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Abstract

This paper deals with finding a generalized median stable matching (GMSM), introduced
by Teo and Sethuraman (1998) as a fair stable marriage. Cheng (2008) showed that finding
the i-th GMSM is #P-hard in case of i = O(N), where N is the number of stable matchings
of an instance. She also gave an exact algorithm running in polynomial time in case of
i = O(log log N), and the complexity remained as open in case of i is ω(log log N) and o(N).

In this paper, we establish two hardness results. We show that finding the i-th GMSM
is #P-hard even when i = O(N1/c), where c ≥ 1 is an arbitrary constant, and that deciding
if a matching can be a GMSM is #P-hard. On the other hand, we give a polynomial time
exact algorithm in case that i is O((log N)c′) where c′ is an arbitrary positive constant. We
also propose two randomized approximation schemes for the i-th GMSM using an oracle for
almost uniformly sampling ideals of a partially ordered set (poset). This is the first result
on randomized approximation schemes for the GMSM.

Key words: stable marriage, distributive lattice, order ideals, antichains, partially ordered
set, #P-hard, FPRAS.

1 Introduction

In the stable marriage problem, sets M of n-men and W of n-women, and lists of each person’s
preference over opposite sex are given as an input instance. A matching is n pairs of a man
and a woman, in which every person appears exactly once. In a matching, a pair m ∈ M and
w ∈ W is called blocking pair if m and w prefer each other to each current partner. A matching
is stable unless a blocking pair exists.

Gale and Shaplay [6] showed that every instance of the stable marriage problem has a stable
matching, and they also gave a finding algorithm. For an instance of the stable marriage problem,
some stable matchings exist in general. Conway pointed out the set of all stable matchings for an
instance forms a distributive lattice [13]. Furthermore, Blair [2] showed that every distributive
lattice can be represented by an instance of the stable marriage problem.

Conway’s note indicates another interesting property of the stable marriage, so-called the
“median property” (see e.g. [23, 8, 13]). Generalizing the property, Teo and Sethuraman [23]
devised an idea of the generalized median stable matching (GMSM ), as a fair stable marriage.
Here we briefly explain the GMSM.

Let M be a set of all stable matchings for an instance. Let µi (1 ≤ i ≤ N) be a matching
of M where N

def.= |M|, and then µi(m) ∈ W denotes a partner of m ∈ M on the matching
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Figure 1: An example of GMSMs.

µi. Now we define M(m) for m ∈ M as the multiset of all µi(m) (1 ≤ i ≤ N). Let α(m) =
(α1(m), α2(m), . . . , αN (m)) for m ∈ M be an arrangement of M(m), in which each α(m) is in
order of preference of each m; i.e., αi(m) ∈ W is preferable for m or identical to αi+1(m) ∈ W
for all i (1 ≤ i < N). Note that α(m) is independently arranged for m ∈ M of each other. Let
αi (1 ≤ i ≤ N) be a set of n pairs of m ∈ M and αi(m) ∈ W , every αi is again a stable matching
in M, that is shown by Teo and Sethuraman [23] using linear programming. We call αi the i-th
generalized median stable matching (or i-th GMSM, for short).

Figure 1 shows an example with five men and five women. Figure 1-a shows their preference
lists; in Men’s lists, women are arranged in order of each mi’s preference from left to right in
each row mi ∈ M , and men are arranged in order of each wi’s preference in Women’s lists.
Figure 1-b shows all stable matchings µ1, . . . , µ8 of the instance. In the table, the number k
denotes the index of a woman wk where wk = µj(mi) in the i-th row of the j-th column. Thus
each column j ∈ {1, . . . , 8} corresponds to a stable matching µj . In Figure 1-c, all partners of
mi in 8-stable matchings are arranged in the i-th row, according to the preference of each mi;
i.e., the i-th row represents α(mi) (with indices k of women wk = αj(mi)). Then each column
α1, . . . , α8 forms a stable matching again. See [23, 3] for other properties of generalized median
stable matchings.

A fairness of stable matchings between men and women is a central issue of the stable
marriage problem. The median stable matching, that is the ⌈(N + 1)/2⌉-th GMSM, provides a
fair matching. There are a number of papers discussing on the GMSM [3, 11, 12, 14, 18, 19, 23].
Cheng [3] showed that finding the i-th GMSM exactly is #P-hard when i is O(N). In [3], she
gave a characterization of GMSMs, which had been independently found by Nemoto [14]. By
the characterization, a GMSM can be described as a sublevel set on the rotation poset, in which
a level set function is defined by the number of ideals of the rotation poset (see Section 2, for
detail). Cheng [3] also gave a simple exact algorithm for finding the i-th GMSM in case of
i = O(log n), i.e. i = O(log log N), and gave rise to an open problem of the complexity in case
that i is o(N) and ω(log log N). Cheng discussed a simple approximation to the median stable
matching, whose error ratio is proven only O(N). It remains to be seen whether the decision
version of finding the i-th GMSM is in NP.
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Results. We show that finding the i-th GMSM is #P-hard even when i is O(N1/c) for an
arbitrary constant c ≥ 1. We also show that even the query if a given stable matching can be a
GMSM is #P-hard. On the other hand, we give a polynomial time exact algorithm for finding
the i-th GMSM in any case that i is O(nc′), i.e., O((log N)c′) where c′ is an arbitrary positive
constant. We propose two randomized approximation schemes for finding the i-th GMSM using
an oracle for almost uniformly sampling ideals (or essentially equivalent to antichains) of a poset.

Related works. Irving and Leather [9] showed that counting stable matchings is #P-complete
by a reduction from counting antichains (or ideals) of a poset whose #P-hardness is due to
Provan and Ball [16]. Steiner [22] gave a polynomial time algorithm based on dynamic program-
ming for counting ideals of a poset of some special classes such as series-parallel, bounded width,
etc. Propp and Wilson [15] proposed a perfect sampler for ideals of a poset based on the mono-
tone coupling from the past algorithm, whereas its expected running time becomes exponential
in the size of the poset in the worst case. The existence of a polynomial time almost uniform
sampler for ideals of a poset, or an FPRAS for counting, remains as a challenging problem [1].

Organization. In Section 2, we introduce the characterization of GMSMs on the rotation
poset, due to Nemoto [14] and Cheng [3]. We give there a detailed description of the problem
of concern to this paper. In Section 3, we establish two hardness results on the problems, and
we give in Section 4 a polynomial time exact algorithm in case of small i. In Sections 5 and 6,
we propose two randomized approximation schemes for finding the i-th GMSM.

2 Preliminaries

2.1 Definitions and notations

We denote the set of real numbers (non-negative, positive real numbers) by R (R+, R++), and
the set of integers (non-negative, positive integers) by Z (Z+, Z++), respectively. Let P be a
poset regarding a partial order ≼. A set X ⊆ P is an ideal of P if, whenever x ∈ X and y ≼ x,
we have y ∈ X. Note that ∅ is an ideal of P . We define D(P ) as the set of all ideals of P .

For a poset P , we define a (level set) function g : P → Z++ by

g(x) def.= |{X ∈ D(P ) | x ̸∈ X}| (x ∈ P ). (1)

Define a set U(x) ⊆ P for x ∈ P by

U(x) def.= {y ∈ P | y ≽ x}, (2)

then we have g(x) = |D (P \ U(x))|. Note that g(x) is monotone increasing with respect to
≺, that means if x ≺ y then g(x) < g(y). Given a poset P , let N = |D(P )| and we define a
(sublevel) set Si ⊆ P for i ∈ {1, . . . , N} by

Si
def.= {x ∈ P | g(x) < i}. (3)

Since g(x) is monotone increasing, Si is an ideal of P . We call Si (the i-th) level ideal (or LI,
for short). We define the family F(P ) ⊆ D(P ) of (level) ideals by

F(P ) def.= {S ⊆ P | S = Si (i ∈ {1, . . . , N})}. (4)
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2.2 Representation of a GMSM by a sublevel set of the rotation poset

Let M be a set of stable matchings for an instance of the stable marriage problem with n-men
and n-women, then, it is known that the size of M can become exponentially large, namely
2n−1. For a distributive lattice of stable matchings M, there is a compact representation by
another poset R, and the set of ideals D(R) and M are bijective1. The poset R is called the
rotation poset, and each element of R corresponds to an interchange (or rotation, in general) of
man-woman pairs on matchings (see [8], for detail). The rotation poset R can be obtained in
O(n2) time and space, and the bijection map between D(R) and M can be easily computed [8].

Nemoto [14] and Cheng [3] independently gave the following characterization of the i-th
GMSM αi by the i-the level ideal Si of the rotation poset R.

Theorem 2.1 [3, 14] Let M be a set of all stable matchings for an instance, and let R be its
rotation poset. Let Si (1 ≤ i ≤ |M|) be the i-th LI of the poset R, then the stable matching
corresponding to the ideal Si is the i-th GMSM αi of the instance.

Additionally, we note that for any poset P , there is an instance of the stable marriage
problem whose rotation poset is isomorphic to P , and it can be constructed in O(|P |2) time
with O(|P |2) of men and women, conversely [2, 8].

2.3 Our goal

We summarize our considering problems and contributions in this paper.

