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Abstract
The competition graph of a digraph D is a graph which has the same vertex set as

D and has an edge between u and v if and only if there exists a vertex x in D such that
(u, x) and (v, x) are arcs of D. For any graph G, G together with sufficiently many
isolated vertices is the competition graph of some acyclic digraph. The competition
number k(G) of a graph G is defined to be the smallest number of such isolated
vertices. In general, it is hard to compute the competition number k(G) for a graph
G and it has been one of important research problems in the study of competition
graphs to characterize a graph by its competition number.

In this paper, we give new upper and lower bounds for the competition number
of a complete multipartite graph Km

n on m partite sets of the same size n by using
orthogonal Latin squares. Furthermore, we give better bounds for the competition
number of the complete tetrapartite graph K4

p for a prime number p.
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1 Introduction

The notion of a competition graph was introduced by Cohen [1] as a means of determining
the smallest dimension of ecological phase space (see also [2]). The competition graph
C(D) of a digraph D is a graph which has the same vertex set as D and an edge between
vertices u and v if and only if there is a vertex x in D such that (u, x) and (v, x) are arcs of
D. Roberts [9] observed that if G is any graph, G together with sufficiently many isolated
vertices is the competition graph of an acyclic digraph. Then he defined the competition
number k(G) of a graph G to be the smallest number k such that G together with k
isolated vertices added is the competition graph of an acyclic digraph.

For a digraph D, an ordering v1, v2, . . . , vn of the vertices of D is called an acyclic
ordering of D if (vi, vj) ∈ A(D) implies i < j. It is well-known that a digraph D is
acyclic if and only if there exists an acyclic ordering of D.

For a clique S of a graph G and an edge e of G, we say e is covered by S if both
of the endpoints of e are contained in S. An edge clique cover of a graph G is a family
of cliques such that each edge of G is covered by some clique in the family. The edge
clique cover number θe(G) of a graph G is the minimum size of an edge clique cover of
G. Dutton and Brigham [3] characterized the competition graphs of acyclic digraphs in
terms of an edge clique cover as follows.

Theorem 1.1 ([3]). A graph G is the competition graph of an acyclic digraph if and
only if there exist an ordering v1, . . . , vn of the vertices of G and an edge clique cover
{S1, ..., Sn} of G such that vi ∈ Sj implies i < j.

Roberts [9] observed that the characterization of competition graphs is equivalent to
the computation of competition numbers. It does not seem to be easy in general to com-
pute k(G) for all graphs G, as Opsut [7] showed that the computation of the competition
number of a graph is an NP-hard problem (see [4], [5] for graphs whose competition
numbers are known). It has been one of important research problems in the study of
competition graphs to characterize a graph by its competition number.

For some special graph families, we have explicit formulae for computing competition
numbers. For example, if G is a choral graph without isolated vertices then k(G) = 1,
and if G is a triangle-free connected graph then k(G) = |E(G)| − |V (G)| + 2 (see [7]).

We denote by Km
n the complete multipartite graph on m partite sets of the same size

n, and denote an n-set {1, ..., n} by [n]. From the above formulae, it follows that for a
complete graph Km

1 = Km we have k(Km
1 ) = 1, and for a complete bipartite graph K2

n

we have k(K2
n) = n2 − 2n + 2. For a graph K1

n = In without edges, we have k(K1
n) = 0.

However, for general m and n, it is so hard to compute k(Km
n ) since Km

n has many cycles
and many triangles.

Recently, Kim and Sano [6] gave the exact competition number of a complete tripartite
graph K3

n.
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Theorem 1.2 ([6], Theorem 1). For n ≥ 2, k(K3
n) = n2 − 3n + 4.

After then, Park et al. [8] gave the exact competition numbers of Km
2 and Km

3 .

Theorem 1.3 ([8]). For m ≥ 2, k(Km
2 ) = 2.

Theorem 1.4 ([8]). For m ≥ 3, k(Km
3 ) = 4.

So, now, we are interested in the case m ≥ 4 and n ≥ 4.
In this paper, we continue to study the competition numbers of complete multipartite

graphs Km
n on m partite sets of the same size n. We give new upper and lower bounds for

k(Km
n ) by using orthogonal Latin squares. Furthermore, we give a better upper bounds

for the competition number of a complete tetrapartite graph K4
p of the same size p which

is a prime number greater than 4 and also give a better lower bound for k(K4
n). This

paper is organized as follows. In Section 2, we give some bounds for k(Km
n ) by using

orthogonal Latin squares. In Section 3, we focus on complete tetrapartite graphs K4
p with

prime numbers p greater than 4. In Section 4, we make some remarks.

