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1 Introduction

A K3 surface is a simply connected compact complex surface whose canonical bundle is trivial.

Every Enriques surface appears as a quotient of a K3 surface by a fixed-point-free (shortly, free)

involution. Theoretically, to consider an Enriques surface is equivalent to consider the pair of the

covering K3 surface and the free involution. For example, the period map for Enriques surfaces

is constructed under this description. But the properties of free involutions on a fixed K3 surface

are rather unclear to us. The existence is already a special property, their geometric realizations

and the isomorphism classes of the quotient Enriques surfaces are other problems.

For a fixed K3 surface X, two quotient Enriques surfaces are isomorphic if and only if the two

free involutions are conjugate in Aut(X). In [16] it is shown that the number of the conjugacy

classes of free involutions (and more generally, of finite subgroups) are finite. There this number,

i.e., the number of isomorphism classes of quotient Enriques surfaces, is computed for K3 surfaces

with Picard number ρ = 11 or for Kummer surfaces associated with the product of two elliptic

curves whose periods are very general.

The aim of this paper is to study fixed-point-free involutions on surfaces studied in [11, 12].

Let C be a smooth projective curve of genus 2. Its Jacobian variety J(C) is the abelian surface

parametrizing divisor classes on C of degree 0. The quotient surface J(C)/{±1J(C)} has 16

nodes and can be embedded into P3 as a quartic hypersurface. We call it the Kummer quartic

surface associated with C and denote by Km(J(C)) =: X. The minimal desingularization

Km(J(C)) =: X of Km(J(C)) is called the Jacobian Kummer surface associated with C, which

is a K3 surface. X is Picard-general if the Picard number of X equals 17, the minimum possible

value. In what follows, X will always be a Picard-general Jacobian Kummer surface except for

Sections 2 and 4.

In [13], Mukai observed that there exist three kinds of free involutions on X.

• A switch associated with an even theta characteristic β.

• A Hutchinson-Göpel (shortly HG) involution associated with a Göpel tetrad G.

• A Hutchinson-Weber (shortly HW) involution associated with a Weber hexad W .
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Essentially these automorphisms date back more than a century, but their freeness are found

only recently in comparison. Mukai studied HG involutions in connection with the numeri-

cally reflective involutions of Enriques surfaces. Also he conjectured that these are the all free

involutions on X. In this paper we prove the following theorem and confirm the conjecture.

Theorem 1.1. On a Picard-general Jacobian Kummer surface X, there are exactly 31 = 10 +

15 + 6 free involutions up to conjugacies in Aut(X). 10 are switches, 15 are HG involutions and

6 are HW involutions.

In [12], Kondo proved that Aut(X) is generated by 32 translations and switches, 32 projec-

tions and correlations, 60 HG involutions, and 192 Keum’s automorphisms. One point of the

proof was that 192 Keum’s automorphisms did not correspond in one-to-one way to the 192

facets of the polyhedral introduced by Borcherds and Kondo. Moreover they had infinite order

while the others had order 2. In this respect, it can be expected that there exist 192 involutions

which correspond in one-to-one way to the 192 facets of the polyhedral and together with the

32 + 32 + 60 involutions they generate Aut(X). In fact, the HW involutions work well.

Theorem 1.2. Aut(X) is generated by the following involutions: translations, switches, projec-

tions, correlations, HG involutions and HW involutions.

This is a biproduct of the proof of Theorem 1.1.

The proof of Theorem 1.1 is given in the following way. In Section 2 we introduce an

invariant of a free involution, called a patching subgroup, which is a subgroup of ANS(X) =

NS(X)∗/NS(X). This subgroup appears naturally in the light of Nikulin’s theory of lattices [15].

Under some condition, we can show the invariance of the patching subgroup under conjugations.

Section 3, Proposition 3.4 shows conversely two free involutions are conjugate if their patching

subgroups are the same, when X is a Picard-general Jacobian Kummer surface. Simultaneously

we see that X has no more than 31 non-isomorphic Enriques quotients. These two Sections reduce

the proof of Theorem 1.1 to concrete computations of patching subgroups of free involutions

itemized above. The occurence of 31 distinct patching subgroups shows Theorem 1.1. The

computations are worked out in Sections 5-7. The result shows that the generators of patching

subgroups are expressed in terms of the classical notions. It is summarized as follows.

In the switch case, let β be an even theta characteristic and σβ be the switch. β corresponds

to a pair of Rosenhain subgroups R1, R2. Then the patching subgroup Γσβ
is cyclic of order 4

and generated by

H/4 +
∑

α∈R1

Nα/2.

Of course we obtain the same group after replacing R1 by R2 in this case.

In the HG involution case, let G be a Göpel tetrad and σG be the HG involution. Then the
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patching subgroup ΓσG is 2-elementary abelian of order 4 and generated by

H/2 and
∑
α∈G

Nα/2.

We remark that this result of HG involution case also follows from the computations of [13].

In the HW involution case, let W be a Weber hexad and σW be the HW involution. Then

the patching subgroup ΓσW is cyclic of order 4 and generated by

H/4 +
∑
α∈W

Nα/2.

The divisors H,Nα ∈ NS(X) and also the classical notions appeared here will be defined in

Section 4, where we recall the basic properties of Jacobian Kummer surfaces. After fixing the

basis of ANS(X), we can easily check that there are appearing 31 distinct patching subgroups.

Acknowledgements: The author expresses his sincere gratitude to Professor Shigeru Mukai.

He suggested using Torelli theorem for Enriques surfaces in proving Proposition 2.1, which was

a better method of counting than that of [16] and an important step for the computation in this

paper. He explained his study of [13] in process and led the author to his conjecture.

