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1 Darboux-Pöschl-Teller equation and Darboux-
Crum dressing formula

1.1 How to get DPT equation and its solutions fromWron-
skian determinants.

Darboux-Pöschl-Teller equation, (we often use the abbreviation DPT equation
for it), reads

−y′′ +
(

n(n + 1)α2

cos2 αx
+

m(m + 1)α2

sin2 αx

)
y = λy. (1)

Here α > 0 and m,n are some positive integers. DPT equation is obviously
invariant with respect to the action of each of the maps: m → −m− 1, n →
−n− 1. The integrability of (1) was proved in 1882 by Darboux.
In [7] he proposed two independent methods for solving (1). First, taking
sin2(αx) as a new independent variable, he reduced (1) to Gauss hypergeometric
equation and expressed the solutions in terms of the hypergeometric functions.
Darboux also remarked that the functions y(m,n) := cosn+1(αx) sinm+1(αx)
represent the particular solution of (1) with λ = α2(m + n + 2)2. Taking these
solutions as generating functions of some sequence of Darboux transformations
connecting the potentials with different values of m and n, he obtained the
general solution of the same equation in terms of elementary functions. Com-
parison of these two forms of solution provides the nontrivial case of reduction
of the Gauss hypergeometric function to elementary functions. Almost 50 years
later both trigonometric DPT equation, considered here, and its hyperbolic
version, (obtained by replacing α by iα) were independently solved by Pöschl
and Teller [22], (in a context of their studies of quantum theory of the two
atomic molecules), using the Frobenius series approach. They also arrived to a
hypergeometric representation for the solutions to the DPT equation ignoring
somehow the elementary function solutions trivially following from the results
of Darboux. In the later literature, (see [8, 9, 12] for further references and
results), the DPT equation was mainly called the Pöschl-Teller equation. We
are somehow convinced that the name of Darboux should be added to label of
equation which he solved first.1

We present here some new representation for the solution to the DPT equa-
tion by means of Wronskian determinants. In order to explain the related result
let us recall the following statement known as Darboux-Crum dressing formula.

In a sequel W (f1, f2, . . . , fm) denotes a Wronskian determinant of m func-
tions fj(x) i.e. W (f1, f2, . . . , fm) = det ||∂j−1

x fk(x)||; j, k = 1, . . . , m.

Theorem 1.1 Suppose that fj , f, j = 1 . . .m satisfy the Schrödinger equa-

1In fact Darboux not only solved the DPT equation but he also introduced and solved in
a very elegant way its 4-integers elliptic extension [5], rediscovered 100 years later by Verdier
and Treibich in a context of considering special reductions of the generic finite gap potentials
described by Its-Matveev formula.
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tions
−f ′′j + v(x)fj = Ejfj , −f ′′ + v(x)f = Ef,

Then the function ψ defined by the formula

ψ(x,E) =:
W (f1, f2, . . . , fm, f)
W (f1, f2, . . . , fm)

, (2)

satisfies the Schrödinger equation

−ψ′′ + uψ = Eψ, u =: v − 2∂2
x log W (f1, f2, . . . , fm). (3)

In the case m = 1, this proposition was found and proved by Darboux [7], and
in general case by Crum [4].
Surprisingly the link between the later formula and DPT potentials was ex-
plained only in 2002 [12].
In order to explain the connection between Darboux-Crum dressing theorem
and DPT equation we have to answer the following question. How to choose the
numbers Ej , j = 1, . . . , m, and the functions f1, . . . , fm, satisfying f ′′j = Ejfj in
order to get (1) from the Schrödinger equation (3) with v = 0 ? After finding
the reply to this question, obviously, the general solution to (1) will be given
by (2). The precise description of the corresponding choice of Ej , fj(x) is given
by the following statement first proved in [12]. In this section we give partially
different and simpler proof of the same result.