2 Bounds for the Competition Number of Km
n

In this section, we compute the edge clique cover number of Km
n with 3 ≤ m ≤ n + 1

when there exists a family L of mutually orthogonal Latin squares of order n such that
|L| ≥ m − 2 (see, for example, [10] for all undefined terms related to Latin squares).
Then we give some bounds for k(Km

n ) with 3 ≤ m ≤ n + 1 when there exists a family L
of mutually orthogonal Latin squares of order n such that |L| ≥ m − 2.

Suppose that there exists a family L of mutually orthogonal Latin squares of order n
such that |L| ≥ m−2. We denote by vl

j the jth vertex in the lth partite set for l ∈ [m] and
j ∈ [n]. By the hypothesis, there are m− 2 Latin squares of order n which are orthogonal
each other. Let L1, L2, . . . , Lm−2 be such Latin squares, and we denote the (i, j)-element
of Ll by Ll(i, j). Then, we define a set Sij of vertices for i, j ∈ [n] as follows:

Sij = {v1
i , v

2
j , v

3
L1(i,j), v

4
L2(i,j), . . . , v

m
Lm−2(i,j)}. (2.1)

(See Figure 1 for illustration.) We denote by S the collection of those Sij , that is,

S := {Sij | i, j ∈ [n]}. (2.2)

Theorem 2.1. Let m and n be positive integers such that 3 ≤ m ≤ n + 1. Suppose
that there exists a family L of mutually orthogonal Latin squares of order n such that
|L| ≥ m − 2. Then the following are true:

(1) S defined by (2.1) and (2.2) is an edge clique cover of Km
n of minimum size.
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L1 =

1 2 3 4 5
2 3 4 5 1
3 4 5 1 2
4 5 1 2 3
5 1 2 3 4

L2 =

1 2 3 4 5
3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3

L3 =

1 2 3 4 5
4 5 1 2 3
2 3 4 5 1
5 1 2 3 4
3 4 5 1 2

L4 =

1 2 3 4 5
5 1 2 3 4
4 5 1 2 3
3 4 5 1 2
2 3 4 5 1

Figure 1: For the orthogonal family of Latin squares {L1, L2, L3, L4}, S24 =
{v1

2, v
2
4, v

3
5, v

4
1, v

5
2, v

6
3}.

(2) θe(K
m
n ) = n2.

Proof. Since any pair of two vertices in Sij belongs to distinct partite sets of Km
n , the set

Sij is a clique of Km
n . Now take an edge e of Km

n . Then e = vl
jv

l′

j′ for some l, l′ ∈ [m]
and j, j′ ∈ [n] with l 6= l′. By symmetry, we may assume that l < l′.

If l = 1 and l′ = 2, then e is covered by Sjj′ . If l = 1 and l′ ≥ 3, then, by the
definition of a Latin square, there exists j∗ ∈ [n] such that Ll′−2(j, j

∗) = l. Then e is
covered by Sjj∗ .

If l = 2, then, by the definition of a Latin square again, there exists j∗ ∈ [n] such that
Ll′−2(j

∗, j) = l. Then e is covered by Sj∗j .
Now suppose that l ≥ 3. By the orthogonality of Latin squares, there exists i∗, j∗ ∈ [n]

such that Ll−2(i
∗, j∗) = j and Ll′−2(i

∗, j∗) = j′. Then e is covered by Si∗j∗ . Therefore
S := {Sij | i, j ∈ [n]} is an edge clique cover of Km

n .
It is easy to see that S has size n2. Thus θe(K

m
n ) ≤ n2.

Since any of edges joining a vertex in the 1st partite set and a vertex in the 2nd partite
set belongs to distinct cliques, it follows that θe(K

m
n ) ≥ n2. Hence we have θe(K

m
n ) = n2

and S is an edge clique number minimum size.
The statement (2) is an immediate consequence of (1).

It is a well-known theorem that for any n = pr, where p is a prime number and r
is a positive integer, there exists a complete orthogonal family of Latin squares of order
n. Since the size of a complete orthogonal family of Latin squares of order n is n − 1,
we have a family L of mutually orthogonal Latin squares of order n with |L| ≥ m − 2
if 3 ≤ m ≤ n + 1. Therefore the following corollary is an immediate consequence of
Theorem 2.1.

