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The purpose of this paper is twofold. One is to give a survey of our study on the reductions of harmonic
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1 Introduction

In our previous papers [17], [18] and [19], we studied asymptotic behaviour of tame and wild harmonic bundles.
Briefly, one of the main results is the following sequence of reductions of harmonic bundles:

wild
(irregular) =⇒ tame

(regular) =⇒ twistor
nilpotent orbit =⇒ twistor nilpotent orbit

of split type (1)

A reduced object is simpler than the original one, but it still gives a good approximation of the original one.
And, a twistor nilpotent orbit of split type comes from a variation of polarized pure Hodge structures, whose
asymptotic behaviour was deeply studied by E. Cattani, A. Kaplan, M. Kashiwara, T. Kawai and W. Schmid.
Thus, we can say that the asymptotic behaviour of wild harmonic bundles is understood pretty well.

The main purpose of this paper is twofold. One is to give a survey of these reductions, and the other is to
explain a simple application in the study of TERP structure.

C. Hertling [7] initiated the study of TERP structures inspired by mathematical physics and singularity
theory. The study was further developed by Hertling and C. Sevenheck. For example, they investigated
“nilpotent orbit” [8], asymptotic behaviour of tame variation of TERP structures and classifying spaces [9]. We
refer to the above papers and a survey [10] for more details and precise.

Remark 1.1 Their “nilpotent orbit” is called “HS-orbit” (Hertling-Sevenheck orbit) in this paper. We can
consider several kinds of generalization of “nilpotent orbit” in the theory of TERP structures and twistor struc-
tures. HS-orbit is the one. Another one is twistor nilpotent orbit studied in [18], which we will mainly use in
this paper.

Remark 1.2 We prefer to regard TERP structure as integrable twistor structure with a real structure and a
pairing studied by C. Sabbah. It is called twistor-TERP structure in this paper.

We will give an enrichment of the sequence (1) with TERP structures or integrable twistor structures. As an
application, we will study the behaviour of “new supersymmetric index” of variation of pure polarized TERP
structures. Let ∇ be a meromorphic connection of V = O⊕ rP1 admitting a pole at {0,∞} of at most order two.
Let d be the natural connection of V . Then, we have the expression ∇ = d +

(
λ−1 · U1 − Q − λ · U2

)
· dλ/λ,

where Ui,Q ∈ End(V ). If (V,∇) is equipped with a real structure and a polarization (see Subsection 2.1.5),
there is some more restriction on them. Anyway, Q is called the supersymmetric index of (V,∇). We set
X :=

{
(z1, . . . , zn)

∣∣ |zi| < 1
}

and D :=
⋃n
i=1{zi = 0}. Let (V, D̃4,S, κ) be a variation of pure polarized

twistor-TERP structures of weight 0 on P1 × (X − D). (See Subsection 2.1.) It is called unramifiedly good
wild (resp. tame), if the underlying harmonic bundle (E, ∂E , θ, h) is so. (See Subsection 6.1.) For each point
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P ∈ X − D, we have the new supersymmetric index QP ∈ End(V4|P1×P ) ' End(E|P ) of (V4, D̃4)|P1×P , and
thus we obtain a C∞-section Q of End(E). We are interested in the behaviour of Q around (0, . . . , 0). The
result is the following:

• In the case of twistor-TERP nilpotent orbit of split type, the new supersymmetric index can be easily
computed from the data of the corresponding polarized mixed twistor-TERP structure. In particular,
their eigenvalues are constant. (See Section 3.)

• From a twistor-TERP nilpotent orbit (V, D̃4,S, κ), we obtain a twistor-TERP nilpotent orbit of split
type (V0, D̃40 ,S0, κ0), by taking Gr with respect to the weight filtration. (Precisely, Gr is taken for the
corresponding polarized mixed twistor-TERP structure.) The new supersymmetric index Q of (V, D̃4)
can be approximated by the new supersymmetric index Q0 of (V0, D̃40 ) up to O

(∑
(− log |zi|)−1/2

)
. In

particular, the eigenvalues of Q are constant up to O
(∑

(− log |zi|)−δ
)

for some δ > 0. (See Section 4.)

• From a tame variation of polarized pure twistor-TERP-structures (V, D̃4,S, κ), we obtain a twistor-TERP
nilpotent orbit (V0, D̃40 ,S0, κ0) associated to the limit mixed twistor-TERP structure which was essentially
considered in [9] as an enrichment of the limit mixed twistor structure in [18]. We can approximate the new
supersymmetric index Q of (V, D̃4) by the new supersymmetric index Q0 of (V0, D̃40 ) up to O

(∑
|zi|ε

)
for some ε > 0. In particular, the eigenvalues of Q0 approximate those of Q up to O

(∑
|zi|ε

′
)

for some
ε′ > 0. (See Subsection 7.4 for more precise statements.)

• From a wild variation of polarized pure twistor-TERP structures (V, D̃4,S, κ), we obtain a tame variation
of polarized pure twistor-TERP structures (V0, D̃40 ,S0, κ0), by taking Gr with respect to Stokes filtrations.
We can approximate the new supersymmetric index Q of (V, D̃4) by the new supersymmetric index Q0

of (V0, D̃40 ) up to a term with exponential decay. In particular, the eigenvalues of Q0 approximate those
of Q up to exponential decay. (See Subsection 7.3 for more precise statements.)

In each case, we will construct a C∞-map V0 −→ V, which does not preserve but approximate the additional
structures. (More precisely, V0 should be twisted.) It would be interesting to clarify the precise relation between
these results and the celebrated nilpotent orbit theorem for Hodge structures due to W. Schmid [23]. (See also
[9].)

As a corollary, we obtain the convergence of the eigenvalues of new supersymmetric indices of wild harmonic
bundles on a punctured disc. In his recent work (Section 3 of [22]), Sabbah studied the eigenvalues of new
supersymmetric indices for polarized wild pure integrable twistor D-modules on curves. Since wild harmonic
bundles are prolonged to polarized wild pure twistor D-modules [19], we can also deduce the above convergence
in the curve case from his results.

We also show that if a TERP-structure induces an HS-orbit, then it is a mixed-TERP structure in the sense
of [8] by using the reduction from wild to tame, which was conjectured by Hertling and Sevenheck.

Outline of this paper In Subsection 2.1 we recall integrable pure twistor structure and TERP structure
and their variations in our convenient way, which were originally studied by Hertling, Sabbah and Sevenheck.
We look at some basic examples in Subsection 2.2. In particular, we introduce the notions of integrable twistor
nilpotent orbit and twistor-TERP nilpotent orbit. In Subsection 2.3, we argue a convergence of integrable pure
twistor structures and new supersymmetric indices. The result will be used in many times. In Subsection 2.4,
we consider a variation of polarized mixed twistor structures. In Subsection 2.4.2, we explain the reduction
from polarized mixed twistor structure to polarized mixed twistor structure of split type. In Subsection 2.4.3,
we give a C∞-splitting of weight filtrations compatible with nilpotent maps, which is a preparation for Section
4.

In Section 3, we study polarized mixed twistor structure of split type with some additional structures. It is
quite easy to handle. In Section 4, we show the correspondence between twistor nilpotent orbits and polarized
mixed twistor structures. We have already established the way from twistor nilpotent orbits to polarized mixed
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twistor structures in [18]. The converse was also established in the curve case. The higher dimensional case is
new. The correspondence is easily enriched with integrability and real structures. We also show that a twistor
nilpotent orbit is approximated with a twistor nilpotent orbit of split type.

In Section 5, we give a review on Stokes structure and reductions for a family of meromorphic λ-flat bundles,
studied in Sections 7 and 8 in [19]. We give some minor complementary results on connections along the λ-
direction and pseudo-good lattices.

In Section 6, we explain the reduction from unramifiedly good wild harmonic bundles to polarized mixed
twistor structures, studied in [18] and [19]. We give a review on the prolongation of harmonic bundles in
Subsection 6.3. Then, in Subsection 6.4, we review the reduction from unramifiedly good wild bundles to tame
harmonic bundles as the Gr with respect to Stokes filtrations, which is one of the main results in [19], and in
Subsection 6.5, we review the reduction from tame harmonic bundles to polarized mixed twistor structure as
the Gr with respect to KMS-structure, which is one of the main results in [18]. Together with the result in
Section 4, we can regard it as the reduction to nilpotent orbits.

In Section 7, we argue an enrichment of the reductions with integrability and real structure. One of the
main issues is to obtain a meromorphic extension of the connection along the λ-direction. For that purpose, we
prepare some estimate in Subsection 7.1. Then, it is easy to obtain the meromorphic prolongment of variations
of integrable twistor structures and the enrichment of the sequence of reductions as in (1). We also show
that the reduced one gives a good approximation of the original one. In particular, we obtain the results on
approximation of the new supersymmetric indices of wild or tame variation of integrable twistor structures.

In Section 8, we study the reduction of HS-orbit.

Acknowledgement This paper grew out of my effort to understand the work due to Claus Hertling, Claude
Sabbah and Christian Sevenheck on TERP structure and integrable twistor structure. I am grateful to them
who attracted my attention to this subject. I also thank their comments on the earlier versions of this paper. In
particular, Hertling kindly sent a surprisingly detailed and careful report, which was quite helpful for improving
this paper and correcting some errors in earlier versions.

I wish to express my thanks to Yoshifumi Tsuchimoto and Akira Ishii for their constant encouragement.
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“New developments in Algebraic Geometry, Integrable Systems and Mirror symmetry” in Kyoto. This paper is
an enhancement of the talks. I would like to express my gratitude to the organizers of the conferences on this
occasion.

I am grateful to the partial financial support by Ministry of Education, Culture, Sports, Science and Tech-
nology.

2 Preliminary

2.1 Integrable twistor structure

We recall the notion of integrable twistor structures and TERP structures in our convenient way just for our
understanding. See [7], [8] and [21] for the original definitions and for more details. We also recall twistor
structures introduced in [27]. See also [17] and [18].

2.1.1 Some sheaves and differential operators on P1 ×X

Let P1 denote a one dimensional complex projective space. We regard it as the gluing of two complex lines Cλ

and Cµ by λ = µ−1. We set C∗
λ := Cλ − {0}.

Let X be a complex manifold. We set X := Cλ × X and X 0 := {0} × X. Let Ω̃1,0
X be the C∞-bundle

associated to Ω1,0
X (logX 0)⊗OX (X 0). We put Ω̃0,1

X := Ω0,1
X , and we define

Ω̃1
X := Ω̃1,0

X ⊕ Ω̃0,1
X , Ω̃·X :=

·∧
Ω̃1
X

The associated sheaves of C∞-sections are denoted by the same symbols. Let D̃fX : Ω̃·X −→ Ω̃·+1
X denote the

differential operator induced by the exterior differential d.
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Let X† denote the conjugate of X. We set X † := Cµ × X†. By the same procedure, we obtain the
C∞-bundles Ω̃·X † with the differential operator D̃† fX .

Their restrictions to C∗
λ ×X = C∗

µ ×X† are naturally isomorphic:(
Ω̃·X , D̃

f
X

)
|C∗

λ×X
=

(
Ω·C∗

λ×X
, d

)
=

(
Ω̃·X † , D̃† fX

)
|C∗

µ×X†

By gluing them, we obtain the C∞-bundles Ω̃·P1×X with a differential operator D̃4X .

Remark 2.1 D̃fX and D̃† fX are denoted also by d, if there is no risk of confusion.

We have the decomposition Ω̃1
P1×X = ξΩ1

X ⊕ Ω̃1
P1 into the X-direction and the P1-direction. The restriction

of D̃4X to the X-direction is denoted by D4X . The restriction to the P1-direction is denoted by dP1 . We have the
decomposition

Ω̃1
P1 = π∗Ω1,0

P1 (2 · {0,∞})⊕ π∗Ω0,1
P1 ,

into the (1, 0)-part and the (0, 1)-part, where π denotes the projection P1×X −→ P1. We have the corresponding
decomposition dP1 = ∂P1 + ∂P1 .

Let ν : P1 −→ P1 be a diffeomorphism. Assume ν satisfies one of the following:

(A1) ν is holomorphic with ν(0) = 0 and ν(∞) =∞.

(A2) ν is anti-holomorphic with ν(0) =∞ and ν(∞) = 0.

In particular, we will often use the maps σ, γ and j:

σ([z0 : z1]) = [−z1 : z0], γ([z0 : z1]) = [z1 : z0], j([z0 : z1]) = [−z0 : z1]

The induced diffeomorphism P1 ×X −→ P1 ×X is also denoted by ν. In the case (A1), we have the natural
isomorphism Φν : ν∗Ω̃·P1×X ' Ω̃·P1×X of C∞-vector bundles given by the ordinary pull back. In the case (A2),
the multiplication of C∞-functions on ν∗Ω̃·P1×X is twisted as g · ν∗(ω) = ν∗

(
ν∗(g) · ω

)
for a function g and

a section ω of Ω̃·P1×X . Then, we have the C∞-isomorphism Φν : ν∗Ω̃·P1×X ' Ω̃·P1×X given by the complex
conjugate and the ordinary pull back

Φν(ν∗ω) = ν∗(ω).

It is easy to check that Φν ◦ ν∗(D̃4X) = D̃4X ◦ Φν . Similar relations hold for D4X and dP1 . If we are given an
additional bundle F , the induced isomorphism F ⊗ ν∗

(
Ω̃·P1×X

)
' F ⊗ Ω̃·P1×X is also denoted by Φν .

2.1.2 Definitions and some remarks

Variation of twistor structures Let V be a C∞-vector bundle on P1 × X. We use the same symbol to
denote the associated sheaf of C∞-sections. A P1-holomorphic structure of V is defined to be a differential
operator

d′′P1,V : V −→ V ⊗ π∗Ω0,1
P1

satisfying (i) d′′P1,V (f ·s) = f ·d′′P1,V (s)+∂P1(f) ·s for a C∞-function f and a section s of V , (ii) d′′P1,V ◦d′′P1,V = 0.
Such a tuple (V, d′′P1,V ) is called a P1-holomorphic vector bundle.

A T T̃ -structure of (V, d′′P1,V ) is a differential operator

D4V : V −→ V ⊗ ξΩ1
X

such that (i) D4V (f · s) = f ·D4V (s)+ D4X(f) · s for a C∞-function f and a section s of V , (ii) (d′′P1,V +D4V )2 = 0.

Such a tuple (V, d′′P1,V ,D
4
V ) is called a T T̃ -structure in [7], or a variation of P1-holomorphic vector bundles in

[18]. In this section, we prefer to call it variation of twistor structures.
If X is a point, it is just a holomorphic vector bundle on P1.

Remark 2.2 We will often omit to specify d′′P1,V when we consider P1-holomorphic bundles or variations of
twistor structures (variations of P1-holomorphic bundles).
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Variation of integrable twistor structures A T T̃E-structure of V is a differential operator

D̃4V : V −→ V ⊗ Ω̃1
P1×X

satisfying (i) D̃4V (f · s) = D̃4X(f) · s + f · D̃4V (s) for a C∞-function f and a section s of V , (ii) D̃4V ◦ D̃4V = 0.
Such a tuple (V, D̃4V ) is called a variation of integrable twistor structures.

If X is a point, it is equivalent to a holomorphic vector bundle V on P1 with a meromorphic connection ∇
which admits a pole at {0,∞} with at most order 2, i.e.,

∇(V ) ⊂ V ⊗ Ω1
(
2 · {0,∞}

)
.

In this case, it is simply called an integrable twistor structure.

Morphisms A morphism of variation of twistor structures F : (V1, d
′′
P1,V1

,D4V1
) −→ (V2, d

′′
P1,V2

,D4V2
) is defined

to be a morphism of the associated sheaves of C∞-sections, compatible with the differential operators. If X is
a point, it is equivalent to an OP1-morphism.

A morphism of variation of integrable twistor structures F : (V1, D̃4V1
) −→ (V2, D̃4V2

) is defined to be a
morphism of the associated sheaves of C∞-sections, compatible with the differential operators. If X is a point,
it is equivalent to an OP1-morphism compatible with the meromorphic connections.

Some functoriality Let (V, D̃4V ) be a variation of integrable twistor structures. Let f : Y −→ X be a
holomorphic map of complex manifolds. Then, we have the naturally induced variation of integrable twistor
structures f∗(V, D̃4V ) as in the case of ordinary connections.

Let ν : P1 −→ P1 be a diffeomorphism satisfying one of (A1) or (A2) above. Then, ν∗V is naturally equipped
with a T T̃E-structure D̃4ν∗V given as follows:

D̃4ν∗V
(
Φν(ν∗s)

)
= Φν

(
ν∗

(
D̃4V (s)

))
Here, s denotes a section of V ⊗ Ω̃·X .

We also have the pull back of variation of twistor structures via f and ν as above.

Pure and mixed Let (V, d′′P1,V ) be a P1-holomorphic vector bundle on P1 ×X. It is called pure of weight w
if the restrictions VP := (V, d′′P1,V )|P1×{P} are pure twistor structures of weight w for any P ∈ X, i.e., VP are
isomorphic to direct sums of OP1(w). A variation of (integrable) twistor structures is called pure of weight w,
if the underlying P1-holomorphic vector bundle is pure of weight w.

Let W be a filtration of V by vector subbundles indexed by integers. We say that W is P1-holomorphic,
if each Wn are preserved by d′′P1,V . We have induced P1-holomorphic vector bundles GrWn (V, d′′P1,V ). Then,

(V, d′′P1 ,W ) is called mixed, if each GrWn (V, d′′P1,V ) is pure of weight n. When (V, d′′P1) is equipped with T T̃ -

structure D4V (resp. T T̃E-structure D̃4V ), we say that W is D4V -flat (resp. D̃4V -flat) or more simply flat, if
each Wn is preserved by the operator. In that case, (V, d′′P1,V ,D

4
V ,W ) (resp. (V, D̃4V ,W )) is called mixed, if

(V, d′′P1 ,W ) is mixed.

New supersymmetric index Let (V,∇) be a pure integrable twistor structure of weight 0. We have a
global trivialization V ' O⊕rP1 , which is uniquely determined up to obvious ambiguity. Let d denote the natural
connection of O⊕rP1 . Then, we have the decomposition

∇ = d+
(
λ−1U1 −Q− λ · U2

)dλ
λ
, (2)

where U1,U2,Q ∈ H0
(
P1,End(V )

)
, The operator Q is called the new supersymmetric index. If (V,∇) is

equipped with a polarization (Subsection 2.1.4), U2 and U1 are adjoint with respect to the induced hermitian
metric, as observed by Hertling and Sabbah.

If we are given a variation of polarized pure integrable twistor structures, we obtain such operators in family.
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2.1.3 Simple examples

We recall some simplest examples of integrable pure twistor structures.

Example (Tate object) Let T(w) be a Tate object in the theory of twistor structures. (See [27] and
Subsection 3.3.1 of [18].) It is isomorphic to OP1(−2w), and it is equipped with the distinguished frames

T(w)|Cλ
= OCλ

· t(w)
0 , T(w)|Cµ

= OCµ
· t(w)
∞ , T(w)|C∗

λ
= OC∗

λ
· t(w)

1 .

The transformation is given by

t
(w)
0 = (

√
−1λ)w · t(w)

1 , t(w)
∞ = (−

√
−1µ)w · t(w)

1 .

In particular, (
√
−1λ)−2wt

(w)
0 = t

(w)
∞ . We have the meromorphic connection ∇T(w) on T(w) determined by

∇T(w)t
(w)
1 = 0, ∇T(w)t

(w)
0 = t

(w)
0 ·

(
w · dλ

λ

)
, ∇T(w)t

(w)
∞ = t(w)

∞ ·
(
w · dµ

µ

)
.

In the following, the connection of T(w) is always given as above, and hence we often omit to specify it explicitly.
We may identify T(w) with OP1

(
−w · 0−w ·∞

)
by the correspondence t(w)

1 ←→ 1, up to constant multipli-
cation. In particular, we implicitly use the identification of T(0) with OP1 by t(0)1 ←→ 1. We will also implicitly
use the identification T(m)⊗ T(n) ' T(m+ n) given by t(m)

a ⊗ t(n)
a ←→ t

(m+n)
a .

Example In Subsection 3.3.2 of [18], we considered a line bundle O(p, q) on P1, which is isomorphic to
OP1(p+ q) and equipped with the distinguished frames:

O(p, q)|Cλ
= OCλ

· f (p,q)
0 , O(p, q)|Cµ

= OCµ
· f (p,q)
∞ , O(p, q)|C∗

λ
= OC∗

λ
· f (p,q)

1 .

The transformation is given by

f
(p,q)
0 = (

√
−1λ)−p · f (p,q)

1 , f (p,q)
∞ = (−

√
−1µ)−q · f (p,q)

1 .

In particular, (
√
−1λ)p+qf (p,q)

0 = f
(p,q)
∞ . We have the meromorphic connection ∇O(p,q) on O(p, q) determined

by

∇O(p,q)f
(p,q)
1 = 0, ∇O(p,q)f

(p,q)
0 = f

(p,q)
0 ·

(
−pdλ

λ

)
, ∇O(p,q)f

(p,q)
∞ = f (p,q)

∞ ·
(
−q dµ

µ

)
In the following, the connection of O(p, q) is always given as above, and hence we will often omit to specify it
explicitly.

We may naturally identify O(p, q) with OP1(p · 0 + q · ∞) by the correspondence f
(p,q)
1 ←→ 1, up to

constant multiplication. We will implicitly use the identification O(p, q)⊗O(p′, q′) ' O(p+ p′, q + q′) given by
f

(p,q)
a ⊗ f (p′,q′)

a ←→ f
(p+p′,q+q′)
a . We will also implicitly identify T(w) with O(−w,−w) by t(w)

a = f
(−w,−w)
a for

a = 0, 1,∞.

Let X be a complex manifold. We have the pull back of T(w) and O(p, q) via the map from X to a point.
They are denoted by T(w)X and O(p, q)X , respectively. We will often omit to denote X, if there is no risk of
confusion.

2.1.4 Polarization

Recall that we have the isomorphism ([18])

ιT(w) : σ∗T(w) ' T(w),

given by the natural identification σ∗O
(
−w · 0− w · ∞

)
' O

(
−w · 0− w · ∞

)
via σ∗(1)←→ 1, or equivalently,

σ∗t
(w)
1 ←→ t

(w)
1 , σ∗t

(w)
0 ←→ (−1)w · t(w)

0 , σ∗t(w)
∞ ←→ (−1)w · t(w)

∞ .
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It preserves the flat connections, i.e., ιT(w) : σ∗(T(w),∇T(w)) ' (T(w),∇T(w)).
For a variation of integrable twistor structures (V, D̃4V ) on P1 ×X, a morphism

S : (V, D̃4V )⊗ σ∗(V, D̃4V ) −→ T(−w)X

is called a pairing of weight w, if it is (−1)w-symmetric in the following sense:

ιT(−w) ◦ σ∗S = (−1)wS ◦ exchange : σ∗V ⊗ V −→ T(−w)X

Here, exchange denotes the natural morphism σ∗V ⊗V −→ V ⊗σ∗V induced by the exchange of the components.
Similarly, we have the notion of pairing for variations of twistor structures.

Definition 2.3 Let (V, D̃4V ) be a variation of integrable pure twistor structure of weight w on P1 × X. Let
S : (V, D̃4V ) ⊗ σ∗(V, D̃4V ) −→ T(−w)X be a pairing of weight w. We say that S is a polarization of (V, D̃4V ), if
SP := S|P1×{P} is a polarizations of VP := (V, d′′P1)|P1×{P} for each P ∈ X. Namely, the following holds:

• If w = 0, the induced Hermitian pairing H0(SP ) of H0(P1, VP ) is positive definite.

• In the general case, the induced pairing SP ⊗S0,−w of VP ⊗O(0,−w) is a polarization of the pure twistor
structure. (See Example 2 below for S0,−w.)

The notion of polarization for variation of pure twistor structures is defined in a similar way.

Example 1 The identification ιT(w) induces the flat morphism ST(w) : T(w)⊗ σ∗T(w) −→ T(2w), which is a
polarization of T(w) of weight −2w.

Example 2 The flat isomorphism ι(p,q) : σ∗O(p, q) ' O(q, p) in [18] is given by

σ∗f
(p,q)
0 7−→ (

√
−1)p+qf (q,p)

∞ , σ∗f (p,q)
∞ 7−→ (−

√
−1)p+qf (q,p)

0 , σ∗f
(p,q)
1 7−→ (

√
−1)q−pf (q,p)

1 .

Hence, we obtain the morphism Sp,q : O(p, q)⊗σ∗O(p, q) −→ T(−p− q), which is a polarization of weight p+ q.

2.1.5 Real structure and twistor-TERP structure

Definition 2.4 A real structure of a variation of integrable twistor structure (V, D̃4V ) is defined to be an iso-
morphism

κ : γ∗(V, D̃4V ) ' (V, D̃4V )

such that γ∗(κ) ◦ κ = id.

We fix the real structure κT(w) of T(w) given by the correspondence

γ∗t
(w)
1 ←→ t

(w)
1 , γ∗t

(w)
0 ←→ t(w)

∞ , γ∗t(w)
∞ ←→ t

(w)
0 .

Definition 2.5 Let (V, D̃4V ) be a variation of integrable twistor structures equipped with a pairing S of weight
w and a real structure κ. We say that κ and S are compatible, if the following diagram is commutative:

γ∗V ⊗ γ∗σ∗V γ∗S−−−−→ γ∗T(−w)

κ⊗σ∗κ
y κT(−w)

y
V ⊗ σ∗V S−−−−→ T(−w)

Namely, κT(−w) ◦ γ∗S = S ◦ (κ⊗ σ∗κ) holds. In that case, we also say that κ is a real structure of (V, D̃4V ,S),
or that S is a pairing of (V, D̃4V , κ) with weight w.
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Definition 2.6 Let (V, D̃4V ) be a variation of integrable twistor structure equipped with a pairing S of weight w
and a real structure κ. The tuple (V, D̃4V ,S, κ,−w) is called a variation of twistor-TERP structure, if (i) S is
perfect, (ii) S and κ are compatible.

If X is a point, it is called a twistor-TERP structure.

It is easy to observe that twistor-TERP structure is just an expression of TERP structure [7] in terms of
twistor structures, which we will explain later.

Definition 2.7 A variation of twistor-TERP structures (V, D̃4V ,S, κ,−w) is called pure, if (V, D̃4V ) is pure with
weight w. It is called polarized, if (V, D̃4V ,S) is polarized.

Remark 2.8 If a variation of twistor-TERP structure (V, D̃4V ,S, κ,−w) is pure, we also say that “(V, D̃4V ,S, κ)
is a variation of pure twistor-TERP structure of weight w.”

Example A Tate object
(
T(w),∇T(w),ST(w), κT(w), 2w

)
is a pure polarized twistor-TERP structure.

2.1.6 Gluing construction

Variation of integrable twistor structures We can describe a variation of integrable twistor structures as
gluing. We set X := Cλ ×X, X 0 := {0} ×X, X † := Cµ ×X† and X †0 := {0} ×X†.

Let V0 be a holomorphic vector bundle on X with a meromorphic flat connection (TE-structure [7])

∇V0 : V0 −→ V0 ⊗ Ω1,0
X (logX 0)⊗OX (X 0).

We use the same symbol to denote the associated differential operator V0 −→ V0⊗Ω̃1
X in the C∞-category. (The

holomorphic structure d′′V0
is also included.) Let V∞ be a holomorphic vector bundle on X † with a meromorphic

flat connection (T̃E-structure [7])

∇V∞ : V∞ −→ V∞ ⊗ Ω1,0
X †(logX † 0)⊗OX †(X † 0).

We use the same symbol to denote the associated differential operator V∞ −→ V∞ ⊗ Ω̃1
X † in the C∞-category.

Assume that we are given an isomorphism Φ of C∞-flat bundles:

Φ : (V0,∇V0)|C∗
λ×X ' (V∞,∇V∞)|C∗

µ×X†

We obtain the C∞-vector bundle V on P1 × X by gluing V0 and V∞ via Φ. Since Φ is flat, ∇V0 and ∇V∞
induce the T T̃E-structure D̃4V : V −→ V ⊗ Ω̃1

P1×X . Thus, we obtain a variation of integrable twistor structures
(V, D̃4V ).

Conversely, we naturally obtain a tuple of (V0,∇V0), (V∞,∇V∞) and Φ as above from a variation of integrable
twistor structures (V, D̃4V ) as the restriction to X and X †, respectively. In this situation, we set

Glue
(
(V0,∇V0), (V∞,∇V∞),Φ

)
:= (V, D̃4V ).

Pairing and real structure Note that we have the natural isomorphisms ν∗Ω̃1
X † ' Ω̃1

X and ν∗Ω̃1
X ' Ω̃1

X †

for anti-holomorphic diffeomorphism ν : Cλ −→ Cµ or Cµ −→ Cλ, as in the case of Ω̃1
P1×X . Let V0 be a

holomorphic vector bundle on X with a TE-structure ∇V0 . By the above isomorphisms, γ∗V0 and σ∗V0 are
naturally equipped with T̃E-structure ∇γ∗V0 and ∇σ∗V0 . Similarly, if we are given a holomorphic vector bundle
V∞ on X † with T̃E-structure, σ∗V∞ and γ∗V∞ are naturally equipped with TE-structures. We remark that
there exist the natural isomorphisms:

Glue
(
γ∗(V∞,∇V∞), γ∗(V0,∇V0), γ

∗Φ−1
)
' γ∗ Glue

(
(V0,∇V0), (V∞,∇V∞),Φ

)
Glue

(
σ∗(V∞,∇V∞), σ∗(V0,∇V0), σ

∗Φ−1
)
' σ∗ Glue

(
(V0,∇V0), (V∞,∇V∞),Φ

)
8



A real structure of variation of integrable twistor structure corresponds to a pair of isomorphisms

κ0 : γ∗(V∞,∇V∞) ' (V0,∇V0), κ∞ : γ∗(V0,∇V0) ' (V∞,∇V∞)

such that (i) γ∗κ0 = κ−1
∞ , (ii) the following commutativity holds on C∗

λ ×X:

γ∗V∞
κ0−−−−→ V0

γ∗Φ−1

y Φ

y
γ∗V0

κ∞−−−−→ V∞

A pairing of weight w corresponds to

S0 : (V0,∇V0)⊗ σ∗(V∞,∇V∞) −→ T(−w)|X , S∞ : (V∞,∇V∞)⊗ σ∗(V0,∇V0) −→ T(−w)|X †

such that (i) ιT(−w) ◦σ∗S∞ = (−1)wS0 ◦ exchange, (ii) it is compatible with the gluing. Compatibility of S and
κ is κT(−w) ◦ γ∗S∞ = S0 ◦

(
κ0 ⊗ σ∗κ∞

)
.

Variation of twistor structures The above gluing description is essentially the same as that for a variation
of twistor structures in [27], which we recall in the following. See also [18]. We have the decomposition
Ω̃1
X = ξΩ̃1

X|X ⊕ Ω̃Cλ
into the X-direction and the Cλ-direction. Let dX denote the restriction of the exterior

differential to the X-direction. Similarly, we have the decomposition Ω̃1
X † = ξΩ̃1

X|X † ⊕ Ω̃Cµ
, and the restriction

of D̃† fX to the X-direction is denoted by dX† . The notions of Cλ-holomorphic bundles or Cµ-holomorphic
bundles are defined as in the case of P1-holomorphic bundles.

Let (V0, d
′′
Cλ,V0

) be a Cλ-holomorphic bundle on X . A T -structure [7] of V0 is a differential operator

DfV0
: V0 −→ V0 ⊗ ξΩ1

X|X

satisfying (i) DfV0
(f · s) = dXf · s+ f · DfV0

(s) for a function f and a section s of V , (ii)
(
d′′Cλ,V0

+ DfV0

)2 = 0.
Let (V∞, d′′Cµ,V∞

) be a Cµ-holomorphic vector bundle on X †. A T̃ -structure [7] is defined to be a differential
operator

D† fV∞ : V∞ −→ V∞ ⊗ ξΩ1
X|X †

satisfying conditions similar to (i) and (ii) above.
Assume that we are given an isomorphism Φ:

Φ : (V0, d
′′
Cλ,V0

,DfV0
)|C∗

λ×X ' (V∞, d′′Cµ,V∞ ,D
† f
V∞

)|C∗
µ×X† (3)

We obtain the C∞-vector bundle V on P1 ×X by gluing V0 and V∞ via Φ. By the condition (3), d′′Cλ,V0
and

d′′Cµ,V∞
give P1-holomorphic structure d′′P1,V , and DfV0

and D† fV∞ induce the T T̃ -structure D4V . Thus, we obtain

a variation of twistor structures (V, d′′P1,V ,D
4
V ).

Conversely, we naturally obtain such a tuple of (V0, d
′′
Cλ,V0

,DfV0
), (V∞, d′′Cµ,V∞

,D† fV∞) and Φ from a variation

of twistor structures (V, d′′P1,V ,D
4
V ) as the restriction to X and X †, respectively. In this situation, we set

Glue
(
(V0, d

′′
Cλ,,V0 ,

DfV0
), (V∞, d′′Cµ,V∞ ,D

† f
V∞

),Φ
)

:= (V, D̃4V )

Remark 2.9 Let pλ be the projection X −→ X. Under the natural isomorphism

ξΩ1
X|X = λ−1 · p−1

λ Ω1,0
X ⊕ p

−1
λ Ω0,1

X ' p
−1
λ Ω1,0

X ⊕ p
−1
λ Ω0,1

X = p−1
λ Ω1

X ,

a T -structure DfV0
induces a holomorphic family of flat λ-connections DV0 . Similarly, a T̃ -structure of D† fV∞

naturally induces a holomorphic family of flat µ-connections D†V∞ . Hence, a variation of twistor structure is
regarded as the gluing of families of λ-flat bundles and µ-flat bundles.
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2.1.7 Relation with harmonic bundles

We recall a fundamental equivalence due to Hertling and Sabbah. LetX be a complex manifold. Let (E4, D̃4,S)
be a variation of pure polarized integrable twistor structures of weight 0 on P1×X. By the equivalence between
harmonic bundles and variations of pure polarized twistor structures due to Simpson, we have the underlying
harmonic bundle (E, ∂E , θ, h) on X. Moreover, it is equipped with C∞-sections U and Q of End(E) satisfying
the following equations:

∂EU = 0, [U , θ] = 0, Q = Q† (4)

∂EU − [θ,Q] + θ = 0, ∂EQ+ [θ,U†] = 0 (5)

Here, U|Q and Q|Q (Q ∈ X) are obtained as in (2), and U† and Q† denote the adjoint of U and Q with respect
to h, respectively. Conversely, we obtain a variation of polarized pure integrable twistor structures (E4, D̃4,S)
from a harmonic bundle (E, ∂E , θ, h) with U and Q satisfying (4) and (5). Let p : P1 × X −→ X be the
projection. We set E4 := p−1E on which we have the natural connection dP1 along the P1-direction. We set

∇λ := dP1 +
(
λ−1 · U − Q− λ · U†

)dλ
λ

It gives a flat connection of E4 along the P1-direction. Then, we obtain a T T̃E-structure

D̃4 :=
(
∂E + λθ†

)
+

(
∂E + λ−1θ

)
+∇λ : E4 −→ E4 ⊗ Ω̃1

P1×X .

The pairing S is induced by S(u⊗ σ∗v) = h(u, σ∗v).

Let us also see the gluing construction of the above (E4, D̃4,S). Let (E, ∂E , θ, h,U ,Q) be as above. Let pλ
be the projection X −→ X. Let E be the holomorphic vector bundle

(
p−1
λ E, ∂E + λθ† + ∂λ

)
, where ∂λ denotes

the natural λ-holomorphic structure of E . We have the family of flat λ-connections D = ∂E + λθ† + λ∂E + θ of
E . The associated family of flat connections is given by Df = ∂E + λθ† + ∂E + λ−1θ. Then, D̃f := Df + ∇λ
gives a meromorphic flat connection of E .

Let pµ be the projection X † −→ X†. Let E† be the holomorphic vector bundle
(
p−1
µ E, ∂E + µθ + ∂µ

)
,

where ∂µ denotes the natural µ-holomorphic structure of E†. We have the family of flat µ-connections D† =
∂E + µθ + µ∂E + θ† of E†. The associated family of flat connections is given by D† f = ∂E + µθ + ∂E + µ−1θ†.
Then, D̃† f := D† f +∇λ gives a meromorphic flat connection of E†.

We have the induced pairings S0 : E ⊗ σ∗E† −→ OX and S∞ : E† ⊗ σ∗E −→ OX † induced by h. Then,
(E4, D̃4,S) is obtained as the gluing of (E , D̃f ), (E†, D̃† f ) and (S0,S∞) by the procedure in Subsection 2.1.6.

2.1.8 TERP and twistor-TERP

Let us observe that the notions of TERP-structure and twistor-TERP structure are equivalent. First, let us
introduce a pairing P induced by κ and S. Then, we argue the equivalence in the case that X is a point, for
simplicity. We give a remark for the family case in the end.

The induced pairing P We set j := γ ◦ σ = σ ◦ γ, which is a holomorphic involution of P1. We have the
induced isomorphisms

σ∗κ : j∗T(w) ' σ∗T(w), j∗κ : σ∗T(w) ' j∗T(w).