Theorem 1.2 Let v(x) = 0; m, n, (m ≥ n), are the same non negative integers
as in (1), d =: m− n, α > 0 and Ep, fp(x), p = 1, . . . m are defined as follows:

Ep =: (αap)2, fp(x) = sin αapx, ap = p, d 6= 0 1 ≤ p ≤ m− n,

am−n+j = m− n + 2j, n 6= 0, 1 ≤ j ≤ n. (4)

2 Then the following Wronskian representation for the DPT potential umn(x)
holds:

umn(x) :=
n(n + 1)α2

cos2 αx
+

m(m + 1)α2

sin2 αx
= −2∂2

x log W (f1, f2, . . . , fm). (5)

The general solution to (1) is given by (2). Moreover, in this case the Wronskian
W (f1, . . . , fm)(m,n, α, x) ≡ Wmn can be explicitly computed:

Wm0(α) = (−2α)
m(m−1)

2

m−1∏

k=0

k! · sinm(m+1)
2 (αx), Wnn(α) = Wn0(2α). (6)

Wmn = cmn · sin
m(m+1)

2 (αx) cos
n(n+1)

2 (αx), (7)

cmn = (−2α)
m(m−1)

2 · 2n2
d−1∏
p=0

p!
n∏

k=1

(d + 2k − 1)!
(2k − 1)!

(k − 1)!, m > n,

2In particular, for the case m = n we have aj = 2j, j = 1, . . . n.
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cmm = (−2α)
m(m−1)

2 · 2m2
m−1∏

k=1

k!, m ≥ 2.

Example

W (sinx, sin 2x, sin 4x, sin 6x, sin 8x) = 224 · 5 · 7 · 9 cos6(x) sin15(x)

= 5284823040 cos6(x) sin15(x).

Hint of the Proof: The crucial part of the proof is to demonstrate the formulas
(6), (7) which can be done in two steps. First, one have to establish the formula
(6), (See [12] for details), which is also enough for calculate Wnn because of
the relation Wn0(2α) = Wnn(α). Next part of proof sketched below is different
from that of [12].
Denote by gj the functions

gj := sin(αjx), j ∈ Z.

Then it is easy to see that

Wmn = W (g1, g2, . . . , gm−n, gm−n+2, gm−n+4, . . . , gm+n).

We define the sequence of Wronskians Wm−k,n of order m− k by the formulas:

Wm−1,n = W (g1, g2, . . . , gm−n−1, gm−n+1, gm−n+3, . . . , gm+n−1),

Wm−k,n = W (g1, g2, . . . , gm−n−k, gm−n−k+2, gm−n−k+4, . . . , gm−k+n),

Wn,n = W (g2, g4, . . . , g2n).

With these notations it is easy to prove the recursion relation

Wm−k,n = gm−k
1 (−2α)m−k−1(m− k − 1− n)!

·
n∏

j=1

(m− k − 1− n + 2j) ·Wm−k−1,n, 0 ≤ k ≤ m− n− 1. (8)

Applying the recursion relation (8), (m− n) times (for 0 ≤ k ≤ m− n− 1) we
obtain:

Wmn = [sin(αx)](m−n)(m+n+1)/2(−2α)(m−n)(m+n−1)/2

·
m−n−1∏

j=0

j!
m−n∏

k=1

n∏

j=1

(k + 2j − 1) ·Wnn. (9)

Substituting the RHS of (6) in the RHS of (9) we get (7) which completes the
proof. 2
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1.2 The action of the KdV hierarchy on the DPT poten-
tials

The advantage of the Wronskian representation for the DPT potentials is that
it allows to describe immediately the action of KdV and higher flows of the
KdV hierarchy on those potentials taken as initial data. The j-th equation of
the KdV hierarchy can be obtained as a compatibility condition of (3) and the
following evolution equation:

∂tj f = cj∂
2j+1
x f− (2j + 1)cj

2
u(x, tj)∂2j−1

x f +
2j−2∑
p=0

up(x, tj)∂p
xf, cj ∈ R.3 (10)

In particular for j = 1, cj = −4 and u0 = 3ux compatibility of (1) and (10)
implies that v satisfies the KdV equation:

ut = 6 uux − uxxx. (11)

Then the following formula describes the solution to the j-th KdV equation
satisfying the initial condition u(x, 0) = umn(x):

u(x, tj) = −2∂2
x log W (f1, f2, . . . , fm). (12)

fp(x, t) = sin[αpx + (−1)jcjα
2j+1p2j+1tj ], p = 1, . . . , d, d = m− n,

fd+l(x, t) = sin[α(d + 2l)x + (−1)jcjα
2j+1(d + 2l)2j+1tj ], l = 1, . . . , n, m ≥ n,

In particular, the solution of (11) with the initial condition (5) is given by the
formula (12) with

fp(x, t) := sin(αpx + 4α3p3t), p = 1, . . . , d, d = m− n,

fd+l(x, t) := sin[α(d + 2l)(x + 4α2(d + 2l)2t], l = 1, . . . , n, m ≥ n.

