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1 Introduction

The purpose of this paper is to introduce the notion of higher order

simple-pole type operators and to relate the operators to second order

simple-pole type operators, which have been studied by Olver ([O]),

Koike ([Ko1], [Ko2], [Ko3]) and others. The operators we are to deal

with are, in an intuitive description, higher order linear ordinary differ-

ential operators with a large parameter η whose coefficients may have

simple poles at the origin of C. Although we give a precise definition of

such operators in Section 2, here we present a simple and illuminating

example of a third order simple-pole type operator so that the reader

may envisage what they look like:

(1.1) PBNR′ =
d3

dx3
+

3

2x

d2

dx2
+

3

4x
η2 d

dx
+

i

4x
η3

is the example, where the suffix BNR′ indicates that this operator

is closely tied up with the celebrated Berk-Nevins-Roberts operator

([BNR]). The concrete WKB analysis of this operator together with the

explanation of its relationship with the Berk-Nevins-Roberts operator

will be given in Section 3 as an illustration of the power of our main

result (Theorem 2.1), namely the decomposition theorem for a higher

order simple-pole type operator. It states, in plain language, that

a higher order simple-pole type operator is, in a neighborhood of the

origin, a second order simple-pole type operator multiplied by innocent

factors. Here an innocent factor means a differential operator irrelevant

to the Stokes geometry of the higher order operator in question near

the origin. To exemplify the content of Theorem 2.1 we show how

PBNR′ is decomposed à la Theorem 2.1:

(1.2)

PBNR′ =

(
d

dx
− ηq(x, η)

)(
d2

dx2
+ ηa1(x, η)

d

dx
+ η2a2(x, η)

)
,
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where

(1.3) xq(x, η) =
∑
k≥0

xqk(x)η−k and xaj(x, η) =
∑
k≥0

xaj,k(x)η−k

(i = 1, 2)

are symbols of microdifferential operator (cf. e.g. [K3],

[AKY] for the basic facts about microdifferential operators),

(1.4) qk (k 6= 1) is holomorphic on a neighborhood U of the origin,

(1.5) xq1 is holomorphic on U and the residue of q1 at the origin

is −1,

(1.6) a1,k = qk (k 6= 1),

(1.7) xa1,1 and xa2,k are holomorphic on U .

The conditions (1.6) and (1.7) guarantee that the first factor of the

right-hand side of (1.2) is, in essence, an operator studied in [Ko1]

from the viewpoint of the exact WKB analysis, while (1.4) means that

the first factor has no relevance to the Stokes geometry in question.

Thus the connection formula for WKB solutions of PBNR′ near the

origin is obtained from the results for the second order operators. Now

it will be easy for the reader to surmise the core part of Theorem 2.1 in

the general context; it is a counterpart of the decomposition theorem

for a higher order operator near a simple turning point (versus a simple

pole) that was obtained in [AKT2] (see also [AKKoT1]) . Our main

result in this paper, i.e., Theorem 2.1 asserts that a simple-pole type

operator P of order m (≥ 2) can be expressed as

(1.8) P = QR,

where Q is an innocent operator of order (m − 2) and R is a sec-

ond order simple-pole type operator. As this paper is the first one of a
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series of articles on simple-pole type operators, we restrict our consider-

ation to the simplest operators of the sort. There are, however, several

higher order operators which may deserve the name “simple-pole type

operators” but that are not covered by Theorem 2.1. Hence we briefly

discuss in Section 4 what kind of generalizations of Definition 2.1 below

may be imagined.

2 Decomposition theorem for simple-pole type opera-

tors

Let us first give the definition of a (higher order) simple-pole type

operator.

Definition 2.1. Let U be an open neighborhood of the origin x = 0

of C, and let Aj,k (j = 1, 2, · · · ,m; k = 0, 1, 2, · · · ) be meromorphic

functions on U which satisfy the following conditions (2.1) ∼ (2.4):

(2.1) A1,k (k 6= 1) is holomorphic on U ,

(2.2) xA1,1 and xAj,k (j = 2, 3, · · · ,m; k ≥ 0) are holomorphic

on U ,

(2.3) there exists a constant CK for each compact set K in U for

which

sup
x∈K

|xAj,k(x)| ≤ Ck
Kk!

holds for every k ≥ 0 and j = 1, 2, · · · ,m,
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(2.4) for αj =
def

Res
x=0

Aj,0 (j = 2, 3, · · · ,m) we find

(2.4.a) α2 6= 0, αm 6= 0

and

(2.4.b) f (ζ) =
def

m∑
j=2

αjζ
m−j = 0 has (m − 2) mutually

different roots.

Then the following m-th order differential operator P with a large

parameter η is called a simple-pole type operator (with its

singularity at the origin)

(2.5) P =
dm

dxm
+ ηA1(x, η)

dm−1

dxm−1
+ · · · + ηmAm(x, η),

where

(2.6) Aj(x, η) =
∑
k≥0

Aj,k(x)η−k.

Remark 2.1. (i) It is evident that PBNR′ given in (1.1) is one of the

simplest examples of simple-pole type operators; actually only finitely

many Aj,k’s survive in PBNR′.

(ii) When m = 2, it is customary to rewrite the equation Pψ = 0 into

the Schrödinger form by using the gauge transformation

(2.7) ϕ = exp

(
1

2
η

∫ x

A1(x, η)dx

)
ψ;

then the equation that ϕ solves is

(2.8)
d2ϕ

dx2
= η2Q(x, η)ϕ

with

(2.9) Q = −A2(x, η) +
1

4
A1(x, η)2 +

1

2
η−1 dA1(x, η)

dx
.
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Writing

(2.10) Q =
∑
k≥0

Qk(x)η−k,

we find

(2.11) Q0 = −A2,0 +
1

4
A2

1,0,

(2.12) Q1 = −A2,1 +
1

2
A1,0A1,1 +

1

2

dA1,0

dx
,

(2.13) Q2 = −A2,2 +
1

4

(
2A1,0A1,2 + A2

1,1

)
+

1

2

dA1,1

dx
,

(2.14) Qk = −A2,k +
1

4

( ∑
p+q=k

A1,pA1,q

)
+

1

2

dA1,k−1

dx
(k ≥ 3).