We have the following equality:
σ∗κ ◦ j∗κ = j∗

(
γ∗κ ◦ κ

)
= j∗(id) = id

We will use similar relations implicitly. We also remark the commutativity of the following diagram, which can
be checked by a direct calculation:

j∗T(w)
γ∗ιT(w)−−−−−→ γ∗T(w)

σ∗κT(w)

y κT(w)

y
σ∗T(w)

ιT(w)−−−−→ T(w)
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The composite j∗T(w) −→ T(w) is denoted by ρT(w).
Let (V, D̃4V ,S, κ,−w) be a variation of twistor-TERP structure. We define a pairing P : V ⊗j∗V −→ T(−w)

by
P := (

√
−1)w · S ◦ (1⊗ σ∗κ). (6)

Lemma 2.10 P is (−1)w-symmetric in the sense that the following diagram is commutative:

j∗V ⊗ V j∗P−−−−→ j∗T(−w)

exchange

y ρT(−w)

y
V ⊗ j∗V (−1)wP−−−−−→ T(−w)

Namely, ρT(−w) ◦ j∗P = (−1)w · P ◦ exchange. Here, exchange denotes the natural morphism exchanging the
components.

Proof We have the following equality:

ρT(−w) ◦ j∗P = (
√
−1)wκT(−w) ◦ γ∗ιT(−w) ◦ j∗S ◦

(
1⊗ j∗σ∗κ

)
= (
√
−1)wκT(−w) ◦ γ∗ιT(−w) ◦

(
γ∗σ∗S

)
◦

(
1⊗ γ∗κ

)
= (
√
−1)wκT(−w) ◦ γ∗

(
ιT(−w) ◦ σ∗S

)
◦

(
1⊗ γ∗κ

)
(7)

By using the compatibility of S and κ, we obtain

(−1)wP ◦exchange = (
√
−1)w(−1)wS◦(1⊗σ∗κ)◦exchange = (

√
−1)w(−1)wS◦(κ⊗σ∗κ)◦(γ∗κ⊗1)◦exchange

= (
√
−1)wκT(−w) ◦ γ∗

(
(−1)wS ◦ exchange

)
◦

(
1⊗ γ∗κ

)
(8)

Thus, we are done.

Lemma 2.11 The following diagram is commutative:

γ∗V ⊗ σ∗V γ∗P−−−−→ γ∗T(−w)

κ⊗j∗κ
y κT(−w)

y
V ⊗ j∗V (−1)wP−−−−−→ T(−w)

Namely, (−1)wP ◦
(
κ⊗ j∗κ

)
= κT(−w) ◦ γ∗P .

Proof We have the following equalities:

(
√
−1)−wP ◦ (κ⊗ j∗κ) = S ◦ (1⊗ σ∗κ) ◦ (κ⊗ j∗κ) = S ◦ (κ⊗ σ∗κ) ◦ (1⊗ j∗κ) (9)

κT(−w) ◦ γ∗
(
(
√
−1)−wP

)
= κT(−w) ◦ γ∗

(
S ◦ (1⊗ σ∗κ)

)
= κT(−w) ◦ (γ∗S) ◦ (1⊗ j∗κ) (10)

Then, the claim of the lemma follows from the compatibility of S and κ.

From twistor-TERP to TERP Let (V,∇,S, κ,−w) be a twistor-TERP structure. Let us explain how to
associate a TERP structure (H,H ′

R,∇, P ′,−w) in the sense of Hertling. We set H := V|Cλ
and H ′ := V|C∗

λ
.

In general, for a C-vector bundle U , let U denote the conjugate of U , i.e., U = U as an R-vector bundle, and
the multiplication of

√
−1 on U is given by the multiplication of −

√
−1 on U . Note that γ∗(H)|λ for λ 6= 0 is

naturally identified with H |λ−1 .
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The following diagram for λ 6= 0 is commutative by the flatness of κ:

H |λ
Πλ−−−−→ H |λ−1

κ|λ−1

y yκ|λ
H|λ−1

Π−1
λ−−−−→ H|λ

(11)

Here, Πλ denotes the parallel transform along the segment connecting λ and λ
−1

, as often used in [7]. A flat
isomorphism κ′ : H |C∗

λ
' H|C∗

λ
is given by the composite of the morphisms, i.e., κ′|λ := κ|λ ◦ Πλ. Because

γ∗κ ◦ κ = id, the composite

H |λ
κ|λ−1

−−−−→ H|λ−1
κλ−−−−→ H |λ

is the identity. Let us check κ′ ◦ κ′ = id by using the commutativity (11):

κ′λ ◦ κ′λ =
(
κλ ◦Πλ

)
◦

(
Π−1
λ ◦ κ|λ−1

)
= κλ ◦ κ|λ−1 = id

Hence, κ′ gives a flat real structure of H ′. Thus, we obtain a real flat subbundle H ′
R of H|C∗

λ
. By restricting

P , we obtain a pairing:

P|Cλ
: H ⊗ j∗H −→ T(−w)|Cλ

= OCλ
· (
√
−1λ)−wt(−w)

1

By taking the coefficients of t(−w)
1 , we obtain a flat morphism

P ′ : H ′ ⊗ j∗H ′ −→ OC∗
λ

such that λw · P ′ induces a perfect pairing H ⊗ j∗H −→ OCλ
. By Lemma 2.10, P ′ is (−1)w-symmetric.

Lemma 2.12 P ′
(
H ′

R ⊗R j∗H ′
R

)
⊂ (
√
−1)wR.

Proof Note that κ gives real structures κ|a : H|a ' H|a for a = 1,−1. By Lemma 2.11, we have

(
√
−1)w · P|1 ◦

(
κ|1 ⊗ κ|−1

)
= (κT(−w))|1 ◦

(
(
√
−1)wP|1

)
. (12)

We obtain P ′|1
(
H|1 ⊗H|−1

)
⊂ (
√
−1)wR. Then, the claim of the lemma follows from the flatness of P ′.

Thus, we obtain a TERP-structure (H,H ′
R,∇, P ′,−w).

From TERP to twistor-TERP Conversely, we obtain a twistor-TERP structure (V,∇, κ,S,−w) from a
TERP structure (H,H ′

R,∇, P ′,−w). We set V0 := H and V∞ := γ∗H. We have the flat isomorphism

τreal : H|C∗
λ
' γ∗(H|C∗

λ
),

obtained as the composite of the conjugate with respect to the real structure and the parallel transform along
the segment connecting λ and λ

−1
. By gluing (H,∇) and γ∗(H,∇) via τreal, we obtain an integrable twistor

structure (V,∇).
By construction, we have γ∗(τreal) = τ−1

real, and the following diagram is commutative:

H|C∗
λ

τreal−−−−→ γ∗(H|C∗
λ
)

=

y =

y
γ∗

(
γ∗H|C∗

λ

) γ∗τ−1
real−−−−→ γ∗H|C∗

λ

Hence, a morphism κ : γ∗(V,∇) ' (V,∇) is given by the gluing of γ∗V∞ ' V0 and γ∗V0 ' V∞ induced by
the identity. Clearly it satisfies γ∗κ ◦ κ = id. The restriction κ|C∗

λ
: γ∗(V )|C∗

λ
−→ V|C∗

λ
is identified with

τ−1
real : γ∗H|C∗

λ
' H|C∗

λ
.
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Let P0 : V0 ⊗ j∗V0 −→ OCλ
· t(−w)

0 be given by

P0 = P ′ · t(−w)
1 = P ′ ·

(√
−1λ

)w · t(−w)
0 .

We have the induced morphism

κT(−w) ◦ γ∗P0 : V∞ ⊗ j∗V∞ −→ OCµ
· t(−w)
∞ .

We obtain the following equalities for linear maps H|1⊗H|−1 −→ T(−w)|1 from P ′
(
H ′

R⊗R j
∗H ′

R

)
⊂ (
√
−1)wR:

(
√
−1)w · P0|1 ◦

(
κ|1 ⊗ κ|−1

)
= (κT(−w))|1 ◦

(
(
√
−1)wP0|1

)
= (−

√
−1)w(κT(−w))|1 ◦

(
γ∗P0|1

)
Here, we have used the natural identification P0|1 = (γ∗P0)|1. The first and third terms are obtained as the
restrictions of morphisms (V∞ ⊗ j∗V∞)|C∗

λ
−→ OC∗

λ
· t(−w)

1 to the fiber over 1. By flatness, we obtain the
following equality on C∗

λ:
(−1)w · P0 ◦

(
κ⊗ j∗κ

)
= κT(−w) ◦ γ∗P0 (13)

Hence, the pairings P0 and (−1)wκT(−w) ◦ γ∗P0 induce P : V ⊗ j∗V −→ T(−w). Since P ′ is (−1)w-symmetric,
P is also (−1)w-symmetric in the sense of Lemma 2.10. From (13), we obtain

(−1)w · P ◦
(
κ⊗ j∗κ

)
= κT(−w) ◦ γ∗P. (14)

The pairing S is constructed from P and κ by the relation (6). The compatibility of κ and S follows from
(9), (10) and (14). The pairing S is (−1)w-symmetric, which follows from (7), (8) and the compatibility with
κ. Thus, we obtain a twistor-TERP structure (V,∇,S, κ,−w).

Hertling’s vector bundle Let (H,H ′
R,∇, P,−w) be a TERP-structure corresponding to a twistor-TERP

structure (V,∇,S, κ,−w). Recall that Hertling constructed an integrable twistor structure (Ĥ,∇) from a
TERP-structure (H,H ′

R,∇, P,−w) by gluing H and γ∗H via a map τ . (See [7].) We do not recall τ and his
construction here, but Ĥ is naturally isomorphic to V ⊗O(0,−w) by the following correspondence:

H = V0 ←→ V0 ⊗O(0,−w)0, a←→ a⊗ f (0,−w)
0

γ∗H ←→ γ∗V0 ⊗O(0,−w)∞, γ∗b←→ γ∗b⊗ (
√
−1)wf (0,−w)

∞

According to [7] and [8], (H,H ′
R,∇, P,−w) is defined to be pure if (Ĥ,∇) is pure of weight 0. They consider

the hermitian pairing h of H0(P1, Ĥ) given by λw ·P ′ ◦ (1⊗ τ), and (H,H ′
R,∇, P,−w) is defined to be polarized

if h is positive definite.

Lemma 2.13 (H,H ′
R,∇, P,−w) is pure (polarized), if and only if (V,∇,S, κ,−w) is pure (polarized).

Proof The claim for purity is obvious. Let us consider polarizability. We have only to show that h is the
hermitian pairing induced by S̃ := S ⊗ S0,−w, under the identification of Ĥ and V ⊗O(0,−w).

Let â, b̂ ∈ H0(P1, Ĥ). Under the identification Ĥ|Cλ
= H and Ĥ|Cµ

= γ∗H, the sections a and b of H are
determined by a := â|Cλ

and γ∗b := b̂|Cµ
. By definition, we have

h(â, b̂) = λwP ′(a, j∗b)

Let us look at S̃|Cλ
. Under the above identification, the pairing of â and b̂ is given by

S̃
(
a⊗ f (0,−w)

0 , σ∗
(
γ∗b⊗ (

√
−1)wf (0,−w)

∞
))

= S
(
a, σ∗(γ∗b)

)
· t(w)

0 = S
(
a, j∗b

)
· t(w)

0 =: S0

(
a, j∗b

)
Let us compare λwP ′(a, j∗b) and S0

(
a, j∗b

)
. Since κ|Cµ

is the same as the identity V∞ = γ∗H −→ γ∗V0 =
γ∗H, we have

P|Cλ
= (
√
−1)wS ◦ (1⊗ σ∗κ)|Cλ

= (
√
−1)wS|Cλ

Hence, we have the following equality:

P ′(a, j∗b) · t(−w)
1 = P

(
a, j∗b

)
= S

(
a, j∗b

)
· (
√
−1)w = (

√
−1)w · S0

(
a, j∗b

)
· t(−w)

0 = λ−wS0

(
a, j∗b

)
· t(−w)

1

Thus, we obtain λw · P ′(a, j∗b) = S0(a, j∗b). Therefore, S̃ induces h.
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Family version The correspondence is generalized in the family case. We set H := V|Cλ×X . It is equipped
with TE-structure ∇ obtained as the restriction of D̃4V . As in the previous case, we obtain a flat C-anti-linear
isomorphism κ′ : H|C∗

λ×X ' H|C∗
λ×X and a flat pairing P : H ′ ⊗ j∗H ′ −→ OC∗×X . It is easy to check

that (H,H ′
R,∇, P,−w) is a variation of TERP structures. The converse can be constructed similarly. The

correspondence preserves “pure” and “polarized”, for which we have only to check the case in which X is a
point.

2.2 Basic examples

2.2.1 Example associated to a holomorphic function

Let a be a holomorphic function on a complex manifold X. We set

V0 := OCλ×X · e, ∇V0(e) = e · d
(
λ−1 · a

)
,

V∞ := OCµ×X† · e†, ∇V∞(e†) = e† · d
(
µ−1 · a

)
.

We put s := exp
(
−λ−1a

)
· e and s† := exp

(
−µ−1a

)
· e†, which are flat sections of V0|C∗

λ×X and V∞|C∗
µ×X† ,

respectively. A gluing Φ : V0|C∗
λ×X ' V∞|C∗

µ×X† is given by Φ(s) = s†, in other words,

Φ(e) = exp
(
λ−1a− µ−1a

)
· e†.

Let V be the C∞-bundle obtained as the gluing of V0 and V∞ via Φ, which is equipped with T T̃E-structure.
For each point P ∈ X, the restriction V|P1×{P} is isomorphic to OP1 , and hence (V, D̃4V ) is pure of weight 0. A
real structure κ is given by κ(γ∗e†) = e and κ(γ∗e) = e†. We can check that κ actually gives a flat isomorphism
γ∗V ' V . A pairing S of V with weight 0 is given by e ⊗ σ∗e† 7−→ t

(0)
0 and e† ⊗ σ∗e 7−→ t

(0)
∞ . It is easy to

check that S actually gives a symmetric flat pairing V ⊗ σ∗V −→ T(0)X . The compatibility of S and κ can be
checked by a direct calculation:

κT(0) ◦ γ∗S(γ∗e† ⊗ γ∗σ∗e) = κT(0)

(
γ∗

(
S(e† ⊗ σ∗e)

))
= κT(0)γ

∗t(0)∞ = t
(0)
0

S ◦ (κ⊗ σ∗κ)(γ∗e† ⊗ σ∗γ∗e) = S
(
e⊗ σ∗e†

)
= t

(0)
0

Hence, we obtain a variation of twistor-TERP structure denoted by L(a). It is polarized. The underlying
harmonic bundle is given by the line bundle OX · v with the Higgs field θ · v = v · da and the hermitian metric
h(v, v) = 1, where v := e|{0}×X . The operators U and Q are U = −a and Q = 0.

2.2.2 Example associated to unitary flat bundles of rank one

In general, a variation of pure polarized Hodge structures provides us with an example of variation of pure
polarized integrable twistor structures. Any unitary flat bundle naturally gives a variation of pure polarized
Hodge structures, and hence an integrable variation of pure polarized integrable twistor structure.

In particular, we will use the following example. Let X := Cn and D :=
⋃`
i=1

{
zi = 0

}
. For any a ∈ R`, we

have the unitary flat bundle

OX−D · e, ∇e = e ·
(
−

∑̀
i=1

ai ·
dzi
zi

)
The associated variation of integrable polarized pure integrable structures is denoted by L(a).

More specifically, it is obtained as the gluing of the following meromorphic flat bundles:

V0 = OCλ×(X−D) · e, ∇V0e = e ·
(
−

∑̀
i=1

ai ·
dzi
zi

)

V∞ = OCµ×(X†−D†) · e†, ∇V∞e† = e† ·
(∑̀
i=1

ai ·
dzi
zi

)
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The gluing is given by Φ(e) =
∏`
i=1 |zi|−2ai · e†. The pairing is given by S(e, σ∗e†) = 1. The underlying

harmonic bundle is the line bundle OX−D · v with θ · v = 0 and h(v, v) =
∏`
i=1 |zi|−2ai , where v = e|{0}×(X−D).

The operators U and Q are 0.

2.2.3 Example induced by nilpotent maps

Let Y be a complex manifold. We set X := C` × Y , D =
⋃`
i=1{zi = 0} × Y . We put X := Cλ × X and

X † := Cµ×X†. We use the symbols D, Y, D† and Y† in similar meanings. Let q0 : X −→ Y and q∞ : X † −→ Y†
denote the naturally defined projections.

Let (V,D4) be a variation of P1-holomorphic vector bundles on P1×Y with a tuple f of nilpotent morphisms

fi : V −→ V ⊗ T(−1), i = 1, . . . , `

such that (i) [fi, fj ] = 0, (ii) they are P1-holomorphic and D4-flat. We recall a construction of the variation
of P1-holomorphic vector bundles on P1 × (X −D) associated to (V,f) given in Subsection 3.5.3 of [18] with a
minor generalization. (We considered the case in which Y is a point in [18].)

We regard (V,D4V ) as the gluing of a family of λ-flat bundles (V0,DV0) on Y, and a family of µ-flat bundles
(V∞,D†V∞) on Y†. We obtain a holomorphic vector bundle V0 := q∗0V0 on X − D with a family of flat λ-

connections q∗0DV0 . We naturally identify T(0)|X−D ' OX−D by the trivialization t(0)0 . We also use the natural
identification T(−1) ⊗ T(1) ' T(0). We have the q∗0DV0-flat endomorphisms q∗0fi ⊗ t

(1)
0 ∈ End(V0). We obtain

the family of flat λ-connections on V0 given as follows:

DV0 := q∗0DV0 +
∑̀
i=1

q∗0fi ⊗ t
(1)
0

dzi
zi

Similarly, we obtain a holomorphic vector bundle V∞ := q∗∞V∞ on X † −D† with a family of flat µ-connections
q∗∞D†V∞ . We have the q∗∞D†V∞ -flat endomorphisms q∗∞fi ⊗ t

(1)
∞ ∈ End(V∞). Hence, we obtain the following

family of flat µ-connections:

D†V∞ := q∗∞D†V∞ +
∑̀
i=1

q∗∞fi ⊗ t(1)∞
dzi
zi

Let ΨV : V0|C∗
λ×Y ' V∞|C∗

µ×Y denote the gluing. An isomorphism Ψ : V0|C∗
λ×(X−D) −→ V∞|C∗

µ×(X†−D†) is
given as follows:

Ψ := ΨV ◦ exp
(∑̀
i=1

log |zi|2 · q∗0fi ⊗
√
−1t(1)1

)
(15)

By construction, Ψ is holomorphic with respect to λ.

Lemma 2.14 Ψ ◦ DfV0
= D† fV∞ ◦Ψ.

Proof We have the following expressions:

DfV0
= q∗0DfV0

+
∑̀
i=1

q∗0fi ⊗ (
√
−1t(1)1 )

dzi
zi
, D† fV∞ = q∗∞D† fV∞ +

∑̀
i=1

q∗∞fi ⊗ (−
√
−1t(1)1 )

dzi
zi

(16)

Because ΨV ◦ DfV0
= D† fV∞ ◦ΨV , we have the following:

q∗∞D† fV∞ ◦Ψ−Ψ ◦ q∗0DfV0
= ΨV ◦ q∗0DfV0

(
exp

(∑̀
i=1

log |zi|2 · q∗0fi ⊗
√
−1t(1)1

))
= Ψ ◦

(∑̀
i=1

(dzi
zi

+
dzi
zi

)
· q∗0fi ⊗

√
−1t(1)1

)
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Then, the claim of the lemma follows.

Let TNIL(V,D4V ,f) denote the variation of P1-holomorphic bundles on (X−D)×P1 obtained as the gluing
of (V0,DV0) and (V∞,D†V∞) via Ψ.

Assume that (V,D4V ) is equipped with a (−1)w-symmetric pairing S : (V,D4V )⊗ σ∗(V,D4V ) −→ T(−w) such
that S(fi ⊗ id) + S(id⊗σ∗fi) = 0 for any i. Then, we have the induced (−1)w-symmetric pairing

TNIL(S) : TNIL(V,D4V ,f)⊗ σ∗ TNIL(V,D4V ,f) −→ T(−w).

It is obtained as the gluing of the pairings

S0 : V0 ⊗ σ∗V∞ −→ T(−w)|X−D, S∞ : V∞ ⊗ σ∗V0 −→ T(−w)|X †−D† ,

which are the pull backs of V0 ⊗ σ∗V∞ −→ T(−w)|Cλ
and V∞ ⊗ σ∗V0 −→ T(−w)|Cµ

. (See Subsection 3.6.1 of
[18].)

Enrichment Assume that (V,D4V ) is enriched to a variation of integrable twistor structures (V, D̃4V ) such
that fj are D̃4V -flat, which is obtained as the gluing of (V0,∇V0) and (V∞,∇V∞) via ΨV . Then TNIL(V,D4V ,f)
is also enriched to the variation of integrable twistor structures TNIL(V, D̃4V ,f), which can be checked by an
obvious enrichment of the argument in the proof of Lemma 2.14. The TE-structure ∇V0 and the T̃E-structure
∇V∞ are given by essentially the same formula as (16):

∇V0 = q∗0∇V0 +
∑̀
i=1

q∗0fi ⊗ (
√
−1t(1)1 )

dzi
zi
, ∇V∞ = q∗∞∇V∞ +

∑̀
i=1

q∗∞fi ⊗ (−
√
−1t(1)1 )

dzi
zi

If we are given a pairing S of (V, D̃4V ) with weight w such that S ◦ (fj ⊗ id) + S ◦ (id⊗σ∗fj) = 0, we have a
naturally induced pairing TNIL(S) of TNIL(V, D̃4V ,f) with weight w. Assume that we are given a real structure
κ of (V, D̃4V ,S) such that κ ◦ γ∗fi = fi ◦ κ. Because κ0 ◦ γ∗(fi⊗ t(1)1 ) = (fi⊗ t(1)1 ) ◦ κ0, we obtain isomorphisms:

κ0 : γ∗(V∞,∇V∞) ' (V0,∇V0), κ∞ : γ∗(V0,∇V0) ' (V∞,∇V0)

The following diagram on (X −D)×C∗
λ is commutative:

γ∗V∞
κ0−−−−→ V0

γ∗Ψ−1

y Ψ

y
γ∗V0

κ∞−−−−→ V∞

To see it, we have only to remark

Ψ ◦ κ = ΨV ◦ exp
( n∑
i=1

log |zi(P )|2 · fi ⊗
√
−1t(1)1

)
◦ κ

= κ ◦ γ∗Ψ−1
V ◦ exp

(
−

n∑
i=1

log |zi(P )|2 · γ∗
(
fi ⊗

√
−1t(1)1

))
= κ ◦ γ∗Ψ−1 (17)

Hence, we obtain the isomorphism TNIL(κ) : γ∗ TNIL(V, D̃4V ,f) ' TNIL(V, D̃4V ,f). By construction, it is easy
to check

γ∗ TNIL(κ) ◦ TNIL(κ) = id .

It is also easy to check the compatibility condition, if the original S and κ are compatible. Therefore, we obtain
a variation of twistor-TERP structures TNIL(V, D̃4V ,f ,S, κ,−w) on X −D from a variation of twistor-TERP
structures (V, D̃4V ,S, κ,−w) with f = (fi) as above.
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Definition 2.15 Let (V,D4V ,f ,S) be as above. We set X∗(R) := Y ×
{
(z1, . . . , zn)

∣∣ 0 < |zi| < R
}

for R > 0.

• If there exists R > 0 such that TNIL(V,D4V ,f ,S)|P1×X∗(R) is pure and polarized, it is called a twistor
nilpotent orbit of weight w.

• If moreover (V,D4V ) is enriched to a variation of integrable twistor structures (V, D̃4V ) such that fj and S
are D̃4V -flat, TNIL(V, D̃4V ,f ,S)|P1×X∗(R) is called an integrable twistor nilpotent orbit of weight w. (We
often omit to distinguish “integrable” if there is no risk of confusion.)

• If moreover (V, D̃4V ,S) is equipped with a real structure κ such that κ ◦ γ∗fi = fi ◦ κ, the variation
TNIL(V, D̃4V ,S, κ,−w)|P1×X∗(R) is called a twistor-TERP nilpotent orbit.

Remark 2.16 The notion of a twistor-TERP nilpotent orbit is different from “nilpotent orbit” defined by
Hertling and Sevenheck. Their “nilpotent orbit” is called HS-orbit in this paper.

2.3 Convergence

2.3.1 Complement on convergence of pure polarized twistor structures

Let (V (i),S(i)) (i = 0, 1) be polarized pure twistor structures with weight 0 of rank r. Let h(i) be the hermitian
metrics of V (i) corresponding to S(i), and let d(i) denote the associated flat unitary connections of V (i), which
are equal to the natural connection given by holomorphic trivializations V (i) ' O⊕rP1 . Let ∂

(i)
denote the (0, 1)-

part of d(i), which is the same as the holomorphic structures of V (i). We fix a hermitian metric g of Ω1,0
P1 ⊕Ω0,1

P1 .
Let Φ : V (0) −→ V (1) be a C∞-isomorphism such that the following holds for some ε > 0:

(A1)
∣∣Φ∗∂(1) − ∂(0)∣∣

h(0),g
≤ ε as a C∞-section of End(V (0))⊗ Ω0,1.

(A2)
∣∣Φ∗S(1) − S(0)

∣∣
h(0) ≤ ε as a C∞-section of Hom

(
V (0) ⊗ σ∗V (0),T(0)

)
.

(A3)
∣∣∂(0)(

Φ∗S(1) − S(0)
)∣∣
h(0),g

=
∣∣∂(0)

Φ∗S(1)
∣∣
h(0),g

≤ ε as a C∞-section of Hom
(
V (0) ⊗ σ∗V (0),T(0)

)
⊗ Ω0,1

P1 ,

where ∂
(0)

denotes the induced holomorphic structure on Hom
(
V (0) ⊗ σ∗V (0),T(0)

)
.

Lemma 2.17 There exists a constant C0 > 0, which is independent of ε, with the following property:

• If B−1 · Φ∗h(1) ≤ h(0) ≤ B · Φ∗h(1) for some B > 1, the following holds:∣∣Φ∗d(1) − d(0)
∣∣
h(0),g

≤ C0 ·B2 · ε (18)

Proof In the following argument, Ci denote positive constants independent of ε. Let ∂(i)

h(i) denote the (1, 0)-part

of d(i), which are determined by h(i) and ∂
(i)

. To show (18), we have only to estimate
∣∣∂(0)

h(0) − Φ∗∂(1)

h(1)

∣∣
h(0) .

Let e1, . . . , er be an orthogonal frame of V (0) with respect to h(0). Because Φ∗h(1)(ei, ej) = Φ∗S(1)
(
ei⊗σ∗ej

)
,

we have the following estimate for any i, j:∣∣∣∂(
Φ∗h(1)(ei, ej)

)∣∣∣
g

=
∣∣∣∂(0)

(Φ∗S(1))(ei ⊗ σ∗ej)
∣∣∣
g
≤ C1 · ε

Hence, we obtain ∣∣∣∂(
Φ∗h(1)(ei, ej)

)∣∣∣
g
≤ C1 · ε (19)

Let ∂(0)

h(1) denote the (1, 0)-operator determined by Φ∗h(1) and ∂
(0)

. From B−1 ·Φ∗h(1) ≤ h(0) ≤ B ·Φ∗h(1) and
(19), we obtain ∣∣∂(0)

h(1) − ∂
(0)

h(0)

∣∣
h(0),g

≤ C2 ·B · ε
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By
∣∣Φ∗∂(1) − ∂(0)∣∣

h(0) ≤ C3 · ε and B−1 · Φ∗h(1) ≤ h(0) ≤ B · Φ∗h(1), we have∣∣Φ∗∂(1) − ∂(0)∣∣
Φ∗h(1) ≤ C4 ·B · ε

Hence, we obtain
∣∣Φ∗∂(1)

h(1) − ∂
(0)

h(1)

∣∣
Φ∗h(1) ≤ C4 ·B · ε, which implies∣∣Φ∗∂(1)

h(1) − ∂
(0)

h(1)

∣∣
h(0) ≤ C5 ·B2 · ε

Thus, we obtain (18).

Lemma 2.18 There exist constants ε0 > 0, C10 > 0 and C11 > 0 such that the following holds if ε ≤ ε0:∣∣Φ∗h(1) − h(0)
∣∣
h(0) ≤ C10 · ε (20)∣∣Φ∗d(1) − d(0)

∣∣
h(0) ≤ C11 · ε (21)

Proof According to the result in Subsection 2.8 of [19], if ε0 is sufficiently small, (20) holds for some C10.
Then, we obtain (21) from Lemma 2.17.

2.3.2 Approximation of pure polarized integrable twistor structures

Let (V (i),∇(i),S(i)) (i = 1, 2) be integrable polarized pure twistor structures. Let h(i) be the hermitian metrics
of V (i) corresponding to S(i). We fix a hermitian metric g̃ of Ω1,0

P1

(
2 · 0 + 2 · ∞

)
⊕ Ω0,1

P1 . Let Φ : V (0) −→ V (1)

be a C∞-isomorphism such that the following holds for some ε > 0:

(B1)
∣∣Φ∗∇(1)−∇(0)

∣∣
h(0),eg ≤ ε as a C∞-section of End(V (0))⊗

(
Ω1,0

P1

(
2 · 0+2 ·∞

)
⊕Ω0,1

P1

)
. Note that it implies

(A1) in Subsection 2.3.1.

(B2) Conditions (A2) and (A3) are satisfied.

Lemma 2.19 There exists a constant C20 > 0, which is independent of ε, with the following property:

• If B−1 · Φ∗h(1) ≤ h(0) ≤ B · Φ∗h(1) for some B > 1, the following holds:∣∣Φ∗U (1) − U (0)
∣∣
h(0) ≤ C20 ·B2 · ε,

∣∣Φ∗Q(1) −Q(0)
∣∣
h(0) ≤ C20 ·B2 · ε.

Proof In the following argument, Ci denote positive constants independent of ε. By Lemma 2.18, we have∣∣Φ∗d(1) − d(0)
∣∣
h(0),eg ≤ C21 ·B2 · ε. We obtain the following estimate:∣∣∣(λ−1 · (Φ∗U (1) − U (0))− (Φ∗Q(1) −Q(0))− λ · (Φ∗U (1)† − U (0)†)

)
· dλ/λ

∣∣∣
h(0),eg ≤ C22 ·B2 · ε

Then, the claim of the lemma follows.

Lemma 2.20 There exist constants ε0 > 0 and C30, such that the following holds for any 0 < ε ≤ ε0:∣∣Φ∗h(1) − h(0)
∣∣
h(0) ≤ C30 · ε,

∣∣Φ∗U (1) − U (0)
∣∣
h(0) ≤ C30 · ε,

∣∣Φ∗Q(1) −Q(0)
∣∣
h(0) ≤ C30 · ε.

Proof It can be shown by the argument in the proof of Lemma 2.19.
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2.4 Variation of polarized mixed twistor structures and its enrichment

2.4.1 Definitions

Variation of polarized mixed twistor structures Let X be a complex manifold. Let (V,D4) be a
variation of P1-holomorphic vector bundles on P1 ×X equipped with an increasing filtration W indexed by Z
in the category of vector bundles, which is P1-holomorphic and D4-flat. If each GrWn (V ) is a variation of pure
twistor structure of weight n, (V,W,D4) is called a variation of mixed twistor structures. Assume we are given
the following data on (V,W,D4), which are P1-holomorphic and D4-flat:

• A tuple f of nilpotent morphisms fj : V −→ V ⊗T(−1) (j = 1, . . . , n), which are mutually commutative.

• A (−1)w-symmetric pairing S : V ⊗ σ∗V −→ T(−w).

• For each P ∈ X, the restriction (V,W,f ,S)|P1×{P} is a polarized mixed twistor structure of weight w in
n-variables. (See Subsection 3.48 of [18].)

Then, such a tuple (V,D4,W,f ,S) is called a variation of polarized mixed twistor structures. Since W is
determined by f as the weight filtration of f(n) :=

∑n
j=1 fj up to shift by w, we sometimes omit to denote W .

Enrichment If D4 and the P1-holomorphic structure are extended to T T̃E-structure D̃4 for which f and
S are flat, (V, D̃4,W,f ,S) is called a variation of polarized mixed integrable twistor structures of weight w in
n-variables. Note that W is automatically D̃4-flat.

If moreover (V, D̃4,S) is equipped with real structure κ such that κ ◦ γ∗fj = fj ◦ κ, then such a tuple
(V, D̃4,W,f ,S, κ,−w) is called a variation of polarized mixed twistor-TERP structures in n-variables.

Remark 2.21 The notion of polarized mixed twister-TERP structure is different from “mixed TERP structure”
defined by Hertling and Sevenheck (Section 9 of [8]).

Split type Let (V,W,D4) be a variation of mixed twistor structures. It is called of split type, if it is equipped
with a grading V =

⊕
Vm such that (i) it is P1-holomorphic and D4-flat, (ii) Wm =

⊕
p≤m Vp. Each (Vm,D4)

is a variation of pure twistor structures of weight m.
A variation of polarized mixed twistor structures of weight w in n-variables (V,W,D4,f ,S) is called of

split type, if the underlying variation of mixed twistor structures (V,W,D4) is of split type with a grading
V =

⊕
Vm. By using H0

(
P1,OP1(m)

)
= 0 for any m < 0, we can show that the following:

• fj(Vp) ⊂ Vp−2 ⊗ T(−1).

• The restriction of S to Vp ⊗ σ∗Vq is 0 unless p+ q = 2w.

Similarly, a variation of polarized mixed integrable twistor structures of weight w in n-variables (V,W, D̃4,f ,S)
is called of split type, if the underlying variation of polarized mixed twistor structure is of split type with a
D̃4-flat grading.

A polarized mixed twistor-TERP structures (V,W,∇,f ,S, κ,−w) in n-variables is called of split type, if the
underlying variation of mixed integrable twistor structures is of split type with a grading V =

⊕
Vm such that

κ(γ∗Vm) = Vm.

2.4.2 Reduction

Let (V,W,D4,f ,S) be a variation of polarized mixed twistor structures of weight w in n-variables. We obtain
a variation of P1-holomorphic vector bundles (V (0),D(0)4) := GrW (V,D4). It is naturally equipped with
a grading V (0) =

⊕
GrWm (V ) and a filtration W

(0)
m =

⊕
p≤m GrWp (V ). We have induced morphisms f (0)

j :

GrWm (V ) −→ GrWm−2(V )⊗ T(−1), and hence f (0)
j : V (0) −→ V (0) ⊗ T(−1). We also obtain induced morphisms

S(0) : GrWw−m(V ) ⊗ σ∗ GrWw+m(V ) −→ T(−w), and hence S(0) : V (0) ⊗ σ∗(V (0)) −→ T(−w). It is known that
(V (0),W (0),f (0),S(0))|P1×{P} are polarized mixed twistor structures of split type with weight w in n-variables.
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(See [18]. It can be shown directly and easily.) Hence, (V (0),W (0),D(0)4,f (0),S(0)) is a variation of polarized
mixed twistor structures of split type with weight w in n-variables. It is denoted by GrW (V,W,D4,f ,S).

If (V,W,D4,f ,S) is enriched to a variation of polarized mixed integrable twistor structures with weight w
in n-variables, GrW (V,W,D4,f ,S) is also integrable. If moreover the variation of polarized mixed integrable
twistor structures is enriched to a variation of polarized mixed twistor-TERP structures, GrW is also enriched
to a variation of polarized mixed twistor-TERP structures of split type.

2.4.3 Splittings

Preliminary Let (Vi,W,D4i ) (i = 1, 2) be variations of mixed twistor structures on P1×X with a morphism
F : (V1,W,D41 ) −→ (V2,W,D42 ). We set (V (0)

i ,D(0)4
i ) := GrW (Vi,D4i ) on which we have the naturally induced

filtrations W (0). We also obtain induced morphism F (0) : (V (0)
1 ,W (0),D(0)4

1 ) −→ (V (0)
2 ,W (0),D(0)4

2 ). The
following lemma is standard.

Lemma 2.22 The rank of F|(λ,P ) is independent of (λ, P ) ∈ P1 × X. The morphism F is strict with respect
to the weight filtration. Hence, KerF with the induced filtration W (KerF ) is a mixed twistor structure, and we
have the isomorphism KerF (0) ' GrW

(
KerF

)
.

Proof If X is a point, the claims are well known and easy to show. Namely, it is shown in Lemma 2.20 of [17]
that (i) Ker(F ) is a subbundle of V1, (ii) F is strict with respect to the weight filtrations, i.e., F (Wl(V1)) =
F (V1) ∩Wl(V2), (iii) Ker(F ) with the induced weight filtration is a mixed twistor structure. We obtain the
isomorphism KerF (0) ' GrW

(
KerF

)
from the strictness.

Let us consider the general case. By using the flatness, it is easy to show that rankF|(1,P ) and rankF (0)
|(1,P )

are independent of the choice of a point P ∈ X. Then, the claim of the lemma follows.

Corollary 2.23 Let (Vi,W,D4i ) (i = 0, 1, . . . ,m) be variations of mixed twistor structures with morphisms
Fi : (V0,W,D40 ) −→ (Vi,W,D4i ) (i = 1, . . . ,m). Then, we have the following natural isomorphism of variations
of mixed twistor structures:

GrW
( m⋂
i=1

KerFi
)
'

m⋂
i=1

KerF (0)
i

Here, F (0)
i denote induced morphisms (V (0)

0 ,W (0),D(0)4
0 ) −→ (V (0)

i ,W (0),D(0)4
i ).

Local splitting Let (V,W,D4) be a variation of mixed twistor structures. Let N = (Nj | j = 1, . . . , `)
be a tuple of morphisms Nj : (V,W,D4) −→ (V,W,D4) ⊗ T(−1) which are mutually commutative. Let
(V (0),W (0),D(0)4) be as above. Let N (0) = (N (0)

j | j = 1, . . . , `) be the induced commuting tuple of morphisms

N
(0)
j : (V (0),W (0),D(0)4) −→ (V (0),W (0),D(0)4)⊗ T(−1).