Financial support has been provided by the Research Fellowships of the Japan Society for

the Promotion of Science for Young Scientists.

Notations: We refer the readers to [15] for the basic properties of the finite quadratic form

(AL, bL, qL) associated with an even nondegenerate lattice L. By definition, AL is the finite

abelian group L∗/L, bL : AL × AL → Q/Z is the symmetric bilinear form and qL : AL → Q/2Z
is the quadratic form, both naturally induced from that of L. Usually we denote finite forms by

(AL, qL), omitting bL, or only by AL.

The hyperbolic plane is denoted by U , the root lattices Al, Dm, En are considered to be

negative definite. The rank one lattice 〈2n〉 is also used in this paper. On finite forms, u(2) is

the associated form of the lattice U(2), 〈1/2n〉 is that of 〈2n〉. The set of generators {e, f} of

u(2) satisfying

q(e) = q(f) = 0, b(e, f) = 1/2

is called the standard generator.

For a lattice T and k = Q, C we denote the scalar extension by Tk. If T is a lattice and TC

is equipped with a Hodge structure, then AutHodge(T ) is a subgroup of O(T ) whose elements

preserve the Hodge decomposition.

2 The method of counting

In this section X is any K3 surface. Let σ be a free involution on X. The (−1)-eigenspace

of the action of σ on NS(X) is denoted by K. Then it is well-known that K is negative
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definite, contains no (−2)-element and the primitive hull of K ⊕ TX in H2(X, Z) is isometric to

U ⊕ U(2) ⊕ E8(2) =: N . We choose a marking φ : K ⊕ TX → N for this isometry.

The nonzero global holomorphic 2-form ωX on X determines via φ a point in D(N)/O(N),

which is the period of the Enriques surface Y := X/σ, where

D(N) := {Cω ∈ Plines(NC)|ω ∈ N ⊗ C, ω · ω = 0, ω · ω > 0}

is the (two copies of) bounded symmetric domain of type IV associated to lattice N of signature

(2, 10). Obviously this period is independent of the choice of φ and the Torelli theorem of

Enriques surfaces says that this point determines the isomorphism class of Y uniquely.

Conversely given a primitive embedding φ : TX → N such that the orthogonal complement K

is free from (−2)-elements, by the surjectivity there exists an Enriques surface Y whose period is

exactly [φ(CωX)]. If ρ(X) ≥ 12 then [10, Theorem 1] shows that X is isomorphic to the universal

double cover of Y . Even if ρ(X) ≤ 11 the same holds, whose proof is in [17].

Thus we have shown

Proposition 2.1. There is a one-to-one correspondence between the sets

{Enriques quotients of X}/(isomorphisms)

and {
Primitive embeddings φ : TX → N

such that K = T⊥
X contains no (−2)−elements

} /
(Hodge isometries of N),

where for each φ we equip N with a Hodge structure induced from that of TX by φ.

In the following, we identify K ⊕ TX with N by φ. By [15], there are subgroups ΓK ⊂ AK

and ΓTX
⊂ ATX

and a sign-reversing isometry ϕ : ΓK
∼→ ΓTX

such that N is the sublattice of

KQ ⊕ TX,Q generated by K, TX and {(x, ϕ(x))|x ∈ ΓK}.

Definition 2.2. The patching subgroup Γσ of the free involution σ is the inverse image of ΓTX

by the natural sign-reversing isometry ANS(X)
∼→ ATX

.

Under a condition, Γσ is an invariant of a conjugacy class which is very computable.

Proposition 2.3. If AutHodge(TX) = {± id}, then Γσ depends only on the isomorphism class of

the quotient Enriques surface.

Proof. By Proposition 2.1, conjugate free involutions induce on N an isometric Hodge structure.

Any Hodge isometry of N preserves K = ω⊥
X and hence TX . Thus it induces ± id on TX and

preserves the subgroup ΓTX
.

Remark 2.4. The condition above is weak. It is true if ρ(X) is odd, see [12, p597], or even if

ρ(X) is even, it is true if X is very general in the period domain ([16, Proposition 3.1]).
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In general there are free involutions not conjugate each other but with the same Γσ. However

in the Picard-general Jacobian Kummer case, Γσ completely classifies free involutions. This will

be shown in the next section.

The computation of Γσ is done by

Lemma 2.5. Let σ,K as above. Then

Γσ = {[x] ∈ NS(X)∗/NS(X)|∃[y] ∈ K∗/K, x − y ∈ NS(X)}.

Proof. Let ρ : ANS(X) → ATX
be the canonical isomorphism. Then ρ([x]) = [z] is equivalent to

x + z ∈ H2(X, Z). Since ΓTX
= {[z] ∈ T ∗

X/TX |∃[y] ∈ K∗/K, y + z ∈ N},

Γσ = {[x]|ρ([x]) ∈ ΓTX
}

= {[x] ∈ NS(X)∗/NS(X)|∃[y] ∈ K∗/K, x − y ∈ NS(X)}.

This is what we need.

3 Invariants of free involutions

Let C be a genus 2 curve, J(C) its Jacobian and Km(J(C)) = X the associated Jacobian

Kummer surface as in the Introduction. As is well-known, J(C) contains C as a theta divisor:

Θ = {[p − p0]|p ∈ C} ⊂ J(C), p0 ∈ C.

Hence rank NS(J(C)) ≥ 1 and rankNS(X) ≥ 17 holds. When we have the equality, we call

X Picard-general. In this case, since TJ(C) = U⊕2 ⊕ 〈−2〉 we have TX = U(2)⊕2 ⊕ 〈−4〉 and

NS(X) = U ⊕ D⊕2
4 ⊕ D7.

