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Abstract. For the ordered set [n] of n elements, we consider the class Bn of
bases B of tropical Plücker functions on 2[n] such that B can be obtained by
a series of mutations (flips) from the basis formed by the intervals in [n]. We
show that these bases are representable by special wiring diagrams and by cer-
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1 Introduction

For a positive integer n, let [n] denote the ordered set of elements 1, 2, . . . , n. In this

paper we consider a certain “class” Bn ⊆ 22[n]
. The collections (set-systems) B ⊆ 2[n]

constituting Bn have equal cardinalities |B|, and for some pairs of collections, one
can be obtained from the other by a single “mutation” (or “flip”) that consists in
exchanging a pair of elements of a very special form in these collections. The class we
deal with arises, in particular, in a study of bases of so-called tropical Plücker functions
(this seems to be the simplest source; one more source will be indicated later). For this
reason, we may liberally call Bn along with mutations on it a Plücker environment.

More precisely, let f be a real-valued function on the subsets of [n], or on the
Boolean cube 2[n]. Following [1], f is said to be a tropical Plücker function, or a
TP-function for short, if it satisfies

f(Xik) + f(Xj) = max{f(Xij) + f(Xk), f(Xi) + f(Xjk)} (1.1)

for any triple i < j < k in [n] and any subset X ⊆ [n] − {i, j, k}. Throughout, for
brevity we write Xi′ . . . j ′ instead of X ∪ {i′} ∪ . . . ∪ {j ′}. The set of TP-functions on
2[n] is denoted by T Pn.

Definition. A subset B ⊆ 2[n] is called a TP-basis, or simply a basis, if the restriction
map res : T Pn → R

B is a bijection. In other words, each TP-function is determined
by its values on B, and moreover, values on B can be chosen arbitrarily.
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Such a basis does exist and the simplest instance is the set In of all intervals
{p, p + 1, . . . , q} in [n] (including the empty set); see, e.g., [2]. In particular, the
dimension of the polyhedral conic complex T Pn is equal to |In| =

(
n+1

2

)
+1. The basis

In is called standard.

(Note that the notion of a TP-function is extended to other domains, of which
most popular are an integer box Bn,a := {x ∈ Z

[n] : 0 ≤ x ≤ a} for a ∈ Z
[n] and a

hyper-simplex ∆n,m = {S ⊆ [n] : |S| = m} for m ∈ Z (in the later case, (1.1) should be
replaced by a relation on quadruples i < j < k < `). Aspects involving TP-functions
are studied in [1, 5, 7, 8, 9, 10, 11] and some other works. Instances of TP-bases for
a hyper-simplex are pointed out in [8], and [2] constructs a TP-basis for a “truncated
integer box” {x ∈ Bn,a : m ≤ x1+. . .+xn ≤ m′}, where 0 ≤ m ≤ m′ ≤ n. The domains
different from Boolean cubes are beyond this paper, though main results presented here
can be extended to the case of an integer box and some others, see Section 9.)

One can see that for a basis B, the collection {[n] − X : X ∈ B} forms a basis as
well, called the complementary basis of B and denoted by co-B. An important instance
is the collection co-In of co-intervals in [n].

Once we are given a basis B (e.g., the standard one), we can produce more bases
by making a series of elementary transformations relying on (1.1). More precisely,
suppose there is a cortege (X, i, j, k) such that the four sets occurring in the right hand
side of (1.1) and one set Y ∈ {Xj, Xik} in the left hand side belong to B. Then the
replacement in B of Y by the other set Y ′ in the left hand side results in a basis B ′ as
well (and we can further transform the latter basis in a similar way). The basis B ′ is
said to be obtained from B by the flip (or mutation) with respect to X, i, j, k. When
Xj is replaced by Xik (thus increasing the total size of sets in the basis by 1), the flip
is called raising. When Xik is replaced by Xj, the flip is called lowering. We write
j  ik and ik  j for such flips. The standard basis In does not admit lowering flips,
whereas its complementary basis co-In does not admit raising flips.

We distinguish between two sorts of flip (mutations), which inspire consideration
of two classes of bases.

Definitions. For a TP-basis B and a cortege (X, i, j, k) as above, the flip (mutation)
j  ik or ik  j is called strong if both sets X and Xijk belong to B as well, and
weak otherwise. (The former (latter) is also called the flip in the presence of six (res.
four) “witnesses”, in terminology of [7].) A basis is called normal (by terminology
in [2]) if it can be obtained by a series of strong flips starting from In. A basis is called
semi-normal if it can be obtained by a series of any flips starting from In.

Leclerc and Zelevinsky [7] showed that the normal bases (in our terminology) are
exactly the collections C ⊆ [n] of maximum possible size |C| that possess the strong
separation property (defined later). Also the class of normal bases admits a nice “graph-
ical” characterization, even for a natural generalization to the integer boxes (see [2, 4]):
such bases one-to-one correspond to the rhombus tilings on the related zonogon.