1.3 Differential identities
Formulas (6) and (7) lead to some nontrivial identities. Let D̂ be a differential
operator defined as follows,

(D̂f)(x) =

(
m∏

l=2

∂l−1
xl

)
f(x1, x2, . . . , xm)

∣∣∣∣∣
x1=x2=...=xm=x

. (13)

Let Dm be the following determinant: Dm = det aj,k, aj,k = sin jxk, with
1 ≤ j, k ≤ m.
Clearly, we have,

D̂Dn = det ∂j−1
x sin kx = W (sinx, sin 2x, . . . , sin nx) = Wn0. (14)

3In general the choice of the real constants cj is arbitrary: it just fixes normalization of
the KdV hierarchy.
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The determinant Dn can be easily computed [23]):

det ‖ sin(jxk) ‖= 2n(n−1)
n∏

j=1

sinxk

∏

1≤l<k≤n

sin
xl + xk

2
sin

xl − xk

2

= 2
n(n−1)

2

n∏

k=1

sin xk

∏

n≥k>j≥1

(cosxk − cosxj), j, k = 1, . . . n. (15)

Now, substituting this expression for Dn in (14) and taking into account the
formula (7) for Wn0, we get the following identity :




n∏

l=2

∂l−1
xl

) 


(
n∏

k=1

sin xk

)
·

 ∏

m≥k>j≥1

(cosxj − cosxk)







∣∣∣∣∣∣
x1=x2=...=xn=x

=
n−1∏

k=1

k! · sinn(n+1)
2 x , n ≥ 2. (16)

Further examples of the related differential identities can be found in [12].

2 Casorati determinant approach to the
DDPT-I model

Here we discuss a family of integrable deformations of the DPT-model, repre-
senting the special case of the difference equation4

v(x)f(x + h) + f(x− h) = λf(x), h > 0. (17)

In the sequel we use the following abbreviations
c(x) := cos αx, s(x) := sin αx, α > 0.
Below we consider the special potentials v = vmn(x, h, α), defined as follows :

vmn(x) :=
c(x + (n + 1)h)c(x− nh)s(x + (m + 1)h)s(x−mh)

c(x)c(x + h)s(x)s(x + h)
(18)

= vn0(x)v0m(x). (19)

Equation (17) with v(x) = vmn(x) is called below DDPT-I equation.
It has been shown in [20, 21] that DDPT-I model is integrable and its global
solution can be expressed by means of the elementary functions.
In the limit h → 0, DDPT-1 equation reduces to the differential DPT equation.
The cases n = 0, or m = 0 were studied in the recent papers [24, 10, 26, 25]
using different tools and leading to the formulas different from ours and having
more complicated combinatorial structure. The Lattice specialization of the case
m=0, corresponding to the choice h = 1, x = j, j ∈ Z was studied in [26, 25].

4It is important to mention that multiplying any solution of (17) by any h-periodic function
of x we obtain again the solution of (17). Therefore, contrary to the lattice case the space of
solutions of (17) is infinite dimensional.
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Remark 2.1 Similarly to the DPT equation, the potential vnm(x), is invariant
under the action of each of the mappings m → −m− 1, and n → −n− 1.

2.1 Multiple difference Darboux transform and DDPT-I
model

First, we recall a simplest case of Matveev’s dressing theorem [16] for the case
of second order functional difference equation. For further generalizations and
non Abelian and non stationary extensions see [16].

In the sequel the notation δn(x) = δn[f1, f2, . . . , fn](x) will be used for the
following Casorati determinant:

δn(x) = det A, Aij := fj(x− (n + 1− 2i)h), i, j = 1, . . . , n) (20)

We also use below the following notations

φn(x) :=
δn+1[f, f1, f2, . . . , fn](x)
δn[f1, f2, . . . , fn](x + h)

, n ≥ 1, φ0(x) := f(x), (21)

Φj(x) = φj−1(x)|f(x)=fj(x), j = 1, 2, . . . , n.