For simplicity, we put T := TX . Suppose we are given a primitive embedding of T into N

such that the orthogonal complement is free from (−2)-elements, as in Proposition 2.1. First we

determine the orthogonal complement.

Proposition 3.1. The lattice K = T⊥
X is isometric to E7(2).

Proof. Consider the unique embedding of N into the abstract K3 lattice L. The orthogonal

complement is denoted by M , M ' U(2) ⊕ E8(2). By [15], we have the following isomorphism

of discriminant quadratic forms:

−qK ' (qM ⊕ qT |Γ⊥)/Γ (3.1)

where Γ is the pushout (i.e. the graph) of a sign-reversing isometry of subgroups ΓM ⊂ AM and

ΓT ⊂ AT .

For a finite quadratic form (A, q), we denote the quadratic form induced on the 2-torsion

subgroup A2 = {x ∈ A|2x = 0} by (A2, q2). Note that even if q is nondegenerate, q2 may be

degenerate.
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Put #Γ = 2a. In our equality (3.1), AM is already 2-elementary and ΓT is contained in

(AT )2. This shows a ≤ 5 = l2(AT ), where l2 denotes the number of minimal generators of the

2-Sylow subgroup of AT .

Also it follows

((AM ⊕ AT )2|Γ⊥)/Γ ⊂ (AM ⊕ AT |Γ⊥)/Γ = AK , (3.2)

since Γ is 2-elementary. (AM ⊕ AT )2 has a radical of order 2 contained in (AT )2. Since Γ is a

graph, this radical is not contained in Γ. This shows that #((AM ⊕ AT )2|Γ⊥) = 215−a. Thus

the order of the left-hand-side of (3.2) is 215−2a. Since K is of rank 7, we have 15 − 2a ≤ 7 and

hence a = 4, 5.

We show that if a = 5 then K contains (−2)-elements and contradicts vthe assumption. For

this, first note that in this case ΓT = (AT )2 is uniquely determined and the embedding of ΓT in

AM ' u(2)⊕5 is unique up to isomorphism by Witt’s theorem. So we can compute qK directly

and get qK ' u(2)⊕2 ⊕ 〈1/4〉. From this we see that there are inclusions K ⊂ K ′ ⊂ 〈−1〉⊕7 such

that K ′ is an even lattice, [K ′ : K] = 4 and [〈−1〉⊕7 : K ′] = 2. By the definition of D7, K ′ ' D7.

Consider the Dynkin diagram of D7 and take a subgraph isomorphic to A6 with vertices e1, · · · e6

in this order. Put f0 = 0, fj = e1 + · · · + ej , 1 ≤ j ≤ 6. Any difference of two of these seven

elements have self-intersection (−2). If K has no (−2)-elements, then {fj}0≤j≤6 cannot be in

the same residue class of K ′/K. Then we must have [K ′ : K] ≥ 7 and contradiction.

Thus we obtain a = 4. From (3.2), we see that #(AK)2 ≥ 27. It follows that K(1/2) is an

integral (may be odd) lattice and detK(1/2) = −2. By assumption, the minimal norm of the

positive definite lattice K(−1/2) is greater than 1. It follows from [3, p400, Table 15.8] that

K(1/2) ' (〈−2〉⊥ in E8) ' E7.

The following nature of the lattice K = E7(2) will be used.

Lemma 3.2. The canonical homomorphism σ : O(K) → O(qK) is surjective.

Proof. The same property for the lattice E8(2) is known by [1]. We reduce the lemma to this case.

Firstly, we know the orders of the two groups. By [2], #O(E7(2)) = #O(E7) = 210 · 34 · 5 · 7. On

the other hand, we can easily compute the order of O(qK) as #O(qK) = #O(u(2)⊕2⊕〈−1/4〉) =

210 · 34 · 5 · 7 (c.f. Lemma 3.3). Thus it is enough to show that σ is injective.

We take a (−4)-element r of E8(2) and identify K with r⊥. Obviously g ∈ kerσ can be

extended to an isometry g of E8(2) by defining g(r) = r. It is clear that g acts on the discriminant

AE8(2) trivially. It follows from [1, Proposition 1.7] that g = ± id . Since g(r) = r, g = id.

Because (AK , qK) ' u(2)⊕3 ⊕ 〈1/4〉, the next lemma is also used.

Lemma 3.3. Let (A, q) = u(2)m ⊕ 〈1/4〉 be a finite quadratic form. Then the action of O(q) on

A decomposes A into 6 orbits. If we denote the standard generator of one of u(2) by {e, f} and

that of 〈1/4〉 by {g}, they are as in the following table.
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a representative length square

0 1 0

2g 1 1

e 22m − 1 0

e + f 22m − 1 1

g 22m + 2m 1/4

e + f + g 22m − 2m −3/4

In this table, for a representative x, the length is #(O(q) · x) and the square is q(x) ∈ Q/2Z.

The proof is given by induction on m and we omit it.

Now we are going to describe the latter set of Proposition 2.1, i.e., we classify the Hodge

structures on N induced from embeddings T ⊂ N as in the proposition. We recall Definition

2.2, there is an isomorphism

qN ' (qK ⊕ qT )|Γ⊥/Γ, (3.3)

where Γ is the pushout of a sign-reversing isometry of subgroups ΓK ⊂ AK and ΓT ⊂ AT . By

Proposition 2.3, ΓT is an invariant of the Hodge structure.

