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Abstract
In [S1] we showed that the growth function PM (t) for an Artin monoid of

finite type M is a rational function of the form 1/NM (t) where NM (t) is a
polynomial1, and gave three conjectures on the denominator polynomial NM (t).
In the present note, we remove this assumption on M by showing the result
for any type M . Then we give renewed three conjectures on the denominator
poynomial NM (t) for an indecomposable affine type M . The new conjectures

are verified for all types Ã2, Ã3, B̃3, C̃2, C̃3 and G̃2 of rank 2, 3 and type D̃4.

1 Growth function for an Artin monoid
We recall the definition of a growth function for an Artin monoid.

Let M =(mij)i,j∈I be a Coxeter matrix ([B]). The Artin monoid G+
M

([B-S, §1.2]) associated with M (or, of type M) is a monoid generated by
the letters ai, i ∈ I which are subordinate to the relation generated by

(1.1) aiajai · · · = ajaiaj · · · i, j ∈ I,

where both hand sides of (1.1) are words of alternating sequences of let-
ters ai and aj of the same length mij = mji with the initials ai and aj ,
respectively. More precisely, G+

M is the quotient of the free monoid gener-
ated by the letters ai (i ∈ I) where two words U and V in these letters are
equivalent if there exists a sequence U0 := U, U1, · · · , Um := V such that
the word Uk (k = 1, · · · , m) is obtained by replacing a phrase in Uk−1 of
the form on LHS of (1.1) by RHS of (1.1) for some i, j ∈ I. We write by
U =• V if U and V are equivalent. The equivalence class (i.e. an element

of G+
M ) of a word W is denoted by the same notation W . By definition

equivalent words have the same length. We therefore define the degree
homomorphism

(1.2) deg : G+
M −→ Z≥0

by assigning to each equivalence class the length of any representativeword.
The growth function P

G+
M

,I
(t) for the Artin monoid G+

M is defined by

(1.3) P
G+

M
,I

(t) :=
X

n∈Z≥0

#{W ∈G+
M | deg(W )≤n} tn.

∗Institute for the Physics and Mathematics of the Universe, the University of Tokyo
1Here M is a Coxeter matrix [B]. We shall refer M as the type of the Coxeter group, Artin

group, Artin monoid, growth function,. . . , etc. associated with M . In the present note, we
shall call a Coxeter matrix M is of finite (resp. affine) type if the associated Coxeter group GM

([B, Ch.IV §1]) is finite (resp. affine), that is, the associated bilinear form BM [B] is positive
(resp. semi-positive with rank 1 kernel), but which may or may not be indecomposable.
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2 Spherical growth function ṖG+
M ,I(t)

The spherical growth function of the monoid G+
M of type M is defined by

(2.1) Ṗ
G+

M
,I

(t) :=
X

n∈Z≥0

#(deg−1(n)) tn

so that one has the obvious equality P
G+

M
,I

(t) = Ṗ
G+

M
,I

(t)/(1− t).

The goal of this section is the following.

Theorem 2.1. Let G+
M be the Artin monoid of any type M . Then, the

spherical growth function of the monoid is given by the Taylor expansion
of the rational function of the form

(2.2) Ṗ
G+

M
,I

(t) =
1

NM (t)
,

where NM (t), called the denominator polynomial, is a polynomial given by

(2.3) NM (t) :=
X
J⊂I

(−1)#(J) tdeg(∆J ).

Here the summation index J runs over subsets of I such that the restricted
Coxeter matrix2 M |J is of finite type, and ∆J is the fundamental element
in G+

M associated with J ([B-S, §5 Definition]. See also Lemma-Definition
1 and Remark 2.3 of the present note).

Proof. The proof is achieved by a recursion formula (2.9) on the coeffi-
cients of the growth function. For the proof of the formula, we use the
method used to solve the word problem for the Artin monoid ([B-S, §6.1]),
which we recall below. We first recall the fact that an Artin monoid is
cancelative in the following sense ([B-S, Prop.2.3]).

Lemma 2.2. Let A, B, X, Y ∈ G+
M . If AXB =• AY B. Then X =• Y .

A word U is said to be divisible (from the left) by a word V , and we
write V |U , if there exists a word W such that U =• V W . Since V =• V ′,

U =• U ′ and V |U implies V ′|U ′, we use the notation “|” of divisibility

also between elements of the monoid G+
M . We have the following basic

concepts ([B-S, §5 Definition and §6.1]).

Lemma-Definition 1. Let M be a Coxeter matrix of any type, and
let J ⊂ I be a subset of I such that M |J is of finite type (though not
necessarily indecomposable). Then, there exists a unique element ∆J ∈
G+

M , called the fundamental element, such that i) ai|∆J for all i ∈ J , and

ii) if W ∈ G+
M and ai|W for all i ∈ J , then ∆J |W .