κj(x) =
Φj(x− h)
Φj(x + h)

, (22)

where fj , are some fixed solutions to

v(x)fj(x + h) + fj(x− h) = λjfj(x), (23)

and f denotes any solution of (17). The function φn(x) defined above is called
the N-fold, (difference), Darboux transform of f(x), generated by f1, f2, . . . , fn.

Theorem 2.1 The function φn represents the general solution to the functional
difference equation

vn(x)φn(x + h) + φn(x− h) = λφn(x), (24)

vn(x) = v(x + nh)
δn(x− h)δn(x + 2h)

δn(x)δn(x + h)
. (25)

In other words, Darboux transformation maps (17) into equation of the same
form, with the same value of spectral parameter λ, but with a new potential
constructed in terms of the initial potential v(x) and a fixed solutions fj(x) of
(23). 5 The function φn(x) can be also represented in a following factorized
form

φn(x) = (T−1 − κn(x)T ) . . . (T−1 − κ1(x)T )f(x, λ),

5In fact Darboux established the similar property for more special case of the Sturm-
Liouville equation for the case m = 1. Its extensions to the case of linear and nonlinear PDE
of any order and their difference and non Abelian versions were proposed by Matveev in 1979
[15, 16, 17].
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where T is the shift operator : T±kf(x) = f(x± kh). By this reason it is often
called the N-fold Darboux transformation of f(x). Below the theorem 2.1 will
be applied to the case v(x) = 1 in order to show that the potentials vmn(x) allow
a natural representation in a form of the ratio of four Casorati determinants.
To prove this we need to calculate some special Casorati determinants.

2.2 Casorati addition formula for sine functions
Let m = n+d where n and d be some non negative integers, α a real parameter.
Suppose that the functions fj(x) are defined as in (4). Then they satisfy to (23),
with v = 1 and λj = 2 cos(αajh).

We define the determinant δm(x, n) by the formula :

δm(x, n) = det A, Aij := fj((x− (m + 1− 2i)h)), i, j = 1 . . . m. (26)

Theorem 2.2 6 The determinant δm(x, n) is equal to the following product :
a. m ≥ 2, 1 ≤ n ≤ m-1,

δm(x, n) = cmn ·
m−1∏

k=−m+1

sin[
m+1−|k|

2 ] α(x + kh)
n−1∏

k=−n+1

cos[
n+1−|k|

2 ] α(x + kh),

cmn = 2
n(n+1)

2 (−4)
m(m−1)

2

m−n−1∏

l=0

n∏

j=1

sin α(l + 2j)h ·
m−n∏

j=1

sinm−n−j(αjh) ·
n∏

j=1

sinn−j(2αjh).

(27)

b. m ≥ 2, n= 0

δm(x, 0) = (−4)
m(m−1)

2

m−1∏

j=1

sinm−j(αjh)
m−1∏

k=−m+1

sin[
m+1−|k|

2 ] α(x + kh). (28)

c. m ≥ 2, n = m
δm(x,m, α) = δm(x, 0, 2α). (29)

Proof : We present here only a hint of the proof. The complete proof can be
found in a forthcoming paper [14]. The idea of the proof is first, to establish a
recursion relation of the form

δm−k(x, n) = 22(m−k−1)(−1)m−k−1
m−k∏

j=1

sin(α(x−(m−k+1−2j)h))·
m−k−n+1∏

j=1

sin(αjh)

·
n∏

j=1

sin(α(m− k − n− 1 + 2j)h) · δm−k−1(x, n),

6Here we use the standard notation [x] for the integer part of x, and |x| for its absolute
value.

8



for 0 ≤ k ≤ m− n− 1.
Repeated application of this recursion relation leads to the formula :

δm(x, n) =
m∏

k=n+1

22(k−1)(−1)k−1
k∏

j=1

sin α(x−(k+1−2j)h)
n∏

j=1

sin α(k−n−1+2j)h

·
m∏

k=n+2

k−n−1∏

j=1

sin(αjh) · δn(x, n). (30)

But it is obvious that δn(x, n, α) = δn(x, 0, 2α). So the computation of δm(x, n)
is reduced to calculate δn(x, 0), which is trivial to do, using the formula (15)
already mentioned above.