We will prove the converse. Namely, suppose we have two embeddings T ⊂ N1 and T ⊂ N2

whose orthogonal complements are denoted by Ki. For each embedding we have (Γi, ΓK,iΓT,i)

and the equality (3.3). What we want to show is

(∗) : ΓT,1 = ΓT,2 ⇒ N1 ' N2(Hodge isometry).

The argument goes as follows. Assume we could find an isometry σK : AK1 → AK2 such that

the following commutes.
AK1 ⊃ ΓK,1

∼−−−−→ ΓT,1 ⊂ AT

σK

y σK

y yid

yid

AK2 ⊃ ΓK,2
∼−−−−→ ΓT,2 ⊂ AT

Then by Lemma 3.2 we can lift σK to σ′
K : K1

∼→ K2 and the pair (σ′
K , idT ) can be lifted to an

Hodge isometry N1
∼→ N2. Thus it is enough to find σK .

By Proposition 3.1, [N : K ⊕ T ] = #Γ = 4. Thus there are two possibilities of underlying

groups of ΓK ' ΓT . We consider each case separately.

First we consider the case ΓT,i ' Z/4Z. The square of the generator gT ∈ ΓT,1 = ΓT,2 is

independent of the choice and there are two possibilities, qT (gT ) = −1/4 or 3/4. Let (gK,i, gT ) ∈
Γi. We have qKi(gK,i) = 1/4 or −3/4 respectively. By Lemma 3.3, in these cases we can find

σK and (∗) is proved. We find easily that there are 10 subgroups ΓT satisfying qT (gT ) = −1/4.

Also there are 6 with qT (gT ) = 3/4.
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Second we consider the case ΓT ' Z/2Z⊕Z/2Z. The argument becomes slightly complicated,

but the conclusion is the same. To prove (∗) in this case, first we show that Γi always contains a

particular element. Here, for a clear argument, we take generators gi and g′ of 〈1/4〉 ⊂ AKi and

〈−1/4〉 ⊂ AT respectively. We denote an element of AKi ⊕ AT by

(x, y; z, w) ∈ AKi ⊕ AT ; x ∈ u(2)⊕3, y ∈ 〈1/4〉, z ∈ u(2)⊕2, w ∈ 〈−1/4〉.

Then the claim is that

(0, 2gi; 0, 2g′) ∈ Γi.

In fact, since Γi is contained in (AKi ⊕ AT )2, the radical element (0, 2gi; 0, 0) of (AKi ⊕ AT )2
is in Γ⊥

i . Hence its residue class (0, 2gi; 0, 0) + Γi determines an element of ANi by the isomor-

phism (3.3). It is nonzero because qKi(2gi) = 1. Since ANi is nondegenerate, there exists an

element (x, y; z, w) + Γi ∈ ANi with (0, 2gi; 0, 0) · (x, y; z, w) = 1/2. It follows y = ±gi. Further

since (qKi ⊕ qT )(x, y; z, w) ∈ Z, it follows w = ±g′, i.e., there exists an element in Γ⊥
i of the

form (x,±gi; z,±g′). Since the residue class of this element is of order 2 in ANi , we have that

(0, 2gi; 0, 2g′) ∈ Γi.

Let ΓT,1 = ΓT,2 = 〈2g′, α〉. Replacing α by α + 2g′ if necessary, we can assume qT (α) = 0.

Let (βi, α) ∈ Γi, qKi(βi) = 0. By Lemma 3.3, we can find σK : AK1

∼→ AK2 which takes β1 to β2.

This σK must take 2g1 to 2g2, so we have now proved (∗). There are 15 possible ΓT in this case.

In summary, we have obtained the following.

Proposition 3.4. Let X be a Picard-general Jacobian Kummer surface. Then free involutions

σ1, σ2 are conjugate if and only if the patching subgroups Γσ1 , Γσ2 coincide. There exist (at most)

31 = 10 + 15 + 6 free involutions.

The existence of 31 free involutions is assured by concrete constructions in the following

sections.

4 The (16)6 configuration on a Jacobian Kummer surface

In this section we recall and prepare notations concerning the divisors on Jacobian Kummer

surfaces. The content of this section is known, references are [11, 12, 4].

The index set. Let C be a smooth projective curve of genus 2. It is a double cover of

P1 which ramifies at 6 Weierstrass points {p1, · · · , p6} ⊂ C. Here we should notice the linear

equivalence

pi + pj + pk − pl − pm − pn ∼ 0

for an arbitrary permutation {i, j, k, l,m, n} of {1, · · · , 6}. The set of theta characteristics of C

is by definition

S(C) = {D ∈ Pic(C)|2D ∼ KC}.
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They are divided into odd theta characteristics {[pi]|i = 1, · · · , 6} and even ones {[pi + pj −
pk]|i, j, k are distinct each other}. There are 16 theta characteristics.

The Jacobian variety J(C) consists of divisor classes of degree 0 on C. We denote by J(C)2
the set of sixteen 2-torsion points of J(C). Then

J(C)2 = {0} ∪ {[pi − pj ]|i 6= j}.

These 16 + 16 = 32 divisor classes naturally correspond to partitions of the set {1, · · · 6} into

two subsets in the following way.

[pi] ∈ S(C) ←→ {i} ∪ {i}c.

[pi + pj − pk] ∈ S(C) ←→ {i, j, k} ∪ {i, j, k}c.

[pi − pj ] ∈ J(C)2 ←→ {i, j} ∪ {i, j}c.

