S(y*el @ v*o*e) = k1) (7* (S(eJr ®o*e))) = HT(OW*tf}? = t(()O)

So(k®o k) (vel ® o™y e) = S(e®o*el) = t(()o)

Hence, we obtain a variation of twistor-TERP structure denoted by L(a). It is polarized. The underlying
harmonic bundle is given by the line bundle Ox - v with the Higgs field 6 - v = v - da and the hermitian metric
h(v,v) =1, where v := e|{g} xx- The operators U and Q are Y = —a and Q = 0.

2.2.2 Example associated to unitary flat bundles of rank one

In general, a variation of pure polarized Hodge structures provides us with an example of variation of pure
polarized integrable twistor structures. Any unitary flat bundle naturally gives a variation of pure polarized
Hodge structures, and hence an integrable variation of pure polarized integrable twistor structure.

In particular, we will use the following example. Let X := C™ and D := Ule{zi = O}. For any a € R’ we

have the unitary flat bundle
‘

Ox_p e, Ve:e'(—;ai-iii)

The associated variation of integrable polarized pure integrable structures is denoted by L(a).
More specifically, it is obtained as the gluing of the following meromorphic flat bundles:

)

¢ _
dz;
Voo = Oc,, x(xt—DH) el VvooeJr =el. ( E a; - z)
i=1

¢
dZi
Vo =0c,x(x-p)-¢ Vye=e- (— E i —
i=1 g

Zi
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The gluing is given by ®(e) = Hle |z;|72% - ef. The pairing is given by S(e,c*e’) = 1. The underlying
harmonic bundle is the line bundle Ox_p - v with 8 -v =0 and h(v,v) = Hle |2i]72%, where v = €|{0} x (X —D)-
The operators U and Q are 0.

2.2.3 Example induced by nilpotent maps

Let Y be a complex manifold. We set X := C* x Y, D = Ule{zi =0} xY. We put X := Cy x X and
Xt = (O x Xt. We use the symbols D, Y, D and Y1 in similar meanings. Let ¢ : X — Y and ¢ : XT — YT
denote the naturally defined projections.

Let (V,D?) be a variation of P'-holomorphic vector bundles on P! x Y with a tuple f of nilpotent morphisms

fi:V—VT(-1), i=1,....¢

such that (i) [f;, f;] = 0, (ii) they are P'-holomorphic and D*-flat. We recall a construction of the variation
of P1-holomorphic vector bundles on P* x (X — D) associated to (V, f) given in Subsection 3.5.3 of [18] with a
minor generalization. (We considered the case in which Y is a point in [18].)

We regard (V, Dﬁ) as the gluing of a family of A-flat bundles (Vp,Dy;) on Y, and a family of p-flat bundles
(VOO,]D){,OO) on Y. We obtain a holomorphic vector bundle V, := g5Vo on X — D with a family of flat -

connections ggDy,. We naturally identify T(0)|x—p ~ Ox_p by the trivialization téo). We also use the natural

identification T(—1) ® T(1) ~ T(0). We have the ¢}Dy,-flat endomorphisms ¢} f; ® tél) € End(V;). We obtain
the family of flat A-connections on Vy given as follows:

4
dz;
* * 1 7
Dy, = goDy;, + Zqui ®t§) ) 2

i=1 ¢

Similarly, we obtain a holomorphic vector bundle V, := g% Vi on XT — DT with a family of flat u-connections

qj;oD;r,oo. We have the q;o]D)i/oc—ﬂat endomorphisms ¢ f; ® ) e End(Vs). Hence, we obtain the following
family of flat p-connections:

‘ _

* * dZi

D}, = giDl_ +> a5 fi® tfjj?

i=1 v

Let Uy : Voo xy = Voo\c;;xy denote the gluing. An isomorphism ¥ : Vo3 x(x-p) — Voo\czx(X?—DT) is
given as follows:

¢
U:="yo exp(z log |z|? - g5 fi ® v—ltgl)) (15)
i=1

By construction, ¥ is holomorphic with respect to A.
Lemma 2.14 ¥ O]D){: = ]D)V oW,
0 oo

Proof We have the following expressions:

L ¢
i

dz;
E.
i=1 i=1 v

Because ¥y o ]D)f0 = ID)LfC o Uy, we have the following:

4
7D} oW —WogD] =Wy ogD], (exp(z log|zif* - g5 fi © \/_1t§1)))
=1

e (S(%2 4 B g3, vETHY)

Zi 2

15



Then, the claim of the lemma follows. |

Let TNIL(V, ]Dﬁ, f) denote the variation of P!-holomorphic bundles on (X — D) x P! obtained as the gluing
of (Vo, Dy,) and (Veo, D, ) via .

Assume that (V, D‘%) is equipped with a (—1)"-symmetric pairing S : (V, D‘%) ®o*(V, Dﬁ) — T(—w) such
that S(f; ® id) + S(id ®c* f;) = 0 for any 4. Then, we have the induced (—1)"-symmetric pairing

TNIL(S) : TNIL(V, D, f) ® o* TNIL(V, D%, f) — T(—w).
It is obtained as the gluing of the pairings
S0 : Vo ® 0 Voo — T(~w)jx—p; Seo: Voo ® Vo — T(~w)|xt_pt,
\[Vh]ic)h are the pull backs of Vo ® 0"V — T(~w)|c, and Voo ® 0*Vy — T(~w)|c, - (See Subsection 3.6.1 of
18].

Enrichment Assume that (V, ID)‘%) is enriched to a variation of integrable twistor structures (V, I’Dv)‘%) such
that f; are D$-flat, which is obtained as the gluing of (Vo, Vy,) and (Vao, V.. ) via y.. Then TNIL(V, D%, f)
is also enriched to the variation of integrable twistor structures TNIL(V, ]D)ﬁ7 f), which can be checked by an

obvious enrichment of the argument in the proof of Lemma 2.14. The T E-structure Vy,, and the T E-structure
Vy., are given by essentially the same formula as (16):

dz;
Zi

4
Vv = Vv + 3 aifi ® (—V=1t1")

=1

4
Vv, = @V, + Y@ fi ® (V-1t)

dZi
. b
i=1 v

z
If we are given a pairing S of (V, Iﬁ)f/‘) with weight w such that So (f; ®id) + S o (id®c* f;) = 0, we have a

naturally induced pairing TNIL(S) of TNIL(V, H~))€, f) with weight w. Assume that we are given a real structure
K of (V, ]D)‘%, S) such that kK oy* f; = f; o k. Because kg ovy*(f; ® tgl)) =(fi® t(ll)) 0 Kg, we obtain isomorphisms:

Ko 3’7*(Vomvvoo) >~ (V07vVo)a Koo * ’Y*(V(NVV()) >~ (V007VV0)

The following diagram on (X — D) x C?} is commutative:
Y Voo —2— Y,
ol ]
Vo —= Vo

To see it, we have only to remark

Wor=Wyo eXP(Z log |2:(P)|* - fi @ letgl)) oK

i=1

=Koy Uy oexp(— Zlog |z (P))? - v* (fi ® \/jlt(ll))) = ko UL (17)
i=1

Hence, we obtain the isomorphism TNIL(k) : v* TNIL(V, ]ﬁ)é, f) =~ TNIL(V, ]13)‘%, f). By construction, it is easy
to check

~v* TNIL(k) o TNIL(k) = id.
It is also easy to check the compatibility condition, if the original S and & are compatible. Therefore, we obtain
a variation of twistor-TERP structures TNIL(V, ]D‘%, f,S,k,—w) on X — D from a variation of twistor-TERP
structures (V, HS)‘%,S, K, —w) with f = (f;) as above.
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Definition 2.15 Let (V, ]D)ﬁ,f,S) be as above. We set X*(R):=Y x {(z1,...,2,) |0 < || < R} for R > 0.
o [f there exists R > 0 such that TNIL(V, D€7f78)|]p1xx*(3) is pure and polarized, it is called a twistor

nilpotent orbit of weight w.

e If moreover (V, ]D)ﬁ) is enriched to a variation of integrable twistor structures (V, ]15‘%) such that f; and S

are D‘%-ﬂat, TNIL(V, ]]3)‘%7 f,8)prxx+(r) 15 called an integrable twistor nilpotent orbit of weight w. (We
often omit to distinguish “integrable” if there is no risk of confusion.)

o If moreover (V, ]ﬁ)ﬁ,S) is equipped with a real structure Kk such that kK o v*f; = f; o k, the variation
TNIL(V, ]D)‘%,S, K, —w)|p1x x+(R) 15 called a twistor-TERP nilpotent orbit. |

Remark 2.16 The notion of a twistor-TERP nilpotent orbit is different from “nilpotent orbit” defined by
Hertling and Sevenheck. Their “nilpotent orbit” is called HS-orbit in this paper. |

2.3 Convergence
2.3.1 Complement on convergence of pure polarized twistor structures

Let (V®,8®) (i = 0,1) be polarized pure twistor structures with weight 0 of rank 7. Let 2() be the hermitian
metrics of V) corresponding to S, and let d¥) denote the associated flat unitary connections of V() which

are equal to the natural connection given by holomorphic trivializations V¥ ~ OF". Let 3% denote the (0,1)-
part of d), which is the same as the holomorphic structures of V). We fix a hermitian metric g of Qé,’lo &) Q%ll.
Let @ : V(O — V() be a C™-isomorphism such that the following holds for some € > 0:

(A1) |<I>*5(1) —aY < € as a C®-section of End(V () @ Q%1

|h<0),g

(A2) |&*8M — S(O)|h<0) < € as a C*-section of Hom(V®) ® o*V(©) T(0)).

(A3) |5(0) (@M ~SO)|, ), = |5(0)<I’*S(1) [ho .4 < € as a C==section of Hom(V(®) ® 0"V, T(0)) o,
where 3 denotes the induced holomorphic structure on H om(V©® & o*V(© T(0)).

Lemma 2.17 There exists a constant Cy > 0, which is independent of €, with the following property:

e If B~1.&*h() < hO < B.®*h(V) for some B > 1, the following holds:

@7 dW) —dV|,, < Co-B?-e (18)
Proof In the following argument, C; denote positive constants independent of €. Let 8](12) denote the (1, 0)-part
of d), which are determined by h(" and 3. To show (18), we have only to estimate |5;(L(<Jc))> - @*5}%) |h<0).

Let ey, ..., e, be an orthogonal frame of V(9 with respect to h(?). Because ®*h(1) (e;, ej) = P*SM) (ei®0*ej)7
we have the following estimate for any ¢, j:

‘g(é*h(l)(ez, ej))‘ = ‘5(0)((1)*8(1))(67, ® 0'*6]‘) S Cl - €

g g

Hence, we obtain
’8(@*/1(1)(61-,6]-))‘ <O e (19)
g

Let 3,2(2) denote the (1,0)-operator determined by ®*h(") and 7. From B! &*h( < h® < B.d*h(M) and
(19), we obtain

(0) (0)
|ah(1> N0 |h<o>7g <Cy-B-e
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By |09 9|, ) < Cs-cand B~ &AM < h® < B &*h(1), we have

o -3 <Cy-B-e

o*h(M

Hence, we obtain |<I>*8}(Ll(2) — 8}(:22)

o-n < Ca- B¢, which implies

* (1) (0)
‘(I) ah(l) - 3h(1)|h(0)

< (C5-B?%-¢

Thus, we obtain (18). 1

Lemma 2.18 There exist constants €9 > 0, C19 > 0 and C11 > 0 such that the following holds if € < €p:
|2*hM) — RO < Crg-e (20)
|@*d™M —d©], ) < Cii-e (21)

Proof According to the result in Subsection 2.8 of [19], if ¢ is sufficiently small, (20) holds for some Cio.
Then, we obtain (21) from Lemma 2.17. 1

2.3.2 Approximation of pure polarized integrable twistor structures

Let (V@ V@ S®) (i = 1,2) be integrable polarized pure twistor structures. Let h(?) be the hermitian metrics
of V(@ corresponding to S). We fix a hermitian metric § of Q]%,’IO (2:0+2-00)® Q]%ll. Let ® : VO — y(@)
be a C'*°-isomorphism such that the following holds for some € > 0:

B1) |V —vVO| = <easa C®-section of End(V(®)® Q2(2-0+2-00) ®O%). Note that it implies
RO G P P
(A1) in Subsection 2.3.1.

(B2) Conditions (A2) and (A3) are satisfied.
Lemma 2.19 There exists a constant Cyo > 0, which is independent of €, with the following property:
o If B~1.®*h() < h0 < B.®*h(V) for some B > 1, the following holds:

|<I>*Z/l(1) _ u(0)|h(0) < Oy - B? e, |<I>*Q(1) _ Q(O)|h<0) < Oy - B? e

Proof In the following argument, C; denote positive constants independent of e. By Lemma 2.18, we have
o*dM — 0 |h(0) 3 < Cy1 - B? - €. We obtain the following estimate:

‘(A—l (@ UD —u®) — (901 — Q) _ . (& UDT _u(O)T)> .dA/A‘h( <O B
(0) g

Then, the claim of the lemma follows. |
Lemma 2.20 There exist constants €9 > 0 and Csg, such that the following holds for any 0 < € < €p:
|(I>*h(1) - h(0)|h(0) < (3 ¢, |<I>*L{(1) U |h(0) < Cso -6, |(I)* Q) — ’h(f’) < Cyo-e.

Proof It can be shown by the argument in the proof of Lemma 2.19. |
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2.4 Variation of polarized mixed twistor structures and its enrichment
2.4.1 Definitions

Variation of polarized mixed twistor structures Let X be a complex manifold. Let (V,D%) be a
variation of P'-holomorphic vector bundles on P' x X equipped with an increasing filtration W indexed by Z
in the category of vector bundles, which is P!-holomorphic and D*-flat. If each Gr,VlV (V) is a variation of pure
twistor structure of weight n, (V, W,D?) is called a variation of mixed twistor structures. Assume we are given
the following data on (V, W, D%), which are P'-holomorphic and D*-flat:

o A tuple f of nilpotent morphisms f; : V — V®T(—1) (j = 1,...,n), which are mutually commutative.
e A (—1)"-symmetric pairing § : V ® 0*V — T(—w).

e For each P € X, the restriction (V, W, f,S)p1x(py is a polarized mixed twistor structure of weight w in
n-variables. (See Subsection 3.48 of [18].)

Then, such a tuple (V,D?, W, f,S) is called a variation of polarized mixed twistor structures. Since W is
determined by f as the weight filtration of f(n) := 2?21 f; up to shift by w, we sometimes omit to denote W.

Enrichment If D? and the P'-holomorphic structure are extended to TT E-structure D® for which f and
S are flat, (V,D®, W, f,S) is called a variation of polarized mixed integrable twistor structures of weight w in
n-variables. Note that W is automatically D2 -flat.

If moreover (V,D*,S) is equipped with real structure s such that o v*f; = fj ok, then such a tuple

(v, ]I~))A, W, f,S,k,—w) is called a variation of polarized mixed twistor-TERP structures in n-variables.

Remark 2.21 The notion of polarized mized twister-TERP structure is different from “mized TERP structure”
defined by Hertling and Sevenheck (Section 9 of [8]). 1

Split type Let (V,W,D?) be a variation of mixed twistor structures. It is called of split type, if it is equipped
with a grading V = @ V;,, such that (i) it is P'-holomorphic and D*-flat, (ii) W,, = @D, <m Vo Each (Vi,, D)
is a variation of pure twistor structures of weight m. a

A variation of polarized mixed twistor structures of weight w in n-variables (V,W,D?, f,S) is called of
split type, if the underlying variation of mixed twistor structures (V,W,D%) is of split type with a grading
V =@ V,,. By using H(P!, Op:(m)) = 0 for any m < 0, we can show that the following:

o [i(Vp) CVp2 ® T(-1).
e The restriction of S to V, ® 0*Vj is 0 unless p + ¢ = 2w.

Similarly, a variation of polarized mixed integrable twistor structures of weight w in n-variables (V, W, fDA7 7,8
is called of split type, if the underlying variation of polarized mixed twistor structure is of split type with a
D#-flat grading.

A polarized mixed twistor-TERP structures (V, W, V, f, S, k, —w) in n-variables is called of split type, if the
underlying variation of mixed integrable twistor structures is of split type with a grading V' = @ V,,, such that
E(Y*Vin) = V.

2.4.2 Reduction

Let (V,W,D?, f,S) be a variation of polarized mixed twistor structures of weight w in n-variables. We obtain
a variation of P'-holomorphic vector bundles (V@ DO2) .= G (V,D?). It is naturally equipped with
a grading V(© = @ Gr?¥ (V) and a filtration A Do<m GrZV(V). We have induced morphisms ;0) :
Gr (V) — Gr?¥Y_,(V) ® T(—1), and hence f;o) VO — v @ T(~1). We also obtain induced morphisms
SO Gl (V) ®o*Gry (V) — T(—~w), and hence S© : VO @ ¢*(V(®) — T(—w). It is known that
(VO W), f(0)78(0))‘[p1><{13} are polarized mixed twistor structures of split type with weight w in n-variables.
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(See [18]. It can be shown directly and easily.) Hence, (V(©, W© DO2 £ S0 is 4 variation of polarized
mixed twistor structures of split type with weight w in n-variables. It is denoted by GIW(V7 W,D%, f,S).

If (V,W,D?, f,S) is enriched to a variation of polarized mixed integrable twistor structures with weight w
in n-variables, GrW(V, W,D%, f,8) is also integrable. If moreover the variation of polarized mixed integrable
twistor structures is enriched to a variation of polarized mixed twistor-TERP structures, Gr'V is also enriched
to a variation of polarized mixed twistor-TERP structures of split type.

2.4.3 Splittings

Preliminary Let (V;, W, DiA) (i = 1,2) be variations of mixed twistor structures on P! x X with a morphism
F:(Vi, W,D) — (Va, W,D5). We set (Vi(o),DEO)A) = G (v, ]D)Z.A) on which we have the naturally induced
filtrations W(©. We also obtain induced morphism F© : (V?, w© D%y — 19 w© D) The
following lemma is standard.

Lemma 2.22 The rank of F|(x py is independent of (A, P) € P! x X. The morphism F is strict with respect
to the weight filtration. Hence, Ker F' with the induced filtration W (Ker F) is a mized twistor structure, and we
have the isomorphism Ker F(O) ~ Gt (Ker F)

Proof If X is a point, the claims are well known and easy to show. Namely, it is shown in Lemma 2.20 of [17]
that (i) Ker(F) is a subbundle of Vi, (ii) F is strict with respect to the weight filtrations, i.e., F(W;(V1)) =
F(V1) N W(V2), (iii) Ker(F') with the induced weight filtration is a mixed twistor structure. We obtain the
isomorphism Ker F(O ~ Gr" (Ker F ) from the strictness.

Let us consider the general case. By using the flatness, it is easy to show that rank Fj; py and rank F, |(8) P)

are independent of the choice of a point P € X. Then, the claim of the lemma follows.

Corollary 2.23 Let (V}J/V,ID)Z-A) (i = 0,1,...,m) be variations of mized twistor structures with morphisms
F;: (W, VV,]D)OA) — (Vi VV,}D)Z.A) (i=1,...,m). Then, we have the following natural isomorphism of variations

of mized twistor structures:
" (ﬂ Ker Fz> ~ (Ker F”)
i=1 i=1

Here, F\*) denote induced morphisms (V.”, W© D%y — (V@ w© pl04), 1

Local splitting Let (V,W,D?) be a variation of mixed twistor structures. Let N = (N;|j = 1,...,¢)
be a tuple of morphisms N; : (V,W,D?) — (V,W,D?) ® T(—1) which are mutually commutative. Let
(VO WO DOA) be as above. Let N©O© = (NJ(O) |i=1,...,¢) be the induced commuting tuple of morphisms
N (vO, WO DO~ — (VO WO DOA) @ T(-1).

We setiv = Eom(V(i, D, ~which is naturally equipped with the operator EA and an induced filtration w.
Let N : (V,W,D) — (V,W,D)®T(—1) be the morphisms of mixed twistor structures given by N;(f) = N;o
f—1fo NJ(O). Similarly, we set V(O) := Hom(V () V() on which we have the naturally induced operator E(O)A,
filtration W and morphisms of mixed twistor structures N;O) : (V(O),W(O),ﬁ(o)) — (7(0)7W(0)7®(0)) ®
T(-1).

We have the natural isomorphism Gr' (V) ~ V. The induced filtrations and the morphisms coincide.
According to Corollary 2.23, we have the following isomorphism of variations of mixed twistor structures:

er(ﬂ Kerﬁj) ~ ﬂ Ker Ngo).
Then, we obtain the following corollary.

Corollary 2.24 Let (A, P) be any point of Cx x X, and let U be a small neighbourhood of (A, P). There exists
a C*°-morphism F : V‘g)) — Vjg with the following property:

20



o [t preserves the weight filtration, and the induced morphism on GrW(Vlg))) — GrW(V|U) 1s the identity.

oFON;O):NJOFforj:L...,E. |

C-splitting Let (V, W,D2, N) and (VO WO DOA NOY be as above.
Lemma 2.25 There exists a C™-isomorphism ® : V(O — V with the following property:
o & preserves the weight filtration W, and Gr™ ® is the identity Gr™ (V) = G (V).

¢ 20N =N;0® forj=1,... L

Proof Let U C C) be a compact region with U U o (U) = PL. We take a locally finite open covering U x X C
Upel U, such that we have C'°°-isomorphisms &y, : V\Z(/f — Vjy, as in Corollary 2.24, i.e., y, oN(O) = N;jody,
for any j. Similarly, we take a locally finite open covering o(U) x Xt C quJUT such that we have C°°-

.10
uJ'V‘uT—

subordinated to the covering {U,, U} |p € I, ¢ € J} of P! x X. We obtain the C*-isomorphism

= ZXup 7 +2Xug Dy VO — .
p€El qeJ

isomorphisms ® V\u* as in Corollary 2.24. We take a partition of unity {Xu,,7 Xyt |PEIL q€ J}
q

By construction, it has the desired property. |

3 Polarized mixed integrable twistor structure of split type

3.1 Basic examples in one variable
3.1.1 Rank two

Let us recall a basic example studied in Subsection 3.7.2 of [18] with a minor enrichment. We set V2 :=
0(0,-1) ® O(1,0). (See Subsection 2.1.3 for O(p, q).) It is naturally equipped with a meromorphic connection
VP, and (VP V) is an integrable twistor structure. We put

(V) =0, W (V) =wo(VP)) = 0(0,-1), Wiy (VE) = VL
Let FI2: VP — V2l @ T(~1) be given by
fé“” — [PV @Y, (a=0,1,00), V0.
A flat morphism S® : VP @ o* V2l — T(0) is given by the following correspondence:
g2l (f(l N %a ) \ﬁt(o) S[z]( 1(0,—1) Qo f(l 0)) Ft(o)

S[Q] (f 1 O) ® f(l O)) 7 S[Q] (fl(o’il) ® O.*fl(offl)) — 0

Recall that (V[Q], w,FR s [2]) is a polarized mixed twistor structure of split type in one variable with weight 0
(Lemma 3.90 of [18]). Hence, (V12 W,V F[2 Sy is a polarized mixed integrable twistor structure of split

type.
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3.1.2 Twist
The bundle V! is obtained as the gluing of VO[Q] = ‘[CQY]A and VO[OQ] = Vl[é]; We would like to explain a twist of

the gluing given in Subsection 3.7.2 of [18], related with the construction in Subsection 2.2.3. Let N := F[2 ®t(11).

Let v € Vl[f] for A # 0,00. The induced elements of Vga and VO[O‘] are denoted by v and v, respectively. The

gluing for V2! is given by v = vf. For y € C, a vector bundle Vy[ lis given by the following twisted gluing;:
exp(\/ ly - N) v=nol

Since N is flat, we have the naturally induced flat connection Vg[f] of ‘73,[2]. We also have the induced pairing
Sy[f] of (Vf],vE]) of weight 0.
For y # 0, we have a frame of Vy[z] given as follows:

Si= VEIA S Ty 0T = 00
iy = f(lvo) — 7\/77# f(LO) . ‘/f Y- f(o’fl)

In particular, (1@[2], V[Q]) is a pure integrable twistor structure of weight 0 for any y # 0. If y is a positive real

number, S?[,] gives a polarization of (Vy[2], V[ ]) (Lemma 3.91 of [18]). Actually, s; (i = 1,2) give an orthogonal
frame: B B
S G o5 =y (1=1,2), SP(51,0%%) =0.
Note that VE] is logarithmic with respect to the lattice \7!,[2]. For any y # 0, we have the decomposition
2 4A

2 2
Vg[,]:d[]—Qy X

Y

Here, d?[,2 I'is a natural flat connection of Vyp] ~ Op1 (0)®2. Let us calculate Q2. By easy calculations,
~ -~ o~ dA
VLQ]Sl = O7 V:E]SQ = S9 (—) .

Hence, Q! is expressed by the following matrix with respect to the frame 37, 3o:

0 0
0 1
In particular, the eigenvalues are independent of y.

Remark 3.1 For our application, we essentially need only the case in which y is a positive real number.
Recall that we have considered a twisted isomorphism (15). We will use the above consideration by setting

¢
y= —Zi:110g|zi|2. |

3.1.3 Rank /¢

For any positive integer ¢, we set (VI4, V) .= Syme_l(V[Q], V), equipped with a morphism F : v —
VI ® T(-1) and a pairing S : V4 @ ¢*VI — T(0). For any y € C, we obtain an integrable twistor
structure (Vym , V[ye ], §g[ﬂ) with a pairing of weight 0, by the procedure in Subsection 3.1.2. It is also obtained as
the (¢ — 1)-th symmetric product of (‘73,[2], Véz],gg[f]). Hence, (VJZ],Vg]) is pure with weight 0 for each y # 0,
and §3[f] gives a polarization for each y > 0. We have the decomposition

dA
q _ gt ¢
v?[!] = d[y] — ol ]7
Let y # 0. A frame of ‘Zy] is given by symmetric products Eifz] : s{ P (p=0,1,...,£—1), for which ol

is expressed by the diagonal matrix whose p-th entry isp (p =0,1,...,¢— ) In particular, the eigenvalues are
independent of y.
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3.2 Twistor nilpotent orbits of split type and their new supersymmetric indices
3.2.1 One variable case

Let Y be a complex manifold. Let (V, W,D% N, S) be a variation of polarized mixed twistor structures of split
type with weight 0 in one variable on P! x Y. The following lemma is essentially the same as Corollary 3.97 of
[18].