Therefore, combining (30) and (15), we get (27) which achieves the proof.2

2.3 Applications to DDPT-I model
The integrability of the DDPT-I was proved "à la Darboux" in [20, 21]. explor-
ing the factorized representation (26) of the general solution and the following
statement.

Proposition 2.1 The function

F1(x,m, n) =
n∏

k=0

c(x− kh)
m∏

j=0

s(x− jh), (31)

satisfies the DDPT-I equation with λ = 2 cos αh(n + m + 2).

Here, we present the following new result :

Theorem 2.3 The DPT potentials vmn(x) defined in (18) can be represented
as a ratio of four Casorati determinants :

vmn(x) =
δm(x− h, n)δm(x + 2h, n)

δm(x + h, n)δm(x, n)
. (32)

The general solution of the DDPT-I equation is given by the formula

ψ(x, λ) =
δm+1[f, f1, . . . , fm](x, n)
δm[f1, . . . , fm](x + h, n)

, (33)

where f satisfies f(x + h) + f(x− h) = λf and fj(x) are defined in (4).

Hint of the proof : Using formula (27), we obtain that

δm+1(x, n + 1)
δm(x + h, n)

= kmn · F1(x,m, n),

kmn = 22m+n+1(−1)m
m−n−1∏

l=0

sin(αh(l + 2n + 2))
n∏

j=1

sin(2αjh) (34)
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where kmn does not depend on x. This proves formula (32). 7

Now, (33) becomes obvious from (21, 24).
2

Thus, we got the new proof of the integrability of the DDPT-I model. Indeed,
the representation (32) for DDPT-I potential has the same advantage as the
Wronskian representation of the DPT potentials : it allows to obtain automati-
cally the solution to the Cauchy problem for the difference KdV hierarchy with
DDPT-I potentials taken as initial data. Hear we skip further discussion of this
point for respect the volume limitations.

3 Casorati determinant representation of
DDPT-II model

We consider in this section another kind of difference deformations of DPT
potentials connected with a difference equation:

w(x)f(x + h) + f(x− h) + b(x)f(x) = λf(x). (35)

Let w = wmn and b = bmn be the potentials given by :

wmn(x) =
c(x− nh/2)c(x− (n− 1)h/2)c(x + (n + 1)h/2)c(x + (n + 2)h/2)

c(x)c(x + h)(c(x + h/2))2

·s(x−mh/2)s(x− (m− 1)h/2)s(x + (m + 1)h/2)s(x + (m + 2)h/2)
s(x)s(x + h)(s(x + h/2))2

, (36)

and,

bmn(x) = −2s(mh/2)s((m + 1)h/2)c(nh/2)c((n + 1)h/2)
c(x− h/2)c(x + h/2)

−2c(mh/2)c((m + 1)h/2)s(nh)s(n + 1)h/2)
s(x− h/2)s(x + h/2)

. (37)

We call (35) with w(x) = wmn(x) and b(x) = bmn(x) the DDPT-II equation
(difference Darboux-Pöschl-Teller-II equation).
In (36), (37), m, n are non negative integers, α is an arbitrary scaling parameter,
c(x) := cos(αx), s(x) := sin(αx).
Integrability of the DDPT-II equation by means of the elementary functions
was first established in [13] in a way similar to [20, 21].

Passing to the limit h → 0 we restore the differential DPT equation, (see
[13] for details).

Similarly to the case of the DPT potentials and the DDPT-I model, DDPT-
II equation is invariant under the action of each of the maps m → −m− 1, and
n → −n− 1.