Corollary 2.2. If n is a prime power and 3 ≤ m ≤ n + 1, then θe(K
m
n ) = n2.
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For distinct cliques S and S ′ of a graph G, we say S and S ′ are edge-disjoint if
|S ∩ S ′| ≤ 1.

Corollary 2.3. Let m and n be positive integers such that 3 ≤ m ≤ n + 1. Suppose
that there exists a family L of mutually orthogonal Latin squares of order n such that
|L| ≥ m − 2. Let E be an edge clique cover of Km

n of minimum size. Then E consists of
exactly n2 cliques of size m which are edge disjoint each other.

Proof. Let E be an edge clique cover of Km
n of minimum size. By Theorem 2.1, we have

θe(K
m
n ) = n2. So we put E = {S1, ..., Sn2}.

Suppose that there exist cliques Si, Sj ∈ E such that |Si ∩ Sj| ≥ 2 and Si 6= Sj . Any
maximal clique of Km

n has size m. Now we count the number of edges which are covered
by E . The two cliques Si and Sj cover at most 2 ·

(
m
2

)
− 1 edges since |Si ∩ Sj| ≥ 2,

and E \ {Si, Sj} covers at most
(

m
2

)
(n2 − 2) edges. Thus the family E covers at most

2 ·
(

m
2

)
− 1 +

(
m
2

)
(n2 − 2) =

(
m
2

)
n2 − 1 edges of Km

n . On the other hand, we know that
|E(Km

n )| =
(

m
2

)
n2. This contradicts the hypothesis that E is an edge clique cover of Km

n .
Therefore any two distinct cliques in E are edge disjoint.

Now we show that |Si| = m holds for any i = 1, ..., n2. Since the size of a maximal
clique of Km

n is m, we have |Si| ≤ m for any i. Suppose that there exists Sj ∈ E
such that |Sj| ≤ m − 1. Then the number of edges which is covered by E is at most(

m
2

)
(n2 − 1) +

(
m−1

2

)
=

(
m
2

)
n2 − (m− 1) which is less than |E(Km

n )|. But it contradicts
the hypothesis that E is an edge clique cover of Km

n . Therefore any cliques in E have the
size m.

Theorem 2.4. Let m and n be positive integers such that 3 ≤ m ≤ n + 1. Suppose
that there exists a family L of mutually orthogonal Latin squares of order n such that
|L| ≥ m − 2. Then

k(Km
n ) ≤ n2 − n + 1.

Proof. Take S given in (2.2) which is an edge clique cover of Km
n by Theorem 2.1. Then

we define a digraph D as follows:

V (D) = V (Km
n ) ∪ {zij | i, j ∈ [n], i 6= n} ∪ {znn},

A(D) =
n−1⋃
i=1

n⋃
j=1

{(v, zij) | v ∈ Sij} ∪
n−1⋃
j=1

{(v, v1
j ) | v ∈ Snj}

∪ {(v, znn) | v ∈ Snn}.

Once we note that v1
n is the only vertex in the 1st partite set that is contained in

⋃n
j=1 Snj ,

it is not difficult to see that D is acyclic. It is obvious that

C(D) = Km
n ∪ {zij | i, j ∈ [n], i 6= n} ∪ {znn}.

Hence we have shown that k(Km
n ) ≤ n2 − n + 1.
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As we mentioned above, there exists a family L of mutually orthogonal Latin squares
of order n with |L| ≥ m − 2 if n is a prime power and 3 ≤ m ≤ n + 1. Therefore the
following corollary is an immediate consequence of Theorem 2.4.

Corollary 2.5. If n is a prime power and 3 ≤ m ≤ n + 1, then k(Km
n ) ≤ n2 − n + 1.

The following theorem gives a lower bound for k(Km
n ) with 3 ≤ m ≤ n + 1 when

there exists a family L of orthogonal Latin squares of order n such that |L| ≥ m − 2.

Theorem 2.6. Let m and n be positive integers such that 3 ≤ m ≤ n + 1. Suppose that
there exists a family L of orthogonal Latin squares of order n such that |L| ≥ m − 2.
Then

k(Km
n ) ≥ n2 − mn + m + 1.