Let Bn denote the set of semi-normal TP-bases for the Boolean cube 2[n]; this set
(together with weak flips on its members) is just the Plücker environment of our interest
mentioned at the beginning. The first goal of this paper is to characterize Bn. We give
two characterizations for semi-normal bases: via a bijection to special collections of
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n curves on the zonogon, that we call proper wirings, and via a bijection to certain
graphical arrangements, called generalized tilings or, briefly, g-tilings (in fact, these
characterizations are interrelated via planar duality). We associate to a proper wiring
W (a g-tiling T ) a certain collection of subsets of [n] called its spectrum. (We shall see
that W (resp. T ) is determined by its spectrum.)

Note that it is still open at present whether there exists a non-semi-normal (or
“wild”) basis; we conjecture that there is none.

The characterization of semi-normal bases via generalized tilings helps us to answer
one conjecture of Leclerc and Zelevinsky concerning weakly separated set-systems; this
is the second goal of our work. Recall some definitions from [7]. Hereinafter for sets
A, B, we write A − B for A \ B = {e : A 3 e 6∈ B}. Let X, Y ⊆ [n]. We write X ≺ Y
if Y − X 6= ∅ and i < j for any i ∈ X − Y and j ∈ Y − X (which slightly differs
from the meaning of ≺ in [7]); note that this relation need not be transitive. We write
X B Y if Y − X has a (unique) bipartition {Y1, Y2} such that Y1, Y2, X − Y 6= ∅ and
Y1 ≺ X − Y ≺ Y2.

Definitions. Sets X, Y ⊆ [n] are called: (a) strongly separated if either X ≺ Y or
Y ≺ X, and (b) weakly separated if either X ≺ Y , or Y ≺ X, or X BY and |X| ≥ |Y |,
or Y BX and |Y | ≥ |X|. Accordingly, a collection C ⊆ 2[n] is called strongly (weakly)
separated if any two members of C are strongly (resp. weakly) separated.

(As is seen from a discussion in [7], an interest in studying weakly separated col-
lections is inspired, in particular, by the problem of characterizing all families of qua-
sicommuting quantum flag minors, which in turn comes from exploration of Lusztig’s
canonical bases for certain quantum groups. It is proved in [7] that, in an n×n generic
q-matrix, the flag minors with column sets I, J ⊆ [n] quasicommute if and only if the
sets I, J are weakly separated. See also [6].)

Important properties shown in [7] are that any weakly separated collection C ⊆ 2[n]

has cardinality at most
(

n+1
2

)
+ 1 and that the set of such collections is closed under

weak flips (which are defined as for TP-bases above). Let Cn denote the set of largest
weakly separated collections in [n], i.e., having size

(
n+1

2

)
+ 1. It turns into a poset by

regarding C as being less than C ′ if C is obtained from C ′ by a series of weak lowering
flips. This poset contains In and co-I as minimal and maximal elements, respectively,
and it is conjectured in [7, Conjecture 1.8] that there are no other minimal and maximal
elements in it. This would imply that Cn coincides with Bn. We prove this conjecture.

The main results in this paper are summarized as follows.

Theorem A (main) For B ⊆ 2[n], the following statements are equivalent:

(i) B is a semi-standard TP-basis;

(ii) B is the spectrum of a proper wiring;

(iii) B is the spectrum of a generalized tiling;

(iv) B is a largest weakly separated collection.

Another important problem is extendability a given subset of 22[n]
into a basis. We

solve this problem in another paper [3].

The paper is organized as follows. Section 2 contains basic definitions and states
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involved in Theorem A. It introduces proper wirings and claims the equivalence of (i)
and (ii) in the above theorem (Theorem 2.1). Then it introduces generalized tilings
and claims the equivalence of (i) and (iii) (Theorem 2.2). Section 3 describes some “el-
ementary” properties of generalized tilings that will be used later. The combined proof
of Theorems 2.1 and 2.2 consists of four stages and is lasted throughout Sections 4–7.
In fact, generalized tilings are the central objects of treatment in the paper; we take ad-
vantages from their nice visualization and structural features and all implications that
we explicitly prove involve just generalized tilings. Implication (i)→(iii) in Theorem A
is proved in Section 4, (iii)→(i) in Section 5, (iii)→(ii) in Section 6, and (ii)→(iii) in
Section 7. The above-mentioned Leclerc-Zelevinsky’s conjecture is proved in Section 8
by showing implication (iv)→(iii). This completes the proof of Theorem A, taking into
account that (i)→(iv) was established in [7]. The concluding Section 9 discusses two
generalizations of our theorems: to an integer box and to an arbitrary permutation of
[n].