7This proves also the Proposition 2.1. (31) in a way which is shorter and easier with respect
to [20, 21].
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3.1 Modified difference Darboux transformation and DDPT-
II equation

Here again we use some special case of the results proved in [16, 17].
Difference Darboux transformation ψ1(x) of an arbitrary solution f(x, λ)

of (35), generated by the fixed solution f1(x) of the same equation (35) with
λ = λ1, is defined by the formula

ψ1(x) =

∣∣∣∣
f(x− h/2) f1(x− h/2)
f(x + h/2) f1(x + h/2)

∣∣∣∣
f1(x)

,

ψ1(x) = f(x− h/2)− σ̂1(x)f(x + h/2)

σ̂1(x) =
f1(x− h/2)
f1(x + h/2)

,

σ̂1(x, h) = σ1(x, h/2)

Theorem 3.1 .
ψ1(x) represents a general solution to the following equation

w1(x)ψ1(x + h) + ψ1(x− h) + b̂1(x)ψ1(x) = λψ1(x), (38)

w1(x) =
f1(x + 3h/2)f1(x− h/2)

(f1(x + h/2))2
v(x + h/2), (39)

b1(x) = b(x− h/2) +
f1(x− 3h/2)
f1(x− h/2)

− f1(x− h/2)
f1(x + h/2)

. (40)

Proof : see for instance [16, 17].
Darboux transform maps (35) into equation of the same form, with the same
value of spectral parameter λ, but with a new potential constructed in terms of
the initial potential v(x) and a fixed solution f1(x) of (35).8

3.2 Multiple difference Darboux transform 2
We use the following notations.

dm(x) := dm[f1, f2, . . . , fm](x) =∣∣∣∣∣∣∣∣∣

f1(x− (m− 1)h/2) f2(x− (m− 1)h/2) . . . fm(x− (m− 1)h/2)
f1(x− (m− 3)h/2) f2(x− (m− 3)h/2) . . . fm(x− (m− 3)h/2)

...
...

...
...

f1(x + (m− 1)h/2) f2(x + (m− 1)h/2) . . . fm(x + (m− 1)h/2)

∣∣∣∣∣∣∣∣∣
, (41)

cm(x) := cm[f1, . . . , fm](x) :=

8Contrary to (35), equation (17) is not covariant with respect to the action of the Darboux
transformation described in this section, since it does not preserve the coefficient b(x).
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:=

∣∣∣∣∣∣∣∣∣∣∣

f1(x− (m− 1)h/2) f2(x− (m− 1)h/2) . . . fm(x− (m− 1)h/2)
f1(x− (m− 5)h/2) f2(x− (m− 5)h/2) . . . fm(x− (m− 5)h/2)
f1(x− (m− 7)h/2) f2(x− (m− 7)h/2) . . . fm(x− (m− 7)h/2)

...
...

...
...

f1(x + (m + 1)h/2) f2(x + (m + 1)h/2) . . . fn(x + (m + 1)h/2)

∣∣∣∣∣∣∣∣∣∣∣

˙

(42)
The last determinant has "almost Casoratian" structure, i.e. strictly Casoratian
structure for the last m − 1 rows, and a double shift of the arguments of fj

between the first row and the second row.

Theorem 3.2 The function ψm(f)(x),

ψm(f)(x) :=
dm+1[f, f1, ..., fm](x)

dm[f1, ..., fm](x + h/2)
, (43)

gives a general solution of the following equation

wm(x)ψm(f)(x + h) + ψn(f)(x− h) + bm(x)ψm(f)(x) = λψn(f)(x), (44)

wm(x) :=
dm(x− h/2)dm(x + 3h/2)

dm(x + h/2)2
w(x + mh/2), m ≥ 1, (45)

bm(x) := b(x−mh/2) +
cm(x− 3h/2)
dm(x− h/2)

− cm(x− h/2)
dm(x + h/2)

, m ≥ 2, (46)

Formula (45) is well known (see [16, 17]). By contrast, we were not able to find
(46) in the literature. Here we omitted somehow the proof of (46) for brevity.
2

Similarly to the case of DDPT-I model, the function ψn(x) can be also repre-
sented in a following factorized form

φm(x) = (U−1 − κn(x)U) . . . (U−1 − κ1(x)U)f(x, λ),

where U is the shift operator U±kf(x) = f(x±kh/2) and κj(x) is defined by the
iterative way : Φ0(x) = f(x), Φj(x) = φj−1(x)|f(x)=fj(x), κj(x) = Φj(x−h/2)

Φj(x+h/2) ,
j = 1 . . . m.