Result 1. We show that the following problem,

Problem 1 Given a poset P and an ideal S ∈ D(P ), then whether or not S ∈ F(P )?

is #P-hard, thus NP-hard, by a reduction from counting ideals of a given poset P , which is
known to be #P-complete [16]. This result indicates the #P-hardness of the query if a given
stable matching M ∈ M can be a GMSM αi (1 ≤ i ≤ |M|), according to Section 2.2.

Result 2. We show that the following problem,

Problem 2 Given a poset P , an ideal S ∈ D(P ), and a function f : Z++ → Z++, then let
i = f(|D(P )|), and whether S is the i-th LI?

is #P-hard even when the function f satisfies f(z) = O(z1/c) (z ∈ Z++) where c is an arbitrary
constant. This result indicates that the decision version of the i-th GMSM, if a given stable
matching M ∈ M is the i-th GMSM, is #P-hard even when i = O(N1/c) where c is an arbitrary
constant and N

def.= |M|.

Result 3. We consider the following problem,

Problem 3 Given a poset P and an integer i ∈ Z++, then find the i-th LI.

We give an exact algorithm for Problem 3, which runs in time in O(i · poly(|P |)). Thus the
algorithm runs in time polynomial in the input size in case that i is poly(|P |), i.e., the case of
i = O((log N)c) for an arbitrary positive constant c.

1See also Birkhoff’s representation theorem, in e.g. [4].
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Result 4. We propose a simple randomized approximation scheme (RAS) for Problem 2, on
the assumption of an almost uniform sampler on D(P ). Given an arbitrary ε (0 < ε < 1), δ
(0 < δ < 1), a ratio λ (0 < λ < 1), and a poset P , our RAS outputs an ideal Z ∈ D(P ) which
approximates SλN with satisfying

Pr
[
S⌊(λ−ε)N⌋ ⊆ Z ⊆ S⌈(λ+ε)N⌉

]
≥ 1 − δ,

in polynomial time of sampling oracle calls and fundamental operations. This result provides
that given an instance of the stable marriage and a ratio λ, we can find a stable matching µ ∈ M
which approximates the λN -th GMSM αλN satisfying

Pr
[
α⌊(λ−ε)N⌋ ≼ µ ≼ α⌈(λ+ε)N⌉

]
≥ 1 − δ,

where ≼ is the partial order on the distributive lattice M of stable matchings [13, 8].

Result 5. We propose another randomized approximation scheme for Problem 2, based on
approximate counting of D(P ). Given an arbitrary ε (0 < ε < 1), δ (0 < δ < 1), an function2

f : Z++ → Z++, and a poset P , our RAS outputs an ideal Z ∈ D(P ) which approximates Sf(N)

with satisfying

Pr
[
S⌊(1−ε)f(N)⌋ ⊆ Z ⊆ S⌈(1+ε)f(N)⌉

]
≥ 1 − δ,

in polynomial time of sampling oracle calls and fundamental operations. Note that the ap-
proximation ratio depend on just f(N) instead of linear of N . This result implies that given
an instance of the stable marriage and f(N), we can find a stable matching µ ∈ M which
approximates the f(N)-th GMSM αf(N) with satisfying

Pr
[
α⌊(1−ε)f(N)⌋ ≼ µ ≼ α⌈(1+ε)f(N)⌉

]
≥ 1 − δ,

where ≼ is the partial order on the distributive lattice M of stable matchings.

3 Hardness of Finding a Level Ideal

In this section, we show the hardness of finding a level ideal. First we introduce three useful
lemmas. Let P and Q be (disjoint) posets. The disjoint union P ∪̇Q is defined as follows;
x, y ∈ P ∪̇Q satisfies x ≼ y iff either [x, y ∈ P and x ≼ y] or [x, y ∈ Q and x ≼ y].

Lemma 3.1 [22] Let P and Q be disjoint posets, then |D(P ∪̇Q)| = |D(P )| · |D(Q)|.

The linear sum P ⊕Q is defined as follows; x, y ∈ P ⊕Q satisfies x ≼ y iff the cases of [x, y ∈ P
and x ≼ y], [x, y ∈ Q and x ≼ y], or [x ∈ P and y ∈ Q].

Lemma 3.2 [22, 3] Let P and Q be disjoint posets, then |D(P ⊕ Q)| = |D(P )| + |D(Q)| − 1.

Note that P ∪̇Q = Q ∪̇P , but P ⊕ Q ̸= Q ⊕ P .

Lemma 3.3 [3] For any K ∈ Z++, a poset Q satisfying |D(Q)| = K is realized in poly(log K)
time and space.

Now we show the following.

Theorem 3.4 Problem 1 is #P-hard.
2We naturally assume that the function is a uniform contraction mapping, e.g., ⌊

√
z⌋, ⌈z1/c⌉, ⌈log(z)⌉, etc.
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Figure 2: An example of R
def.= ({x} ⊕ P ) ∪̇ ({y} ⊕ Q).

Proof. We give a reduction from COUNTING IDEALS, that is to compute |D(P )| for a given
poset P . The problem is known to be #P-complete [16]. Precisely, we consider a problem that
given a poset P and an integer K ∈ Z++, the query is whether or not |D(P )| < K. If we have
an oracle for the query, we can compute |D(P )| by a binary search of Ks between 0 and 2|P |.
We in the following give a reduction from the query if |D(P )| < K to Problem 1.

For the integer K, let Q be a poset satisfying |D(Q)| = K. The poset Q is constructed in
poly(log K) time by Lemma 3.3. Let R be a poset defined by R

def.= ({x} ⊕ P ) ∪̇ ({y} ⊕ Q) (see
Figure 2). Now we consider g(r) for each r ∈ R, defined by (1),

g(x) = |D(R \ U(x))| = |D({y} ⊕ Q)| = 1 + |D(Q)|,
g(y) = |D(R \ U(y))| = |D({x} ⊕ P )| = 1 + |D(P )|,
g(p) = |D(R \ U(p))| ≥ |D (({y} ⊕ Q) ∪̇ {x}) | = 2·g(x) (∀p ∈ P ),
g(q) = |D(R \ U(q))| ≥ |D (({x} ⊕ P ) ∪̇ {y}) | = 2·g(y) (∀q ∈ Q),

hold. With considering the definitions (3) and (4) of the set of level ideals F(R), we obtain the
following three cases;
Case 1. If |D(P )| < |D(Q)| = K, then {x} ̸∈ F(R) and {y} ∈ F(R), since g(x) > g(y).
Case 2. If |D(P )| > |D(Q)| = K, then {x} ∈ F(R) and {y} ̸∈ F(R), since g(x) < g(y).
Case 3. Otherwise, i.e. |D(P )| = |D(Q)| = K, then {x} ̸∈ F(R), {y} ̸∈ F(R), and {x, y} ∈
F(R).
Thus, if we ask the oracle for Problem 1 whether {y} ∈ F(R), then ‘yes’ (Case 1) implies
|D(P )| < K and ‘no’ (Cases 2 and 3) implies |D(P )| ≥ K. �

From Theorem 3.4, we observe that finding the i-th level ideal, that is Problem 2, is NP-hard
even when i = O(

√
N). Precisely, we obtain the following.

Proposition 3.5 Given a poset R and an ideal S ∈ D(R), then the problem whether or not S
is the ⌈

√
N⌉-th LI of R is #P-hard, where N = |D(R)|.

Proof. We reduce COUNTING IDEALS to our problem. For a given poset P and K ∈
Z++, let Q and R be the posets defined in the proof of Theorem 3.4. Let N = |D(R)|, then

6



N = (|D(P )| + 1)(|D(Q)| + 1) = O
(
|D(P )|2 + K2

)
. We define a function f : Z++ → Z++ by

f(z) def.= ⌈
√

z ⌉.
First we show that {y} is the f(N)-th LI of R when K satisfies |D(P )| < K ≤ 4|D(P )|. With

considering g(q) ≥ 2g(y) for all q ∈ Q, {y} is the f(N)-th LI if g(y) < f(N), f(N) ≤ 2g(y), and
f(N) ≤ g(x) hold. These conditions are transformed |D(P )| + 1 <

⌈√
(|D(P )| + 1)(K + 1)

⌉
,⌈√

(|D(P )| + 1)(K + 1)
⌉
≤ 2|D(P )|+2, and

⌈√
(|D(P )| + 1)(K + 1)

⌉
≤ K +1, respectively. It

is easy to see that the first and the last conditions hold when |D(P )| < K. The second condition
hold if K ≤ 4|D(P )|, since⌈√

(|D(P )| + 1)(K + 1)
⌉
≤

⌈√
(|D(P )| + 1)(4|D(P )| + 1)

⌉
<

⌈√
4(|D(P )| + 1)2

⌉
= 2|D(P )| + 2.

Next we consider the case K ≤ |D(P )|, then the singleton {y} is never the f(N)-th LI of R,
since K ≤ |D(P )| means g(x) ≤ g(y), and it implies that if an LI includes y, then the LI must
include x from the definition. Thus, minimizing K for which {y} is the f(N)-th LI of R, then
the minimum K∗ is equal to |D(P )| + 1.