Proposition 3.2 There exist variations of polarized pure twistor structures (Up, Df, Sy) of weight 0 on P! x Y
for £ > 1, such that (i) (V,D?) ~ EB@>1(UZ7DEA) @V, (ii)) N =@idy, @F¥ and S = @ Sy @ S under the
isomorphism. -

If (V,W,D? N, S) is enriched to be integrable, (Uy, D>, S;) are also integrable.

Proof We have the grading V = @]ez V;. For each j > 0, we set PV} := Ker(Nj+1 Vi—V_,_ 2®T(j+1))

It is a variation of pure twistor structure of weight j, and equipped with the induced polarization S;. For £ > 1,
we set

Uy i= PVy_1 @ O(0,—€ +1).

which are naturally variations of polarized pure twistor structures. Then, it is easy to observe that V' has the
desired decomposition. The integrable case is also easy. |

Let ¢ : Y x C* — Y denote the projection. We obtain the variations of polarized pure twistor structures
on P! x (Y x C*) obtained as the pull back of (Uy, DZA, Sy), denoted by ¢*(Up, ]D)EA7 S¢). Recall the construction
in Subsection 2.2.3. We obtain the following isomorphism from Proposition 3.2:

TNIL(V,D*, N, §) ~ @ ¢" (Us, Dy, S¢) @ TNIL(VH, VI, Fl g (22)
14

By using the result in Subsection 3.1, we can conclude the following;:

Proposition 3.3 We set X; := Y x {z € C|0 < |2] < 1} and X_ := Y x {2z € C||z| > 1}. Then,
TNIL(V,D?, N) is a variation of pure integrable twistor structures on P! x (X1 U X_), and the restriction
TNIL(V,ID) N, S)iprxx, 18 a twistor nilpotent orbit. |

Assume that (V,D?) is enriched to integrable (V, D2) such that § and N are D®-flat. Let Q and Q[ be the
new supersymmetric indices of T NIL(V D%, N) and TNIL(VI, VI Fl) | respectively. We also have the new

supersymmetric index Q, of (Uy, ID) ). By construction, we have the following equality, under the isomorphism
(22):
Q=P (2 ®id+idwol)

>1

The eigenvalues of Q are easily calculable, once we know those of Q. In particular, we obtain the following.
Corollary 3.4 The eigenvalues of Q|q-1(y) are constant for any y € Y, where ¢ : (X1 UX_) — Y denotes
the projection. |
3.2.2 Several variable case

Let (V, VV,]D)‘%,N ,S) be a variation of polarized mixed twistor structures of split type with weight 0 in n-

variables on P! x Y. We have the associated variation of twistor structures TNIL(V, ID)‘%7 N, S) with a pairing
of weight 0 on (C*)" x Y. We set X* = {(z1,...,2,) €C"|0 < 2| <1} x Y.

Proposition 3.5 TNIL(V, ]D)‘%7 N, S)p1xx+ is a twistor nilpotent orbit.

Proof For any a € RZ, we set N(a) := Y., a; - N;. We obtain a variation of mixed polarized twistor
structures (V, W,D®, N(a), S) of split type with weight 0 in one variable on P! x Y. Applying the result in
Subsection 3.1.3 to (V, W, Dﬁ, N(a),S), we obtain the desired property of (V, W, ]D)‘%7 N, S). |
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Definition 3.6 An (integrable) twistor nilpotent orbit is called of split type, if it is associated to (integrable)
polarized mized twistor structures of split type. |

If (V, W, ]D)‘%, N, S) is enriched to integrable (V, W, ]]3)‘%, N, S), the associated twistor nilpotent orbit is also
enriched to integrable TNIL(V, ]D)é7 N, S). Let us consider its new supersymmetric index Q. For any a € RY,
we set N(a) := Y_.", a; - N;. According to Proposition 3.2, there exist variations of polarized pure integrable

twistor structures (Uayg,]]])aAL,) for £ > 1 such that

(V.Dy,N(a)) ~ P (Uar, Dy ,) @ (VI9, V1, R,
>1

Lemma 3.7 For any a,b € RY, we have an isomorphism (Ua7g,ﬁﬁ£) ~ (Ub7g,]fD§£).

Proof Let V =@V, be the splitting. For any a € RZ, and j > 0, we set
(PVja,D?) := Ker(N(a)j+1 F(V3,D%) — (Voj2, D) @ T(—j — 1))
We have only to show that (P‘/}-’a,f))A) and (PVjp, HS)A) are isomorphic, if b is sufficiently close to a.

We set (Yj,a,ﬁ)A) = Im(N(a) : (1/}+2,}]3>A) ® T(1) — (Vj-,ﬁ)A)). Then, we obtain the flat splittings

(Vj,]ﬁA) = (PVjﬂ,]INDA) ® (Yj,a,]IN))A). If b is sufficiently close to a, flat isomorphisms PV, — PV, are
induced by inclusions and projections. Thus, we are done.

By Lemma 3.7 and the result in Subsection 3.2.1, the eigenvalues of Q are easily calculable once we know
the new supersymmetric indices of (Umg,DaA y) fora e Re>O and ¢ > 1. In particular, we obtain the following.

Corollary 3.8 The eigenvalues of Q|4-1(,) are constant for anyy € Y, where q : X* — Y denotes the natural
projection. |

4 Integrable twistor nilpotent orbit

4.1 Statements
4.1.1 Twistor nilpotent orbits and polarized mixed twistor structures

Let Y be a complex manifold. Let (V, ID)‘%) be a variation of P!-holomorphic vector bundles on P! x Y equipped
with the following P!-holomorphic D{-flat data:

e A (—1)"-symmetric pairing S: V ® 0*V — T(—w).
e A tuple N of nilpotent morphisms N, : V.— V®T(-1) (j = 1,...,n), which are mutually commutative.
o S(N; ®id) + S(id®c*N;) =0for j =1,...,n.

For simplicity of the statement, we assume the following:

e Y is contained in another complex manifold Y’ as a relatively compact subset, and (V, Dﬁ,S, N) is
extended on Y.

We set X*(R) := {(21,...,2n) | 2] <R} x Y.
Theorem 4.1 (V, D‘%,N, S) is a variation of polarized mixed twistor structures with weight w in n-variables,
if and only if TNIL(V, Dé, N, S)ip1xx=(r) 15 a twistor nilpotent orbit with weight w for some R > 0.

Note that the “if” part follows from Theorem 12.22 of [18]. The “only if” part immediately follows from
Proposition 4.4 below and a result in Subsection 2.8 of [19]. (We apply Proposition 4.4 to each point of Y”.)
The one dimensional case was proved in Proposition 3.105 of [18]. Such an equivalence for Hodge structure was
established by Cattani-Kaplan-Schmid and Kashiwara-Kawai.
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Corollary 4.2 Let (V, D€7N7S) be as above.

o Assume that (V, Dé) is enriched to integrable (V, ﬁ)‘%) such that N and S are flat with respect to fD€
Then, (V, ID)‘%,N ,S) is a variation of polarized mized integrable twistor structures with weight w in n
variables, if and only if TNIL(V, ]D)‘%, N, S)p1x x=(r) is integrable twistor nilpotent orbit for some R > 0.

o Assume moreover that (V, ]ﬁ)ﬁ, S) is equipped with a real structure k which is compatible with N. Then,
(v, ]D)‘%, N, S, k,—w) is a variation of polarized mized twistor- TERP structures if and only if the associated
TNIL(V, ]D)‘%, NS, k,—w) is a twistor-TERP nilpotent orbit on X*(R) for some R > 0. |

Remark 4.3 As the one variable case of Corollary 4.2, we obtain the correspondence between twistor-TERP
nilpotent orbits and polarized mixed twistor-TERP structures. This is different from the correspondence between
mized TERP structure and HS-orbit in the reqular singular case established by Hertling and Sevenheck ([7] and

|

[8])-

4.1.2 Construction of an approximating C'°°-isomorphism

Let (V,W,D?, N, S) be a variation of polarized mixed twistor structures of weight 0 in n-variables on P! x Y.
As explained in Subsection 2.4.2, we obtain a variation of polarized mixed twistor structure of split type
(V(O), W(O),]D)(O)A,N(O),S(O)) by taking Gr with respect to the weight filtration. We obtain the families of
P'-holomorphic vector bundles (V2,D2) := TNIL(V, D4, N) and (V@4 DOA) .= TNIL(V© DO2& N©)
on (C*)" x Y. They are equipped with the induced pairings S and SO, By the result in Subsection 3.2.2,
(VO DOA S0)) ig a variation of polarized pure twistor structure on P* x X*(1). Let h(?) be the corresponding
pluri-harmonic metric.

We take a C*-isomorphism ® : V(©) — V as in Lemma 2.25, i.e., it satisfies (i) ® o NZ-(O) = N; o ® for
i=1,...,n, (ii) ® preserves the weight filtration W, and Gr"' ® is the identity of Gr'V (V) = G+ (V). By
the property (i) for ® and the construction of V2 and V(2| we obtain a naturally induced C*°-isomorphism
S VICOE N, Y

Let 51}A7]p1 denote the P'-holomorphic structure of V2. We use the symbol gv(O)AJP;l in a similar meaning.
We obtain the following C*®-section of End(V(0%) ® Q%ll on P! x X*(1):

F = gv(o)AJpl - &;* (EVAJPH)
We also obtain the following C'°°-morphism:
G =80 —9*S: V02 ¢ g POL (1)

We fix a Kéhler metric g of P'. Although the following proposition looks rather auxiliary, it means that
(VOL DOA SO approximates (V&,D?,S) via ® around P! x {0} x Y. We will prove it in Subsection 4.2.1.

Proposition 4.4 For any P € Y, there exist a positive constant Rp > 0 and a neighbourhood Up of P in'Y
such that the following estimate holds P* x {(z1,...,2,) |0 <|z;| < Rp} x Up:

n

|F’h(0>7g = O(Z(—log |Zj|)’1/2)

Jj=1

n

Glyo = O(3(=Toglz) %), [Bvios #1Gly0, = O(3 (~logl2))?)

j=1 =1
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4.1.3 Estimate of the new supersymmetric index

Assume that (V] D‘%, N, S) is enriched to integrable (V, ]13)6, N, S). By taking Gr with respect to the weight
filtration, we obtain a polarized mixed integrable twistor structure of split type (V(O), W), ID)EE)A, N(O), S(O)).
Let (V,D2,8) = TNIL(V,D{, N, S)jpix x-(r) and (V©,DO2 §©) = TNIL(V ), DY N© 5O 51 gy
be the associated nilpotent orbits (Corollary 4.2). Let Q and h (resp. h(®) and Q(©)) denote the new supersym-

metric index and the pluri-harmonic metric of (V, IB)A,S) (resp. (V©), ﬁ(O)A, S©)). We will prove the following
proposition in Subsection 4.2.2.

Proposition 4.5 Let d:VO0 ——Vibea C'*®-isomorphism constructed in Subsection 4.1.2. For any P € Y,
there exist R > 0 and a neighbourhood Up of P in'Y such that the following estimate holds with respect to h(®)
on P x {(z1,...,2,) |0 < |2j| < R} x Up:

n n

;I;*h _ h(o) — O(Z(_ log |Zi|)_1/2>7 E)*Q — Q(O) = O(Z(— lOg |Zi|)_1/2>

i=1 i=1
In particular, the eigenvalues of Qjq-1(,) are constant up to O(Z?:l (710g|zi|)75> for some & > 0, where

q:X*(1) — Y denotes the natural projection.

4.2 Proof
4.2.1 Proof of Proposition 4.4

Let C > 0. Fix P € Y. In the following, we will shrink Y instead of taking a neighbourhood Up, for simplicity
of description. We set

Z(C) := {(zl,...,zn) e

|ZZ'|C§|Zi+1|<17 izl,...,n—l}xy_

It is easy to observe that We have only to estimate F, G and gv(O)AJplG on P! x Z(C). For m = 1,...,n, we

put NO(m) :=3"._ N;”). Let W(m) denote the weight filtration of V(*) induced by N(®)(m). Recall that
the filtrations W (1), VV(g)7 ..., W(n) are compatible (Lemma 3.116 of [18]).
We take a compact region U C C) such that the union of the interior parts of & and o(U) cover P, Let

v = (v;) be a frame of V\uxY compatible with W (1), W (2),...,W(n). For m =1,...,n, we set

1
K (vi) == §degw(m)(’0i)-
We formally put kq(v;) = 0.

Lemma 4.6 Let A be determined by (27! 0 0®)v = v - A. Then, A;; = 0 unless kp,(v;) < kp(v;) (m =
1,...,n—1) and ky(v;) < ky(vj).

Proof Because of our choice of ®, it preserves the filtrations W (m) (m = 1,...,n), and Gr"V'® & is holomor-
phic. Then, the claim of Lemma 4.6 immediately follows. |

Let qo : Cx x X*(1) — C x Y be the projection. Recall V‘C K X*(1) = = ¢5Vo. Let ©; be the section of
A

Viuxx+(1) induced by v, and we put
n

- —km (vj)
H 710g|zm‘ m (vj)Fhm—1(v5) _ H < — log | zm| ) .(7log|zn|)7kn(vj).

el —log |21
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Due to the norm estimate for tame harmonic bundles (Theorem 13.25 of [18]), the C*°-frame v’ = (v}) is

adapted to the metric h(*) on Z(C), i.e., the hermitian matrix-valued functions H = (h(v},v})) and H~' are

bounded on Z(C). Let A’ be the matrix-valued function determined by Fv' = v’ - A’. Then, we have

T ([ loglz| ) 0T (00— (3))
A;,j :Ai,j' H <m) . (_10g|2’n|) n (Vi V)

o2\~ log |zm]

Hence, we obtain Aj ; = O((— log \zn|)71/2). It implies the desired estimate for F' on U x Z(C). Similarly, we
obtain the estimate on o (i) x Z(C), and thus on P* x Z(C).

Let w be a frame of V|, ) xy+ compatible with the filtrations W (1), W (2),...,W(n). For m =1,...,n, we
set

(1) 1= 5 deg™ ().
We formally put ko(w;) = 0. We set G := S — &*S: V(O @ o*V () — T(0).
Lemma 4.7 Go(v;,0*wj) = 0 unless the following holds:
km (Vi) + km(w;) >0 (m=1,...,n—1), kyn(v;)+ kn(w;) > 0.

Proof By the relation S(V; ® id) + S(id ®a*(Ni)) =0, we have S(Wp(m) ® U*Wq(m)) =0 unless p+¢q > 0.
We have similar vanishings for S(°). Note that ® preserves the filtrations W (m) for m = 1,...,n, and GV ¢

is compatible with S and S(®). Thus, we obtain the claim of Lemma 4.7. |
Let ¢oo : C,, x X*(1)T — C, x Yt be the projection. Recall V|(g')ﬁX*(1)T = ¢>. V. Let w; be the section
of V\(SSL%XX*Q)T induced by w;, and we put
n—1 _km(w')
~ —log |zm| I — ke (w;)
W = s - (7” . —10g|zn\ nlws)
J J ngl —10g|2m+1\ ( )

Note the following;:

)*kn(vi)*kn(ﬂj)

1 —km (Vi) —km (w;)
| - f
(0g|z|> - (—1log |z

G(v, 0" w’) = Go(vs, 0" w;) x
o) = Gutnra« T (1]
Hence, we obtain ’G|h<0) = O((— log|zn|)_1/2). Similarly, we obtain the estimate for ‘gv(o) ,]PIG|. Thus, the
proof of Proposition 4.4 is finished. The proof of Theorem 4.1 is also finished.

4.2.2 Proof of Proposition 4.5

We have the decompositions DA = Dﬁo + V, and DOA — Dgﬁl A 4 VE\O). By an argument used in the proof of
Proposition 4.4, we obtain the following estimate with respect to h(?):

n

v, - v = O(Z(— log |zi|)_1/2>

i=1

Then, Proposition 4.5 follows from Lemma 2.20 with Proposition 4.4. |

5 Family of meromorphic A-flat bundles

We will review some results on family of meromorphic A-flat bundles mainly explained in Sections 7 and 8 of
[19]. See also [16] and [20] for the earlier works on asymptotic analysis of meromorphic flat bundles.
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5.1 Good lattice in the level m
5.1.1 Preliminary

Good set of irregular values in the level m Let A*:= {(z1,...,2)||2| <1,i=1,...,¢} denote the (-
dimensional multi-disc. Let X := A x Y for some complex manifold Y. Let D; := {z; =0} and D := Ule D;
be hypersurfaces of X. Let M(X,D) (resp. H(X)) denote the space of meromorphic (resp. holomorphic)
functions on X whose poles are contained in D. For m = (myq,...,my) € Z*, we put 2™ := Hle 2z

Let m € Z%, — {0}. A finite set Z of meromorphic functions {a = a,, - 2™} C M (X, D) is called a good
set of irregular values on (X, D) in the level m, if the following holds:

e a,, are holomorphic functions on X.
® a,, — by, are nowhere vanishing holomorphic functions on X for any two distinct a,b € Z.

Let i(0) be the integer such that m;) < 0. If moreover the following condition holds, Z is called a good set of
irregular values on (X, D) in the level (m,i(0)).

® a,, are independent of the variable z;) for any a € Z.

Remark 5.1 The first condition is not essential. If we do not impose it, the third condition should be replaced
with that am — by are independent of z;oy for any a,b € Z. |

Multi-sectors and orders on good sets of irregular values in the level m Let X := A’ x Y for some
complex manifold Y. Let D; := {z; =0} and D := Ule D; be hypersurfaces of X. Let K be a region of C or
a point in C3. (For Definition 5.4, we may admit K = {0}. Since we do not have to consider Stokes structure
in this case, we exclude it in the following.) The product K x X is expressed by X. We use the symbols like
Y and D in similar meanings. We put W := DU ({0} x X) in the case 0 € K, and W := D otherwise. Let

7: X(W) — X denote the real blow up of X along W.

In this paper, a sector of a punctured disc A* means a subset of the form {z ‘ 0<|z| <R, 6y <arg(z) < 91}
for some 0y < 6. It may be standard to admit the case |61 — 0y| > 27, but we do not care about it.

By a “multi-sector of X — W”, we mean a subset of the following form

4 4
Ux[[SixV. or Syx][sixV

=1 i=1

U denotes a compact region in K. (If K is a point, U = K.)

S denotes a sector of K — {0}. (If 0 € K, we do not consider the subsets of the second type.)
e S; denote sectors of AZ

e V denotes a compact region in Y.

For a multi-sector S, let S denote the closure of S in X(W).

Notation 5.2 Let MS(X — W) denote the set of multi-sectors in X(W). For any point P € X(W), let
MS(P, X — W) denote the set of multi-sectors S such that P is contained in the interior part of S. |

Let Z be a good set of irregular values on (X, D) in the level m. We put Fyp := —Re(A™!-(a—b))-[\|-|z27™|
for any distinct a, b € Z. They determine the C*°-functions on X (W).

Notation 5.3 Let A be any subset of /’?(W) We say a <4 b for (a,b) € I? if Fy5(Q) < 0 for any Q € A.

We say a <4 b for (a,b) € Z? if either a <4 b or a = b holds. The relation <, gives the partial order of T.
We use the symbol <p in the case A = {P}. For a multi-sector S, we prefer the symbol <g5 to <g. We also

use gg and <3 when we emphasize the twist by A\~1. |

For any point P € 7~ (W), there exists Sp € MS(P, X — W) such that the relations <p and <g, coincide.
Let MS(P, X —W,T) denote the set of such Sp. (The definitions of MS(P, X — W, Z) is slightly different from
that in [19].)
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5.1.2 Good lattice in the level m

Let Y be a complex manifold with a simple normal crossing divisor D},. Let X := Ak x Y, D, ; := {z; = 0}
and D, := Ule D, ;. We also put Dy := A’; x Dy and D := D, U Dy. Let K be a point of C or a compact
region in C'y. We put X := K x X. We use the symbols Y, D,, D in similar meanings. Let p denote the
projection forgetting the -component. The completion of X along D, is denoted by D,. (See [1], [2] and [15]
for completion of complex analytic spaces.) We use the symbol D in a similar meaning. Let dx denote the
restriction of the exterior derivative to the X-direction.

Let E be alocally free O x-module with a family of meromorphic flat A-connections D : E — E®p} Q4 (xD).
Let m € Z%, and i(0) € [1,k] = {1,...,k}. We put m(1) := m + §;().

Definition 5.4 We say that (E,D) is an unramifiedly good lattice of a family of meromorphic A-flat bundles
in the level (m,i(0)), if there exists a good set of irreqular values T in the level (m,i(0)) on (X, D), and a
decomposition

(E7D)|ﬁz = @(Eavlﬁ)a) (23)
acl

with ord(]f])a —dxa) > m(1) in the sense (]]3)5l - an)Ea czmW.E, @ p3Qk (log D).
The decomposition (23) is called the irregular decomposition in the level (m,i(0)), (or simply m). We also
often say that (E,D) is a good lattice in the level (m,i(0)) for simplicity.

In the case 0 € K, we put X? := {0} x X and D? := {0} x D.. By shrinking X, we obtain the irregular
decomposition (E,D)x0 = @,z (Fa,x0, DY) whose completion along DY is equal to the one induced by (23).
It is uniquely extended to the D-flat decomposition on the completion X0 of X along X°:

~

(E, ]D))‘/?o = @(Emfmmu)
acT

We put W := X°UD,. Let W denote the completion along W. We obtain the decomposition:

(E.D), = P(E, - Da) (24)
acl

The decomposition (24) is also called the irregular decomposition in the level (m,(0)) if 0 € K.
In the following, we formally set W := D, if 0 € K. Let «w : X(W) — X denote the real blow up of X
along W. Let O, be the origin of AF and we put 3 = w‘l(Oz x V). We consider the case that Y = A’CL and

z

Dy = U§:1 D¢ ;, where D¢ ; := {¢; = 0}. The restriction of D to the A¥-direction is denoted by D,.

Stokes structure in the level m For any multi-sector S in X — W, let S denote the closure of S in X (W),
and let Z denote S N w~!(W). The irregular decomposition (24) on W induces the decomposition on Z:

(E7D)|Z = @(Eaaﬁ)a)@ (25)

acZ

We put FZ := @bésu Eb|27 and then we obtain the filtration FZ of E\E indexed by (I, gs). We can show the
following proposition. (See Subsections 7.2.1 and 8.1.1 of [19].)

Proposition 5.5 For any point P € 3, there exists S € MS(P,X — W, T) such that the following holds:
o There exists the unique D-flat filtration F° of E‘g indexed by (I, SS) such that .7-"{2 = FZ. Moreover, if
a D, -flat filtration F'S of Ey5 indezed by (Z,<s) satisfies ]:\/5 = FZ, then F'S = F5.

o There exists a D, -flat splitting of F° on S. Note that if we take such a splitting, the restriction to Z is
the same as (25).
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We call F° the Stokes filtration of (E,D) in the level m. |

Notation 5.6 For any P € 3, let MS*(P,X —W,T) denote the set of S € MS(P,X —W,TI) as in Proposition
5.5. Let MS*(X — W,T) denote the union of MS*(P,X —W,TI) for P € 3. 1

The following lemma is clear.

Lemma 5.7 Let 5,5 € MS(P,X — W,I). Assume (i) S’ C S, (i) S € MS*(P,X —W,I). Then, S’ €
MS*(P,X —W,T). The filtration F is the restriction of F*. 1

Compatibility of the Stokes filtrations Let S, 5" € MS*(X — W,T) such that S’ C S. The natural map
(I , SS) — (Z , §S/) is order-preserving. We can show the following lemma easily by using Proposition 5.5.
(See Subsections 7.2.2 and 8.1.2 of [19].)

Lemma 5.8 The filtrations F° and FS' are compatible with respect to (I, Ss) — (I, Ss') in the following
sense:

* faS/(E\E’) = ]‘—Ela(E\?’) +]:&9(E|§)|§"
S/

e The induced morphisms Grfs (Eis)sr — Grf (E\s:) are isomorphisms.

In particular, we have ]—'S(E‘g)‘gl = fs/(Elg/), if (I, gs) — (L SS/) 18 isomorphic. |

Splitting with nice property We have the induced morphisms Res;(D) : Ep., — zm() - Eip,, for
j=1,...,0. Since F? is D-flat, Res; (D) preserves }—\%c,j' If we fix the coordinate, we have the induced family
of flat A-connections of E|p, ; which is denoted by JD. Tt also preserves the filtration }_ISDc,j‘ Let'F (j=1,...,0)
be filtrations of E|p, ., which are preserved by the endomorphism Res; (D) and the flat connection /D of Ejp it

J

We can show the following (Subsections 7.2.3 and 8.1.3 of [19]).

Proposition 5.9 Let P € 3. There evist S € MS*(P,X — W,T) and a D.-flat splitting of the filtration F5,
whose restriction to S N Dy is compatible with Res; (D) and the filtrations IF for j =1,... L. |

Under some more assumption, we can take a D-flat splitting. (See Subsection 7.2.3 of [19].)

Proposition 5.10 Assume that K is a point or a compact region in C. Assume that the eigenvalues o, 3 of
Resj(Df)‘Djx{)\} satisfy o« — B & (Z —{0}) for any j = 1,...,¢ and for any \ € K. Then, we have a D-flat
splitting of FS, whose restriction to D¢ ; is compatible with 7F for each j =1,... L. |

Some functoriality of Stokes filtrations We explain functoriality of Stokes filtrations. See Subsections
7.2.4 and 8.1.4 of [19] for more details.

In general, when we are given vector spaces U C V, let UL denote the subspace of the dual V'V given by
U+ ={feVV|f(U)=0}. It is naturally generalized for vector bundles. Let (E,D,Z) be an unramifiedly good
lattice of a family of meromorphic A-flat bundles in the level (m,i(0)) on (X,D,). Let S € MS*(X — W, I).
We have the following for any a € ZV := {—b | be I}:

1
FEG) =| Y F(Eg)
ccZ

CZ‘g*a

Let (E,,D,,7,) (p = 1,2) be good lattices of families of meromorphic A-flat bundles in the level (m, i(0)).
We assume that Z; ® Zy = {a1 + as ‘ a, € Ip} is a good set of irregular values in the level (m,i(0)). We put
(E,D) := (E1,D) @ (E,Dy). Let S € Np=1.2 MS* (X — W,Z,). We have the following for each a € I; ® Zy:

Fo(Eg)= Y. Fo(Bys) ®Fa(Byg).

a;+ax<ga
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Assume that 7 ®7, := Z; U is a good set of irregular values in the level (m, i(0)). Let S € () _; , MS™ (x—
W,Z,). We have the following for each a € Z; @ Zo:

Fo((Br @ Ea)g) = Fo (By5) © F7 (By5)-

Let F : (E1,1) — (E2,D3) be a flat morphism. For simplicity, we assume that Z; U Z5 is a good set of
irregular values in the level (m,i(0)).