Then (2.2) and (2.1) entail Q0 has a simple pole at the origin with

residue −α2, which is different from 0 by the assumption (2.4.a). As-

sumptions (2.1) and (2.2) again guarantee that Q1 is with a simple

pole at the origin. Similarly Q2 is with at most a double pole at the

origin. An interesting feature of Qk (k ≥ 3) is that it is with at most

a simple pole at the origin thanks to the assumption (2.1). Its impor-

tant consequence is that the invariant λ that Koike ([Ko1]) uses is a

genuine constant (versus an infinite series of η−1 that is independent

of x). This particular property of the potential Q will be discussed in

Section 4.

We also note that the regularity of A1,0 implies

(2.15)

∫ x

A1,0(x)dx

converges to a finite value as x tends to 0. This fact guarantees that the

gauge transformation (2.7) does not conflict with the basic property of

6



a Borel transformed WKB solution of a second order simple-pole type

equation to the effect that its singularities converge to finite points

(versus points at infinity) as x tends to the origin; actually Koike was

partly motivated by this geometric property of the Borel transformed

WKB solution in developing his theory on simple-pole type operators

([Ko1], [Ko2]).

(iii) The condition (2.3) guarantees that x
( ∑

k≥0

Aj,k(x)η−k
)

is a symbol

of a microdifferential operator x
( ∑

k≥0

Aj,k(∂/∂y)−k
)
. This aspect of

our theory will be discussed in our subsequent article; in this paper

we concentrate our attention primarily upon the formal aspect of the

theory.

One point worth emphasizing concerning Definition 2.1 is that char-

acteristic properties (2.1) ∼ (2.4) of a simple-pole type operator are

stable under the decomposition given in the following

Theorem 2.1. Let P be an m-th (m ≥ 3) order simple-pole type

operator of the form (2.5). Then there exist an open neighborhood

V of the origin, meromorphic functions qk(x) defined on V and an

(m − 1)-st order simple-pole type operator R defined on V which

satisfy the following relations (2.16) ∼ (2.19) if we let q(x, η) denote∑
k≥0

qkη
−k and define a differential operator Q by d/dx − ηq(x, η):

(2.16) P = QR,

(2.17) qk (k 6= 1) is holomorphic on V ,

(2.18) xq1 is holomorphic on V , and the residue of q1 at the

origin is −1,
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(2.19) for each compact set K in V there exists a constant MK

for which the following relation holds for k ≥ 2:

sup
K

|qk(x)| ≤ Mk
Kk!.

Remark 2.2. (i) Since q0 is holomorphic on V , the highest degree part

d/dx − ηq0(x) of the operator Q has nothing to do with the Stokes

geometry of P near the origin.

(ii) Since the operator R is again a simple-pole type operator, Theo-

rem 2.1 applies to R. Hence by repeating the above decomposition we

eventually arrive at a second order simple-pole type operator R2; we

can find first order differential operators Q1, · · · , Qm−2 and a second

order simple-pole type operator R2 which satisfy

(2.20) P = Q1Q2 · · ·Qm−2R2,

where Qj has the form

(2.21)
d

dx
− ηqj(x, η)

with qj(x, η) =
∑
k≥0

qj,k(x)η−k for {qj,k}k satisfying conditions (2.17)

∼(2.19).

Proof of Theorem 2.1. Let us write down the required simple-pole

type operator R as

(2.22)
dm−1

dxm−1
+ ηa1(x, η)

dm−2

dxm−2
+ · · · + ηm−1am−1(x, η)

with

(2.23) aj(x, η) =
∑
k≥0

aj,k(x)η−k,

and try to find {aj,k} together with {qk} so that (2.16) is satisfied.

Then the comparison of coefficients of like orders of differentiation in
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(2.16) entails the following relations

(2.24)



A1 = a1 − q (2.24.1)

A2 = a2 − qa1 + η−1a′1 (2.24.2)

A3 = a3 − qa2 + η−1a′2 (2.24.3)
... ...

Am−1 = am−1 − qam−2 + η−1a′m−2 (2.24.m − 1)

Am = − qam−1 + η−1a′m−1. (2.24.m)

Here, and in what follows, a′1 etc. respectively designate da1/dx etc.

In what follows we try to construct aj,k and qk by comparing the co-

efficients of like powers of η−1 in (2.24). First the comparison of the

top degree part, i.e., the degree 0 part of (2.24) results in the following

relations.

(2.25)



A1,0 = a1,0 − q0 (2.25.1)

A2,0 = a2,0 − q0a1,0 (2.25.2)

A3,0 = a3,0 − q0a2,0 (2.25.3)
... ...

Am−1,0 = am−1,0 − q0am−2,0 (2.25.m − 1)

Am,0 = − q0am−1,0. (2.25.m)

Solving the equations (2.25) for aj,0 (1 ≤ j ≤ m − 1) and q0, we find

(2.26) aj,0 =

j∑
l=0

Al,0q
j−l
0 (j = 1, 2, · · · ,m − 1)

and

(2.27) qm
0 + A1,0q

m−1
0 + A2,0q

m−2
0 + · · · + Am,0 = 0.

To find the required holomorphic function q0, let us consider the func-
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tion

(2.28)

F (x, ζ) = xζm + xA1,0(x)ζm−1 + xA2,0(x)ζm−2 + · · · + xAm,0(x).