0 ∈ J(C)2 ←→ ∅ ∪ {1, · · · , 6},

where the complement is taken in the set {1, · · · , 6}. We denote these partitions by exhibiting one

of the subsets, surrounded by [ ]. For example, p1 − p2 corresponds to [12] = [3456], p1 + p2 − p3

corresponds to [123] = [456], etc. [∅] is denoted by [0]. In this notation, we see that the symmetric

difference of subsets α, β of {1, · · · , 6} corresponds to addition or difference in Div(C) as follows.

[α Ä β] = [α] − [β] if [α], [β] ∈ S(C),

[α Ä β] = [α] + [β] otherwise.

When we use a partition [α] as an index, [ ] will be omitted.

The (16)6 configuration. The sixteen theta divisors on J(C) corresponding to β ∈ S(C)

are

Θβ = {[p − β] ∈ J(C)|p ∈ C}.

The sixteen nodes {nα ∈ X|α ∈ J(C)2} on X = J(C)/{±1} are the images of α ∈ J(C)2. On

the minimal desingularization X of X, nα is blown up to give a smooth rational curve Nα on X.

The tropes Tβ ⊂ X and Tβ ⊂ X are the strict transforms of Θβ. Hence we obtain 32 (−2)-curves

{Nα, Tβ}α,β on X. The incidence relation between these divisors is called the (16)6 configuration.

It is given explicitly by

(Nα, Nα′) = −2δα,α′ , (Tβ , Tβ′) = −2δβ,β′ ,

(Nα, Tβ) = 1 ⇔ α + β ∈ {[1], [2], [3], [4], [5], [6]}.

A permutation of the set {Nα, Tβ}α,β which preserves the incidence relation above is called an

automorphism. Nikulin [14] showed that the automorphism group is isomorphic to (Z/2Z)5oS6,

where (Z/2Z)5 consists of automorphisms induced from translations by elements of J(C)2∪S(C)
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and S6 acts on the index set {1, · · · , 6}. We took our notations as above because this S6-action

is best seen.

Translations with respect to α ∈ J(C)2 are geometrically realized on J(C). They induce

automorphisms tα of X. These are the translations in the classical terms. In the next section

we will see that translations with respect to β ∈ S(C) are also geometrically realized by σβ ∈
Aut(X). These σβ are the switches. On the other hand, in general the action of S6 cannot be

lifted to an automorphism of X.

Remark: In [11] and [12], the notations are a little different. To adjust notations of [12] to ours,

first we regard p0 of [12] as our p6. Then the correspondence is as in below.

[12] N0 Ni Nij T0 Ti Tij

ours N0 Ni6 Nij T6 Ti Tij6

Lemma 4.1 ([12]). For β ∈ S(C), let Λ(β) := {α ∈ J(C)2|(Nα, Tβ) = 1}. Then the divisor class

of

H = 2Tβ +
∑

α∈Λ(β)

Nα

is independent of β and coincides with the pullback of the hyperplane section by the morphism

X → X ⊂ P3.

Lemma 4.2 ([12]). Assume that X is Picard-general.

1. NS(X) is generated over Z by {Nα, Tβ}α,β .

2. {H,Nα}α is an orthogonal basis of NS(X)Q over Q.

3. A generator set of the discriminant group ANS(X) is given by

e1 = (N26 + N12 + N36 + N13)/2, f1 = (N16 + N12 + N46 + N24)/2,

e2 = (N26 + N12 + N46 + N14)/2, f2 = (N16 + N12 + N36 + N23)/2,

g = H/4 + (N0 + N16 + N26 + N12)/2.

Special sets of nodes. Lastly we mention several special sets of nodes of X. See also [4].

We identify the set of nodes with J(C)2 which is a 4-dimensional vector space over F2. We have

then the symplectic bilinear form

([α], [α′]) 7→ #(α ∩ α′) mod 2.

A 2-dimensional subspace G is called Göpel if it is totally isotropic. The translations of Göpel

subgroups are called Göpel tetrads. There are 60 Göpel tetrads. A 2-dimensional subspace R

which is not Göpel is called Rosenhain and its translations Rosenhain tetrads. There are 80

Rosenhain tetrads. A Weber hexad is a 6-set which can be written as the symmetric difference

10



of a Göpel tetrad and a Rosenhain tetrad. It can be shown that any Weber hexad is of one of

the following forms

{0, ij, jk, kl, lm,mi} or {ij, jk, ki, il, jm, kn} (4.1)

according to whether it contains 0 or not. There are 192 Weber hexads.

In the following sections, we introduce automorphisms using these special sets.

5 Switches

Switches are one kind of automorphisms found by F. Klein [8]. The freeness in even cases is an

easy consequence of the description of [9], although it is implicit there. Let β ∈ S(C). For a

smooth point a ∈ X, which means that the preimage of a in J(C) is {a,−a}, the divisors ta(Θβ)

and t−a(Θβ) intersect at two points, which is of the form

ta(Θβ) ∩ t−a(Θβ) = {b,−b}.

The switch is defined by σβ : a 7→ b.

More precisely, these switches are defined as the composite of the Gauss map

G : P3 ⊃ X 99K X
∗ ⊂ (P3)∗,

which maps a smooth point a to TaX, and the projective linear isomorphism

Fβ : X
∗ → X,

defined for each β. See [9].

σβ is a birational involution of X. Hence it induces an involution of X, which we denote by

the same σβ . We can easily check that σβ interchanges Nα with Tα+β for ∀α ∈ J(C)2.

Proposition 5.1. For an even theta characteristic β, σβ is a free involution on X.

Proof. Suppose a smooth point a ∈ X is a fixed point of σβ . This is equivalent to ta(Θβ) ∩
t−a(Θβ) = {a,−a} and it is necessary that a ∈ ta(Θβ), 0 ∈ Θβ . This is untrue if β is even.