Lemma 5.11 Let S € (1,21, MS™(X = W,I,). The restriction Fig preserves the Stokes filtrations. As a
result, we obtain the following.

e [f the restriction of F to X — D is isomorphic, we have I = Iy and ff(El‘S\D) = ff(E2|S\D).

e In particular, the Stokes filtration F° depends only on the family of meromorphic A-flat bundles (E(>|<D)7 ID))
in the sense that it is independent of the choice of an unramifiedly good lattice E C E(xD) in the level
|

(m,i(0)).

The associated graded bundle in the level m For sectors S € MS*(X — W,Z) and each a € Z, we
obtain the bundle Gr;"(Elg) on S associated to the Stokes filtration F° in the level m. By varying S and

gluing Gry*(Ej5), we obtain the bundle Gr;n(Elg(W)) on V(W) with the induced family of flat A-connections

Dg, where V denotes some neighbourhood of O, x ), and 9(W) denotes the real blow up of V along W N V.
It is shown that we have the descent of Grg®(Ey ) to V, ie., there exists a locally free sheaf Gr{*(E) on V
with a family of meromorphic flat A-connections D, such that

7 NG (E), Do) = (G (Bpp)sDa)s (Gri*(E),Da) gy = (Eas Da) iy,

(See Subsection 7.3 and Subsection 8.1.5 of [19].) If we set D, := D, — dxa, we have
D\ E, C z™W . B, @ p;Q% (log D).

We give some statements for functoriality. See Subsections 7.3.2 and 8.1.6 of [19] for more details.
By taking Gr of the Stokes filtrations of (EV,DY,Z"), we obtain the associated graded bundle Gr™(EY) =
Docrv Gry*(EY). We have the natural flat isomorphism

Gr™(BY) ~ Gr™ (E). (26)

Actually, by construction, we have such an isomorphism on the real blow up, which induces (26).

Let (Ep, Vp,Z,) (p =1,2) be unramifiedly good lattices of families of meromorphic A-flat bundles. Assume
T, ® T, is a good set of irregular values in the level m. Let (E,D) := (Ep,D1)® (E,, Dg). We have the following
natural isomorphism for each a € 7; ® Zo:

G (E)~ P GTHE) @ Gl (E,) (27)
(a1,a2)EZy XIo
aj+azx=a

Assume 77 @ 7T, is a good set of irregular values in the level (m,i(0)). For each a € 77 @ Z,, we obviously have
Gr"(E1 @ Es) ~ Gri*(E1) @ Gry* (E2).

Lemma 5.12 Let F : (E1,Dy) — (E2,D2) be a flat morphism. Assume Iy ® Iy is a good set of irreqular
values in the level (m,i(0)). We have the naturally induced morphism Gri*(F) : Gry*(E1) — Gri*(E2). If
the restriction Ey\x_p — FEgx_p 15 an isomorphism, the induced morphism

G (E1) ® O(xD) — Grl*(E2) ® O(xD)

is an isomorphism.
Hence, the associated meromorphic flat bundles (GrL"(E)@O(*D), ]D)a) are well defined for the meromorphic
flat bundle (E(xD),D). |
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A characterization of sections of E Let wqy be a frame of Gr*(E). Let S € MS*(X — W,T), and let
EG =P E, s be a D,-flat splitting of the Stokes filtration FS. By the natural isomorphism Eq. s ~ Gr;”(E)‘g7
we take a lift wq s of w,. Thus, we obtain a frame wg = (wa,s) of E‘g. The following proposition is clear, which
implies a characterization of sections of E by growth order with respect to the frames wg (S € MS* (X —W,T)).

Proposition 5.13 Let v be a frame of E, and let Gg be determined by v = wg - Gg. Then, Gg and Ggl are
bounded on S. |

Complement on the induced flat connection along the A-direction Assume that we are given a
connection along the A-direction V) : E — E ® Qk(xW) such that D/ 4 V, is a meromorphic flat connection
of E.

Lemma 5.14 The Stokes filtrations are flat with respect to Vy, and we have the induced meromorphic flat
connection Vy along the A-direction on Gry*(E).
Proof Take N such that ANV, (0\)E C E ® Ox(¥D). Let ws = (wqs) be a frame of E‘g as above. Let

A = (Aqp) be the matrix-valued holomorphic function on S determined by ANV (d))ws = wg - A. By using
Proposition 5.13, we can show that A, are of polynomial order.

Let By be the matrix-valued meromorphic one-forms determined by D, ,w, = wq - (dza + Ba). Note that
2=™W B, is logarithmic. By the commutativity [D/, V] = 0, we obtain the following relation for a # b:

A-dAqp+ (do(a—0)) - Agp + (AaBo — BaAap) =0 (28)

By applying the results in Subsection 4.3 of [19] to (28), we obtain A, = 0 unless a <g b, which implies the
first claim. Since Aq 4 is of polynomial order, the induced connection along the A-direction is meromorphic. |

Prolongment of morphisms Let (E,,D,,7Z,) (p = 1,2) be good lattices in the level (m,(0)). Assume
that Zy UZ, is a good set of irregular values in the level (m,4(0)). Assume that we are given a flat morphism
F:(E1,D1)x—p, — (E2,D2)x_p, with the following property:

e For each small sector S € MS(X —D,,T; UZIy), the Stokes filtrations are preserved by Fjg.

e The induced maps Grg*(F') : Grg"(E1)|x—p. — Gry"(Ea)x—p, are extended to Grg*(E;) — Grg"(E»)
for any a € 7y U Zs.

Lemma 5.15 F is extended to a morphism E; — FEs.

Proof Let w5 = (wp,q,5) be frames of E, 5 as above. Let A = (Aq5) be determined by F(wy,s) = w25 A.
By the assumption, Aqp = 0 unless a <g b, and A, is bounded. By applying an argument in the proof of
Lemma 5.14 to Aqp for a <g b, and by shrinking X, we obtain Ay p = O(exp(—e|)\_1 . zm|)) on SN (X —D,).
Then, the claim follows from Proposition 5.13. |

5.1.3 Pseudo-good lattice in the level m

Let Y be a complex manifold. Let X := A¥ x Y, D, ;:={z =0} and D := Ule D, ;. Let E be a locally free
Ox-module. For simplicity, we consider a meromorphic flat connection V : E — E ® QL (D) instead of a
family of meromorphic flat A-connections. Let m € Z% and i(0) € [1,k]. We put m(1) := m + §;().
Definition 5.16 We say that (E,V) is an unramifiedly pseudo-good lattice in the level (m,i(0)), if there exists
an unramifiedly good lattice E' D E of (E(*D), V) with the irreqular decomposition (E',ID))HA) = G%ez(ﬁé» ﬁu)
in the level (m,i(0)), such that

Ep =D (ENEp) (29)
acZ
The decomposition (29) is called the irregular decomposition of (E,D) in the level (m,i(0)). 1

It is easy to observe that B, := E/ N Ep, in (29) is independent of the choice of a good lattice E' D E in
the level m. We have straightforward generalizations of the results in Subsection 5.1.2. We naturally identify

X with {1} x X C Cy x X when we consider the order <g for multi-sectors S C X — D.
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Construction of Gr We take an unramifiedly good lattice E/ D E in the level (m,i(0)). By shrinking X
around O, x Y, we have the vector bundle Grj*(E’) on X with a meromorphic flat connection V, for each a € Z.

Recall that we have the natural isomorphism Gr7*(E’ )I H Eg Hence, we have the sub-lattice of Grl*(E’)

corresponding to E cE ", which is denoted by Gr7*(F). It is equipped with a meromorphic flat connection
V4. By construction, we have the isomorphism

(GE(E), Vo), = (Ea, Vo). (30)

Lemma 5.17 Let (E;,V;) (i = 1,2) be pseudo-good lattices in the level (m,i(0)). Let F : (E1,V1) — (E3, V3)
be a flat morphism. Assume I; &Ly is a good set of irregular values in the level (m,i(0)). We have the naturally
induced morphism Gry'(F) : Gri*(FE1) — Gry*(E-2).

Proof We can take good lattices (Ef, V;) in the level (m, i(0)) such that E; C E} and F(E}) C E}. By Lemma
5.12, we have the induced morphism Gry*(F') : Gry*(E]) — Gry'(E5). By considering the completion, it is
easy to observe that Grl*(F;) — Gry(E2) is induced.

Flat splitting and Stokes filtration Let 7 : X(D) — X be the real blow up. Let S € MS*(X — D, T).
Let S denote the closure of S in X (D), and let Z denote S N7~ !(D). We have the Stokes filtration F° of

= @ E; 5 such that £’ = 7 1(E.). Because Ex_p=F it

and we can take a flat splitting E/— -y

/
\s’ |X-D>

induces the flat decomposition of F|g.

|S

Lemma 5.18 It is extended to the decomposition E‘g =@ E, s such that Eu,SIE = W‘l(Eu).

Proof Let w, and w/ be frames of Gry*(E) and Gry*(E'). Let Ga be determined by wq = wy - Ga. They
induce the frames @, and W/, of E and E' , respectively.

By the isomorphism Ea,S ~ Gry"(E )IS’ we obtain the frames w} ¢ of £ 5. Then, wq s 1= w} g Gq gives
a tuple of sections of E;S, and we can observe that w5 = 71 (wg,). Let Fq s be generated by wq g, and then
we obtain the desired decomposition E = @ Eq s. |

Let ws = (wgq,5) be as above. Let v be a frame of E on X. Let Gg be determined by v = wg - Gg. Both

vz and wg z give the frame of E‘Z, we obtain the following.

Proposition 5.19 Gg and Ggl are bounded on S. |

Proposition 5.20 The flat subbundle F5 (E Ig) @b<sa Ey 5 is independent of the choice of a flat decompo-

sition E|§ =@Ducr Eq.s such that Ea,Slf = 1Ea.

Proof Let EI§ = @aez a,s be another flat decomposition such that Ea S‘Z =7 E We take a frame wq g

of Eu s such that w 0,812 = = w,. We set W, := w, - G;'. Then, w’ Z = =7 w . Let E be generated by W',

Then, we obtain a flat decomposition E =6 E «» which has to be a splitting of the Stokes filtration F°(E ( )

Because Ea| g = Ea| 5, we obtain the well definedness of the filtration. |

Thus, we obtain the filtration F° of E‘g, which is called the Stokes filtration.

Lemma 5.21 We have the natural isomorphism Grfs (Ejg) ~ Gra(E)5

Proof We use the notation in the proof of Lemma 5.18. By the comparison of w, and w, g, we obtain F, 5 ~
Grq(E) 3. By the construction of the Stokes filtration, we have the natural isomorphism Grafs (Eg) ~ Eas.
Then, the claim of Lemma 5.21 is clear. |
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5.1.4 A comparison

Let Y be a complex manifold. Let X := A* x Y, D, ; := {zz =0} and D := UZ 1 D.i. Let K be a compact
region in C, . We set X := K x X. We use the symbol D in a similar meaning. We set W := DU ({0} x X).

Let T C M(X, D) be a good set of irregular values in the level (m,i(0)). We set m := (m, —1) € Z¥5!. We
put a:= z,;ila for a € Z, and we set

I:={d|aeZ}c M(X,W)/H(X).

Then, it is a good set of irregular values in the level (m,4(0)).
Let E be a holomorphic vector bundle on X with a meromorphic flat connection V : E — E®Q1 (*W) such

that (E,V) is an unramifiedly good lattice in the level (772, 7(0)) on (X, W) with the irregular decomposition:

(B.9) 5 = D(Es.a) (31

el

Applying a general theory in Subsection 5.1.3, we obtain a holomorphic vector bundle Gr%N"(E) on X with the
induced meromorphic flat connection Vg for each a € 7. B

By setting A = zp41, we obtain the isomorphism C, , ~ C. Let K C C) be the image of K. We put
X := K x X and we use the symbol D in a similar meaning. We set W := DU ({0} x X). We have the natural

isomorphism ¢ : (X, D) — (.52, 75) The pull back of E is denoted by E. Let Df denote the restriction of 1*V
to the X-direction. We set D := A - D/. Note the following:

e D(E) C E®p3iQ(xD), i.e., D gives a family of meromorphic A-connections of E.

e (E,D) is a good lattice in the level (m,i(0)) on (X, W), and (31) naturally induces the irregular decom-
position of (E, D)|W'
By applying a general theory explained in Subsection 5.1.2, for each a € Z, we obtain Gr7*(E, D).

Let S be a small sector in X — W. We have the Stokes filtration F° of EI§ in the level 72 indexed by (Z, <z)

(Proposition 5.20). For S := t~1(5), we have the Stokes filtration FS of E5 in the level m indexed by (Z, <g).
We remark the following.

Lemma 5.22 Under the natural identification 7= T, the orders <3 and <g are the same. Under the natural
isomorphism E ~ L*E, the filtrations F° and F° are the same.

Proof For the order <g, we use the identification X = {1} x X C Cy x X. Then, the first claim is clear. Note
that both ¢*F5 and FS satisfy the condition in Proposition 5.5. Hence, they are the same. |

Corollary 5.23 We have the natural isomorphism ¢* Gr?(ﬁ) ~ Gri*(E), and Dy is induced by t*Vg via the
above procedure.

Proof By Lemma 5.22, we obtain the isomorphism j : ¢ Gr~ (E )|X w =~ Grg*(E)x—w, on which Dy is
induced by V, via the above procedure. Since j is extended on X (W), it is extended on X. 1

5.1.5 Stokes filtration of the associated flat bundle on the real blow up

We use the setting in Subsection 5.1.3. Let Z C M (X, D) be a good set of irregular values in the level (m, (0)).
Let E be a holomorphic vector bundle on X with a meromorphic flat connection V : E — E @ Q% (xD) such
that (E, V) is a pseudo-good lattice in the level (m,i(0)). (In other words, we consider a family of meromorphic
A-flat bundles on {1} x (X, D).) Let 7 : X(D) — X be a real blow up of X along D. The flat bundle Ex_p

is naturally extended to the flat bundle U on X (D).
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We set 3:=71(0, xY). For each P € 3, we take a small sector S € MS(P, X — D,Z) on which we have
the Stokes filtration F< of E|s. The filtration is naturally extended to the flat filtration of U|g. By restricting it
to the fiber 2| p, we obtain the filtration FP indexed by (I, Sp). It is easy to observe that F¥ is well defined.

If Q € 7=1(3) is sufficiently close to P, the map (I, gp) — (I, SQ) preserves the orders, and the
filtrations F¥ and F© are compatible under the identification U\p ~ Y|g given by the parallel transport in
Sp. In particular, we have F¥' = FQ if <p=<,.

We have the functoriality of the filtrations F* for dual, tensor product and direct sum as in the case of F2.

Lemma 5.24 Let F : (E1,V1) — (E2,Va) be a flat morphism. For simplicity, we assume that Ty UZy is a
good set of irregular values in the level (m,i(0)). The induced morphism Fip : Ui p — By p preserves the
Stokes filtrations FF. |

Remark 5.25 We considered two vector bundles on X (D). One is 7~ *(E) and the other is 0. We should
emphasize that they are different in general. The bundle G depends only on the flat bundle (E,V)x_p, and
—1
71 (E) depends on the prolongment (E, V).
Let us see the simplest ezample E = O - e and V(e) = e - d(z71). A trivialization of 7= (E) is given by
7(e). A trivialization of U is induced by exp(—z~1) - e. |

5.2 Unramifiedly good lattices of a family of meromorphic \-flat bundles
5.2.1 Preliminary

Good set of irregular values We use the partial order <zn of Z" given by a <z» b <= a; < b;, (Vi). We
say a <g» b in the case a; < b; for any 7, and we say a <z» b in the case a <z~ b and a # b. Let d; denote
-1

——
the element (0,...,0,1,0,...,0), and let O denote the zero in Z"™. We also use 0,, when we distinguish the
dependence on n.

Let Y be a complex manifold. Let X := A* x Y. Let D; := {z; = 0} x Y and D := Ule D; be the

hypersurfaces of X. We also put D, = ﬂle D;, which is naturally identified with Y.
For any f € M(X, D), we have the Laurent expansion:

f= Z fm(y) A
meZt

Here f,, are holomorphic functions on D;. We often use the following identification implicitly:
M(X,D)/z" - H(X) ~{ f € M(X, D) ‘ fn =0, ¥m > n} (32)

For any f € M(X, D), let ord(f) denote the minimum of the set {m € Z* ’ fm # 0} U{0} with respect to
<ge, if it exists. It is always contained in Z%, if it exists.

For any a € M (X, D)/H(X), we take any lift @ to M (X, D), and we set ord(a) := ord(a), if the right hand
side exists. If ord(a) exists in Z¢ — {0}, Gord(a) 18 independent of the choice of a lift a, which is denoted by
Gord(a)-

Definition 5.26 A finite subset T C M (X, D)/H(X) is called a good set of irregular values on (X, D), if the
following conditions are satisfied:

e ord(a) exists for each a € I, and agrq(a) 15 nowhere vanishing on Dy for a # 0.

e For any two distinct a,b € Z, ord(a — b) ezists in Z-; — {0}, and (a — b)orq(a—p) is nowhere vanishing on
Dy. -

o The set T(I) := {ord(a —b)|a,b €I} is totally ordered with respect to the partial order on Z*. 1
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The condition in Definition 5.26 does not depend on the choice of a holomorphic coordinate such that D =

Uiy {z = 0}.

We will use the following lemma implicitly.
Lemma 5.27 The set {ord(a) ’ ac I} 1s totally ordered. In particular, the minimum
m(0) := min{ord(a) |a € I}
exists. Moreover, m(0) <z m for any m € T(I).

Proof Let a,b € Z. Assume ord(a) £ ord(b) and ord(a) 2 ord(b). Then, ord(a — b) does not exist, which
contradicts the second condition. Hence, we obtain the first claim of the lemma. For any m € 7(Z), there
exists a € Z such that a,, # 0. Hence, m(0) <z m.

Remark 5.28 [t is often convenient to use a coordinate such that T(Z) U {m(0)} C Hf:o Zio % 0p_;. |

Auxiliary sequence Let 7 be a good set of irregular values on (X, D). Since the set 7(Z) is totally ordered
with respect to the partial order <z, we can take a sequence

M= (m(0),m(1),m(2),...,m(L),m(L+1)) C ZZSO
with the following property:
e 7(Z) Cc M and m(L +1) = 0,.
e We have 1 < h(i) < £ such that m(i + 1) = m(i) + &y ;) for each i < L.
Such a sequence is called an auxiliary sequence for Z. It is not uniquely determined for Z. It is convenient for

an inductive argument.

Truncation Let Z be a good set of irregular values. We take an auxiliary sequence for Z, and let 7, :
7 — M(X,D)/H(X) be given as follows:

Then, the image is a good set of irregular values in the level (m(0),i(0)). More generally, 7,,;) is defined as
follows:

We have 7,,,(1)(a) = a. We set (m(0) (@) := Tpy(0) (@) a0d (ra(5) (@) i= Ty () (6) = T j—1)(@) for j = 1,..., L.
Then, we have the decomposition 7, ;) (a) = > ;<; Cm(j) (a).

Let Z(m(i)) denote the image of 7,,,(;y : Z — M (X, D)/H(X).
Lemma 5.29 If we shrink X appropriately, Z(m(0)) is a good set of irreqular values in the level (m(0), §(0)).

Proof If 7,,)(a — b) # 0 for a,b € Z, we have ord(a — b) = m(0) and (z’m(o)ﬁm(o)(a - b))‘De is nowhere

vanishing. Hence, (z*m(o)ﬁm(o) (a—b)) is nowhere vanishing on X after X is shrinked appropriately. Similarly,
we may have (z_m(o)ﬁm(o)(a)) is nowhere vanishing on X after X is shrinked appropriately. |

We can use the following lemma for inductive arguments.

Lemma 5.30 For any b € Z(m(0)), we fiz any element a(®) € ﬁ:nl(o)(b). Then, the set

{a—a© [T (a) = b}

is also a good set of irregular values. |
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Example We give some examples.
a® =27t 2t a®@ =27t a® =0,
An auxiliary sequence is unique in this case, and given as follows:
m(0) = (~1,-1), h(0) =2, m(1)=(~1,0), (1) =1, m(2)=(0,0) (33)
The truncations are given as follows:
ﬁm(o)(a(l)) =a, ﬁm(O)(a(Z)) =0, ﬁm(o)(a(3)) =0
(1)(a(1)) =a, ﬁmu)(am) — a(z), ﬁm(1)(a(3)) = a®

The image of Z via 7,,, () is {a( ) 0}
Let us consider the follovvlng set:

bW =2t gt ezt b2t P =2t
An auxiliary sequence is given by (33). The truncation is given as follows:

ﬁm(O)(b(l)) = Zl_l : 22_1 ta- 22_17 ﬁm(O)(b(Q)) =

We have the following picture in our mind for truncation.

m(4) Sm)| || Sm@ || [T e
m(l) | m(2) | m(3) T Smes)
m(0) InnEsmnm

L =14, m(0) = (~2,-3), m(1)

(=2,-2), m(2) = (-1,-2),
m(3) = (0,-2), m(4) ) =

(0.—1), m(5) = (0,0).

5.2.2 Unramifiedly good lattices of a family of meromorphic A-flat bundles

Let X be a complex manifold, and let D be a normal crossing divisor of X. Let IC be a point or a compact
region in C,. Let X and D denote K x X and K x D, respectively. For A € K, we set X* := {\} x X and
D* := {\} x D. Let (£,D) be a family of meromorphic A-flat bundles on (X D), i.e., £ is an Oy (xD)-coherent
sheaf with a holomorphic family of flat A-connections D : & — & ® Q) k- The restriction to (X}, D) is

denoted by (£*,D*).
Remark 5.31 If K is a point, “family” can be omitted. |

Let E be an Ox-locally free lattice of (£,D). Let P be any point of D. We can take a holomorphic
coordinate (U, A, z1,...,2,) around P such that Dy :=DNUY = Ule Dy, where Dy ; := {z; = 0}. We put
Du,r = (Vie;r Du,i and Dy(I) := |J;c; Du,i- For any subset I C £, we put I¢ := £ — I. The completion of X
along Dy 1 (resp. Dy(I)) is denoted by ﬁu,l (resp. ﬁM(I))

Definition 5.32 We say that E is unramifiedly good at P, if the following holds:
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o We are given a good set of irregular values S C MU, Dy)/H(U).

e For any 0 # I C £, we have the decomposition:

(E\D)5,, = P ("Ea,'Da) (34)
aeS(I)

Here S(I) denotes the image of S via the map M (U, Dy)/HU) — MU, Dy) /M (U, Dy (1°)).

o (Do—da)('Ea) is contained in ' By (% (108 Du (1)) + Q4 e (+Du (1)) ) where a is lifted to MU, Dy).
This condition is independent of the choice of a lift.

The property is independent of the choice of the coordinate (U, N, z1,. .., zn).
We say that (E,D) is unramifiedly good, if it is unramifiedly good at any point. |

See Subsection 5.7 of [19] for another but equivalent formulation, which seems easier to state.
The decomposition (34) is called the irregular decomposition of Elﬁu . The set S is uniquely determined if

£E, # 0 for each a € S. So, it is denoted by Irr(D, P). The restriction of E to {\} x X is denoted by E*.

If £ is an unramifiedly good lattice of (£,), we have the well defined endomorphism Res;(D) of Ep, for
each irreducible component D; of D. It is called the residue of D at D; with respect to the lattice E. If K #£ {0},
the eigenvalues of Res;(D) are constant on D2 for each A € K. (See Subsection 5.1.3 of [19], for example.)

Remark 5.33 We have the notion of good lattice which is locally a descent of an unramifiedly good lattice. See
[19]. See also Definition 5.42 below. 1

Irregular decompositions in the level m(j) In the following, let X := A" D; := {z; = 0} and D :=
Ule D;. We set D(< p) := U;<, Di- Let (E,D) be an unramifiedly good lattice of a family of meromorphic
A-flat bundles on (X, D) with the good set Irr(D) = Irr(ID, O). We assume that the coordinate is as in Remark
5.28 for Irr(D). Let Irr(D,p) and Irr’ (D, p) denote the image of Irr(D) by the natural maps

~— ~—

mp: M(X,D)/H(D) — M(X,D)/M(X,D(< p—1)), 7r;, : M(X,D)/H(D) — M(X,D)/M(X,D(# p)).

Note that the naturally induced map Irr(D, p) — Irt’(ID, p) is bijective, via which we identify them.

Take an auxiliary sequence m/(0),...,m(L) for the good set Irr(D). Let Irr(D, m(0)) denote the image of
Irr(D) via 7y, (). Let k(j) denote the number determined by m(j) € Zi(g) X 0y_p(j)- For p < k(j), we have the
map Irr(D, p) — M(X,D)/M(X,D(< p — 1)) induced by 7,,(;) which is denoted by 7,,,(;) .-

By using a lemma in Subsection 5.1.2 of [19] and the uniqueness of the decompositions, we obtain the
following decomposition on the completion ZS(S k(j)) along D(< k(5)):

EDpagy= @O EDe), whee BTV = P PE, (p<hG)  39)
belrr(D,m(5)) celrr(D,p)
Non(5),p (€)=Tp (b)

The decomposition (35) is called the irregular decomposition in the level m(j).

Remark 5.34 We do not have the irreqular decomposition in the level m(j) on D in general, which Sabbah
remarked in [20] for the surface case. 1

The associated graded bundles with the family of meromorphic flat \-connections Assume K # {0}.
We set W := XU D(< k(0)). It is easy to observe that (E,D) is an unramifiedly good lattice in the level
(m(0),4(0)) with the decomposition (35) for j = 0. The set of the irregular values in the level (m(0),4(0)) is
Trr(D, m(0)).