Then it follows from (2.1) and (2.4) that the equation

(2.29) F (0, ζ) = α2ζ
m−2 + · · · + αm = 0

has (m − 2) mutually different roots. Let us choose and fix one of

them, say ζ0. We note

(2.30) ζ0 6= 0

by the assumption (2.4.a). For the ζ0 thus chosen we find

(2.31)
∂F

∂ζ
(x, ζ)

∣∣∣
(x,ζ)=(0,ζ0)

6= 0,

as every root of (2.29) is simple. Thus the implicit function theorem

tells us that the equation F (x, ζ) = 0 has a unique analytic solution

ζ(x) such that ζ(0) = ζ0. Denoting the domain of definition of ζ(x)

by V (⊂ U), we can choose ζ(x) as the required q0(x). Then it follows

from (2.1) and (2.25.1) that

(2.32) a1,0 = A1,0 + q0

is also holomorphic on V . Similarly we find

(2.33) xaj,0 (j = 2, 3, · · · ,m − 1) is holomorphic on V .

Concerning the residue of aj,0 at the origin, we find by (2.4.a) and

(2.25.2)

(2.34) Res
x=0

a2,0 = Res
x=0

A2,0 6= 0.

Since we have

F (x, ζ) =
(
ζ − q0(x)

)(
xζm−1 + xa1,0(x)ζm−2 + xa2,0(x)ζm−3(2.35)

+ · · · + xam−1,0(x)
)
,
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we set ζ = x = 0 in (2.35) to find

(2.36) −q0(0) Res
x=0

am−1,0 = Res
x=0

Am,0 6= 0.

Note that q0(0) = ζ0 6= 0 by (2.30). Furthermore we find

(2.37) F (0, ζ) = (ζ − ζ0)
(
(Res
x=0

a2,0)ζ
m−3 + · · ·+ Res

x=0
am−1,0

)
= f (ζ),

and hence (2.4.b) entails that

(2.38)
(

Res
x=0

a2,0

)
ζm−3 + · · · + Res

x=0
am−1,0 = 0

has (m−3) mutually different roots. Thus the functions {aj,0}j=1,2,··· ,m−1

meet the requirement (2.4) that the top degree part of a simple-pole

type operator should satisfy.

Now we study the degree (−1) (in η) part of (2.24). We are then to

find {aj,1}1≤j≤m−1 and q1 that satisfy

(2.39)

A1,1 = a1,1 − q1 (2.39.1)

A2,1 = a2,1 − q0a1,1 − q1a1,0 + a′1,0 (2.39.2)

A3,1 = a3,1 − q0a2,1 − q1a2,0 + a′2,0 (2.39.3)
... ...

Am−1,1 = am−1,1 − q0am−2,1 − q1am−2,0 + a′m−2,0 (2.39.m − 1)

Am,1 = − q0am−1,1 − q1am−1,0 + a′m−1,0. (2.39.m)

Let us first rewrite (2.39) in a matrix form for the sake of clarity, i.e.,

(2.40) C


q1

a1,1

a2,1
...

am−1,1

 =


− A1,1

a′1,0 − A2,1

a′2,0 − A3,1
...

a′m−1,0 − Am,1

 ,
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where

(2.41) C =


1 −1 0

a1,0 q0 −1

a2,0 0 q0 −1
... . . . −1

am−1,0 0 q0

 .

Then Cramer’s formula tells us

(2.42) q1 =
det C̃

det C
,

where

(2.43) C̃ =


− A1,1 −1 0

a′1,0 − A2,1 q0 −1

a′2,0 − A3,1 0 q0 −1
... . . . −1

a′m−1,0 − Am,1 0 q0

 .

Similarly we can find {aj,1}1≤j≤m−1 by Cramer’s formula. As we see

below det C is not identically 0, the existence of q1 and {aj,1}1≤j≤m−1

as meromorphic functions is thus obvious. To show that they satisfy

required conditions, we need to find some concrete expression of det C

and det C̃. Actually a straightforward computation shows the following

(2.44) det C = qm−1
0 + a1,0q

m−2
0 + · · · + am−1,0

and

det C̃ = −A1,1q
m−1
0 + (a′1,0 − A2,1)q

m−2
0 + (a′2,0 − A3,1)q

m−3
0(2.45)

+ · · · + a′m−1,0 − Am,1.

Since q0 and a1,0 are holomorphic on V , (2.33) entails that x det C is
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holomorphic on V and that

γ =
def

Res
x=0

det C

(2.46)

=
(

Res
x=0

a2,0

)
q0(0)m−3 +

(
Res
x=0

a3,0

)
q0(0)m−4 + · · · + Res

x=0
am−1,0.

Similarly we find

(2.47) det C̃ = − γ

x2
+ O

(1

x

)
.

These results are crucially important to confirm the required properties

of q1, and the confirmed properties of q1 are effectively employed to

show the simple-pole character of {aj,1}1≤j≤m−1 in our reasoning below.

We first note that (2.46) and (2.37) imply

(2.48) γ = f ′(ζ0) =
∂F

∂ζ
(0, ζ0).

Then (2.31) guarantees

(2.49) γ 6= 0.

Hence by shrinking V if necessary we may assume

(2.50) x det C 6= 0 on V .

Then it follows from (2.42), (2.46), and (2.47) that

(2.51) xq1(x) =
x2 det C̃

x det C
=

−γ + O(x)

γ + O(x)
.

Thus we find that xq1(x) is holomorphic on V . Furthermore the right-

most side of (2.51) means

(2.52) Res
x=0

q1 = −1.

Then (2.39.1) implies that

(2.53) xa1,1 is holomorphic on V .
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Since q0 and a1,0 are holomorphic on V , we conclude from (2.39.2) that

(2.54) xa2,1 is holomorphic on V .

A similar assertion about aj,1 (j ≥ 3) is somewhat more subtle; the

right-hand side of (2.39.3) might appear to contain a double pole orig-

inating from

(2.55) −q1a2,0 + a′2,0,

but we infer from (2.52) that the double poles in (2.55) cancel each

other out. Thus (2.39.3) entails that

(2.56) xa3,1 is holomorphic on V .