Finally, |D(P )| is computed with checking if {y} is the f(N)-th LIs of R for appropriate Ks,
at most 2|P | times, as follows. We start from K = 2|P | and get K into halves, until {y} is the
f(N)-th LI. From the above discussions, we certainly obtain the case. Suppose we get the case
that {y} is the f(N)-th LI when K = K0. In the interval [1,K0], {y} is the f(N)-th LI if, and
only if, K ∈ (|D(P )|,K0]. Thus we can find K∗ = |D(P )| + 1 according to the binary search
strategy. �

With a modification of the proof of Proposition 3.5, we establish a stronger claim that finding
the i-th level ideal, that is Problem 2, is #P-hard even when i = O(N1/c) for an arbitrary
constant c (c ≥ 1). Precisely, we obtain the followings.

Theorem 3.6 Suppose c (c ≥ 2) is an arbitrary constant. Given a poset R and an ideal
S ∈ D(R), then the problem whether or not S is the ⌈N1/c⌉-th LI of R is #P-hard, where
N = |D(R)|.

Outline of proof. We reduce COUNTING IDEALS to our problem in a similar way as
the proof of Proposition 3.5. For the poset P and an arbitrary constant K, we define R′ def.=
(({x} ⊕ P ) ∪̇ ({y} ⊕ Q)) ⊕ Q′, where posets Q and Q′ satisfies |D(Q)| = K and |D(Q′)| =
⌊(K + 1)c⌋ − (K + 1)2 + 1, thus |D(R′)| = Θ(Kc). From Lemma 3.3, Q and Q′ is realized in
poly(log(Kc)) = poly(log K) time and space. In a similar way as the proof of Proposition 3.5,
we can show Theorem 3.6 (see Appendix A for the complete proof). �

In a similar way as Theorem 3.6, we can show the #P-hardness for other functions of Ω(N1/c)
and O(N), with tuning some parameters (see Appendix C).

4 Exact Computation of the poly(n)-th LI

In the previous section, we showed finding the i-th LI is #P-hard, even when i = O(N1/c) for
an arbitrary constant c ≥ 1. In this section, we give an exact algorithm for Problem 3, that is
finding the i-th LI, which runs in time polynomial in |P | when i = O((log N)c) for an arbitrary
constant c ≥ 1.

The algorithm is essentially based on (exhaustive) enumeration of ideals of a poset. Steiner [21]
gave an enumeration algorithm for ideals of a poset, which generates all ideals one-by-one with-
out duplication, and which runs in O(|P |2 + |P | · |D(P )|) time; more precisely the algorithm

7



Exact Algorithm

1 Input: A poset P and an integer i ∈ Z++.
2 For(each p ∈ P ){
3 Set counter Z(p) := 0.
4 Search D(P \ U(p)) by an enumeration algorithm A,

with storing in counter Z(p) the number of ideals having been found.
5 if Z(p) ≥ i then halt A.
6 }
7 Output S := {p ∈ P | Z(p) < i}, and halt.

Figure 3: Whole description of the exact algorithm

outputs every ideals in O(|P |) time delay, after O(|P |2) time preprocessing. Squire [20] gave a
faster algorithm running in O(log |P | · |D(P )|) time.

Now we describe the algorithm for Problem 3. Let A denote an enumeration algorithm of
ideals of a poset. For each p ∈ P , we execute A for a poset P \ U(p), and count up the number
of ideals of D(P \U(p)) one-by-one. Let Z(p) denote the value of a counter, then if Z(p) reached
at i we halt A, and otherwise A stops with Z(p) = |D(P \U(p))|. Then S = {p ∈ P | Z(p) < i}
should be the i-th LI from the definition. See Figure 3 about the whole algorithm.

Clearly the time complexity of the algorithm is O(|P | · TA(i)), where TA(i) denotes the
computation time in which enumeration algorithm outputs ideals up to i-th one, that is e.g.,
O(|P |2+|P |·i) by Steiner [21]. Thus it becomes a polynomial time algorithm when i = poly(|P |).
In other words, Problem 3 is solvable in time polynomial in the input size when i = O((log N)c)
for an arbitrary constant c ≥ 0, since N = |D(P )| is at most 2|P |.

5 Simple Randomized Approximation Algorithm

In this section, we give a simple randomized approximation algorithm for the i-th LI. Theo-
rem 3.4 suggests that finding just a level ideal in F(P ) of a given poset P is #P-hard. Thus,
we consider to find an ideal S ∈ D(P ), which approximates the i-th level ideal Si. We use the
following oracle of almost uniform sampler on D(P ) for a given poset P .

Oracle 1 (Almost uniform sampler on ideals of a poset.) Given an arbitrary ε (0 < ε < 1)
and a poset P , Oracle returns an element of D(P ) according to a distribution ν satisfying
dTV(π, ν) def.= (1/2)∥π − ν∥1 ≤ ε, where π denotes the exactly uniform distribution on D(P ).

Let γ1 denote the time required for Oracle 1. Note that it is open whether γ1 can be poly(|P |,− ln ε).
With using Oracle 1, we give the following simple randomized algorithm for Problem 2.

Algorithm 1 (ε-estimator for the λN -th LI.)

1 Input: A poset P , λ (0 < λ < 1), ε (0 < ε ≤ min{λ, 1 − λ}), δ (0 < δ < 1).
2 Set Z(p) := 0 for each p ∈ P .

3 Repeat(T def.= ⌈−12ε−2 ln(δ/|P |)⌉ times){
4 Generate X ∈ D(P ) by Oracle 1 (where ν satisfies dTV(π, ν) ≤ ε/2).
5 For(each p ∈ P ){
6 if p ̸∈ X then Z(p) := Z(p) + 1.
7 }
8 }

8



9 Set S := {p ∈ P | Z(p)/T < λ}.
10 Output S and halt.

Theorem 5.1 Algorithm 1 outputs an ideal S ∈ D(P ) and S satisfies

Pr
[
S⌊(λ−ε)N⌋ ⊆ S ⊆ S⌈(λ+ε)N⌉

]
≥ 1 − δ, (5)

in O((γ1+|P |) log(|P |) ε−2 log δ−1) time.

Proof. The time complexity is easy to see. First we show that the output S of Algorithm 1
is an ideal of P . Suppose a pair p ∈ P and q ∈ P satisfies p ≺ q. We show that if q ∈ S then
p ∈ S. For any random sample X ∈ D(P ) in Step 1, if q ∈ X then p ∈ X, since X is an ideal of
P . It implies Z(p) ≥ Z(q) in Step 1. Thus if q ∈ S then p ∈ S from the definition of S in Step
2.

Next, to show that S satisfies the inequality (5), we establish the following.
Claim. For any p ∈ P ,
Case 1. if g(p) ≤ (λ − ε)N , then the probability p ̸∈ S (i.e., Z(p)/T ≥ λ) is at most δ/|P |, and
Case 2. if g(p) ≥ (λ + ε)N , then the probability p ∈ S (i.e., Z(p)/T < λ) is at most δ/|P |.
We define ωp

def.= g(p)/N for p ∈ P . Let ω̂p be an estimator of ωp by the distribution ν, that is
formally defined by

ω̂p
def.=

∑
X∈D(P ) | p̸∈X

ν(X).

In Case 1, p ∈ P satisfies g(p)/N ≤ λ−ε, then ωp +ε ≤ λ holds. Now, with considering that the
distribution ν satisfies dTV(π, ν) ≤ ε/2, we have ω̂p ≤ ωp + ε/2, that implies ω̂p + ε/2 ≤ ωp + ε.
Thus we obtain ω̂p + ε/2 ≤ λ. Then the probability Z(p)/T ≥ λ satisfies that

Pr [Z(p) ≥ λT ] ≤ Pr
[
Z(p) ≥

(
ω̂p +

ε

2

)
T

]
= Pr

[
Z(p) ≥

(
1 +

ε

2ω̂p

)
ω̂p · T

]
.

By using the Chernoff’s bound,

Pr
[
Z(p) ≥

(
1 +

ε

2ω̂p

)
ω̂p · T

]
≤ e

−1
3
ω̂pT

(
ε

2ω̂p

)2

= e
− ε2

12ω̂p
T

≤ δ

|P |

where we use T = ⌈−12ε−2 ln(δ/|P |)⌉. We obtain the claim in Case 1.
In a similar way, we obtain Case 2. From the assumption of the case, ωp − ε ≥ λ. Since

dTV(π, ν) ≤ ε/2, we have ω̂p ≥ ωp − ε/2, that implies ω̂p − ε/2 ≥ ωp − ε. Thus we obtain
ω̂p − ε/2 ≥ λ. Then

Pr [Z(p) < λT ] ≤ Pr
[
Z(p) <

(
ω̂p −

ε

2

)
T

]
= Pr

[
Z(p) <

(
1 − ε

2ω̂p

)
ω̂p · T

]
.

By using the Chernoff’s bound,

Pr
[
Z(p) <

(
1 − ε

2ω̂p

)
ω̂p · T

]
≤ e

−1
2
ω̂pT

(
ε

2ω̂p

)2

= e
− ε2

8ω̂p
T

≤ δ

|P |

where we use T
def.= ⌈−12ε−2 ln(δ/|P |)⌉. We obtain Claim.
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We conclude the proof by showing that S satisfies the inequality (5). If S(λ−ε)N ̸⊆ S, then
there exists a p ∈ S(λ−ε)N and p ̸∈ S. It implies that if S(λ−ε)N ̸⊆ S, then there exists a
p ∈ P satisfying that g(p) < (λ − ε)N and Z(p)/T ≥ λ. From Case 1 of the above Claim, the
probability of S(λ−ε)N ̸⊆ S satisfies that

Pr
[
S(λ−ε)N ̸⊆ S

]
≤

∑
p∈S(λ−ε)N

Pr[p ̸∈ S] ≤ |{p | g(p) < (λ − ε)N}| · δ

|P |
.