On the other hand, the divisor Nα is disjoint from Tα+β , so σβ has no fixed points.

Remark: (1) The proof above does not use the assumption of being Picard-general. Thus

switches for even theta characteristics are always free involutions.

(2) The fixed point set of a switch for an odd theta characteristic is a curve of genus 5, named

after Humbert.

Let σβ be a free switch. In the following computation, we take the case β = [123] for simplicity.

We can obtain the result for other cases by the action of S6. Let K be the (−1)-eigenspace of

the action of σ123 on NS(X) as in Section 2.
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Proposition 5.2. For Picard-general X, K is generated over Z by the following elements.

f = N15 − T146, e2 = T145 − N16, e3 = N45 − T6, e4 = T123 − N0,

e5 = N12 − T3, e6 = T124 − N34, e7 = N24 − T134,

e1 = −(1/2)(f + 2e2 + 3e3 + 4e4 + 3e5 + 2e6 + e7).

Proof. We can check that {f, e2, · · · , e7} spans a sublattice of K isomorphic to A7(2). We now

show e1 ∈ NS(X). Modulo NS(X),

e1 ≡ (f + e3 + e5 + e7)/2

≡ (N15 + N45 + N12 + N24)/2 + (T146 + T6 + T3 + T134)/2

= (N15 + N45 + N12 + N24)/2 + (
H

2
· 4 − 1

2

∑
α∈Λ([146])∪Λ([6])∪Λ([3])∪Λ([134])

Nα)/2

= (N15 + N45 + N12 + N24)/2 + H − 1
4

∑
α∈J(C)2−{[15],[45],[12],[24]}

2Nα

≡
∑

α∈J(C)2

Nα/2.

The blow up Ĵ(C) of J(C) at points of J(C)2 is the double cover of X branched exactly over

∪αNα. Thus e1 ∈ NS(X) follows.

Then it is easy to check that {e1, e2, · · · , e7} spans a sublattice of K isomorphic to E7(2).

By Proposition 3.1, they coincide.

Proposition 5.3. The patching subgroup of σ123 is the cyclic group generated by the element

[x = H/4 + (N0 + N12 + N23 + N31)/2] ∈ ANS(X).

Proof. The facts x ∈ NS(X)∗ and y := −(e1 + e5 + e7)/4 + e5/2 + e6/2 ∈ K∗ are easily checked.

We use Lemma 2.5. We first check x − y ∈ NS(X). This is because

y = (1/8)(f + 2e2 + 3e3 + 4e4 + 5e5 + 6e6 − e7)

= H/4 − (N14 + N24 + N34 + N56)/2

and

x − y = (1/2)(N0 + N12 + N23 + N31 + N14 + N24 + N34 + N56)

≡ T123 − T4 ≡ 0.

Thus [x] ∈ Γσ123 . Then since [x] is of order 4 in ANS(X) and #Γσ123 = 4, Γσ123 is generated by

[x].

Observation: In the expression of [x], {n0, n12, n23, n31} is a Rosenhain subgroup defined in Sec-

tion 4. The class of −x can be written as [H/4+(N0+N45+N56+N64)/2], where {n0, n45, n56, n64}
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is also a Rosenhain subgroup. In general, for an even theta characteristic β, the 6-set Λ(β) (see

Lemma 4.1) can be uniquely written in the form R1 ÄR2 where Ri are Rosenhain subgroups. In

our case β = [123], R1 = {n0, n12, n23, n31} and R2 = {n0, n45, n56, n64}.

Proposition 5.4. The patching subgroup of σβ for general β is generated by [H/4+(
∑

α∈R Nα)/2]

where R is one of the two Rosenhain subgroups corresponding to β.

Proof. When β = [123], this is Proposition 5.3. Since the action of S6 is compatible with the

observation above, the general case follows.

By Proposition 5.4, we can write down the generator of the patching subgroup of the switch

σβ for all β. We use the notations of Lemma 4.2.

β [123] [124] [125] [126] [134]

e1 + f2 + g e2 + f1 + g e1 + f1 + e2 + f2 + g g f1 + f2 + g

β [135] [136] [145] [146] [156]

f1 + g e1 + g f2 + g e2 + g e1 + e2 + g

Since all these are distinct each other, we see that the ten switches are not conjugate each other

in Aut(X) if X is Picard-general.

6 Hutchinson’s involutions associated with Göpel tetrads

These automorphisms appear in [7]. The generic freeness is found by J. H. Keum in [10]. We

briefly recall the construction. Let G be a Göpel tetrad. If we choose G as the reference points

of the homogeneous coordinates of P3, the equation of X becomes

A(x2t2 + y2z2) + B(y2t2 + z2x2) + C(z2t2 + x2y2) + Dxyzt

+E(yt + zx)(zt + xy) + G(zt + xy)(xt + yz) + H(xt + yz)(yt + zx) = 0,

for suitable scalars A, · · · ,H. σG is the Cremona involution

(x, y, z, t) 7→ (1/x, 1/y, 1/z, 1/t).

For a translation t = tα, we have σt(G) = tσGt, so that we can restrict ourselves to the case G is

a Göpel subgroup. But any Göpel subgroup is of the form {n0, nij , nkl, nmn} hence up to S6 we

can assume G0 = {n0, n12, n34, n56}. By [11], the induced action of σG0 on NS(X) is given by

Nα ↔ H − N0 − N12 − N34 − N56 + Nα, for α = [0], [12], [34], [56]

T1 ↔ T2, T3 ↔ T4, T5 ↔ T6,

T134 ↔ T234, T123 ↔ T124, T125 ↔ T126.