As stated in Subsection 5.1.2, we obtain the holomorphic bundle Grﬁ"(o) (F) with a family of meromorphic flat
A-connections DT on (V,VND) for each a € Irr(D, m(0)), where V denotes a neighbourhood of Ni<i<k(o) Di-
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Let GIT(O)(E, D) := (Gr’an(o) (E), ]D)T(O)). We obtain the following isomorphisms for any a € Irr(D, m(0)) from
(30):

G (B, D) 5 ~ (B, Do)

|
In particular, Gr™() (E, D) are unramifiedly good lattices whose set of irregular values is Irr(]D)T(O)) = ﬁ;nl(o) (a).
Let Irr(D, m(j)) denote the image of Nm(y) * (D) — M(X,D)/H(X) for any j. Let us consider the

case in which Irr(D, m(j — 1)) consists of a unique element. We take any element a®") € Trr(D). Let £(%a)
be a line bundle Oy - e with a family of meromorphic flat A-connections De = e - (+da()). Then, (E',D’) :=
(E,D) ® L(—a) is an unramifiedly good lattice with the good set

Irr(D') = {a — all) ‘ a€lrr(D)}.

The sequence m(j), m(j+1),...,m(L) gives an auxiliary sequence for Irr(D'). By applying the above procedure
to (E/,I') and shrinking X, we obtain Gr™)(E’, ') for each ¢ € Irr(D', m(j)). For any b € Irr(ID, m(5)), we
define

Gry(B,D) i= Gry™d) @ (B D) @ £(aD)

It is independent of the choice of al¥) up to canonical isomorphisms. (We may avoid tensor products.) It is

easy to observe that Grm(J (E,D) are also unramifiedly good lattices with the good sets of irregular values

Irr(Dm(])) = nm(J)(b). By construction, H(DT(j), m(j)) consists of the unique element b.

Let us consider the general case. Let 7,,(;_1) :Irr(D, m(5)) — Irr(D, m(j5 — 1)) be the induced map.

S m(j)
For any a € Irr(D, m(5)), we inductively define

Gr™) (B, D) := G G U (E,D)

Nm(j—1), m(;)(‘l)

For each a € Irr(D), we set Gr'(E, D) := Gr™)(E, D), which is called the full reduction. By construction,
Cr'"(E, D) ® £(—a) is logarithmic.
We have the functoriality as in Subsection 5.1.2.

Deformation Assume 0 ¢ K. We would like to regard (E,D) as a prolongment of (E,D)|x_p(<k(0))-
For a given holomorphic function T'(A) with Re(T(A)) > 0, we have the other prolongment (EM D) of
(E, D) x—p(<k(0)), Which is also an unramifiedly good lattice with the set of irregular values

Irr(E(T),]D)(T)) ={T-a ’ a € Irr(D)}.

We refer to Subsections 7.5, 7.8-7.9 of [19] for the construction. We mention some properties (Subsection 7.8
of [19]):

(D1): BT 1) ~ (ET) ™) i Re(T}) > 0 and Re(T} - Ty) > 0.

(D2): (ED.DD) 5 =~ @er(’ 0 Eq, 0Dq + (T — 1)da), where Iy := {1,...,k(0)}. In other brief words, the
deformation does not change the regular part.

We give some statements for functoriality. See Subsection 7.8.1 of [19] for more details. Let (E,,D,)
(p = 1,2) be unramifiedly good. We have the following natural isomorphisms:

(B0 E) D ~ED o, (BioB)®~EDeE™, (BV)" ~E™)Y

Here, we have assumed that (E7,D) @ (E2,D3) and (E1,D) ® (E2,Dy) are unramifiedly good. Moreover, let
F : (E1,D;) — (E2,D3) be a flat morphism. Assume 77 U Z; is a good set of irregular values in the level

(m,i(0)). Then, we have the naturally induced morphism (E§T), ]D)ST)) — (E;T), ]D)gT)).
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5.3 Smooth divisor case

Let X := A™ and D := {z; = 0}. Let £ C Cy. Let (E,D) be an unramifiedly good lattice of a family of
meromorphic A-bundles on (X, D) with a good set of irregular values Irr(D) = Irr(D, O). We have the formal

decomposition (E, ]D))‘ﬁ = @aehr(m)(ﬁa, ]IA)a), where Dy — da - idz are logarithmic. We set W := DU XY in the
case 0 € K, and W := D otherwise. We obtain the decomposition on w:

(D)= €D (Ea,Da) (36)
aclrr(D)

Full Stokes filtration In this case, it is also easy and convenient to consider full Stokes filtration. We explain
it in the following. Let 7 : X(W) — X denote the real blow up of X along W. We put 3 := 7~ 1(D).
For any multi-sector S in X — W, the order <g on Irr(D) is defined as follows:

e a <g b if and only if —Re(Aa(), 2)) <g —Re(A7'b()\, 2)) for any z € S such that || is sufficiently
small.

Let S denote the closure of S in X(W), and let Z denote SN a~!(W). The irregular decomposition (36) on W
induces the decomposition on Z:

(E7D)|Z: @ (Eaaﬁ)a)@ (37)

aclrr(D)

We put FZ := @b<su Eb|2’ and then we obtain the filtration FZ indexed by (Irr(]D)), SS). By using Proposition
5.5 and Lemma 5.8 successively (or by using more classical results), we obtain the following.

Proposition 5.35 For any point P € 3, there exists S € MS(P,X — W) such that the following holds:

o There exists the unique D-flat filtration FS of EI§ on S indexed by (Irr(]D)), Ss) such that ]-N"é =FZ.

e There exists a D-flat splitting of FS on'S.

We call FS the full Stokes filtration of (E,D).
For S’ C S, the filtrations FS' and F5 satisfy the compatibility condition as in Lemma 5.8. |

The following lemma is clear from the definition of full Stokes filtrations.

Lemma 5.36 Let 5,5 € MS(P,X —W). Assume (i) S' C S, (ii) Ejz has the full Stokes filtration F5 as
above. Then, the restriction of FS to S is the full Stokes filtration of E‘gl, |

We have functoriality of full Stokes filtrations as in the case of Stokes filtrations in the level (m,i(0)).

The associated graded bundle For any sectors S and each a € Irr(DD), we obtain the bundle Grﬁ““(E‘ s)
on S associated to the full Stokes filtration 5. By varying S and gluing Grﬂ““(E‘g), we obtain the bundle

Gra (Bpr)

of D, and V(W) denote the real blow up of V along WNV. As in Subsection 5.1.2, we can show that Grf“H(E‘ﬁ(W))

a
has the descent to V), i.e., there exists a locally free sheaf Gr™™!(E) on V with a family of meromorphic flat

A-connections Dy, such that

) on lj(W) with the induced family of flat A\-connections D, where V denotes some neighbourhood

~

7 (G (B), Dq) = (Gri(Ejp s D), (Grg"'(E), Dy) (Ea,Dq)

[Wny = Wny:
By construction, Dy — da is logarithmic for each a € Irr(D).
As in the case of Gr with respect to Stokes filtrations in the level (m,i(0)), we have the following isomor-
phisms:
Gr(EYY ~ GrMIY(E)Y,

a
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Gri'(Br@ Ey)~ @ Grit'(Ey) ® Gri(By),

a; €lrr(D;)
aj+az=a

Gr full(E ® Eg) Grflull( ) @ GI‘qu( )
Here, we have assumed that (E7,D1) ® (Es,Ds) and (F1,D1) ® (E2,D3) are unramifiedly good lattices.

Lemma 5.37 Let (E,,D,) (p = 1,2) be unramifiedly good lattices on (X, D). Assume Iy ULy is a good set of
irregular values. Let F : (E1,D1) — (Es,Dq) be a flat morphism. We have the naturally induced morphism
G (F) : G (By) — Gri"(By). 1

A characterization of sections of &Y' Let w, be a frame of Grfun(E). Let S be a small multi-sector,
and let E‘S = @ Eq. s be a D-flat splitting of the full Stokes filtration FS. By the natural isomorphism
E,s ~ Grfun(E)lg, we take a lift wq g of wy. Thus, we obtain the frame wg = (wms) of Eg. The following
proposition implies a characterization of sections of E by growth order with respect to the frames wg for small
multi-sectors S.

Proposition 5.38 Let v be a frame of E, and let Gg be determined by v = wg - Gg. Then, Gg and G§1 are
bounded on S. |

Deformation When |arg(7)| is sufficiently small, we have a more direct local construction of the deformation
(E,D)™). We explain it in the smooth divisor case.

We take a covering X — D = Ufil S by sectors S on which we have the full Stokes filtrations. Assume
that |arg(T)| is sufficiently small such that the following holds:

e a<gun b <= Ta<gu Tb for any a,b € Irr(D) and for any S@.

We take frames w, of Gr™(E). For each S = S, we take a D-flat splitting E|s = @ E, s of the full Stokes

filtration. Let wg = (wq,s) be as above. We put wEng =wgg - exp(( 1)- A7t ) and w(ST) = (ngS)) Let
f be a holomorphic section of E|xy_p. We have the corresponding decomposition f = > fa 5 on each S. We

CORNNCY)

have the expression fy 5 = f, S Wa g We put f, ¢ : (fé?J)

Lemma 5.39 f gives a section of ET) if and only if f((lTs)m is bounded for each S and wgq). (See Subsection
7.9.1 of [19].) |

Prolongation of a flat morphism Let (E,,D,) (p = 1,2) be unramifiedly good lattices on (X, D). Assume
Irr(Dy) UTrr(Dy) is a good set of irregular values. Let F': (E1,D1)x—p — (E2,D2)x_p be a flat morphism.

Lemma 5.40 If F preserves the full Stokes filtrations FS for each small sector S, F is extended to the mero-
morphic morphism F : Eq(xD) — E5(¥D).

Proof We have only to consider the case 0 ¢ K according to the Hartogs theorem. Then, the claim follows

from a result in Subsection 7.7.6 of [19]. As another argument, let w! g ) be frames of E, < as in Proposition 5.38.

i

We can directly show that F|g is of polynomial order with respect to the frames wg). |

Complement on a connection along the A-direction let X := A", D, := {z; = 0} and D := Ule D;.
Let K C C3 be a compact region. Let (E,D) be an unramifiedly good lattice of a family of meromorphic A-flat
bundles on (X, D) with a good set Irr(D). Assume that E is equipped with a meromorphic connection along
the A-direction Vy : E — E ® QL (xD), such that D/ + V, is flat.

Lemma 5.41 V, naturally induces a meromorphic connection of ET) along the A-direction.
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Proof It is easy to observe that we have only to consider the case in which D is smooth and |arg(T)| is
sufficiently small. Take N such that ANV, (0y\)E C E® Ox(+¥D). For S = SO let wg = (wq,s) be a
frame of EI§ as above. Let As = (Ag,q,a) be the matrix-valued holomorphic function on S determined by
ANV (0x)ws = ws-Ag. Let B, be the matrix-valued holomorphic function on & determined by D, (2101 )w, =
wy (216'1a + Ba). Because [Df, V)] = 0, we have the following relation in the case a # b:

A 2101 Aga6 + (2101(a = b)) - Agap + (As,0,6Be — BaAs,ap) =0

Hence, we have Ag qp = 0 unless a <g b, and we obtain the estimate

As a6 ~exp(/\*1(a - h)) = O(exp(C’|)fl| -log \zl_1|))

for some C' > 0 in the case a <g b.
Let AgT) be the matrix-valued holomorphic function on S determined by A V(@,\)wg) (T) A( ). We

have Aggyb = 0 unless a <g b. In the case a <g b, we have
Ag;b cexp(A™' T (a—b)) = Agap -exp(A" - (a—b)) = O(exp(C|/\_1| -log |zf1|))
Therefore, we obtain Ag 3 b O(exp(—e|zf1|)) for some € > 0. By a direct calculation, we obtain A(SQ’Q =

Asaa+ AN -0y (/\ L.a-1)- ), which is of polynomial order. Hence, the claim of the lemma follows from
Lemma 5.39. 1

5.4 Family of good filtered \-flat bundles

Pull back of filtered bundle via a ramified covering The notion of filtered bundle is introduced in [25]
(1 dimension), and studied in [18] (arbitrary dimension). Let X be a complex manifold, and let D be a simple
normal crossing hypersurface with the irreducible decomposition D = J;; D;. A filtered bundle on (X, D) is
defined to be a sequence of locally free sheaves E, = (aE | ac RI) such that (i) o & C pF for a < b and 4 F is
the intersection of p E for b > a, (ii) o E)x—p = v E|x—p, (iii) s EQ O(Q_1ni- D;) = a—nkE, where n = (n;) € VAR
(iv) it satisfies some compatibility condition at the intersection of the divisors. The compatibility condition
is given in Definition 4.37 of [18]. Although it is not difficult, it is slightly complicated to state. Later, Iyer
and Simpson [11] introduced the notion of locally abelian condition, which is equivalent to our compatibility
condition. Hertling and Sevenheck (Chapter 4 of [9]) showed that it is equivalent to another simple condition.
We refer to the above papers for more details.

Let us recall the pull back of a filtered bundle via a ramified coverlng See [11] for more sybtematlc treatment.
See also Subsection 2.9.1 of [19]. Let X := A?, D : UZ 1{zi =0}, X := A}, and D: UJ 1{w; = 0}. Let

Ve X — X be a ramified covering @e(wi,...,w,) = (wl,...7we,w4+1,...,wn). For b € R’, we put
S(b) :={(a,n) € R’ x ZZZO |e-a+mn <b}. For a given filtered bundle E, on (X, D), we set

bE = Z w " (p: (QE).

(a,n)eS(b)

Then, it is easy to show that E, is also a filtered bundle. Let Gal(X/X) denote the Galois group of the
ramified covering. We can reconstruct E, from E, with the natural Gal(X /X )-action, and hence E, is called
the descent of E,. Since the construction is independent of the choice of coordinates, it can be globalized.

Family of good filtered A-flat bundles We use the notation in Subsection 5.2. A family of filtered A-flat
bundles on (X, D) is defined to be a filtered bundle E, on (X, D) with a family of meromorphic flat A\-connections
Dof E=J.FE.

Definition 5.42 Let (E.,D) be a family of filtered A-flat bundles on (X, D).
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e We say that (E.,D) is unramifiedly good, if oE are unramifiedly good lattices for any ¢ € R’

o Let P € D. We say that (E.,D) is good at P, if there exist a ramified covering @ : (L~{, 514) — (U, Dy)
such that (E*, cp:ID)) on (U, Dy) is unramifiedly good. Here, U is a coordinate neighbourhood of P, . is

a ramified covering, and E, is induced by ¢ and E, as above.

o We say that (E.,D) is good, if it is good at any point P € D. |

Induced filtrations Let (E,,D) be good family of filtered A-flat bundles. Let *F denote the induced filtration
of cEp,. Weset Gr} (.E) :='F,/"F,. It can be shown that (i) we have the well defined residue endomorphism
Grl Res;(D) of * Gr¥ (cE) on D; for each i € £, (ii) it preserves the induced filtrations 7 F of * Gr¥ (cE) DD,
(See Subsection 6.1.3 of [19]. The residues are well defined as endomorphisms of . E|p, in the non-ramified case,
and as endomorphisms of * Gr’’ (cE) even in the ramified case.) In the following, Grl Res;(D) are often denoted
by Res;(D) for simplicity of the description.

Let I be a subset of £. We set Dy :=(),.;D;. For a € RI, we put

icl

IFa(cE"DI) = ﬂiFai (cE|D1)a IGrg‘(cE) — IFaI(cE‘DI) .
icl Zbga Fb (CE|DI)

We often consider the following sets:

Par(cE, 1) :={a € R'| Gl (.E) # 0}, Par(E..I):= | Par(cE,I)

ceR!

We have the induced endomorphisms Res;(D) (i € I) of ! Gr% (. F), which are mutually commutative.

KMS structure for fixed A Let us consider the case in which K is a point {\}. In this case, we prefer
the symbol D* to D. If A # 0, the eigenvalues of Res;(D*) are constant. Hence, we have the generalized eigen
decomposition ! GrZ (cE) =B, Gréif:a) (cE), where the eigenvalues of Gr” Res;(D*) on IGrgf‘a) (cE) are
the i-th components of a. We put

KMS(E, DM T) = {(a,@) | " Gr(;% (cE) #0}, KMS(E.,DMI):= | ) KMS(E, D)

(a,ax
ceRS

Sp(.E,DMI):={acC'|3a€ R, (a,a) e KMS(.E,DI)}, Sp(E.DI):= U Sp(cE, D, 1)
ceER®

Each element of KMS(E,,D*,I) is called a KMS-spectrum of (E,,D*) at Dj.
Even in the case A = 0, a similar definition makes sense if the eigenvalues of Res;(D*) are constant. It is
satisfied when we consider wild harmonic bundles.

KMS structure around )y Assume that K is a neighbourhood of Ay € C, and we regard that (E.,D)
is given around {\o} x X. In this case, we prefer the symbols ‘F(*) to ‘F. Let p(\) : R x C — R and
¢(A) : R x C — C be given as follows:

p(A (a,0)) =a+2Re(A-@), e(A(a,0)=a—a-A—a- N\
The induced map R x C — R x C' is denoted by £()).

Definition 5.43 We say that (E.,D) has the KMS-structure at Ao indezed by T(i) C R x C (i € S), if the
following holds:

o Par(E.,1) is the image of T(i) via the map p(Ao).
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e For each a € Par(E,,i), we put K(a,i) := {u € T(i) | p(Xo,u) = a}. Then, the restrictions of Res;(D) to

Z4Grr500) (cE) p» have the unique eigenvalue e(\, u) for any u € K(a,i). |

D>

Assume (E,,D) has the KMS-structure at Ag. We have the decomposition

iGf (B = @ G (oE). (38)

u€ek(a,i)

such that (i) it is preserved by Res; (D), (ii) the restriction of Res;(ID) —e(A, u) to ig{H) (cE) is nilpotent. More
generally, we have the decomposition on Dy

o)
G (E) = D 19 (eE), (39)
ue[[K(ai,i)
such that (i) it is preserved by Res;(D) (i € I), (ii) the restrictions of Res;(ID) — e(A,u;) (i € I) are nilpotent,
where u; denotes the i-th component of u. Note /G5 (cE) can be 0.
The following lemma is standard in our works. (See Subsection 6.2.5 of [19].)

Lemma 5.44 Let (E1.,D1) and (Eq.,D3) be good filtered A-flat bundles on (X, D) which have the KMS-
structures at Ag. An isomorphism ¢ : (E1,D;) ~ (E2,Ds) of families of meromorphic A-flat bundles induces
the isomorphism ¢ : (E1.,D1) ~ (E2.,D3) of families of filtered A-flat bundles. |

We say that (E,D) has the KMS-structure at A, if there exists a good filtered A-flat bundle (E., D) which has
the KMS-structure at Ag, such that E = J4F. It makes sense by the above lemma.

Pick ¢ € R® such that ¢; & Par (E*, z) for each i € S. Assume that K is a sufficiently small neighbourhood
of \g. Take \; € K, and let U(A\1) C K be a neighbourhood of A;. We set X1 = U(M1) x X. We use the
symbols Dy‘l) and D) in similar meanings. Let T;,q denote the projection i iro) (CE|D1) — iGrf(AO) (cE)
for any a € Par(cFE,1). Let b €]c; — 1,¢;]. I p(A1,v) = b for some v € K(a,i), we put on Dl(/\l)

FY = P om0 CE).
u€ek(a,i)
p()‘l’u)gb
Otherwise, let by = max{p(/\l,v) < b‘v € lC(a,i)}, and we set in()‘l) = in(:‘l). Thus, we obtain the
filtration *F*1) of o E,_(x,). It induces the family of the filtered A-flat bundles (EAY D) on (x*), D). By

|
construction, Res;(ID) — e(A, u) are nilpotent on iGrf((;l,)u) (cE). Namely, (EX), D) has the KMS-structure at

A1 indexed by T'(i). Hence, if (E, D) has the KMS-structure at Ao, it has the KMS-structure at any A sufficiently
close to Ag, and the index set is independent of A. For each A\ € IC, we put Ei = (ES{\))\XM which is the good
filtered A-flat bundle. The set KXMS(E?2, ) is the image of T'(i) via the map £(\). Note CMS(E?, i) = T(i) if
0 € K. We often identify them.

Deformation Let T'(A) be a holomorphic function with Re(7'(A)) > 0. We obtain the deformation (ED) . D).
If (E.,D) is unramified, the set of irregular values is given by

Irr(D, EM)) := {T - a|a € Irr(D)}.

Since the regular part of the completion is unchanged, the set of KMS-spectra is unchanged.

6 Wild harmonic bundle

6.1 Definition of wild harmonic bundle

Local condition for Higgs fields Let (E,Jg, ) be a Higgs bundle on X — D, where X is a complex manifold,
and D is a normal crossing divisor of X. We would like to explain some conditions for the Higgs field 6. First,
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let us consider the case X = A" = {z = (21,...,2,) | |2i| <1}, D; = {2 =0} and D = Ule D;. We have the

expression:
¢

QZZF]%+ zn: Gj'de
j=1 !

j=0+1
We have the characteristic polynomials det(T — F}(2)) = Y A;j x(2) - T* and det(T — G;(2)) = X B;x(2) - T*.
The coefficients A;j and B; ) are holomorphic on X — D.

e We say that 6 is tame, if the following conditions are satisfied:

(T1): A; i and Bj are holomorphic on X for any k.

(T2): The restriction of A;j to D; are constant for any j =1,...,¢ and any k. In other words, roots of
3> Aj k() - T* are independent of z € D;.

e We say that 6 is unramifiedly good, if there exists a good set of irregular values Irr(6) C M (X, D)/H(X)
and a decomposition (E,0) = @acpye(p)(Easba), such that 6q — da - mq are tame, where mq denotes the
projection onto E; with respect to the decomposition.

e We say that 0 is good, if 7 (#) is unramifiedly good for some e € Z~ ¢, where @, is the covering given by
|

Ve(21,y - 2n) = (27, o, 20, 2041, - -5 Zn)-

Global condition for Higgs fields Let us consider the case in which X is a general complex manifold. Let
D be a normal crossing hypersurface of X, and let (F, ) be a Higgs bundle on X — D.

e We say that 6 is (unramifiedly) good at P € D, if it is (unramifiedly) good on some holomorphic coordinate
neighbourhood of P.

e We say that 6 is (unramifiedly) good, if it is (unramifiedly) good at any point P € D. |

Let Z be a closed analytic subset of X, and let (E,6) be a Higgs bundle on X — Z. The Higgs field 6 is
called wild, if there exists a regular birational map ¢ : X’ — X such that (i) ¢~1(D) is normal crossing, (ii)
—1 .
@~ 0 is good.

Remark 6.1 FEven if Z is a normal crossing divisor, wild 0 is not necessarily good. |

Conditions for harmonic bundles Let X be a complex manifold. Let D be a normal crossing hypersurface
of X, and let (F,0g, 6, h) be a harmonic bundle on X — D.

e It is called tame, if 6 is tame.
e It is called (unramifiedly) good wild harmonic bundle, if  is (unramifiedly) good. 1
Let Z be a closed analytic subset of X. A harmonic bundle (F,dg,0,h) on X — Z is called wild, if € is wild.

Remark We give some remarks on the condition (T2) for tameness.
1. If  comes from a harmonic bundle (E,dg, 0, h), (T2) is implied by (T1). (See Lemma 8.2 of [18].)

2. Let (E,0g,0,h) be a harmonic bundle with a good set of irregular values Irr(f) and a decomposition
(E,0g,0) = @aarr(e)(Ea,éEu,Ha) such that 0, := 64 — da - m, satisfy the condition (T1). The author

does not know whether (T2) for 6, is automatically satisfied or not. But, if moreover (E, dg, 0, h) underlies
a variation of polarized pure integrable structures, (T2) is satisfied. Actually, the roots of the polynomials
are 0. (See Lemma 7.10 below.)
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6.2 Simpson’s main estimate

The first fundamental result is an estimate of Higgs field, so called Simpson’s main estimate. For later use, we
recall it in the case that D is smooth. Let X := A™ and D := {z; = 0}. Let (F,0g,0,h) be an unramifiedly
good wild harmonic bundle on X — D. (See Subsections 11.2 and 11.3 of [19] for more details.) We will be
interested in the behaviour around O. Hence, by shrinking X, we assume that there exists a holomorphic
decomposition (F,0) = @(a,a)elrr(e)xc(Ea,aa 0a,) satisfying the following conditions:

e For cach (a, ), let w4 o denote the projection onto Ey o with respect to the decomposition. We have the
expression

0 (Oé le/Zl+dCl) Waa:Fl’ﬁ“FZGj’de

Then, the coefficients of det(T'— Fy) and det(7T'—G}) are holomorphic on X, and det(T—Fy)|p = T*#nk Fao

We also set E, := P
E= @uelrr(@) E,.

acc Faa, and let m, denote the projection onto E, with respect to the decomposition

Truncation For any a € Irr(6), we have the expression a =3, a;- 2], We put n,(a) := .. a; - 2] and

J<p
Irr(6,p) := {np(a) |a € Irr(#) }. For each b € Irr(6,p), let Ef(,p) denote the direct sum of E, (a € Irr(0),n,(a) =
b), and let ng) denote the projection onto Eép) with respect to the decomposition £ = ®belrr(0 ) Eép). We

have Irr(0, —1) = Irr(f) and E, = Et(l_l). We have the induced maps 7, : Irr(6, p) — Irr(6, g) for ¢ < p.

Asymptotic orthogonality We take total orders <’ on Irr(6,p) (p < —1) which are preserved by 7, ,. For

each b € Irr(, p), we set Fép)(E) = Dacrp EP). Let E(p)/ be the orthogonal complement of F’ p)(E) in Fép)(E).

(

We obtain an orthogonal decomposition F = €p a€lrr(6,p) B V. Let ngp )" denote the orthogonal projection onto
B

We take a total order <" on C. Then, we obtain the lexicographic order on Irr(f#) x C. We obtain the
orthogonal decomposition E = € Eéw by the procedure as above, and let 7, ., denote the orthogonal projection
onto E!

Proposition 6.2 We have the following estimates with respect to h.
o P — wg”)’ = O(exp(—e|zf|)) for some € > 0. In particular, the decomposition E = @Eép) 18
O(exp(fe|zf|))—asymptotically orthogonal in the sense that there exists A > 0 such that
‘h(u,v)‘ < A-ulp - vlp - exp(—e\zl(Q)V’)
forany Q € X — D, u € Eq g and v € Eyg (a # b).

® Moo — Mo = O(21]) for some e > 0. In particular, the decomposition E = @ Eq.q is O(|z1]%)-
asymptotically orthogonal.

Estimate of Higgs field We set 0:=0— D, (du + a-dz /zl)wa «- Let gp denote the Poincaré metric of
X — D. The estimates in Subsection 11.2 of [19] 1mphes the following.