We set V := Hom(V (0), V ), which is naturally equipped with the operator D4 and an induced filtration W .
Let N j : (V ,W,D) −→ (V ,W,D)⊗T(−1) be the morphisms of mixed twistor structures given by N j(f) = Nj ◦
f − f ◦N (0)

j . Similarly, we set V
(0)

:= Hom(V (0), V (0)) on which we have the naturally induced operator D(0)4
,

filtration W
(0)

and morphisms of mixed twistor structures N
(0)

j : (V
(0)
,W

(0)
,D(0)

) −→ (V
(0)
,W

(0)
,D(0)

) ⊗
T(−1).

We have the natural isomorphism GrW (V ) ' V
(0)

. The induced filtrations and the morphisms coincide.
According to Corollary 2.23, we have the following isomorphism of variations of mixed twistor structures:

GrW
(⋂

KerN j

)
'

⋂
KerN

(0)

j .

Then, we obtain the following corollary.

Corollary 2.24 Let (λ, P ) be any point of Cλ×X, and let U be a small neighbourhood of (λ, P ). There exists
a C∞-morphism F : V (0)

|U −→ V|U with the following property:
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• It preserves the weight filtration, and the induced morphism on GrW (V (0)
|U ) −→ GrW (V|U ) is the identity.

• F ◦N (0)
j = Nj ◦ F for j = 1, . . . , `.

C∞-splitting Let (V,W,D4,N) and (V (0),W (0),D(0)4,N (0)) be as above.

Lemma 2.25 There exists a C∞-isomorphism Φ : V (0) −→ V with the following property:

• Φ preserves the weight filtration W , and GrW Φ is the identity GrW (V (0)) = GrW (V ).

• Φ ◦N (0)
j = Nj ◦ Φ for j = 1, . . . , `.

Proof Let U ⊂ Cλ be a compact region with U ∪ σ(U) = P1. We take a locally finite open covering U ×X ⊂⋃
p∈I Up such that we have C∞-isomorphisms ΦUp : V (0)

|Up
−→ V|Up

as in Corollary 2.24, i.e., ΦUp
◦N (0)

j = Nj ◦ΦUp

for any j. Similarly, we take a locally finite open covering σ(U) × X† ⊂
⋃
q∈J U†q such that we have C∞-

isomorphisms ΦU†q : V (0)

|U†q
' V|U†q as in Corollary 2.24. We take a partition of unity

{
χUp , χU†q

∣∣ p ∈ I, q ∈ J}
subordinated to the covering

{
Up,U†q

∣∣ p ∈ I, q ∈ J}
of P1 ×X. We obtain the C∞-isomorphism

Φ :=
∑
p∈I

χUp
· ΦUp

+
∑
q∈J

χU†q · ΦU†q : V (0) −→ V.

By construction, it has the desired property.

3 Polarized mixed integrable twistor structure of split type

3.1 Basic examples in one variable

3.1.1 Rank two

Let us recall a basic example studied in Subsection 3.7.2 of [18] with a minor enrichment. We set V [2] :=
O(0,−1)⊕O(1, 0). (See Subsection 2.1.3 for O(p, q).) It is naturally equipped with a meromorphic connection
∇[2], and (V [2],∇[2]) is an integrable twistor structure. We put

W−2(V [2]) := 0, W−1(V [2]) = W0(V [2]) := O(0,−1), W1(V [2]) := V [2].

Let F [2] : V [2] −→ V [2] ⊗ T(−1) be given by

f (1,0)
a 7−→ f (0,−1)

a ⊗ t(−1)
a , (a = 0, 1,∞), f (0,−1)

a 7−→ 0.

A flat morphism S[2] : V [2] ⊗ σ∗V [2] −→ T(0) is given by the following correspondence:

S[2]
(
f

(1,0)
1 ⊗ σ∗f (0,−1)

1

)
=
√
−1t(0)1 , S[2]

(
f

(0,−1)
1 ⊗ σ∗f (1,0)

1

)
= −
√
−1t(0)1 ,

S[2]
(
f

(1,0)
1 ⊗ σ∗f (1,0)

1

)
= 0, S[2]

(
f

(0,−1)
1 ⊗ σ∗f (0,−1)

1

)
= 0.

Recall that (V [2],W, F [2], S[2]) is a polarized mixed twistor structure of split type in one variable with weight 0
(Lemma 3.90 of [18]). Hence, (V [2],W,∇[2], F [2], S[2]) is a polarized mixed integrable twistor structure of split
type.
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3.1.2 Twist

The bundle V [2] is obtained as the gluing of V [2]
0 := V

[2]
|Cλ

and V [2]
∞ := V

[2]
|Cµ

. We would like to explain a twist of

the gluing given in Subsection 3.7.2 of [18], related with the construction in Subsection 2.2.3. LetN := F [2]⊗t(1)1 .
Let v ∈ V [2]

|λ for λ 6= 0,∞. The induced elements of V [2]
0|λ and V

[2]
∞|µ are denoted by v and v†, respectively. The

gluing for V [2] is given by v = v†. For y ∈ C, a vector bundle Ṽ [2]
y is given by the following twisted gluing:

exp
(√
−1y ·N

)
· v = v†

Since N is flat, we have the naturally induced flat connection ∇[2]
y of Ṽ [2]

y . We also have the induced pairing
S̃

[2]
y of (Ṽ [2]

y ,∇[2]
y ) of weight 0.

For y 6= 0, we have a frame of Ṽ [2]
y given as follows:

s̃1 :=
√
−1λ · f (1,0)

0 +
√
−1y · f (0,−1)

0 = f (1,0)
∞

s̃2 := f
(1,0)
0 = −

√
−1µ · f (1,0)

∞ −
√
−1y · f (0,−1)

∞

In particular, (Ṽ [2]
y ,∇[2]

y ) is a pure integrable twistor structure of weight 0 for any y 6= 0. If y is a positive real
number, S̃[2]

y gives a polarization of (Ṽ [2]
y ,∇[2]

y ) (Lemma 3.91 of [18]). Actually, s̃i (i = 1, 2) give an orthogonal
frame:

S̃[2]
y (s̃i, σ∗s̃i) = y (i = 1, 2), S̃[2]

y (s̃1, σ∗s̃2) = 0.

Note that ∇[2]
y is logarithmic with respect to the lattice Ṽ [2]

y . For any y 6= 0, we have the decomposition

∇[2]
y = d[2]

y −Q[2]
y

dλ

λ

Here, d[2]
y is a natural flat connection of V [2]

y ' OP1(0)⊕ 2. Let us calculate Q[2]. By easy calculations,

∇[2]
y s̃1 = 0, ∇[2]

y s̃2 = s̃2 ·
(
−dλ
λ

)
.

Hence, Q[2] is expressed by the following matrix with respect to the frame s̃1, s̃2:(
0 0
0 1

)
In particular, the eigenvalues are independent of y.

Remark 3.1 For our application, we essentially need only the case in which y is a positive real number.
Recall that we have considered a twisted isomorphism (15). We will use the above consideration by setting
y = −

∑`
i=1 log |zi|2.

3.1.3 Rank `

For any positive integer `, we set (V [`],∇[`]) := Sym`−1(V [2],∇[2]), equipped with a morphism F [`] : V [`] −→
V [`] ⊗ T(−1) and a pairing S[`] : V [`] ⊗ σ∗V [`] −→ T(0). For any y ∈ C, we obtain an integrable twistor
structure (Ṽ [`]

y ,∇[`]
y , S̃

[`]
y ) with a pairing of weight 0, by the procedure in Subsection 3.1.2. It is also obtained as

the (` − 1)-th symmetric product of (Ṽ [2]
y ,∇[2]

y , S̃
[2]
y ). Hence, (Ṽ [`]

y ,∇[`]
y ) is pure with weight 0 for each y 6= 0,

and S̃[`]
y gives a polarization for each y > 0. We have the decomposition

∇[`]
y = d[`]

y −Q[`] dλ

λ

Let y 6= 0. A frame of Ṽ [`]
y is given by symmetric products s̃[`]p := s̃`−1−p

1 · s̃p2 (p = 0, 1, . . . , `− 1), for which Q[`]

is expressed by the diagonal matrix whose p-th entry is p (p = 0, 1, . . . , `− 1). In particular, the eigenvalues are
independent of y.
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3.2 Twistor nilpotent orbits of split type and their new supersymmetric indices

3.2.1 One variable case

Let Y be a complex manifold. Let (V,W,D4, N, S) be a variation of polarized mixed twistor structures of split
type with weight 0 in one variable on P1 × Y . The following lemma is essentially the same as Corollary 3.97 of
[18].

Proposition 3.2 There exist variations of polarized pure twistor structures (U`,D4` , S`) of weight 0 on P1×Y
for ` ≥ 1, such that (i) (V,D4) '

⊕
`≥1(U`,D

4
` )⊗ V [`], (ii) N =

⊕
idU`
⊗F [`] and S =

⊕
S` ⊗ S[`] under the

isomorphism.
If (V,W,D4, N, S) is enriched to be integrable, (U`,D4, S`) are also integrable.

Proof We have the grading V =
⊕

j∈Z Vj . For each j ≥ 0, we set PVj := Ker
(
N j+1 : Vj −→ V−j−2⊗T(j+1)

)
.

It is a variation of pure twistor structure of weight j, and equipped with the induced polarization Sj . For ` ≥ 1,
we set

U` := PV`−1 ⊗O(0,−`+ 1).

which are naturally variations of polarized pure twistor structures. Then, it is easy to observe that V has the
desired decomposition. The integrable case is also easy.

Let q : Y ×C∗ −→ Y denote the projection. We obtain the variations of polarized pure twistor structures
on P1 × (Y ×C∗) obtained as the pull back of (U`,D4` , S`), denoted by q∗(U`,D4` , S`). Recall the construction
in Subsection 2.2.3. We obtain the following isomorphism from Proposition 3.2:

TNIL(V,D4, N, S) '
⊕
`

q∗(U`,D4` , S`)⊗ TNIL(V [`],∇[`], F [`], S[`]) (22)

By using the result in Subsection 3.1, we can conclude the following:

Proposition 3.3 We set X+ := Y ×
{
z ∈ C

∣∣ 0 < |z| < 1
}

and X− := Y ×
{
z ∈ C

∣∣ |z| > 1
}
. Then,

TNIL(V,D4, N) is a variation of pure integrable twistor structures on P1 × (X+ ∪ X−), and the restriction
TNIL(V,D4, N, S)|P1×X+ is a twistor nilpotent orbit.

Assume that (V,D4) is enriched to integrable (V, D̃4) such that S and N are D̃4-flat. Let Q and Q[`] be the
new supersymmetric indices of TNIL(V, D̃4, N) and TNIL(V [`],∇[`], F [`]), respectively. We also have the new
supersymmetric index Q` of (U`, D̃4` ). By construction, we have the following equality, under the isomorphism
(22):

Q =
⊕
`≥1

(
Q` ⊗ id+ id⊗Q[`]

)
The eigenvalues of Q are easily calculable, once we know those of Q`. In particular, we obtain the following.

Corollary 3.4 The eigenvalues of Q|q−1(y) are constant for any y ∈ Y , where q : (X+ ∪ X−) −→ Y denotes
the projection.

3.2.2 Several variable case

Let (V,W,D4V ,N , S) be a variation of polarized mixed twistor structures of split type with weight 0 in n-
variables on P1 × Y . We have the associated variation of twistor structures TNIL(V,D4V ,N , S) with a pairing
of weight 0 on (C∗)n × Y . We set X∗ =

{
(z1, . . . , zn) ∈ Cn

∣∣ 0 < |zi| < 1
}
× Y .

Proposition 3.5 TNIL(V,D4V ,N , S)|P1×X∗ is a twistor nilpotent orbit.

Proof For any a ∈ Rn
>0, we set N(a) :=

∑n
i=1 ai · Ni. We obtain a variation of mixed polarized twistor

structures (V,W,D4, N(a), S) of split type with weight 0 in one variable on P1 × Y . Applying the result in
Subsection 3.1.3 to (V,W,D4V , N(a), S), we obtain the desired property of (V,W,D4V ,N , S).
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Definition 3.6 An (integrable) twistor nilpotent orbit is called of split type, if it is associated to (integrable)
polarized mixed twistor structures of split type.

If (V,W,D4V ,N , S) is enriched to integrable (V,W, D̃4V ,N , S), the associated twistor nilpotent orbit is also
enriched to integrable TNIL(V, D̃4V ,N , S). Let us consider its new supersymmetric index Q. For any a ∈ Rn

>0,
we set N(a) :=

∑n
i=1 ai · Ni. According to Proposition 3.2, there exist variations of polarized pure integrable

twistor structures (Ua,`, D̃4a,`) for ` ≥ 1 such that(
V, D̃4V , N(a)

)
'

⊕
`≥1

(
Ua,`, D̃4a,`

)
⊗

(
V [`],∇[`], F [`]

)
.

Lemma 3.7 For any a, b ∈ Rn
>0, we have an isomorphism

(
Ua,`, D̃4a,`

)
'

(
Ub,`, D̃4b,`

)
.

Proof Let V =
⊕
Vj be the splitting. For any a ∈ Rn

>0 and j ≥ 0, we set

(PVj,a, D̃4) := Ker
(
N(a)j+1 : (Vj , D̃4) −→ (V−j−2, D̃4)⊗ T(−j − 1)

)
We have only to show that (PVj,a, D̃4) and (PVj,b, D̃4) are isomorphic, if b is sufficiently close to a.

We set (Yj,a, D̃4) = Im
(
N(a) : (Vj+2, D̃4) ⊗ T(1) −→ (Vj , D̃4)

)
. Then, we obtain the flat splittings

(Vj , D̃4) = (PVj,a, D̃4) ⊕ (Yj,a, D̃4). If b is sufficiently close to a, flat isomorphisms PVj,a −→ PVj,b are
induced by inclusions and projections. Thus, we are done.

By Lemma 3.7 and the result in Subsection 3.2.1, the eigenvalues of Q are easily calculable once we know
the new supersymmetric indices of (Ua,`, D̃4a,`) for a ∈ R`

>0 and ` ≥ 1. In particular, we obtain the following.

Corollary 3.8 The eigenvalues of Q|q−1(y) are constant for any y ∈ Y , where q : X∗ −→ Y denotes the natural
projection.

4 Integrable twistor nilpotent orbit

4.1 Statements

4.1.1 Twistor nilpotent orbits and polarized mixed twistor structures

Let Y be a complex manifold. Let (V,D4V ) be a variation of P1-holomorphic vector bundles on P1×Y equipped
with the following P1-holomorphic D4V -flat data:

• A (−1)w-symmetric pairing S : V ⊗ σ∗V −→ T(−w).

• A tuple N of nilpotent morphisms Nj : V −→ V ⊗T(−1) (j = 1, . . . , n), which are mutually commutative.

• S(Nj ⊗ id) + S(id⊗σ∗Nj) = 0 for j = 1, . . . , n.

For simplicity of the statement, we assume the following:

• Y is contained in another complex manifold Y ′ as a relatively compact subset, and (V,D4V , S,N) is
extended on Y ′.

We set X∗(R) :=
{
(z1, . . . , zn)

∣∣ |zi| < R
}
× Y .

Theorem 4.1 (V,D4V ,N , S) is a variation of polarized mixed twistor structures with weight w in n-variables,
if and only if TNIL(V,D4V ,N , S)|P1×X∗(R) is a twistor nilpotent orbit with weight w for some R > 0.

Note that the “if” part follows from Theorem 12.22 of [18]. The “only if” part immediately follows from
Proposition 4.4 below and a result in Subsection 2.8 of [19]. (We apply Proposition 4.4 to each point of Y ′.)
The one dimensional case was proved in Proposition 3.105 of [18]. Such an equivalence for Hodge structure was
established by Cattani-Kaplan-Schmid and Kashiwara-Kawai.
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Corollary 4.2 Let (V,D4V ,N , S) be as above.

• Assume that (V,D4V ) is enriched to integrable (V, D̃4V ) such that N and S are flat with respect to D̃4V .
Then, (V, D̃4V ,N , S) is a variation of polarized mixed integrable twistor structures with weight w in n

variables, if and only if TNIL(V, D̃4V ,N , S)|P1×X∗(R) is integrable twistor nilpotent orbit for some R > 0.

• Assume moreover that (V, D̃4V , S) is equipped with a real structure κ which is compatible with N . Then,
(V, D̃4V ,N , S, κ,−w) is a variation of polarized mixed twistor-TERP structures if and only if the associated
TNIL(V, D̃4V ,N ,S, κ,−w) is a twistor-TERP nilpotent orbit on X∗(R) for some R > 0.

Remark 4.3 As the one variable case of Corollary 4.2, we obtain the correspondence between twistor-TERP
nilpotent orbits and polarized mixed twistor-TERP structures. This is different from the correspondence between
mixed TERP structure and HS-orbit in the regular singular case established by Hertling and Sevenheck ([7] and
[8]).

4.1.2 Construction of an approximating C∞-isomorphism

Let (V,W,D4,N , S) be a variation of polarized mixed twistor structures of weight 0 in n-variables on P1 × Y .
As explained in Subsection 2.4.2, we obtain a variation of polarized mixed twistor structure of split type(
V (0),W (0),D(0)4,N (0), S(0)

)
by taking Gr with respect to the weight filtration. We obtain the families of

P1-holomorphic vector bundles (V4,D4) := TNIL(V,D4,N) and (V(0)4,D(0)4) := TNIL(V (0),D(0)4,N (0))
on (C∗)n × Y . They are equipped with the induced pairings S and S(0). By the result in Subsection 3.2.2,
(V(0),D(0)4,S(0)) is a variation of polarized pure twistor structure on P1×X∗(1). Let h(0) be the corresponding
pluri-harmonic metric.

We take a C∞-isomorphism Φ : V (0) −→ V as in Lemma 2.25, i.e., it satisfies (i) Φ ◦ N (0)
i = Ni ◦ Φ for

i = 1, . . . , n, (ii) Φ preserves the weight filtration W , and GrW Φ is the identity of GrW (V (0)) = GrW (V ). By
the property (i) for Φ and the construction of V4 and V(0)4, we obtain a naturally induced C∞-isomorphism
Φ̃ : V(0)4 −→ V4.

Let ∂V4,P1 denote the P1-holomorphic structure of V4. We use the symbol ∂V(0)4,P1 in a similar meaning.
We obtain the following C∞-section of End(V(0)4)⊗ Ω0,1

P1 on P1 ×X∗(1):

F := ∂V(0)4,P1 − Φ̃∗
(
∂V4,P1

)
We also obtain the following C∞-morphism:

G := S(0) − Φ̃∗S : V(0)4 ⊗ σ∗V(0)4 −→ T(0)

We fix a Kähler metric g of P1. Although the following proposition looks rather auxiliary, it means that
(V(0)4,D(0)4,S(0)) approximates (V4,D4,S) via Φ̃ around P1×{0}×Y . We will prove it in Subsection 4.2.1.

Proposition 4.4 For any P ∈ Y , there exist a positive constant RP > 0 and a neighbourhood UP of P in Y
such that the following estimate holds P1 ×

{
(z1, . . . , zn)

∣∣ 0 < |zj | < RP
}
× UP :

∣∣F ∣∣
h(0),g

= O
( n∑
j=1

(
− log |zj |

)−1/2
)

∣∣G∣∣
h(0) = O

( n∑
j=1

(
− log |zj |

)−1/2
)
,

∣∣∂V(0)4,P1G
∣∣
h(0),g

= O
( n∑
j=1

(
− log |zj |

)−1/2
)
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4.1.3 Estimate of the new supersymmetric index

Assume that (V,D4V ,N , S) is enriched to integrable (V, D̃4V ,N , S). By taking Gr with respect to the weight
filtration, we obtain a polarized mixed integrable twistor structure of split type

(
V (0),W (0),D(0)4

V ,N (0), S(0)
)
.

Let (V, D̃4,S) = TNIL(V, D̃4V ,N , S)|P1×X∗(R) and (V(0), D̃(0)4,S(0)) = TNIL(V (0), D̃(0)
V ,N (0), S(0))|P1×X∗(R)

be the associated nilpotent orbits (Corollary 4.2). Let Q and h (resp. h(0) and Q(0)) denote the new supersym-
metric index and the pluri-harmonic metric of (V, D̃4,S) (resp. (V(0), D̃(0)4,S(0))). We will prove the following
proposition in Subsection 4.2.2.

Proposition 4.5 Let Φ̃ : V(0) −→ V be a C∞-isomorphism constructed in Subsection 4.1.2. For any P ∈ Y ,
there exist R > 0 and a neighbourhood UP of P in Y such that the following estimate holds with respect to h(0)

on P1 ×
{
(z1, . . . , zn)

∣∣ 0 < |zj | < R
}
× UP :

Φ̃∗h− h(0) = O
( n∑
i=1

(
− log |zi|

)−1/2
)
, Φ̃∗Q−Q(0) = O

( n∑
i=1

(
− log |zi|

)−1/2
)

In particular, the eigenvalues of Q|q−1(y) are constant up to O
(∑n

i=1

(
− log |zi|

)−δ) for some δ > 0, where
q : X∗(1) −→ Y denotes the natural projection.

4.2 Proof

4.2.1 Proof of Proposition 4.4

Let C > 0. Fix P ∈ Y . In the following, we will shrink Y instead of taking a neighbourhood UP , for simplicity
of description. We set

Z(C) :=
{

(z1, . . . , zn) ∈ (C∗)n
∣∣∣ ∣∣zi∣∣C ≤ ∣∣zi+1

∣∣ < 1, i = 1, . . . , n− 1
}
× Y.

It is easy to observe that we have only to estimate F , G and ∂V(0)4,P1G on P1 × Z(C). For m = 1, . . . , n, we
put N (0)(m) :=

∑
i≤mN

(0)
i . Let W (m) denote the weight filtration of V (0) induced by N (0)(m). Recall that

the filtrations W (1),W (2), . . . ,W (n) are compatible (Lemma 3.116 of [18]).
We take a compact region U ⊂ Cλ such that the union of the interior parts of U and σ(U) cover P1. Let

v = (vi) be a frame of V (0)
|U×Y compatible with W (1),W (2), . . . ,W (n). For m = 1, . . . , n, we set

km(vi) :=
1
2

degW (m)(vi).

We formally put k0(vi) = 0.

Lemma 4.6 Let A be determined by
(
Φ−1 ◦ ∂Φ

)
v = v · A. Then, Ai,j = 0 unless km(vi) ≤ km(vj) (m =

1, . . . , n− 1) and kn(vi) < kn(vj).

Proof Because of our choice of Φ, it preserves the filtrations W (m) (m = 1, . . . , n), and GrW (n) Φ is holomor-
phic. Then, the claim of Lemma 4.6 immediately follows.

Let q0 : Cλ × X∗(1) −→ Cλ × Y be the projection. Recall V(0)4
|Cλ×X∗(1) = q∗0V0. Let ṽi be the section of

V(0)4
|U×X∗(1) induced by vi, and we put

v′j := ṽj ·
n∏

m=1

(
− log |zm|

)−km(vj)+km−1(vj) = ṽj ·
n−1∏
m=1

(
− log |zm|
− log |zm+1|

)−km(vj)

·
(
− log |zn|

)−kn(vj)
.
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Due to the norm estimate for tame harmonic bundles (Theorem 13.25 of [18]), the C∞-frame v′ = (v′j) is
adapted to the metric h(0) on Z(C), i.e., the hermitian matrix-valued functions H =

(
h(v′i, v

′
j)

)
and H−1 are

bounded on Z(C). Let A′ be the matrix-valued function determined by Fv′ = v′ ·A′. Then, we have

A′i,j = Ai,j ·
n−1∏
m=1

(
− log |zm|
− log |zm+1|

)km(vi)−km(vj)

·
(
− log |zn|

)kn(vi)−kn(vj)
.

Hence, we obtain A′i,j = O
((
− log |zn|

)−1/2
)
. It implies the desired estimate for F on U ×Z(C). Similarly, we

obtain the estimate on σ(U)× Z(C), and thus on P1 × Z(C).

Let w be a frame of V|σ(U)×Y † compatible with the filtrations W (1),W (2), . . . ,W (n). For m = 1, . . . , n, we
set

km(wi) :=
1
2

degW (m)(wi).

We formally put k0(wi) = 0. We set G0 := S(0) − Φ∗S : V (0) ⊗ σ∗V (0) −→ T(0).

Lemma 4.7 G0(vi, σ∗wj) = 0 unless the following holds:

km(vi) + km(wj) ≥ 0 (m = 1, . . . , n− 1), kn(vi) + kn(wj) > 0.

Proof By the relation S(Ni ⊗ id) + S
(
id⊗σ∗(Ni)

)
= 0, we have S

(
Wp(m)⊗ σ∗Wq(m)

)
= 0 unless p+ q ≥ 0.

We have similar vanishings for S(0). Note that Φ preserves the filtrations W (m) for m = 1, . . . , n, and GrW (n) Φ
is compatible with S and S(0). Thus, we obtain the claim of Lemma 4.7.

Let q∞ : Cµ ×X∗(1)† −→ Cµ × Y † be the projection. Recall V(0)4
|Cµ×X∗(1)†

= q∗∞V∞. Let w̃j be the section

of V(0)4
|σ(U)×X∗(1)†

induced by wj , and we put

w′j := w̃j ·
n−1∏
m=1

(
− log |zm|
− log |zm+1|

)−km(wj)

·
(
− log |zn|

)−kn(wj)
.

Note the following:

G(v′i, σ
∗w′j) = G0(vi, σ∗wj)×

n−1∏
m=1

(
− log |zm|
− log |zm+1|

)−km(vi)−km(wj)

·
(
− log |zn|

)−kn(vi)−kn(vj)

Hence, we obtain
∣∣G∣∣

h(0) = O
((
− log |zn|

)−1/2
)
. Similarly, we obtain the estimate for

∣∣∂V(0),P1G
∣∣. Thus, the

proof of Proposition 4.4 is finished. The proof of Theorem 4.1 is also finished.

4.2.2 Proof of Proposition 4.5

We have the decompositions D̃4 = D4V0
+∇λ and D̃(0)4 = D(0)4

V0
+∇(0)

λ . By an argument used in the proof of
Proposition 4.4, we obtain the following estimate with respect to h(0):

Φ̃∗∇λ −∇(0)
λ = O

( n∑
i=1

(
− log |zi|

)−1/2
)

Then, Proposition 4.5 follows from Lemma 2.20 with Proposition 4.4.

5 Family of meromorphic λ-flat bundles

We will review some results on family of meromorphic λ-flat bundles mainly explained in Sections 7 and 8 of
[19]. See also [16] and [20] for the earlier works on asymptotic analysis of meromorphic flat bundles.
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5.1 Good lattice in the level m

5.1.1 Preliminary

Good set of irregular values in the level m Let ∆` :=
{
(z1, . . . , z`)

∣∣ |zi| < 1, i = 1, . . . , `
}

denote the `-
dimensional multi-disc. Let X := ∆` × Y for some complex manifold Y . Let Di := {zi = 0} and D :=

⋃`
i=1Di

be hypersurfaces of X. Let M(X,D) (resp. H(X)) denote the space of meromorphic (resp. holomorphic)
functions on X whose poles are contained in D. For m = (m1, . . . ,m`) ∈ Z`, we put zm :=

∏`
i=1 z

mi
i .

Let m ∈ Z`≤0 − {0}. A finite set I of meromorphic functions
{
a = am · zm

}
⊂ M(X,D) is called a good

set of irregular values on (X,D) in the level m, if the following holds:

• am are holomorphic functions on X.

• am − bm are nowhere vanishing holomorphic functions on X for any two distinct a, b ∈ I.

Let i(0) be the integer such that mi(0) < 0. If moreover the following condition holds, I is called a good set of
irregular values on (X,D) in the level (m, i(0)).

• am are independent of the variable zi(0) for any a ∈ I.

Remark 5.1 The first condition is not essential. If we do not impose it, the third condition should be replaced
with that am − bm are independent of zi(0) for any a, b ∈ I.

Multi-sectors and orders on good sets of irregular values in the level m Let X := ∆` × Y for some
complex manifold Y . Let Di := {zi = 0} and D :=

⋃`
i=1Di be hypersurfaces of X. Let K be a region of Cλ or

a point in C∗
λ. (For Definition 5.4, we may admit K = {0}. Since we do not have to consider Stokes structure

in this case, we exclude it in the following.) The product K ×X is expressed by X . We use the symbols like
Y and D in similar meanings. We put W := D ∪

(
{0} × X

)
in the case 0 ∈ K, and W := D otherwise. Let

π : X̃ (W ) −→ X denote the real blow up of X along W .
In this paper, a sector of a punctured disc ∆∗ means a subset of the form

{
z

∣∣ 0 < |z| < R, θ0 ≤ arg(z) ≤ θ1
}

for some θ0 < θ1. It may be standard to admit the case |θ1 − θ0| ≥ 2π, but we do not care about it.
By a “multi-sector of X −W”, we mean a subset of the following form

U ×
∏̀
i=1

Si × V, or Sλ ×
∏̀
i=1

Si × V.

• U denotes a compact region in K. (If K is a point, U = K.)

• Sλ denotes a sector of K − {0}. (If 0 6∈ K, we do not consider the subsets of the second type.)

• Si denote sectors of ∆∗
zi

.

• V denotes a compact region in Y .

For a multi-sector S, let S denote the closure of S in X̃ (W ).

Notation 5.2 Let MS(X − W ) denote the set of multi-sectors in X̃ (W ). For any point P ∈ X̃ (W ), let
MS(P,X −W ) denote the set of multi-sectors S such that P is contained in the interior part of S.

Let I be a good set of irregular values on (X ,D) in the level m. We put Fa,b := −Re
(
λ−1 ·(a−b)

)
·|λ|·|z−m|

for any distinct a, b ∈ I. They determine the C∞-functions on X̃ (W ).

Notation 5.3 Let A be any subset of X̃ (W ). We say a <A b for (a, b) ∈ I2 if Fa,b(Q) < 0 for any Q ∈ A.
We say a ≤A b for (a, b) ∈ I2 if either a <A b or a = b holds. The relation ≤A gives the partial order of I.

We use the symbol ≤P in the case A = {P}. For a multi-sector S, we prefer the symbol ≤S to ≤S. We also
use ≤λS and ≤λP when we emphasize the twist by λ−1.

For any point P ∈ π−1(W ), there exists SP ∈MS(P,X −W ) such that the relations ≤P and ≤SP
coincide.

LetMS(P,X −W, I) denote the set of such SP . (The definitions ofMS(P,X −W, I) is slightly different from
that in [19].)
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5.1.2 Good lattice in the level m

Let Y be a complex manifold with a simple normal crossing divisor D′
Y . Let X := ∆k

z × Y , Dz,i := {zi = 0}
and Dz :=

⋃k
i=1Dz,i. We also put DY := ∆k

z ×D′
Y and D := Dz ∪DY . Let K be a point of C∗

λ or a compact
region in Cλ. We put X := K × X. We use the symbols Y, Dz, D in similar meanings. Let pλ denote the
projection forgetting the K-component. The completion of X along Dz is denoted by D̂z. (See [1], [2] and [15]
for completion of complex analytic spaces.) We use the symbol D̂ in a similar meaning. Let dX denote the
restriction of the exterior derivative to the X-direction.

Let E be a locally free OX -module with a family of meromorphic flat λ-connections D : E −→ E⊗p∗λΩ1
X(∗D).

Let m ∈ Zk<0 and i(0) ∈ [1, k] = {1, . . . , k}. We put m(1) := m + δi(0).

Definition 5.4 We say that (E,D) is an unramifiedly good lattice of a family of meromorphic λ-flat bundles
in the level (m, i(0)), if there exists a good set of irregular values I in the level (m, i(0)) on (X ,Dz), and a
decomposition

(E,D)| bDz
=

⊕
a∈I

(Êa, D̂a) (23)

with ord(D̂a − dXa) ≥m(1) in the sense (D̂a − dXa)Êa ⊂ zm(1) · Êa ⊗ p∗λΩ1
X

(
logD

)
.

The decomposition (23) is called the irregular decomposition in the level (m, i(0)), (or simply m). We also
often say that (E,D) is a good lattice in the level (m, i(0)) for simplicity.

In the case 0 ∈ K, we put X 0 := {0} × X and D0
z := {0} × Dz. By shrinking X, we obtain the irregular

decomposition (E,D)|X 0 =
⊕

a∈I(Ea,X 0 ,D0
a) whose completion along D0

z is equal to the one induced by (23).
It is uniquely extended to the D-flat decomposition on the completion X̂ 0 of X along X 0:

(E,D)| bX 0 =
⊕
a∈I

(Êa, bX 0 , D̂a)

We put W := X 0 ∪ Dz. Let Ŵ denote the completion along W . We obtain the decomposition:

(E,D)|cW =
⊕
a∈I

(Ê
a,cW , D̂a) (24)

The decomposition (24) is also called the irregular decomposition in the level (m, i(0)) if 0 ∈ K.
In the following, we formally set W := Dz if 0 6∈ K. Let π : X̃ (W ) −→ X denote the real blow up of X

along W . Let Oz be the origin of ∆k
z , and we put Z := π−1(Oz × Y). We consider the case that Y = ∆n

ζ and
D′
Y :=

⋃`
j=1Dζ,j , where Dζ,j := {ζj = 0}. The restriction of D to the ∆k

z -direction is denoted by Dz.

Stokes structure in the level m For any multi-sector S in X −W , let S denote the closure of S in X̃ (W ),
and let Z denote S ∩ π−1(W ). The irregular decomposition (24) on Ŵ induces the decomposition on Ẑ:

(E,D)|bZ =
⊕
a∈I

(Êa, D̂a)|bZ (25)

We put FZa :=
⊕

b≤Sa Êb|bZ , and then we obtain the filtration FZ of E|bZ indexed by
(
I,≤S

)
. We can show the

following proposition. (See Subsections 7.2.1 and 8.1.1 of [19].)

Proposition 5.5 For any point P ∈ Z, there exists S ∈MS(P,X −W, I) such that the following holds:

• There exists the unique D-flat filtration FS of E|S indexed by
(
I,≤S

)
such that FS

|bZ = FZ . Moreover, if

a Dz-flat filtration F ′S of E|S indexed by (I,≤S) satisfies F ′S
|bZ = FZ , then F ′S = FS.

• There exists a Dz-flat splitting of FS on S. Note that if we take such a splitting, the restriction to Ẑ is
the same as (25).
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We call FS the Stokes filtration of (E,D) in the level m.

Notation 5.6 For any P ∈ Z, letMS∗(P,X −W, I) denote the set of S ∈MS(P,X −W, I) as in Proposition
5.5. Let MS∗(X −W, I) denote the union of MS∗(P,X −W, I) for P ∈ Z.

The following lemma is clear.

Lemma 5.7 Let S, S′ ∈ MS(P,X − W, I). Assume (i) S′ ⊂ S, (ii) S ∈ MS∗(P,X − W, I). Then, S′ ∈
MS∗(P,X −W, I). The filtration FS′ is the restriction of FS.

Compatibility of the Stokes filtrations Let S, S′ ∈ MS∗(X −W, I) such that S′ ⊂ S. The natural map(
I,≤S

)
−→

(
I,≤S′

)
is order-preserving. We can show the following lemma easily by using Proposition 5.5.

(See Subsections 7.2.2 and 8.1.2 of [19].)

Lemma 5.8 The filtrations FS and FS′ are compatible with respect to
(
I,≤S

)
−→

(
I,≤S′

)
in the following

sense:

• FS′a (E|S′) = FS′<a(E|S′) + FSa (E|S)|S′ .

• The induced morphisms GrF
S

a (E|S)|S′ −→ GrF
S′

a (E|S′) are isomorphisms.

In particular, we have FS(E|S)|S′ = FS′(E|S′), if
(
I,≤S

)
−→

(
I,≤S′

)
is isomorphic.

Splitting with nice property We have the induced morphisms Resj(D) : E|Dζ,j
−→ zm(1) · E|Dζ,j

for
j = 1, . . . , `. Since FS is D-flat, Resj(D) preserves FS|Dζ,j

. If we fix the coordinate, we have the induced family
of flat λ-connections of E|Dζ,j

which is denoted by jD. It also preserves the filtration FS|Dζ,j
. Let jF (j = 1, . . . , `)

be filtrations of E|Dζ,j
, which are preserved by the endomorphism Resj(D) and the flat connection jD of E|Dζ,j

.
We can show the following (Subsections 7.2.3 and 8.1.3 of [19]).

Proposition 5.9 Let P ∈ Z. There exist S ∈ MS∗(P,X −W, I) and a Dz-flat splitting of the filtration FS,
whose restriction to S ∩ Dζ,j is compatible with Resj(D) and the filtrations jF for j = 1, . . . , `.

Under some more assumption, we can take a D-flat splitting. (See Subsection 7.2.3 of [19].)

Proposition 5.10 Assume that K is a point or a compact region in C∗
λ. Assume that the eigenvalues α, β of

Resj(Df )|Dj×{λ} satisfy α − β 6∈ (Z − {0}) for any j = 1, . . . , ` and for any λ ∈ K. Then, we have a D-flat
splitting of FS, whose restriction to Dζ,j is compatible with jF for each j = 1, . . . , `.

Some functoriality of Stokes filtrations We explain functoriality of Stokes filtrations. See Subsections
7.2.4 and 8.1.4 of [19] for more details.