2. To an element W ∈ G+
M , we associate the subset

(2.4) I(W ) := {i ∈ I | ai|W}.
of I. Then the restricted Coxeter matrix M |I(W ) is of finite type for any

W ∈ G+
M .

2For a Coxeter matrix M = (mij)i,j∈I and a subset J of I, we define the restricted Coxeter
matrix by M |J := (mij)i,j∈J which, obviously, is also a Coxeter matrix.
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Proof. 2. This follows from the fact that the existence of ∆J holds under
an assumption weaker than M |J being of finite type, namely that there
exists a common multiple of aj for j∈J in G+

M (see [B-S, Prop. (4.1)]). 2

By definition (2.4), one has ∆I(W )|W and if ∆J |W then J ⊂ I(W ).

We return to the proof of Theorem.
For n ∈ Z≥0 and for any subset J ⊂ I, put

(2.5) G+
n := {W ∈ G+

M | deg(W ) = n}

(2.6) G+
n,J := {W ∈ G+

n | I(W ) = J}.

We note that G+
n,J = ∅ if M |J is not of finite type. By definition, we have

the disjoint decomposition

(2.7) G+
n = qJ⊂I G+

n,J ,

where J runs over all subsets of I. Note that G+
n,∅ = ∅ if n > 0 but

G+
0,∅={∅} 6=∅. For any subset J of I the union qJ⊂K⊂IG+

n,K , where the

index K runs over all subsets of I containing J , is equal to the subset of
G+

n consisting of elements divisible by aj for j ∈ J . That is, one has

qJ⊂K⊂IG+
n,K =


∆J ·G+

n−deg(∆J ) if M |J is of finite type,
∅ if M |J is not of finite type.

Thus, if M |J is of finite type, the cancelativity Lemma 2.3 implies the
multiplication map of ∆J is injective and we find a bijection G+

n−deg(∆J ) '
qJ⊂K⊂IG+

n,K . This implies the equality

(2.8) #(G+
n−deg(∆J )) =

P
J⊂K⊂I #(G+

n,K).

If M |J is not of finite type, still the formula (2.8) holds formally, by
putting deg(∆J) := ∞ and G+

−∞ := ∅, i.e. #(G+
n−deg(∆J )) := 0. Then,

for n > 0, using (2.8) we get the recursion relation

(2.9)
X
J⊂I

(−1)#(J)#(G+
n−deg(∆J )) = 0,

where the index J may run either over all subsets of I, or over only those
subsets J such that the restricted Coxeter matrix M |J is of finite type.
Together with #(G+

0 )=1 for n=0, this is equivalent to the formula:

(2.10) Ṗ
G+

M
,I

(t)NM (t) = 1.

This completes the proof of Theorem 2.1.

Remark 2.3. We have the equality ([B-S, §5.7]):

deg(∆J)=#{reflections in GM|J }=the length of the longest element of GM|J .

By the definition (2.3) of the denominator polynomial, one has

NM (1) =
P

J⊂I,M|J is
of finite type

(−1)#J

This, in particular, implies
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i) NM (t) has the factor 1− t if M contains a component of finite type,
ii) NM (1) = (−1)l if M is of indecomposable affine type of rank l (that

is, by definition, M is indecomposable and affine such that #(I)= l+1).3

We refer to [S1] and http://www.kurims.kyoto-u.ac.jp/∼saito/FFST/ for
examples of finite type. (The author express his gratitude to S. Tsuchioka
for preparing this page). Here we give a few more examples of affine type.

Example. There are three types of indecomposable affine Coxeter
matrices of rank 2. In the following, for each type, we associate the
Coxeter diagram ΓM and the denominator polynomial NM (t).

1. Ã2 ΓÃ2
=

◦
/ \
◦ ◦

. NÃ2
(t) = 1− 3t + 3t3.

2. C̃2 ΓC̃2
= ◦

4
◦

4
◦ . NC̃2

(t) = 1− 3t + t2 + 2t4.

3. G̃2. ΓG̃2
= ◦ ◦

6
◦ . NG̃2

(t) = 1− 3t + t2 + t3 + t6.

3 A bound on the zeroes of the denomi-
nator polynomial NM(t) of affine type

The following lemma gives a numerical bound on the zeroes of the denom-
inator polynomials for indecomposable affine type.

Lemma 3.1. Let M be a Coxeter matrix of indecomposable affine type of
rank l. Then, all the roots of NM (t) = 0 are contained in the open disc of
radius r centered at the origin, where r is give by

(3.1) r :=
“2l+1 − s− 1

s

”1/(deg(∆M|I\{v} )−d)

,

where deg(∆M|I\{v}), d, s are invariants of M explained in the proof.