The same reasoning applies to (2.39.j) (4 ≤ j ≤ m − 1) and we

conclude that

(2.57) xaj,1 (4 ≤ j ≤ m − 1) is holomorphic on V .

Thus q1 and {aj,1}1≤j≤m−1 constructed by Cramer’s formula enjoy

all the required properties.

The treatment of the degree (−k) (k ≥ 2) part of (2.24) is basically

the same as that in the case of k = 1. There is, however, a tiny

difference; we assume that the coefficient A1(x, η) =
∑
k≥0

A1,k(x)η−k of

a simple-pole type operator P should satisfy (2.1), and accordingly it

should be satisfied also by a1(x, η) =
∑
k≥0

a1,k(x)η−k that appears in

the simple-pole type operator R which we are now constructing. This

means that, while a1,1 is with a simple pole, a1,k (k 6= 1) is holomorphic

near the origin. Hence to make the induction on k run smoothly, we

use the induction starting with k = 2. Now the degree (−2) part of

(2.24) is as follows:
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(2.58)

A1,2 = a1,2 − q2 (2.58.1)

A2,2 = a2,2 −
2∑

k=0

q2−ka1,k + a′1,1 (2.58.2)

A3,2 = a3,2 −
2∑

k=0

q2−ka2,k + a′2,1 (2.58.3)

... ...

Am−1,2 = am−1,2 −
2∑

k=0

q2−kam−2,k + a′m−2,1 (2.58.m − 1)

Am,2 = −
2∑

k=0

q2−k, am−1,k + a′m−1,1. (2.58.m)

In parallel with the case k = 1, we rewrite (2.58) in a matrix form

(2.59) below, again using the matrix C given by (2.41):

(2.59) C


q2

a1,2

a2,2
...

am−1,2

 =


a0,2

a1,2

a2,2
...

am−1,2

 ,

where

(2.60) a0,2 = −A1,2

and

(2.61) aj,2 = a′j,1 − q1aj,1 − Aj+1,2 (1 ≤ j ≤ m − 1).

Here we note that (2.52) together with the simple-pole character of aj,1

guarantees that
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(2.62) a′j,1 − q1aj,1 is with a simple pole at the origin.

This means that, if we set

(2.63) C̃2 =


a0,2 −1 0
a1,2 q0 −1

a2,2 0 q0 −1
... . . . −1

am−1,2 0 q0

 ,

(2.64) det C̃2 = a0,2q
m−1
0 + a1,2q

m−2
0 + a2,2q

m−3
0 + · · · + am−1,2

has at most a simple pole at the origin. Therefore the simple-pole

character of det C guarantees that

(2.65) q2 =
det C̃2

det C

is holomorphic on V . Then it follows from (2.58.1) together with

the holomorphy of A1,2 that a1,2 is also holomorphic. To confirm the

simple-pole character of a2,2, it suffices to note that

(2.66) −(q2a1,0 + q1a1,1 + q0a1,2) + a′1,1

is again free from double poles. Using the holomorphy of q0 and q2

together with (2.52), we can confirm, with the help of the induction on

j, that aj,2 (2 ≤ j ≤ m − 1) is with a simple pole at the origin. Thus

we find the required q2 and {aj,2}1≤j≤m−1. We now use the induction

on k; we assume that qk and {aj,k}1≤j≤m−1 have been appropriately

found for k ≤ k0 − 1, with k0 ≥ 3. Then the degree (−k0) part of

(2.24) is as follows:
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(2.67)

A1,k0 = a1,k0 − qk0 (2.67.1)

A2,k0 = a2,k0 −
k0∑

k=0

qk0−ka1,k + a′1,k0−1 (2.67.2)

A3,k0 = a3,k0 −
k0∑

k=0

qk0−ka2,k + a′2,k0−1 (2.67.3)

... ...

Am−1,k0 = am−1,k0 −
k0∑

k=0

qk0−kam−2,k + a′m−2,k0−1 (2.67.m − 1)

Am,k0 = −
k0∑

k=0

qk0−kam−1,k + a′m−1,k0−1. (2.67.m)

By letting a0,k0 and aj,k0 (1 ≤ j ≤ m − 1) denote respectively

(2.68) −A1,k0

and

(2.69) a′j,k0−1 −
k0−1∑
k=1

qk0−kaj,k − Aj+1,k0,

we can rewrite (2.67) in a matrix form:

(2.70) C


qk0

a1,k0

a2,k0
...

am−1,k0

 =


a0,k0

a1,k0

a2,k0
...

am−1,k0

 .

Here we observe that

(2.71) aj,k0 (1 ≤ j ≤ m − 1) is free from double poles
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despite the existence of potentially harmful terms

(2.72) a′j,k0−1 − q1aj,k0−1,

because aj,k0−1 is with a simple pole at the origin and the residue of q1

there is −1. In parenthesis we note that terms in aj,k0 (1 ≤ j ≤ m−1)

other than (2.72) are at most with simple poles at the origin by the

holomorphy of qk (k 6= 1) on V . Defining a matrix C̃k0 by

(2.73)


a0,k0 −1 0
a1,k0 q0 −1

a2,k0 0 q0 −1
... . . . −1

am−1,k0 0 q0

 ,

we infer from (2.71) that

(2.74) det C̃k0 = a0,k0q
m−1
0 + a1,k0q

m−2
0 + a2,k0q

m−3
0 + · · · + am−1,k0

is with at most a simple pole at the origin. Hence we conclude

(2.75) qk0 =
det C̃k0

det C

is holomorphic on V . Then a1,k0 is holomorphic by (2.67.1). The

simple-pole character of aj,k0 (2 ≤ j ≤ m − 1) can be immediately

confirmed with the induction on j applied to (2.67). Thus we have

found qk0 and {aj,k0}1≤j≤m−1 with the required analytic properties.