13



Proposition 6.1. The (−1)-eigenspace K of σG0 is generated over Z by the following elements.

g = N0 + N12 + N34 + N56 − H, e5 = T1 − T2, e1 = T3 − T4, e7 = T5 − T6,

f = T134 − T234, e3 = T123 − T124, h = T125 − T126,

e2 = (1/2)(f + g + h − e3), e4 = (1/2)(f − e1 − e3 − e5),

e6 = (1/2)(f + h − e5 − e7).

Proof. e1, e3, e5, e7, f, g, h ∈ K generate a sublattice of K isomorphic to A1(2)⊕7. It is easy to

see that e2, e4, e6 ∈ NS(X). For example, modulo NS(X),

e2 ≡ (1/2)(H + N0 + N12 + N34 + N56

+T123 + T124 + T125 + T126 + T134 + T234)

= 2H + N0 − (1/2)
∑

α∈J(C)2

Nα.

and as in Section 5 e2 ∈ NS(X). e4, e6 are similar.

Then we see that e1, · · · , e7 span a lattice isomorphic to E7(2).

Proposition 6.2. The patching subgroup of σG0 is 2-elementary abelian and generated by

x = (N0 + N12 + N34 + N56)/2, and y = H/2.

Proof. This proposition is proved in the same way as Proposition 5.3. The corresponding element

in K∗/K is x′ = (e1 + e3)/2, y′ = (e1 + e5 + e7)/2 and we can check x − x′, y − y′ ∈ NS(X).

Then we use Lemma 2.5.

By the S6-symmetry, we obtain the following.

Proposition 6.3. For any Göpel subgroup G, we have ΓσG = 〈H/2, (1/2)
∑

α∈G Nα〉.

More generally, ussing the translation relation σt(G) = tσGt, the generator above is valid for

any Göpel tetrad.

There are 15 Göpel subgroups. Under the notations of Lemmas 4.1 and 4.2, we deduce the

following table.
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The tetrad Patching element corresponding to x

[0] + [12] + [34] + [56] e1 + f1 + e2 + f2

[0] + [12] + [35] + [46] f1 + e2

[0] + [12] + [36] + [45] e1 + f2

[0] + [13] + [24] + [56] e1 + f1 + 2g

[0] + [13] + [25] + [46] e1 + f1 + f2 + 2g

[0] + [13] + [26] + [45] f2

[0] + [14] + [23] + [56] e2 + f2 + 2g

[0] + [14] + [25] + [36] f1 + e2 + f2 + 2g

[0] + [14] + [26] + [35] f1

[0] + [15] + [23] + [46] e1 + e2 + f2 + 2g

[0] + [15] + [24] + [36] e1 + f1 + e2 + 2g

[0] + [15] + [26] + [34] f1 + f2

[0] + [16] + [23] + [45] e1

[0] + [16] + [24] + [35] e2

[0] + [16] + [25] + [34] e1 + e2

Since all these are distinct each other, we see that the 15 Hutchinson involutions are not conjugate

each other in Aut(X) if X is Picard-general.

Remark: In [13] it is shown that if (C,G) is bielliptic, then the involution σG cannot be defined.

7 Hutchinson’s involutions associated with Weber hexads

These automorphisms appear in [5, 6]. The freeness is found in [4]. We fix a Weber hexad W .

Then the linear system L = |OX(2)−W | with the assigned base points at W defines an another

quartic model XW of X in P4,

XW : s1 + · · · + s5 = 0, λ1/s1 + · · · + λ5/s5 = 0,

where λi are nonzero constants.

σW is the Cremona involution

σW : (s1, · · · , s5) 7→ (λ1/s1, · · · , λ5/s5),

preserving XW . It is free if X is Picard-general [4]. For any translation t = tα, we have σt(W ) =

tσW t as in the Hutchinson case. Hence we can assume that the Weber hexad doesn’t contain n0.

Then recalling (4.1) in Section 4, we have only one Weber hexad W0 = {n12, n23, n31, n14, n25, n36}
up to the action of S6. In the following we discuss this case.

Lemma 7.1 ([4]). σW0 interchanges the following 10 pairs of smooth rational curves.

(N0, T123), (N56, T1), (N46, T2), (N45, T3), (N15, T124),

(N16, T134), (N24, T125), (N26, T146), (N34, T136), (N35, T236).
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Proposition 7.2. The (−1)-eigenspace K of σW0 is generated over Z by the following elements.

e1 = T2 − N46, e2 = N15 − T124, e3 = T1 − N56,

e4 = N0 − T123, e5 = T3 − N45, e6 = N34 − T136,

e7 = N23 − N56 − N34 − N24 − T134 − T124.

Proof. By computing the determinant, we can see that 10 divisors

N0 + T123, · · · , N35 + T236 (7.1)

from Lemma 7.1 span over Q the invariant sublattice. e1, · · · , e6 ∈ K is easy. e7 ∈ K follows

from the fact that e7 is orthogonal to all of the divisors in (7.1). Then e1, · · · , e7 spans the lattice

E7(2) ' K.

Remark: The action of σW on NS(X) is very complicated, but essentially we can write down

this action using the proposition above. In fact we find the following.

Let W be a general Weber hexad. The “degree 1 part” W1 of W is the set

{β ∈ S(C)|(Tβ ,
∑
α∈W

Nα) = 1}.

W1 consists of 6 elements. We have a natural bijection µ : W → W1 defined by (Nα, Tµ(α)) = 1.

On the other hand, for α 6∈ W , we have the unique decomposition

W = G Ä R, G ∩ R = {nα}.