In a similar way, if S ̸⊆ S(λ+ε)N , then there exists a p ̸∈ S(λ+ε)N and p ∈ S. It implies that if
S ̸⊆ S(λ+ε)N , then there exists a p ∈ P satisfying that g(p) ≥ (λ + ε)N and Z(p)/T < λ. From
Case 2 of the above Claim, the probability of S ̸⊆ S(λ+ε)N satisfies that

Pr
[
S ̸⊆ S(λ+ε)N

]
≤

∑
p̸∈S(λ+ε)N

Pr[p ∈ S] ≤ |{p | g(p) ≥ (λ + ε)N}| · δ

|P |
.

Since the sets {p | g(p) < (λ − ε)N} and {p | g(p) ≥ (λ + ε)N} are disjoint, we obtain

Pr
[
S(λ−ε)N ⊆ Z ⊆ S(λ+ε)N

]
≥ 1 − |P | · δ

|P |
= 1 − δ.

�

6 Randomized Approximation Based on Counting Ideals

The time complexity of Algorithm 1, in the previous section, gets larger proportional to ε−2. As
we showed in Section 3, Problem 2 is #P-hard even when i is small as fractional power of N . For
small i, we have to set ε in Algorithm 1 very small as ε ≤ i/N , it makes Algorithm 1 inefficient.
In this section, we propose another approximation algorithm for the i-th LI, especially for a
small i. The algorithm approximately computes g(p) for each p ∈ P . Then, we use the following
oracle.

Oracle 2 (RAS for COUNTING IDEALS.) Given an arbitrary ε (0 < ε < 1), δ (0 < δ < 1),
and a poset P , Oracle returns Z ∈ Z+ which approximates |D(P )| satisfying

Pr
[
|Z − |D(P )||

|D(P )|
≤ ε

]
≥ 1 − δ.

Let γ2 denote the time required for Oracle 2. Oracle 2 is obtained from Oracle 1 in poly(ε−1,− ln δ, |P |, γ1)
time, more precisely O(γ1 |P |2ε−2 ln(|P |/δ)) with using a self-reducibility. See e.g. [10] about a
relationship between sampling and approximate counting.

An essential idea of approximation algorithm for the i-th LI is to compute an estimator ĝ(p)
for g(p) for every p ∈ P , and to find a set S ⊆ P satisfying ĝ(p) < k. Unfortunately, this simple
idea cannot find an ideal S ∈ D(P ), since an event of ĝ(p) < k ≤ ĝ(q) happen to a pair p ≺ q
with a non-negligible probability. The following algorithm gets rid of this issue.

Algorithm 2 (ε-estimator for the f(N)-th LI.)

1 Input: A poset P , ε (0 < ε < λ), δ (0 < δ < 1), a function3 f : Z++ → Z++.
2 Compute N̂ approximating |D(p)| by Oracle 2.
3 Set k = f(N̂)

(where k satisfies4 Pr[|k − |f(N)|| ≤ (ε/3) · |f(N)|] ≥ 1 − δ/(2|P |)).
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4 Set S := ∅.
5 While(∃p ∈ P \ S, s.t. q ∈ S (∀q ≺ p)){
6 Compute ĝ(p) approximating g(p) by Oracle 2

(where ĝ(p) satisfies Pr [|ĝ(p) − g(p)| ≤ (ε/3) · g(p)] ≥ 1 − δ/(2|P |)).
7 If ĝ(p) < k then S := S ∪ {p}.
8 }
9 Output S and halt.

Theorem 6.1 Algorithm 2 outputs an ideal S ∈ D(P ) and S satisfies

Pr
[
S⌊(1−ε)·f(N)⌋ ⊆ S ⊆ S⌈(1+ε)·f(N)⌉

]
≥ 1 − δ

in O(|P |γ2) time.

Proof of Theorem 6.1. The time complexity is easy to see. It is also easy to see that an
output of Algorithm 2 is an ideal of P , since p ∈ S implies that Algorithm 2 computed ĝ(p), that
is only when q ∈ P (∀q ≺ p). We show that S satisfies the inequality (6). From the condition of
Algorithm 2, k satisfies

Pr
[
|k − f(N)|

f(N)
>

ε

3

]
<

δ

2|P |
.

Then we obtain the following.

Claim 1 The probability that k > (1 + ε/3) · f(N) or k < (1− ε/3) · f(N) is less than δ/(2|P |).
Suppose we have values ĝ(p) for all p ∈ P , satisfying

Pr
[
|ĝ(p) − g(p)|

g(p)
≤ ε

3

]
≥ 1 − δ

2|P |
, (6)

and ĝ(p) coincident to the values in Algorithm 2 if it is computed. We show the following;

Claim 2 For any p ∈ P ,
Case 1. if g(p) ≥ (1 + ε) · f(N), the probability ĝ(p) ≤ (1 + (1/3)ε) · f(N) is less than δ/(2|P |),
and
Case 2. if g(p) ≤ (1 − ε) · f(N), the probability ĝ(p) ≥ (1 − (1/3)ε) · f(N) is less than δ/(2|P |).

In Case 1, from Inequation (6), with a probability at least 1 − δ/(2|P |),

ĝ(p) ≥
(

1 − 1
3
ε

)
·g(p) ≥

(
1 − 1

3
ε

)
·(1 + ε)·f(N)

≥
(

1 +
2 − ε

3
ε

)
·f(N) >

(
1 +

1
3
ε

)
·f(N)

hold. In Case 2, from Inequation (6), with a probability at least 1 − δ/(2|P |),

ĝ(p) ≤
(

1 +
1
3
ε

)
·g(p) ≤

(
1 +

1
3
ε

)
·(1 − ε)·f(N)

≤
(

1 − 2 + ε

3
ε

)
·f(N) <

(
1 − 1

3
ε

)
·f(N)

hold. We obtain the claim.
From Claim 1 and 2, we obtain the following (see Figure 4);

4We naturally assume that the function is a contraction mapping and nondecreasing, e.g., ⌊
√

z⌋, ⌈z1/c⌉,
⌈log(z)⌉, etc.

4If the function f is a contraction mapping and nondecreasing, the condition is satisfied when N̂ satisfies
Pr[|N̂ − |D(p)|| ≤ (ε/3) · |D(p)|] ≥ 1 − δ/(2|P |).

11
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Figure 4: A figure of the relationship between k and ĝ(p).

Claim 3 For any p ∈ P ,
Case 1. if g(p) ≥ (1 + ε) · f(N), then ĝ(p) < k with a probability less than δ/|P |, and
Case 2. if g(p) ≤ (1 − ε) · f(N), then ĝ(p) ≥ k with a probability less than δ/|P |.

Now we conclude the proof by showing (6). Algorithm 2 implies that if S(1−ε)·f(N) ̸⊆ S, then
there exists a p ∈ P satisfying g(p) < (1 − ε) · f(N), and exists a q ∈ P satisfying q ≺ p and
ĝ(q) < k. Note that q ≺ p means g(q) < g(p), thus the above claim can be simply transformed
into that if S(1−ε)·f(N) ̸⊆ S, then there exists a q ∈ P satisfying g(q) < (1 − ε) · f(N) and
ĝ(q) < k. From Case 1 of Claim 3, the probability of S(1−ε)·f(N) ̸⊆ S satisfies that

Pr
[
S(1−ε)·f(N) ̸⊆ S

]
≤

∑
p∈S(1−ε)·f(N)

Pr[p ̸∈ S]

≤ |{p | g(p) < (1 − ε)·f(N)}|· δ

|P |
.

In a similar way, if S ̸⊆ S(1+ε)·f(N), then there exists a p ̸∈ S(1+ε)·f(N) and p ∈ S. It implies that
if S ̸⊆ S(1+ε)·f(N), then g(p) ≥ (1 + ε) · f(N) and ĝ(p). From Case 2 of Claim 3, the probability
of S ̸⊆ S(1+ε)·f(N) satisfies that

Pr
[
S ̸⊆ S(1+ε)·f(N)

]
≤

∑
p̸∈S(1+ε)·f(N)

Pr[p ∈ S]

≤ |{p | g(p) ≥ (1 + ε)·f(N)}|· δ

|P |
.

Since the sets {p | g(p) < (1 − ε)·f(N)} and {p | g(p) ≥ (1 + ε)·f(N)} are disjoint, we obtain

Pr
[
S(1−ε)·f(N) ⊆ Z ⊆ S(1+ε)·f(N)

]
≥ 1 − |P | · δ

|P |
= 1 − δ.