Once the construction of these functions is completed we can confirm

the estimation (2.19) for {qk}k and (2.3) for {aj,k}k by the same rea-

soning used in [AKT1, Appendix §A.1]. For the sake of completeness

we repeat the core part of [AKT1].

In what follows we fix an arbitrary point x0 in V − {0}, and we let

D(r) denote a closed disc centered at x0 and with radius r. Let r0 be
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a positive number such that

(2.76) D(r0) ⊂ V − {0}.

By (2.3) we may assume the following:

(2.77) There exists a constant M for which

sup
D(r1)

j = 1, 2, · · · , m

∣∣Aj,k(x)
∣∣ ≤ k!Mk(r0 − r1)

−k

holds for any r1 < r0.

We then prove the following by the induction on k:

(2.78) There exists a constant C for which

sup
D(r1)

j = 1, 2, · · · , m − 1

{
∣∣qk

∣∣, ∣∣aj,k

∣∣} ≤ k!Ck(r0 − r1)
−k

holds.

The validity of (2.78) for k = 0 is clear. In view of (2.74) and (2.75),

it suffices to show

(2.79) sup
D(r1)

j = 1, 2, · · · ,m − 1

∣∣aj,k0

∣∣ ≤ k0!C
k0(r0 − r1)

−k0

holds on the condition that (2.79) holds for k ≤ k0−1. To show (2.79)

we follow the reasoning in [AKT1]. To dominate
∣∣daj,k/dx

∣∣ we use the

following device: for each positive number r that is smaller than r0 we

use the induction hypothesis by defining

(2.80) r1 = r +
r0 − r

k0
.

Then we have

(2.81) r0 − r1 =
(
1 − 1

k0

)
(r0 − r).
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Hence Cauchy’s formula entails

sup
D(r)

∣∣∣daj,k0−1

dx

∣∣∣ ≤ (k0 − 1)!Ck0−1(r0 − r1)
−k0+1 k0

r0 − r
(2.82)

≤ k0!C
k0−1

(
1 − 1

k0

)−k0+1

(r0 − r)−k0

≤ k0!C
k0−1e(r0 − r)−k0,

where e = 2.718 · · · . Since

(2.83)

k0−1∑
k=1

(k0 − k)!k! ≤ 4(k0 − 1)!,

we obtain

(2.84)

sup
D(r)

j = 1, 2, · · · ,m − 1

∣∣aj,k0

∣∣ ≤ k0!C
k0

(
eC−1 + 4k0

−1 +
(M

C

)k0
)
(r0 − r)−k0.

Hence by choosing C sufficiently large we find

(2.85) sup
D(r)

j = 1, 2, · · · ,m − 1

∣∣aj,k0

∣∣ ≤ k0!C
k0(r0 − r)−k0.

Since D(r) is a closed disc centered at x0 in V − {0}, and x0 is an

arbitrary point in V −{0}, we can confirm (2.19) for {qk}k and (2.3) for

{aj,k}k. Note that it suffices to dominate aj,k, a function with a simple

pole at the origin, on an arbitrary compact set in V −{0} to dominate

xaj,k on V . Thus we have completed the proof of Theorem 2.1.

¤

3 An example — PBNR′

In this section we discuss how to describe the Stokes geometry of PBNR′

given by (1.1). As mentioned in the introduction, the operator PBNR′
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is closely tied up with the BNR operator

(3.1) PBNR =
d3

dz3
+ 3η2 d

dz
+ 2izη3.

Actually by applying a singular coordinate transformation

(3.2) x = z2

to PBNR, we find

PBNR′ = (8z3)−1PBNR(3.3)

=
d3

dx3
+

3

2x

d2

dx2
+

3η2

4x

d

dx
+

iη3

4x
.

Figure 3.1.

As is now well-known, the Stokes geometry of the BNR operator is

an intriguing one; as is seen in Figure 3.1, it has a virtual turning

point z = 0 besides two simple turning points z = ±1, and the Stokes

curve emanating from the virtual turning point, i.e., the so-called new

Stokes curve, is inert on its dotted portion [C1, C2] in the sense that

no Stokes phenomena are observed there among WKB solutions of

the BNR equation. See [AKT2] for the Stokes geometry of the BNR
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equation; we note that a virtual turning point is called a new turning

point in [AKT2]. Concerning the Stokes geometry of PBNR′, we can

find Figure 3.2 with the help of a computer. In Figure 3.2 Stokes curves

emanating from the turning point x = 1 is given by

(3.4) Im

∫ x

1

(
ξ1(x) − ξ2(x)

)
dx = 0,

where ξ1(x) and ξ2(x) are solutions of the characteristic equation of

PBNR′, i.e.,

(3.5) ξ3 +
3

4x
ξ +

i

4x
= 0

which coincide at x = 1, while the Stokes curve near the origin is given

by

(3.6) Im

∫ x

0

(
ξα(x) − ξβ(x)

)
dx = 0,

where ξα(x) and ξβ(x) are solutions of (3.5) that satisfy

(3.7) ξα(x), ξβ(x) = O(1/
√

x )

near x = 0. Otherwise stated, we regard the origin as a kind of turning

points from which Stokes curves emanate. This recipe is a straightfor-

ward generalization of T. Koike’s recipe for obtaining the Stokes ge-

ometry for second order simple-pole type operators, and its validity in

our case is guaranteed by the decomposition theorem (Theorem 2.1)

for higher order simple-pole type operators. Geometrically speaking,

we may understand the point x = 1 (resp., x = C) to be the im-

age of simple turning points z = ±1 (resp., crossing points C1 and

C2 in Figure 3.1) under the transformation (3.2). In parenthesis, we

note that there is no virtual turning point in the Stokes geometry of

xPBNR′. (See Appendix for the proof.) Analytically speaking, however,

we are somewhat baffled; no Stokes phenomena are observed along the
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Figure 3.2.

segment [C1, C2] in Figure 3.1, while along its image [C,O] in Fig-

ure 3.2 we normally expect some Stokes phenomena. On the other

hand, a computer-assisted study ([AKKoT3]) indicates that no Stokes

phenomena should be observed across the segment [C,O] in Figure 3.2.