In general, when we are given vector spaces U ⊂ V , let U⊥ denote the subspace of the dual V ∨ given by
U⊥ =

{
f ∈ V ∨

∣∣ f(U) = 0
}
. It is naturally generalized for vector bundles. Let (E,D, I) be an unramifiedly good

lattice of a family of meromorphic λ-flat bundles in the level (m, i(0)) on (X ,Dz). Let S ∈ MS∗(X −W, I).
We have the following for any a ∈ I∨ :=

{
−b

∣∣ b ∈ I
}
:

FSa (E∨|S) =

 ∑
c∈I

c6≥S−a

FSc (E|S)


⊥

Let (Ep,Dp, Ip) (p = 1, 2) be good lattices of families of meromorphic λ-flat bundles in the level (m, i(0)).
We assume that I1 ⊗ I2 :=

{
a1 + a2

∣∣ ap ∈ Ip
}

is a good set of irregular values in the level (m, i(0)). We put
(Ẽ, D̃) := (E1,D1)⊗ (E2,D2). Let S ∈

⋂
p=1,2MS∗

(
X −W, Ip

)
. We have the following for each a ∈ I1 ⊗ I2:

FSa (Ẽ|S) =
∑

a1+a2≤Sa

FSa1
(E1|S)⊗FSa2

(E2|S).
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Assume that I1⊕I2 := I1∪I2 is a good set of irregular values in the level (m, i(0)). Let S ∈
⋂
p=1,2MS∗

(
X−

W, Ip
)
. We have the following for each a ∈ I1 ⊕ I2:

FSa
(
(E1 ⊕ E2)|S

)
= FSa (E1|S)⊕FSa (E2|S).

Let F : (E1,D1) −→ (E2,D2) be a flat morphism. For simplicity, we assume that I1 ∪ I2 is a good set of
irregular values in the level (m, i(0)).

Lemma 5.11 Let S ∈
⋂
p=1,2MS∗(X − W, Ip). The restriction F|S preserves the Stokes filtrations. As a

result, we obtain the following.

• If the restriction of F to X −D is isomorphic, we have I1 = I2 and FSa (E1|S\D) = FSa (E2|S\D).

• In particular, the Stokes filtration FS depends only on the family of meromorphic λ-flat bundles
(
E(∗D),D

)
in the sense that it is independent of the choice of an unramifiedly good lattice E ⊂ E(∗D) in the level
(m, i(0)).

The associated graded bundle in the level m For sectors S ∈ MS∗(X − W, I) and each a ∈ I, we
obtain the bundle Grm

a (E|S) on S associated to the Stokes filtration FS in the level m. By varying S and

gluing Grm
a (E|S), we obtain the bundle Grm

a (E|eV(W )) on Ṽ(W ) with the induced family of flat λ-connections

Da, where V denotes some neighbourhood of Oz × Y, and Ṽ(W ) denotes the real blow up of V along W ∩ V.
It is shown that we have the descent of Grm

a (E|eV(W )) to V, i.e., there exists a locally free sheaf Grm
a (E) on V

with a family of meromorphic flat λ-connections Da, such that

π−1(Grm
a (E),Da) ' (Grm

a (E|eV(W )),Da), (Grm
a (E),Da)|cW∩V '

(
Êa, D̂a

)
|cW∩V

(See Subsection 7.3 and Subsection 8.1.5 of [19].) If we set D′a := Da − dXa, we have

D′aEa ⊂ zm(1) · Ea ⊗ p∗λΩ1
X(logD).

We give some statements for functoriality. See Subsections 7.3.2 and 8.1.6 of [19] for more details.
By taking Gr of the Stokes filtrations of (E∨,D∨, I∨), we obtain the associated graded bundle Grm(E∨) =⊕

a∈I∨ Grm
a (E∨). We have the natural flat isomorphism

Grm
a (E∨) ' Grm

−a(E)∨. (26)

Actually, by construction, we have such an isomorphism on the real blow up, which induces (26).
Let (Ep,∇p, Ip) (p = 1, 2) be unramifiedly good lattices of families of meromorphic λ-flat bundles. Assume

I1⊗I2 is a good set of irregular values in the level m. Let (Ẽ, D̃) := (Ep,D1)⊗ (Ep,D2). We have the following
natural isomorphism for each a ∈ I1 ⊗ I2:

Grm
a (Ẽ) '

⊕
(a1,a2)∈I1×I2

a1+a2=a

Grm
a1

(E1)⊗Grm
a2

(E2) (27)

Assume I1 ⊕ I2 is a good set of irregular values in the level (m, i(0)). For each a ∈ I1 ⊕ I2, we obviously have

Grm
a (E1 ⊕ E2) ' Grm

a (E1)⊕Grm
a (E2).

Lemma 5.12 Let F : (E1,D1) −→ (E2,D2) be a flat morphism. Assume I1 ⊕ I2 is a good set of irregular
values in the level (m, i(0)). We have the naturally induced morphism Grm

a (F ) : Grm
a (E1) −→ Grm

a (E2). If
the restriction E1|X−D −→ E2|X−D is an isomorphism, the induced morphism

Grm
a (E1)⊗O(∗D) −→ Grm

a (E2)⊗O(∗D)

is an isomorphism.
Hence, the associated meromorphic flat bundles

(
Grm

a (E)⊗O(∗D),Da

)
are well defined for the meromorphic

flat bundle
(
E(∗D),D

)
.
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A characterization of sections of E Let wa be a frame of Grm
a (E). Let S ∈ MS∗(X −W, I), and let

E|S =
⊕
Ea,S be a Dz-flat splitting of the Stokes filtration FS . By the natural isomorphism Ea,S ' Grm

a (E)|S ,
we take a lift wa,S of wa. Thus, we obtain a frame wS =

(
wa,S

)
of E|S . The following proposition is clear, which

implies a characterization of sections of E by growth order with respect to the frames wS (S ∈MS∗(X −W, I)).

Proposition 5.13 Let v be a frame of E, and let GS be determined by v = wS ·GS. Then, GS and G−1
S are

bounded on S.

Complement on the induced flat connection along the λ-direction Assume that we are given a
connection along the λ-direction ∇λ : E −→ E ⊗Ω1

K(∗W ) such that Df +∇λ is a meromorphic flat connection
of E.

Lemma 5.14 The Stokes filtrations are flat with respect to ∇λ, and we have the induced meromorphic flat
connection ∇λ along the λ-direction on Grm

a (E).

Proof Take N such that λN∇λ(∂λ)E ⊂ E ⊗ OX (∗D). Let wS = (wa,S) be a frame of E|S as above. Let
A = (Aa,b) be the matrix-valued holomorphic function on S determined by λN∇(∂λ)wS = wS · A. By using
Proposition 5.13, we can show that Aa,b are of polynomial order.

Let Ba be the matrix-valued meromorphic one-forms determined by Da,zwa = wa ·
(
dza + Ba

)
. Note that

z−m(1)Ba is logarithmic. By the commutativity [Df ,∇λ] = 0, we obtain the following relation for a 6= b:

λ · dzAa,b +
(
dz(a− b)

)
·Aa,b +

(
Aa,bBb −BaAa,b

)
= 0 (28)

By applying the results in Subsection 4.3 of [19] to (28), we obtain Aa,b = 0 unless a ≤S b, which implies the
first claim. Since Aa,a is of polynomial order, the induced connection along the λ-direction is meromorphic.

Prolongment of morphisms Let (Ep,Dp, Ip) (p = 1, 2) be good lattices in the level (m, i(0)). Assume
that I1 ∪ I2 is a good set of irregular values in the level (m, i(0)). Assume that we are given a flat morphism
F : (E1,D1)|X−Dz

−→ (E2,D2)|X−Dz
with the following property:

• For each small sector S ∈MS(X −Dz, I1 ∪ I2), the Stokes filtrations are preserved by F|S .

• The induced maps Grm
a (F ) : Grm

a (E1)|X−Dz
−→ Grm

a (E2)|X−Dz
are extended to Grm

a (E1) −→ Grm
a (E2)

for any a ∈ I1 ∪ I2.

Lemma 5.15 F is extended to a morphism E1 −→ E2.

Proof Let wp,S = (wp,a,S) be frames of Ep|S as above. Let A = (Aa,b) be determined by F (w1,S) = w2,S ·A.
By the assumption, Aa,b = 0 unless a ≤S b, and Aa,a is bounded. By applying an argument in the proof of
Lemma 5.14 to Aa,b for a <S b, and by shrinking X, we obtain Aa,b = O

(
exp

(
−ε|λ−1 · zm|

))
on S ∩ (X −Dz).

Then, the claim follows from Proposition 5.13.

5.1.3 Pseudo-good lattice in the level m

Let Y be a complex manifold. Let X := ∆k
z × Y , Dz,i := {zi = 0} and D :=

⋃k
i=1Dz,i. Let E be a locally free

OX -module. For simplicity, we consider a meromorphic flat connection ∇ : E −→ E ⊗ Ω1
X(∗D) instead of a

family of meromorphic flat λ-connections. Let m ∈ Zk<0 and i(0) ∈ [1, k]. We put m(1) := m + δi(0).

Definition 5.16 We say that (E,∇) is an unramifiedly pseudo-good lattice in the level (m, i(0)), if there exists
an unramifiedly good lattice E′ ⊃ E of

(
E(∗D),∇

)
with the irregular decomposition (E′,D)| bD =

⊕
a∈I(Ê

′
a, ∇̂a)

in the level (m, i(0)), such that
E| bD =

⊕
a∈I

(
Ê′a ∩ E| bD)

(29)

The decomposition (29) is called the irregular decomposition of (E,D) in the level (m, i(0)).

It is easy to observe that Êa := Ê′a ∩ E| bDz
in (29) is independent of the choice of a good lattice E′ ⊃ E in

the level m. We have straightforward generalizations of the results in Subsection 5.1.2. We naturally identify
X with {1} ×X ⊂ Cλ ×X when we consider the order ≤S for multi-sectors S ⊂ X −D.
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Construction of Gr We take an unramifiedly good lattice E′ ⊃ E in the level (m, i(0)). By shrinking X
around Oz×Y , we have the vector bundle Grm

a (E′) on X with a meromorphic flat connection ∇a for each a ∈ I.
Recall that we have the natural isomorphism Grm

a (E′)| bD ' Ê′a. Hence, we have the sub-lattice of Grm
a (E′)

corresponding to Êa ⊂ Ê′a, which is denoted by Grm
a (E). It is equipped with a meromorphic flat connection

∇a. By construction, we have the isomorphism

(Grm
a (E),∇a)| bD ' (Êa, ∇̂a). (30)

Lemma 5.17 Let (Ei,∇i) (i = 1, 2) be pseudo-good lattices in the level (m, i(0)). Let F : (E1,∇1) −→ (E2,∇2)
be a flat morphism. Assume I1⊕I2 is a good set of irregular values in the level (m, i(0)). We have the naturally
induced morphism Grm

a (F ) : Grm
a (E1) −→ Grm

a (E2).

Proof We can take good lattices (E′i,∇i) in the level (m, i(0)) such that Ei ⊂ E′i and F (E′1) ⊂ E′2. By Lemma
5.12, we have the induced morphism Grm

a (F ) : Grm
a (E′1) −→ Grm

a (E′2). By considering the completion, it is
easy to observe that Grm

a (E1) −→ Grm
a (E2) is induced.

Flat splitting and Stokes filtration Let π : X̃(D) −→ X be the real blow up. Let S ∈ MS∗(X −D, I).
Let S denote the closure of S in X̃(D), and let Z denote S ∩ π−1(D). We have the Stokes filtration FS of
E′|S , and we can take a flat splitting E′|S =

⊕
E′a,S such that E′

a,S|bZ = π−1(Ê′a). Because E|X−D = E′|X−D, it
induces the flat decomposition of E|S .

Lemma 5.18 It is extended to the decomposition E|S =
⊕
Ea,S such that Ea,S|bZ = π−1(Êa).

Proof Let wa and w′
a be frames of Grm

a (E) and Grm
a (E′). Let Ga be determined by wa = w′

a · Ga. They
induce the frames ŵa and ŵ′

a of Êa and Ê′a, respectively.
By the isomorphism E′a,S ' Grm

a (E′)|S , we obtain the frames w′
a,S of E′a,S . Then, wa,S := w′

a,S ·Ga gives
a tuple of sections of E′a,S , and we can observe that wa|bZ = π−1(ŵa). Let Ea,S be generated by wa,S , and then
we obtain the desired decomposition E =

⊕
Ea,S .

Let wS = (wa,S) be as above. Let v be a frame of E on X. Let GS be determined by v = wS ·GS . Both
v|bZ and wS|bZ give the frame of E|bZ , we obtain the following.

Proposition 5.19 GS and G−1
S are bounded on S.

Proposition 5.20 The flat subbundle FSa (E|S) :=
⊕

b≤SaEb,S is independent of the choice of a flat decompo-

sition E|S =
⊕

a∈I Ea,S such that Ea,S|bZ = π−1Êa.

Proof Let E|S =
⊕

a∈I Ea,S be another flat decomposition such that Ea,S|bZ = π−1Êa. We take a frame wa,S

of Ea,S such that wa,S|bZ = ŵa. We set w′
a := wa · G−1

a . Then, w′
a|bZ = π−1ŵ′

a. Let E
′
a be generated by w′

a.

Then, we obtain a flat decomposition E′|S =
⊕
E
′
a, which has to be a splitting of the Stokes filtration FS(E′|S).

Because E
′
a|S = Ea|S , we obtain the well definedness of the filtration.

Thus, we obtain the filtration FS of E|S , which is called the Stokes filtration.

Lemma 5.21 We have the natural isomorphism GrF
S

a (E|S) ' Gra(E)|S.

Proof We use the notation in the proof of Lemma 5.18. By the comparison of wa and wa,S , we obtain Ea,S '
Gra(E)|S . By the construction of the Stokes filtration, we have the natural isomorphism GrF

S

a (E|S) ' Ea,S .
Then, the claim of Lemma 5.21 is clear.
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5.1.4 A comparison

Let Y be a complex manifold. Let X := ∆k
z × Y , Dz,i := {zi = 0} and D :=

⋃k
i=1Dz,i. Let K̃ be a compact

region in Czk+1 . We set X̃ := K̃ ×X. We use the symbol D̃ in a similar meaning. We set W̃ := D̃ ∪ ({0}×X).
Let I ⊂M(X,D) be a good set of irregular values in the level (m, i(0)). We set m̃ := (m,−1) ∈ Zk+1

<0 . We
put ã := z−1

k+1a for a ∈ I, and we set

Ĩ :=
{
ã

∣∣ a ∈ I
}
⊂M(X̃ , W̃ )/H(X̃ ).

Then, it is a good set of irregular values in the level (m̃, i(0)).
Let Ẽ be a holomorphic vector bundle on X̃ with a meromorphic flat connection ∇ : Ẽ −→ Ẽ⊗Ω1eX (∗W̃ ) such

that (Ẽ,∇) is an unramifiedly good lattice in the level (m̃, i(0)) on (X̃ , W̃ ) with the irregular decomposition:

(Ẽ,∇)
|cfW =

⊕
ea∈eI

( ̂̃
Eea, ∇̂ea) (31)

Applying a general theory in Subsection 5.1.3, we obtain a holomorphic vector bundle Grfmea (Ẽ) on X̃ with the
induced meromorphic flat connection ∇ea for each ã ∈ Ĩ.

By setting λ = zk+1, we obtain the isomorphism Czk+1 ' Cλ. Let K ⊂ Cλ be the image of K̃. We put
X := K×X and we use the symbol D in a similar meaning. We set W := D∪

(
{0}×X

)
. We have the natural

isomorphism ι : (X ,D) −→ (X̃ , D̃). The pull back of Ẽ is denoted by E. Let Df denote the restriction of ι∗∇
to the X-direction. We set D := λ · Df . Note the following:

• D(E) ⊂ E ⊗ p∗λΩ1
X(∗D), i.e., D gives a family of meromorphic λ-connections of E.

• (E,D) is a good lattice in the level (m, i(0)) on (X ,W ), and (31) naturally induces the irregular decom-
position of (E,D)|cW .

By applying a general theory explained in Subsection 5.1.2, for each a ∈ I, we obtain Grm
a (E,D).

Let S̃ be a small sector in X̃ −W̃ . We have the Stokes filtration F eS of Ẽ
|eS in the level m̃ indexed by (Ĩ,≤eS)

(Proposition 5.20). For S := ι−1(S̃), we have the Stokes filtration FS of E|S in the level m indexed by (I,≤S).
We remark the following.

Lemma 5.22 Under the natural identification Ĩ = I, the orders ≤eS and ≤S are the same. Under the natural
isomorphism E ' ι∗Ẽ, the filtrations FS and F eS are the same.

Proof For the order ≤eS , we use the identification X̃ = {1}× X̃ ⊂ Cλ×X̃ . Then, the first claim is clear. Note
that both ι∗F̃ eS and FS satisfy the condition in Proposition 5.5. Hence, they are the same.

Corollary 5.23 We have the natural isomorphism ι∗ Grfmea (Ẽ) ' Grm
a (E), and Da is induced by ι∗∇ea via the

above procedure.

Proof By Lemma 5.22, we obtain the isomorphism j : ι∗ Grfmea (Ẽ)|X−W ' Grm
a (E)|X−W , on which Da is

induced by ∇a via the above procedure. Since j is extended on X̃ (W ), it is extended on X .

5.1.5 Stokes filtration of the associated flat bundle on the real blow up

We use the setting in Subsection 5.1.3. Let I ⊂M(X,D) be a good set of irregular values in the level (m, i(0)).
Let E be a holomorphic vector bundle on X with a meromorphic flat connection ∇ : E −→ E ⊗ Ω1

X(∗D) such
that (E,∇) is a pseudo-good lattice in the level (m, i(0)). (In other words, we consider a family of meromorphic
λ-flat bundles on {1} × (X,D).) Let π : X̃(D) −→ X be a real blow up of X along D. The flat bundle E|X−D
is naturally extended to the flat bundle V on X̃(D).
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We set Z := π−1(Oz × Y ). For each P ∈ Z, we take a small sector S ∈MS(P,X −D, I) on which we have
the Stokes filtration FS of E|S . The filtration is naturally extended to the flat filtration of V|S . By restricting it
to the fiber V|P , we obtain the filtration FP indexed by

(
I,≤P

)
. It is easy to observe that FP is well defined.

If Q ∈ π−1(Z) is sufficiently close to P , the map
(
I,≤P

)
−→

(
I,≤Q

)
preserves the orders, and the

filtrations FP and FQ are compatible under the identification V|P ' V|Q given by the parallel transport in
SP . In particular, we have FP = FQ if ≤P=≤Q.

We have the functoriality of the filtrations FP for dual, tensor product and direct sum as in the case of FS .

Lemma 5.24 Let F : (E1,∇1) −→ (E2,∇2) be a flat morphism. For simplicity, we assume that I1 ∪ I2 is a
good set of irregular values in the level (m, i(0)). The induced morphism F|P : V1|P −→ V2|P preserves the
Stokes filtrations FP .

Remark 5.25 We considered two vector bundles on X̃(D). One is π−1(E) and the other is V. We should
emphasize that they are different in general. The bundle V depends only on the flat bundle (E,∇)|X−D, and
π−1(E) depends on the prolongment (E,∇).

Let us see the simplest example E = O · e and ∇(e) = e · d(z−1). A trivialization of π−1(E) is given by
π−1(e). A trivialization of V is induced by exp(−z−1) · e.

5.2 Unramifiedly good lattices of a family of meromorphic λ-flat bundles

5.2.1 Preliminary

Good set of irregular values We use the partial order ≤Zn of Zn given by a ≤Zn b⇐⇒ ai ≤ bi, (∀i). We
say a <Zn b in the case ai < bi for any i, and we say a �Zn b in the case a ≤Zn b and a 6= b. Let δj denote

the element (

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0), and let 0 denote the zero in Zn. We also use 0n when we distinguish the

dependence on n.

Let Y be a complex manifold. Let X := ∆` × Y . Let Di := {zi = 0} × Y and D :=
⋃`
i=1Di be the

hypersurfaces of X. We also put D` =
⋂`
i=1Di, which is naturally identified with Y .

For any f ∈M(X,D), we have the Laurent expansion:

f =
∑

m∈Z`

fm

(
y
)
· zm.

Here fm are holomorphic functions on D`. We often use the following identification implicitly:

M(X,D)
/
zn ·H(X) '

{
f ∈M(X,D)

∣∣∣ fm = 0, ∀m ≥ n
}

(32)

For any f ∈ M(X,D), let ord(f) denote the minimum of the set
{
m ∈ Z`

∣∣ fm 6= 0
}
∪ {0} with respect to

≤Z` , if it exists. It is always contained in Z`≤0, if it exists.
For any a ∈M(X,D)/H(X), we take any lift ã to M(X,D), and we set ord(a) := ord(ã), if the right hand

side exists. If ord(a) exists in Z` − {0}, ãord(a) is independent of the choice of a lift ã, which is denoted by
aord(a).

Definition 5.26 A finite subset I ⊂ M(X,D)
/
H(X) is called a good set of irregular values on (X,D), if the

following conditions are satisfied:

• ord(a) exists for each a ∈ I, and aord(a) is nowhere vanishing on D` for a 6= 0.

• For any two distinct a, b ∈ I, ord(a− b) exists in Z`≤0 −{0}, and (a− b)ord(a−b) is nowhere vanishing on
D`.

• The set T (I) :=
{
ord(a− b)

∣∣ a, b ∈ I
}

is totally ordered with respect to the partial order on Z`.
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The condition in Definition 5.26 does not depend on the choice of a holomorphic coordinate such that D =⋃`
i=1{zi = 0}.

We will use the following lemma implicitly.

Lemma 5.27 The set
{
ord(a)

∣∣ a ∈ I
}

is totally ordered. In particular, the minimum

m(0) := min
{
ord(a)

∣∣ a ∈ I
}

exists. Moreover, m(0) ≤Z` m for any m ∈ T (I).

Proof Let a, b ∈ I. Assume ord(a) 6≤ ord(b) and ord(a) 6≥ ord(b). Then, ord(a − b) does not exist, which
contradicts the second condition. Hence, we obtain the first claim of the lemma. For any m ∈ T (I), there
exists a ∈ I such that am 6= 0. Hence, m(0) ≤Z` m.

Remark 5.28 It is often convenient to use a coordinate such that T (I) ∪ {m(0)} ⊂
∐`
i=0 Zi<0 × 0`−i.

Auxiliary sequence Let I be a good set of irregular values on (X,D). Since the set T (I) is totally ordered
with respect to the partial order ≤Z` , we can take a sequence

M :=
(
m(0),m(1),m(2), . . . ,m(L),m(L+ 1)

)
⊂ Z`≤0

with the following property:

• T (I) ⊂M and m(L+ 1) = 0`.

• We have 1 ≤ h(i) ≤ ` such that m(i+ 1) = m(i) + δh(i) for each i ≤ L.

Such a sequence is called an auxiliary sequence for I. It is not uniquely determined for I. It is convenient for
an inductive argument.

Truncation Let I be a good set of irregular values. We take an auxiliary sequence for I, and let ηm(0) :
I −→M(X,D)/H(X) be given as follows:

ηm(0)(a) :=
∑

n6≥m(1)

an · zn

Then, the image is a good set of irregular values in the level (m(0), i(0)). More generally, ηm(j) is defined as
follows:

ηm(j)(a) :=
∑

n6≥m(j)

an · zn

We have ηm(L)(a) = a. We set ζm(0)(a) := ηm(0)(a) and ζm(j)(a) := ηm(j)(a) − ηm(j−1)(a) for j = 1, . . . , L.
Then, we have the decomposition ηm(i)(a) =

∑
j≤i ζm(j)(a).

Let I(m(i)) denote the image of ηm(i) : I −→M(X,D)/H(X).

Lemma 5.29 If we shrink X appropriately, I(m(0)) is a good set of irregular values in the level
(
m(0), h(0)

)
.

Proof If ηm(0)(a − b) 6= 0 for a, b ∈ I, we have ord(a − b) = m(0) and
(
z−m(0)ηm(0)(a − b)

)
|D`

is nowhere

vanishing. Hence,
(
z−m(0)ηm(0)(a−b)

)
is nowhere vanishing on X after X is shrinked appropriately. Similarly,

we may have
(
z−m(0)ηm(0)(a)

)
is nowhere vanishing on X after X is shrinked appropriately.

We can use the following lemma for inductive arguments.

Lemma 5.30 For any b ∈ I(m(0)), we fix any element a(0) ∈ η−1
m(0)(b). Then, the set{

a− a(0)
∣∣ ηm(0)(a) = b

}
is also a good set of irregular values.
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Example We give some examples.

a(1) := z−1
1 · z−1

2 , a(2) := z−1
1 , a(3) := 0.

An auxiliary sequence is unique in this case, and given as follows:

m(0) = (−1,−1), h(0) = 2, m(1) = (−1, 0), h(1) = 1, m(2) = (0, 0) (33)

The truncations are given as follows:

ηm(0)(a
(1)) = a(1), ηm(0)(a

(2)) = 0, ηm(0)(a
(3)) = 0

ηm(1)(a
(1)) = a(1), ηm(1)(a

(2)) = a(2), ηm(1)(a
(3)) = a(3)

The image of I via ηm(0) is
{
a(1), 0

}
.

Let us consider the following set:

b(1) = z−1
1 · z−1

2 + a · z−1
2 + b · z−1

1 , b(2) = z−1
1

An auxiliary sequence is given by (33). The truncation is given as follows:

ηm(0)(b
(1)) = z−1

1 · z−1
2 + a · z−1

2 , ηm(0)(b
(2)) = 0

We have the following picture in our mind for truncation.

m(5)

m(4)

m(3)m(2)m(1)

m(0) ηm(0)

ζm(1) ζm(2)

ζm(3)

ζm(4)

L = 4, m(0) = (−2,−3), m(1) = (−2,−2), m(2) = (−1,−2),
m(3) = (0,−2), m(4) = (0,−1), m(5) = (0, 0).

5.2.2 Unramifiedly good lattices of a family of meromorphic λ-flat bundles

Let X be a complex manifold, and let D be a normal crossing divisor of X. Let K be a point or a compact
region in Cλ. Let X and D denote K × X and K × D, respectively. For λ ∈ K, we set X λ := {λ} × X and
Dλ := {λ} ×D. Let (E ,D) be a family of meromorphic λ-flat bundles on (X ,D), i.e., E is an OX (∗D)-coherent
sheaf with a holomorphic family of flat λ-connections D : E −→ E ⊗ Ω1

X/K. The restriction to (X λ,Dλ) is
denoted by (Eλ,Dλ).

Remark 5.31 If K is a point, “family” can be omitted.

Let E be an OX -locally free lattice of (E ,D). Let P be any point of D. We can take a holomorphic
coordinate (U , λ, z1, . . . , zn) around P such that DU := D ∩ U =

⋃`
i=1DU,i, where DU,i := {zi = 0}. We put

DU,I :=
⋂
i∈I DU,i and DU (I) :=

⋃
i∈I DU,i. For any subset I ⊂ `, we put Ic := ` − I. The completion of X

along DU,I (resp. DU (I)) is denoted by D̂U,I (resp. D̂U (I)).

Definition 5.32 We say that E is unramifiedly good at P , if the following holds:
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• We are given a good set of irregular values S ⊂M(U ,DU )/H(U).

• For any ∅ 6= I ⊂ `, we have the decomposition:

(E,D)| bDU,I
=

⊕
a∈S(I)

(
IÊa,

ID̂a

)
(34)

Here S(I) denotes the image of S via the map M(U ,DU )/H(U) −→M(U ,DU )/M
(
U ,DU (Ic)

)
.

• (Da−da)
(
IÊa

)
is contained in IÊa⊗

(
Ω1
X/K

(
logDU (I)

)
+Ω1

X/K
(
∗DU (Ic)

))
, where a is lifted to M(U ,DU ).

This condition is independent of the choice of a lift.

The property is independent of the choice of the coordinate (U , λ, z1, . . . , zn).
We say that (E,D) is unramifiedly good, if it is unramifiedly good at any point.

See Subsection 5.7 of [19] for another but equivalent formulation, which seems easier to state.
The decomposition (34) is called the irregular decomposition of E| bDU,I

. The set S is uniquely determined if
`Ea 6= 0 for each a ∈ S. So, it is denoted by Irr(D, P ). The restriction of E to {λ} ×X is denoted by Eλ.

If E is an unramifiedly good lattice of (E ,D), we have the well defined endomorphism Resi(D) of E|Di
for

each irreducible component Di of D. It is called the residue of D at Di with respect to the lattice E. If K 6= {0},
the eigenvalues of Resi(D) are constant on Dλi for each λ ∈ K. (See Subsection 5.1.3 of [19], for example.)

Remark 5.33 We have the notion of good lattice which is locally a descent of an unramifiedly good lattice. See
[19]. See also Definition 5.42 below.

Irregular decompositions in the level m(j) In the following, let X := ∆n, Di := {zi = 0} and D :=⋃`
i=1Di. We set D(≤ p) :=

⋃
i≤pDi. Let (E,D) be an unramifiedly good lattice of a family of meromorphic

λ-flat bundles on (X ,D) with the good set Irr(D) = Irr(D, O). We assume that the coordinate is as in Remark
5.28 for Irr(D). Let Irr(D, p) and Irr′(D, p) denote the image of Irr(D) by the natural maps

πp : M(X ,D)/H(D) −→M(X ,D)/M(X ,D(≤ p− 1)), π′p : M(X ,D)/H(D) −→M(X ,D)/M(X ,D(6= p)).

Note that the naturally induced map Irr(D, p) −→ Irr′(D, p) is bijective, via which we identify them.
Take an auxiliary sequence m(0), . . . ,m(L) for the good set Irr(D). Let Irr(D,m(0)) denote the image of

Irr(D) via ηm(0). Let k(j) denote the number determined by m(j) ∈ Zk(j)<0 × 0`−k(j). For p ≤ k(j), we have the
map Irr(D, p) −→M(X ,D)/M(X ,D(≤ p− 1)) induced by ηm(j) which is denoted by ηm(j),p.

By using a lemma in Subsection 5.1.2 of [19] and the uniqueness of the decompositions, we obtain the
following decomposition on the completion D̂(≤ k(j)) along D(≤ k(j)):

(E,D)| bD(≤k(j)) =
⊕

b∈Irr(D,m(j))

(
Ê

m(j)
b ,Db

)
, where Ê

m(j)

b| bDp
=

⊕
c∈Irr(D,p)

ηm(j),p(c)=πp(b)

pÊc,
(
p ≤ k(j)

)
(35)

The decomposition (35) is called the irregular decomposition in the level m(j).

Remark 5.34 We do not have the irregular decomposition in the level m(j) on D̂ in general, which Sabbah
remarked in [20] for the surface case.

The associated graded bundles with the family of meromorphic flat λ-connections AssumeK 6= {0}.
We set W := X 0 ∪ D(≤ k(0)). It is easy to observe that (E,D) is an unramifiedly good lattice in the level
(m(0), i(0)) with the decomposition (35) for j = 0. The set of the irregular values in the level

(
m(0), i(0)

)
is

Irr(D,m(0)).
As stated in Subsection 5.1.2, we obtain the holomorphic bundle Grm(0)

a (E) with a family of meromorphic flat
λ-connections Dm(0)

a on (V,V ∩D) for each a ∈ Irr(D,m(0)), where V denotes a neighbourhood of
⋂

1≤i≤k(0)Di.
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Let Grm(0)
a (E,D) :=

(
Grm(0)

a (E),Dm(0)
a

)
. We obtain the following isomorphisms for any a ∈ Irr(D,m(0)) from

(30):
Grm(0)

a (E,D)|cW ' (Êm(0)
a ,Da)

In particular, Grm(0)
a (E,D) are unramifiedly good lattices whose set of irregular values is Irr(Dm(0)

a ) = η−1
m(0)(a).

Let Irr(D,m(j)) denote the image of ηm(j) : Irr(D) −→ M(X,D)/H(X) for any j. Let us consider the
case in which Irr(D,m(j − 1)) consists of a unique element. We take any element a(1) ∈ Irr(D). Let L(±a(1))
be a line bundle OX · e with a family of meromorphic flat λ-connections De = e · (±da(1)). Then, (E′,D′) :=
(E,D)⊗ L(−a(1)) is an unramifiedly good lattice with the good set

Irr(D′) =
{
a− a(1)

∣∣ a ∈ Irr(D)
}
.

The sequence m(j),m(j+1), . . . ,m(L) gives an auxiliary sequence for Irr(D′). By applying the above procedure
to (E′,D′) and shrinking X, we obtain Grm(j)

c (E′,D′) for each c ∈ Irr(D′,m(j)). For any b ∈ Irr(D,m(j)), we
define

Grm(j)
b (E,D) := Grm(j)

b−ηm(j)(a
(1))

(E′,D′)⊗ L(a(1))

It is independent of the choice of a(1) up to canonical isomorphisms. (We may avoid tensor products.) It is
easy to observe that Grm(j)

b (E,D) are also unramifiedly good lattices with the good sets of irregular values
Irr(Dm(j)

b ) = η−1
m(j)(b). By construction, Irr

(
Dm(j)

b ,m(j)
)

consists of the unique element b.

Let us consider the general case. Let ηm(j−1),m(j) : Irr(D,m(j)) −→ Irr(D,m(j − 1)) be the induced map.
For any a ∈ Irr(D,m(j)), we inductively define

Grm(j)
a (E,D) := Grm(j)

a Grm(j−1)
ηm(j−1),m(j)(a)(E,D)

For each a ∈ Irr(D), we set Grfull
a (E,D) := Grm(L)

a (E,D), which is called the full reduction. By construction,
Grfull

a (E,D)⊗ L(−a) is logarithmic.
We have the functoriality as in Subsection 5.1.2.

Deformation Assume 0 6∈ K. We would like to regard (E,D) as a prolongment of (E,D)|X−D(≤k(0)).
For a given holomorphic function T (λ) with Re

(
T (λ)

)
> 0, we have the other prolongment (E(T ),D(T )) of

(E,D)|X−D(≤k(0)), which is also an unramifiedly good lattice with the set of irregular values

Irr
(
E(T ),D(T )

)
:=

{
T · a

∣∣ a ∈ Irr(D)
}
.

We refer to Subsections 7.5, 7.8–7.9 of [19] for the construction. We mention some properties (Subsection 7.8
of [19]):

(D1): E(T1·T2) '
(
E(T1)

)(T2), if Re(Ti) > 0 and Re(T1 · T2) > 0.

(D2): (E(T ),D(T ))| bDI0
'

⊕
a∈I

(
I0Êa,

I0D̂a + (T − 1)da
)
, where I0 := {1, . . . , k(0)}. In other brief words, the

deformation does not change the regular part.

We give some statements for functoriality. See Subsection 7.8.1 of [19] for more details. Let (Ep,Dp)
(p = 1, 2) be unramifiedly good. We have the following natural isomorphisms:

(E1 ⊕ E2)(T ) ' E(T )
1 ⊕ E(T )

2 , (E1 ⊗ E2)(T ) ' E(T )
1 ⊗ E(T )

2 ,
(
E∨

)(T ) ' (E(T ))∨

Here, we have assumed that (E1,D1) ⊕ (E2,D2) and (E1,D1) ⊗ (E2,D2) are unramifiedly good. Moreover, let
F : (E1,D1) −→ (E2,D2) be a flat morphism. Assume I1 ∪ I2 is a good set of irregular values in the level
(m, i(0)). Then, we have the naturally induced morphism (E(T )

1 ,D(T )
1 ) −→ (E(T )

2 ,D(T )
2 ).
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5.3 Smooth divisor case

Let X := ∆n and D := {z1 = 0}. Let K ⊂ Cλ. Let (E,D) be an unramifiedly good lattice of a family of
meromorphic λ-bundles on (X ,D) with a good set of irregular values Irr(D) = Irr(D, O). We have the formal
decomposition (E,D)| bD =

⊕
a∈Irr(D)(Êa, D̂a), where D̂a − da · id bEa

are logarithmic. We set W := D ∪X 0 in the

case 0 ∈ K, and W := D otherwise. We obtain the decomposition on Ŵ :

(E,D)|cW =
⊕

a∈Irr(D)

(Êa, D̂a) (36)

Full Stokes filtration In this case, it is also easy and convenient to consider full Stokes filtration. We explain
it in the following. Let π : X̃ (W ) −→ X denote the real blow up of X along W . We put Z := π−1(D).

For any multi-sector S in X −W , the order ≤S on Irr(D) is defined as follows:

• a ≤S b if and only if −Re
(
λ−1a(λ, z)

)
≤S −Re

(
λ−1b(λ, z)

)
for any z ∈ S such that |z1| is sufficiently

small.

Let S denote the closure of S in X̃ (W ), and let Z denote S ∩ π−1(W ). The irregular decomposition (36) on Ŵ
induces the decomposition on Ẑ:

(E,D)|bZ =
⊕

a∈Irr(D)

(Êa, D̂a)|bZ (37)

We put FZa :=
⊕

b≤Sa Êb|bZ , and then we obtain the filtration FZ indexed by
(
Irr(D),≤S

)
. By using Proposition

5.5 and Lemma 5.8 successively (or by using more classical results), we obtain the following.

Proposition 5.35 For any point P ∈ Z, there exists S ∈MS(P,X −W ) such that the following holds:

• There exists the unique D-flat filtration F̃S of E|S on S indexed by
(
Irr(D),≤S

)
such that F̃S

|bZ = FZ .

• There exists a D-flat splitting of F̃S on S.

We call F̃S the full Stokes filtration of (E,D).
For S′ ⊂ S, the filtrations F̃S′ and F̃S satisfy the compatibility condition as in Lemma 5.8.

The following lemma is clear from the definition of full Stokes filtrations.

Lemma 5.36 Let S, S′ ∈ MS(P,X −W ). Assume (i) S′ ⊂ S, (ii) E|S has the full Stokes filtration F̃S as

above. Then, the restriction of F̃S to S
′
is the full Stokes filtration of E|S′ .

We have functoriality of full Stokes filtrations as in the case of Stokes filtrations in the level (m, i(0)).