Let R⊥ be the 2-dimensional affine subspace of J(C)2 which is orthogonal to R and contains nα.

Then R Ä R⊥ is a Rosenhain hexad, i.e., R Ä R⊥ is of the form Λ(β) for some β ∈ S(C). This

defines a bijection µ′ : J(C)2 − W → S(C) − W1, α 7→ µ′(α) = β. Using these data, the action

of σW is as follows.

σW (Nα) = 3H − (
∑

α∈J(C)2

Nα)/2 − (
∑
α∈W

Nα) − Tµ(α), if α ∈ W.

σW (Nα) = Tµ′(α) if α 6∈ W.

σW (H) = 9H − (
∑

α∈J(C)2

Nα) − 4(
∑
α∈W

Nα).

Proposition 7.3. The patching subgroup of σW0 is cyclic and generated by

x = (3/4)H + (1/2)(N12 + N23 + N31 + N14 + N25 + N36).

Proof. The corresponding element in K∗/K is

y =
1
4
e1 +

1
2
e2 +

1
2
e4 +

3
4
e5 +

1
4
e7,

and we check x − y ∈ NS(X).
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By the S6-symmetry and the translation relation, we obtain

Proposition 7.4. For general W , the patching subgroup of σW is

ΓσW = 〈(3/4)H + (
∑
α∈W

Nα)/2〉.

There are 12 Weber hexads modulo translations. One more relation is hidden in the remark

above. For α 6∈ W , we have the unique decomposition W = G Ä R, G ∩ R = {nα}. Let R⊥ be

the orthogonal complement of R at nα and let W⊥
α be the Weber hexad G Ä R⊥. Then σW and

σW⊥
α

are conjugate, related by σW⊥
α

= σµ′(α)σW σµ′(α). Modulo this relation, we have 6 Weber

hexads. Under the notations of Lemmas 4.1 and 4.2, their patching subgroups are as follows.

Weber hexad patchings

[12] + [23] + [31] + [14] + [25] + [36] e1 + f1 + e2 + g

[12] + [13] + [23] + [24] + [15] + [36] f1 + e2 + f2 + g

[23] + [13] + [12] + [34] + [25] + [16] e2 + f2 + g

[24] + [23] + [34] + [14] + [25] + [36] e1 + f1 + f2 + g

[25] + [23] + [35] + [54] + [21] + [36] e1 + e2 + f2 + g

[26] + [23] + [36] + [64] + [25] + [13] e1 + f1 + g

Thus we see that there are 6 HW involutions that are not conjugate each other in Aut(X) if X

is Picard-general.

Remark: (1) In a forthcoming paper we will be able to determine when σW is not free.

(2) The 6 conjugacy classes of HW involutions are naturally “dual” to the 6 Weierstrass points,

in the sense that the S6 action on both factors through an outer automorphism. Details are

as follows. There are 20 Weber hexads W which don’t contain n0 and conjugate each other.

Writing W uniquely as W = GÄR with G∩R = {n0}, we can associate with such W the Göpel

subgroup G. But a Göpel subgroup G = {n0, nij , nkl, nmn} is determined just by the “syntheme”

(ij)(kl)(mn) ∈ S6. Thus we obtain 20 synthemes from the conjugacy class. The fact is that

there appear only 10 synthemes, and the synthemes not appearing here form a “total”, which is

the classical description of the dual of the 6-set {1, · · · , 6}.
(3) The method of this paper is applicable to the case of Picard-general quartic Hessian surfaces

of [4]. In this case we have exactly one Enriques quotient.

Proof of Theorem 1.2: Let N ′ be the group generated by 16 translations tα, 16 switches σβ , 16

projections pα, 16 correlations pβ, 60 HG involutions σG, 192 HW involutions σW . The theorem

follows from the following lemma as in [12, Lemma 7.3].

Lemma 7.5. Let φ be an isometry of NS(X) that preserves the ample cone. Then there exists

a g ∈ N ′ such that gφ ∈ Aut(D′).
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Proof. Let w′ = 2H −
∑

Nα/2 be the projection of the Weyl vector w. Let v = φ(w′) and let

g ∈ N ′ be an element that attains the minimum min{(g(v), w′)|g ∈ N ′}. If r is the Leech root

corresponding to [12, Lemma 4.6, Case (0),(1),(2)], then as in [12] we have (r′, g(v)) > 0.

If r is the Leech root corresponding to [12, Lemma 4.6, Case (3)], then it corresponds to some

Weber hexad W and [12, Remark 6.3, (1)] can be rewritten as

4r′ = 3H − 2
∑
α∈W

Nα.

Using Proposition 7.2 and its Remark, we have

σW (w′) = w′ + 8r′.

Thus, we have

(g(v), w′) ≤ (g(v), σ−1
W (w′)) = (g(v), w′) + 8(g(v), r′),

(g(v), r′) > 0

Hence g(v) ∈ D′.

Remark: Unfortunately, Aut(X) cannot be generated only by the subset

S = {tα, σβ , σG, σW |α ∈ J(C)2, β ∈ S(C), G : Göpel tetrad,W : Weber hexad},

introduced in this paper. It is easy to see that for any element ϕ written as a product of elements

in S, we have (w′, ϕ(w′)) ∈ 4Z. But the projection pα have (w′, pα(w′)) = 26.
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Abstract

This paper classifies Enriques surfaces whose K3-cover is a fixed Picard-
general Jacobian Kummer surface. There are exactly 31 such surfaces. We
describe the free involutions which give these Enriques surfaces explicitly.
As a biproduct, we show that Aut(X) is generated by elements of order 2,
which is an improvement of the theorem of S. Kondo.
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