The method employed in [AKKoT3] is the steepest descent one; some

subtle cancellation of integrals along some paths of steepest descent

results in the above indication despite some change of the topography

of relevant paths of steepest descent. This indication is analytically

confirmed by the combination of Theorem 2.1 and the results of Koike

([Ko1], [Ko2], [Ko3]) for the second order simple-pole type operators.

Actually Koike’s results applied to the second factor in the right-hand

side of (1.2) read as follows: when WKB solutions are analytically con-

tinued across a Stokes curve emanating from O, the relevant Stokes

multiplier is

(3.8) 2i cos(πc)

with

(3.9) c = Res
x=0

a1,1.

On the other hand the decomposition (1.2) entails

(3.10) a1,1 =
3

2x
+ q1.
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Hence (1.5) implies

(3.11) c =
1

2
,

showing that the quantity in (3.8) is 0! This means that the portion

[C,O] of the Stokes curves in Figure 3.2 is actually inert, and it is

cleanly consistent with Figure 3.1.

Remark 3.1. We were very keen to know what kind of mechanism lay

behind the subtly beautiful Stokes geometry of PBNR′. It was the main

motivation of the experimental study done in [AKKoT3].

4 Discussions and concluding remarks

Our eventual purpose of this paper and subsequent ones is to find

an appropriate class of higher order simple-pole type operators and

develop the exact WKB analysis of operators in the class. Theorem 2.1

indicates that we will be able to obtain a good class of operators if we

find a class of operators that is stable under the successive applications

of division by innocent operators. In order to use in the discussion that

follows we summarize Theorem 2.1 using some symbols.

Let (S0) designate the totality of operators satisfying the conditions

(2.1) ∼ (2.4) and let (F ) designate the totality of operators that has

the form

(4.1)
d

dx
− ηq(x, η),

where q satisfies the conditions (2.17) ∼ (2.19). Then Theorem 2.1

may be rephrased as follows:

Theorem 4.1. (i) For each operator P in (S0) we can find an

operator Q in (F ) that factorizes P , that is,

(4.2) P = QR
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holds for some operator R in (S0) (possibly with smaller domain

of definition).

(ii) If P in (S0) is of the second order, then P can be reduced by an

appropriate gauge transformation (2.7) to a Schrödinger operator

studied in [Ko3].

Here we note that the potential V of the Schrödinger operator stud-

ied in [Ko3] satisfies the following condition (4.3).

(4.3) V (x, η) =
V0(x)

x
+

V1(x)

x
η−1 +

∑
k≥2

Vk(x)

x2
η−k,

with {Vk} satisfying the conditions (4.4) ∼ (4.7) below:

(4.4) Each Vk is holomorphic on a neighborhood U of the origin

of C,

(4.5) V0(0) 6= 0,

(4.6) Vk(0) = 0 for k ≥ 3,

(4.7) for each compact set K in U there exists a constant CK for

which

sup
K

|Vk(x)| ≤ Ck
Kk!

holds.

In what follows we denote by (C0) the totality of a potential V (x, η)

that satisfies the condition (4.3).

In view of Theorem 4.1 one may naturally be tempted to find out an

appropriate triplet that may work as a substitute of ((S0), (F ), (C0)).

One candidate is the triplet ((L), (F̃ ), (C̃)) given in the discussion of

Case 1 below. In what follows we omit the conditions on the growth
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order of the coefficients (like (4.7)) and concentrate our attention on

the formal aspect of the problem (except in Case 3).

Case 1. The large class (L) of simple-pole type operators

Let P be an operator of the following form:

(4.8)
dm

dxm
+ηA1(x, η)

dm−1

dxm−1
+η2A2(x, η)

dm−2

dxm−2
+ · · ·+ηmAm(x, η),

where

(4.9) Aj(x, η) =
∑
k≥0

Aj,k(x)η−k

with Aj,k(x) meromorphic on a neighborhood U of the origin of C.

Then we say P belongs to the class (L) if the following conditions

(4.10) ∼ (4.12) are satisfied:

(4.10) for any j and k, aj,k =
def

xjAj,k is holomorphic on U ,

(4.11) the discriminant of the polynomial

F (x, θ)=
def

θm + a1,0(x)θm−1 + a2,0θ
m−2 + · · · + am,0(x)

in θ has a simple zero at the origin,

(4.12) F = 0 has (m − 2) simple roots as an equation in θ.

The class (F̃ ) of first order operators and the class (C̃) of potentials

are introduced below in conjunction with the class (L).

A first order operator Q̃ of the form

(4.13)
d

dx
+ η

p(x, η)

x

is, by definition, in the class (F̃ ) if

(4.14) p(x, η) =
∑
k≥0

pk(x)η−k
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with pk(x) being holomorphic on U , and a potential V (x, η) is in (C̃)

if it satisfies the following conditions:

(4.15) V (x, η) =
V0(x)

x
+

V1(x)

x2
η−1 +

∑
k≥2

Vk(x)

x2
η−k,

where

(4.16) Vk(x) (k ≥ 0) is holomorphic on U

and

(4.17) V0(0) 6= 0.

We then find the following

Theorem 4.2. (i) For each operator P in (L) we can find an

operator Q̃ in (F̃ ) so that

(4.18) P = Q̃R

holds for some operator R in (L) (possibly with smaller domain of

definition).

(ii) If P in (L) is of the second order, then P can be reduced by an

appropriate gauge transformation (2.7) to a Schrödinger operator

with its potential in the class (C̃).