The associated graded bundle For any sectors S and each a ∈ Irr(D), we obtain the bundle Grfull
a (E|S)

on S associated to the full Stokes filtration F̃S . By varying S and gluing Grfull
a (E|S), we obtain the bundle

Grfull
a (E|eV(W )) on Ṽ(W ) with the induced family of flat λ-connections Da, where V denotes some neighbourhood

ofD, and Ṽ(W ) denote the real blow up of V alongW∩V. As in Subsection 5.1.2, we can show that Grfull
a (E|eV(W ))

has the descent to V, i.e., there exists a locally free sheaf Grfull
a (E) on V with a family of meromorphic flat

λ-connections Da, such that

π−1
(
Grfull

a (E),Da

)
'

(
Grfull

a (E|eV(W )),Da

)
, (Grfull

a (E),Da)|cW∩V '
(
Êa,Da

)
|cW∩V .

By construction, Da − da is logarithmic for each a ∈ Irr(D).
As in the case of Gr with respect to Stokes filtrations in the level (m, i(0)), we have the following isomor-

phisms:
Grfull

a (E∨) ' Grfull
−a (E)∨,
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Grfull
a (E1 ⊗ E2) '

⊕
ai∈Irr(Di)
a1+a2=a

Grfull
a1

(E1)⊗Grfull
a2

(E2),

Grfull
a (E1 ⊕ E2) ' Grfull

a (E1)⊕Grfull
a (E2).

Here, we have assumed that (E1,D1)⊗ (E2,D2) and (E1,D1)⊕ (E2,D2) are unramifiedly good lattices.

Lemma 5.37 Let (Ep,Dp) (p = 1, 2) be unramifiedly good lattices on (X ,D). Assume I1 ∪ I2 is a good set of
irregular values. Let F : (E1,D1) −→ (E2,D2) be a flat morphism. We have the naturally induced morphism
Grfull

a (F ) : Grfull
a (E1) −→ Grfull

a (E2).

A characterization of sections of E Let wa be a frame of Grfull
a (E). Let S be a small multi-sector,

and let E|S =
⊕
Ea,S be a D-flat splitting of the full Stokes filtration F̃S . By the natural isomorphism

Ea,S ' Grfull
a (E)|S , we take a lift wa,S of wa. Thus, we obtain the frame wS =

(
wa,S

)
of E|S . The following

proposition implies a characterization of sections of E by growth order with respect to the frames wS for small
multi-sectors S.

Proposition 5.38 Let v be a frame of E, and let GS be determined by v = wS ·GS. Then, GS and G−1
S are

bounded on S.

Deformation When | arg(T )| is sufficiently small, we have a more direct local construction of the deformation
(E,D)(T ). We explain it in the smooth divisor case.

We take a covering X −D =
⋃N
i=1 S

(i) by sectors S(i) on which we have the full Stokes filtrations. Assume
that

∣∣arg(T )
∣∣ is sufficiently small such that the following holds:

• a ≤S(i) b ⇐⇒ Ta ≤S(i) Tb for any a, b ∈ Irr(D) and for any S(i).

We take frames wa of Grfull
a (E). For each S = S(i), we take a D-flat splitting E|S =

⊕
Ea,S of the full Stokes

filtration. Let wS = (wa,S) be as above. We put w
(T )
a,S := wa,S · exp

(
(T − 1) · λ−1 · a

)
and w

(T )
S :=

(
w

(T )
a,S

)
. Let

f be a holomorphic section of E|X−D. We have the corresponding decomposition f =
∑
fa,S on each S. We

have the expression fa,S =
∑
f

(T )
a,S,j · w

(T )
a,S,j . We put fa,S :=

(
f

(T )
a,S,j

)
.

Lemma 5.39 f gives a section of E(T ) if and only if f
(T )

a,S(i) is bounded for each S(i) and wS(i) . (See Subsection
7.9.1 of [19].)

Prolongation of a flat morphism Let (Ep,Dp) (p = 1, 2) be unramifiedly good lattices on (X ,D). Assume
Irr(D1) ∪ Irr(D2) is a good set of irregular values. Let F : (E1,D1)|X−D −→ (E2,D2)|X−D be a flat morphism.

Lemma 5.40 If F preserves the full Stokes filtrations F̃S for each small sector S, F is extended to the mero-
morphic morphism F : E1(∗D) −→ E2(∗D).

Proof We have only to consider the case 0 6∈ K according to the Hartogs theorem. Then, the claim follows
from a result in Subsection 7.7.6 of [19]. As another argument, let w

(i)
S be frames of Ei|S as in Proposition 5.38.

We can directly show that F|S is of polynomial order with respect to the frames w
(i)
S .

Complement on a connection along the λ-direction let X := ∆n, Di := {zi = 0} and D :=
⋃`
i=1Di.

Let K ⊂ C∗
λ be a compact region. Let (E,D) be an unramifiedly good lattice of a family of meromorphic λ-flat

bundles on (X ,D) with a good set Irr(D). Assume that E is equipped with a meromorphic connection along
the λ-direction ∇λ : E −→ E ⊗ Ω1

K(∗D), such that Df +∇λ is flat.

Lemma 5.41 ∇λ naturally induces a meromorphic connection of E(T ) along the λ-direction.
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Proof It is easy to observe that we have only to consider the case in which D is smooth and | arg(T )| is
sufficiently small. Take N such that λN∇λ(∂λ)E ⊂ E ⊗ OX (∗D). For S = S(i), let wS = (wa,S) be a
frame of E|S as above. Let AS = (AS,a,a′) be the matrix-valued holomorphic function on S determined by
λN∇λ(∂λ)wS = wS ·AS . Let Ba be the matrix-valued holomorphic function on X determined by Da(z1∂1)wa =
wa ·

(
z1∂1a +Ba

)
. Because [Df ,∇λ] = 0, we have the following relation in the case a 6= b:

λ · z1∂1AS,a,b +
(
z1∂1(a− b)

)
·AS,a,b +

(
AS,a,bBb −BaAS,a,b

)
= 0

Hence, we have AS,a,b = 0 unless a ≤S b, and we obtain the estimate

AS,a,b · exp
(
λ−1(a− b)

)
= O

(
exp

(
C|λ−1| · log |z−1

1 |
))

for some C > 0 in the case a <S b.
Let A(T )

S be the matrix-valued holomorphic function on S determined by λN∇(∂λ)w
(T )
S = w

(T )
S · A(T )

S . We
have A(T )

S,a,b = 0 unless a ≤S b. In the case a <S b, we have

A
(T )
S,a,b · exp

(
λ−1 · T · (a− b)

)
= AS,a,b · exp

(
λ−1 · (a− b)

)
= O

(
exp

(
C|λ−1| · log |z−1

1 |
))
.

Therefore, we obtain A
(T )
S,a,b = O

(
exp(−ε|z−1

1 |)
)

for some ε > 0. By a direct calculation, we obtain A
(T )
S,a,a =

AS,a,a + λN · ∂λ
(
λ−1 · (1 − T ) · a

)
, which is of polynomial order. Hence, the claim of the lemma follows from

Lemma 5.39.

5.4 Family of good filtered λ-flat bundles

Pull back of filtered bundle via a ramified covering The notion of filtered bundle is introduced in [25]
(1 dimension), and studied in [18] (arbitrary dimension). Let X be a complex manifold, and let D be a simple
normal crossing hypersurface with the irreducible decomposition D =

⋃
i∈I Di. A filtered bundle on (X,D) is

defined to be a sequence of locally free sheaves E∗ =
(
aE

∣∣ a ∈ RI
)

such that (i) aE ⊂ bE for a ≤ b and aE is
the intersection of bE for b > a, (ii) aE|X−D = bE|X−D, (iii) aE⊗O(

∑
ni ·Di) = a−nE, where n = (ni) ∈ ZI ,

(iv) it satisfies some compatibility condition at the intersection of the divisors. The compatibility condition
is given in Definition 4.37 of [18]. Although it is not difficult, it is slightly complicated to state. Later, Iyer
and Simpson [11] introduced the notion of locally abelian condition, which is equivalent to our compatibility
condition. Hertling and Sevenheck (Chapter 4 of [9]) showed that it is equivalent to another simple condition.
We refer to the above papers for more details.

Let us recall the pull back of a filtered bundle via a ramified covering. See [11] for more systematic treatment.
See also Subsection 2.9.1 of [19]. Let X := ∆n

z , D :=
⋃`
i=1{zi = 0}, X̃ := ∆n

w and D̃ :=
⋃`
j=1{wj = 0}. Let

ϕe : X̃ −→ X be a ramified covering ϕe(w1, . . . , wn) = (we1, . . . , w
e
` , w`+1, . . . , wn). For b ∈ R`, we put

S(b) :=
{
(a,n) ∈ R` × Z`≥0

∣∣ e · a + n ≤ b
}
. For a given filtered bundle E∗ on (X,D), we set

bẼ =
∑

(a,n)∈S(b)

w−n · ϕ∗e
(
aE

)
.

Then, it is easy to show that Ẽ∗ is also a filtered bundle. Let Gal(X̃/X) denote the Galois group of the
ramified covering. We can reconstruct E∗ from Ẽ∗ with the natural Gal(X̃/X)-action, and hence E∗ is called
the descent of Ẽ∗. Since the construction is independent of the choice of coordinates, it can be globalized.

Family of good filtered λ-flat bundles We use the notation in Subsection 5.2. A family of filtered λ-flat
bundles on (X ,D) is defined to be a filtered bundle E∗ on (X ,D) with a family of meromorphic flat λ-connections
D of E =

⋃
aE.

Definition 5.42 Let (E∗,D) be a family of filtered λ-flat bundles on (X ,D).
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• We say that (E∗,D) is unramifiedly good, if cE are unramifiedly good lattices for any c ∈ R`.

• Let P ∈ D. We say that (E∗,D) is good at P , if there exist a ramified covering ϕe : (Ũ , D̃U ) −→ (U ,DU )
such that

(
Ẽ∗, ϕ

∗
eD

)
on (Ũ , D̃U ) is unramifiedly good. Here, U is a coordinate neighbourhood of P , ϕe is

a ramified covering, and Ẽ∗ is induced by ϕ and E∗ as above.

• We say that (E∗,D) is good, if it is good at any point P ∈ D.

Induced filtrations Let (E∗,D) be good family of filtered λ-flat bundles. Let iF denote the induced filtration
of cE|Di

. We set i GrFa (cE) := iFa
/
iF<a. It can be shown that (i) we have the well defined residue endomorphism

GrFa Resi(D) of i GrFa
(
cE

)
on Di for each i ∈ `, (ii) it preserves the induced filtrations jF of i GrFa

(
cE

)
|Di∩Dj

.
(See Subsection 6.1.3 of [19]. The residues are well defined as endomorphisms of cE|Di

in the non-ramified case,
and as endomorphisms of i GrFa

(
cE

)
even in the ramified case.) In the following, GrFa Resi(D) are often denoted

by Resi(D) for simplicity of the description.
Let I be a subset of `. We set DI :=

⋂
i∈I Di. For a ∈ RI , we put

IFa

(
cE|DI

)
:=

⋂
i∈I

iFai

(
cE|DI

)
, I GrFa

(
cE

)
:=

IFa

(
cE|DI

)∑
b�a

IFb

(
cE|DI

) .
We often consider the following sets:

Par
(
cE, I

)
:=

{
a ∈ RI

∣∣ I GrFa (cE) 6= 0
}
, Par

(
E∗, I

)
:=

⋃
c∈R`

Par
(
cE, I

)
We have the induced endomorphisms Resi(D) (i ∈ I) of I GrFa (cE), which are mutually commutative.

KMS structure for fixed λ Let us consider the case in which K is a point {λ}. In this case, we prefer
the symbol Dλ to D. If λ 6= 0, the eigenvalues of Resi(Dλ) are constant. Hence, we have the generalized eigen
decomposition I GrFa

(
cE

)
=

⊕
α
I GrF,E(a,α)

(
cE

)
, where the eigenvalues of GrF Resi(Dλ) on I GrF,E(a,α)

(
cE

)
are

the i-th components of α. We put

KMS(cE,Dλ, I) :=
{
(a,α)

∣∣ I GrF,E(a,α)(cE) 6= 0
}
, KMS(E∗,Dλ, I) :=

⋃
c∈RS

KMS(cE,Dλ, I)

Sp(cE,Dλ, I) :=
{
α ∈ CI

∣∣ ∃a ∈ RI , (a,α) ∈ KMS
(
cE,Dλ, I

)}
, Sp(E∗,Dλ, I) :=

⋃
c∈RS

Sp(cE,Dλ, I)

Each element of KMS(E∗,Dλ, I) is called a KMS-spectrum of (E∗,Dλ) at DI .
Even in the case λ = 0, a similar definition makes sense if the eigenvalues of Resi(Dλ) are constant. It is

satisfied when we consider wild harmonic bundles.

KMS structure around λ0 Assume that K is a neighbourhood of λ0 ∈ C, and we regard that (E∗,D)
is given around {λ0} × X. In this case, we prefer the symbols iF (λ0) to iF . Let p(λ) : R × C −→ R and
e(λ) : R×C −→ C be given as follows:

p
(
λ, (a, α)

)
= a+ 2 Re(λ · α), e

(
λ, (a, α)

)
= α− a · λ− α · λ2

The induced map R×C −→ R×C is denoted by k(λ).

Definition 5.43 We say that (E∗,D) has the KMS-structure at λ0 indexed by T (i) ⊂ R × C (i ∈ S), if the
following holds:

• Par(E∗, i) is the image of T (i) via the map p(λ0).
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• For each a ∈ Par(E∗, i), we put K(a, i) :=
{
u ∈ T (i)

∣∣ p(λ0, u) = a
}
. Then, the restrictions of Resi(D) to

i GrF
(λ0)

a

(
cE

)
|Dλ

i

have the unique eigenvalue e(λ, u) for any u ∈ K(a, i).

Assume (E∗,D) has the KMS-structure at λ0. We have the decomposition

i GrF
(λ0)

a

(
cE

)
=

⊕
u∈K(a,i)

iG(λ0)
u

(
cE

)
, (38)

such that (i) it is preserved by Resi(D), (ii) the restriction of Resi(D)− e(λ, u) to iG(λ0)
u

(
cE

)
is nilpotent. More

generally, we have the decomposition on DI
I GrF

(λ0)

a

(
cE

)
=

⊕
u∈

Q
K(ai,i)

IG(λ0)
u

(
cE

)
, (39)

such that (i) it is preserved by Resi(D) (i ∈ I), (ii) the restrictions of Resi(D) − e(λ, ui) (i ∈ I) are nilpotent,
where ui denotes the i-th component of u. Note IG(λ0)

u

(
cE

)
can be 0.

The following lemma is standard in our works. (See Subsection 6.2.5 of [19].)

Lemma 5.44 Let (E1 ∗,D1) and (E2 ∗,D2) be good filtered λ-flat bundles on (X ,D) which have the KMS-
structures at λ0. An isomorphism ϕ : (E1,D1) ' (E2,D2) of families of meromorphic λ-flat bundles induces
the isomorphism ϕ : (E1 ∗,D1) ' (E2 ∗,D2) of families of filtered λ-flat bundles.

We say that (E,D) has the KMS-structure at λ0, if there exists a good filtered λ-flat bundle (E∗,D) which has
the KMS-structure at λ0, such that E =

⋃
aE. It makes sense by the above lemma.

Pick c ∈ RS such that ci 6∈ Par
(
E∗, i

)
for each i ∈ S. Assume that K is a sufficiently small neighbourhood

of λ0. Take λ1 ∈ K, and let U(λ1) ⊂ K be a neighbourhood of λ1. We set X (λ1) := U(λ1) × X. We use the
symbols D(λ1)

i and D(λ1) in similar meanings. Let πi,a denote the projection iF
(λ0)
a

(
cE|Di

)
−→ i GrF

(λ0)

a

(
cE

)
for any a ∈ Par(cE, i). Let b ∈]ci − 1, ci]. If p(λ1, v) = b for some v ∈ K(a, i), we put on D(λ1)

i

iF
(λ1)
b :=

⊕
u∈K(a,i)
p(λ1,u)≤b

π−1
i,a

(
iG(λ0)
u (cE)

)
.

Otherwise, let b0 := max
{
p(λ1, v) < b

∣∣ v ∈ K(a, i)
}
, and we set iF

(λ1)
b := iF

(λ1)
b0

. Thus, we obtain the
filtration iF (λ1) of cE|D(λ1)

i

. It induces the family of the filtered λ-flat bundles (E(λ1)
∗ ,D) on (X (λ1),D(λ1)). By

construction, Resi(D)− e(λ, u) are nilpotent on i GrF
(λ1)

p(λ1,u)

(
cE

)
. Namely, (E(λ1)

∗ ,D) has the KMS-structure at
λ1 indexed by T (i). Hence, if (E,D) has the KMS-structure at λ0, it has the KMS-structure at any λ sufficiently
close to λ0, and the index set is independent of λ. For each λ ∈ K, we put Eλ

∗ := (E(λ)
∗ )|Xλ , which is the good

filtered λ-flat bundle. The set KMS(Eλ
∗ , i) is the image of T (i) via the map k(λ). Note KMS(E0

∗, i) = T (i) if
0 ∈ K. We often identify them.

Deformation Let T (λ) be a holomorphic function with Re
(
T (λ)

)
> 0. We obtain the deformation (E(T )

∗ ,D).
If (E∗,D) is unramified, the set of irregular values is given by

Irr
(
D, E(T )

)
:=

{
T · a

∣∣ a ∈ Irr(D)
}
.

Since the regular part of the completion is unchanged, the set of KMS-spectra is unchanged.

6 Wild harmonic bundle

6.1 Definition of wild harmonic bundle

Local condition for Higgs fields Let (E, ∂E , θ) be a Higgs bundle on X−D, where X is a complex manifold,
and D is a normal crossing divisor of X. We would like to explain some conditions for the Higgs field θ. First,
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let us consider the case X = ∆n =
{
z = (z1, . . . , zn)

∣∣ |zi| < 1
}
, Di = {zi = 0} and D =

⋃`
i=1Di. We have the

expression:

θ =
∑̀
j=1

Fj ·
dzj
zj

+
n∑

j=`+1

Gj · dzj

We have the characteristic polynomials det
(
T −Fj(z)

)
=

∑
Aj,k(z) · T k and det

(
T −Gj(z)

)
=

∑
Bj,k(z) · T k.

The coefficients Aj,k and Bj,k are holomorphic on X −D.

• We say that θ is tame, if the following conditions are satisfied:

(T1): Aj,k and Bj,k are holomorphic on X for any k.

(T2): The restriction of Aj,k to Dj are constant for any j = 1, . . . , ` and any k. In other words, roots of∑
Aj,k(z) · T k are independent of z ∈ Dj .

• We say that θ is unramifiedly good, if there exists a good set of irregular values Irr(θ) ⊂M(X,D)
/
H(X)

and a decomposition (E, θ) =
⊕

a∈Irr(θ)(Ea, θa), such that θa − da · πa are tame, where πa denotes the
projection onto Ea with respect to the decomposition.

• We say that θ is good, if ϕ∗e(θ) is unramifiedly good for some e ∈ Z>0, where ϕe is the covering given by
ϕe(z1, . . . , zn) = (ze1, . . . , z

e
` , z`+1, . . . , zn).

Global condition for Higgs fields Let us consider the case in which X is a general complex manifold. Let
D be a normal crossing hypersurface of X, and let (E, θ) be a Higgs bundle on X −D.

• We say that θ is (unramifiedly) good at P ∈ D, if it is (unramifiedly) good on some holomorphic coordinate
neighbourhood of P .

• We say that θ is (unramifiedly) good, if it is (unramifiedly) good at any point P ∈ D.

Let Z be a closed analytic subset of X, and let (E, θ) be a Higgs bundle on X − Z. The Higgs field θ is
called wild, if there exists a regular birational map ϕ : X ′ −→ X such that (i) ϕ−1(D) is normal crossing, (ii)
ϕ−1θ is good.

Remark 6.1 Even if Z is a normal crossing divisor, wild θ is not necessarily good.

Conditions for harmonic bundles Let X be a complex manifold. Let D be a normal crossing hypersurface
of X, and let (E, ∂E , θ, h) be a harmonic bundle on X −D.

• It is called tame, if θ is tame.

• It is called (unramifiedly) good wild harmonic bundle, if θ is (unramifiedly) good.

Let Z be a closed analytic subset of X. A harmonic bundle (E, ∂E , θ, h) on X − Z is called wild, if θ is wild.

Remark We give some remarks on the condition (T2) for tameness.

1. If θ comes from a harmonic bundle (E, ∂E , θ, h), (T2) is implied by (T1). (See Lemma 8.2 of [18].)

2. Let (E, ∂E , θ, h) be a harmonic bundle with a good set of irregular values Irr(θ) and a decomposition
(E, ∂E , θ) =

⊕
a∈Irr(θ)(Ea, ∂Ea , θa) such that θ̃a := θa − da · πa satisfy the condition (T1). The author

does not know whether (T2) for θ̃a is automatically satisfied or not. But, if moreover (E, ∂E , θ, h) underlies
a variation of polarized pure integrable structures, (T2) is satisfied. Actually, the roots of the polynomials
are 0. (See Lemma 7.10 below.)
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6.2 Simpson’s main estimate

The first fundamental result is an estimate of Higgs field, so called Simpson’s main estimate. For later use, we
recall it in the case that D is smooth. Let X := ∆n and D := {z1 = 0}. Let (E, ∂E , θ, h) be an unramifiedly
good wild harmonic bundle on X − D. (See Subsections 11.2 and 11.3 of [19] for more details.) We will be
interested in the behaviour around O. Hence, by shrinking X, we assume that there exists a holomorphic
decomposition (E, θ) =

⊕
(a,α)∈Irr(θ)×C(Ea,α, θa,α) satisfying the following conditions:

• For each (a, α), let πa,α denote the projection onto Ea,α with respect to the decomposition. We have the
expression

θa,α −
(
α · dz1/z1 + da

)
· πa,α = F1 ·

dz1
z1

+
n∑
j=2

Gj · dzj .

Then, the coefficients of det(T−F1) and det(T−Gj) are holomorphic onX, and det(T−F1)|D = T rankEa,α .

We also set Ea :=
⊕

α∈C Ea,α, and let πa denote the projection onto Ea with respect to the decomposition
E =

⊕
a∈Irr(θ)Ea.

Truncation For any a ∈ Irr(θ), we have the expression a =
∑
j≤−1 aj · zj1. We put ηp(a) :=

∑
j≤p aj · zj1 and

Irr(θ, p) :=
{
ηp(a)

∣∣ a ∈ Irr(θ)
}
. For each b ∈ Irr(θ, p), let E(p)

b denote the direct sum of Ea (a ∈ Irr(θ), ηp(a) =
b), and let π(p)

b denote the projection onto E(p)
b with respect to the decomposition E =

⊕
b∈Irr(θ,p)E

(p)
b . We

have Irr(θ,−1) = Irr(θ) and Ea = E
(−1)
a . We have the induced maps ηq,p : Irr(θ, p) −→ Irr(θ, q) for q ≤ p.

Asymptotic orthogonality We take total orders ≤′ on Irr(θ, p) (p ≤ −1) which are preserved by ηq,p. For
each b ∈ Irr(θ, p), we set F (p)

b (E) :=
⊕

a≤′bE
(p)
a . Let E(p)′

b be the orthogonal complement of F (p)
<b (E) in F (p)

b (E).

We obtain an orthogonal decomposition E =
⊕

a∈Irr(θ,p)E
(p)′
a . Let π(p)′

a denote the orthogonal projection onto

E
(p)′
a .

We take a total order ≤′ on C. Then, we obtain the lexicographic order on Irr(θ) × C. We obtain the
orthogonal decomposition E =

⊕
E′a,α by the procedure as above, and let π′a,α denote the orthogonal projection

onto E′a,α.

Proposition 6.2 We have the following estimates with respect to h.

• π(p)
a − π

(p)′
a = O

(
exp

(
−ε|zp1 |

))
for some ε > 0. In particular, the decomposition E =

⊕
E

(p)
b is

O
(
exp(−ε|zp1 |)

)
-asymptotically orthogonal in the sense that there exists A > 0 such that∣∣h(u, v)∣∣ ≤ A · |u|h · |v|h · exp

(
−ε|z1(Q)|p

)
for any Q ∈ X −D, u ∈ Ea|Q and v ∈ Eb|Q (a 6= b).

• πa,α − π′a,α = O
(
|z1|ε

)
for some ε > 0. In particular, the decomposition E =

⊕
Ea,α is O

(
|z1|ε

)
-

asymptotically orthogonal.

Estimate of Higgs field We set θ̃ := θ −
⊕

a,α

(
da + α · dz1/z1

)
πa,α. Let gp denote the Poincaré metric of

X −D. The estimates in Subsection 11.2 of [19] implies the following.

Proposition 6.3 θ̃ is bounded with respect to h and gp.

Estimate of curvatures As mentioned in Subsection 2.1.7, we obtain a holomorphic vector bundle Eλ =
(E, ∂E+λθ†) onX−D. The curvature of the unitary connection associated to (Eλ, h) equals to−(1+|λ|2)·

[
θ, θ†

]
.

Proposition 6.4 [θ, θ†] is bounded with respect to h and gp. In particular, (Eλ, h) is acceptable, i.e., the
curvature of (Eλ, h) is bounded with respect to h and gp.
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6.3 Prolongation of unramifiedly good wild harmonic bundles

6.3.1 Prolongment PEλ

Let (E, ∂E , θ, h) be a good wild harmonic bundle on X −D, where X is a complex manifold and D is a normal
crossing divisor. As mentioned in Subsection 2.1.7, we obtain a holomorphic vector bundle Eλ = (E, ∂E + λθ†)
on X −D for each complex number λ. It is important to prolong it to a good filtered λ-flat bundle on (X,D).
For simplicity, we explain it assuming the following. (The general case can be easily reduced to this case.)

• X = ∆n and D =
⋃`
i=1{zi = 0}.

• (E, ∂E , θ, h) is unramifiedly good wild, and the underlying Higgs bundle has the following decomposition

(E, θ) =
⊕

a∈Irr(θ)

α∈C`

(Ea,α, θa,α), (40)

such that (i) θ̃a = θa −
(
da +

∑`
j=1 αj · dzj/zj

)
· πa,α are tame, where πa,α denote the projections onto

Ea,α, (ii) det(T − Fj)|Dj
= T rankEa,α for the expression θ̃a =

∑`
j=1 Fj · dzj/zj +

∑n
j=`+1Gj · dzj .

For any open subset U ⊂ X and a ∈ R`, we set

PaEλ(U) :=
{
f ∈ Eλ(U \D)

∣∣ |f |h = O
(∏̀
i=1

|zi|−ai−ε
)
∀ε > 0

}
Thus, we obtain an increasing sequence of OX -modules P∗Eλ :=

(
PaEλ

∣∣ a ∈ R`
)
. We obtain an OX(∗D)-

module PEλ :=
⋃

a PaEλ.

Proposition 6.5

• (Subsection 11.4 of [19]) (P∗Eλ,Dλ) is an unramifiedly good filtered λ-flat bundle. The set of irregular
values is given by

Irr(Dλ,PEλ) =
{
(1 + |λ|2) · a

∣∣ a ∈ Irr(θ)
}
.

• (Subsection 12.2 of [19]) k(λ) induces the bijection KMS(E0, i) −→ KMS(Eλ, i) for each i. We also have
dim i GrF,Ea,α(PE0) = dim i GrF,Ek(λ,(a,α))

(
PEλ

)
.

Take an auxiliary sequence for Irr(θ). Let Irr(θ,m(0)) denote the image of Irr(θ) via ηm(0). If λ 6= 0, for
each small sector S in {λ}×(X−D), we have the Stokes filtration FS in the level m(0), indexed by the ordered
set

{
(1 + |λ|2) · a

∣∣ a ∈ Irr(θ,m(0))
}

with ≤S . We have the following characterization of the filtration by the
growth order of the norms of flat sections with respect to h. (See Subsection 11.4.1 of [19] for more details.)

Proposition 6.6 Assume λ 6= 0. Let f be a flat section of Eλ|S. We have f ∈ FS(1+|λ|2)b for b ∈ Irr(θ,m(0)), if
and only if ∣∣∣f · exp

(
(λ−1 + λ) · b

)∣∣∣
h

= O
(
exp

(
C · |zm(1)|

)
·

∏
k(1)<j≤`

|zj |−N
)

holds for some C > 0 and N > 0, where k(1) is determined by m(1) ∈ Zk(1)<0 × 0`−k(1).

6.3.2 Prolongment P(λ0)
∗ E

It is important to consider families for λ. In the tame case, the family
⋃
λ PEλ gives a regular family of

meromorphic λ-flat bundles. More precisely, if we consider the sheaf of holomorphic sections of E of polynomial
growth, then (i) it is a locally free OX (∗D)-module, (ii) the specialization at each {λ}×X is naturally isomorphic
to PEλ. (We need some more consideration to take nice lattices.)
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However, it does not in the non-tame case, as suggested by the fact that the sets

Irr(PEλ,Dλ) =
{
(1 + |λ|2)a

∣∣ a ∈ Irr(θ)
}

depend on λ in a non-holomorphic way. We consider an auxiliary family of meromorphic λ-flat bundles P(λ0)E .
We explain it under the above setting.

Let πa,α denote the projection onto Ea,α in (40). We set

g(λ) :=
∏
a,α

exp
(
λ ·

(
a +

∑
αj · log |zj |2

))
· πa,α

Let U(λ0) denote a small neighbourhood of λ0 ∈ C. We set X (λ0) := U(λ0)×X, and D(λ0) := U(λ0)×D. We
also set X λ := {λ}×X and Dλ := {λ}×D. Let pλ be the projection of X (λ0)−D(λ0) onto X−D. We consider
the hermitian metric

P(λ0)h := g(λ− λ0)∗h

of p−1
λ E on X (λ0) −D(λ0). Let a ∈ R`. For any open subset V of X (λ0), we define

P(λ0)
a E(V ) :=

{
f ∈ E(V ∗)

∣∣∣ |f |P(λ0)h = O
(∏̀
j=1

|zj |−aj−ε
)
, ∀ε > 0

}
where V ∗ := V \D(λ0). Thus, we obtain an increasing sequence P(λ0)

∗ E =
(
P(λ0)

a E
∣∣ a ∈ R`

)
of OX (λ0)-modules.

We put P(λ0)E :=
⋃

a∈R` P(λ0)
a E . The restrictions to X λ are denoted by P(λ0)

∗ Eλ and P(λ0)Eλ.

Proposition 6.7

• (Subsections 13.1 and 13.2 of [19]) (P(λ0)
∗ E ,D) is an unramifiedly good family of filtered λ-flat bundles.

The set of irregular values is given by

Irr(P(λ0)E ,D) =
{
(1 + λλ0) · a

∣∣ a ∈ Irr(θ)
}
.

• (Subsection 13.2.1 of [19]) Recall that we have the deformation mentioned in Subsections 5.2.2 and 5.4,
for which (P(λ0)Eλ,Dλ) is isomorphic to (PEλ,Dλ)T (λ) with T (λ) = (1 + |λ|2)−1 · (1 + λλ0).

• (Subsection 13.2.3 of [19]) Let U(λ1) ⊂ U(λ0) be small, and we set X (λ1) := U(λ1)×X. Then, (P(λ1)E ,D)
on X (λ1) is isomorphic to the deformation (P(λ0)E ,D)(T (λ0,λ1))

|X (λ1) with T (λ0, λ1) = (1 + λλ0)−1(1 + λλ1).

We should remark that P(λ0)h 6= h even in the tame case, and hence P(λ0)
a E are different from aE in [18] in the

tame case. We can avoid to use P(λ0)
a E by considering KMS structure in the tame case.

By the property (D2) of the deformation (Subsection 5.2.2) and the correspondence between KMS(PEλ, i)
and KMS(PE0, i), we can show the following.

Lemma 6.8 It has the KMS-structure at λ0 with the index sets KMS(PE0, i) (i = 1, . . . , `).

6.3.3 Prolongment Q(λ0)
∗ E and QE

Applying the deformation procedure to (P(λ0)
∗ E ,D) with T = (1 + λλ0)−1, we obtain a family of good filtered

λ-flat bundles
(
Q(λ0)
∗ E ,D

)
on (X (λ0),D(λ0)). Then, Q(λ0)

a E is an unramifiedly good lattice of Q(λ0)E with the
good set of irregular values Irr(Q(λ0)E ,D) = Irr(θ), i.e.,

(Q(λ0)
a E ,D)| bD =

⊕
a∈Irr(θ)

(
Q(λ0)

a Êa, D̂a

)
,

such that D̂a − da · id has logarithmic singularity for each a. By using the property (D1) of the deformation
explained in Subsection 5.2.2, we obtain the following. (See Subsection 15.1.1 of [19] for more details.)
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Lemma 6.9 (Q(λ0)E ,D)|Xλ is naturally isomorphic to
(
PEλ,Dλ

)T1(λ) with T1(λ) = (1 + |λ|2)−1 > 0.

By the property (D1) of the deformation, we have Q(λ0)E|X (λ1) = Q(λ1)E . Hence, we obtain the global family
of meromorphic λ-flat bundles (QE ,D) on Cλ × (X,D). By using the property (D2) of the deformation and
Lemma 6.8, we can show the following.

Lemma 6.10 For each λ0, (QE ,D) has the KMS-structure at λ0 indexed by KMS
(
PE0, i

)
(i = 1, . . . , `).

Let S be a small sector in {λ}× (X−D). By Lemma 6.9, the Stokes filtrations of QEλ and PEλ in the level
m(0) are related as follows:

FSa
(
QEλ|S

)
= FS(1+|λ|2)a

(
PEλ|S

)
, a ∈ Irr

(
θ,m(0)

)
Hence, we have the characterization of the Stokes filtrations of Q in the level m(0), by growth order of the
norms of flat sections with respect to h. (See Subsection 15.1.1 of [19] for more details.)

Proposition 6.11 Let f be a flat section of Eλ|S. We have f ∈ FSb (QEλ|S) for b ∈ Irr(θ,m(0)), if and only if∣∣∣f · exp
(
(λ−1 + λ) · b

)∣∣∣
h

= O
(
exp

(
C · |zm(1)|

)
·

∏
k(1)<j≤`

|zj |−N
)

holds for some C > 0 and N > 0, where k(1) is determined by m(1) ∈ Zk(1)<0 × 0`−k(1).

By taking Gr with respect to the Stokes filtration FS in the level m(0) explained in Subsection 5.2.2, we
obtain an unramifiedly good lattice

(
Grm(0)

a (QE),Da

)
.

In the case that D is smooth, we have the following characterization of the full Stokes filtration F̃S (Sub-
section 15.1.1 of [19]).

Proposition 6.12 Let f be a flat section of Eλ|S. We have f ∈ F̃Sb (QEλ|S) for b ∈ Irr(θ), if and only if∣∣∣f · exp
(
(λ−1 + λ) · b

)∣∣∣
h

= O
(
|z1|−N

)
holds for some N > 0.

Remark 6.13 We have a characterization of full Stokes filtrations or more general Stokes filtrations in the
level m(i), even in the general normal crossing case.

6.4 Reduction from wild to tame

Let X, D and (E, ∂E , θ, h) be as in Subsection 6.3. By making the same procedure to (E, ∂E , θ†, h) on X†−D†,
we obtain the family of meromorphic µ-flat bundles

(
QE†,D†

)
on Cµ × (X†, D†).

Lemma 6.14 The correspondence (a, α)←→ (−a, α) induces a bijection KMS(PE0, i) ' KMS(PE† 0, i). We
also have the bijection Irr(θ) ' Irr(θ†) given by a←→ a.

Proof The claim for Irr(θ) and Irr(θ†) is clear. See Corollary 11.12 of [18] for the correspondence between
KMS(PE0, i) and KMS(PE† 0, i).
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One step reduction I Since both the Stokes filtrations of (QEλ,Dλ) and
(
QE†µ,D†µ

)
are characterized by

growth order of the norms of flat sections with respect to h, we have the induced isomorphisms of the associated
graded family of flat bundles for a ∈ Irr(θ,m(0)):(

Grm(0)
a QE ,Dfa

)
|C∗

λ×(X−D)
'

(
Grm(0)

a QE†,D† fa

)
|C∗

µ×(X−D)

Hence, they give a variation of P1-holomorphic vector bundles denoted by Grm(0)
a (E4,D4) on P1 × (X −D).

We can show that the pairing S : (E ,D)⊗ σ∗(E4,D4) −→ OX−D is extended to

QE ⊗ σ∗QE† −→ OCλ×X
(
∗(Cλ ×D)

)
.

(See Subsection 15.1.3 of [19].) By functoriality of Gr with respect to Stokes structures, we obtain

Grm(0)
a (QE ,D)⊗ σ∗ Grm(0)

a (QE†,D†) −→ OCλ×X
(
∗(Cλ ×D)

)
.

Similarly, we obtain Grm(0)
a (QE†,D†) ⊗ σ∗ Grm(0)

a (QE ,D) −→ OCµ×X†
(
∗(Cµ ×D†)

)
. They give a morphism

of variations of P1-holomorphic vector bundles:

Grm(0)
a (S) : Grm(0)

a (E4,D4)⊗ σ∗ Grm(0)
a (E4,D4) −→ T(0)

One of the main result in the study of wild harmonic bundles is the following. (See Subsection 15.2 of [19]
for more details.)

Proposition 6.15 If we shrink X appropriately, the following holds:

• Grm(0)
a

(
E4,D4,S

)
is a variation of pure polarized twistor structures.