3.3 Explicit formulas for some special determinants
Here we show that taking w(x) = 1, b(x) = 0 and defining the functions
f1, . . . , fn as in (4) we get from the formulas (45), (46), (40) the same po-
tentials wmn, bmn as defined by (36) and (37)).
Let n and d be some non negative integers, m = n+d, h, α be some real param-
eter. The main technical tools we use are explicit formulas for the determinants
Dmn(x), Cmn(x) defined as follows.
We denote Dmn the determinant:

12



Dmn = Dmn(x, h) = Dmn[f1, . . . , fm](x)
:= det (fj((x− (m + 1− 2i)h/2)))i,j=1,...,m). (47)

It is clear that

Dmn(x, h) = δmn(x, h/2), (48)

where δmn is defined by (20).
Cmn(x, h) = cm(f1, . . . , fm), where fj(x) are defined in (4). The determinant
Cmn(x, h) can be also explicitly computed:

Theorem 3.3 1. m ≥ 2, 1 ≤ n ≤ m− 1,

Cmn = amn ·
m−1∏

k=−m+1

sin[
m+1−|k|

2 ] α(x + (k + 2)h/2)
n−1∏

k=−n+1

cos[
n+1−|k|

2 ] αα(x + (k + 2)h/2)

· sin α(x− (m− 1)h/2)
sin(αh) sin α(x + h) cos α(x + h)

· (sin(α(m + n + 1)h/2) cos α(x− (n− 2)h/2)+

sin(α(m− n− 1)h/2) cos α(x + (n + 2)h/2));

amn = 2
n(n+1)

2 (−4)
m(m−1)

2

m−n−1∏

l=0

n∏

j=1

sin α(l + 2j)h/2

·
m−n∏

j=1

sinm−n−j(αjh/2) ·
n∏

j=1

sinn−j(αjh); (49)

2. m ≥ 2, n = 0,

Cm0 = (−1)
m(m−1)

2 (2)
m(m−3)

2 +1
m−1∏

j=1

sinm−j(αjh/2)
m−1∏

k=−m+1

sin[
m+1−|k|

2 ] α(2x + (k + 2)h)

· sin α(x− (m− 1)h/2)
sin(αh) sin α(x + h)

· (sin(αmh/2) cos(αh/2)); (50)

3. m ≥ 2,, n = m,

Cmm = (−1)
m(m−1)

2 (2)m(m−1)
m−1∏

j=1

sinm−j(αjh) ·
m−1∏

k=−m+1

sin[
m+1−|k|

2 ] α(2x + (k + 2)h)

· sin α(x− (m− 1)h/2)
sin(αh) sin α(x + h) cos α(x + h)

· (sin(α(2m + 1)h/2) cos(α(x− (m− 2)h/2)

− sin(αh/2) cos α(x + (m + 2)h/2)). (51)
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Proof: It is enough to check the following relation :

Cmn(x) =
sin α(x− (m− 1)h/2)

sin(αh) cos α(x + h) sin α(x + h)
·(sin(α(m + n + 1)h/2) cos α(x− (n− 2)h/2) +

sin(α(m− n− 1)h/2) cos α(x + (n + 2)h/2))Dmn(x + h), (52)

The later formula can be proved by using the recursion relation:

Cm+1n+1(x) =
Dm+1n+1(x)

Dmn(x + h/2)
Dmn(x + 3h/2) +

Cmn(x− h/2)
Dm,n(x + h/2)

Dm+1n+1(x + h). (53)

We postpone further details for a more detailed publication. 2

3.4 Getting DDPT-II model from multiple Darboux dress-
ing formulas

Integrability of DDPT-II model was first proved in [13] using the approach
similar to [20, 21]. Below we present a different and shorter proof.