The proof of Theorem 4.2 is similar to that of Theorem 2.1, and

this result is probably the cleanest one from the algebraic viewpoint.

Furthermore the definition of class (L) nicely fits in with our naive

intuition that a simple pole plays the role of a turning point as it ap-

pears through the confluence of a (simple) turning point and a singular

point. (Cf. (4.11).) Still we do not seriously study operators in class

(L) because of the following three obstacles.

Obstacle 1. The structure of a Schrödinger operator with its poten-

tial in the class (C̃) is difficult to analyze. As a matter of fact, we do
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not know what kind of connection formula we can expect even for the

operator whose potential is

(4.19) V (x, η) =
1

x
+

α

x2
η−1

with α non-zero constant.

We believe analysis of such an operator is worth doing, separately

from other obstacles described below.

Obstacle 2. For a second order operator P that is in class (L), the

integral (2.15) is a divergent one in general. Thus in view of Remark 2.1

we are not sure whether an operator in (L) has all the properties that

we imagine a simple-pole type operator to have.

Obstacle 3. Even if Obstacle 1 should be removed, we would be

unable to obtain enough information about the (semi-)global structure

of WKB solutions of the equation defined by a higher order operator in

class (L). The trouble is that an operator Q̃ in (F̃ ) is associated with

Stokes curves that flow toward the origin which may cross a Stokes

curve of the operator R that emanates from the origin. In general we

have to seek for virtual turning points which are to resolve the troubles

around the crossing point. (See [AKT2] for the details.) Our computer-

assisted study indicates that this is almost a formidable task, because

the Stokes curves of Q̃ normally flow toward the origin in a spiral and

cross a Stokes curve of R infinitely many times.

The class (M) discussed in Case 2 below is designed to circumvent

Obstacles 1 and 2.

Case 2. The medium class (M) of simple-pole type oper-

ators

Let P be an operator of the form (4.8) whose coefficients satisfy

the condition (4.10). Then we say P is in class (M) if the following
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conditions (4.20) ∼ (4.23) are satisfied:

(4.20) am−1,0(0) = am,0(0) = am,1(0) = 0,

(4.21) (dam,0/dx)(0) 6= 0,

(4.22) am−2,0(0) 6= 0,

(4.23) the equation

θm−2 + a1,0(0)θm−3 + · · · + am−2,0(0) = 0

has mutually distinct (m − 2) roots which are all different

from 0.

In conjunction with this class of operators we introduce the following

class (C) of potentials: let V (x, η) be a potential of the following form

(4.24)
V0(x)

x
+

V1(x)

x
η−1 +

∑
k≥2

Vk(x)

x2
η−k,

where

(4.25) Vk(x) (k ≥ 0) is holomorphic on U

and

(4.26) V0(0) 6= 0.

Then we say V is in class (C). Concerning operators in class (M) we

find the following

Theorem 4.3. (i) For each operator P in (M) we can find an

operator Q̃ in (F̃ ) so that

(4.27) P = Q̃R

holds for some operator R in (M) (possibly with smaller domain

of definition).
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(ii) If P in (M) is of the second order, then P can be reduced by an

appropriate gauge transformation (2.7) to a Schrödinger operator

with its potential in the class (C).

The proof of Theorem 4.3 is again similar to that of Theorem 2.1.

Obstacle 2 observed in Case 1 disappears this time. The trouble in

analyzing a Schrödinger operator with its potential in (C) is that its

canonical form contains an infinite series ([Ko3]); the canonical form is

(4.28) − d2

dx2
+ η2

(
1

x
+ η−2 λ

x2

)
,

with

(4.29) λ =
∑
k≥0

Vk+2(0)η−k.

Note that λ is a genuine constant when V is in (C0). Hence the dif-

ficulty in analyzing a Schrödinger operator with its potential in (C)

should be enormous. This anticipation, however, does not make us feel

intimidated but rather encouraged; a recent study ([AKT3]) of the We-

ber equation with its constant being an infinite series strongly suggests

us that the use of microdifferential operators ([AKY], [K3]) should be

effective in analyzing such a canonical equation. But the problem with

class (M) is that Obstacle 3 persists. Thus our target in our subse-

quent work should be the triplet ((S), (F ), (C)) to be described in Case

3 below.

Case 3. The class (S) of amenable simple-pole type oper-

ators

Let P be an operator of the form

(4.30)
dm

dxm
+ ηA1(x, η)

dm−1

dxm−1
+ · · · + ηmAm(x, η),
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where

(4.31) Aj(x, η) =
∑
k≥0

Aj,k(x)η−k

with Aj,k being a meromorphic function on a neighborhood U of the

origin in C. Then we say P is in class (S) if the following conditions

(4.32) ∼ (4.35) are satisfied:

(4.32) A1,0 is holomorphic on U ,

(4.33) xA1,k (k ≥ 1) and xAj,k (j = 2, 3, · · · ,m; k ≥ 0) are

holomorphic on U ,

(4.34) for each compact set K in U there exists a constant CK for

which

sup
x∈K

|xAj,k| ≤ Ck
Kk!

holds for every k and j = 1, 2, · · · ,m,

(4.35) for αj =
def

Res
x=0

Aj,0 (j = 2, 3, · · · ,m) we find

(4.35.a) α2 6= 0, αm 6= 0

and

(4.36) f(ζ) =
def

m∑
j=2

αjζ
m−j = 0

has (m − 2) mutually different roots.

As the reader readily finds, an operator P in (S) belongs to (S0) if A1,k

(k ≥ 2) is holomorphic on U . Hence in order to prove Theorem 4.4

below we only need to replace the sentence below (2.65) and that below

(2.75) respectively by the following sentences:

“Then it follows from (2.58.1) together with the simple-pole charac-

ter of A1,2 that a1,2 is also with a simple pole at the origin.”
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and

“Then a1,k0 is with a simple pole at the origin by (2.67.1).”