• Let (Ea, ∂a, ha, θa) denote the underlying harmonic bundle for a ∈ Irr(θ,m(0)). By construction, the
Higgs bundle (Ea, θa) is naturally isomorphic to⊕

b∈Irr(θ)
ηm(0)(b)=a

⊕
α

(
Eb,α, θb,α

)

(Recall the decomposition (40)). In particular, the harmonic bundle is unramifiedly good wild. The set of
irregular values is η−1

m(0)(a).

• Let (QEa,Da) be the family of meromorphic λ-flat bundles on Cλ × (X,D) associated to (Ea, ∂a, ha, θa).
Then, we have the natural isomorphism (QEa,Da) ' Grm(0)

a (QE ,D).

• Similarly, let (QE†a ,D
†
a) denote the associated family of meromorphic µ-flat bundles on Cµ×(X,D). Then,

we have the natural isomorphism (QE†a ,D
†
a) ' Grm(0)

a

(
QE†,D†

)
.

One step reduction II Let Irr(θ,m(j)) denote the image of Irr(θ) via ηm(j). For each a ∈ Irr(θ,m(j)), we
obtain a variation of P1-holomorphic bundles with a pairing Grm(j)

a

(
E4,D4,S

)
, which is naturally isomorphic

to Grm(j)
a Grm(j−1)

ηm(j−1)(a)(E
4,D4,S). We explain how to apply Proposition 6.15 in this situation.

Let us consider the case in which Irr(θ,m(j − 1)) consists one element. We take any a ∈ Irr(θ). Let L(−a)
be the variation of polarized pure twistor structures as in Subsection 2.2.1. The underlying harmonic bundle is
also denoted by L(−a). We set (E′, ∂E′ , θ′, h′) := (E, ∂E , θ, h) ⊗ L(−a). Note Irr(θ′) :=

{
a′ − a

∣∣ a′ ∈ Irr(θ)
}
,

and hence m(j),m(j + 1), . . . ,m(L) give an auxiliary sequence for Irr(θ′). We have the natural isomorphisms
of the associated variation of polarized pure twistor structures:

(E4,D4,S) ' (E ′4,D′4,S ′)⊗ L(a)

For each b ∈ Irr(θ,m(j)), we have the natural isomorphism:

Grm(j)
b (E4,D4,S) ' Grm(j)

b−ηm(j)(a)(E
′4,D′4,S ′)⊗ L(a)

Hence, by shrinking X appropriately, we obtain that Grm(j)
b (E4,D4,S) is also a variation of pure twistor

structures, due to Proposition 6.15.
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Full reduction Let us consider the general case. By using the above result inductively, we obtain that
Grm(j)

a

(
E4,D4,S

)
are variations of polarized pure twistor structures for any a ∈ Irr(θ,m(j)). The underlying

Higgs field is ⊕
b∈Irr(θ)

ηm(j)(b)=a

⊕
α

(Eb,α, θb,α)

For any a ∈ Irr(θ), we set Grfull
a (E ,D4,S) := Grm(L)

a (E ,D4,S), which are called the full reductions. Let
(Ea, ∂a, ha) be the underlying harmonic bundles. Then, (Ea, ∂a, ha) ⊗ L(−a) are tame. This procedure is the
reduction from wild harmonic bundles to tame harmonic bundles.

6.5 Reduction from tame to twistor nilpotent orbit

Let X := ∆n, Di = {zi = 0} and D :=
⋃`
i=1Di. Let (E, ∂E , θ, h) be a tame harmonic bundle on X −D. The

family of λ-flat bundles (E ,D) is prolonged to a family of meromorphic λ-flat bundle
(
QE ,D

)
, which has the

KMS-structure at λ0 indexed by KMS(PE0, i) (i = 1, . . . , `) for each λ0 ∈ Cλ. For later use, we recall how to
obtain the limiting mixed twistor structure. For simplicity, we assume KMS

(
E0, i

)
⊂ R× {0}. See Section 11

of [18] for the general case. See also an account due to Hertling and Sevenheck in [9] for this case.
In a neighbourhood U(λ0) of λ0, we set

G(λ0)
(a,0)(E) := `G(λ0)

(a,0)(Q
(λ0)E)|U(λ0)×{O}

for a ∈ Par(PE0, `). (See (39) for the right hand side. In this simpler case, we have only to take Gr with
respect to parabolic filtrations.) By varying λ0 ∈ Cλ and gluing them, we obtain the vector bundle G(a,0)(E)
on Cλ. It is endowed with the nilpotent maps Ni (i = 1, . . . , `), which are the nilpotent part of the residues
Resi(D). By applying the same procedure to (E, ∂E , θ†, h) on X†−D†, we obtain the vector bundle G†(−a,0)(E)

on Cµ with nilpotent endomorphisms N †
i induced by residues Resi(D†). We would like to glue G(a,0)(E) and

G†(−a,0)(E), to obtain a vector bundle Scan
(a,0)(E) on P1.

We have the D-flat decomposition Q0E|C∗
λ×X =

⊕
a∈Par(P0E0,`) G(a,0)E with the following property:

• Let Mi be the family of the monodromy endomorphisms along the path (z1, . . . , e2π
√
−1θzi, . . . , zn) (0 ≤

θ ≤ 1) with respect to Df . Then, the restriction of Mi to G(a,0)E has the unique eigenvalue exp
(
2π
√
−1ai

)
.

• G(a,0)E|C∗
λ×O ' G(a,0)(E).

For λ 6= 0, let H(Eλ) be the space of multivalued flat sections of (Eλ,Dλ). We have the holomorphic vector
bundle H(E) on C∗

λ whose fiber over λ is H(Eλ). We have the decomposition

H(E) =
⊕

a∈Par(P0E0,`)

G(a,0)H(E)

such that (i) it is preserved by the monodromy Mi, (ii) the restriction of Mi to G(a,0)H(E) has the unique
eigenvalue exp

(
2π
√
−1ai

)
.

Let U ⊂ C∗
λ, and let s be a section of G(a,0)H(E) on U . We regard s as a multi-valued flat section of G(a,0)E .

It is expressed as a finite sum:

s =
∑

fm ·
∏̀
i=1

exp
(
ai log zi

)
·
(
log zi

)mi

Here, fm are holomorphic sections of G(a,0)E|U×X . We set Φcan
(a,0)(s) = f0|U×O, and thus we obtain an isomor-

phism
Φcan

(a,0) : G(a,0)H(E) −→ G(a,0)E|C∗
λ×O = G(a,0)(E).

Let δ = (1, . . . , 1) ∈ R`. We have the D†-flat decomposition Q<δE†|C∗
λ×X

=
⊕

a∈Par(P0E0,`) G(−a,0)E† with
the following property:
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• The restriction of M−1
i to G(−a,0)E† has the unique eigenvalue exp

(
−2π
√
−1ai

)
. (Because the base space

is the complex conjugate X† −D†, the direction of the loop is reversed.)

• G(−a,0)E†|C∗
µ×O

' G†(−a,0)(E).

Similarly, let H†(E) be the holomorphic vector bundle on C∗
µ whose fiber over µ is the space of the multi-

valued flat sections of (E†µ,D†µ). We have the decomposition

H†(E) =
⊕

a∈Par(P0E0,`)

G(−a,0)H†(E)

such that the restriction of M−1
i to G(−a,0)H†(E) has the unique eigenvalue exp

(
−2π
√
−1ai

)
. For a section s

of G(−a,0)H†(E)|U , we have an expression

s =
∑

f†m ·
∏̀
i=1

exp
(
−ai log zi

)
·
(
log zi

)mi
,

where f†m are sections of QE†|U×X . We set Φcan †
(a,0)(s) = f†0|U×O, and thus we obtain an isomorphism

Φcan †
(a,0) : G(−a,0)H†(E) −→ G(−a,0)E†|C∗

µ×O
= G†(−a,0)(E).

By construction, we have the natural isomorphism G(a,0)H(E) ' G(−a,0)H†(E) under the identification of
C∗
λ = C∗

µ via µ = λ−1. Thus, we obtain the vector bundle Scan
(a,0)(E) by gluing G(a,0)(E) and G†(−a,0)(E). Under

the gluing, we have the relation
λ−1Ni = −µ−1N †

i .

Thus, Ni · t(−1)
0 and N∞ · t(−1)

∞ give the morphism N4
i : Scan

(a,0)(E) −→ Scan
(a,0)(E)⊗T(−1). The tuple of them is

denoted by N4.
The morphism S0 : E ⊗ σ∗E† −→ OX−D is extended to Q0E ⊗ σ∗Q<δE† −→ OX . Similarly, we have

Q<δE† ⊗ σ∗Q0E −→ OX † . They induce

G(a,0)(E)⊗ σ∗G†(−a,0)(E) −→ OCλ
,

G†(−a,0)(E)⊗ σ∗G(a,0)(E) −→ OCµ ,

G(−a,0)H†(E)⊗ σ∗G(a,0)H(E) −→ OC∗
λ

They are preserved by the above isomorphisms. Hence, we obtain S(a,0) : Scan
(a,0)(E) ⊗ σ∗Scan

(a,0)(E) −→ T(0).
Theorem 12.22 of [18] implies the following.

Proposition 6.16 (Scan
(a,0)(E),N4,S) is a polarized mixed twistor structure of weight 0 in `-variables.

By Theorem 4.1, a polarized mixed twistor structure induces a nilpotent orbit. This is the reduction from tame
harmonic bundles to nilpotent orbits.

Remark 6.17 Although the notation is changed, the construction explained in this subsection is the same as
that in [18]. In the tame case, QE is equal to the sheaf of holomorphic sections whose norms with respect to h
are of polynomial growth order. We also remark the uniqueness in Lemma 5.44.

52



Family version The construction can be done in family on D` :=
⋂`
i=1Di. As in the construction of

G(a,0)(E), we obtain the vector bundle `G(a,0)(QE) on D` := Cλ ×D`, as the gluing of `G(λ0)
(a,0)(Q

(λ0)E). They
are equipped with the nilpotent maps Ni (i = 1, . . . , `). By applying the nearby cycle functors for R-modules
along zi (i = 1, . . . , `), or by a direct consideration as in Subsection 8.8.3 of [18], we obtain the induced family
of flat λ-connections Da,0 of `G(a,0)(QE) for which Ni are flat. Similarly, we obtain a family of µ-flat bundles(
`G(−a,0)(QE†),D†(−a,0)

)
on Cµ ×D†

` with flat nilpotent maps N †
i .

Let q : X − D −→ D` be the projection. We naturally obtain a holomorphic vector bundle H̃(E) on
C∗
λ × D`, whose fiber over (λ, P ) is the space of multi-valued flat sections of (Eλ,Dλ)|q−1(P ). It has the

generalized eigen decomposition H̃(E) =
⊕

`G(a,0)H̃(E) with respect to the monodromy endomorphisms around
Di. (i = 1, . . . , `). It is naturally equipped with the family of flat connections Dfa,0.

By using the family of flat bundles
(
G(a,0)E ,Df

)
, we obtain the flat isomorphisms

Φcan
(a,0) : `G(a,0)H̃(E) −→ `G(a,0)(QE)|C∗

λ×D`
.

Similarly, we obtain the flat isomorphisms Φcan
(a,0) : `G(a,0)H̃(E) −→ `G(−a,0)(QE†)|C∗

µ×D
†
`
. As the gluing, we

obtain a variation of P1-holomorphic vector bundles
(
`E4a,0,D

4
a,0

)
with a tuple N4 of flat nilpotent morphisms

N4
i : `E4a,0 −→ `E4a,0 ⊗ T(−1), (i = 1, . . . , `)

We also have the induced flat symmetric pairing S : `E4a,0 ⊗ σ∗`E
4
a,0 −→ T(0). By Proposition 6.16,(

`E4a,0,N
4,D4a,0,Sa,0

)
is a variation of polarized mixed twistor structures of weight 0 in `-variables. (See Subsection 2.4.1.)

7 Prolongation and reductions in the integrable case

7.1 Preliminary Estimate

7.1.1 Statements

Let X := ∆n and D := {z1 = 0}. Let (E, ∂E , θ, h) be an unramifiedly good wild harmonic bundle on X −D.
For simplicity, we assume that there exists a holomorphic decomposition

(E, θ) =
⊕

a∈Irr(θ)

(Ea, θa) (41)

such that θa − da · πa are tame, where πa denotes the projection onto Ea with respect to the decomposition
(41).

Remark 7.1 Since (E, ∂E , θ, h) is assumed to be unramifiedly good, such a decomposition exists on a neigh-
bourhood of each point of D. Because we are interested in the behaviour around O, we may assume such a
decomposition exists globally by replacing X with a small neighbourhood of O.

Let U be a holomorphic section of End(E) on X−D such that [θ,U ] = 0. Let Q be a C∞-section of End(E)
on X −D such that Q = Q†. We assume the following equations:

∂EU − [θ,Q] + θ = 0 (42)

∂EQ+ [θ,U†] = 0 (43)

We set Ũ := U +
∑

a∈Irr(θ) a · πa. We will prove the following proposition in Subsections 7.1.2–7.1.6.

Proposition 7.2 Ũ = O(1) and Q = O
((
− log |z1|

)M)
for some M > 0 with respect to h.
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Remark 7.3 Eventually, we obtain that Q is bounded. (See Corollary 7.16 and Corollary 7.22.) See Corollary
7.8 for the boundedness of Ũ in the case that D is normal crossing.

We set girr(λ) = exp
(⊕

λa · πa

)
. Let λ0 ∈ C, and let U(λ0) be a small neighbourhood of λ0 in C. Let pλ

be the projection of U(λ0)× (X −D) onto X −D. We consider the hermitian metric

P(λ0)
irr h := girr(λ− λ0)∗h (44)

of p−1
λ E on U(λ0)× (X −D). We regard U and Q as C∞-sections of End

(
p−1
λ E

)
. We will prove the following

lemma in Subsection 7.1.7.

Proposition 7.4 Assume U(λ0) is sufficiently small. Then, Ũ = O(1) and Q = O
(
(− log |z1|)M

)
with respect

to P(λ0)
irr h.

7.1.2 Preliminary

We take orthogonal decompositions E =
⊕
E′a,α =

⊕
E′a as in Subsection 6.2. For any f ∈ End(E), we have

the decompositions:
f =

∑
f ′a,b, f ′a,b ∈ Hom

(
E′b, E

′
a

)
f =

∑
f ′(a,α),(b,β), f ′(a,α),(b,β) ∈ Hom

(
E′b,β , E

′
a,α

)
.

We have similar decompositions for sections of End(E) ⊗ Ωp,q. The following lemma is easy to show by using
Proposition 6.2.

Lemma 7.5 Let f be a C∞-section of End(E) such that f commutes with θ.

• If a 6= b, we have |f ′a,b|h = O
(
exp

(
− ε|z1|ord(a−b))

)
· |f |h for some ε > 0.

• If α 6= β,
∣∣f ′(a,α),(a,β)

∣∣
h

= O
(
|z1|ε

)
· |f |h for some ε > 0.

7.1.3 Step 1

Let θ1 denote the dz1-component of θ.

Lemma 7.6 We have the following estimate with respect to h:[
θ†1,U

]
= O

( dz1

|z1| ·
(
− log |z1|

))
·
∣∣U∣∣

h

Proof In the following, εi denote some positive constants. We have the decomposition:[
θ†1,U

]
=

∑
a,b,c

(
θ†′1,a,b ◦ U

′
b,c − U ′a,b ◦ θ

†′
1,b,c

)
By the estimates in Subsection 11.2 of [19] (see Subsection 6.2), we have the following estimates for a 6= b:

θ†′1,a,b = O
(
exp

(
−ε1|z1|ord(a−b)

)
· dz1

)
Because U and θ are commutative, we have the following estimate for a 6= b due to Lemma 7.5:

U ′a,b = O
(
exp

(
−ε2|z1|−1

))
·
∣∣U∣∣

h

Hence, we have the following estimate with respect to h:[
θ†1,U

]
=

∑
a

[
θ†′1,a,a, U ′a,a

]
+O

(
exp

(
−ε3|z1|−1

)
· dz1

)
·
∣∣U∣∣

h
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Similarly, we have the following estimates for α 6= β, by Theorem 11.12 of [19] and Lemma 7.5:

θ†′1,(a,α),(a,β) = O
(
|z1|ε4

)
· dz1

z1
, U ′(a,α),(a,β) = O

(
|z1|ε4

)
By Proposition 6.3, θ†′(a,α),(a,α) −

(
da + α · dz1/z1

)
· π′a,α is bounded with respect to h and Poincaré metric of

X −D. Hence, we obtain[
θ†1,U

]
=

∑
a,α

[
θ†′1,(a,α),(a,α), U

′
(a,α),(a,α)

]
+O

(
|z1|ε5

)
· dz1

z1
·
∣∣U∣∣

h
= O

( dz1

|z1| ·
(
− log |z1|

))
·
∣∣U∣∣

h
.

Thus, we obtain Lemma 7.6.

7.1.4 Step 2

Let ∂1 denote the dz1-components of ∂E and ∂. Similarly, let ∂1 denote the dz1-component of ∂E and ∂. The
following holds:

∂1

∣∣U∣∣2
h

=
(
U , ∂1U

)
h

=
(
U , [θ1,Q]− θ1

)
h

= − tr
(
U ·

[
θ†1,Q

])
− tr

(
U · θ†1

)
= − tr

([
U , θ†1

]
· Q

)
− tr

(
U · θ†1

)
Hence, we obtain

∂1

∣∣U∣∣2
h

= O
( dz1

|z1| · (− log |z1|)

)
·
∣∣U∣∣

h
·
∣∣Q∣∣

h
+O

( dz1

|z1|N
)
·
∣∣U∣∣

h
.

We also have

∂1|Q|2h = −
(
Q, [θ1,U†]

)
h

+
(
[θ†1,U ],Q

)
= O

( dz1

|z1| ·
(
− log |z1|

))
·
∣∣U∣∣

h
·
∣∣Q∣∣

h
.

Therefore, we obtain

∂1

(∣∣U∣∣2
h

+
∣∣Q∣∣2

h

)
= O

( dz1

|z1|
(
− log |z1|

))
·
∣∣U∣∣

h
·
∣∣Q∣∣

h
+O

( dz1

|z1|N
)
·
∣∣U∣∣

h
. (45)

We set r := |z1| and F :=
(∣∣U∣∣2

h
+

∣∣Q∣∣2
h

+ 1
)1/2. We use the polar coordinate

(
r, arg(z1), z2, . . . , zn

)
. We

consider the estimate on a simply connected region Z(ϑ0, ϑ1) := {ϑ0 < arg(z1) < ϑ1} for some fixed ϑ0 < ϑ1.
We obtain the following estimate from (45):

∂

∂r
F 2 = G1 · F 2 +G2 · F, G1 = O

( 1
r · (− log r)

)
, G2 = O

( 1
rN

)
We take a solution H 6= 0 of the differential equation:

∂

∂r
H = −G1 ·H

There exist C1 > 0 and M0 > 0 such that C−1
1 · (− log r)−M0 ≤ |H| ≤ C1 · (− log r)M0 . Since Z(ϑ0, ϑ1) is simply

connected, we can take H1/2. Then, we have

∂

∂r

(
H · F 2

)
= G2 ·H · F = (G2 ·H1/2) · (H1/2 · F ).

Because G2 ·H1/2 = O
(
r−M1

)
, we obtain H · F 2 = O(r−M2), and hence F = O

(
r−M3

)
. Thus, we obtain the

following estimate on Z(ϑ0, ϑ1) for some M4 > 0:∣∣U∣∣
h

= O(r−M4),
∣∣Q∣∣

h
= O

(
r−M4

)
(46)

By varying θ0 and θ1, we obtain the estimate (46) on X −D. In particular, we obtain the following estimate
on X −D for a 6= b:

U ′a,b = O
(
exp

(
−ε|z1|ord(a−b)

))
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7.1.5 Step 3

We have
[
θ1,U†

]
=

[
θ1, Ũ†

]
+O

(
exp

(
−ε|z1|−1

)
·dz1

)
with respect to h. By an argument in the proof of Lemma

7.6, we obtain the following estimate with respect to h:[
θ1,U†

]
= O

( dz1

|z1| ·
(
− log |z1|

))
·
∣∣Ũ∣∣

h
+O

(
exp

(
−ε|z1|−1

)
· dz1

)
(47)

According to an estimate in Subsection 11.5.2 of [19], we have

∂1U = ∂1Ũ −
∑

a∈Irr(θ)

∂1a · πa +O
(
exp

(
−ε|z1|−1

)
· dz1

)
.

We set θ̃ := θ −
∑

a∈Irr(θ) da · πa. We obtain the following estimates with respect to h:

∂1Ũ −
[
θ1,Q

]
+ θ̃1 = O

(
exp

(
−ε|z1|−1

))
(48)

∂1Q+
[
θ1, Ũ†

]
= O

(
exp

(
−ε|z1|−1

))
(49)

We set F̃ :=
(∣∣Ũ∣∣2

h
+

∣∣Q∣∣2
h

+ 1
)1/2. As in Step 2, we consider the estimates on Z(ϑ0, ϑ1). By using an argument

in Subsection 7.1.4, we obtain

∂

∂r
F̃ 2 = G̃1 · F̃ 2 + G̃2 · F̃ , G̃1 = O

( 1
r · (− log r)

)
, G̃2 = O

(1
r

)
.

We take a solution H̃1 6= 0 of the differential equation:

∂

∂r
H̃1 = −G̃1 · H̃1

Note log
∣∣H̃1

∣∣ = O
(
log

(
− log r

))
. By choosing H̃1/2

1 , we obtain

∂

∂r

(
H̃1 · F̃ 2

)
=

(
G̃2 · H̃1/2

1

)
·
(
H̃

1/2
1 · F̃

)
.

Because G̃2 · H̃1/2
1 = O

(
r−1 ·

(
− log r

)M5
)

for some M5 > 0, we obtain H̃1 · F̃ 2 = O
((
− log r

)M6
)

for some

M6 > 0, and thus F̃ = O
(
(− log r)M7

)
for some M7 > 0. Therefore, we obtain the following estimates with

respect to h:
Ũ = O

((
− log r

)M7
)
, Q = O

((
− log r

)M7
)

(50)

7.1.6 Step 4

By (50), Ũ is a holomorphic section of P0 End(E). Because [θ, Ũ ] = 0, we obtain the boundedness of
∣∣Ũ∣∣

h
by

an estimate in Subsection 11.7 of [19]. Thus, the proof of Proposition 7.2 is finished.

Remark 7.7 From (47) and (49), we also have the following estimate:

∂1Q = O
( dz1
|z1| · (− log |z1|)

)
Hence, we actually obtain Q = O

(
log

(
− log |z1|

))
. However, we will obtain the boundedness later.
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7.1.7 Proof of Proposition 7.4

For an endomorphism f of E, we have the following:∣∣f ∣∣
P(λ0)

irr h
=

∣∣girr(λ− λ0) ◦ f ◦ girr(λ− λ0)−1
∣∣
h

(51)

Hence, the claim for Ũ is clear from [Ũ , girr(λ−λ0)] = 0. We have the decomposition P0E0 =
⊕
P0E0

a extending
E =

⊕
Ea. Let v = (va) be a holomorphic frame of P0E0 compatible with the decomposition. Let C be the

matrix-valued function determined by ∂1v = v · C · dz1. We have the decomposition C = (Ca,b) corresponding
to the decomposition v = (va). According to an estimate in Subsection 11.5.2 of [19], there exists ε1 > 0 such
that the following holds for a 6= b:

Ca,b = O
(
exp

(
−ε1|z1|ord(a−b)

))
Let A be the matrix-valued function determined by Uv = v ·A. Note A is block-diagonal, i.e., A =

⊕
Aa,a. We

have (∂1U)v = v ·
(
∂1A + [C,A] · dz1

)
. We set B · dz1 := ∂1A + [C,A] · dz1 =

(
Ba,b · dz1

)
. Then, there exists

ε2 > 0 such that the following holds for a 6= b:

Ba,b = Ca,b ·Ab,b −Aa,a · Ca,b = O
(
exp

(
−ε2|z1|ord(a−b)

))
(52)

For any section f of End(E)⊗ Ω1,0, we have the decomposition

f =
∑

fa,b, fa,b ∈ Hom(Eb, Ea)⊗ Ω1,0.

From the relation ∂1U − [θ1,Q] + θ1 = 0, we obtain the following:

(∂1U)a,b − ∂1(a− b) · Ua,b − (θ1,a − ∂1a) · Ua,b + Ua,b · (θ1,b − ∂1b) = 0

Note the following (see Proposition 6.2 and Proposition 6.3):

∂(a− b)/∂z1 ∼ |zord(a−b)−1
1 | · dz1,

∣∣θ1,a − ∂1a
∣∣
h

= O
(
dz1/z1

)
,

∣∣θ1,b − ∂1b
∣∣
h

= O
(
dz1/z1

)
(53)

The estimate (52) implies the following:∣∣(∂1U)a,b

∣∣ = O
(
exp

(
−ε2|z1|ord(a−b)

))
(54)

Due to (53) and (54), there exists ε3 > 0 such that the following holds for a 6= b:∣∣Qa,b

∣∣
h

= O
(
exp

(
−ε3|z1|ord(a−b)

))
By using (51), we obtain the desired estimate for Q with respect to P(λ0)h, if U(λ0) is sufficiently small.

7.1.8 Complement for the normal crossing case

Let X := ∆n and D :=
⋃`
i=1{zi = 0}. Let (E, ∂E , θ, h) be an unramifiedly good wild harmonic bundle on

X −D. Let U be a holomorphic section of End(E) on X −D such that [θ,U ] = 0. Let Q be a C∞-section of
End(E) on X −D such that Q† = Q. Assume that they satisfy the equations (42) and (43). We also assume
that there exists a holomorphic decomposition (E, θ) =

⊕
a∈Irr(θ)(Ea, θa) such that θa− da ·πa are tame, where

πa denotes the projection onto Ea with respect to the above decomposition. We set Ũ := U +
∑

a∈Irr(θ) a · πa.

Corollary 7.8 Ũ is bounded with respect to h.

Proof It follows from Proposition 7.2 above and the estimate in Subsection 11.7 of [19].
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7.2 Prolongation of variation of integrable twistor structures

7.2.1 Statements

Let X be a complex manifold, and let D be a simple normal crossing divisor of X. Let (E4, D̃4,S) be a
variation of pure polarized integrable twistor structures of weight 0 on P1 × (X −D). We have the underlying
harmonic bundle (E, ∂E , θ, h) on X −D.

Definition 7.9

• We say that (E4, D̃4,S) is tame (wild, good wild, unramifiedly good wild), if (E, ∂E , θ, h) is tame (wild,
good wild, unramifiedly good wild).

• If we are given a real structure κ of (E4, D̃4,S), we say that the variation of polarized pure twistor-TERP
structures (E4, D̃4,S, κ, 0) is tame (wild, good wild, unramifiedly good wild), if (E4, D̃4,S) is tame (wild,
good wild, unramifiedly good wild).

Note that “wild” does not imply “good wild” as remarked in Remark 6.1.

Assume that (E, ∂E , θ, h) is good wild. We will show the following proposition later. (The tame case was
shown in [9].)

Lemma 7.10 The sets of KMS
(
PE0, i

)
are contained in R× {0}.

We use the notation in Subsection 2.1.7. As explained in Subsection 6.3, (E ,D) is prolonged to the family of
meromorphic λ-flat bundles (QE ,D) on Cλ × (X,D), and (E†,D†) is prolonged to the family of meromorphic
µ-flat bundles (QE†,D†) on Cµ × (X†, D†).

Proposition 7.11

• D̃f (resp. D̃† f ) gives a meromorphic flat connection of QE (resp. QE†).

• If a real structure κ of (E4, D̃4,S) is given, κ0 : γ∗E† ' E is extended to the isomorphism γ∗QE† ' QE.
Similarly, κ∞ : γ∗E ' E† is extended to γ∗QE ' QE†.

For the proof of Lemma 7.10 and Proposition 7.11, we may and will assume (i) D is smooth, i.e., ` = 1, (ii)
(E, ∂E , θ, h) is unramified.

7.2.2 Meromorphic connection of P(λ0)E

Let λ0 ∈ Cλ, and let U(λ0) be a small neighbourhood of λ0 in Cλ. We set X (λ0) := U(λ0) ×X and D(λ0) :=
U(λ0) × D. Recall that we have a family of meromorphic λ-flat bundles (P(λ0)E ,D) on (X (λ0),D(λ0)), as
explained in Subsection 6.3. Note that P(λ0)E is identified with the sheaf of holomorphic sections of E of
polynomial order with respect to P(λ0)

irr h, because P(λ0)
irr h and P(λ0)h are mutually bounded up to polynomial

orders. (See (44) for P(λ0)
irr h. They are different in general.)

Proposition 7.12 D̃f gives a meromorphic flat connection of P(λ0)E.

Proof We have only to show λ2∇λ
(
∂λ

)
P(λ0)E ⊂ P(λ0)E . As mentioned in Subsection 2.1.7, we have the

induced holomorphic section U of End(E) on X − D such that [θ,U ] = 0, and the C∞-section Q of End(E)
such that Q† = Q, determined by

∇λ = dλ +
(
λ−1U −Q− λ · U†

)dλ
λ
,

where dλ denote the naturally induced flat connection of p−1
λ E along the λ-direction. They satisfy the equations

(42) and (43).
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Let v = (va) be a holomorphic frame of P0E0 compatible with the decomposition P0E0 =
⊕

a P0E0
a .

Corresponding to the decomposition v = (va), the identity matrix is decomposed into
⊕

a∈Irr(θ) Ia. We regard
v as a C∞-frame of E|X (λ0)−D(λ0) , and we set

ṽ = girr(λ− λ0)−1v = v ·
( ⊕

a∈Irr(θ)

exp
(
−(λ− λ0) · a

)
· Ia

)

Let H
(
P(λ0)

irr h, ṽ
)

denote the Hermitian matrix-valued function whose (i, j)-entries are given by P(λ0)
irr h(ṽi, ṽj).

Then, it is clear that H
(
P(λ0)

irr h, ṽ
)

and its inverse are of polynomial order. We also have the following relation:

dλṽ = ṽ ·A, A := −
⊕

a · dλ · Ia

Let w be a holomorphic frame of P(λ0)
a E . Let H

(
P(λ0)

irr h,w
)

denote the Hermitian matrix-valued function
whose (i, j)-entries are given by P(λ0)

irr h(wi, wj). Then, H
(
P(λ0)

irr h,w
)

and its inverse are of polynomial order.
(See Subsection 13.1.2 of [19], for example.) Let G be the matrix-valued function determined by w = ṽ · G.
Then, G and G−1 are of polynomial order. We have

dλw = ṽ ·
(
A ·G+ dλG

)
= w ·

(
G−1 ·A ·G+G−1dλG

)
.

Since ṽ and w are λ-holomorphic, G is λ-holomorphic. Hence, dλG and G−1 ·A ·G+G−1dλG are of polynomial
order

Let B be determined by λ2∇λ(∂λ)w = w · B. Then, B is of polynomial order, and hence meromorphic.
Thus, the proof of Proposition 7.12 is finished.

We have the irregular decomposition:

(P(λ0)
a E ,D)| bD(λ0) =

⊕
a∈Irr(θ)

(P(λ0)
a Êa, D̂a) (55)

Lemma 7.13

• λ2∇λ(∂λ) preserves the decomposition (55).

• Assume λ0 6= 0. Then, (55) is the irregular decomposition for
(
P(λ0)E , D̃f

)
, and P(λ0)

a E is an unramifiedly
good lattice of P(λ0)E.

Proof Since it can be shown by a standard argument, we give only an outline. Let v̂ = (v̂a) be a frame of
P(λ0)
a E| bD compatible with the decomposition (55). Let A =

∑
Ab,a be determined by λ2∇λ(∂λ)v̂ = v̂ · A. For

a 6= b, let Fb,a : P(λ0)
a Êa −→ P(λ0)

a Êb be given by Fb,av̂a = v̂b · Ab,a. Because
[
λ2∇λ(∂λ),Df

]
= 0, we obtain

that Fb,a is flat. However, meromorphic flat section has to be 0 in the case b 6= a. Thus, we obtain the first
claim.

Let us show the second claim. Let Ba be determined by

Df (z1∂1)v̂a = v̂a ·
(
(λ−1 + λ0) · z1∂1a +Ba

)
Then, Ba is regular. For a = 0, the following holds:

λ2∂λB0 +A0,0 ·B0 −B0 ·A0,0 − z1∂1A0,0 = 0

We have the expansions B0 =
∑
m≥0B0;m ·zm1 and A0,0 =

∑
m≥N A0,0;m ·zm1 . We assume N < 0 and A0,0;N 6= 0.

We obtain the relation
[
B0;0, A0,0;N

]
− NA0,0;N = 0 on D(λ0). Note that the eigenvalues of B0;0 are of the

form λ−1e(λ, u), where u ∈ KMS(PE0) and a− 1 < p(λ0, u) ≤ a. It implies that the difference of two distinct
eigenvalues of B0,0 cannot be N . Therefore, we obtain A0,0;N = 0, which contradicts with our assumption.
Hence, we obtain N ≥ 0.
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By considering a twist by a meromorphic flat line bundle given by ∇e = e · d
(
(λ−1 + λ0)a

)
, we obtain that

D̃f = Df +∇λ on P(λ0)E is of the form

D̃f =
⊕

a∈Irr(θ)

(
d
(
(λ−1 + λ0) · a

)
+ D̃f

P(λ0) bE,a
)
,

where D̃f
P(λ0) bE,a are logarithmic with respect to P(λ0)Êa. Thus, the proof of Lemma 7.13 is finished.

7.2.3 Proof

By Lemma 7.13, the eigenvalues of Res(D̃f ) on P(λ0)
b E|D(λ0) are constant. On the other hand, the eigenvalues of

Res(Df ) = Res(D̃f ) on P(λ0)
b E|D(λ0) have to be of the form λ−1α − a− λα for (a, α) ∈ KMS(PE0) by Lemma

6.8. Hence, we obtain α = 0 for any (a, α) ∈ KMS(PE0), i.e., KMS(PE0) ⊂ R × {0}. Thus, Lemma 7.10 is
proved.

Let us show Proposition 7.11. The first claim follows from Lemma 5.41, Proposition 7.12 and the definition
of QE in Subsection 6.3.3. To show the second claim, we remark that κ is flat and preserves the pluri-harmonic
metrics for (E4,D4,S) and γ∗(E4,D4,S). We also remark that we have only to consider the case in which D
is smooth. We have Irr(Dλ,QEλ) = Irr(θ) and Irr

(
D†λ,QE†λ

)
= Irr(θ†) =

{
a

∣∣ a ∈ Irr(θ)
}
. Hence, we have the

natural identification Irr(Dλ,QEλ) = Irr(γ∗D†λ, γ∗QE†λ). Since the full Stokes filtrations are characterized by
growth order of the norms of flat sections with respect to the pluri-harmonic metrics (Proposition 6.12), the full
Stokes filtrations are preserved by κ. Thus, the second claim of Proposition 7.11 follows from Lemma 5.40.

Remark 7.14 Because KMS(PE0) ⊂ R× {0}, it turns out that any λ 6= 0 is generic.

7.3 Reduction from wild to tame

7.3.1 Construction of the reductions

Let X := ∆n and D :=
⋃`
i=1{zi = 0}. Let (E4, D̃4,S) be an unramifiedly good wild variation of pure polarized

integrable twistor structures of weight 0 on P1×(X−D). We have the underlying harmonic bundle (E, ∂E , θ, h).
We take an auxiliary sequence M =

(
m(0),m(1), . . . ,m(L)

)
for Irr(θ) as in Subsection 3.1.2 of [19].

For each a ∈ Irr
(
θ,m(0)

)
, we obtain the variation of pure polarized twistor structures Grm(0)

a

(
E4,D4,S

)
by taking Gr with respect to Stokes filtrations in the level m(0), as explained in Subsection 6.4. By Proposition
7.11 and Lemma 5.14, it is enriched to integrable Grm(0)

a (E4, D̃4,S). If a real structure κ of (E4, D̃4,S) is
given, κ0 and κ∞ preserve the Stokes filtration in the level m(0), which follows from Proposition 7.11 and
Lemma 5.11. Hence, we also have the induced real structure Grm(0)

a (κ) of Grm(0)
a

(
E4, D̃4,S

)
, and we obtain

a pure polarized variation of twistor-TERP structures Grm(0)
a

(
E4, D̃4,S, κ, 0

)
for each a ∈ Irr(D,m(0)).

Applying the above procedure inductively, Grm(j)
a (E4,D4,S) are enriched to integrable Grm(j)

a (E4, D̃4,S)
for any a ∈ Irr(θ,m(j)). (See the argument in Subsection 6.4.) If a real structure κ is provided, the re-
ductions are also equipped with induced real structures, and we obtain variation of twistor-TERP structures
Grm(j)

a (E4, D̃4,S, κ, 0). In the case m(L), we use the symbols Grfull
a (E4, D̃4,S) and Grfull

a (E4, D̃4,S, κ, 0).
They are called the full reductions.

For any a ∈ Irr(θ), we have the harmonic bundles L(−a) as in Subsection 6.4. The associated variation of
polarized pure twistor structures is also denoted by the same symbol L(−a). As explained in Subsection 2.2.1,
it is naturally enriched to a variation of pure twistor-TERP structures of weight 0. The underlying harmonic
bundle of Grfull

a (E4, D̃4,S)⊗ L(−a) is tame for each a ∈ Irr(θ). This procedure is the reduction “from wild to
tame” in the integrable case. We have a similar reduction in the twistor-TERP case.