Theorem 3.4 The DPT potentials wmn(x) and bmn(x) defined by (36), (37),
can be expressed in terms of Casorati determinants in the following way :

wmn =
Dmn(x− h/2)Dmn(x + 3h/2)

(Dmn(x + h/2))2
, (54)

bmn(x) =
Cmn(x− 3h/2)
Dmn(x− h/2)

− Cmn(x− h/2)
Dmn(x + h/2)

. (55)

The general solution of the DDPT-II equation can be written as

φ(x, λ) =
Dm+1,n+1[f, f1, . . . , fm](x)
Dmn[f1, . . . , fm](x + h/2)

. (56)

Hint of the Proof : It is sufficient to replace Dmn and Cmn by their expressions
(47), (49).
Using the explicit formula of Dmn, it is easy to see that9 :

Dm+1,n+1(x)
Dmn(x + h/2)

= pmn ·
m∏

k=0

sin(x− kh/2)
n∏

k=0

cos(x− kh/2) ≡ pmn ·Φ1(x,m, n),

pmn := 22m+n+1(−1)m
m−n∏

l=1

sin(α(m + n + 2− l)h/2)) ·
n∏

j=1

sin(αjh).

9It was shown in [13] in a different and longer way that Φ(x, m, n) solves DDPT-II equation
with λ = 2 cos(αh(m+n+2)). Here, we get the same result as a trivial consequence of generic
Casorati determinant formalism described above.
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Formula above shows that (54) really holds.
Using explicit formula for Dmn and (49), we can also easily check that (55)

holds. 2

As a corollary, we get an another proof of the integrability of the DDPT-II
equation.

Concluding Remarks

• Comparison of the results of the section 1 with [1, 2, 3] shows that the
DPT trigonometric potentials produce the subfamily of two dimensional
Huygens potentials V (r, ϕ) via a formula

V (r, ϕ) =
1
r2

[
m(m + 1)

sin2 ϕ
+

n(n + 1)
cos2 ϕ

]
,

since the generic 2D Huygens potentials in polar coordinates are described
by the formula 10

V (r, ϕ) = − 2
r2

W (χ1, . . . , χm),

χj = sin(kjϕ + δj), j = 1, . . . ,m; kj ∈ Z, δj ∈ R.

Therefore, taking kj = aj , where aj are the same as in the Theorem 1.2
and, taking δj = 0, we get the aforementioned link between the DPT
potentials and Huygens potentials.

• We have shown also that a scepticism expressed in [25] (p. 371), concern-
ing the use of generic Casorati determinants formulas for studying discrete
DPT potentials was not justified since the case considered in [25] corre-
sponds to a special reduction of DDPT-I or DDPT-II equations namely
to the case n = 0, and x ∈ Z, h = 1 : we can easily recover all the results
obtained in [13, 20, 21]

• Hyperbolic case of DDPT-I and DDPT-II models is quite similar: we
have to replace α by iα. Of course the related spectral properties are
different but the algebraic structure of the main formulas remains the
same. We postpone the detailed discussion of the hyperbolic DPPT-I
and DDPT-II equations for more detailed publication. The related bound
states eingenfunctions were described in [13, 20, 21].

• It is interesting to mention that the same expression as the determinant
(15) , (up to a different constant normalization factor), recently appeared
in [27] (Th. A, Th. 5.1) as a density of probability measure describing the
asymptotic distribution of Frobenius roots on the m -dimensional abelian
varieties over finite fields Fα when α →∞.

10In [1, 2, 3] the formula below was written in slightly different but strictly equivalent form,
using the wronskian of m + 1 cosine functions.
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• Hirota or Sato-like formulas for the solutions of some of the considered
equations, (also providing the solutions by means of the elementary func-
tions), were obtained via IST approach by Kirillov and van Diejen,- first,
for the DPT equation [8, 9] and, next, for DDPT-I equation with n = 0
[10] where the solutions in terms of q-hypergeometric functions were also
have been constructed. For the n 6= 0 or for DDPT-II model Sato like
formulas for the solutions still are not constructed. We claim that it is
possible to obtain these formulas via taking an appropriate limit of some
finite-gap Baker-Akhiezer functions. We postpone the detailed explana-
tion for future publications.

• The content of the section 1 is obviously connected with the usual (trigono-
metric) BC1 two-particle quantum Calogero-Moser system. The results
of the sections 2 and 3 are obviously relevant to the trigonometric case of
some two particles quantum difference BC1 Calogero-Moser systems,(also
known as quantum relativistic, (QRCM), Calogero-Moser systems), al-
though we avoided in the sections 2 and 3 to reduce our L-operators to
QRCM hermitian hamiltonians by well known similarity transformations.
See [11] for the related definitions and detailed comments.
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