�

7 Concluding Remarks

We gave randomized approximation schemes for the i-th GMSM using an almost uniform sampler
on ideals of a poset. The existence of a polynomial time almost uniform sampler on ideals
(or antichains) of a poset, or an FPRAS for counting, is open. Note that conversely if we
have a fully polynomial-time randomized approximation scheme for the i-th GMSM in a form
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such as Theorem 5.1 or 6.1, then we can obtain an FPRAS for counting ideals of a poset (see
Appendix D), and hence a polynomial time almost uniform sampler (see e.g. [10]).

In case that a rotation poset belongs to some special classes such as series-parallel, bounded
width, etc., then we can find the i-th GMSM exactly in polynomial time by Steiner’s result [22].
No results seem to be known on a characterization of preference lists whose rotation posets
belongs to such classes of polynomial time solvable, as far as we see. It is also open whether or
not Problems 1 and 2 are in NP.

Acknowledgment

The authors thank Professor Shin-Ichi Nakano for his helpful comment. The first author is
supported by Grant-in-Aid for Scientific Research.

References

[1] N. Bhatnagar, S. Greenberg, and D. Randall, Sampling stable marriages: why the spouse-
swapping won’t work, Proceedings of the nineteenth annual ACM-SIAM symposium on
Discrete algorithms (SODA 2008), 1223–1232.

[2] C. Blair, Every finite distributive lattice is a set of stable matchings, Journal of Combina-
torial Theory A, 37 (1984), 353–356.

[3] C.T. Cheng, The generalized median stable matchings: finding them is not that easy,
Proceedings of the 8th Latin American Theoretical Informatics (Latin 2008), 568–579.

[4] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Second Edition, Cam-
bridge University Press, 2002.

[5] D.P. Dubhashi, K. Mehlhorn, D. Rajan, and C.Thiel, Searching, sorting and randomised
algorithms for central elements and ideal counting in posets, Lecture Notes in Computer
Science, 761 (1993), 436–443 .

[6] D. Gale and L.S. Shapley, College admissions and the stability of marriage, The American
Mathematics Monthly, 69 (1962), 9–15.

[7] M.R. Garey and D.S. Johnson, A Guide to the Theory of NP-Completeness, W. H. Freeman,
1979.

[8] D. Gusfield and R.W. Irving, The Stable Marriage Problem, Structure and Algorithms,
The MIT Press, 1989.

[9] R.W. Irving and P. Leather, The complexity of counting stable marriages, SIAM Journal
on Computing, 15 (1986), 655–667.

[10] M. Jerrum, Counting, Sampling and Integrating: Algorithms and Complexity, ETH Zürich,
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A Proof of Theorem 3.6

Theorem 3.6. Suppose c (c ≥ 2) is an arbitrary constant. Given a poset R and an ideal
S ∈ D(R), then the problem whether or not S is the ⌈N1/c⌉-th LI of R is #P-hard, where
N = |D(R)|.

Proof. We reduce COUNTING IDEALS for a given poset P to our problem in a similar
way as the proof of Proposition 3.5. For the poset P and an arbitrary positive integer K,
we define R′ def.= (({x} ⊕ P ) ∪̇ ({y} ⊕ Q)) ⊕ Q′, where posets Q and Q′ satisfies |D(Q)| = K
and |D(Q′)| = ⌊(K + 1)c⌋ − (K + 1)2 + 1. From Lemma 3.3, Q and Q′ is constructible in
poly(log(Kc)) = poly(log K) time and space. Let N = |D(R′)|, then N = ⌊(K + 1)c⌋ − (K +
1)2 + (|D(P )| + 1)(K + 1). We define a function f : Z++ → Z++ by f(z) def.= ⌈z1/c⌉, then

f(N) =
⌈(
⌊(K + 1)c⌋ − (K + 1)2 + (|D(P )| + 1)(K + 1)

)1/c
⌉

=
⌈
(⌊(K + 1)c⌋ + (|D(P )| − K)(K + 1))1/c

⌉
. (7)

For each r ∈ R′, g(r), that is defined by (1), satisfies

g(x) = |D ({y} ⊕ Q) | = |D(Q)| + 1,

g(y) = |D ({x} ⊕ P ) | = |D(P )| + 1,

g(p) ≥ |D (({x} ⊕ P ) ∪̇ {y}) | = 2·g(x) (∀p ∈ P ),

g(q) ≥ |D (({y} ⊕ Q) ∪̇ {x}) | = 2·g(y) (∀q ∈ Q),

g(q′) ≥ g(q) ≥ 2·g(y) (∀q′ ∈ Q′).

Now we show that {y} is the f(N)-th LI of R when K satisfies |D(P )| < K ≤ 2|D(P )|. With
considering g(q) ≥ 2 ·g(y) for all q ∈ Q, {y} is the f(N)-th LI if g(y) < f(N), f(N) ≤ 2g(y),
and f(N) ≤ g(x) hold. These conditions are transformed with (7) into

|D(P )| + 1 <
⌈
(⌊(K + 1)c⌋ + (|D(P )| − K)(K + 1))1/c

⌉
, (8)⌈

(⌊(K + 1)c⌋ + (|D(P )| − K)(K + 1))1/c
⌉
≤ 2|D(P )| + 2, (9)⌈

(⌊(K + 1)c⌋ + (|D(P )| − K)(K + 1))1/c
⌉
≤ K + 1, (10)

respectively. It is easy to see that the condition (10) hold if |D(P )| < K. We show that the
condition (8) hold if |D(P )| < K. With considering that

f(N) =
⌈
(⌊(K + 1)c⌋ + (|D(P )| − K)(K + 1))1/c

⌉
≥

⌈
((K + 1)c − 1 + (|D(P )| − K)(K + 1))1/c

⌉
≥ ((K + 1)c − 1 + (|D(P )| − K)(K + 1))1/c ,

it is enough to show that (K + 1)c − 1 + (|D(P )| − K)(K + 1) − (|D(P )| + 1)c > 0 when
|D(P )| + 1 ≤ K and c ≥ 2. Then, with the following transformations

(K + 1)c − 1 + (|D(P )| − K)(K + 1) − (|D(P )| + 1)c

= (K + 1)c − (|D(P )| + 1)c + (|D(P )| − K)(K + 1) − 1

≥ (K + 1)⌊c⌋ − (|D(P )| + 1)⌊c⌋ + (|D(P )| − K)(K + 1) − 1
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= (K − |D(P )|)
(
(K + 1)⌊c⌋−1 + · · · + (|D(P )| + 1)⌊c⌋−1

)
+ (|D(P )| − K)(K + 1) − 1

> (K − |D(P )|)
(
(K + 1)⌊c⌋−1 + (|D(P )| + 1)⌊c⌋−1

)
+ (|D(P )| − K)(K + 1) − 1

= (K − |D(P )|)
(
(K + 1)⌊c⌋−1 − (K + 1)

)
+ (K − |D(P )|)(|D(P )| + 1)⌊c⌋−1 − 1

≥ 0,

we obtain the claim that the condition (8) hold if |D(P )| < K. The condition (9) hold if
|D(P )| ≤ K ≤ 2|D(P )|, since⌈

(⌊(K + 1)c⌋ + (|D(P )| − K)(K + 1))1/c
⌉

≤
⌈
⌊(K + 1)c⌋1/c

⌉
≤

⌈
((K + 1)c)1/c

⌉
= K + 1 < 2|D(P )| + 2.

Here consider the case of K ≤ |D(P )|, then the singleton {y} is never the f(N)-th LI of
R, in the same argument as the proof of Proposition 3.5. Thus, minimizing K for which {y}
is the f(N)-th LI of R, then the minimum K∗ is equal to |D(P )| + 1. In a similar way as the
proof of Proposition 3.5. |D(P )| is computed with checking if {y} is the f(N)-th LIs of R for
appropriate Ks, at most 2|P | times, as follows. We start from K = 2|P | and get K into halves,
until {y} is the f(N)-th LI. From the above discussions, we certainly obtain the case. Suppose
we get the case that {y} is the f(N)-th LI when K = K0. In the interval [1,K0], {y} is the
f(N)-th LI if, and only if, K ∈ (|D(P )|,K0]. Thus we can find K∗ = |D(P )| + 1 according to
the binary search strategy. �

B Randomized Approximation for Counting Ideals of a Poset

In this section, we give a randomized approximation scheme for counting ideals of a poset, on
the assumption of Oracle 1 that is almost uniform sampler for ideals of a poset. To begin with,
we describe an essential idea of our recursive algorithm.

Let a sequence p = p1, . . . , p|P | be a linear extension of the poset P ; that is pj ̸≽ pi for any

j < i. Let Pi
def.= {p1, . . . , pi} for i ∈ {1, . . . , |P |}, then pi is maximal in the poset Pi for every

i ∈ {1, . . . , |P |}. Now we consider the set D(Pi) of ideals of Pi for each i ∈ {1, . . . , |P |}. Let
D−(Pi) be a subset of D(Pi) defined by

D−(Pi)
def.= {S ∈ D(Pi) | pi ̸∈ S},

then it is easy to see that D−(Pi) = D(Pi−1) holds for each i ∈ {2, . . . , |P |} from the definition
of D−(Pi). Furthermore, we have |D−(Pi)|/|D(Pi)| ≥ 1/2, since for every S ∈ D(Pi) satisfying
pi ∈ S, there exists S′ def.= S \ {pi} and S′ satisfies S′ ∈ D(Pi) with considering pi is maximal in
Pi.