Proof. In the affine Coxeter graph ΓM (whose vertex set is identified
with I, and hence #(ΓM ) = #(I) = l +1) there is a vertex v, called
special [B, p.87], such that ΓM \{v} is the Coxeter graph of the finite
Coxeter group isomorphic to the radical quotient of the affine Coxeter
group GM . The number, denoted s, of special vertices in ΓM of types
Ãl, B̃l, C̃l, D̃l, Ẽ6, Ẽ7, Ẽ8, F̃4, G̃2 are l+1, 2, 2, 4, 3, 2, 1, 1, 1, respectively.

Noting that N(t) := (−1)ls · tdeg(∆M|I\{v} )
, for v a special vertex, is

the leading term of NM (t), one has |NM (t)−N(t)| ≤ (2l+1− s−1)|t|d for

t ∈ C with |t| > 1 (strict inequality holds except for the type Ã1), where

d := max{deg(∆J) | J ⊂ I s.t. I \ J is not a single special vertex}.

Hence |NM (t) − N(t)|/|N(t)| ≤ 2l+1−s−1
s

|t|d−deg(∆M|I\{v} )
. If r ∈ R>1

satisfies an inequality 2l+1−s−1
s

r
d−deg(∆M|I\{v} ) ≤ 1 then by Rouché’s

theorem the number of roots of NM (t)=0 in the disc of radius r is equal
to that of N(t) = 0, where N(t) = 0 has zeroes only at 0 of multiplicity
deg(N(t)) = deg(NW (t)). That is, all the roots of NM (t) = 0 are in the
disc {|t| < r} for the radius r given in (3.1).

3The discrepancy between the rank l and the number #(I) = l+1 for a Coxeter matrix M
of indecomposable affine type comes from the fact that the associated affine Coxeter group acts
on a semi-positive lattice of signature (l, 1, 0). Put Nk

M (t) :=
P

J⊂I,#(J)≤k(−1)#(J)tdeg(∆J ) for

0 ≤ k ≤ l. Then, NM (t) = N l
M (t), and one has Nk

M (1) = (−1)kCl
k for 0 ≤ k ≤ l.
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4 Conjectures on the zeroes of the de-
nominator polynomial NM(t) of affine type

Some structures and examples discussed at the end of §2 lead us to the fol-
lowing three conjectures on the distribution of zeroes for the denominator
polynomial NM (t) of indecomposable finite or affine type.

Conjecture 1. i) The polynomial ÑM (t) := NM (t)/(1− t) is irreducible
over Z for any indecomposable finite type M . ii) The polynomial NM (t)
is irreducible over Z for any indecomposable affine type M .

Conjecture 2. i) There are l−1 pairwise distinct real roots of NM (t) = 0
on the interval (0, 1) for any indecomposable finite type M of rank l. ii)
There are l pairwise distinct real roots of NM (t) = 0 on the interval (0, 1)
for any indecomposable affine type M of rank l.

Conjecture 3. Let rM be the smallest of the real roots on the interval
(0, 1). Then, the absolute values of the other roots of NM (t) = 0 are
strictly larger than rW .

Conjectures on the denominator polynomials of finite type were al-
ready stated in [S1] and verified by direct computer calculations for the
types Al, Bl, Cl, Dl (l ≤ 30), E6, E7, E8, F4, G2, H3, H4 and I2(p) (p ∈
Z≥3) by M. Fuchiwaki, S. Tsuchioka and others (see http://www.kurims.
kyoto-u.ac.jp/∼saito/FFST/). A theoretical work on these conjectures in
this case is in progress by S. Yasuda.

Conjectures on the denominator polynomial of affine type are affirma-
tive for the three types Ã2, C̃2 and G̃2 from the explicit expressions given
in §2 Example and for a few further types Ã3, B̃3, C̃3 and D̃4.

Remark 4.1. In Conjecture 3, the fact that rM is at most the absolute
value of any other root of NW (t) = 0 is trivially true, since rM is equal
to the radius of convergence of the series PM (t) of non-negative real co-
efficients. Therefore, the true question here is whether there are no other
roots of NW (t)=0 whose absolute value is equal to rW . This is equivalent
that whether the sequence {#(G+

n−1)/#(G+
n )}n∈Z>0 converges to the single

value rM . These questions were motivated by a study of the author on
limit functions associated with the monoid G+

M (see [S2, §11], [S1, §5]).

Acknowledgement. The author is grateful to Mikael Pichot for his in-
terests and discussions on the subjects, and to Ken Shackleton for carefully
reading an earlier version of this note.
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