Keeping other parts of the proof of Theorem 2.1 intact, we obtain

Theorem 4.4. (i) For each operator P in (S) we can find an

operator Q in (F ) that factorizes P , that is

(4.37) P = QR

holds for some operator R in (S) (possibly with smaller domain of

definition).

(ii) If P in (S) is of the second order, then P can be reduced by an

appropriate gauge transformation (2.7) to a Schrödinger operator

with its potential in class (C).

This theorem will be the starting point of the second part of this

series of papers (in preparation).

Remark 4.1. In view of examples where several (possibly infinitely

many) simple turning points with different characteristic values sit on

the same point ([AKKoT2]), one might imagine such a situation could

also be managed for simple-pole type operators. But analysis of such

operators would be very difficult, because the characteristic value asso-

ciated with any simple-pole should be infinity if properly defined. (See

the paragraph below (A.12) in Appendix.) Hence, if two simple-poles

sit on the same point (e.g. the product of two second order simple-

pole type operators), then the situation should be regarded as a rather

degenerate one.

Appendix. Bicharacteristic strips of xPBNR′

The purpose of this appendix is to confirm there exists no virtual

turning point for xPBNR′ (or 4xPBNR′ for convenience). A virtual turn-

ing point is, by definition, the x-component of a self-intersection point
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of a bicharacteristic curve of the Borel transform of the operator in

question. As a virtual turning point is usuallly considered for operators

with holomorphic coefficients, we start with the operator P = 4xPBNR′

instead of PBNR′ itself; that is, we study the bicharacteristic strips of

the operator

(A.1) P̃ = 4x
∂3

∂x3
+ 3

∂3

∂x∂y2
+ i

∂3

∂y3
+ 6

∂2

∂x2
.

Then the associated Hamilton-Jacobi equation is

(A.2)



dx

dt
= 12xξ2 + 3η2

dy

dt
= 6ξη + 3iη2

dξ

dt
= −4ξ3

dη

dt
= 0,

and hence the bicharacteristic strip of P̃ emanating from (x, y; ξ, η)

= (1, y0;−i/2, 1) in T ∗C2
(x,y) is described as follows:

(A.3)



x(t) = −3(2t − 1) − 2i(2t − 1)3/2

y(t) = 3(2t − 1)1/2 +
3i

2
(2t − 1) − 3i

2
+ y0

ξ(t) =
1

2(2t − 1)1/2

η(t) = 1,
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where the branch of (2t − 1)1/2 is chosen so that

(A.4) (2t − 1)1/2
∣∣
t=0

= i.

It is clear that for any point (x0, ξ0) satisfying

(A.5) 4x0ξ
3
0 + 3ξ0 + i = 0,

we can find t0 so that

(A.6) (x(t0), ξ(t0)) = (x0, ξ0)

holds. This means that any point in the characteristic variety of P̃

can be reached by the bicharacteristic strip given by (A.3) with an

appropriate choice of y0. Thus it suffices for us to use only the particular

bicharacteristic strip given by (A.3) in seeking for a virtual turning

point of P . Otherwise stated, what we have to check is whether or not

the relation t = t′ follows from the following simultaneous equations:

(A.7)

{
x(t) = x(t′) (A.7.1)

y(t) = y(t′). (A.7.2)

For the sake of simplicity of notations we set s = (2t − 1)1/2 and s′ =

(2t′−1)1/2. Then it follows from (A.7.2) together with the assumption

t 6= t′ that

(A.8) s + s′ = 2i.

Similarly (A.7.1) and the assumption t 6= t′ imply

(A.9) 3(s + s′) + 2i{(s + s′)2 − ss′} = 0.

Combining (A.8) and (A.9) we find

(A.10) s = s′ = i.

This contradicts the assumption t 6= t′. Thus we have confirmed that

the operator P = 4xPBNR′ does not have a virtual turning point.

34



Using this opportunity, we give a geometric explanation of why a

simple pole in PBNR′ plays a role of a turning point from the analytic

viewpoint, as Koike ([Ko1], [Ko2]) has found. In the traditional WKB

analysis the notion of a turning point is defined in terms of a charac-

teristic equation, that is, a turning point is, by definition, a zero of the

discriminant of the following polynomial in ξ:

(A.11) p = 4xξ3 + 3ξ + i.

Hence only the point x = 1 is the turning point of P in the traditional

approach. But in the exact WKB analysis a turning point should be

a point where two “cognate” singularities coalesce in the Borel plane.

From the viewpoint of microlocal analysis, the most reasonable crite-

rion for judging whether two singularities are cognate or not is given by

checking whether they are relevant to the same bicharacteristic strip.

Not only a traditional turning point but also a virtual turning point

are defined in this way. (See [AKT2], [AHKKoNSSY] and references

cited there.) In the case of the operator PBNR′ we observe by (A.3)

that there exist two points y = y+(x) and y = y−(x) in the Borel

plane which coalesce at x = 0. Note that ξ(t) is multi-valued near

t = 1/2; we find that this fact and the existence of mutually nearby

points y = y±(x) near x = 0 are the two sides of the same coin, in

view of the relation

(A.12)
dy

dt

/
dx

dt
= −ξ(t),

which follows from (A.3). As is clear from (A.3), y = y+(x) and

y = y−(x) are cognate in the sense that both originate from the same

bicharacteristic strip. Thus x = 0 should play the role of a turning

point, that is, it should be relevant to the Stokes phenomena. We

note that ξ becomes infinite at t = 1/2. This means that, unless we

use the compactification in the ξ-space, the traditional definition of
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a turning point is not applicable to this case. But the picture of the

bicharacteristic strip of P described above indicates that a simple pole

might be regarded as a virtual turning point in the extended sense,

i.e., in the sense that two distinct but cognate singularities in the Borel

plane coalesce at the pole.
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