Acknowledgement. We thank Alexander Postnikov who drew our attention to
paper [7] and a possible relation between TP-bases and weakly-separated set-systems.
One of the authors (GK) thanks RIMS (Kyoto University) for hospitality where during
his visiting professorship a part of this work was completed.

2 Wirings and tilings

Throughout the paper we assume that n > 1. Both a special wiring diagram and
a generalized tiling diagram that we introduce in this section live within a zonogon,
which is defined as follows.

In the upper half-plane R × R+, take n non-colinear vectors ξ1, . . . , ξn so that:

(2.1) (i) ξ1, . . . , ξn follow in this order clockwise around (0, 0), and (ii) all integer
combinations of these vectors are different.

Then the set

Z = Zn := {λ1ξ1 + . . . + λnξn : λi ∈ R, 0 ≤ λi ≤ 1, i = 1, . . . , n}

is a 2n-gone. Moreover, Z is a zonogon, as it is the sum of n line-segments {λξi : 1 ≤ λ ≤
1}, i = 1, . . . , n. Also it is the image by a linear projection π of the solid cube conv(2[n])
into the plane R

2, defined by π(x) = x1ξ1+. . .+xnξn. The boundary bd(Z) of Z consists
of two parts: the left boundary lbd(Z) formed by the points (vertices) pi := ξ1 + . . .+ ξi

(i = 0, . . . , n) connected by the line-segments pi−1pi := pi−1+{λξi : 0 ≤ λ ≤ 1}, and the
right boundary rbd(Z) formed by the points p′

i := ξi + . . . + ξn (i = 0, . . . , n) connected
by the segments p′ip

′
i−1. So p0 = p′n is the minimal vertex and pn = p′0 is the maximal

vertex of Z. We orient each segment pi−1pi from pi−1 to pi and orient each segment
p′ip

′
i−1 from p′i to p′i−1. Let si (resp. s′i) denote the median point in the segment pi−1pi

(resp. p′ip
′
i−1).
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2.1 Wiring diagrams

A special wiring diagram, also called a W-diagram or a wiring for brevity, is an ordered
collection W of n wires w1, . . . , wn satisfying three axioms below. A wire wi is a con-
tinuous injective map of the segment [0, 1] into Z (or the curve in the plane represented
by this map) such that wi(0) = si, wi(1) = s′i, and wi(λ) lies in the interior of Z for
0 < λ < 1. We say that wi begins at si and ends at s′i, and orient wi from si to s′i.
The diagram W is considered up to a homeomorphism of Z stable on bd(Z) (and up
to parameterizations of the wires). Clearly any two wires have at least one point in
common. Axioms (W1)–(W3) specify W as follows.

(W1) No three wires wi, wj, wk have a common point, i.e., there are no λ, λ′, λ′′ such
that wi(λ) = wj(λ

′) = wk(λ
′′). If two wires wi, wj intersect at a point v, then they

cross (not touch) at v (i.e., when passing v, the wire wi goes from one connected
component of Z − wj to the other one).

(W2) Any two wires wi, wj intersect at a finite number of points and these common
points follow in opposed orders along the wires, i.e., if wi(λq) = wj(λ

′
q) for q =

1, . . . , r and if λ1 < . . . < λr, then λ′
1 > . . . > λ′

r.

Note that the number r = rij of common points of wi, wj is odd; assuming that
i < j, we denote these points as xij(1), . . . , xij(r) following the direction of wi from
wi(0) to wi(1). When r > 1, the (bounded) region in the plane surrounded by the
pieces of wi, wj between xij(q) and xij(q + 1) (where q = 1, . . . , r − 1) is denoted by
Lij(q) and called the q-th lens for i, j. The points xij(q) and xij(q + 1) are regarded as
the upper and lower points of Lij(q), respectively. When q is odd (even), we say that
Lij(q) is an odd (resp. even) lens. The points xij(q) with q even are of especial interest:
at this point the wire with the smaller number (namely, wi) is crossed by the wire with
the bigger number (namely, wj) from right to left (w.r.t. the direction of wi), whereas
the crossing behavior at the points xij(q) with q odd is different. We call such a point
orientation-reversing, or black (for reasons that will be clear later). Also we say that
xij(q) with q even is the root of the lenses Lij(q − 1) and Lij(q).

The wiring W is associated, in a natural way, with a planar directed graph GW

embedded in Z. The vertices of GW are the points pi, p
′
i, si, s

′
i and the intersection

points of wires. The edges of GW are the corresponding directed line-segments in
bd(Z) and the pieces of wires between neighboring points of intersection with other
wires or with the boundary, which are directed according to the direction of wires. We
say that an edge contained in a wire wi has color i, or is an i-edge. Let FW be the set
of (inner, or bounded) faces of GW . Here each face F is considered as the closure of a
maximal connected component in Z − ∪(w ∈ W ). We say that a face F is cyclic if its
boundary bd(F ) is a directed cycle in GW .