Proof. By the definition of competition number, there exists an acyclic digraph D such
that C(D) = Km

n ∪ Ik, where k = k(Km
n ). By Theorem 1.1, there exist an ordering

v1, . . . , vmn+k of the vertices of Km×n∪Ik and an edge clique cover F = {S1, ..., Smn+k}
of Km

n ∪ Ik such that vi ∈ Sj ⇒ i < j. Note that F is also an edge clique cover of Km
n

and that S1 = ∅, S2 ⊆ {v1}, . . . , Sj ⊆ {v1, . . . , vj−1}.
Consider the first m vertices v1, . . . , vm. Then there are two cases: (1) any pair of the

vertices v1, ..., vm belongs to different partite sets; (2) there are at most m − 1 partite sets
that contain one of v1, ..., vm.

Firstly we consider the case in which any pair of vertices v1, ..., vm belongs to different
partite sets. Then S ′ = {v1, ..., vm} is a clique of Km

n by the definition of Km
n and S ′

contains each of S1, ..., Sm+1 since Sj ⊆ {v1, ..., vj−1} for j = 1, ...,m + 1. Therefore
F ′ := F ∪{S ′}\{S1, ..., Sm+1} is also an edge clique cover of Km

n . Now consider Sm+2.
We know that Sm+2 ⊆ {v1, ..., vm+1}.

If |S ′∩Sm+2| ≥ 2, then S ′ and Sm+2 are not edge-disjoint and, by Corollary 2.3, F ′ is
not an edge clique cover of Km

n of minimum size. If |S ′∩Sm+2| ≤ 1, then Sm+2 contains
at most one of v1, . . . , vm and so |Sm+2| ≤ 2 < m. Thus F ′ is not an edge clique cover
of Km

n of minimum size by Corollary 2.3. Thus, in both cases, we have

θe(K
m
n ) < |F ′| = mn + k − (m + 1) + 1.

By Theorem 2.4, we have θe(K
m
n ) = n2. Hence we have n2 < mn+k− (m+1)+1,

that is,
k(Km

n ) ≥ n2 − mn + m + 1.

Now consider the case where there are at most m − 1 partite sets that contain one of
v1, ..., vm. That is, there exists a partite set, say P , that does not contain any of v1, ..., vm.
To cover all the edges which have an endpoint in P , we need at least n2 cliques. Since
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Sj ∩ P = ∅ for j = 1, ...,m + 1, there are at least n2 + m + 1 distinct cliques in S and so
n2 + m + 1 ≤ mn + k. Therefore we have

k(Km
n ) ≥ n2 − mn + m + 1.

Hence we can conclude that k(Km
n ) ≥ n2 − mn + m + 1.

Corollary 2.7. If n is a prime power and 3 ≤ m ≤ n+1, then k(Km
n ) ≥ n2−mn+m+1.

3 The Competition Numbers of Complete Tetrapartite Graphs

In this section, for a prime number p, we give sharper bounds for the competition numbers
of complete tetrapartite graphs K4

p than the upper bound p2 − p + 1 and the lower bound
p2−4p+5 obtained in the previous section. Let Fp denote the finite field with p elements.

For p = 2 and p = 3, we have k(K4
2) = 2 and k(K4

3) = 4 by Theorem 1.3 and
Theorem 1.4. In the following, we consider the case p ≥ 5.

Theorem 3.1. Let K4
p be a complete tetrapartite graph whose partite sets have the same

size p which is a prime number greater than or equal to 5. Then we have

k(K4
p) ≤ p2 − 4p + 8.

Proof. Let {ai | i ∈ Fp}, {bi | i ∈ Fp}, {ci | i ∈ Fp}, and {di | i ∈ Fp} denote the 4
partite sets of K4

p . Note that since p is prime and p ≥ 5, there exists a pair of orthogonal
Latin squares of order p. Let

S = {{ai, bj, cj−i+1, dj−2i+2} | i, j ∈ Fp},

which is an edge clique cover of K4
p obtained from a pair of orthogonal Latin squares of

order p as given in (2.2). Note that |S| = p2 and any two of cliques in S are edge-disjoint
by Corollary 2.3.

Now we label all the cliques in S as follows. For 1 ≤ i ≤ 7, we put Si as

S1 = {a1, b1, c1, d1}, S2 = {a1, b2, c2, d2},
S3 = {a2, b3, c2, d1}, S4 = {a1, b3, c3, d3},
S5 = {a2, b2, c1, dp}, S6 = {a2, b4, c3, d2}, S7 = {a3, b4, c2, dp}.