Proposition 6.3 0 is bounded with respect to h and gp. |

Estimate of curvatures As mentioned in Subsection 2.1.7, we obtain a holomorphic vector bundle EX =
(E,0g+A0") on X—D. The curvature of the unitary connection associated to (£*, h) equals to —(14|A[?)-[6, 6T].

Proposition 6.4 [0,01] is bounded with respect to h and gp. In particular, (E*,h) is acceptable, i.e., the
curvature of (EX,h) is bounded with respect to h and gy. |
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6.3 Prolongation of unramifiedly good wild harmonic bundles
6.3.1 Prolongment P&

Let (E,0g,0,h) be a good wild harmonic bundle on X — D, where X is a complex manifold and D is a normal
crossing divisor. As mentioned in Subsection 2.1.7, we obtain a holomorphic vector bundle £* = (E,dg + A07)
on X — D for each complex number A. It is important to prolong it to a good filtered A-flat bundle on (X, D).
For simplicity, we explain it assuming the following. (The general case can be easily reduced to this case.)

o X =A"and D =J;_,{z =0}.
e (E,0p,0,h) is unramifiedly good wild, and the underlying Higgs bundle has the following decomposition
(E,@) = @ (Ea,avga,a)a (40)

aclrr(0)
acC*

such that (i) gu =0, — (da + Z§:1 aj - dzj/zj) Mo, are tame, where 7y o, denote the projections onto
Ea«, (il) det(T — Fj)|p, = T""k Fe.e for the expression 0, = Zﬁzl Fj-dzj/zj+ 3041 G- dzj.

For any open subset U C X and a € R, we set
‘
PoENU) = {f e ENUN\D)||f]n = o(]‘[ |zi|*ai*f) Ve > o}
i=1

Thus, we obtain an increasing sequence of Ox-modules P,E* := (77,15A | a < Re). We obtain an Ox (xD)-
module PEA =, Pal.

Proposition 6.5

o (Subsection 11.4 of [19]) (P.EX, D) is an unramifiedly good filtered \-flat bundle. The set of irregular
values is given by
Irr(DY, PEN) = {(1+|A]?) - a|a € Irr(0) }.

o (Subsection 12.2 of [19]) €()\) induces the bijection KMS(E°,i) — KMS(E, i) for eachi. We also have
dim? Grl% (PE) = dim Gryy (, o) (PEY). |

Take an auxiliary sequence for Irr(f). Let Irr(6, m(0)) denote the image of Irr(8) via 7,,(g)- If A # 0, for
each small sector S in {\} x (X — D), we have the Stokes filtration < in the level m(0), indexed by the ordered
set {(1+ [A]?)- u‘ a € Irr(9,m(0))} with <g. We have the following characterization of the filtration by the
growth order of the norms of flat sections with respect to h. (See Subsection 11.4.1 of [19] for more details.)

Proposition 6.6 Assume A # 0. Let f be a flat section of gl)é' We have f € .7’-"(51“)\‘2)b for b € Irr(6, m(0)), if
and only if

7-exp((7 4 %) b)| = 0(exp(@- 20 [T 11 7)

k(1)<j<t

holds for some C' > 0 and N > 0, where k(1) is determined by m(1) € Zi(ol) X 0p_p(1)- |

6.3.2 Prolongment 7390)5

It is important to consider families for A. In the tame case, the family |J, PEN gives a regular family of
meromorphic A-flat bundles. More precisely, if we consider the sheaf of holomorphic sections of £ of polynomial
growth, then (i) it is a locally free Oy (*D)-module, (ii) the specialization at each {\} x X is naturally isomorphic
to PEX. (We need some more consideration to take nice lattices.)
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However, it does not in the non-tame case, as suggested by the fact that the sets
Irr(PEX, DY) = {(1 + |A])a |a€Ir(6)}

depend on X in a non-holomorphic way. We consider an auxiliary family of meromorphic A-flat bundles P(*0) €.
We explain it under the above setting.

Let mq o denote the projection onto Ey o in (40). We set
g(A) = Hexp()\ S(a+ Zaj -log |zj|2)) “TMaa
a,

Let U()g) denote a small neighbourhood of \g € C. We set X(*0) := U()\g) x X, and Do) := U(\g) x D. We
also set X* := {\} x X and D* := {\} x D. Let py be the projection of X(*0) — D) onto X — D. We consider
the hermitian metric

PRI = g(A = Xo)"h
of p/(lE on X(o) — DRo) Let a € RY. For any open subset V of X)), we define

POOEW) = {f € £(V*)

|f‘73(xo)h = O(ﬁ |Zj|7a-77€), Ve > O}
j=1

where V* :=V'\ Do) Thus, we obtain an increasing sequence Pi’\o)é’ = (77190)5 ’ ac Re) of O yng)-modules.
We put PRog = UaERZ 7390)8. The restrictions to X* are denoted by ’P,E)‘O)é')‘ and PR gX,

Proposition 6.7

o (Subsections 13.1 and 13.2 of [19]) ( LAO)S,D) is an unramifiedly good family of filtered A-flat bundles.
The set of irreqular values is given by

Ir(PPOE, D) = {(1+ M) -a|a € Irr(h) }.
o (Subsection 13.2.1 of [19]) Recall that we have the deformation mentioned in Subsections 5.2.2 and 5.4,
for which (PGOIEXN D) is isomorphic to (PEX,DM)TXN with T(A) = (14 [A?)~1 - (1 4+ Mo).
e (Subsection 13.2.3 of [19]) Let U(\) C U(Xg) be small, and we set X*) := U(\;) x X. Then, (PAIE, D)

on XM s isomorphic to the deformation (73(’\0)57]]))'(?(8‘?;)‘1)) with T(Ao, A1) = (1+ M) L1+ AN). 1

We should remark that P(*0), # h even in the tame case, and hence POE are different from € in [18] in the
tame case. We can avoid to use 7390)8 by considering KMS structure in the tame case.

By the property (D2) of the deformation (Subsection 5.2.2) and the correspondence between KXMS(PE?, i)
and KMS(PEY, i), we can show the following.

Lemma 6.8 It has the KMS-structure at \g with the index sets KMS(PEY i) (i =1,....,0). |

6.3.3 Prolongment Q*'¢ and O€

Applying the deformation procedure to ( (o) g ,D) with T = (14 A)\g) ™!, we obtain a family of good filtered
M-flat bundles ( iAO)E,D) on (X(/\D),D(*O)), Then, Q,(f‘“)é' is an unramifiedly good lattice of Q)& with the
good set of irregular values Irr(Q*0)E, D) = Irr(6), i.e.,

(Q,&)\O)gaﬂ))‘ﬁ = @ (Qg)\())é\a)]ﬁ)ﬂ)a

aclrr(9)

such that ]]3)5l — da - id has logarithmic singularity for each a. By using the property (D1) of the deformation
explained in Subsection 5.2.2, we obtain the following. (See Subsection 15.1.1 of [19] for more details.)
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Lemma 6.9 (QX)& D) yx is naturally isomorphic to (PEA,DA)TI()\) with Ty(A) = (1 + [A|2)~! > 0. 1

By the property (D1) of the deformation, we have Q(AO)E‘XW) = QM) €. Hence, we obtain the global family
of meromorphic A-flat bundles (QE,D) on C) x (X, D). By using the property (D2) of the deformation and
Lemma 6.8, we can show the following.

Lemma 6.10 For each Ao, (QE,D) has the KM S-structure at Ay indexed by ICMS(PE'OJ) (i=1,....,0). 1

Let S be a small sector in {\} x (X — D). By Lemma 6.9, the Stokes filtrations of Q€* and PE? in the level
m(0) are related as follows:

Fo (Q€s) = Fliinma(PEY), o€ Tr(0,m(0))

Hence, we have the characterization of the Stokes filtrations of Q in the level m(0), by growth order of the
norms of flat sections with respect to h. (See Subsection 15.1.1 of [19] for more details.)

Proposition 6.11 Let f be a flat section of El’g. We have f € fg(QSl):g) for b € Trr(6, m(0)), if and only if
-1, 7 -N
7esp(( 40 0)| = Ofexp(@- ) T 11Y)
k(l)<j<¢
holds for some C' >0 and N > 0, where k(1) is determined by m(1) € ZZ(OU X 0p_k(1)- |

By taking Gr with respect to the Stokes filtration F* in the level m(0) explained in Subsection 5.2.2, we
obtain an unramifiedly good lattice (GrT(O)(QE), Dq).

In the case that D is smooth, we have the following characterization of the full Stokes filtration FS (Sub-
section 15.1.1 of [19]).

Proposition 6.12 Let f be a flat section of El’g. We have f € .7?59(@6"):@) for b € Trr(0), if and only if
[ exp((A7 42 8)| =01 ™)

holds for some N > 0. |

Remark 6.13 We have a characterization of full Stokes filtrations or more general Stokes filtrations in the
level m(i), even in the general normal crossing case. |

6.4 Reduction from wild to tame

Let X, D and (E, g, 0, h) be as in Subsection 6.3. By making the same procedure to (E,dg, 0, h) on XT — DT,
we obtain the family of meromorphic u-flat bundles (QST,DT) on C, x (XT,DT).

Lemma 6.14 The correspondence (a, ) «— (—a, @) induces a bijection KMS(PEC,i) ~ KMS(PETC,i). We
also have the bijection Irr(6) ~ Irr(01) given by a «—— a.

Proof The claim for Irr(f) and Irr(67) is clear. See Corollary 11.12 of [18] for the correspondence between
KMS(PEL i) and KMS(PETL,4). 1
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One step reduction I Since both the Stokes filtrations of (Q€ ’\7}])’\) and (QS te ID)T“) are characterized by
growth order of the norms of flat sections with respect to h, we have the induced isomorphisms of the associated
graded family of flat bundles for a € Irr(6, m(0)):

0 f -~ m(0) i f
(Gf;n( )Q‘e?Da)\C;x(X—D) ~ (Grz" " Q€T Dy )\c;x(X—D)

Hence, they give a variation of P'-holomorphic vector bundles denoted by Gr™®(£4 D2) on P! x (X — D).
We can show that the pairing S : (£,D) ® 0*(£4,D?) — Ox_p is extended to
Q€ ® 0" QET — Oc,xx (+(Cx x D)).
(See Subsection 15.1.3 of [19].) By functoriality of Gr with respect to Stokes structures, we obtain
G0 (g, D) © o+ Gr ¥ (Q€T, D) — Oc, xx (+(C» x D)).

Similarly, we obtain Gr%n(o)(QET,ID)T) ® o* Gr™0(Qg, D) — Oc, xxt (*(Cy x DT)). They give a morphism
of variations of P!-holomorphic vector bundles:
GrmO(8) : GO (4, D) @ o Gr™ O (€4, D4) — T(0)
One of the main result in the study of wild harmonic bundles is the following. (See Subsection 15.2 of [19]
for more details.)
Proposition 6.15 If we shrink X appropriately, the following holds:

° Grgn(o) (€A,]D)A,S) is a variation of pure polarized twistor structures.

o Let (Eq,0q4,hq,04) denote the underlying harmonic bundle for a € Irr(,m(0)). By construction, the
Higgs bundle (Eq,04) is naturally isomorphic to

D DlEabia)

belrr(f) o
Nm (o) (B)=a
(Recall the decomposition (40)). In particular, the harmonic bundle is unramifiedly good wild. The set of
irreqular values is ﬁ;l(o)(a),
o Let (Q€4,Dy) be the family of meromorphic A-flat bundles on Cy x (X, D) associated to (Eqy, O, ha,0a)-
Then, we have the natural isomorphism (Q&,,Dy) ~ Gr;"(o)(QS,]D)),

o Similarly, let (QEI, ID%) denote the associated family of meromorphic p-flat bundles on C,, x (X, D). Then,

a

we have the natural isomorphism (Qé’g, ]Dg) ~ Gr?(o) (QST,]DT). |

One step reduction IT Let Irr(f, m(j)) denote the image of Irr(9) via Tm(j)- For each a € Trr(0, m(j)), we
obtain a variation of P!-holomorphic bundles with a pairing Grgn(j ) (E 4 DA, 8), which is naturally isomorphic
to Grgn(j ) Gr%n (i ill))(u)(é'ﬁ, D*,S). We explain how to apply Proposition 6.15 in this situation.

Let us consider the case in which Irr(, m(j — 1)) consists one element. We take any a € Irr(0). Let L(—a)
be the variation of polarized pure twistor structures as in Subsection 2.2.1. The underlying harmonic bundle is
also denoted by L(—a). We set (E',0p/,0', ') := (E,dg,0,h) ® L(—a). Note Irr(¢') := {a’ —a|a’ € Irr(0) },
and hence m(j),m(j + 1),...,m(L) give an auxiliary sequence for Irr(#"). We have the natural isomorphisms
of the associated variation of polarized pure twistor structures:

(E2,D2,8) ~ (£, D'4,8") @ L(a)
For each b € Irr(0, m(j)), we have the natural isomorphism:

Gry' D2, DA,8) = Gt (€ DA, S) @ L(a)

Hence, by shrinking X appropriately, we obtain that Grzn(j )(SA,]D)A,S) is also a variation of pure twistor
structures, due to Proposition 6.15.
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Full reduction Let us consider the general case. By using the above result inductively, we obtain that
Gr;"(J ) (8 A DA, S) are variations of polarized pure twistor structures for any a € Irr(6, m(j)). The underlying

Higgs field is
P PBEoa ba)

belrr(0) a
Nm () (B)=a

For any a € Irr(f), we set Grfille D2, 8) = Gr™B) (£, DA, S), which are called the full reductions. Let

(Eq, 0q, ha) be the underlying harmonic bundles. Then, (Eq, 94, he) ® L(—a) are tame. This procedure is the
reduction from wild harmonic bundles to tame harmonic bundles.

6.5 Reduction from tame to twistor nilpotent orbit

Let X := A", D, = {2, =0} and D := Ule D;. Let (E,0g,0,h) be a tame harmonic bundle on X — D. The
family of A-flat bundles (£,D) is prolonged to a family of meromorphic A-flat bundle (Qé' ,]D)), which has the
KMS-structure at Ag indexed by KMS(PEY,i) (i =1,...,£) for each \g € Cy. For later use, we recall how to
obtain the limiting mixed twistor structure. For simplicity, we assume KMS (50, z) C R x {0}. See Section 11
of [18] for the general case. See also an account due to Hertling and Sevenheck in [9] for this case.

In a neighbourhood U(Ag) of Ao, we set

A A
g((a?o)>(E) = ﬁg((a?o))(Q(AO)S)IU(/\o)x{O}

for a € Par(PE® (). (See (39) for the right hand side. In this simpler case, we have only to take Gr with
respect to parabolic filtrations.) By varying Ao € Cx and gluing them, we obtain the vector bundle G4 0)(E)
on Cy. It is endowed with the nilpotent maps N; (¢ = 1,...,£), which are the nilpotent part of the residues
Res;(D). By applying the same procedure to (E,dg, 0%, h) on XT — DT, we obtain the vector bundle g(ﬂa)o) (E)
on C,, with nilpotent endomorphisms J\/j induced by residues Res;(D'). We would like to glue G(a,0)(E) and
g([a,O)(E)? to obtain a vector bundle S7% (E) on P

We have the D-flat decomposition Qog\C;xX = @aepw(%‘go’@ G(a,0)€ with the following property:

e Let M; be the family of the monodromy endomorphisms along the path (21, -, 2 V=10, zn) (0 <
6 < 1) with respect to D/. Then, the restriction of M; to G(q,0)€ has the unique eigenvalue exp (2rv/—1a;).

® G0 cix0 = Gla0)(E).

For A\ # 0, let H(E) be the space of multivalued flat sections of (€*,D*). We have the holomorphic vector
bundle H(E) on C} whose fiber over X is H(E*). We have the decomposition

HE) = @B GaoHE)

acPar(Po&0,L)

such that (i) it is preserved by the monodromy M;, (ii) the restriction of M; to G(a,0)H(£) has the unique
eigenvalue exp(2mv/—1a;).

Let U C C3, and let s be a section of G(q,0)H(E) on U. We regard s as a multi-valued flat section of G4 0)€.
It is expressed as a finite sum:

¢
5= Z fm - Hexp(ai log z;) - (log z;)™
i=1
Here, fy, are holomorphic sections of G4 0)Ejuxx. We set @?Z?O)(s) = fojuxo, and thus we obtain an isomor-
phism
P(a0) * 9.0 H(E) — G@.0)€ic5x0 = G(a,0)(E)-
Let 8 = (1,...,1) € R*. We have the Df-flat decomposition Q<55|TC* «x = Dacpar(poco.p G(—a,0&" with
% £

the following property:
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e The restriction of M[l to g(_mo)gf has the unique eigenvalue exp(—27n/ —lai). (Because the base space
is the complex conjugate X — DT, the direction of the loop is reversed.)

* g(—ayo)g\Tc;xo = gﬁa,m (E).

Similarly, let HT(E) be the holomorphic vector bundle on C; whose fiber over p is the space of the multi-
valued flat sections of (£1# Dt#). We have the decomposition

HE) = D GagHi(B)

acPar(PoEY,L)

such that the restriction of M[l to Q(_QVO)HT (E) has the unique eigenvalue exp(—?m/—lai). For a section s
of Q(_avo)'HT (E)|u, we have an expression

¢
s = ijn . Hexp(—ai logfi) . (logfi)mi,
i=1

where f] are sections of QSITUX - We set @?Zno];(s) = fg‘ x> and thus we obtain an isomorphism

can f T _of
(I)(a,O) : g(—a,O)HT(E) - g(—a,0)5|c;xo = g(fa,O)(E)'

By construction, we have the natural isomorphism G 0H(E) ~ g(_&o)HT(E) under the identification of

C3 = C;, via = A~'. Thus, we obtain the vector bundle Staroy(E) by gluing Gq,0)(E) and Q(T_a 0)(E). Under

the gluing, we have the relation

AN = —u_l./\f;.

Thus, A; - " and No - 15" give the morphism N : S¢2% (B) — S (E) @ T(—1). The tuple of them is
denoted by N A,

The morphism Sy : € ® 0*ET — Ox_p is extended to Qo€ ® O'*Q<55T — Oyx. Similarly, we have
Q5T ® 0" QpE — Oy+. They induce

Ga,0)(B) ©0*G_, 0 (E) — Oc,,

gg—a,o) (E) ® U*g(aﬁo) (E) — ch

Q(fa,o)HT(E) ® 0" Ga,0H(E) — Ocy

They are preserved by the above isomorphisms. Hence, we obtain S(a,0) : S (E)® O'*S(ano)(E) — T(0).
Theorem 12.22 of [18] implies the following.

Proposition 6.16 (ng“o) (E), N®,8) is a polarized mized twistor structure of weight 0 in (-variables. 1

By Theorem 4.1, a polarized mixed twistor structure induces a nilpotent orbit. This is the reduction from tame
harmonic bundles to nilpotent orbits.

Remark 6.17 Although the notation is changed, the construction explained in this subsection is the same as
that in [18]. In the tame case, QE is equal to the sheaf of holomorphic sections whose norms with respect to h
are of polynomial growth order. We also remark the uniqueness in Lemma 5.44. |
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Family version The construction can be done in family on D, := ﬂle D;. As in the construction of
G(a,0)(E), we obtain the vector bundle ﬁg(,l,o)(gé’) on D; := Cy x Dy, as the gluing of ﬁgééf’g)(g%)g). They
are equipped with the nilpotent maps N; (i = 1,...,¢). By applying the nearby cycle functors for R-modules

along z; (i =1,...,£), or by a direct consideration as in Subsection 8.8.3 of [18], we obtain the induced family
of flat A-connections Dg o of ﬁg(mo)(gg ) for which A; are flat. Similarly, we obtain a family of u-flat bundles

(gg(_a,o)(QfT),DJ(ria’O)) on C, x DE with flat nilpotent maps /\/;[.

Let ¢ : X — D — D, be the projection. We naturally obtain a holomorphic vector bundle ﬁ(E) on
C3 x Dy, whose fiber over (A, P) is the space of multi-valued flat sections of (£*,D*),~1(py. It has the

generalized cigen decomposition H(E) = ﬁg(a’o)ﬁ(E) with respect to the monodromy endomorphisms around
D;. (i=1,...,¢). It is naturally equipped with the family of flat connections D£,0~
By using the family of flat bundles (g(a,O)E , Df ), we obtain the flat isomorphisms

6 LGa,0)H(E) — “G(a,0)(QE) 0 x D,

Similarly, we obtain the flat isomorphisms ®{3%), ﬁg(ayo)’}?[(E) — ﬁg(,a’o)(ggf)‘czwz. As the gluing, we

obtain a variation of P'-holomorphic vector bundles (ﬁc‘)ﬁ 0

Dﬁo) with a tuple NV A of flat nilpotent morphisms
NP LDy — L0, @ T(-1), (i=1,...,0)
We also have the induced flat symmetric pairing S : ﬁé’ﬁo ® a*ﬁgﬁo — T(0). By Proposition 6.16,

(o

N2.D5 o, San)

a,0’

is a variation of polarized mixed twistor structures of weight 0 in ¢-variables. (See Subsection 2.4.1.)

7 Prolongation and reductions in the integrable case

7.1 Preliminary Estimate
7.1.1 Statements

Let X := A" and D := {z; = 0}. Let (E,0g,0,h) be an unramifiedly good wild harmonic bundle on X — D.
For simplicity, we assume that there exists a holomorphic decomposition

(E79): @ (Eavea) (41)

a€lrr(6)

such that 0, — da - T, are tame, where 7, denotes the projection onto E, with respect to the decomposition
(41).

Remark 7.1 Since (E,0g,0,h) is assumed to be unramifiedly good, such a decomposition exists on a neigh-
bourhood of each point of D. Because we are interested in the behaviour around O, we may assume such a
decomposition exists globally by replacing X with a small neighbourhood of O. |

Let U be a holomorphic section of End(E) on X — D such that [#,U] = 0. Let Q be a C*-section of End(E)
on X — D such that @ = Qf. We assume the following equations:

OpU —[0,Q]+6 =0 (42)
OpQ+[0,U"] =0 (43)

We set U := U + Zaelrr(@) a-me. We will prove the following proposition in Subsections 7.1.2-7.1.6.

Proposition 7.2 U = O(1) and Q = O((— log |Z1DM) for some M > 0 with respect to h.
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Remark 7.3 Eventually, we obtain that Q is bounded. (See Corollary 7.16 and Corollary 7.22.) See Corollary
7.8 for the boundedness of U in the case that D is normal crossing. |

We set gir(A) = exp (@ a - 7Ta). Let \p € C, and let U()\g) be a small neighbourhood of \g in C. Let p)
be the projection of U(\g) X (X — D) onto X — D. We consider the hermitian metric

PROR = g (A — Xo) R (44)

rr

of p/(lE on U(N\g) x (X — D). We regard U and Q as C'*°-sections of End(pglE). We will prove the following
lemma in Subsection 7.1.7.

Proposition 7.4 Assume U()\o) is sufficiently small. Then, U = O(1) and Q = O((—1log|z1)M) with respect
to PLOh.

irr

7.1.2 Preliminary

We take orthogonal decompositions £ = P Ey , = D Ey as in Subsection 6.2. For any f € End(E), we have
the decompositions:

f:Zf;,bv fclx,b EHom( évE;)

F=Y flaomnws o). os € Hom(E g By o)

We have similar decompositions for sections of End(F) ® QP9. The following lemma is easy to show by using
Proposition 6.2.

Lemma 7.5 Let f be a C*°-section of End(E) such that f commutes with 0.
o Ifa#b, we have |f, |n = O(exp (- e|zl\°rd(“_b))) “|f|n for some e > 0.
o Ifa#p, ’f(’um,(uﬁ)“ = O(|zl|5) | fln for some e > 0. |

7.1.3 Step1
Let 6; denote the dzi-component of 6.
Lemma 7.6 We have the following estimate with respect to h:

oLu) =0T )

|z1| - (—log|z1])

Proof In the following, ¢; denote some positive constants. We have the decomposition:

[‘9177/{] = Z (aJlrfa,b Oul/l,c _ucll,b ° aifb,c)

a,b,c
By the estimates in Subsection 11.2 of [19] (see Subsection 6.2), we have the following estimates for a # b:
GJ{fa,b = O(eXp(—61|21|Ord(a_b)) . d§1>
Because U and 6 are commutative, we have the following estimate for a # b due to Lemma 7.5:
vo = O(exp(—eala| ™)) - ],

Hence, we have the following estimate with respect to h:

[91{7“] = Z[eitu,a? ut/La] +O(eXp(—€3|2’1|_1) 'dzl) ’ ’u’h

a
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Similarly, we have the following estimates for o # 3, by Theorem 11.12 of [19] and Lemma 7.5:

dz
T/ _ € 1 _ €.
warios = 012l 0 Uao@s =0(2l")

By Proposition 6.3, 92(’17&)7(07(1) — (da + - dzl/zl) o
X — D. Hence, we obtain

dz dz
1 = E I / ). 22 —of—= ).
[01’1/{] - a,c [017(‘170‘)7(“10‘)’ u(ava)v(aaa)] T O<|Z1| 5) Z1 ’u’h N O( |Zl| . (_ log |Zl|)> |u|h

is bounded with respect to h and Poincaré metric of

Thus, we obtain Lemma 7.6. |

7.1.4 Step 2

Let 0; denote the dz;-components of O and 9. Similarly, let d; denote the dz;-component of Oz and J. The
following holds:

Dufuly = (U, o), = U161, Q) - 01), = —r(u- [0}, Q]) —or(u-0]) = —er([uh,0]] - Q) — tr(u -6])
Hence, we obtain . .
- |)).‘u‘h"Q‘h+O<|2fﬁV).‘u‘h'

|21] - (—log |21

aiful, =o(
We also have

BQ = ~(@ 1), + (20, @) = O B ) - Wl €

|21] - (—10g|21

Therefore, we obtain

- 2 2\ dz, dz;
81(’“’}1 + ’Q‘h) = O(m) Jul, <19l +O(w) e, (45)
We set r := |21 and F := (|Z/l|i + ’Q‘i + 1)1/2. We use the polar coordinate (7‘, arg(zl),zQ,...,zn). We

consider the estimate on a simply connected region Z(dg,91) := {¥o < arg(z1) < 91} for some fixed J¢ < ¥;.
We obtain the following estimate from (45):

g 1 1
ZF?2 -G, F? . F - O(— =0(—
ar Gl +G2 ) Gl O<r~(—log7“)>’ G2 O(TN)
We take a solution H # 0 of the differential equation:
0
—H=-G1-H
or !