7.3.2 Approximating map and estimate of the new supersymmetric index

Let (E4, D̃4,S) and (E, ∂E , θ, h) be as above. Let ∂P1,E4 denote the λ-holomorphic structure of E4.
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One step reduction By the one step reduction in Subsection 7.3.1, we have obtained the unramifiedly good
wild variation of polarized pure integrable twistor structures:(

E40 , D̃
4
0 ,S0

)
:=

⊕
a∈Irr(θ,m(0))

Grm(0)
a

(
E4, D̃4,S

)
Let (E0, ∂E0 , θ0, h0) be the underlying harmonic bundle. Let ∂P1,E40

denote the λ-holomorphic structure of E40 .

We fix a hermitian metric gP1 of Ω0,1
P1 ⊕ Ω1,0

P1

(
2{0,∞}

)
. We will prove the following proposition in Subsection

7.3.3.

Proposition 7.15 There exists a C∞-map Φ : E40 −→ E4 such that the following holds for some ε > 0 with
respect to h0 and gP1 :

Φ∗S − S0 = O
(
exp

(
−ε|zm(0)|

))
, ∂P1,E40

(
Φ∗S − S0

)
= O

(
exp

(
−ε|zm(0)|

))
, (56)

Φ∗∇λ −∇λ,0 = O
(
exp

(
−ε|zm(0)|

))
(57)

In fact, the order of the estimates can be improved as O
(
exp(−ε(|λ|+|λ−1|)|zm(0)|)

)
. We give a consequence.

Let Q0 denote the new supersymmetric index of (E40 , D̃
4
0 ,S0).

Corollary 7.16 We have the following estimate for some ε > 0 with respect to h0:∣∣Φ∗h− h0

∣∣
h0

= O
(
exp

(
−ε|zm(0)|

))
,

∣∣Φ∗Q−Q0

∣∣
h0

= O
(
exp

(
−ε|zm(0)|

))
Proof It follows from Lemma 2.20.

Full reduction By taking the full reduction in Subsection 7.3.1, we have obtained the unramifiedly good wild
variation of polarized pure integrable twistor structures:(

E41 , D̃
4
1 ,S1

)
:=

⊕
a∈Irr(θ)

Grfull
a

(
E4, D̃4,S

)
Let (E1, ∂E1 , θ1, h1) be the underlying harmonic bundle, and let Q1 denote the supersymmetric index for
(E41 ,D

4
1 ). By applying Proposition 7.15 and Corollary 7.16 inductively (see Subsection 6.4 for an inductive

use), we obtain a C∞-map Φ1 : E41 −→ E4 such that the following holds for some ε > 0 with respect to h1:∣∣Φ∗1h− h1

∣∣
h1

= O
(
exp(−ε|zm(L)|)

)
,

∣∣Φ∗1Q−Q1

∣∣
h1

= O
(
exp(−ε|zm(L)|)

)
Note that the new supersymmetric index is unchanged after taking the tensor product with L(−a). (See
Subsection 2.2.1.) Hence, the study of asymptotic behaviour of new supersymmetric index is reduced to the
study in the tame case, up to decay with exponential orders.

7.3.3 Construction of an approximating map

We assume that the coordinate is as in Remark 5.28 for the good set Irr(θ). Let k be determined by m(0) ∈
Zk<0 × 0`−k. Let λ0 ∈ Cλ. Let U(λ0) denote a small neighbourhood of λ0. We set X (λ0) := U(λ0) × X and
D(λ0)(≤ k) := U(λ0) ×D(≤ k). We also use the symbol D(λ0)

i in a similar meaning. We set W := D(λ0)(≤ k)
if λ0 6= 0, and W := D(λ0)(≤ k) ∪ ({0} ×X). Let σ : Cλ −→ Cµ be given by σ(λ) = −λ, which induces the
anti-holomorphic map Cλ ×X −→ Cµ ×X†. We set X † (−λ0) := σ

(
X (λ0)

)
.

From (E, ∂E , θ, h), we obtain the vector bundle P(λ0)
0 E on X (λ0) with a meromorphic flat connection D̃f :=

Df +∇λ. Similarly we obtain P(λ0)
0 E0 with D̃f0 = Df0 +∇λ,0 from (E0, ∂E0 , θ0, h0).

We also obtain the vector bundle P(µ0)
0 E† with the meromorphic flat connection D̃† f = D† f +∇µ on X (µ0)

from (E, ∂E , θ, h), and the vector bundle P(µ0)
0 E†0 with the meromorphic flat connection D̃† f0 = D† f0 +∇µ,0 from

(E0, ∂E0 , θ0, h0).
Let D≤k denote the restriction of D to the (z1, . . . , zk)-direction.
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Preliminary Let S be a small multi-sector of X (λ0) −W . By Proposition 5.9, we take a D≤k-flat splitting

P(λ0)
0 E|S =

⊕
a∈Irr(θ)

P(λ0)
0 Ea,S

of the Stokes filtration in the level m(0), such that the restrictions to D(λ0)
j ∩S (j = k+1, . . . , `) are compatible

with Resj(D) and the filtrations jF (λ0). If λ0 6= 0, we may assume that it is Df -flat by Proposition 5.10. (Note
that the Df -flatness implies the compatibility with the residues and the parabolic filtrations.) By construction
of Grm(0), it induces the isomorphism

(
P(λ0)

0 E0,D0,≤k
)
|S '

(
P(λ0)

0 E ,D≤k
)
|S . Let ΦpS (p = 0, . . . ,m) be such

isomorphisms. Let ap (p = 0, . . . ,m) be non-negative C∞-functions on S such that (i)
∑
ap = 1, (ii) ∂iap and

∂λap are O
(
|λ|−C ·

∏k
i=1 |zi|−C

)
for some C > 0. We set ΦS :=

∑
ap · ΦpS . We also set G := (Φ0

S)−1 ◦ ΦS and
Gp := (Φ0

S)−1 ◦ ΦpS .

Lemma 7.17 We have the following estimates with respect to h0 for some ε > 0:

Gp − id = O
(
exp

(
−ε|λ−1zm(0)|

))
(58)

(Φ0
S)−1 ◦

(
λ2∇λ(∂λ)

)
◦ Φ0

S − λ2∇λ,0(∂λ) = O
(
exp(−ε|λ−1zm(0)|)

)
(59)

Proof Let G be the left hand side of (58) or (59). It is flat with respect to D0≤k, and strictly decreases the
Stokes filtration in the level m(0). Moreover, G|D(λ0)

i ∩S preserves the filtrations iF (λ0) and the residues Resj(D)
for j = k + 1, . . . , `. Then, we obtain the desired estimate by using the estimate in Subsection 13.3 of [19]. (It
is easy to show it directly.)

Hence, we have
∣∣G− id

∣∣
h0

= O
(
exp

(
−ε|λ−1zm(0)|

))
. We set Φ∗S∇λ(∂λ) := Φ−1

S ◦
(
∇λ(∂λ)

)
◦ΦS . We use the

symbol (Φ0
S)∗∇λ(∂λ) in a similar meaning. By the previous lemma, we have the following estimate for some

ε > 0 with respect to h0:
(Φ0

S)∗∇λ(∂λ)−∇λ,0(∂λ) = O
(
exp

(
−ε|λ−1zm(0)|

))
Lemma 7.18 The following estimate holds for some ε > 0 with respect to h0:

Φ∗S∇λ(∂λ)−∇λ,0(∂λ) = O
(
exp

(
−ε|λ−1zm(0)|

))
Proof We have the following equalities:

Φ∗S∇λ(∂λ)−∇λ,0(∂λ) =
(
Φ−1
S ◦ Φ0

S

)
◦ (Φ0

S)∗∇λ(∂λ) ◦
(
(Φ0

S)−1 ◦ ΦS
)
−∇λ,0(∂λ)

= G−1 ◦
(
(Φ0

S)∗∇λ(∂λ)−∇λ,0(∂λ)
)
◦G+G−1 ◦ ∇λ,0(∂λ) ◦G−∇λ,0(∂λ)

= G−1 ◦
(
(Φ0

S)∗∇λ(∂λ)−∇λ,0(∂λ)
)
◦G+G−1 ·

(
∇λ,0(∂λ)G

)
(60)

We have the following:

∇λ,0(∂λ)G =
∑ ∂ap

∂λ
·Gp =

∑ ∂ap
∂λ
· (Gp − id) = O

(
exp

(
−ε|λ−1zm(0)|

))
Thus, we obtain Lemma 7.18.

Assume we are also given morphisms on sectors σ(S) of X †(−λ0) −W †

Φ† qσ(S) :
(
P(−λ0)E†0 ,D

†
0

)
|σ(S)

−→
(
P(−λ0)E†,D†

)
|σ(S)

, (q = 0, . . . ,m′),

induced by D†≤k-flat of the Stokes filtration in the level m(0) such that the restriction to σ(S) ∩ D†(−λ0)
j

(j = k + 1, . . . , `) are compatible with the residue Resj(D†) and the filtration jF (−λ0). If λ0 6= 0, we may
assume that the splittings are D†-flat. Let bq (q = 0, . . . ,m′) be non-negative C∞-functions on σ(S) satisfying
similar conditions for ap. We set Φ†σ(S) :=

∑
bq · Φ† qσ(S).
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Lemma 7.19 We set H := S ◦
(
ΦS ⊗ σ∗Φ†σ(S)

)
− S0. Then, we have the following estimate with respect to h0

for some ε > 0:
H = O

(
exp

(
−ε|λ−1zm(0)|

))
, ∂E40 ,P1H = O

(
exp

(
−ε|λ−1zm(0)|

))
Proof We set Hp,q := S ◦

(
ΦpS ⊗σ∗Φ

† q
σ(S)

)
−S0. According to an estimate in Subsection 15.3.2 of [19], we have

Hp,q = O
(
exp

(
−ε|λ−1zm(0)|

))
with respect to h0 for some ε > 0. We also have ∂E40 ,P1Hp,q = 0. Then, the claim of Lemma 7.19 follows.

Construction We take a compact region K of Cλ such that the union of the interior parts of K and σ(K)
cover P1. We take a covering of (

K ×X
)
−

((
K ×D(≤ k)

)
∪

(
{0} ×X

))
by multi-sectors Si (i = 1, . . . , N) such that Si are sufficiently small as in Preliminary above. Then, we have
P1 =

⋃
Si∪

⋃
σ(Si). We take a partition

(
χSi

, χσ(Si)

∣∣ i = 1, . . . , N
)

of unity on P1 subordinated to the covering.
We assume that ∂jχSi and ∂λχSi are O

(
|λ|−C ·

∏k
i=1 |zi|−C

)
for some C > 0. We assume similar conditions for

∂jχσ(Si) and ∂µχσ(Si).
For each Si ⊂ X (λ0) −W , we take isomorphisms:

ΦSi :
(
P(λ0)

0 E0,D0

)
|Si
'

(
P(λ0)

0 E ,D
)
|Si
, Φ†σ(Si)

:
(
P(−λ0)

0 E†0 ,D
†
0

)
|σ(Si)

−→
(
P(−λ0)

0 E†,D†
)
|σ(Si)

induced by D≤k-flat or D†≤k-flat splittings of Stokes filtrations as above. If λ0 6= 0, we assume that Df -flatness
and D† f -flatness. We set

Φ :=
N∑
i=1

χSi
· ΦSi

+
N∑
i=1

χσ(Si) · Φσ(Si).

It is easy to check that Φ satisfies the desired estimates (56) and (57), by using Lemma 7.18 and Lemma 7.19.
Note that a D-flat splitting of the Stokes filtration of P(λ0)E|S in the level m(0) naturally gives a D†-flat splitting

of the Stokes filtration of P(λ−1
0 )E†

|S′
in the level m(0), where S′ is the multi-sector of X †(λ

−1
0 )\W †, which follows

from the characterization of the Stokes filtrations by the growth order of the norms of flat sections. Thus, we
obtain Proposition 7.15.

7.4 Reduction from tame to twistor nilpotent orbit

7.4.1 Reduction

Let X := ∆n, Di := {zi = 0}, D :=
⋃`
i=1Di and D` =

⋂`
i=1Di. Let (E4, D̃4,S) be a tame variation of

pure polarized integrable twistor structures of weight 0 on P1 × (X − D). We have the underlying harmonic
bundle (E, ∂E , θ, h). As explained in Subsection 6.5, we have the limiting polarized mixed twistor structure(
Scan

a,0 (E),N ,Sa,0

)
associated to (E, ∂E , θ, h). We also have the variation of polarized mixed twistor structures(

`E4a,0,N
4,D4a,0,Sa,0

)
of weight 0 in `-variables. Hertling and Sevenheck observed the following (see [9]).

Proposition 7.20
(
Scan

a,0 (E),N ,Sa,0

)
is naturally enriched to a polarized mixed integrable twistor structure(

Scan
a,0 (E),∇,N ,Sa,0

)
. Similarly,

(
`E4a,0,N

4,D4a,0,Sa,0

)
is naturally enriched to a variation of polarized mixed

integrable twistor structures
(
`E4a,0,N

4, D̃4a,0,Sa,0

)
.

If (E4, D̃4,S) has a real structure κ, they are also equipped with induced real structures.
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7.4.2 Approximating maps

For 0 < R < 1, we set X∗(R) :=
{
(z1, . . . , zn)

∣∣ 0 < |zi| < R, i = 1, . . . , n
}

and D` :=
{
(z`+1, . . . , zn)

∣∣ |zi| < R
}
.

By the natural projection X∗(R) −→ D`(R), we regard X∗(R) as D`(R) ×
{
(z1, . . . , z`)

∣∣ 0 < |zi| < R
}
. Due

to Theorem 4.1, we have the integrable twistor nilpotent orbit TNIL(E4a,0, D̃
4
a,0,N ,Sa,0) on X∗(R) for some R.

Thus, we obtain a tame variation of pure polarized integrable twistor structures:(
E40 , D̃

4
0 ,S0

)
:=

⊕
a∈Par(P0E0,`)

TNIL(E4a,0, D̃
4
a,0,N ,Sa,0)⊗ L(a)

(See Subsection 2.2.2 for L(a).) We have the underlying tame harmonic bundle(
E0, ∂E0 , θ0, h0

)
=

⊕(
Ea, ∂a, θa, ha

)
.

We would like to explain that we can approximate the original (E4, D̃4,S) with (E40 , D̃
4
0 ,S0).

Let ∂P1,E40
denote the λ-holomorphic structure of E40 . We fix a hermitian metric gP1 of Ω0,1

P1 ⊕Ω1,0
P1

(
2{0,∞}

)
.

For a permutation σ of {1, . . . , `} and for C > 0, we set

Z(σ,C) :=
{
(z1, . . . , zn) ∈ X∗(R)

∣∣ |zσ(i−1)|C < |zσ(i)|, i = 1, . . . , `− 1
}

If we take a sufficiently large C > 0, we have X∗(R) =
⋃
σ Z(σ,C). For any ε > 0, we set Λ0(ε) :=

∑`
i=1 |zi|ε.

We will prove the following proposition in Subsection 7.4.3.

Proposition 7.21 There exists a C∞-map Φσ : E40 −→ E4 such that the following estimate holds for some
ε > 0 with respect to h0 and gP1 on P1 × Z(σ,C):

Φ∗σS − S0 = O
(
Λ0(ε)

)
, ∂P1,E40

(
Φ∗σS − S0

)
= O

(
Λ0(ε)

)
, Φ∗σ∇λ −∇λ,0 = O

(
Λ0(ε)

)
(61)

Before going into the proof, we give a consequence. Let Q0 and Q denote the new supersymmetric indices
of (E40 , D̃

4
0 ) and (E4, D̃4). By using Lemma 2.20, we obtain the following estimates on Z(σ,C) for some ε > 0

with respect to h0: ∣∣Φ∗σh− h0

∣∣
h0

= O
(
Λ0(ε)

)
,

∣∣Φ∗σQ−Q0

∣∣
h0

= O
(
Λ0(ε)

)
(62)

Corollary 7.22 The eigenvalues of Q and Q0 are the same up to O
(
Λ0(ε)

)
for some ε > 0.

Proof By using (62), we obtain the estimate on Z(σ,C). Because X∗(R) =
⋃
Z(σ,C), the claim of the

corollary follows.

We also give a more rough but global estimate, for which the proof is much simpler. For M > 0 and ε > 0,
we set

Λ(M, ε) :=
∏̀
i=1

(− log |zi|)M
∑̀
i=1

|zi|ε.

Proposition 7.23 There exists a C∞-map Φ : E40 −→ E4 such that the following holds for some ε > 0 and
M > 0 with respect to h0 and gP1 :

Φ∗S − S0 = O
(
Λ(M, ε)

)
, ∂P1,E40

(
Φ∗S − S0

)
= O

(
Λ(M, ε)

)
, Φ∗∇λ −∇λ,0 = O

(
Λ(M, ε)

)
(63)

Note that Φ∗h and h0 are mutually bounded up to log order, which follows from the weak norm estimate
for acceptable bundles. (See Lemma 7.35 below.) Hence, we obtain the following estimate for some M ′ > 0 and
ε′ > 0 by using Lemma 2.19: ∣∣Φ∗Q−Q0

∣∣
h0

= O
(
Λ(M ′, ε′)

)
In the one dimensional case, the estimates in the two propositions are not so different. We also remark that

Φσ in Proposition 7.21 also satisfies the estimates (63).
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7.4.3 Proof of Proposition 7.21

For the proof of Proposition 7.21, we have only to consider the case that σ is the identity. We use the symbol
Z(C) instead of Z(id, C). Instead of considering X∗(R), we will shrink X around the origin.

Decomposition For any subset I ⊂ `, let m(I) be determined by the condition m(I) := min
{
m ∈ I |m+1 6∈

I
}
, in other words, {1, . . . ,m(I)} ⊂ I but m(I) + 1 6∈ I. Let qI : Par

(
P0E0, `

)
−→ Par(P0E0, I) and

rm(I) : Z` −→ Zm(I) be the natural projections. Let λ0 ∈ Cλ. Let K denote a small neighbourhood of λ0 in
Cλ. We set X := K ×X. We use the symbols Di, DI , D, etc., in similar meanings.

We have the induced filtrations iF (i ∈ I) of Q0E|DI
. For any i ∈ I, we have the residue endomorphisms

Resi(D) on I Grb(Q0E|DI
), which have the unique eigenvalues −bi · λ. Hence, the nilpotent part Ni is well

defined. For i ≤ m(I), we set N (i) :=
∑
j≤iNj . Recall that the conjugacy classes of N (i)|(λ,P ) are independent

of (λ, P ) ∈ DI (Lemma 12.47 of [18]). By considering the weight filtration of N (i), we obtain the filtration
W (i) of I Grb(Q0E|DI

) indexed by Z in the category of vector bundles on DI .

Lemma 7.24 We have a decomposition

Q0E|X =
⊕

a∈Par(P0E0,`)

k∈Z`

Ua,k (64)

with the following property:

• For any subset I ⊂ `, b ∈ Par(P0E0, I) and h ∈ Zm(I), we put

IUb,h =
⊕

a∈q−1
I (b)

k∈r−1
m(I)(h)

Ua,k and IUb =
⊕

h∈Zm(I)

IUb,h

Then, the following holds for any c ∈ RI :⊕
b≤c

IUb|DI
=

⋂
i∈I

iFci

(
Q0E|DI

)
(65)

Moreover, the following holds for any n ∈ Zm(I) under the identification IUb|DI
' I Grb(Q0E) induced by

(65): ⊕
h≤n

IUb,h|DI
=

⋂
1≤i≤m(I)

Wni
(i)

(
I Grb(Q0E|DI

)
)

Proof Although this is essentially Corollary 4.47 of [18], we recall an outline for later use. The theorems and
the definitions referred in this proof are given in [18]. By Theorem 12.43, the tuple

(
iF,N (j)

∣∣ i ∈ `, j ∈ `
)

is sequentially compatible in the sense of Definition 4.43. Hence,
(
iF,W (j)

∣∣ i ∈ `, j ∈ `
)

is compatible in
the sense of Definition 4.39, as remarked in Lemma 4.44. By Proposition 4.41, there exists a splitting of(
iF,W (j)

∣∣ i ∈ `, j ∈ `) in the sense of Definition 4.40. By applying Lemma 2.16, we can take a frame compatible
with splittings. It is easy to take a decomposition as in the claim of Lemma 7.24, by using such a compatible
frame.

Let (QEa,D) be the prolongment of (Ea, ∂a, θa, ha). Similarly, we have a decomposition

Q0Ea|X =
⊕
k∈Z`

U0,a,k (66)

satisfying a similar condition. By our construction of (E40 , D̃
4
0 ,S0), we are given the isomorphism for each

a ∈ Par(P0E0, `):
νa : ` Gra(Q0E) ' Q0Ea|D`

.
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Lemma 7.25 We may assume that νa preserves the decompositions
⊕

k U0,a,k|D`
and

⊕
k Ua,k|D`

.

Proof In Proposition 4.41 of [18], the construction of a splitting is given in a descending inductive way, and
we can take any splitting of ` Gra(QE) of the filtrations W (j) (j = 1, . . . , `) in the beginning. Thus, we obtain
Lemma 7.25.

Let νa,k denote the induced map U0,a,k|D`
' Ua,k|D`

.

Norm estimate We recall the norm estimate for tame harmonic bundles. We take a C∞-frame h′a,k of Ua,k

in (64). We set

h
(1)
a,k := h′a,k ·

∏̀
j=1

|zj |−2aj
(
− log |zj |

)kj−kj−1 = h′a,k ·
∏̀
j=1

|zj |−2aj

`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj

·
(
− log |z`|

)k`

(We formally set k0 := 0.) We obtain a C∞-hermitian metric h(1) =
⊕
h

(1)
a,k of QE|X−D. Theorem 13.25 of [18]

implies the following lemma.

Lemma 7.26 h and h(1) are mutually bounded on K × Z(C).

An estimate

Lemma 7.27 Let f be a holomorphic endomorphism of Q0E0 satisfying the following conditions:

• It preserves the filtrations iF (i = 1, . . . , `).

• For each b ∈ RI , the induced endomorphism I GrFb (f) of
⊕

qI(a)=bQ0Ea|DI
preserves the weight filtrations

W (j) (j = 1, . . . ,m(I)).

• For each a ∈ R`, the induced endomorphism ` GrFa (f) of Q0Ea|D`
is 0.

Then, we have |f |h0 = O
(
Λ0(ε)

)
for some ε > 0 on K × Z(C).

Proof We take decompositions (66). Applying Lemma 7.26 to (Ea, ∂a, θa, ha) with the decomposition (66),
we take a C∞-hermitian metric h(1)

0,a =
⊕
h

(1)
0,a,k of Q0Ea|X−D and h

(1)
0 :=

⊕
h

(1)
0,a of Q0E0|X−D as above. We

have the decomposition:

f =
∑

f(a,k),(a′,k′), f(a,k),(a′,k′) ∈ Hom
(
U0,a′,k′ , U0,a,k

)
We have only to show ∣∣f(a,k),(a′,k′)

∣∣
h
(1)
0

= O
(
Λ0(ε)

)
(67)

for any (a,k) and (a′,k′) on K×Z(C). Note that the induced metrics on Hom
(
U0,a′,k′ , U0,a,k

)
|X−D are of the

form

g(a,k),(a′,k′) ·
∏̀
j=1

|zj |2(−aj+a
′
j) ·

`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j
·
(
− log |z`|

)k`−k′` , (68)

where g(a,k),(a′,k′) are C∞-metrics of Hom
(
U0,a′,k′ , U0,a,k

)
on X .

(I) Let us consider the case a 6= a′. We define

I+ :=
{
i
∣∣ ai > a′i

}
, I− :=

{
i
∣∣ ai < a′i

}
, I0 :=

{
i
∣∣ ai = a′i

}
.

Let m be the number determined by {1, . . . ,m} ⊂ I0 and m + 1 6∈ I0. Since the parabolic filtrations are
preserved, we have f(a,k),(a′,k′)|Di

= 0 for any i ∈ I+. Hence, there exists a holomorphic section f ′(a,k),(a′,k′) of
Hom

(
U0,a′,k′ , U0,a,k

)
such that

f(a,k),(a′,k′) = f ′(a,k),(a′,k′) ·
∏
i∈I+

zi (69)
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We have the following inequality for some ε > 0:∏
i∈I+

|zi|1−ai+a
′
i ·

∏
i∈I−

|zi|−ai+a
′
i ≤

∏
i∈I+∪I−

|zi|ε ≤
∣∣zm+1

∣∣ε. (70)

Let us consider the set S =
{
p ≤ m

∣∣ kp > k′p
}
. If S is not empty, let p be the minimum. Note that kt ≤ k′t

for any t < p and kp > k′p by our choice. Since the weight filtrations W (j) (j = 1, . . . , p) are preserved on
p GrF , we have f ′(a,k),(a′,k′)|Dp

= 0. Hence, there exist holomorphic sections f ′′t,(a,k),(a′,k′) (t = 1, . . . , p) of

Hom
(
U0,a′,k′ , U0,a,k

)
such that

f ′(a,k),(a′,k′) =
p∑
t=1

zt · f ′′t,(a,k),(a′,k′). (71)

We remark the following for any t ≤ p:

|zt| ·
`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j(
− log |z`|

)k`−k′` ≤ |zt| ·
t−1∏
j=1

Ckj−k′j
`−1∏
j=t

(
− log |zj |
− log |zj+1|

)kj−k′j(
− log |z`|

)k`−k′`

= O
(
|zt|1/2

)
(72)

By using (68), (69), (70), (71) and (72), we obtain
∣∣f(a,k),(a′,k′)

∣∣
h
(1)
0

=
∑p
t=1O

(
|zt|1/2

)
= O

(
Λ0(1/2)

)
.

If S is empty, we have kj ≤ k′j for j = 1, . . . ,m. Hence, we have the following:

|zm+1|ε ·
`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j(
− log |z`|

)k`−k′`

≤ |zm+1|ε ·
m∏
j=1

Ckj−k′j
`−1∏

j=m+1

(
− log |zj |
− log |zj+1|

)kj−k′j(
− log |z`|

)k`−k′` = O
(
|zm+1|ε/2

)
(73)

By using (68), (69) (70) and (73), we obtain (67).

(II) Let us consider the case a = a′. Because GrFa ΦK = GrFa Φ′K = νa, there exist holomorphic sections
fi,a,(k,k′) of Hom

(
U0,a,k′ , U0,a,k

)
such that

f(a,k),(a,k′) =
∑̀
i=1

zi · fi,a,(k,k′) (74)

Let us consider the set S =
{
p

∣∣ kp > k′p
}
. If S is not empty, let p be the minimum. Note that kt ≤ k′t for any

t < p and kp > k′p by our choice. Since the weight filtrations W (j) (j = 1, . . . , p) are preserved on p GrF , we
have fi,a,(k,k′)|Dp

= 0. Hence, there exist holomorphic sections f ′t,i,a,(k,k′) (t = 1, . . . , p) of Hom
(
U0,a,k′ , U0,a,k

)
such that

fi,a,(k,k′) =
p∑
t=1

zt · f ′t,i,a,(k,k′). (75)

By using (72) and (75), we obtain
∣∣fi,a,(k,k′)∣∣h(1)

0
= O

(
Λ0(1/2)

)
.

If S is empty, we have kj ≤ k′j for j = 1, . . . , `. Hence, we have the following:

`−1∏
j=1

(
− log |zj |
− log |zj+1|

)kj−k′j(
− log |z`|

)k`−k′` = O(1). (76)

Hence, we obtain |fi,a,(k,k′)|h(1)
0

= O(1). By using (74), we obtain (67). Thus, we obtain Lemma 7.27.
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Local isomorphism with a nice property

Lemma 7.28 There exists a holomorphic isomorphism ΦK : Q0E0|X −→ Q0E|X with the following property:

• It preserves the filtrations iF (i = 1, . . . , `).

• For each b ∈ RI , the induced map
⊕

qI(a)=bQ0Ea|DI
−→ I GrFb (Q0E|DI

) preserves the weight filtrations
W (j) (j = 1, . . . ,m(I)).

• For each a ∈ R`, the induced map Q0Ea|D`
−→ ` GrFb (Q0E|D`

) is equal to νa.

Proof We take decompositions (64) and (66) as in Lemma 7.25. We take an isomorphism ν̃a,k : U0,a,k ' Ua,k

such that ν̃a,k|D`
= νa,k. We set ΦK :=

∑
ν̃a,k. It is easy to check that ΦK has the desired property. Thus, we

obtain Lemma 7.28.

By the norm estimate (Lemma 7.26), ΦK and Φ−1
K are bounded on K × Z(C).

Lemma 7.29 We have the following estimate for some ε > 0 with respect to h0 on K × Z(C):

Φ∗K∇λ −∇λ,0 = O
(
Λ0(ε)

)
(77)

Proof Let F denote the left hand side of (77). It is easy to observe that F satisfies the conditions in Lemma
7.27. Hence, Lemma 7.29 follows from Lemma 7.27.

Let ΦK and Φ′K be morphisms as in Lemma 7.28. We set G := Φ−1
K ◦ Φ′K.

Lemma 7.30 We have the following estimates for some ε > 0 on K × Z(C):∣∣G− id
∣∣
h0

= O
(
Λ0(ε)

)
,

∣∣∇λ,0(λ2∂λ)G
∣∣
h0

= O
(
Λ0(ε)

)
Proof We have only to apply Lemma 7.27 to G− id and ∇λ,0(λ2∂λ)G.

Let σ : Cλ −→ Cµ given by σ(λ) = −λ. The induced map Cλ ×X −→ Cµ ×X† is also denoted by σ.

Lemma 7.31 We can take a holomorphic isomorphism Φ†σ(K) : Q<δE†0|σ(X ) −→ Q<δE†|σ(X ) satisfying the con-

ditions (i) it preserves the filtrations iF (i = 1, . . . , `), (ii) the induced morphism on I GrF−a preserves the weight
filtrations W (j) (j = 1, . . . ,m(I)), (iii) the induced morphism on ` GrF−a is equal to the given one.

Proof It can be shown by the argument in the proof of Lemma 7.28. More directly, we have the isomorphisms
Q<δE†0|σ(X ) ' σ

∗(Q0E0|X
)∨ and Q<δE†|σ(X ) ' σ

∗(Q0E|X
)∨, and σ∗(ΦK)∨ satisfies the conditions.

Lemma 7.32 Let ΦK and Φ†σ(K) satisfy the above conditions. We set

H := S0 − S
(
ΦK ⊗ σ∗Φ†σ(K)

)
: Q0E0|X ⊗ σ∗

(
Q<δE†0|σ(X )

)
−→ OX

Then, H = O
(
Λ0(ε)

)
with respect to h0 for some ε > 0 on K × Z(C).

Proof If Φ†σ(K) is given by σ∗Φ∨K, we have H = 0. Hence, we have only to show that the property is independent

of the choice of Φ†σ(K).

Let Φ†i,σ(K) (i = 1, 2) be as in Lemma 7.31. Note that h and h0 are mutually bounded through Φ†1,σ(K) on

σ(K)× Z(C). By using Lemma 7.32, we obtain Φ†1,σ(K) −Φ†2,σ(K) = O
(
Λ0(ε)

)
for some ε > 0 with respect to h

and h0. Then, we obtain S ◦
(
ΦK ⊗ σ∗

(
Φ†1,σ(K) − Φ†2,σ(K)

))
= O

(
Λ0(ε)

)
with respect to h0. Thus, the proof of

Lemma 7.32 is finished.
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Local C∞-isomorphisms Let ΦpK (p = 0, . . . ,m) be as in Lemma 7.28, and let ap (p = 0, . . . ,m) be non-
negative C∞-functions on K such that

∑
ap = 1. We set ΦK :=

∑m
p=0 ap · Φ

p
K. We also set G := (Φ0

K)−1 ◦ ΦK
and Gp := (Φ0

K)−1 ◦ ΦpK. By Lemma 7.30, |Gp − id |h0 = O
(
Λ0(ε)

)
, and hence |G− id |h0 = O

(
Λ0(ε)

)
for some

ε > 0 on K × Z(C).

Lemma 7.33 The following estimate holds for some ε > 0 with respect to h0 on K × Z(C):

Φ−1
K ◦ ∇λ(λ

2∂λ) ◦ ΦK −∇λ,0(λ2∂λ) = O
(
Λ0(ε)

)
Proof We have the following equalities:

Φ−1
K ◦ ∇λ,0(∂λ) ◦ ΦK −∇λ,0(∂λ) =

(
Φ−1
K ◦ Φ0

K
)
◦ (Φ0

K)−1 ◦ ∇λ(∂λ) ◦
(
Φ0
K
)
◦

(
(Φ0

K)−1 ◦ ΦK
)
−∇λ,0(∂λ)

= G−1 ◦
(
(Φ0

K)∗∇λ(∂λ)−∇λ,0(∂λ)
)
◦G+G−1 · ∇λ,0(∂λ)G (78)

By Lemma 7.29, we have (Φ0
K)∗∇λ(λ2∂λ)−∇λ,0(λ2∂λ) = O

(
Λ0(ε)

)
. We also have

∇λ,0(λ2∂λ)G =
∑

λ2 ∂ap
∂λ
· (Gp − id) = O

(
Λ0(ε)

)
Thus, we obtain Lemma 7.33.

Let Φ† qσ(K) (q = 0, 1, . . . ,m′) be as in Lemma 7.31, and let bq be non-negative C∞-functions on σ(K) such

that
∑
bq = 1. We set Φ†σ(K) :=

∑
bq · Φ† qσ(S).

Lemma 7.34 We set H := S
(
ΦK ⊗ σ∗(Φ†σ(K))

)
−S0. Then, we have the following estimate on K×Z(C) with

respect to h0 for some ε > 0:
H = O

(
Λ0(ε)

)
, ∂E40 ,P1H = O

(
Λ0(ε)

)
Proof It follows from Lemma 7.32.

Construction of an approximating map We take 0 < R1 < R2 < 1. We set K1 :=
{
λ

∣∣ |λ| ≤ R2

}
and

K2 :=
{
λ

∣∣R1 ≤ |λ| ≤ R−1
1

}
. We take a partition of unity

(
χK1 , χK2 , χσ(K1)

)
on P1 which subordinates to

{K1,K2, σ(K1)}.
We take a holomorphic isomorphism ΦK1 : Q0E0|K1×X −→ Q0E|K1×X as in Lemma 7.28. Similarly, we take

a holomorphic isomorphism Φ†σ(K1)
: Q<δE†0|σ(K)×X† −→ Q<δE†|σ(K)×X† as in Lemma 7.31.

We can take a flat isomorphism ΦK2 :
(
E0, D̃f0

)
|K2×(X−D)

−→
(
E , D̃f

)
|K2×(X−D)

. We may assume that ΦK2

is extended to the isomorphisms Q0E0|K2×X ' Q0E|K2×X and Q<δE†0|K2×X† ' Q<δE†|K2×X† equipped with the
property in Lemmas 7.28 and 7.31. We set

Φ := χK1 · ΦK1 + χK2 · ΦK2 + χσ(K1) · Φ
†
σ(K1)

.

By using Lemmas 7.33 and 7.34, we can check that Φ satisfies the estimates in (61). Thus, the proof of
Proposition 7.21 is finished.

7.4.4 Proof of Proposition 7.23

Decomposition We have a decomposition

Q0EX =
⊕

a∈Par(P0E0,`)

Ua (79)

with the following property:

• For any subset I ⊂ ` and b ∈ Par(P0E0, I), we put IUb =
⊕

a∈q−1
I (b) Ua. Then, the following holds for

any c ∈ RI : ⊕
b≤c

IUb|DI
=

⋂
i∈I

iFci

(
Q0E|DI

)
(80)
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Weak norm estimate We take a C∞-frame h′a of Ua in (79). We set h(2)
a := h′a ·

∏`
j=1 |zj |−2aj . We obtain

a C∞-hermitian metric h(2) =
⊕
h

(2)
a of QE|X−D. Proposition 8.70 of [18] implies the following lemma.

Lemma 7.35 h and h(2) are mutually bounded up to log order, namely,

h(2) · C−1 ·
(∑̀
i=1

− log |zi|
)−N

≤ h ≤ h(2) · C ·
(∑̀
i=1

− log |zi|
)N

holds for some C > 0 and N > 0.

An estimate

Lemma 7.36 Let f be a holomorphic endomorphism of Q0E0 satisfying the following conditions:

• It preserves the filtrations iF (i = 1, . . . , `).

• For each a ∈ R`, the induced endomorphism ` GrFa (f) of QEa|D`
is 0.

Then, we have |f |h0 = O
(
Λ(M, ε)

)
for some M > 0 and ε > 0.

Proof We take a decomposition of Q0E0 like (79). Applying the weak norm estimate to (Ea, ∂a, θa, ha) with
the decomposition (66), we take a C∞-hermitian metric h(2)

a of QEa|X−D, and h
(2)
0 =

⊕
h

(2)
a of QE0|X−D. We

have the decomposition:
f =

∑
fa,a′ , fa,a′ ∈ Hom

(
U0,a′ , U0,a

)
We have only to show

∣∣fa,a′
∣∣
h
(2)
0

= O
(
Λ(M, ε)

)
for any a and a′. Assume a 6= a′. We define

I+ :=
{
i
∣∣ ai > a′i

}
, I− :=

{
i
∣∣ ai < a′i

}
, I0 :=

{
i
∣∣ ai = a′i

}
.

Since the parabolic filtrations are preserved, we have fa,a′,|Di
= 0 for any i ∈ I+. Hence, there exists a

holomorphic section f ′a,a′ such that fa,a′ = f ′a,a′ ·
∏
i∈I+ zi. We have the inequality as in (70). Then, we obtain

the desired estimate for fa,a′ in the case a 6= a′.
If a = a′, fa,a|D`

= 0. Hence, there are holomorphic sections ft,a of Hom
(
Q0Ea,Q0Ea

)
such that fa,a =∑

zt · ft,a. Because |ft,a|h0 = O
((∑`

i=1− log |zi|
)N)

, we obtain the desired estimate.