For 8 ≤ i ≤ 3p − 2, we put Si as

S8 = {a3, b3, c1, dp−1}, S9 = {a2, b1, cp, dp−1}, S10 = {a1, bp, cp, dp},
S11 = {a3, b2, cp, dp−2}, S12 = {a2, bp, cp−1, dp−2}, S13 = {a1, bp−1, cp−1, dp−1},
S14 = {a3, b1, cp−1, dp−3}, S15 = {a2, bp−1, cp−2, dp−3}, S16 = {a1, bp−2, cp−2, dp−2},
S17 = {a3, bp, cp−2, dp−4}, S18 = {a2, bp−2, cp−3, dp−4}, S19 = {a1, bp−3, cp−3, dp−3},

...
S3p−7 = {a3, b8, c6, d4}, S3p−6 = {a2, b6, c5, d2}, S3p−5 = {a1, b5, c5, d5},
S3p−4 = {a3, b7, c5, d3}, S3p−3 = {a2, b5, c4, d3}, S3p−2 = {a1, b4, c4, d4}.
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More precisely, we put

S3t−1 = {a3, bp+6−t, cp+4−t, dp+2−t},
S3t = {a2, bp+4−t, cp+3−t, dd+2−t},

S3t+1 = {a1, bp+3−t, cp+3−t, dp+3−t}

for 3 ≤ t ≤ p − 1, where all the indices are reduced to modulo p.
Furthermore, if p ≥ 7, then we put Si for 3p − 1 ≤ i ≤ 4p − 8 as

Si = {a4, bi+2, ci−1, di−4}.

Then there are p2−4p+8 cliques in S\{S1, ..., S4p−8} and we label them as T1, ..., Tp2−4p+8

arbitrarily. (Note that, in the case p = 5, 4p − 8 = 12 = 3p − 3. )
Now we label the vertices of K4

p in the following way. We label a1, b1, c1, d1 in S1 as
v1, v2, v3, v4. Then label the vertices b2, c2, d2 in S2 \ S1 as v5, v6, v7. Inductively label
the vertices of Si \

⋃i−1
t=1 St in alphabetical order as vj+1, . . . , vj+` where j =

∣∣∣⋃i−1
t=1 St

∣∣∣
and ` =

∣∣∣Si \
⋃i−1

t=1 St

∣∣∣. That is, we label the vertices of K4
p

a1, b1, c1, d1, b2, c2, d2, a2, b3, c3, d3, dp, b4, a3,
dp−1, cp, bp, dp−2, cp−1, bp−1, . . . , d4, c5, b5,
c4, a4, a5, . . . , ap−1, ap

as v1, v2, ..., v4p. Since S7 = {c2, dp, b4, a3} = {v6, v12, v13, v14} and
∣∣∣Si \

⋃i−1
t=1 St

∣∣∣ = 1

for 8 ≤ i ≤ 4p − 8, it holds that

Si ⊆ {v1, v2, . . . , vi+7} (3.1)

for 1 ≤ i ≤ 4p − 8. We define a digraph D as follows.

V (D) = V (K4
p) ∪ {z1, z2, . . . , zp2−4p+8},

A(D) =

4p−8⋃
i=1

{(x, vi+8) | x ∈ Si} ∪
p2−4p+8⋃

i=1

{(x, zi) | x ∈ Ti}.

Then D is acyclic by (3.1). The following statements are equivalent:

• uv ∈ E(C(D));

• There exits w ∈ V (D) such that (u,w) ∈ A(D) and (v, w) ∈ A(D);

• There exists w ∈ V (D) such that {u, v} ⊂ Si and w = vi+8 for some i ∈
{1, . . . , 4p− 8} or that {u, v} ⊂ Tj and w = zj for some j ∈ {1, . . . , p2 − 4p + 8};
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• {u, v} ⊂ Si for some i ∈ {1, . . . , 4p−8}, or {u, v} ⊂ Tj for some j ∈ {1, . . . , p2−
4p + 8};

• uv ∈ E(K4
p).

Thus E(C(D)) = E(K4
p) and so C(D) = K4

p ∪ {z1, z2, . . . , zp2−4p+8}. Hence we have
k(K4

p) ≤ p2 − 4p + 8.

Next we give a lower bound for the competition numbers of complete tetrapartite
graph. The following theorem does not require that the size of the partite sets of a com-
plete tetrapartite graph is prime.

Theorem 3.2. Let K4
n be a complete tetrapartite graph whose partite sets have the same

size n with n ≥ 4. Then we have

k(K4
n) ≥ n2 − 4n + 6.