Now we describe an idea of recursion for counting D(P ). With considering the following
trivial transformation

|D(Pi)| =
|D(Pi)|
|D−(Pi)|

· |D−(Pi)|,

and considering the fact that |D−(Pi)| = |D(Pi−1)|, we have

|D(Pi)| =
|D(Pi)|
|D−(Pi)|

· |D(Pi−1)|
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for each i ∈ {2, . . . , |P |}. Thus recursively we obtain

|D(P )| =
|D(P|P |)|
|D−(P|P |)|

·
|D(P|P |−1)|
|D−(P|P |−1)|

· · · · · |D(P2)|
|D−(P2)|

· |D(P1)|,

and clearly |D(P1)| = 2 since P1 consists of a singleton. If we have a uniform sampler on D(Pi),
we can estimate |D−(Pi)|/|D(Pi)| by the Monte Carlo method, and the fact that |D−(Pi)|/|D(Pi)|
is sufficiently large, namely at least 1/2 in this case, ensures efficient estimation by a Monte Carlo.
This is the basic idea, but we need to take care of the influence to use approximate sampler.
The following is the whole description of a randomized approximation scheme.

Algorithm 3 (RAS for counting ideals of a poset with an almost uniform sampler.)

1 Input: A poset P , ε (0 < ε < 1), δ (0 < δ < 1).
2 Find a linear extension p := p1, . . . , p|P | of P .
3 For(i = |P |, i > 1, i −− ){
4 Set Pi := {p1, . . . , pi}, and set Zi := 0.

5 Repeat(T def.= 225|P |2ε−2 ln(2|P |/δ) times){
6 Generate X ∈ D(Pi) by Oracle 1 (where ν satisfies dTV(π, ν) ≤ ε

10|P |).
7 If pi ̸∈ X, then Zi := Zi + 1.
8 }
9 }
10 Set Z := 2

∏|P |
i=2(T/Zi), output Z, and halt.

Theorem B.1 Algorithm 3 outputs Z ∈ R++ in O(γ1|P |2ε−2 ln(|P |/δ)) time, and Z approxi-
mates |D(P )| satisfying

Pr
[
|Z − |D(P )||

|D(P )|
≤ ε

]
≥ 1 − δ.

Proof. The time complexity is easy to see, and we show the inequality in the following. We
define ωi

def.= |D−(Pi)|/|D(Pi)|, and ω̂i
def.=

∑
S∈D−(Pi)

ν(S); i.e., ω̂i is the probability that a
sample X according to the distribution ν satisfies pi ̸∈ X, hence an estimator for ωi.

Claim 1 For each i ∈ {2, . . . , n}, we have
(
1 − ε

5|P |

)
ωi ≤ ω̂i ≤

(
1 + ε

5|P |

)
ωi.

The definition of the total variation distance dTV (see Oracle 1 in Section 4) implies that |ω̂i −
ωi| ≤ dTV(π, ν). From the assumption of Algorithm, we have dTV(π, ν) ≤ ε/(10|P |), we have
|ω̂i − ωi| ≤ ε/(10|P |), that is transformed into

ωi − ε
10|P | ≤ ω̂i ≤ ωi + ε

10|P | .

With considering that wi ≥ 1/2, we have the following transformations

(r.h.s) = ωi + ε
10|P | =

(
1 + ε

10|P |ωi

)
ωi ≤

(
1 + ε

5|P |

)
ωi, and

(l.h.s) = ωi − ε
10|P | =

(
1 − ε

10|P |ωi

)
ωi ≥

(
1 − ε

5|P |

)
ωi,

hence we obtain the claim.

Claim 2 For each i ∈ {2, . . . , |P |}, we have Pr
[∣∣∣Zi

T − ω̂i

∣∣∣ ≥ ε
5|P | ω̂i

]
< δ

|P | .
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With the Chernoff bound,

Pr
[∣∣∣Zi

T − ω̂i

∣∣∣ ≥ ε
5|P | ω̂i

]
= Pr

[
|Zi − ω̂iT | ≥ ε

5|P | ω̂iT
]

< 2e
−

(
ε

5|P |

)2 1
3
· 225|P |2ε−2 ln(2|P |/δ) · ω̂i

= 2e−3ω̂i ln(2|P |/δ)

≤ 2e− ln(2|P |/δ)

= δ/|P |,

hence we obtain the claim.

Claim 3 For each i ∈ {2, . . . , |P |}, if
∣∣∣Zi

T − ω̂i

∣∣∣ ≤ ε
5|P | ω̂i, then

(
1 + ε

2|P |

)−1
≤ Zi

T · ω−1
i ≤(

1 + ε
2|P |

)
.

The hypothesis of the claim is transformed into(
1 − ε

5|P |

)
ω̂i ≤ Zi

T ≤
(
1 + ε

5|P |

)
ω̂i.

With combining Claim 1, we obtain(
1 − ε

5|P |

)2
ωi ≤ Zi

T ≤
(
1 + ε

5|P |

)2
ωi,

hence (
1 − ε

5|P |

)2
≤ Zi

T · ω−1
i ≤

(
1 + ε

5|P |

)2
.

With the following transformations

(r.h.s) =
(
1 + ε

5|P |

)2
= 1 +

(
2 + ε

5|P |

)
ε

5|P | ≤ 1 + 2.5ε
5|P | = 1 + ε

2|P | , and

(l.h.s) =
(
1 − ε

5|P |

)2
≥

(
1 + ε

5|P |

)−2
= (r.h.s)−1 ≥

(
1 + ε

2|P |

)−1
,

hence we obtain the claim.

Claim 4 Pr
[
(1 − ε)

∏|P |
i=2 ωi ≤

∏|P |
i=2

Zi
T ≤ (1 + ε)

∏|P |
i=2 ωi

]
≥ 1 − δ.

If
∣∣∣Zi

T − ω̂i

∣∣∣ ≤ ε
5|P | ω̂i hold for all i ∈ {2, . . . , |P |}, with multiplying Claim 3 for i ∈ {2, . . . , |P |},

we obtain (
1 +

ε

2|P |

)−(|P |−1)

≤
∏|P |

i=2
Zi
T∏|P |

i=2 ωi

≤
(

1 +
ε

2|P |

)|P |−1

.

With the following transformations

(r.h.s) =
(
1 + ε

2|P |

)|P |−1
≤

(
1 + ε

2(|P |−1)

)|P |−1
≤ 1 + ε, and

(l.h.s) =
(
1 + ε

2|P |

)−(|P |−1)
= (r.h.s)−1 ≥ (1 + ε)−1 ≥ 1 − ε,
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we obtain the fact that if
∣∣∣Zi

T − ω̂i

∣∣∣ ≤ ε
5|P | ω̂i hold for all i ∈ {2, . . . , |P |} then

(1 − ε)
|P |∏
i=2

ωi ≤
|P |∏
i=2

Zi

T
≤ (1 + ε)

|P |∏
i=2

ωi (11)

holds. For he probability of the hypothesis of (11), Claim 2 implies that

Pr
[
∃i ∈ {2, . . . , |P |} s.t.

∣∣∣∣Zi

T
− ω̂i

∣∣∣∣ ≥ ε

5|P |
ω̂i

]
< (|P | − 1) · δ

|P |
< δ,

hence we obtain the claim.

Now we conclude the proof. By multiplying 2 to (11) in Claim 4, we have

(1 − ε)|D(P )| ≤ Z ≤ (1 + ε)|D(P )|,

where Z is the output of Algorithm 3. With considering Claim 4, we obtain

Pr
[
|Z − |D(P )||

|D(P )|
≤ ε

]
≥ 1 − δ.

�

C #P-Hardness for Other Functions

Proposition C.1 Suppose a (0 < a ≤ 1/2) is an arbitrary constant. Given a poset R and an
ideal S ∈ D(R), then the problem whether or not S is the ⌈aN⌉-th LI of R is #P-hard, where
N = |D(R)|.