Local isomorphism with a nice property We can show the following lemma by the argument in the proof
of Lemma 7.28.

Lemma 7.37 There exists a holomorphic isomorphism ΦK : QE0|X −→ QE|X such that (i) it preserves the
filtrations iF (i = 1, . . . , `), (ii) for each a ∈ R`, the induced map QEa|D`

−→ ` GrFb (QE|D`
) is equal to νa.

Similarly, we can take a holomorphic isomorphism Φ†σ(K) : Q<δE†0|σ(X ) −→ Q<δE†|σ(X ) satisfying the condi-

tions (i) it preserves the filtrations iF (i = 1, . . . , `), (iii) the induced morphism on ` GrF−a is equal to the given
one.

By the weak norm estimate, ΦK and Φ−1
K are bounded up to log order. We can show the following lemma

by using Lemma 7.36.

Lemma 7.38 We have Φ∗K∇λ −∇λ,0 = O
(
Λ(M, ε)

)
for some ε > 0 and M > 0 with respect to h0.

Let ΦK and Φ′K be morphisms as in Lemma 7.37. We set G := Φ−1
K ◦ Φ′K.

Lemma 7.39 We have the following estimates for some ε > 0 and M > 0:∣∣G− id
∣∣
h0

= O
(
Λ(M, ε)

)
,

∣∣∇λ,0(λ2∂λ)G
∣∣
h0

= O
(
Λ(M, ε)

)
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Proof It follows from Lemma 7.36.

Lemma 7.40 Let ΦK and Φ†σ(K) satisfy the above conditions. We set

H := S0 − S
(
ΦK ⊗ σ∗Φ†σ(K)

)
: Q0E0|X ⊗ σ∗

(
Q<δE†0|σ(X )

)
−→ OX

Then, H = O
(
Λ(M, ε)

)
with respect to h0 for some ε > 0 and M > 0.

Proof It can be shown by the argument in the proof of Lemma 7.32.

Local C∞-isomorphisms Let ΦpK (p = 0, . . . ,m) be as in Lemma 7.37, and let ap (p = 0, . . . ,m) be non-
negative C∞-functions on K such that

∑
ap = 1. We set ΦK :=

∑m
p=0 ap · Φ

p
K. We also set G := (Φ0

K)−1 ◦ ΦK
and Gp := (Φ0

K)−1 ◦ ΦpK. By Lemma 7.39, |Gp − id |h0 = O
(
Λ0(ε)

)
, and hence |G− id |h0 = O

(
Λ0(ε)

)
for some

ε > 0 and M > 0.
We can show the following estimate by using an argument in the proof of Lemma 7.33 with Lemma 7.38:

Φ−1
K ◦ ∇λ(λ

2∂λ) ◦ ΦK −∇λ,0(λ2∂λ) = O
(
Λ(M, ε)

)
(81)

Let Φ† qσ(K) (q = 0, 1, . . . ,m′) be as in Lemma 7.31, and let bq be non-negative C∞-functions on σ(K) such that∑
bq = 1. We set Φ†σ(K) :=

∑
bq ·Φ† qσ(S). We set H := S

(
ΦK⊗σ∗(Φ†σ(K))

)
−S0. Then, we can show the following

estimate with respect to h0 for some ε > 0 and M > 0, by using Lemma 7.40:

H = O
(
Λ(M, ε)

)
, ∂E40 ,P1H = O

(
Λ(M, ε)

)
(82)

Construction We take 0 < R1 < R2 < 1. We set K1 :=
{
λ

∣∣ |λ| ≤ R2

}
and K2 :=

{
λ

∣∣R1 ≤ |λ| ≤ R−1
1

}
. We

take a partition of unity
(
χK1 , χK2 , χσ(K1)

)
on P1 which subordinates to {K1,K2, σ(K1)}.

We take a holomorphic isomorphism ΦK1 : QE0|K×X −→ QE|K×X as in Lemma 7.37. Similarly, we take a
holomorphic isomorphism Φ†σ(K1)

: Q<δE†0|σ(K)×X† −→ Q<δE†|σ(K)×X† as in Lemma 7.37.

We can take a flat isomorphism ΦK2 :
(
E0, D̃f0

)
|K2×(X−D)

−→
(
E , D̃f

)
|K2×(X−D)

. We set

Φ := χK1 · ΦK1 + χK2 · ΦK2 + χσ(K1) · Φ
†
σ(K1)

.

By using (81) and (82), we can check that Φ satisfies the estimates in (63). Thus, the proof of Proposition 7.23
is finished.

8 An application to HS-orbit

8.1 Preliminary

8.1.1 Compatibility of real structure and Stokes structure

Let X be a complex manifold. We set X := Cλ ×X and X 0 := {0} ×X. Let (H,H ′
R,∇) be a TER-structure

on X . We say that H is unramifiedly pseudo-good if the following holds:

• We are given a good set of irregular values Irr(∇) ⊂ M(X ,X 0)/H(X ) in the level −1. Namely, (i) any
elements a of Irr(∇) are of the form a = λ−1a′ for some holomorphic functions a′ on X, (ii) a′ − b′ are
nowhere vanishing for distinct λ−1a′, λ−1b′ ∈ Irr(∇).

• H has the formal decomposition
(H,∇)| bX 0 =

⊕
a∈Irr(∇)

(Ĥa, ∇̂a),

such that ∇̂a − da is regular. Note that they are not assumed to be logarithmic.
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(See also Subsection 5.1.3.) If X is a point, it means that H requires no ramification in the sense of [8].
By a classical theory (see also Subsection 5.1.3), we have the Stokes filtration FS indexed by

(
Irr(∇),≤S

)
for each small sector S of X − X 0. We say that the real structure and the Stokes structure are compatible, if
the Stokes filtrations on any small sectors S come from a flat filtration of H ′

R|S . (See [14].)
By taking Gr of (H,∇) with respect to the Stokes filtrations, we obtain a TE-structure Gra(H,∇) for a ∈

Irr(∇). As observed in [8], if the real structure and the Stokes structure are compatible, Gra(H,∇) is enriched to
a TER-structure denoted by Gra(H,H ′

R,∇). If (H,H ′
R,∇) is enriched to a TERP-structure (H,H ′

R,∇, P, w),
Gra(H,H ′

R,∇) is also naturally enriched to a TERP-structure denoted by Gra(H,H ′
R,∇, P, w).

Another formulation In [8], a compatibility of real structure and Stokes structure is formulated in a slightly
different way. Let us check that it is equivalent to the above. For simplicity, we consider the case in which X
is a point.

Let H be a vector bundle on Cλ with a meromorphic flat connection ∇ : H −→ H ⊗ Ω1
Cλ

(∗0) such that
H requires no ramification with the good set of irregular values Irr(∇) ⊂ λ−1 · C. Take θ0 ∈ R such that
Re(a− b)(r · e

√
−1θ0) 6= 0 for any distinct a, b ∈ Irr(∇). Take a sufficiently small ε > 0, and let us consider the

sector
S :=

{
r · e

√
−1θ

∣∣ θ0 − ε ≤ θ ≤ θ0 + π + ε
}

Let S denote the closure of S in the real blow up C̃λ(0) −→ Cλ along 0. Let Z := S ∩ π−1(0). As a version of
Hukuhara-Turrittin theorem, it is well known that we have a unique flat decomposition

(H,∇)|S =
⊕

a∈Irr(∇)

(
Ha,S ,∇a,S

)
(83)

such that the restriction of (83) to Ẑ is the same as the pull back of the irregular decomposition of H|b0.
Assume that the flat bundle (H,∇)|C∗

λ
is equipped with a real structure, i.e., a C-anti-linear flat involution

κ : H −→ H. In other words, (H,∇, κ) is a TER-structure. In Section 8 of [8], the real structure and the Stokes
structure are defined to be compatible, if κ(Ha,S) = Ha,S for any a ∈ Irr(∇) and any S as above.

If a small sector S is contained in S, the restriction of (83) to S gives a splitting of FS . Hence, if Ha,S are
preserved by κ for any a, the filtration FS is also preserved by κ. Let S1 and S2 be small sectors containing
the rays {r · e

√
−1θ0 | r > 0} and {−r · e

√
−1θ0 | r > 0}, respectively. Then, a ≤S1 b if and only if a ≥S2 b. By the

parallel transform on S, the flat bundle H|S is trivialized, and we can observe that Ha,S = FS1
a ∩FS2

a . Hence, if
FSi

a (i = 1, 2) are preserved by κ, Ha,S is also preserved by κ. The equivalence of two notions of compatibilities
follows from these considerations.

8.1.2 Two Stokes filtrations of integrable twistor structures

Let (V, D̃4) be a variation of integrable twistor structures over P1 × X. It is obtained as the gluing of TE-
structure (V0, D̃f0 ) on X := Cλ×X and T̃E-structure (V∞, D̃† f∞ ) on X † := Cµ×X†. We set X 0 := {0}×X ⊂ X
and X † 0 := {0} ×X† ⊂ Cµ ×X†.

Definition 8.1 We say that (V, D̃4) is unramifiedly pseudo-good, if both (V0, D̃f0 ) and (V∞, D̃† f∞ ) is unramifiedly
pseudo-good. In that case, let Irr(D̃f0 ) and Irr(D̃† f∞ ) denote the sets of irregular values of D̃f0 and D̃† f∞ , respectively.

If X is a point, it is also said that (V, D̃4) requires no ramification.

Definition 8.2 Assume (V, D̃4) is unramifiedly pseudo-good.

• We say that the sets of the irregular values of (V, D̃4) are compatible, if Irr
(
D̃f0

)
and Irr

(
D̃f∞

)
bijectively

correspond by a←→ γ∗a.

• We say that (V, D̃4) has compatible Stokes structures, if the following holds:

– The sets of irregular values of (V, D̃4) are compatible.
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– For a small sector S of X − X 0, we have the Stokes filtration FS of (V0, D̃f0 ). We also have the
Stokes filtration Fγ(S) of (V∞, D̃f∞), where we regard γ(S) as a small sector of X †−X † 0. Then, FS
and Fγ(S) are the same under the parallel transform along any rays connecting S and γ(S).

Remark 8.3 In the above definition, a ray means a line
{
(t · e

√
−1ϕ, P )

∣∣ 0 < t <∞
}

in C∗
λ × {P} ⊂ C∗

λ ×X.
We say that it connects S and γ(S), if (i) (t · e

√
−1ϕ, P ) is contained in S for any sufficiently small t, (ii)

(t · e
√
−1ϕ, P ) is contained in γ(S) for any sufficiently large t.

Lemma 8.4 If (V, D̃4) is equipped with either a real structure κ or a perfect pairing S of weight w, then the
irregular values of D̃f0 and D̃f∞ are compatible.

Proof We have Irr
(
γ∗D̃f∞

)
=

{
γ∗a

∣∣ a ∈ Irr(D̃f∞)
}
. If (V, D̃4) is equipped with a real structure, γ∗(V∞, D̃f∞) '

(V0, D̃f0 ). Hence, the irregular values of D̃f0 and D̃f∞ are compatible.
We have Irr

(
σ∗D̃f∞

)
=

{
σ∗a

∣∣ a ∈ Irr(D̃f∞)
}
. Note that a ∈ Irr(D̃f∞) are of the form µ−1a′, where a′ are

holomorphic functions on X†. Hence, σ∗a = −γ∗a. If (V, D̃4f ) is equipped with a perfect pairing, (V0, D̃f0 ) is
isomorphic to the dual of σ∗(V∞, D̃f∞). Therefore, the irregular values of D̃f0 and D̃f∞ are compatible.

If (V, D̃4) is unramifiedly pseudo-good, we obtain TE-structure Gra(V0, D̃f0 ) on X for a ∈ Irr(D̃f0 ), and T̃E-
structure Grb(V∞, D̃f∞) on X † for b ∈ Irr(D̃f∞), by taking Gr with respect to the Stokes filtrations. If (V, D̃4)
has compatible Stokes structures, we have the natural isomorphism

Gra(V0, D̃f0 )|X−X 0 ' Grγ∗a

(
V∞, D̃f∞

)
|X †−X † 0 .

Hence, we obtain a variation of integrable twistor structures Gra(V, D̃4) for each a ∈ Irr(D̃f0 ) as the gluing of
them. We have the following functoriality (Lemma 5.17).

Lemma 8.5 Let (V (a), D̃(a)4) be unramifiedly pseudo-good. Assume (i) (V (a), D̃(a)4) (a = 1, 2) have compatible
Stokes filtrations, (ii) the union I := Irr(D̃(1) f

0 ) ∪ Irr(D̃(2) f
0 ) is good. Then, a morphism (V (1), D̃(1)4) −→

(V (2), D̃(2)4) induces Gra

(
V (1), D̃(1)4)

−→ Gra

(
V (2), D̃(2)4)

for each a ∈ I.

We have the natural isomorphisms

γ∗ Gra(V, D̃4) ' Gra

(
γ∗(V, D̃4)

)
, σ∗ Gra(V, D̃4) ' Gr−a

(
σ∗(V, D̃4)

)
.

The following lemma follows from functoriality.

Lemma 8.6 Assume (V, D̃4) has compatible Stokes structures. If (V, D̃4) is equipped with a real structure,
(resp. a perfect pairing of weight w), each Gra(V, D̃4) is also equipped with an induced real structure (resp. an
induced perfect pairing of weight w).

Lemma 8.7 Let (H,H ′
R,∇, P ′,−w) be a variation of TERP-structures, and let (V, D̃4,S, κ,−w) be the cor-

responding variation of twistor-TERP structures. (See Subsection 2.1.8 for the correspondence.) Assume that
(H,H ′

R,∇, P ′,−w) is unramifiedly pseudo-good, or equivalently, (V, D̃4,S, κ,−w) is unramifiedly pseudo-good.

• The real structure and the Stokes structures of (H,∇) are compatible, if and only if (V, D̃4) has compatible
Stokes structures.

• If the real structures and the Stokes structures are compatible, Gra(V, D̃4,S, κ,−w) is the variation of
twistor-TERP structures corresponding to Gra(H,H ′

R,∇, P ′,−w).

Proof Note that the Stokes filtrations of γ∗(H,∇) on γ∗(S) is given by the composite of the conjugate with
respect to H ′

R and the parallel transport along the rays connecting S and γ(S), with the change of the index
sets from Irr(∇) to

{
γ∗a

∣∣ a ∈ Irr(∇)
}
. Then, the first claim follows.
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Let us consider the second claim. We have only to consider the case w = 0. We may assume that
(H,H ′

R,∇, P ′) is obtained from (V,∇,S, κ) by the procedure explained in Subsection 2.1.8. By construc-
tion, we have Gra(H,∇) = Gra(V0,∇0). For comparison of induced real structures and pairings, we have only
to consider the case in which X is a point.

Let us compare the induced real structures. The flat real structure of H ′ is obtained as the composite:

H |λ
parallel transform−−−−−−−−−−−→ H |λ−1

κ|λ−−−−→ H|λ

Hence, we have the following factorization of the real structure on Gra(H)|λ obtained as Gr of the Stokes
filtration:

Gra(H)|λ
parallel transform−−−−−−−−−−−→ Gra(H)|λ−1

Gra(κ)|λ−−−−−−→ Gra(H)|λ

It is the same as the real structure induced by Gra(κ) on Gra(V,∇).
Let P : H ⊗ j∗H −→ OCλ

be the pairing induced by κ and S as in (6), whose restriction to H ′ is P ′. Let
S be a small sector in C∗

λ. We have the following factorization of P|S :

FSa (H)⊗ j∗Fj(S)
b (H) = FSa (V0)⊗ σ∗γ∗Fj(S)

b (V0)
1⊗σ∗κ−−−−→ FSa (V0)⊗ σ∗Fσ(S)

γ∗(b)
(V∞) S−−−−→ OS

The restriction to FSa (H)⊗ j∗Fj(S)
b (H) is 0 unless a− b ≥S 0. The induced pairing Pa for Gra(V0) is factorized

as follows:

Gra(V0)|S ⊗ j∗ Gra(V0)|j(S)
1⊗σ∗ Gra κ−−−−−−−→ Gra(V0)|S ⊗ σ∗ Gr

γ∗(a)
(V∞)|σ(S)

Gra S−−−−→ OS

Hence, it is the same as the pairing induced by Gra(V,∇,S, κ). Thus, the proof of Lemma 8.7 is finished.

8.1.3 Preliminary for pull back

We set X := Cz, D =
{
0
}
, X := Cλ ×X, D := Cλ ×D and W := D ∪ ({0} ×X). Let π : X̃ (W ) −→ X be a

real blow up of X along W . Let π1 : C̃λ(0) −→ Cλ be the real blow up of Cλ along {0}. Let φ0 : X −→ Cλ

be given by φ0(λ, z) = λ · z. It induces the map φ̃0 : X̃ (W ) −→ C̃λ(0).
Let H be a vector bundle on Cλ with a meromorphic flat connection ∇ : H −→ H ⊗ Ω1

Cλ
(∗0) such that

(H,∇) requires no ramification with the good set of irregular values I ⊂ C ·λ−1. Let V denote the flat bundle on
C̃λ(0) associated to H|C∗

λ
. For each Q ∈ π−1

1 (0), we have the Stokes filtration FQ of V|Q for the meromorphic
prolongment H. (See Subsection 5.1.5) We can naturally regard φ̃∗0V as the flat bundle on X̃ (W ) associated to
(φ∗0H)|X−W .

Lemma 8.8 The following holds:

• φ∗0(H,∇) is unramifiedly pseudo-good in the level m = (−1,−1). (See Subsection 5.1.3.) The set of
irregular values is given by φ∗0I :=

{
φ∗0a

∣∣ a ∈ I
}
.

• For each P ∈ π−1(W ), the Stokes filtration FP of φ̃∗0(V)|P for φ∗0H is the pull back of the Stokes filtration
of V|eφ0(P ) .

• We have the natural isomorphism φ∗0 Gra(H) ' Grφ∗0a

(
φ∗0H

)
.

Proof We have the decomposition (H,∇)|b0 =
⊕

a∈I(Ha, ∇̂a), where ∇̂a − da are regular. It induces the
decomposition of φ∗0(H,∇)|cW . Hence, the first claim is clear.

We set Q := φ̃0(P ). Note that the orders ≤Q and ≤P are the same under the identification I ' φ∗0I. Let
H1 ⊃ H be an unramifiedly good lattice. Then, φ∗0H1 is an unramifiedly good lattice. We take a small sector
SQ ∈ MS(Q,C∗

λ, I) such that there exists the Stokes filtration FSQ of H1|SQ
. We take a small multi-sector

SP ∈MS(P,X −W,φ∗0I) such that φ0(SP ) ⊂ SQ. Then, we obtain the filtration φ̃∗0FSQ of φ∗0(H1)|SP
indexed

by
(
φ∗0I,≤P

)
. It gives the Stokes filtration of φ∗0(H1)|SP

, which follows from the characterization in Proposition
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5.5. Since the filtration of φ̃∗0(V)|P induced by φ̃∗0FSQ is the same as the pull back of FQ on V|Q, we obtain
the second claim. Note that we also obtain that the Stokes filtration of φ∗0(H)|SP

is given by the pull back of
the Stokes filtration of H|SQ

.
Let SP be a small multi-sector as above. By the above compatibility of the Stokes filtrations and Lemma

5.21, we obtain the natural isomorphisms

φ∗0
(
Gra(H)

)
|SP
' Grφ∗0a(φ∗0H)|SP

. (84)

By varying SP and gluing them, we obtain φ∗0
(
Gra(H)

)
|eU(W )

' Grφ∗0a(φ∗0H)|eU(W ), where U is a neighbourhood of

W , and Ũ(W ) denote the real blow up of U along W . By using the flatness, it is extended to φ∗0
(
Gra(H)

)
| eX (W )

'
Grφ∗0a(φ∗0H)| eX (W ). Hence, we obtain an isomorphism on X .

8.1.4 Rescaling and HS-orbit

We recall a rescaling construction in [7] and [8]. See also [22]. We set X := Cz, D =
{
0
}

and X∗ := X −D.
For R > 0, we set X(R) :=

{
z ∈ X

∣∣ |z| < R
}

and X∗(R) := X(R) ∩X∗. We set X := Cλ ×X. We use the
symbols X ∗, D, X (R) and X ∗(R) in similar meanings. Let φ0 : X −→ Cλ be given by φ0(λ, z) = λ · z. The
restriction to X ∗ is denoted by ψ0.

TERP-structure We consider only TERP-structures of weight 0. Hence, we omit to specify weights.
Let (H,H ′

R,∇, P ) be a TERP-structure. Hertling and Sevenheck studied the variation of TERP-structures
ψ∗0(H,H ′

R,∇, P ) on X∗. If there exists an R > 0 such that ψ∗0(H,H ′
R,∇, P )|X∗(R) is pure and polarized, the

variation is called an HS-orbit (Hertling-Sevenheck orbit), and we say in this paper that (H,H ′
R,∇, P ) induces

an HS-orbit.

Remark 8.9 An HS-orbit is called a “nilpotent orbit” in [8]. We use “HS-orbit” for distinction from twistor
nilpotent orbit. It matches their terminology “Sabbah-orbit”.

Lemma 8.10 We assume (i) (H,∇) requires no ramification, (ii) the Stokes structure and the real structure
of (H,H ′

R,∇) are compatible. Then, the following holds:

• ψ∗0(H,∇) is unramifiedly pseudo-good. The set of irregular values is given by
{
ψ∗0a

∣∣ a ∈ Irr(∇)
}
.

• The real structure and the Stokes structure of ψ∗0(H,∇) are compatible.

• We have the natural isomorphism ψ∗0 Gra

(
H,H ′

R,∇, P
)
' Grψ∗0a ψ

∗
0

(
H,H ′

R,∇, P
)
.

Proof The first two claims follow from Lemma 8.8. To show the third claim, we have only to compare the
induced flat pairings. It can be done directly, or by considering the restriction to Cλ × {1}.

Integrable twistor structure We set X † := Cµ × X†, D† := Cµ × D†, X ∗ † := X † − D† and W † :=
D† ∪

(
{0} ×X†). Let φ∞ : X † −→ Cµ be given by φ∞(µ, z) = µ · z. The restriction to X ∗ † is denoted by ψ∞.

Let (V,∇) be an integrable twistor structure on P1 which requires no ramification. It is obtained as the
gluing of (V0,∇0) and (V∞,∇∞). The gluing is denoted by g : V0|C∗

λ
' V∞|C∗

µ
, which is flat with respect to ∇.

We set HS(V )0 := ψ∗0(V0) and HS(V )∞ := ψ∗∞(V∞). They are naturally equipped with TE-structure
HS(∇)0 and T̃E-structure HS(∇)∞. Note that HS(V,∇)0 and HS(V,∇)∞ are unramifiedly pseudo good. Let
us construct a flat isomorphism Φ between HS(V,∇)0|C∗

λ×X∗ and HS(V,∇)∞|C∗
µ×X†∗ . The fibers HS(V )0|(λ,z)

and HS(V )∞|(µ,z) are naturally identified with V0|λ·z and V∞|µ·z, respectively. If λ = µ−1, we have (λ · z)−1 =
µ · z · |z|−2. Hence, we have an isomorphism Φ(λ,z) : H(V )0|(λ,z) ' H(V )∞|(λ−1,z) induced by the gluing g with
the parallel transform along the segments connecting λ−1 ·z and λ−1 ·z · |z|−2. Thus, we obtain the isomorphism
Φ as desired.

Let HS(V,∇) denote the variation of integrable twistor structures obtained as the gluing of HS(V,∇)0 and
HS(V,∇)∞. The following lemma is clear from the construction and the functoriality (Lemma 5.17).

Lemma 8.11
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• Let F : (V (1),∇(1)) −→ (V (2),∇(2)) be a morphism of integrable pure twistor structures. Then, we have
the induced morphisms HS(F ) : HS(V (1),∇(1)) −→ HS(V (2),∇(2)).

• Let f be γ or σ. Then, HS ◦f∗(V,∇) is naturally isomorphic to f∗ HS(V,∇).

By the above lemma, a real structure κ of (V,∇) induces a real structure HS(κ) of HS(V,∇). Since we have
the natural isomorphism HS

(
T(0)

)
' T(0)X∗ , a paring S of (V,∇) with weight 0 induces a pairing HS(S) of

HS(V,∇) with weight 0. Hence, an integrable twistor structure with a pairing (V,∇,S) induces HS(V,∇,S)
on P1 × X∗, and if (V,∇,S) is equipped with a real structure, HS(V,∇,S) is also equipped with a naturally
induced real structure.

Lemma 8.12 Assume that (V,∇) has compatible Stokes structures. Then, HS(V,∇) also has compatible Stokes
structures, and we have the natural isomorphism

HSGra(V,∇) ' Grψ∗0a HS(V,∇) (85)

If (V,∇) is equipped with a pairing of weight 0 (resp. a real structure), (85) preserves the induced pairings (resp.
real structures).

Proof It follows from Lemma 8.8.

Lemma 8.13 Let (H,H ′
R,∇, P ′) be a TERP-structure, and let (V,∇,S, κ) be the corresponding twistor-TERP

structure. Then, HS(V,∇,S, κ) is the variation of twistor-TERP structure corresponding to ψ∗0(H,H ′
R,∇, P ′).

Proof By construction, we have the natural isomorphism HS(V,∇)0 ' (H,∇). We have only to compare the
induced real structures and pairings on them. Since they are flat, we have only to compare them on the fiber
over z = 1. Then, the claim is clear.

If there exists an R > 0 such that HS(V,∇,S)|P1×X∗(R) is pure and polarized, it is called a twistor HS-orbit,
and we say that (V,∇,S) induces a twistor HS-orbit.

8.2 Reduction of wild HS-orbit

8.2.1 Statement

We use the notation in Subsection 8.1.4. Let (V,∇) be an integrable twistor structure with a perfect pairing S
of weight 0, which requires no ramification. Assume that (V,∇,S) induces a twistor HS-orbit on P1 ×X∗(R)
for some R > 0. We obtain the underlying unramifiedly good wild harmonic bundle (E, ∂E , θ, h) on X∗(R) of
HS(V,∇,S)|P1×X∗(R), which is unramifiedly good. Let I denote the set of irregular values of (V,∇) at 0. It is
easy to see

Irr(θ) =
{
a(z)

∣∣ a(λ) ∈ I
}
' I.

We will not distinguish them in the following.
Let (E4,D4,SE) denote the variation of polarized pure twistor structure associated to (E, ∂E , θ, h). It is

enriched to integrable one (E4, D̃4,SE). Although it is naturally isomorphic to HS(V,∇,S), it is non-trivial
that the natural meromorphic extensions QE0 and φ∗0(V0)⊗OD(∗D) are isomorphic. Hence, we use the symbol
(E4, D̃4,SE) for distinction. By applying the construction in Subsection 7.3.1 to (E4, D̃4,SE), we obtain a
wild variation of pure polarized integrable twistor structures Gra(E4, D̃4,SE) for each a ∈ I. We will prove
the following theorem in Subsection 8.2.2.

Theorem 8.14

• (V,∇) has compatible Stokes structures.

• HSGra(V,∇,S) is naturally isomorphic to Gra(E4, D̃4,SE) for each a ∈ I. In particular, Gra(V,∇,S)
induces a twistor HS-orbit.

Before going into the proof, we give a consequence.
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Corollary 8.15 Let (H,H ′
R,∇, P, 0) be a TERP structure which requires no ramification. If (H,H ′

R,∇, P, 0)
induces an HS-orbit, it is a mixed-TERP structure in the sense of Definition 9.1 of [8].

Proof Thanks to Theorem 9.3 of [8], (H,H ′
R,∇, P, 0) is a mixed-TERP structure, if and only if (i) the real

structure and the Stokes structure of (H,H ′
R,∇) are compatible, (ii) Gra(H,H ′

R,∇, P, 0) induces an HS-orbit
for each a ∈ Irr(∇). Hence, this corollary follows from Theorem 8.14, Lemma 8.7 and Lemma 8.13.

The claim of the corollary was established by Hertling and Sevenheck [8] in the case that (H,∇) has regular
singularity. They also showed the converse of the claim in general.

Remark 8.16 In their study of the case that (H,∇) has regular singularity, Hertling and Sevenheck closely
investigated the limiting object. In particular, they showed that the limiting TERP-structure is generated by
elementary sections, for which the eigenvalues of the new supersymmetric index can be described in terms of the
Hodge filtrations of the corresponding mixed Hodge structure.

Even in the irregular case, the limiting object can be obtained from the reduced regular one. Hence, the limit
of the eigenvalues of the new supersymmetric index of φ∗0(H,H

′
R,∇, P ) can be described in terms of their mixed

Hodge structures.

8.2.2 Proof of Theorem 8.14

We have the natural identifications HS(V,∇)0 '
(
E , D̃f

)
and HS(V,∇)∞ '

(
E†, D̃† f

)
. We have the following

locally free OX (∗D)-modules
HS(V )0 := φ∗0(V0)⊗OX (∗D).

We also have the following locally free OX †(∗D†)-modules

HS(V )∞ := φ∗∞(V∞)⊗OX †(∗D†).

Comparison of QE and HS(V )0 We would like to show that QE and HS(V )0 are naturally isomorphic. We
set W := D ∪

(
{0} ×X

)
. Let π : X̃ (W ) −→ X be the real blow up of X along W . Let V be the flat bundle on

X̃ (W ) associated to (E , D̃f )|X−W . We set φ∗0I :=
{
φ∗0a

∣∣ a ∈ I
}
.

As remarked in Lemma 8.8, φ∗0H is a pseudo-good lattice of HS(V )0 ⊗OX (∗W ) in the level m = (−1,−1).

Lemma 8.17 Q0E is a good lattice of QE ⊗OX (∗W ) in the level m = (−1,−1) around (λ, z) = (0, 0).

Proof We have the decomposition (Q0E ,D)|cW =
⊕

a∈I(Q0Êa, D̂a) such that D̂a−dXa is logarithmic. We have

the corresponding decomposition D̃f =
⊕

D̃fa . Let us show that(
D̃fa − d

(
a(z)/λ

))
QÊa ⊂ λ−1 · QÊa ⊗ Ω1,0

X (logW )

Since Da − dXa is logarithmic, it is satisfied for the derivatives along the X-direction. Since we have already
known that the restriction of Q0E to C∗

λ ×X is unramifiedly good by Lemma 7.13, it is also satisfied for the
derivatives along the λ-direction.

Let P ∈ π−1(0, 0). We have the Stokes filtration FP1 of V|P corresponding to the meromorphic prolongment
QE ⊗OX (∗W ), and the Stokes filtration FP2 of V|P corresponding to the meromorphic prolongment HS(V )0 ⊗
OX (∗W ). (See Subsection 5.1.5 for such filtrations in the pseudo-good case.)

Lemma 8.18 FP1 = FP2 .

Proof Let SP ∈ MS(P,X − W,φ∗0I) be a small sector such that there exist the Stokes filtrations FSP
1 of

QE|SP
and FSP

2 of φ∗0(H)|SP
. We can take Q ∈ SP ∩π−1(W \D) such that the orders ≤Q and ≤P on I are the

same. We have the filtrations FQi (i = 1, 2) of V|Q corresponding to the meromorphic prolongments QE(∗W )
and HS(V )0(∗W ). Because HS(V,∇)0 '

(
E , D̃f

)
, we have FQ1 = FQ2 .
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Let us show that FPi is obtained as the parallel transport of FQi , which implies FP1 = FP2 . We take
SQ ∈MS(Q,X −W,φ∗0I) such that there exist the Stokes filtrations FSQ

1 of QE|SQ
and FSQ

2 of φ∗0(H)|SQ
. By

using the characterization in Proposition 5.20, we obtain
(
FSP
i

)
|SQ

= FSQ

i . Hence, we can conclude that FPi
are obtained as the parallel transport of FQi .

Lemma 8.19 The isomorphism E ' HS(V )0 on X −D is extended to the isomorphism QE ' HS(V )0 on X .

Proof Let P ∈ π−1(0, 0). We take a small multi-sector SP ∈ MS(P,X −W, I) such that we have the Stokes
filtrations FSP for Q0E|SP

and φ∗0(H)|SP
. By Lemma 8.18, the restrictions of them to SP are the same. We

take a flat splitting E|SP
=

⊕
a∈I Ea,S , which is extended to the decompositions:

QE|SP
=

⊕
a∈I
QEa,S , φ∗0(H)|SP

=
⊕

φ∗0(H)a,S

Let L̃(−a) be a line bundle OX (∗W ) · e with ∇e = e ·
(
−d(λ−1a)

)
. We remark that Gra(φ∗0H) ⊗ L̃(−a) and

Gra(QE)⊗ L̃(−a) have regular singularity along W . Hence, the isomorphism on X −W is naturally extended
to the isomorphism Gra(φ∗0H)⊗ L̃(−a) ' Gra(QE)⊗ L̃(−a). Since the restrictions of Gra(φ∗0H)⊗O(∗D) and
Gra(QE) to X −D are naturally isomorphic, we obtain the isomorphism Gra(φ∗0H)⊗O(∗D) ' Gra(QE).

Let wa and va be frames of Gra(φ∗0H)⊗O(∗D) and Gra(QE), respectively. We have the relation wa = va ·Aa,
where Aa are meromorphic along D. We take lifts wa,S and va,S to Ea,S by using the above splittings for any
small sectors in X −W . We have the relation wa,S = va,S ·Aa. Then, the isomorphism E ' HS(V )0 is extended
to QE|U ' HS(V )0|U on some small neighbourhood U of (0, 0), which follows from Proposition 5.19. (We may
apply Lemma 5.15. But, since φ∗0V0 may not be a good lattice, we replace V0 with an unramifiedly good lattice,
or we use a variant of Lemma 5.15 for a pseudo-good lattice.) Then, it is easy to observe that the isomorphism
is extended to QE ' HS(V )0 by using Hartogs theorem. (Sabbah also independently obtained an argument to
extend such isomorphisms in this kind of situation.)

Similarly, E† ' HS(V )∞ on X † −D† is extended to the isomorphism QE† ' HS(V )∞ on X †.

Proof of the first claim Let X̃4 denote the real blow up of P1×X along (P1×D)∪ ({0}×X)∪ ({∞}×X).
Let π† : X̃ †(W †) −→ X † denote the real blow up of Cµ ×X† along W † = D† ∪ ({0} ×X†). We have

X̃4 = X̃ (W ) ∪ X̃ †(W †).

Let V4 denote the flat bundle on X̃4 associated to the flat bundle (E , D̃f )|C∗
λ×(X−D).

We have the C∞-map X −W −→ (R≥ 0 × S1)2 given by

(λ, z) 7−→
((
|λ|, λ/|λ|

)
,

(
|z|, z/|z|

))
It induces the natural identification X̃ (W ) ' (R≥ 0 × S1)2. We set

P0 =
((

0, exp(
√
−1ϕ)

)
, (1, 1)

)
∈ π−1

(
(0, 1)

)
⊂ X̃ (W ).

Similarly, we identify X̃ †(W †) with (R≥ 0 × S1)2 via the map induced by

(µ, z) 7−→
((
|µ|, µ/|µ|

)
,

(
|z|, z/|z|

))
.

We set Q0 :=
((

0, exp(−
√
−1ϕ)

)
, (1, 1)

)
∈ (π†)−1

(
(0, 1)

)
⊂ X̃ †(W †). Note that we can identify (V,∇) with

HS(V,∇)|P1×{1}. Hence, we have only to compare the Stokes filtrations FP0(V4
|P0

) and FQ0(V4
|Q0

) under the

parallel transport along the ray
((
s, exp(

√
−1ϕ)

)
, (1, 1)

)
(s ∈ R≥ 0∪{+∞}) connecting P0 and Q0. (Note that

the signature of the arguments are reversed by the coordinate change λ−1 = µ.)
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Let us consider the map G : [0, 1]× [0, 1] −→ X̃ (W ) given by

G(s, t) =
((
s, exp(

√
−1ϕ)

)
, (t, 1)

)
.

Note G(0, 1) = P0. We set P1 := G(1, 0) and P2 := G(1, 1). The image of Γ0 :=
(
[0, 1] × {0}

)
∪

(
{0} × [0, 1]

)
is contained in π−1(W ). The orders ≤P are independent of P ∈ G(Γ0). Hence, the Stokes filtrations are
unchanged along G(Γ0).

Similarly, let us consider the map G† : [0, 1]× [0, 1] −→ X̃ †(W †) given by

G†(s, t) =
((
s, exp(−

√
−1ϕ)

)
, (t, 1)

)
.

Note G†(0, 1) = Q0. We set Q1 := G†(1, 0) and Q2 := G†(1, 1). The image of Γ∞ :=
(
[0, 1]×{0}

)
∪

(
{0}× [0, 1]

)
is contained in (π†)−1(W †). The orders ≤Q are independent of the choice of Q ∈ G†(Γ∞). Hence, the Stokes
filtrations are unchanged along G†(Γ∞).

Under the identification X −W = X † −W †, we have P2 = Q2, and the union of the paths G([0, 1] × {1})
and G†([0, 1]×{1}) is the ray connecting P0 and Q0. Hence, for the comparison of FP0 and FQ0 , we have only
to show that FP1(V0|P1) of V|P1 and FQ1(V∞|Q1) of V|Q1 are the same. It follows from the characterization
of the Stokes filtrations of (QE ,D) and (QE†,D†) by growth order of the norms of flat sections with respect to
the metric h. (See Subsection 6.3.) Thus, we obtain the first claim of Theorem 8.14.

Proof of the second claim By using Corollary 5.23 and Lemma 8.12, we obtain the isomorphisms on
P1 ×X∗(R) for some R > 0:

Gra(E4, D̃4,SE) ' Grψ∗0a HS(V,∇,S) ' HSGra(V,∇,S)

Thus, the second claim is also proved.
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