There exist C; > 0 and My > 0 such that C; ' - (—logr)~Mo < |H| < Cy - (—logr)Mo. Since Z (¥, ¥;) is simply
connected, we can take H'/2. Then, we have

d
5(H.FQ) =Gy -H-F=(Gy -HY?).(HY?.F).

Because Gy - HY/? = O(T*Ml), we obtain H - F? = O(r~2), and hence F = O(r~™3). Thus, we obtain the
following estimate on Z(dg, ;) for some My > 0:

Mh = O(T_M4)’ |Q’h = O(T_M4) (46)

By varying 6y and 67, we obtain the estimate (46) on X — D. In particular, we obtain the following estimate

on X — D for a # b:
ab = O(exp(—6\21|°rd(u_b)))
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7.1.5 Step 3
We have [91,UT] = [91,L~1T] + O(exp(—6|zl |_1) ~dz1) with respect to h. By an argument in the proof of Lemma

7.6, we obtain the following estimate with respect to h:

[Gl,L{T] = O<|21(dzl|)> : |L~{|h + O(exp(—e|zl|71) 'dzl) (47)

—log |z

According to an estimate in Subsection 11.5.2 of [19], we have

oU = 311/7 — Z oha-mq —|—O(exp(—e|zl|*1) -dzl>.

aclrr(8)
We set 0 := 0 — Zaemw) da - m,. We obtain the following estimates with respect to h:

Ul — 01, Q] + 01 = O(exp(—e|=a| ™)) (48)

1 Q+ [01,U"] = Oexp(~elz1| ™)) (49)

We set F := (|Z]’i + ‘Qﬁl + 1)1/2. As in Step 2, we consider the estimates on Z(dg,1). By using an argument
in Subsection 7.1.4, we obtain

%ﬁ:éyﬁ+érﬁ &:0&7§@5) @:o@)

We take a solution H; = 0 of the differential equation:

0 ~ ~ ~
EHl ——Gl‘Hl

Note log|f~11’ = O(log(— log T‘)) By choosing I?[ll/Q, we obtain

9 ~ o~ -~ - -
O (i F?) = (G- ) ().

Because G - ﬁ11/2 = O(ri1 . (—logr)M5) for some My > 0, we obtain Hy - F? = O((— 1ogr)M6) for some

Mg > 0, and thus F = O((f log ’I")M7) for some M7 > 0. Therefore, we obtain the following estimates with

respect to h:

U =0((~10g1)""), @=0((~10gr)"") (50)

7.1.6 Step 4

By (50), U is a holomorphic section of Py End(E). Because [0,U] = 0, we obtain the boundedness of ‘Z/N{|h by
an estimate in Subsection 11.7 of [19]. Thus, the proof of Proposition 7.2 is finished.

Remark 7.7 From (47) and (49), we also have the following estimate:

- dz1
019 = 0( L Ciogia)

Hence, we actually obtain Q = O(log(f log |zl|)) However, we will obtain the boundedness later. |
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7.1.7 Proof of Proposition 7.4

For an endomorphism f of E, we have the following;:
| Flp00r, = [gier(X = Xo) © f 0 gimr (X = X0) [, (51)

Hence, the claim for I/ is clear from [, gir(A— Ao)] = 0. We have the decomposition PyE0 = PoEY extending
E =@ E,. Let v = (vq) be a holomorphic frame of PoE® compatible with the decomposition. Let C' be the
matrix-valued function determined by d1v = v - C' - dz;. We have the decomposition C = (Cyp) corresponding
to the decomposition v = (v4). According to an estimate in Subsection 11.5.2 of [19], there exists ¢; > 0 such
that the following holds for a # b:

Cap = O(eXp(—€1|21|Ord(a7b)))
Let A be the matrix-valued function determined by v = v- A. Note A is block-diagonal, i.e., A = @ Aq,q. We

have (01U )v = v - (01A + [C, A] - dz1). We set B -dzy := 1A+ [C,A] - dzy = (Bay - dz1). Then, there exists
€2 > 0 such that the following holds for a # b:

Bap =Cap-App —Aqa-Cop = O(GXP(—€2|21|Ord(a_b))) (52)
For any section f of End(FE) ® Q'°, we have the decomposition
[= Zfa,hv fap € Hom(Ey, Eq) @ Q0.
From the relation 01U — [01, Q] + 61 = 0, we obtain the following:
(O1l)ap —01(a—0) - Usp — (01,0 — 010) - Uap +Uqap - (615 —01b) =0
Note the following (see Proposition 6.2 and Proposition 6.3):
d(a—b)/9z1 ~ 27O L dzy, 01,0 — Ora|, = O(dz1/21), |61 — O1b|, = O(dz1/2) (53)
The estimate (52) implies the following:
‘(611/{)”,‘ = O(exp(—62|z1|°rd(“_b))> (54)
Due to (53) and (54), there exists €3 > 0 such that the following holds for a # b:
|Qa,b|h _ O(exp(—eg\zﬂord(u*b)))
By using (51), we obtain the desired estimate for Q with respect to Pk, if U()¢) is sufficiently small. |

7.1.8 Complement for the normal crossing case

Let X := A™ and D := Ule{zi = 0}. Let (E,0g,0,h) be an unramifiedly good wild harmonic bundle on
X — D. Let U be a holomorphic section of End(E) on X — D such that [6,U] = 0. Let Q be a C*-section of
End(E) on X — D such that QT = Q. Assume that they satisfy the equations (42) and (43). We also assume
that there exists a holomorphic decomposition (E,§) = @aelrr(e) (Eq4,04) such that 6, — da - 7, are tame, where

T denotes the projection onto F, with respect to the above decomposition. We set U:=U+ Zaem(e) a-mq.
Corollary 7.8 U is bounded with respect to h.
Proof It follows from Proposition 7.2 above and the estimate in Subsection 11.7 of [19]. 1
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7.2 Prolongation of variation of integrable twistor structures
7.2.1 Statements

Let X be a complex manifold, and let D be a simple normal crossing divisor of X. Let (EA,]]S)A,S) be a
variation of pure polarized integrable twistor structures of weight 0 on P! x (X — D). We have the underlying
harmonic bundle (E,dg,0,h) on X — D.

Definition 7.9

o We say that (SA,fDA,S) is tame (wild, good wild, unramifiedly good wild), if (E,0g,0,h) is tame (wild,
good wild, unramifiedly good wild).

o If we are given a real structure r of (£2, I[~))A, S), we say that the variation of polarized pure twistor-TERP
structures (£2,D%, S, k,0) is tame (wild, good wild, unramifiedly good wild), if (§2,D*,8) is tame (wild,
good wild, unramifiedly good wild).

Note that “wild” does not imply “good wild” as remarked in Remark 6.1. |

Assume that (E, 0,0, h) is good wild. We will show the following proposition later. (The tame case was
shown in [9].)

Lemma 7.10 The sets of KMS(PE,i) are contained in R x {0}.

We use the notation in Subsection 2.1.7. As explained in Subsection 6.3, (£,D) is prolonged to the family of
meromorphic M-flat bundles (Q€,D) on Cy x (X, D), and (£, D) is prolonged to the family of meromorphic
p-flat bundles (QET, DY) on C,, x (XT, DY).

Proposition 7.11
o D/ (resp. DY) gives a meromorphic flat connection of QE (resp. QET).

e If a real structure Kk of (SA,ﬁA,S) is given, kg : v*EV ~ & is extended to the isomorphism v*QEN ~ QE.
Similarly, Koo : v*E ~ EV is extended to v QE ~ QET.

For the proof of Lemma 7.10 and Proposition 7.11, we may and will assume (i) D is smooth, i.e., £ = 1, (ii)
(E,0g,0,h) is unramified.

7.2.2 Meromorphic connection of P*0)g

Let Ao € Cy, and let U(\o) be a small neighbourhood of Ay in Cy. We set X(*0) := U()\g) x X and DP0) .=
U(Xo) x D. Recall that we have a family of meromorphic A-flat bundles (P*)€, D) on (X)), DR0))  as
explained in Subsection 6.3. Note that P(*0)€ is identified with the sheaf of holomorphic sections of £ of
polynomial order with respect to P-(Ao)h, because PO % and PRo)} are mutually bounded up to polynomial

rr rr

orders. (See (44) for PR} They are different in general.)

1rr
Proposition 7.12 D/ gives a meromorphic flat connection of PPoE.

Proof We have only to show A2V (8,\)7)()‘0)8 c PQRoE. As mentioned in Subsection 2.1.7, we have the
induced holomorphic section U of End(E) on X — D such that [0,U] = 0, and the C'*°-section Q of End(E)
such that Qf = Q, determined by

dX

vAde(A—lu-Q—A.uT)T,

where d) denote the naturally induced flat connection of pxlE along the A-direction. They satisfy the equations
(42) and (43).
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Let v = (vq) be a holomorphic frame of Py€® compatible with the decomposition PoE’ = P, PoEyL.
Corresponding to the decomposition v = (v,), the identity matrix is decomposed into aclre(0) I,. We regard
v as a C*°-frame of 5|X(AO),D<AD>, and we set

5= g~ M) o =v- (D exp(-(A- X)) L)
aclrr(0)

Let H (P.()‘O)h, v) denote the Hermitian matrix-valued function whose (i, j)-entries are given by ’P.(AO)h(Eiﬁj).

rr rr

Then, it is clear that H (P(A(’)h, 5) and its inverse are of polynomial order. We also have the following relation:

wrr

dv=v-4, A=-Pa-dr1I,

Let w be a holomorphic frame of 77@)‘0)5 . Let H (P(Ao)h,w) denote the Hermitian matrix-valued function

rr (/\0)

whose (i, j)-entries are given by Pi(rio)h(wi, w;). Then, H(P;,*’ h,w) and its inverse are of polynomial order.

(See Subsection 13.1.2 of [19], for example.) Let G be the matrix-valued function determined by w = v - G.
Then, G and G~! are of polynomial order. We have

dkw:i(A-Ger,\G) —w- (G*l-A-G+G*1dAG).

Since ¥ and w are A-holomorphic, G is A\-holomorphic. Hence, dyG and G~!-A-G+ G~ 1d\G are of polynomial
order

Let B be determined by A2V (0y)w = w - B. Then, B is of polynomial order, and hence meromorphic.
Thus, the proof of Proposition 7.12 is finished. |

We have the irregular decomposition:
(73(5)‘0)57 D)|ﬁ(>\o) = @ (P(S)\O)é\m@a) (55)
aclrr(6)
Lemma 7.13

o A2V, (0,) preserves the decomposition (55).

o Assume A\g # 0. Then, (55) is the irreqular decomposition for (77(’\0)5, Iﬁ)f), and POOE is an unramifiedly
good lattice of PPo)E.

Proof Since it can be shown by a standard argument, we give only an outline. Let ¥ = (9,) be a frame of
’P,E)‘U)Slﬁ compatible with the decomposition (55). Let A = 3" A 4 be determined by A2V (9x)0 = v - A. For
a#b, let Fyq : 77(({\0)5"1 — Pt(f‘o)gb be given by Fp Vg = Up - Ap,q. Because [)\QV,\(@\),DJC] = 0, we obtain
that Fy o is flat. However, meromorphic flat section has to be 0 in the case b # a. Thus, we obtain the first
claim.

Let us show the second claim. Let B, be determined by

]D)f(zlal)@a = ﬁa . (()\_1 + Xo) - z101a + Bu)
Then, B, is regular. For a = 0, the following holds:
N0\Bo + Ao - Bo— By - Ao — 2101 Ago = 0

We have the expansions By = Y, <, Bo;m 21" and Ago = >, <y A0,0;m 21" We assume N < 0 and Ag,o;n # 0.
We obtain the relation [Bo, Ag,o;n] — NAoon = 0 on DX0). Note that the eigenvalues of By, are of the
form A\~te(\, u), where u € KMS(PE®) and a — 1 < p(Ag,u) < a. It implies that the difference of two distinct
eigenvalues of By cannot be N. Therefore, we obtain Ago,n = 0, which contradicts with our assumption.
Hence, we obtain N > 0.
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By considering a twist by a meromorphic flat line bundle given by Ve = e - d(()\_1 + Xo)a), we obtain that
D/ =D/ + Vy on PAoE is of the form

- @ (05
aclrr(0)

where ﬁ); are logarithmic with respect to P(AO)EAa. Thus, the proof of Lemma 7.13 is finished. |

(*o)é‘\)u

7.2.3 Proof

By Lemma 7.13, the eigenvalues of Res(ﬁ)f ) on PIE)‘O)S‘DW) are constant. On the other hand, the eigenvalues of
Res(D) = Res(D/) on PZE)\O)Elp(AO) have to be of the form A\™la — a — \a for (a,a) € KMS(PEY) by Lemma

6.8. Hence, we obtain o = 0 for any (a,a) € KMS(PEY), ie., KMS(PE®) C R x {0}. Thus, Lemma 7.10 is
proved.

Let us show Proposition 7.11. The first claim follows from Lemma 5.41, Proposition 7.12 and the definition
of QF in Subsection 6.3.3. To show the second claim, we remark that x is flat and preserves the pluri-harmonic
metrics for (£2,D%,8) and v*(£4,D?,S). We also remark that we have only to consider the case in which D
is smooth. We have Irr(D*, Q€*) = Irr(f) and Irr(D*, Q€T*) = Irr(07) = {@|a € Irr(¢) }. Hence, we have the
natural identification Irr(D*, Q€*) = Irr(7*D*, v* QETA). Since the full Stokes filtrations are characterized by
growth order of the norms of flat sections with respect to the pluri-harmonic metrics (Proposition 6.12), the full
Stokes filtrations are preserved by x. Thus, the second claim of Proposition 7.11 follows from Lemma 5.40. |

Remark 7.14 Because KMS(PE®) C R x {0}, it turns out that any X # 0 is generic. |

7.3 Reduction from wild to tame
7.3.1 Construction of the reductions

Let X := A" and D := Ule{zi =0}. Let (£2,D%,8) be an unramifiedly good wild variation of pure polarized
integrable twistor structures of weight 0 on P! x (X — D). We have the underlying harmonic bundle (E, g, 6, h).
We take an auxiliary sequence M = (m(0),m(1),...,m(L)) for Irr(d) as in Subsection 3.1.2 of [19].

For each a € H(O, m(O)), we obtain the variation of pure polarized twistor structures Gr;n(o) (SA,DA,S)
by taking Gr with respect to Stokes filtrations in the level m(0), as explained in Subsection 6.4. By Proposition
7.11 and Lemma 5.14, it is enriched to integrable Grﬁ"(o)(EA,ﬁ)A,S). If a real structure x of (EA,IEA,S) is
given, ko and Ko preserve the Stokes filtration in the level m(0), which follows from Proposition 7.11 and

Lemma 5.11. Hence, we also have the induced real structure Grgn(o)(n) of GrT(O) (EA,]INDA,S), and we obtain

a pure polarized variation of twistor-TERP structures Gr™(© (&2, DA, S, K, 0) for each a € Irr(D, m(0)).

Applying the above procedure inductively, Grﬁn(j ) (£4,D4,S) are enriched to integrable Gr;n(j ) (4, DA, S )
for any a € Irr(6,m(j)). (See the argument in Subsection 6.4.) If a real structure  is provided, the re-
ductions are also equipped with induced real structures, and we obtain variation of twistor-TERP structures
Gr;"(j)(SA,DA,S,A, 0). In the case m(L), we use the symbols Gri”“(é'A,DA,S) and Griu“(EA,DA,S,/Q,O).
They are called the full reductions.

For any a € Irr(f), we have the harmonic bundles L(—a) as in Subsection 6.4. The associated variation of
polarized pure twistor structures is also denoted by the same symbol L(—a). As explained in Subsection 2.2.1,
it is naturally enriched to a variation of pure twistor-TERP structures of weight 0. The underlying harmonic
bundle of Gr'™(£2,D*,8) ® L(—a) is tame for each a € Irr(f). This procedure is the reduction “from wild to
tame” in the integrable case. We have a similar reduction in the twistor-TERP case.

7.3.2 Approximating map and estimate of the new supersymmetric index

Let (€4, D2, S) and (E, 0,0, h) be as above. Let EPI’SA denote the A-holomorphic structure of £2.
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One step reduction By the one step reduction in Subsection 7.3.1, we have obtained the unramifiedly good
wild variation of polarized pure integrable twistor structures:

(&5, So) = P aO(Er DA,S)
aclrr(9,m(0))
Let (Ey, 5E0 .00, ho) be the underlying harmonic bundle. Let gpl P denote the A-holomorphic structure of EOA .

We fix a hermitian metric gp1 of Q%ll &) Q];’lo (2{07 oo}) We will prove the following proposition in Subsection
7.3.3.

Proposition 7.15 There exists a C*°-map P : SOA — E2 such that the following holds for some € > 0 with
respect to hg and gp::

*S — Sy = O(exp(—e|zm(0)|)>, 5}1)1,5(? (@S — &) = O(exp(—e|zm(0)|)>, (56)

'V — Vg = O(exp(—e|zm(0)|)) (57)

In fact, the order of the estimates can be improved as O (exp(—€(|A|+|A7|)[z™(?)])). We give a consequence.

Let Qg denote the new supersymmetric index of (EOA ,HAj)()A ,So)-

Corollary 7.16 We have the following estimate for some € > 0 with respect to hy:
|®*h — hO|h0 = O(exp(—e|zm(0)|)>, |®*Q — Qo|h0 = O(exp(—e|zm(0)|)>

Proof It follows from Lemma 2.20. |

Full reduction By taking the full reduction in Subsection 7.3.1, we have obtained the unramifiedly good wild
variation of polarized pure integrable twistor structures:

(9, DD.S1) = P GlM(e4,DA,S)

a€cTrr(0)

Let (E1,0p,,01,h1) be the underlying harmonic bundle, and let Q; denote the supersymmetric index for
(SIA 7]DJIA). By applying Proposition 7.15 and Corollary 7.16 inductively (see Subsection 6.4 for an inductive
use), we obtain a C*°-map ®; : €1A — €% such that the following holds for some € > 0 with respect to hi:

[®1Th — I, = O(exp(—e|zm(L)|)>, [®1Q - Qif, = O(exp(—e|zm(L)|))

Note that the new supersymmetric index is unchanged after taking the tensor product with L(—a). (See
Subsection 2.2.1.) Hence, the study of asymptotic behaviour of new supersymmetric index is reduced to the
study in the tame case, up to decay with exponential orders.

7.3.3 Construction of an approximating map

We assume that the coordinate is as in Remark 5.28 for the good set Irr(). Let k be determined by m(0) €
Z’io x 0y_g. Let \g € Cx. Let U()\g) denote a small neighbourhood of \g. We set X*0) := [/()\g) x X and

Do) (< k) := U(X\g) x D(< k). We also use the symbol DZ(/\O) in a similar meaning. We set W := Do) (< k)
if \g # 0, and W := DX (< k) U ({0} x X). Let 0 : Cy — C,, be given by o(\) = —\, which induces the
anti-holomorphic map C\ x X — C, x Xt We set xT(=20) .= O'(X()‘O)).

From (E,Jg, 0, h), we obtain the vector bundle PSAO)E on X)) with a meromorphic flat connection D/ =
D/ + V,. Similarly we obtain P&y with DY = DJ + V..o from (Eo, g, , 00 ho).

We also obtain the vector bundle Pé” &t with the meromorphic flat connection D/ = D 4 V,, on X/(ko)

fromlE,gE, 0, h), and the vector bundle Pé“(’)é'g with the meromorphic flat connection ﬁ);r)f = Dgf +V,0 from
(E07 ana 007 h'O)
Let D« denote the restriction of D to the (21, ..., zx)-direction.

61



Preliminary Let S be a small multi-sector of X(*0) — W. By Proposition 5.9, we take a D<-flat splitting

,P(SAO)€|S* @ P()\O)g

aclrr(0)

of the Stokes filtration in the level m(0), such that the restrictions to D IS (j =k+1,...,¢) are compatible

with Res; (D) and the filtrations FIF(0) If Ny # 0, we may assume that it is Df-flat by Proposition 5.10. (Note
that the D/-flatness implies the compatibility with the residues and the parabolic filtrations.) By construction

of Gr™® it induces the isomorphism (’PO/\O)EO,DOSIC)‘S ~ (POAO)E ]D)<’f)\3' Let @ (p = 0,...,m) be such
isomorphisms. Let a, ( =0,...,m) be non-negative C*°-functions on S such that (i) Y a, = 1, (ii) d;a, and

Ora, are O(|/\\ -¢ Hl Lz~ C) for some C' > 0. We set g := Y a, - L. We also set G := (®%)~! o g and
GP := (92)~! o DL

Lemma 7.17 We have the following estimates with respect to hy for some € > 0:
G” —id = Oexp(—e]A~12™0))) (58)

(%) 71 0 (A2V5(01)) 0 @Y% — A2V 0(9n) = O (exp(—e|A~12™O))) (59)

Proof Let G be the left hand side of (58) or (59). It is flat with respect to Do<y, and strictly decreases the
Stokes filtration in the level m(0). Moreover, glpwms preserves the filtrations * F(*o) and the residues Res;(ID)

for j=k+1,...,¢. Then, we obtain the desired estimate by using the estimate in Subsection 13.3 of [19]. (It
is easy to show it directly.) |

Hence, we have ’G—id‘ho = O(exp(—e|A712™O)])). We set @5V 2(x) := @5' 0 (VA(9n)) 0 5. We use the
symbol (®%)*V(9,) in a similar meaning. By the previous lemma, we have the following estimate for some

€ > 0 with respect to hg:
((I)%)*V)\(a)\) —Vao0(0y) = O(exp(_ep\flzm(o)D)

Lemma 7.18 The following estimate holds for some € > 0 with respect to hy:
DEVADN) — Vao(d) = O(exp(—ea~12m))))
Proof We have the following equalities:

D5VA(ON) = Vao(x) = (Dg' 0 DY) 0 (D) VA(9n) 0 ((DG) " 0 D) — Vi 0(0)
=G o ((28)"VA(9r) = Va0(dr)) o G+ G710V 0(dr) 0 G — Vi 0(dn)
=G o ((B2)*VA(9r) — Va0(0r)) 0 G+ G- (Vap(d2)G)  (60)

We have the following:

9 9 , o
V0(00)G Z % Gqr = % (GP —id) = O(exp(—e|)\ Lz (0)|))

Thus, we obtain Lemma 7.18. |

Assume we are also given morphisms on sectors o(S) of X F(=20) — pyt

(I)Tq

a(S) * (P( Ro) SOvDT)

—Xo) gt pf - !
o@ — (POWELDY) < (¢=0,...,m),
induced by ]D)Tgk—ﬁat of the Stokes filtration in the level m(0) such that the restriction to o(S) N D;((—Xo)

(j = k+1,...,£) are compatible with the residue Res;(D') and the filtration JIF(=20) | IF A # 0, we may
assume that the splittings are Di-flat. Let b, (¢ = 0,...,m’) be non-negative C*°-functions on o(S) satisfying
similar conditions for a,. We set @L(S) = by @LE’S).
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Lemma 7.19 We set H :=So (<I>5 ® o*@i(s)) So. Then, we have the following estimate with respect to hg
for some € > 0:

H= O(exp(fe|)flzm(0)|)>, 35 pH = O(exp( e\)\*lzm(o)\))
Proof Weset H), ;= So (P4 ® U*@L'(JS)) — 8p. According to an estimate in Subsection 15.3.2 of [19], we have

H,,= O(exp(—e|)\_1zm(0)|))
with respect to hg for some ¢ > 0. We also have 5£A prHpq = 0. Then, the claim of Lemma 7.19 follows. |
0

Construction We take a compact region K of C such that the union of the interior parts of K and o(K)
cover P!. We take a covering of

(K % X) = (K x D( K) U ({0} x X))

by multi-sectors S; (i = 1,..., N) such that S; are sufficiently small as in Preliminary above. Then, we have
= S;UlJo(S;). We take a partition (Xsi, Xo(S; N) of unity on P! subordinated to the covering.
We assume that 8;xs, and dyxs, are O(|]A|7¢ - Hle |2i| 7€) for some C' > 0. We assume similar conditions for
ajxg(si) and 8MXG(Si).
For each S; C X)) — I/, we take isomorphisms:

(P(Ao)go’]D)o)l (P(Ao 57]])) _ (I)Z(S (’PS—XO)SS,D(JS)

50 — (P! D)

EIE lo(S4)

induced by D<j-flat or ]D)Tgk—ﬂat splittings of Stokes filtrations as above. If \g # 0, we assume that D7-flatness

and DT /-flatness. We set
N N
b= ZXSi : (I)Si + ZXU(Si) : (I)U(Sqi)'
i=1 i=1

It is easy to check that ® satisfies the desired estimates (56) and (57), by using Lemma 7.18 and Lemma 7.19.
Note that a D-flat splitting of the Stokes filtration of P(A")glg in the level m(0) naturally gives a Df-flat splitting

of the Stokes filtration of P(AEl)gl%, in the level m(0), where S’ is the multi-sector of Xt \WT, which follows

from the characterization of the Stokes filtrations by the growth order of the norms of flat sections. Thus, we
obtain Proposition 7.15. |

7.4 Reduction from tame to twistor nilpotent orbit
7.4.1 Reduction

Let X := A" D, := {2, = 0}, D := UZ 1 D; and Dy = ﬂl . Di. Let (£2,D%,8) be a tame variation of
pure polarlzed 1ntegrable twistor structures of weight 0 on P* x (X — D). We have the underlying harmonic
bundle (E,dg,0,h). As explained in Subsection 6.5, we have the limiting polarized mixed twistor structure
(558(E), N, Sa,0) associated to (E,8g,0,h). We also have the variation of polarized mixed twistor structures

(L0, N2, ]D)A

a,0’

Sa,0) of weight 0 in (-variables. Hertling and Sevenheck observed the following (see [9]).