Proof. We reduce COUNTING IDEALS for a given poset P to our problem. We assume P
that |D(P )| is sufficiently as large as the constant 1/a. Given an arbitrary integer K, we define
R′′ def.= Q′′ ⊕ ((X ′ ⊕ X ⊕ P ) ∪̇ (Y ′ ⊕ Y ⊕ Q)) ⊕ Q′, where let K∗ def.= 2⌈lg K⌉+1 and

X = Y
def.= {e1} ∪̇ {e2} ∪̇ · · · ∪̇ {e⌈lg K⌉+2},

|D(X ′)| = |D(Y ′)| = K∗ + 1,

|D(Q)| = K,

|D(Q′′)| = (K∗ + K − 1)(3K∗ + K − 1) + 1, and
|D(Q′)| =

⌊
a−1(3K∗ + K − 1)2

⌋
− (3K∗ + K − 1)2 − (K∗ + K − 1)(3K∗ + K − 1) + 1.
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Then we show that Q′′ ⊕ (X ′ ∪̇ (Y ′ ⊕ Y )) is the f(N)-th LI of R when K satisfies |D(P )| < K.
At the beginning we have the followings

g(x) = |D (Q′′ ⊕ ((X ′ ⊕ X \ x) ∪̇ (Y ′ ⊕ Y ⊕ Q))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + 2K∗(3K∗ + K − 1) − 1

= (3K∗ + K − 1)2 (∀x ∈ X)

g(y) = |D (Q′′ ⊕ ((X ′ ⊕ X ⊕ P ) ∪̇ (Y ′ ⊕ Y \ y))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + (3K∗ + |D(P )| − 1)2K∗ − 1

= (3K∗ + K − 1)2 + 2K∗(|D(P )| − K) (∀y ∈ Y )

g(x′) < |D (Q′′ ⊕ (X ′ ∪̇ (Y ′ ⊕ Y ⊕ Q))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + K∗(3K∗ + K − 1) − 1

= (2K∗ + K − 1)(3K∗ + K − 1)

= (3K∗ + K − 1)2 − K∗(3K∗ + K − 1) (∀x′ ∈ X ′)

g(q) ≥ |D (Q′′ ⊕ ((X ′ ⊕ X ⊕ P ) ∪̇ (Y ′ ⊕ Y ))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + (3K∗ + |D(P )| − 1)3K∗ − 1

= (K∗ + K − 1)(3K∗ + K − 1) + 3K∗(3K∗ + K − 1) + 3K∗(|D(P )| − K)

= (4K∗ + K − 1)(3K∗ + K − 1) + 3K∗(|D(P )| − K) (∀q ∈ Q)

and

|D(R′′)| = (K∗ + K − 1)(3K∗ + K − 1) + (3K∗ + |D(P )| − 1)(3K∗ + K − 1)
+

⌊
a−1(3K∗ + K − 1)2

⌋
− (3K∗ + K − 1)2 − (K∗ + K − 1)(3K∗ + K − 1)

=
⌊
a−1(3K∗ + K − 1)2

⌋
+ (3K∗ + |D(P )| − 1)(3K∗ + K − 1) − (3K∗ + K − 1)2

=
⌊
a−1(3K∗ + K − 1)2

⌋
+ (|D(P )| − K)(3K∗ + K − 1).

Let f(N) def.= ⌈N1/c⌉, then we have

f(N) ≥ (3K∗ + K − 1)2 − 1 + a(|D(P )| − K)(3K∗ + K − 1), and
f(N) ≤ (3K∗ + K − 1)2 + a(|D(P )| − K)(3K∗ + K − 1) + 1.

Now we show that Q′′⊕(X ′ ∪̇ (Y ′⊕Y )) is the f(N)-th LI of R when K satisfies |D(P )| < K.
From the definition, Q′′ ⊕ (X ′ ∪̇ (Y ′ ⊕ Y )) is the f(N)-th LI if g(y) < f(N), f(N) ≤ g(q),
g(x′) < f(N), and f(N) ≤ g(x) hold. It is not difficult to see that g(q) ≥ g(x) and g(x′) ≤ g(y)
when K > |D(P )|, since K∗ ≥ K − |D(P )|. Thus the above conditions are satisfied if

(3K∗ + K − 1)2 + 2K∗(|D(P )| − K) < (3K∗ + K − 1)2 − 1 + a(|D(P )| − K)(3K∗ + K − 1), (12)
(3K∗ + K − 1)2 + a(|D(P )| − K)(3K∗ + K − 1) + 1 ≤ (3K∗ + K − 1)2,(13)

respectively. It is easy to see that (13) holds when K > |D(P )|. For (12), with considering
the facts that K∗ ≥ 2K and a ≤ 1/2, and remembering the assumptions that K∗/2 ≥ K >
|D(P )| ≥ 1/a,

(r.h.s) − (l.h.s) = a(|D(P )| − K)(3K∗ + K − 1) − 1 − 2K∗(|D(P )| − K)
≥ a(|D(P )| − K)(3.5K∗ − 1) − 2K∗(|D(P )| − K) − 1
> (K − |D(P )|)(2K∗ − 3.5aK∗) − 1
≥ 0.
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On the other hand, when K ≤ |D(P )|, clearly g(x) ≤ g(y) holds, and it implies that
Q′′ ⊕ (X ′ ∪̇ (Y ′ ⊕ Y )) is not a level ideal. Thus we search the minimum K satisfying that
Q′′⊕ (X ′ ∪̇ (Y ′⊕Y )) is the f(N)-th LI of R, according to a binary search strategy on K starting
from K = 2|P |, then eventually we find the minimum K = |D(P )| + 1. �

Proposition C.2 Suppose a (0 < a ≤ 1) and c (1 < c < 2) is an arbitrary constant. Given a
poset R and an ideal S ∈ D(R), then the problem whether or not S is the ⌈aN1/c⌉-th LI of R is
#P-hard, where N = |D(R)|.

Proof. We reduce COUNTING IDEALS for a given poset P to our problem. Given an ar-
bitrary integer K, we define R′′ def.= Q′′ ⊕ ((X ′ ⊕ X ⊕ P ) ∪̇ (Y ′ ⊕ Y ⊕ Q)) ⊕ Q′, where let
K∗ def.= max{2⌈1/(c−1)⌉, 2|P |} and

X = Y
def.= {e1} ∪̇ {e2} ∪̇ · · · ∪̇ {elg K∗+1},

|D(X ′)| = |D(Y ′)| = K∗ + 1,

|D(Q)| = K,

|D(Q′′)| = (K∗ + K − 1)(3K∗ + K − 1) + 1, and
|D(Q′)| =

⌊
a−c(3K∗ + K − 1)2c

⌋
− (3K∗ + K − 1)2 − (K∗ + K − 1)(3K∗ + K − 1) + 1.

Then we show that Q′′ ⊕ ((X ′ ⊕ X) ∪̇Y ′) is the f(N)-th LI of R when K satisfies |D(P )| > K.
At the beginning we have the followings

g(x) = |D (Q′′ ⊕ ((X ′ ⊕ X \ x) ∪̇ (Y ′ ⊕ Y ⊕ Q))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + 2K∗(3K∗ + K − 1) − 1

= (3K∗ + K − 1)2 (∀x ∈ X)

g(y) = |D (Q′′ ⊕ ((X ′ ⊕ X ⊕ P ) ∪̇ (Y ′ ⊕ Y \ y))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + (3K∗ + |D(P )| − 1)2K∗ − 1

= (3K∗ + K − 1)2 + 2K∗(|D(P )| − K) (∀y ∈ Y )

g(y′) < |D (Q′′ ⊕ ((X ′ ⊕ X ⊕ P ) ∪̇Y ′) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + (3K∗ + |D(P )| − 1)K∗ − 1

= (2K∗ + K − 1)(3K∗ + K − 1) + (|D(P )| − K)K∗ (∀y′ ∈ Y ′)

g(p) ≥ |D (Q′′ ⊕ ((X ′ ⊕ X) ∪̇ (Y ′ ⊕ Y ⊕ Q))) |
= (K∗ + K − 1)(3K∗ + K − 1) + 1 + 3K∗(3K∗ + K − 1) − 1

= (4K∗ + K − 1)(3K∗ + K − 1) (∀p ∈ P )

and

|D(R′′)| = (K∗ + K − 1)(3K∗ + K − 1) + (3K∗ + |D(P )| − 1)(3K∗ + K − 1)
+

⌊
a−1(3K∗ + K − 1)2

⌋
− (3K∗ + K − 1)2 − (K∗ + K − 1)(3K∗ + K − 1)

=
⌊
a−c(3K∗ + K − 1)2c

⌋
+ (3K∗ + |D(P )| − 1)(3K∗ + K − 1) − (3K∗ + K − 1)2

=
⌊
a−c(3K∗ + K − 1)2c

⌋
+ (|D(P )| − K)(3K∗ + K − 1).

Let f(N) def.= ⌈N1/c⌉, then we have

f(N) ≥ a
(
a−c(3K∗ + K − 1)2c − 1 + (|D(P )| − K)(3K∗ + K − 1)

)1/c
, and

f(N) ≤ a
(
a−c(3K∗ + K − 1)2 + (|D(P )| − K)(3K∗ + K − 1))

)1/c + 1.
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Now we show that Q′′⊕((X ′⊕X) ∪̇Y ′) is the f(N)-th LI of R when K satisfies |D(P )| < K ≤
2|P |. From the definition, Q′′ ⊕ ((X ′ ⊕X) ∪̇Y ′) is the f(N)-th LI if g(x) < f(N), f(N) ≤ g(p),
g(y′) < f(N), and f(N) ≤ g(y) hold. It is not difficult to see that g(p) ≥ g(y) and g(y′) ≤ g(x)
since K∗ ≥ 2|P | ≥ |D(P )|. Thus the above conditions are satisfied if

(3K∗ + K − 1)2 < a
(
a−c(3K∗ + K − 1)2c − 1 + (|D(P )| − K)(3K∗ + K − 1)

)1/c
, (14)

a
(
a−c(3K∗ + K − 1)2c + (|D(P )| − K)(3K∗ + K − 1))

)1/c + 1 ≤ (3K∗ + K − 1)2 + 2K∗(|D(P )| − K),(15)

respectively. It is easy to see that (14) holds when |D(P )| > K. For (15), with a transformation,
it is enough to show(

1 +
ac(3K∗ + K − 1)
(3K∗ + K − 1)2c

(|D(P )| − K))
)1/c

≤ 1 +
2K∗ − 1

(3K∗ + K − 1)2
(|D(P )| − K). (16)

It is not difficult to see that the inequality (16) holds if

ac(3K∗ + K − 1)
(3K∗ + K − 1)2c

≤ 2K∗ − 1
(3K∗ + K − 1)2

. (17)

For the inequality (17), with considering that K∗ ≥ 2|P | ≥ K and K∗ ≥ 21/(c−1),

(r.h.s.)
(l.h.s.)