Proof. We put k = k(K4
n) for convenience. Let D be an acyclic digraph such that

C(D) = K4
n ∪ Ik and let v1, v2, . . . , v4n+k be an acyclic ordering of the vertices of D. Let

F = {N−
D (v) | v ∈ V (D)} where N−

D (v) denotes the set {w ∈ V (D) | (w, v) ∈ A(D)}
of in-neighbors of a vertex v in a digraph D. By the definition, N−

D (v) forms a clique
in C(D) and so F is an edge clique cover of K4

n. Then since v1, . . . , v4n+k is an acyclic
ordering of the vertices of D, we have

N−
D (vi) ⊆ {v1, ..., vi−1}.

Let Ei be the set of edges of K4
n covered by the cliques N−

D (vi). We define e1 as the
number of edges in E1 and ei (i ≥ 2) as the number of edges in Ei \ ∪i−1

j=1Ej . Since F is
an edge clique cover of K4

n,

4n+k∑
i=1

ei =

∣∣∣∣∣
4n+k⋃
i=1

Ei

∣∣∣∣∣ = |E(K4
n)| = 6n2.

Let U7 = {v1, v2, . . . , v7} and nl = |Pl ∩ U7| for l ∈ {1, 2, 3, 4}, where P1, P2, P3, P4

denote the 4 partite sets of K4
n. Without loss of generality, we may assume that n1 ≥

n2 ≥ n3 ≥ n4. Since n1 + n2 + n3 + n4 = 7, we have n4 = 0 or n4 = 1.
Suppose that n4 = 0. Then we need n2 cliques to cover all the edges incident to

some vertex in P4. Since P4 ∩ N−
D (vi) = ∅ for each i ∈ {1, . . . , 8}, it follows that

n2 + 8 ≤ |F| = 4n + k, which implies k ≥ n2 − 4n + 8 > n2 − 4n + 6.
Now we suppose that n4 = 1. Then there are three possibilities for (n1, n2, n3, n4),

that is, (4, 1, 1, 1), (3, 2, 1, 1), and (2, 2, 2, 1). We show that
∑8

i=1 ei ≤ 17 in each case.
Since N−

D (vi) ⊆ U7 for any i ∈ {1, . . . , 8}, it follows that E1 ∪ ...∪E8 ⊆ E(K4
n[U7]) and

thus
∑8

i=1 ei ≤ |E(K4
n[U7])|, where K4

n[U7] denotes the subgraph of K4
n induced by U7.
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If (n1, n2, n3, n4) = (4, 1, 1, 1), then |E(K4
n[U7])| = 15 and so

∑8
i=1 ei ≤ 15.

If (n1, n2, n3, n4) = (3, 2, 1, 1), then |E(K4
n[U7])| = 17 and so

∑8
i=1 ei ≤ 17.

Suppose that (n1, n2, n3, n4) = (2, 2, 2, 1). Then |E(K4
n[U7])| = 18. Since

k(K4
n[U7]) ≥ min{θv(NK4

n[U7](v)) | v ∈ U7} = 2

(see [7], Proposition 7, for this inequality), the set {N−
D (vi) | i ∈ {1, . . . , 8}} cannot cover

all the edges in K4
n[U7]. Otherwise, we have k(K4

n[U7]) ≤ 1, which is a contradiction.
Therefore

∑8
i=1 ei ≤ 18 − 1 = 17.

Since the size of maximal cliques in K4
n is 4, we have ei ≤ |Ei| ≤

(
4
2

)
= 6 for each i.

Therefore it holds that

6n2 =
4n+k∑
i=1

ei =
8∑

i=1

ei +
4n+k∑
i=9

ei ≤ 17 + 6(4n + k − 8),

which implies n2 − 4n + 6− 5
6
≤ k. Since k is an integer, we have n2 − 4n + 6 ≤ k.

Corollary 3.3. If p is a prime number greater than or equal to 5, then

p2 − 4p + 6 ≤ k(K4
p) ≤ p2 − 4p + 8.

4 Concluding Remarks

In this paper, we gave upper and lower bounds for the competition number of a complete
multipartite graph Km

n with a prime power n and 3 ≤ m ≤ n + 1. Furthermore we gave
better bounds for the competition number of a complete tetrapartite graph.

We conclude this paper with leaving the following questions for further study.

• Give the exact value of the competition number of a complete tetrapartite graph K4
p

with a prime number p ≥ 5.

• Give the exact values or better bounds for the competition numbers of complete
multipartite graphs Km

n .
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