Proposition 7.20 ( a0 (E),N, S, 0) is naturally enriched to a polarized mized integrable twistor structure
(558(E),V,N,Sa,). Similarly, (ZSGAO, N DS O,Sa,o) is naturally enriched to a variation of polarized mized
integrable twistor structures (,ga 0 N2 H~)a 0 Sa0)-

If (SA,}TDA,S) has a real structure k, they are also equipped with induced real structures. |
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7.4.2 Approximating maps

For 0 < R <1, weset X*(R) :={(21,...,20) |0 < |zi| <R, i=1,...,n} and Dy := { (2441, ..., 2n) | |2:] < R}.
By the natural projection X*(R) — Dy(R), we regard X*(R) as Dg(R) x {(z1,...,2¢) |0 < |2 < R}. Due
to Theorem 4.1, we have the integrable twistor nilpotent orbit TNIL(EX,, D5, N, Sa,0) on X*(R) for some R.

a,00 ~a,0’
Thus, we obtain a tame variation of pure polarized integrable twistor structures:

(£5.DF.So) = € TNIL(ED, DS

a,00“a,0’ N, Sa,O) & L(a)
a€Par(PoEL,L)

(See Subsection 2.2.2 for L(a).) We have the underlying tame harmonic bundle

(E075E07 907 hO) = @(Eaa aau eaa hu.)~

We would like to explain that we can approximate the original (£2, ﬁA, S) with (SOA,fDOA,SO).
Let gﬂn ¢o denote the A-holomorphic structure of EOA . We fix a hermitian metric gp: of Q]%’ll @Qé}o (2{0, oo})
€0
For a permutation o of {1,...,¢} and for C' > 0, we set

Z(0,C) := {(zl,...,zn) € X*(R) | \zo(i_1)|c <|zo@ls i=1,...,0— 1}

If we take a sufficiently large C' > 0, we have X*(R) = |J, Z(0,C). For any € > 0, we set Ag(e) := Zle |z; €.
We will prove the following proposition in Subsection 7.4.3.

Proposition 7.21 There exists a C*°-map @, : 50A — £ such that the following estimate holds for some
€ > 0 with respect to hg and gp on P! x Z(0,C):

©;S —So = O(Mo(6)),  Fpa g2 (P58 = So) = O(Ao(e)). 25V — Va0 = O(Ao(e)) (61)

Before going into the proof, we give a consequence. Let Qp and Q denote the new supersymmetric indices

of (65,D5) and (£2,D?). By using Lemma 2.20, we obtain the following estimates on Z (o, C) for some € > 0
with respect to hg:

|(I);h7h0’h0 :O(Ao(e)), |©;Q7 Q0|h0 :O(Ao(E)) (62)

Corollary 7.22 The eigenvalues of Q and Qg are the same up to O(Ao(e)) for some € > 0.

Proof By using (62), we obtain the estimate on Z(o,C). Because X*(R) = |JZ(o,C), the claim of the
corollary follows. |

We also give a more rough but global estimate, for which the proof is much simpler. For M > 0 and € > 0,

we set
? Y4

A(M,e) = H(—log |zi|)M Z |2:]°.

i=1 =1

Proposition 7.23 There exists a C>*-map P : SOA‘ — £ such that the following holds for some € > 0 and
M > 0 with respect to hy and gp: :

O'S = So = O(AM, ), Ty g2 (278 = 8) = O(A(M.€)), @V —Vio=O0(A(M,c)) (63)

Note that ®*h and hy are mutually bounded up to log order, which follows from the weak norm estimate
for acceptable bundles. (See Lemma 7.35 below.) Hence, we obtain the following estimate for some M’ > 0 and
€ > 0 by using Lemma 2.19:

270 - o, = O(A(M', )

In the one dimensional case, the estimates in the two propositions are not so different. We also remark that
®, in Proposition 7.21 also satisfies the estimates (63).
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7.4.3 Proof of Proposition 7.21

For the proof of Proposition 7.21, we have only to consider the case that o is the identity. We use the symbol
Z(C) instead of Z(id, C). Instead of considering X*(R), we will shrink X around the origin.

Decomposition For any subset I C £, let m(I) be determined by the condition m(I) := min{m € I |[m+1 ¢
I}, in other words, {1,...,m(I)} C I but m(I) +1 & I. Let q; : Par(Po&®, ) — Par(Pyé’ I) and
Tm(I) 7t — 7 be the natural projections. Let Ao € C. Let K denote a small neighbourhood of \g in
Cy. We set X := K x X. We use the symbols D;, Dy, D, etc., in similar meanings.

We have the induced filtrations °F (i € I) of Qo&|p, For any i € I, we have the residue endomorphisms
Res;(D) on ! Grp(Qo€p, ), which have the unique eigenvalues —b; - A\. Hence, the nilpotent part N; is well
defined. For i < m(I), we set N'(i) := 3>, _; Nj. Recall that the conjugacy classes of N (i)|(»,p) are independent
of (\,P) € D; (Lemma 12.47 of [18]). By considering the weight filtration of A(i), we obtain the filtration
W (i) of ! Gry(Qo&jp,) indexed by Z in the category of vector bundles on Dj.

Lemma 7.24 We have a decomposition

Qoéjx = @ Ua k (64)
acPar(Po&° L)
kez*

with the following property:
e For any subset I C £, b € Par(PoE,I) and h € Z™) | we put

IUb’h: @ Ua,k and IUb: @ IUb’h

aqul(b) hezm )
ker i, (R)

Then, the following holds for any ¢ € R :

@IUbl’DI = ﬂtii(Qofml) (65)

b<c icl

Moreover, the following holds for any n € Z™1) under the identification IUb|D1 ~ I Gry(Qo€) induced by
(65):
@ "Uy nip, = ﬂ W, (8) ( Grp(Qoéip,))

h<n 1<i<m(I)

Proof Although this is essentially Corollary 4.47 of [18], we recall an outline for later use. The theorems and
the definitions referred in this proof are given in [18]. By Theorem 12.43, the tuple (ZF,N(J) ’z €l,j€ E)
is sequentially compatible in the sense of Definition 4.43. Hence, (iF, W(j) |z €lj € E) is compatible in
the sense of Definition 4.39, as remarked in Lemma 4.44. By Proposition 4.41, there exists a splitting of
(iF, W(j) ’ 1€l,j€ E) in the sense of Definition 4.40. By applying Lemma 2.16, we can take a frame compatible
with splittings. It is easy to take a decomposition as in the claim of Lemma 7.24, by using such a compatible
frame. |

Let (Q&4, D) be the prolongment of (Eg, 04,04, he). Similarly, we have a decomposition

Qolaix = @ Uo,a.k (66)

kezt
satisfying a similar condition. By our construction of (50A ,]13)0A ,So), we are given the isomorphism for each

a € Par(PyEL, L):
Vg : £Cra(Qo€) ~ Qo&alp, -
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Lemma 7.25 We may assume that vq preserves the decompositions @, Uo,a,k/p, and Ds Ua kD,

Proof In Proposition 4.41 of [18], the construction of a splitting is given in a descending inductive way, and
we can take any splitting of £ Grq(QE) of the filtrations W(j) (j = 1,...,¢) in the beginning. Thus, we obtain

Lemma 7.25. 1
Let vq,k denote the induced map U q,kp, ~ Ua kD, -
Norm estimate We recall the norm estimate for tame harmonic bundles. We take a C'°*°-frame h;k of Uq i
in (64). We set
-1

¢ ¢ k
1 —%a; ke —k; %, —loglz;| " k
hi =Ny g, 11 12172 (= 1og |2;) ™ = by - [T 12517 [ ] (—10|Zj| - (—log |ze])™
=1 j=1 i=1 g [Zj+1

(We formally set ko := 0.) We obtain a C°°-hermitian metric (') = @ hffL of Q& x_p. Theorem 13.25 of [18]
implies the following lemma.

Lemma 7.26 h and h'V) are mutually bounded on K x Z(C'). |

An estimate
Lemma 7.27 Let f be a holomorphic endomorphism of Qo€ satisfying the following conditions:
e [t preserves the filtrations 'F (i = 1,... /).
e Foreachb € R!, the induced endomorphism ' Grf (f) of @ql(a)=b Qo&a|p, preserves the weight filtrations
W) (G=1,...,m(I)).
e For each a € R', the induced endomorphism £Gr% (f) of Qo&alp, 15 0.
Then, we have |f|n, = O(Ao(€)) for some e >0 on K x Z(C).

Proof We take decompositions (66). Applying Lemma 7.26 to (Eq, 0q,0q, he) with the decomposition (66),
we take a C'°°-hermitian metric h(()%c)l =0 hélt)lk of Qp&qx—p and h((]l) = @h(()ll)l of Qo&x—p as above. We
have the decomposition:

f= Zf(a,k),(a’,k’)a fia k) (a k) € Hom(Uo.ar k', Uo.ak)

We have only to show

| fiak).(ar k) B = O(Ao(e)) (67)
for any (a, k) and (a’,k") on K x Z(C). Note that the induced metrics on Hom (U o/ s, UO,GJ“)M?—D are of the
form

‘ L og 12| kj—K/, -
—aita =
Y(a,k),(a’ k") H |Zj|2( stas) . H <_1 | 4] |> ’ (_ 10g|25|) ’Zv (68)
=1 j=1 0g [Zj+1

where g(q k), (a’,k’) are C>-metrics of Hom(UO@/’k/, an,k) on X.
(I) Let us consider the case a # a’. We define
L= {i|la; >a;}, I-:={ila;<a}}, Ip:={i|a;i=aj}.

Let m be the number determined by {1,...,m} C Iy and m + 1 & I;. Since the parabolic filtrations are
preserved, we have f(q k), (a/,k)p; = 0 for any i € I,. Hence, there exists a holomorphic section f(’a k), (a’ k') of
Hom(UO,a/,k/, ona’k) such that

Fam k) = flam@w) - 1] # (69)

i€l
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We have the following inequality for some € > 0:

H |Zl_|17ai+a§, H |Zl,‘*“i+a§ < H |z;]¢ < ’Zm+1|6. (70)

iel} iel_ i€l Ul

Let us consider the set S = {p <m ’ kp > k;,} If S is not empty, let p be the minimum. Note that k; < k}
for any t < p and k, > k; by our choice. Since the weight filtrations W(j) (j = 1,...,p) are preserved on

2 G, we have f(’a k),(a/ k)| Dy = 0. Hence, there exist holomorphic sections ft”(a k). (a' k') (t=1,...,p) of
Hom(UO)a/)k/, an’k) such that

p
,(a’ k") Z (a k),(a’ k)" (71)

We remark the following for any ¢ < p:
ﬁ —log || krk;( ek ﬁ kK, ﬁ —log || \" 7" ke =k,
|2¢] - () —log | z¢] <zl || O () — log |z ¢
U= Hemm U Tgpng) ol

=O0(|z|V?) (72)

By using (68), (69), (70), (71) and (72), we obtain ’f(a k).(a k) [0 = >y (|zt|1/2) = O(A0(1/2)).
If S is empty, we have k; < k’ for j =1,...,m. Hence, we have the following;:

C o —loglyl \ R
st [ (o) (~log |24)

o1 \—logzj]

m -1 k:—k’
’ —1 . J J Y
< |zm41]®- I I Cri~hi | I (Og|z]| ) (—10g|2£|)k£ = O(|Zm+1|6/2) (73)

et iz \Tlog [z

By using (68), (69) (70) and (73), we obtain (67).

(IT) Let us consider the case @ = a’. Because Grl ®x = Grl @) = g, there exist holomorphic sections
fi,a, (k) Of Hom(Uova,k/, U07a7k) such that

1
f(a,k:),(a,k’) = Zzz : fi,a,(k,k') (74)
=

Let us consider the set S = {p | kp > k;)} If S is not empty, let p be the minimum. Note that k; < k} for any
t < pand k, > k;, by our choice. Since the weight filtrations W (j) (j = 1,...,p) are preserved on LGr?, we

have f; a,(k,k")p, = 0. Hence, there exist holomorphic sections f; , , (koK) (t=1,...,p)of Hom(UO)a,k/, Uo,a,k)
such that B )
fia k) = Zzt ‘ ft/,z‘,a,(k,k’)' (75)
t=1

By using (72) and (75), we obtain |f; 4 (k)]0 = O(Ao(1/2)).
0
If S is empty, we have k; < k; for j =1,...,¢. Hence, we have the following:

_ k;
H( —log 2| ) (= log |ze)" ™ = 0(1). (76)

log [2j+1]

Hence, we obtain |f; 4 (k)] = O(1). By using (74), we obtain (67). Thus, we obtain Lemma 7.27. |
0
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Local isomorphism with a nice property
Lemma 7.28 There exists a holomorphic isomorphism @y : Qo&ojx — Qo&|x with the following property:
e [t preserves the filtrations 'F (i = 1,... /).
e For each b € R’ the induced map @ql(a):b Qoap, — ! Gr,l:(QOSmI) preserves the weight filtrations
W) (G=1,...,m(I)).

e For each a € R', the induced map Qo&ap, — £Grf:(QOS‘Dﬁ) is equal to vg.

Proof We take decompositions (64) and (66) as in Lemma 7.25. We take an isomorphism Vg : Up g,k =~ Uq k
such that ﬁaMD& = Vg k- Weset @ := > Vg . It is easy to check that ®x has the desired property. Thus, we

obtain Lemma 7.28. |

By the norm estimate (Lemma 7.26), ®x and ®.' are bounded on K x Z(C).
Lemma 7.29 We have the following estimate for some € > 0 with respect to hy on K x Z(C):
(P]*CV)\ — V)\’o = O(Ao(e)) (77)

Proof Let I denote the left hand side of (77). It is easy to observe that F satisfies the conditions in Lemma
7.27. Hence, Lemma 7.29 follows from Lemma 7.27. |

Let ®x and @} be morphisms as in Lemma 7.28. We set G := <I>,E1 o Pl.

Lemma 7.30 We have the following estimates for some € >0 on K x Z(C):
G —id],, = O(Ao(€),  [Vao(A?0n)G], = O(Ao(e))

Proof We have only to apply Lemma 7.27 to G — id and V ¢(A\20,)G. |
Let 0 : Cy — C|, given by o(\) = —\. The induced map Cy x X — C, x X1 is also denoted by o.

Lemma 7.31 We can take a holom?rphz’c isomorphism @L()C) : Q<5Eg|a(x) — Q<55|TJ(X) satisfying the con-
ditions (i) it preserves the filtrations 'F (i = 1,..., ), (ii) the induced morphism on ' Gr¥ , preserves the weight

filtrations W(j) (j =1,...,m(I)), (iii) the induced morphism on LGr is equal to the given one.

Proof It can be shown b}Q the argument in the proof of I\J/emma 7.28. More directly, we have the isomorphisms
Q<5€g‘n(x) ~ 0% (Qo&ox) and Q<55‘TU(X) ~ 0% (Qo€x) ", and o*(Px)" satisfies the conditions. |

Lemma 7.32 Let ®xc and @L(K) satisfy the above conditions. We set
H:=8 —8(@x @00 ) : Qoo ® 0 (Q<s&l ) — Ox
Then, H = O(Aq(€)) with respect to hy for some € >0 on K x Z(C).

Proof If CIDL(K) is given by 0* @, we have H = 0. Hence, we have only to show that the property is independent
of the choice of @L(,C).

Let @I)U(K) (i = 1,2) be as in Lemma 7.31. Note that h and ho are mutually bounded through @I}U(K) on
o(K) x Z(C). By using Lemma 7.32, we obtain <I>LJ(K) - @;70(,@ = O(Ao(€)) for some € > 0 with respect to h

and hg. Then, we obtain S o <<I>,C ®Q o* (@I)U(,C) — @;70(,{))) = O(AO (e)) with respect to hg. Thus, the proof of

Lemma 7.32 is finished. |
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Local C*-isomorphisms Let ®¢. (p = 0,...,m) be as in Lemma 7.28, and let a, (p = 0,...,m) be non-
negative C*-functions on K such that Y~ a, = 1. We set ®x := > ap, - Py-. We also set G := (D)~ o Ok

and GP := (®%)~! o ®§. By Lemma 7.30, |GP —id |, = O(Ag(e)), and hence |G —id |, = O(Ao(€)) for some
e>0on K x Z(C).

Lemma 7.33 The following estimate holds for some € > 0 with respect to hg on K x Z(C):
D' 0 VA(A204) 0 ic — Va0(A?0x) = O(Aole))
Proof We have the following equalities:
Ot 0 Vi0(02) 0 ®x — Viao(da) = (25" 0 D) 0 (k)1 0 V() o () o ((Pkc) ™' © Pic) — Viao(Da)
=G o ((PR)*VaA(9r) — Vao(dh) 0 G+ G- V000G (78)
By Lemma 7.29, we have (®%.)*V(A?0)) — Vx,0(A?9x) = O(Ag(e)). We also have

0
Vao(WaG = Y NS I (@GP —id) = O(Ao(e))
Thus, we obtain Lemma 7.33. 1
Let &7 o () (¢g=0,1,..., ’) be as in Lemma 7.31, and let b, be non-negative C'*°-functions on ¢ (k) such
that 3 by = 1. We set ®f = 370, - dTdy .

Lemma 7.34 We set H := 8(<I>;C ® U*(@U(,C))) —&y. Then, we have the following estimate on K x Z(C') with
respect to hg for some € > 0:

H = O(Ao(ﬁ)), ggoA’PlH = O(Ao(e))

Proof It follows from Lemma 7.32. |

Construction of an approximating map We take 0 < Ry < Ry < 1. We set 1 := {)\ | Al < RQ} and
Ky = {X|Ri < |\ < R{'}. We take a partition of unity (xx,, Xk, Xo(x,)) on P! which subordinates to
{]Cl, ,CQ, O'(Icl)}

We take a holomorphic isomorphism @,Cl Qoo xx — QOEWMX as in Lemma 7.28. Similarly, we take
a holomorphic isomorphism @L(,C Q<5€O|J(IC)XXT — Q<55|a(lC)xXT as in Lemma 7.31.

)|IC2><(X D) (5 D )

is extended to the isomorphisms Qo&yjic,xx =~ Qoljk,xx and Q<580|K xt =

We can take a flat isomorphism @, : (50, We may assume that @,

|Kax(X—D)"
Q<58|T,C2X)(T equipped with the
property in Lemmas 7.28 and 7.31. We set

@ = XK:l : q>)C1 + XK:Q : ¢’C2 + XO'(]Cl) : ¢(1;'(K:1)

By using Lemmas 7.33 and 7.34, we can check that ® satisfies the estimates in (61). Thus, the proof of
Proposition 7.21 is finished. |

7.4.4 Proof of Proposition 7.23
Decomposition We have a decomposition
Qéx= P U (79)
acPar(PoEO L)
with the following property:
e For any subset I C £ and b € Par(PyE’, I), we put Uy = P
any c € R

acq ' (b) Ug. Then, the following holds for

B Vo, =)' Fe. (Q€p,) (80)

b<c iel
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Weak norm estimate We take a C*°-frame h], of U, in (79). We set hY = hl, - H§:1 |z;| 2%, We obtain
a C*-hermitian metric h(?) = @ hD of Q& x—p- Proposition 8.70 of [18] implies the following lemma.
Lemma 7.35 h and h® are mutually bounded up to log order, namely,

/4

¢ N N
h?.c-t. (Z—log|zi|> <h<h®.C. (Z—log|zi|>

i=1 =1

holds for some C' > 0 and N > 0. 1

An estimate

Lemma 7.36 Let f be a holomorphic endomorphism of Qo€ satisfying the following conditions:
o It preserves the filtrations 'F (i =1,...,().
e For each a € R’, the induced endomorphism LGrl(f) of Q&qp, s 0.

Then, we have |f|n, = O(A(M,€)) for some M >0 and € > 0.

Proof We take a decomposition of Q& like (79). Applying the weak norm estimate to (Eq,0q,0a, ha) with
the decomposition (66), we take a C'°*°-hermitian metric hff) of Q& x_p, and h(()z) =6 hff) of Q& x_p. We
have the decomposition:

f= Z fa,a’a fa,a’ € Hom(UO,a/; UO,a)
p2) = O(A(M,¢)) for any a and a’. Assume a # a’. We define
(0]

We have only to show | fa.a’
I, = {i‘ai > a;}, I_:= {i|ai < ag}, Iy = {z‘|ai = ag}.

Since the parabolic filtrations are preserved, we have f, 4/ |p, = 0 for any i € I,. Hence, there exists a
holomorphic section f; ./ such that fa.ar = fg o - []ier, 2i- We have the inequality as in (70). Then, we obtain
the desired estimate for f, o in the case a # a’.

Ifa=ad, fa,ajp, = 0. Hence, there are holomorphic sections f; 4 of Hom(Qoga, Qoga) such that fqq =

>zt - fr.a- Because |fialn, = O((Ele —log |zl\)N>, we obtain the desired estimate. |

Local isomorphism with a nice property We can show the following lemma by the argument in the proof
of Lemma 7.28.

Lemma 7.37 There exists a holomorphic isomorphism ®x : Q€ x — Q& x such that (i) it preserves the
filtrations 'F (i =1,...,{), (ii) for each a € R, the induced map Q&aip, — ﬁGrf(Qﬁ]Dé) is equal to vg.
Similarly, we can take a holomorphic isomorphism @L(K) : Q<5€g|a()() — Q<55\Ta(2() satisfying the condi-

tions (i) it preserves the filtrations 'F (i = 1,...,{), (iii) the induced morphism on ﬁGrfa is equal to the given
one. |

By the weak norm estimate, ®x and <I>,E1 are bounded up to log order. We can show the following lemma
by using Lemma 7.36.

Lemma 7.38 We have ®53Vy — Vo = O(A(M, e)) for some € > 0 and M > 0 with respect to hg. |

Let @ and ®}. be morphisms as in Lemma 7.37. We set G := &' o &4

Lemma 7.39 We have the following estimates for some € > 0 and M > 0:

|G —id|, = O(A(M,e)), |VA,0(>\28,\)G|hO =O(A(M,e))
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Proof It follows from Lemma 7.36. |

Lemma 7.40 Let ®x and @L(K) satisfy the above conditions. We set
H:=8 - 8(@x 20" ) : Qoéox ® 0 (sl ) — Ox
Then, H = O(A(M, e)) with respect to hg for some e >0 and M > 0.

Proof It can be shown by the argument in the proof of Lemma 7.32. |

Local C*°-isomorphisms Let ®% (p = 0,...,m) be as in Lemma 7.37, and let a, (p = 0,...,m) be non-
negative C*°-functions on I such that 3 a, = 1. We set Ok := E;":O a, - ®F.. We also set G := (D)) ~! o P
and G? := (®%)~! o ®}.. By Lemma 7.39, |G? —id |5, = O(Ao(e)), and hence |G — id |5, = O(Ag(e)) for some
e>0and M > 0.

We can show the following estimate by using an argument in the proof of Lemma 7.33 with Lemma 7.38:

D' 0 VA(A2y) 0 B — Vi 0(A?0x) = O(A(M, ) (81)

Let @L‘(],C) (¢=0,1,...,m’) be as in Lemma 7.31, and let b; be non-negative C'*°-functions on ¢(K) such that

> by =1. We set @L(K) =3 by @L?S). We set H := S(®x ®a*(<I>L(K))) —&p. Then, we can show the following
estimate with respect to hg for some € > 0 and M > 0, by using Lemma 7.40:

H=0(AM,e)), 8o, H=O0(AM,e)) (82)

Eg P
Construction We take 0 < Ry < Ry < 1. We set K1 := {)\ | Al < RQ} and Iy := {/\ { R <A < Rl_l}. We
take a partition of unity (X,cl,x,c2, XU(ICl)) on P! which subordinates to {K1, K2, 0(K1)}.

We take a holomorphic isomorphism ®x, : Q€ cxx — QEkxx as in Lemma 7.37. Similarly, we take a

as in Lemma 7.37.

) We set

holomorphic isomorphism @l(,cl) : Q<5E(J)r\a(/<)xxf — Q<55|T0(/<)xxf

We can take a flat isomorphism @y, : (50, ﬁ){;) — (5, f)f)

[Kex(X—D) [Kex(X—D

® = XKy ® (I))C1 + XK, (I)’C2 + Xo (K1) * (I):rr(lcl)'

By using (81) and (82), we can check that ® satisfies the estimates in (63). Thus, the proof of Proposition 7.23
is finished. |

8 An application to HS-orbit

8.1 Preliminary
8.1.1 Compatibility of real structure and Stokes structure

Let X be a complex manifold. We set X := C x X and X°:= {0} x X. Let (H, Hg, V) be a TER-structure
on X. We say that H is unramifiedly pseudo-good if the following holds:

e We are given a good set of irregular values Irr(V) C M (X, X%)/H(X) in the level —1. Namely, (i) any
elements a of Irr(V) are of the form a = A~'a’ for some holomorphic functions a’ on X, (ii) a’ — b’ are
nowhere vanishing for distinct A=ta/, \71b" € Trr(V).

e M has the formal decomposition

(H7v)‘)?0 = @ (ﬁaaﬁa%
aclrr(V)

such that ﬁa — da is regular. Note that they are not assumed to be logarithmic.
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(See also Subsection 5.1.3.) If X is a point, it means that H requires no ramification in the sense of [8].

By a classical theory (see also Subsection 5.1.3), we have the Stokes filtration F* indexed by (Irr(V), SS)
for each small sector S of X — X°. We say that the real structure and the Stokes structure are compatible, if
the Stokes filtrations on any small sectors S come from a flat filtration of Hp, . (See [14].)

By taking Gr of (H,V) with respect to the Stokes filtrations, we obtain a TE-structure Grq(H, V) for a €
Irr(V). As observed in [8], if the real structure and the Stokes structure are compatible, Grq(H, V) is enriched to
a TER-structure denoted by Grq(H, Hg, V). If (H, Hg, V) is enriched to a TERP-structure (H, Hg, V, P,w),
Grq(H, Hg, V) is also naturally enriched to a TERP-structure denoted by Grq(H, Hg, V, P,w).

Another formulation In [8], a compatibility of real structure and Stokes structure is formulated in a slightly
different way. Let us check that it is equivalent to the above. For simplicity, we consider the case in which X
is a point.

Let H be a vector bundle on C'y with a meromorphic flat connection V: H — H ® Q]CA (0) such that
H requires no ramification with the good set of irregular values Irr(V) € A~! . C. Take § € R such that
Re(a — b)(r - eV=1%) +£ 0 for any distinct a, b € Irr(V). Take a sufficiently small € > 0, and let us consider the
sector

S = {r'e‘/jw|9076§0§00+7r+e}

Let S denote the closure of S in the real blow up 6’,\(0) — C) along 0. Let Z :=SN7~1(0). As a version of
Hukuhara-Turrittin theorem, it is well known that we have a unique flat decomposition

(H,V)z= P (Has:Vas) (83)
a€lrr(V)

such that the restriction of (83) to Z is the same as the pull back of the irregular decomposition of H 0"

Assume that the flat bundle (H, V)‘Ci is equipped with a real structure, i.e., a C-anti-linear flat involution
k: H — H. In other words, (H,V, k) is a TER-structure. In Section 8 of [8], the real structure and the Stokes
structure are defined to be compatible, if kK(H, s) = Hq s for any a € Irr(V) and any S as above.