=
(2K∗ − 1)(3K∗ + K − 1)2c

ac(3K∗ + K − 1)(3K∗ + K − 1)2

=
2K∗ − 1

ac(3K∗ + K − 1)3−2c

≥ 2K∗ − 1
(3K∗ + K − 1)3−2c

(since 1 > ac)

≥ 2K∗ − 1
(4K∗ − 1)3−2c

(since K∗ ≥ K)

≥ 2K∗ − 1
(4K∗)3−2c − 1

(since 3 − 2c < 1)

≥ 2K∗

(4K∗)3−2c

(
this actually holds if

2K∗

(4K∗)3−2c
≥ 1

)
≥ 2K∗

4(K∗)3−2c
(since 4 ≥ 43−2c)

≥ 1
2
(K∗)2c−2

≥ 1 (since K∗ ≥ 21/(c−1)),

hence we obtain (17), thus the inequality (15).
On the other hand, when K ≥ |D(P )|, clearly g(y) ≤ g(x) holds, and it implies that

Q′′ ⊕ ((X ′ ⊕ X) ∪̇Y ′) is not a level ideal. Thus we search the maximum K satisfying that
Q′′ ⊕ ((X ′ ⊕ X) ∪̇Y ′) is the f(N)-th LI of R, according to a binary search strategy on K
between |P | and 2|P |, then eventually we find the maximum K = |D(P )| − 1. �

D RAS for Counting Ideals by Using RAS for LI

In this section, we show that if we have a fully polynomial-time randomized approximation
scheme (FPRAS) for finding the median stable matching, then we have an FPRAS for counting
ideals of a poset. More precisely we assume the following oracle;
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Oracle 3 (FPRAS for LI) Given ε (0 < ε < 1), δ (0 < δ < 1), and a poset P , oracle outputs
an ideal S ∈ D(P ) in time polynomial in ε−1, ln δ−1 and |P |, and S satisfies

Pr
[
S⌈(1−ε)(N/2)⌉ ⊆ S ⊆ S⌊(1+ε)(N/2)⌋

]
≥ 1 − δ

where Si ∈ F(P ) denotes the i-th level ideal of P , and N = |D(P )|.

It is not difficult to see that Oracle 3 can be translated into a version of randomized approxi-
mation for finding the median stable matching.

Now we consider an FPRAS for counting ideals of a poset on the assumption of Oracle 3;
given ε (0 < ε < 1), δ (0 < δ < 1), and a poset P , we find an integer K which approximates
|D(P )| satisfying

Pr [(1 − ε)|D(P )| ≤ K ≤ (1 + ε)|D(P )|] ≥ 1 − δ (18)

by using Oracle 3.
For an integer K (1 ≤ K ≤ 2|P |), we define

R1
def.= P ⊕ {x} ⊕ Q1, and

R2
def.= Q2 ⊕ {y} ⊕ P,

where |D(Q1)| = (1 + ε/4)K and |D(Q2)| = (1− ε/4)K. Then we consider to find an integer K
for which a pair of ideals T1 ∈ D(R1) and T2 ∈ D(R2) output by Oracle 3 satisfies x ∈ T1 and
y ∈ T2 at the same instant. In the following, g1 and g2 denote the level functions (see (1), for
definition) on R1 and R2, respectively. Then we have g1(x) = |D(P )| and g2(y) = (1 − ε/4)K.

First, we show that if K < (1−ε)|D(P )|, then Oracle 3 with an input ε/32, δ/(2|P |) and R1,
outputs an ideal T1 ∈ D(R1) and Pr[x ∈ T1] < δ/(2|P |). For N1 = |D(R1)| = |D(P )|+(1+ε/4)K,
let f+

1 (N1)
def.= (1 + ε/32)(N1/2), then

f+
1 (N1) = (1 + ε/32)(N1/2)

= (1 + ε/32)(|D(P )| + (1 + ε/4)K)/2
≤ (1 + ε/32)(|D(P )| + (1 + ε/4)(1 − ε)|D(P )|)/2
≤ (1 + ε/32)(|D(P )| + (1 − 3ε/4)|D(P )|)/2
= (1 + ε/32)(1 − 3ε/8)|D(P )|
≤ (1 − 11ε/32)|D(P )|
≤ |D(P )|.

This implies that if K < (1− ε)|D(P )|, then g1(x) ≥ f+
1 (N), and hence x ̸∈ S⌊f+

1 (N1)⌋. Thus we
have Pr[x ∈ T1] ≤ δ/(2|P |) from the assumption of Oracle 3.

Next, we show that if K > (1 + ε)|D(P )|, then Oracle 3 with an input ε/32, δ/(2|P |)
and R2, outputs an ideal T2 ∈ D(R2) and Pr[y ∈ T2] < δ/(2|P |). For N2 = |D(R2)| =
(1−ε/4)K+|D(P )|), let f+

2 (N2)
def.= (1−ε/32)(N2/2). With considering that if (1+ε)|D(P )| < K

then |D(P )| < (1 + ε)−1K < (1 − ε/2)K, we have

f+
2 (N) = (1 + ε/8)(N2/2)

= (1 + ε/8)((1 − ε/4)K + |D(P )|)/2
≤ (1 + ε/8)((1 − ε/4)K + (1 − ε/2)K)/2
= (1 + ε/8)(1 − 3ε/8)K
≤ (1 − ε/4)K.
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This implies that if K > (1 + ε)|D(P )|, then g2(y) ≥ f+
2 (N2), and hence y ̸∈ S⌊f+

2 (N2)⌋. Thus
we have Pr[y ∈ T2] ≤ δ/(2|P |) from the assumption of Oracle 3.

From the above discussions, if we find an integer K for which a pair of ideals T1 ∈ D(R1)
and T2 ∈ D(R2) output by Oracle 3 satisfies x ∈ T1 and y ∈ T2, then K satisfies (1− ε)|D(P )| ≤
K ≤ (1 + ε)|D(P )| with a high probability.

Now we discuss we can certainly find such an integer K that x ∈ T1 (T1 ∈ D(R1)) and y ∈ T2

(T2 ∈ D(R2)) with a high probability. We show that if K ≥ (1− ε/8)|D(P )|, then Oracle 3 with
an input ε/32, δ/(2|P |) and R1, outputs an ideal T1 ∈ D(R1) and Pr[x ̸∈ T1] < δ/(2|P |). For
N1 = |D(R1)| = |D(P )| + (1 + ε/4)K, let f−

1 (N1)
def.= (1 − ε/32)(N1/2), then

f−
1 (N1) = (1 − ε/32)(N1/2)

= (1 − ε/32)(|D(P )| + (1 + ε/4)K)/2
> (1 − ε/32)(|D(P )| + (1 + ε/4)(1 − ε/8)|D(P )|)/2
> (1 − ε/32)(|D(P )| + (1 + 3ε/32)|D(P )|)/2
= (1 − ε/32)(1 + 3ε/64)|D(P )|
> (1 + (ε − ε2)/64)|D(P )|
> |D(P )|.

This implies that if K ≥ (1 − ε/8)|D(P )|, then g1(x) < f−
1 (N), and hence x ∈ S⌈f−

1 (N1)⌉. Thus
we have Pr[x ̸∈ T1] ≤ δ/(2|P |) from the assumption of Oracle 3.

Next we show that if K ≤ (1+ε/8)|D(P )|, then Oracle 3 with an input ε/32, δ/(2|P |) and R2,
outputs an ideal T2 ∈ D(R2) and Pr[x ̸∈ T2] < δ/(2|P |). For N2 = |D(R2)| = (1−ε/4)K+|D(P )|,
let f−

2 (N2)
def.= (1 − ε/32)(N2/2). With considering that if (1 + ε/8)|D(P )| ≤ K then |D(P )| >

(1 + ε/8)−1K > (1 − ε/8)K, we have

f−
2 (N) = (1 − ε/32)(N/2)

= (1 − ε/32)((1 − ε/4)K + |D(P )|)/2
> (1 − ε/32)((1 − ε/4)K + (1 − ε/8)K)/2
= (1 − ε/32)(1 − 3ε/16)K
> (1 − 7ε/32)K
> (1 − ε/4)K.

This implies that if K ≤ (1 + ε/8)|D(P )|, then g2(y) < f−
2 (N), and hence y ∈ S⌈f−

2 (N2)⌉. Thus
we have Pr[y ̸∈ T2] ≤ δ/(2|P |) from the assumption of Oracle 3.

From the above discussions, we can find an integer K for which a pair of ideals T1 ∈ D(R1)
and T2 ∈ D(R2) output by Oracle 3 satisfies x ∈ T1 and y ∈ T2 with a high probability. Finally,
we can find desired K after at most |P | iterations according to a binary search strategy on K
between 1 and 2|P |, and the probability to find such K is at least 1 − 2 · |P | · δ/(2|P |) = 1 − δ.
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