If a small sector S is contained in S, the restriction of (83) to S gives a splitting of 7. Hence, if Hy s are
preserved by x for any a, the filtration F* is also preserved by . Let S; and Sy be small sectors containing
the rays {r-eV=1% |y > 0} and {—7-eY~1%| 7 > 0}, respectively. Then, a <g, b if and only if a >g, b. By the
parallel transform on S, the flat bundle H|s is trivialized, and we can observe that Hy s = ]—'fl ﬂ]—'fz. Hence, if

ff’i (i = 1,2) are preserved by k, Hq s is also preserved by . The equivalence of two notions of compatibilities

follows from these considerations.

8.1.2 Two Stokes filtrations of integrable twistor structures

Let (V, fDA) be a variation of integrable twistor structures over P* x X. It is obtained as the gluing of T E-
structure (Vp, D)) on X := C x X and T E-structure (Vao, DIS) on X1 := C, x XT. We set X0 := {0} x X C X
and X1 := {0} x Xt c C,, x XT.

Definition 8.1 We say that (V,D%) is unramifiedly pseudo-good, if both (Vy, Iﬁ)g) and (Voo, HSDLJ) is unramifiedly
pseudo-good. In that case, let Irr(]]])(’;) and Irr(]D)lJ) denote the sets of irregular values ofID)g and ID)lof, respectively.
If X is a point, it is also said that (V,D?) requires no ramification. |

Definition 8.2 Assume (V, ﬁA) is unramifiedly pseudo-good.

o We say that the sets of the irregular values of (V, lﬁ)A) are compatible, if Irr(lﬁé) and Irr (]13)’;0) bijectively
correspond by a «—— y*a.

o We say that (V, ]ﬁ)A) has compatible Stokes structures, if the following holds:

— The sets of irregular values of (V, ﬁA) are compatible.
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— For a small sector S of X — X°, we have the Stokes filtration F° of (Vo,ﬁg). We also have the

Stokes filtration F'S) of (Vao,DL.), where we regard v(S) as a small sector of XT — XT0. Then, FS
and F'S) are the same under the parallel transform along any rays connecting S and v(S). |

Remark 8.3 In the above definition, a ray means a line {(t - eV=le p ‘0 <t<oo}inCyx{P}CC;xX.
We say that it connects S and v(S), if (i) (t-eY~19 P) is contained in S for any sufficiently small t, (ii)
(t-eV=1¢ P) is contained in v(S) for any sufficiently large t. |

Lemma 8.4 If (V, ]D)A) is equipped with either a real structure k or a perfect pairing S of weight w, then the
irreqular values of ]D)f and ]D)f are compatible.

Proof We have Irr('y D/ ) = {’y a ’ ac Irr ]D)f } If (V, DA) is equipped with a real structure, (VOO,D ) ~
(Vo, D} 3). Hence, the irregular values of ]D) and ]D)f are compatible.

We have Irr(o *]D)go) = {o*a|a € Irr ]D)f )}. Note that a € Irr(DZ,) are of the form p~'d’, where o are
holomorphic functions on X¥. Heilce, o*a = —y*a. If (V, ID)?) is equippe~d with a perfect pairing, (VO,]D)g) is
isomorphic to the dual of 0*(V4, DL ). Therefore, the irregular values of ]Dg and D are compatible. 1

If (V, H?)A) is unramifiedly pseudo-good, we obtain T E-structure Grq(Vp, ]13)0) on X for a € Irr(D, ) and TE-

structure Gry(Vao, DL) on X for b € Irr(DL), by taking Gr with respect to the Stokes filtrations. If (V,D2)
has compatible Stokes structures, we have the natural isomorphism

Gra(Vo, Df) - o = Gryeg 7 (Voo, DL )|XT7XT0'

Hence, we obtain a variation of integrable twistor structures Grq(V, I@A) for each a € Irr(ﬁé ) as the gluing of
them. We have the following functoriality (Lemma 5.17).

Lemma 8.5 Let (V@ D@2 be unramifiedly pseudo-good. Assume (i) (V@ D@2 (q = 1,2) have compatible
Stokes filtrations, (ii) the union T = Irr(]D)(()l)f) U Irr(]D)(Q)f) is good. Then, a morphism (V) DMA) —
(V@ DAY induces Gra(V(l),D(l)A) — Grq (V(2 D@24 ) for each a € T. |

We have the natural isomorphisms
7* Gro(V,D?) ~ Grq (v (V, ﬁ)A)), 0" Grg(V, D) ~ Gr_q (e*(V, I@A)).
The following lemma follows from functoriality.

Lemma 8.6 Assume (V, ]ﬁ)A) has compatible Stokes structures. If (V, ]ﬁ)A) is equipped with a real structure,

(resp. a perfect pairing of weight w), each Grq(V, H~)A) is also equipped with an induced real structure (resp. an
induced perfect pairing of weight w).

Lemma 8.7 Let (H,Hp,V,P',—w) be a variation of TERP-structures, and let (V, fDA,S, K, —w) be the cor-
responding variation of twistor-TERP structures. (See Subsection 2.1.8 for the correspondence.) Assume that
(H,Hpg,V, P, —w) is unramifiedly pseudo-good, or equivalently, (V,D?,S, k, —w) is unramifiedly pseudo-good.

o The real structure and the Stokes structures of (H, V) are compatible, if and only if (V, ]ﬁA) has compatible
Stokes structures.

o If the real structures and the Stokes structures are compatible, Grqy(V, ]ﬁ)A,S,/@, —w) 1is the variation of
twistor-TERP structures corresponding to Gro(H, Hg, V, P, —w).

Proof Note that the Stokes filtrations of v*(H, V) on v*(9) is given by the composite of the conjugate with

respect to Hp and the parallel transport along the rays connecting S and ~(S), with the change of the index
sets from Irr(V) to {7*a|a € Irr(V)}. Then, the first claim follows.
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Let us consider the second claim. We have only to consider the case w = 0. We may assume that
(H,HR,V,P’) is obtained from (V,V,S,k) by the procedure explained in Subsection 2.1.8. By construc-
tion, we have Grq(H,V) = Grq(Vp, Vp). For comparison of induced real structures and pairings, we have only
to consider the case in which X is a point.

Let us compare the induced real structures. The flat real structure of H’ is obtained as the composite:
parallel transform ==

H LI 5
ato T Hi

H)\
Hence, we have the following factorization of the real structure on Gry(H)|\ obtained as Gr of the Stokes

filtration:

parallel transform Gra(r)|a
e,

Gra(H)l)\ Gru(H)Wl

It is the same as the real structure induced by Grq(x) on Grqe(V, V).
Let P: H® j*H — O¢, be the pairing induced by k and S as in (6), whose restriction to H' is P’. Let
S be a small sector in C}. We have the following factorization of P|g:

Gra(H)M

FEH) 0 *F ) (H) = FS (Vo) @ o'y 7S () 2255 F (Vo) @ 0" FLOL (Vi) —— Os

The restriction to F5 (H) ®j*fg(s)(H) is 0 unless a — b >g 0. The induced pairing P, for Gr,(V}) is factorized
as follows:

1Qc* Grq & Gr, S

Gra(Vo)is @ j* Gra(Vo) (s Gra(Vo)js ® 0" Grozy (Vo) jo(s) —— Os

Hence, it is the same as the pairing induced by Grq(V,V,S, k). Thus, the proof of Lemma 8.7 is finished. |

8.1.3 Preliminary for pull back

Weset X :=C., D={0}, ¥ :=C\xX,D:=CyxDand W:=DU ({0} x X). Let 7: X(W) — X be a
real blow up of X along W. Let m : 6')\( 0) — C)\ be the real blow up of C along {0}. Let ¢y : X — C
be given by ¢o(), z) = A - z. It induces the map ¢g : X (W) — C(0).

Let H be a vector bundle on C with a meromorphic flat connection V : H — H ® Qg . (¥0) such that
(H V) requires no ramification with the good set of irregular values Z C C-A~!. Let U denote the flat bundle on
C(0) associated to Hc. For each @ € my 1(0), we have the Stokes filtration .7-"Q of | for the meromorphic

prolongment H. (See Subsection 5.1.5) We can naturally regard (ES% as the flat bundle on X' (W) associated to
(@6 H)jx—w -
Lemma 8.8 The following holds:

o ¢5(H,V) is unramifiedly pseudo-good in the level m = (—1,—1). (See Subsection 5.1.3.) The set of
wrregular values is given by ¢p1 = {qb(’;a | a€ I}.

e For each P € n=Y(W), the Stokes filtration F¥ of 53 (B)p for ¢y H is the pull back of the Stokes filtration
of U~
|¢o(P) *

o We have the natural isomorphism ¢§ Grq(H) ~ Gr¢3a(¢3H).

Proof We have the decomposition (H,V)g = @GGI(HW§“), where Vo — da are regular. It induces the
decomposition of ¢f(H, V)‘W. Hence, the first claim is clear.

We set Q := go(P). Note that the orders <g and <p are the same under the identification 7 ~ ¢3Z. Let
H; D H be an unramifiedly good lattice. Then, ¢§H; is an unramifiedly good lattice. We take a small sector
Sg € MS(Q,C},T) such that there exists the Stokes filtration F92 of H1\§Q~ We take a small multi-sector

Sp € MS(P, X — W, ¢§Z) such that ¢o(Sp) C Sg. Then, we obtain the filtration (ES}"SQ of ¢ (H1) 5, indexed
by (QSSI , < p). It gives the Stokes filtration of ¢f(H 1)|§P, which follows from the characterization in Proposition
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5.5. Since the filtration of qz~55 () p induced by QZSJ:SQ is the same as the pull back of F< on g, we obtain
the second claim. Note that we also obtain that the Stokes filtration of ¢§(H )\§P is given by the pull back of
the Stokes filtration of Hyg,.

Let Sp be a small multi-sector as above. By the above compatibility of the Stokes filtrations and Lemma
5.21, we obtain the natural isomorphisms

%0 (Gra(H))|§P ~ Greza(ooH) 5, (84)

By varying Sp and gluing them, we obtain ¢ (Gru(H)) oy = G%Sa(%H)uj(W)’ where U is a neighbourhood of
W, and LN{(W) denote the real blow up of ¢ along W. By using the flatness, it is extended to ¢y (Gra(H))

®w) =
Gr¢3a(¢3H)‘A~f(W). Hence, we obtain an isomorphism on X'. 1

8.1.4 Rescaling and HS-orbit

We recall a rescaling construction in [7] and [8]. See also [22]. We set X := C, D = {0} and X* := X — D.
For R > 0, we set X(R) := {z € X ||2| < R} and X*(R) := X(R) N X*. We set X := C x X. We use the
symbols X*, D, X(R) and X*(R) in similar meanings. Let ¢y : X — C' be given by ¢¢(A,2) = A-z. The
restriction to X* is denoted by .

TERP-structure We consider only TERP-structures of weight 0. Hence, we omit to specify weights.
Let (H,Hg,V,P) be a TERP-structure. Hertling and Sevenheck studied the variation of TERP-structures
Y5 (H, Hg, V, P) on X*. If there exists an R > 0 such that ¢5(H, Hg, V, P) x+(r) is pure and polarized, the
variation is called an HS-orbit (Hertling-Sevenheck orbit), and we say in this paper that (H, Hg, V, P) induces
an HS-orbit.

Remark 8.9 An HS-orbit is called a “nilpotent orbit” in [8]. We use “HS-orbit” for distinction from twistor
nilpotent orbit. It matches their terminology “Sabbah-orbit”. |

Lemma 8.10 We assume (i) (H,V) requires no ramification, (ii) the Stokes structure and the real structure
of (H,H%g,V) are compatible. Then, the following holds:

o Yi(H,V) is unramifiedly pseudo-good. The set of irregular values is given by {wé‘a | ae Irr(V)}.
o The real structure and the Stokes structure of §(H, V) are compatible.
o We have the natural isomorphism g Grq (H, Hp,V, P) =~ Gryza 95 (H, Hy,V, P).

Proof The first two claims follow from Lemma 8.8. To show the third claim, we have only to compare the
induced flat pairings. It can be done directly, or by considering the restriction to C'y x {1}. |

Integrable twistor structure We set Xt := C, x Xt pt .= C, x Dt x*t .= xt — Dt and Wt :=
DU ({0} x XT). Let ¢poo : XT — C, be given by ¢oo (11, 2) = p1 - Z. The restriction to X*T is denoted by .
Let (V,V) be an integrable twistor structure on P! which requires no ramification. It is obtained as the
gluing of (Vo, Vo) and (Voo, Vo). The gluing is denoted by g : Voic; = Vlcs,s which is flat with respect to V.
We set HS(V)o = ¢§(Vo) and HS(V) s := ¢% (V). They are naturally equipped with T E-structure
HS(V)o and TE-structure HS(V)s. Note that HS(V, V) and HS(V, V)4 are unramifiedly pseudo good. Let

us construct a flat isomorphism ® between HS(V, V)O\C§><X* and HS(V, V)oolC;xXT*- The fibers HS(V)o(a,2)

and HS(V)so|(4,2) are naturally identified with Voy., and Vi),.z, respectively. If A = !, we have (A-2)~! =

w-Z - |2|72. Hence, we have an isomorphism Dxz) s H(V)ojr2) = H(V)oo|(r-1,2) induced by the gluing g with
the parallel transform along the segments connecting A=!-z and A=1-%-|2| 2. Thus, we obtain the isomorphism
® as desired.

Let HS(V, V) denote the variation of integrable twistor structures obtained as the gluing of HS(V, V)q and
HS(V,V)oo. The following lemma is clear from the construction and the functoriality (Lemma 5.17).

Lemma 8.11
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o Let F: (VD VW) — (V) V) be a morphism of integrable pure twistor structures. Then, we have
the induced morphisms HS(F) : HS(V(H), vy — HS(VR), v(2),

o Let f be~y oro. Then, HSof*(V,V) is naturally isomorphic to f*HS(V, V). |

By the above lemma, a real structure  of (V, V) induces a real structure HS(x) of HS(V, V). Since we have
the natural isomorphism HS(T(0)) ~ T(0)x-, a paring S of (V,V) with weight 0 induces a pairing HS(S) of
HS(V, V) with weight 0. Hence, an integrable twistor structure with a pairing (V,V,S) induces HS(V,V,S)
on P! x X*, and if (V,V,S) is equipped with a real structure, HS(V, V,S) is also equipped with a naturally
induced real structure.

Lemma 8.12 Assume that (V, V) has compatible Stokes structures. Then, HS(V, V) also has compatible Stokes
structures, and we have the natural isomorphism

HS Gro(V, V) = Grys o HS(V, V) (85)

If (V, V) is equipped with a pairing of weight 0 (resp. a real structure), (85) preserves the induced pairings (resp.
real structures).

Proof It follows from Lemma 8.8. |

Lemma 8.13 Let (H,Hpy,V,P’) be a TERP-structure, and let (V,V,S, k) be the corresponding twistor-TERP
structure. Then, HS(V,V, S, k) is the variation of twistor-TERP structure corresponding to 1§(H, Hg,V, P").

Proof By construction, we have the natural isomorphism HS(V, V) ~ (H,V). We have only to compare the
induced real structures and pairings on them. Since they are flat, we have only to compare them on the fiber
over z = 1. Then, the claim is clear. |

If there exists an R > 0 such that HS(V, V,S)p1x x+(r) is pure and polarized, it is called a twistor HS-orbit,
and we say that (V,V,S) induces a twistor HS-orbit.

8.2 Reduction of wild HS-orbit
8.2.1 Statement

We use the notation in Subsection 8.1.4. Let (V, V) be an integrable twistor structure with a perfect pairing S
of weight 0, which requires no ramification. Assume that (V,V,S) induces a twistor HS-orbit on P! x X*(R)
for some R > 0. We obtain the underlying unramifiedly good wild harmonic bundle (E, g, 0, k) on X*(R) of
HS(V, V,S)p1x x+(r), which is unramifiedly good. Let Z denote the set of irregular values of (V,V) at 0. It is
easy to see

Irr(0) = {a(z) |a(\) € T} ~T.
We will not distinguish them in the following.

Let (£4,D%,Sg) denote the variation of polarized pure twistor structure associated to (E,dg, 0, h). It is
enriched to integrable one (€ A,IE)A7SE). Although it is naturally isomorphic to HS(V,V,S), it is non-trivial
that the natural meromorphic extensions Q& and ¢f(Vy) ® Op(xD) are isomorphic. Hence, we use the symbol
(SA,}]S)A,SE) for distinction. By applying the construction in Subsection 7.3.1 to (EA,]ﬁ)A,SE), we obtain a

wild variation of pure polarized integrable twistor structures Gra(€A7H3)A7SE) for each a € Z. We will prove
the following theorem in Subsection 8.2.2.

Theorem 8.14

o (V,V) has compatible Stokes structures.

e HSGr,(V,V,S) is naturally isomorphic to Gra(EA,]]S)A,SE) for each a € I. In particular, Grq(V,V,S)
induces a twistor HS-orbit.

Before going into the proof, we give a consequence.
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Corollary 8.15 Let (H,Hpy,V,P,0) be a TERP structure which requires no ramification. If (H, Hg,V, P,0)
induces an HS-orbit, it is a mized-TERP structure in the sense of Definition 9.1 of [8].

Proof Thanks to Theorem 9.3 of (8], (H, Hg,V, P,0) is a mixed-TERP structure, if and only if (i) the real
structure and the Stokes structure of (H, Hg, V) are compatible, (ii) Grq(H, Hg, V, P,0) induces an HS-orbit
for each a € Irr(V). Hence, this corollary follows from Theorem 8.14, Lemma 8.7 and Lemma 8.13. |

The claim of the corollary was established by Hertling and Sevenheck [8] in the case that (H, V) has regular
singularity. They also showed the converse of the claim in general.

Remark 8.16 In their study of the case that (H,V) has regular singularity, Hertling and Sevenheck closely
investigated the limiting object. In particular, they showed that the limiting TERP-structure is generated by
elementary sections, for which the eigenvalues of the new supersymmetric index can be described in terms of the
Hodge filtrations of the corresponding mized Hodge structure.

Even in the irreqular case, the limiting object can be obtained from the reduced regular one. Hence, the limit
of the eigenvalues of the new supersymmetric index of ¢§(H, Hg,V, P) can be described in terms of their mized
Hodge structures. |

8.2.2 Proof of Theorem 8.14

We have the natural identifications HS(V, V) ~ (E,ﬁf) and HS(V,V)s >~ (ETJ]S)”). We have the following
locally free Oy (x¥D)-modules o
HS(V)o := ¢6(Vo) ® Ox(+D).

We also have the following locally free O y+(*¥DT)-modules

AS(V)eo 1= 6% (Vi) ® Ot (xDT).

Comparison of Q€ and HS(V), We would like to show that Q€ and HS(V)g are naturally isomorphic. We
set W :=DU ({0} x X). Let 7 : X(W) — X be the real blow up of X along W. Let U be the flat bundle on
X (W) associated to (5,ﬁ)f)|X_W. We set 57 := {¢pa|ac T}

As remarked in Lemma 8.8, ¢§ H is a pseudo-good lattice of HS(V)g ® Ox (xW) in the level m = (-1, —1).

Lemma 8.17 Qo€ is a good lattice of QE @ Ox (xW) in the level m = (—1,—1) around (A, z) = (0,0).

Proof We have the decomposition (Qo€, D)\W = @aeI(QOEAa, }IA))a) such that Dy — dxa is logarithmic. We have
the corresponding decomposition Df = P }]S){i Let us show that

(B~ d(a(z)/A) ) QFu € A~ Q&4 ® A (log W)

Since D, — dxa is logarithmic, it is satisfied for the derivatives along the X-direction. Since we have already
known that the restriction of Qo€ to C} X X is unramifiedly good by Lemma 7.13, it is also satisfied for the
derivatives along the A\-direction. |

Let P € 7=%(0,0). We have the Stokes filtration F{" of 0| p corresponding to the meromorphic prolongment
QE ® Ox(*W), and the Stokes filtration FI of U p corresponding to the meromorphic prolongment HS(V)o®
Ox(xW). (See Subsection 5.1.5 for such filtrations in the pseudo-good case.)

Lemma 8.18 FF = FF.

Proof Let Sp € MS(P,X — W,¢¢Z) be a small sector such that there exist the Stokes filtrations FPP of
Q¢ 5, and F5* of ¢5(H) g, We can take Q € Sp N~ (W \ D) such that the orders <g and <p on Z are the

same. We have the filtrations }"iQ (i = 1,2) of V) corresponding to the meromorphic prolongments Q& (xW)
and HS(V)o(xW). Because HS(V, V)o ~ (5,®f)7 we have F2 = FS.
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Let us show that F! is obtained as the parallel transport of .7197 which implies F¥ = FI. We take

K2
So € MS(Q, X — W, ¢;T) such that there exist the Stokes filtrations .2 of Q¢ 5, and F52 of ¢ (H)5,- By
using the characterization in Proposition 5.20, we obtain (]_—ls P )ng = }_is ?. Hence, we can conclude that FF
are obtained as the parallel transport of }"iQ . |

Lemma 8.19 The isomorphism & ~ HS(V )y on X — D is extended to the isomorphism QE ~ HS(V )y on X.

Proof Let P € 771(0,0). We take a small multi-sector Sp € MS(P, X — W,Z) such that we have the Stokes
filtrations F57 for Q05|§P and ¢ (H)‘gp. By Lemma 8.18, the restrictions of them to Sp are the same. We
take a flat splitting &5, = @,c7 £a,s, Which is extended to the decompositions:

5, =P Qcas, ¢4(H)s, = P 65(H)as
acT
Let £(—a) be a line bundle O (xW) - e with Ve = e - (—d(A"'a)). We remark that Gra(¢5H) ® L(—a) and
Grq(QE) ® L(—a) have regular singularity along W. Hence, the isomorphism on X — W is naturally extended
to the isomorphism Grq(¢iH) ® L(—a) ~ Gra(QE) ® L(—a). Since the restrictions of Grq(¢iH) © O(xD) and
Grq(QE) to X — D are naturally isomorphic, we obtain the isomorphism Grq(¢p§H) ® O(xD) ~ Grq(QE).

Let wq and vy be frames of Grq(¢5H) RO (xD) and Grq(QE), respectively. We have the relation wg, = vq-Aq,
where A, are meromorphic along D. We take lifts w, g and v4 s to £ s by using the above splittings for any
small sectors in X —W. We have the relation wq, g = vq4,5- Aq. Then, the isomorphism £ ~ HS(V'), is extended
to Q& ~ HS(V)oiy on some small neighbourhood U of (0,0), which follows from Proposition 5.19. (We may
apply Lemma 5.15. But, since ¢jVp may not be a good lattice, we replace V with an unramifiedly good lattice,
or we use a variant of Lemma 5.15 for a pseudo-good lattice.) Then, it is easy to observe that the isomorphism
is extended to Q€ ~ HS(V)o by using Hartogs theorem. (Sabbah also independently obtained an argument to
extend such isomorphisms in this kind of situation.) 1

Similarly, £ ~ HS(V ), on XT — DT is extended to the isomorphism Q€T ~ HS(V)., on XT.

Proof of the first claim Let X2 denote the real blow up of P! x X along (P! x D)U ({0} x X)U ({oo} x X).
Let 7 : XT(W1) — X denote the real blow up of C,, x X' along W1 = DT U ({0} x XT). We have

x4 =xw)yuxtwh,.

Let U2 denote the flat bundle on X2 associated to the flat bundle (&, ]ﬁ)f)\c;x(fo)-
We have the C*°-map X — W — (R>( x S')? given by

v 2)— (AL M), (121 2/121))
It induces the natural identification X' (W) ~ (R0 x S1)%. We set
Py = ((o,exp(ﬁ@), a1, 1)) e n1((0,1)) c X(W).
Similarly, we identify XT(W1) with (R>o x S1)? via the map induced by
(s 2) — (s /1), (12, 2/121) ).
We set Qp := ((O,exp(—ﬁgp)), (1, 1)) e (7H)71((0,1)) ¢ XT(WT). Note that we can identify (V,V) with

HS(V, V)p1x{1}. Hence, we have only to compare the Stokes filtrations Fho (‘1]630) and FQo (Q]IAQO

parallel transport along the ray ((8, exp(v—1¢)), (1, 1)) (s € R>oU{+00}) connecting Py and Qp. (Note that

the signature of the arguments are reversed by the coordinate change A\~ = p.)

) under the
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Let us consider the map G : [0,1] x [0,1] — X (W) given by
G(s,t) = (s, exp(v=T), (1)),

Note G(0,1) = Py. We set P, := G(1,0) and P, := G(1,1). The image of I'g := ([0,1] x {0}) U ({0} x [0,1])
is contained in 7~ !(W). The orders <p are independent of P € G(I'g). Hence, the Stokes filtrations are
unchanged along G(I'y).

Similarly, let us consider the map G':[0,1] x [0,1] — QFT(WT) given by

G (s,t) = ((s.exp(~v=T9)), (1, 1))

Note GT(0,1) = Qp. We set Q1 := G'(1,0) and Q2 := G'(1,1). The image of I's, := ([0, 1] x {0}) U ({0} x [0, 1])
is contained in (77)~1(WT). The orders <¢ are independent of the choice of Q € G'(I's,). Hence, the Stokes
filtrations are unchanged along G'(T').

Under the identification X — W = Xt — W1, we have P, = Q2, and the union of the paths G([0,1] x {1})
and G1([0,1] x {1}) is the ray connecting Py and Q. Hence, for the comparison of % and F?°, we have only
to show that F(Bgp,) of V|p, and F (B q,) of Vg, are the same. It follows from the characterization
of the Stokes filtrations of (Q&€,D) and (QET, D) by growth order of the norms of flat sections with respect to
the metric h. (See Subsection 6.3.) Thus, we obtain the first claim of Theorem 8.14.

Proof of the second claim By using Corollary 5.23 and Lemma 8.12, we obtain the isomorphisms on
P! x X*(R) for some R > 0:

Gra(£2,D%,Sp) = Gry:o HS(V, V,S) =~ HS Gro(V, V, S)

Thus, the second claim is also proved. |
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