(W3) There is a bijection φ between the set L(W ) of lenses in W and the set F cyc
W of

cyclic faces in GW . Moreover, for each lens L, φ(L) is the (unique) face lying in
L and containing its root.

5



We say that W is proper if none of cyclic faces is a whole lens, i.e., for each lens
L ∈ L(W ), there is at least one wire going across L. An instance of proper wirings for
n = 4 is illustrated in the picture; here the cyclic faces are marked by circles and the
black rhombus indicates the black point.
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Now we associate to W a set-system BW ⊆ 2[n] as follows. For each non-cyclic face
F , let X(F ) be the set of elements i ∈ [n] such that F lies on the left from the wire
wi, i.e., F and the maximal point pn lie in the same of the two connected components
of Z − wi. We define

BW := {X ⊆ [n] : X = X(F ) for some F ∈ FW − F cyc
W },

referring to it as the effective spectrum, or simply the spectrum of W . Sometimes it will
also be useful to consider the full spectrum B̂W consisting of all sets X(F ), F ∈ FW .

(In fact, when W is proper, all sets in B̂W are different; see Lemma 7.2. When W is
not proper, there are different faces F, F ′ with X(F ) = X(F ′). We can turn W into
a proper wiring W ′ by getting rid, step by step, of lenses forming faces (by making a
series of Reidemeister moves of type II, namely, )( → )( operations). This preserves
the effective spectrum: BW ′ = BW , whereas the full spectrum may decrease.)

Note that when any two wires intersect at exactly one point (i.e., when no black
points exist), BW is a normal basis, and conversely, any normal basis is obtained in
this way (see [2]).

Our main result on wirings is the following

Theorem 2.1 For any proper wiring W (obeying (W1)–(W3)), the spectrum BW is
a semi-normal TP-basis. Conversely, for any semi-normal TP-basis B, there exists a
proper wiring W such that BW = B.

This theorem will be obtained in Sections 6–7.

2.2 Generalized tilings

When it is not confusing, we identify a subset X ⊆ [n] with the corresponding vertex
of the n-cube and with the point

∑
i∈X ξi in the zonogon Z. Due to (2.1)(ii), all points

X are different (concerning Z).

Assuming that the vectors ξi have the same Euclidean norm, a rhombus tiling
diagram is defined to be a subdivision T of Z into rhombi of the form x+{λξi+λ′ξj : 0 ≤
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λ, λ′ ≤ 1} for some i < j and a point x in Z, i.e., the rhombi are pairwise non-
overlapping (have no common interior points) and their union is Z. From (2.1)(ii) it
follows that for i, j, x as above, x represents a subset in [n] − {i, j}. The diagram T is
also regarded as a directed planar graph whose vertices and edges are the vertices and
side segments of the rhombi, respectively. An edge connecting X and Xi is directed
from the former to the latter. It is shown in [2, 4] that the vertex set of T forms a
normal basis and that each normal basis is obtained in this way.

It makes no difference whether we take vectors ξ1, . . . , ξn with equal or arbitrary
norms (subject to (2.1)); to simplify technical details and visualization, throughout the
paper we will assume that these vectors have unit height, i.e., each ξi is of the form
(x, 1). Then we obtain a subdivision T of Z into parallelograms of height 2, and for
convenience we refer to T as a tiling and to its elements as tiles. A tile τ defined by
X, i, j (with i < j) is called an ij-tile at X and denoted by τ(X; i, j). According to a
natural visualization of τ , its vertices X, Xi, Xj, Xij are called the bottom, left, right,
top vertices of τ and denoted by b(τ), `(τ), r(τ), t(τ), respectively. Also we will say
that: for a point (subset) Y ⊆ [n], |Y | is the height of Y ; the set of vertices of tiles in
T having height h form h-th level; and a point Y lies on the right from a point Y ′ if
Y, Y ′ have the same height and

∑
i∈Y ξi ≥

∑
i∈Y ′ ξi.

In a generalized tiling, or a g-tiling, the union of tiles is again Z but some tiles may
overlap. It is a collection T of tiles which is partitioned into two subcollections T w and
T b, of white and black tiles (say), respectively, obeying axioms (T1)–(T4) below. When
T b = ∅, we will obtain a tiling as before, for convenience referring to it as a pure tiling.
Let VT and ET denote the sets of vertices and edges, respectively, occurring in tiles of
T , not counting multiplicities. For a vertex v ∈ VT , the set of edges incident with v is
denoted by ET (v), and the set of tiles having a vertex at v is denoted by FT (v).

(T1) All tiles are contained in Z. Each boundary edge of Z belongs to exactly one
tile. Each edge in ET not contained in bd(Z) belongs to exactly two tiles. All
tiles in T are different (in the sense that no two coincide in the plane).

(T2) Any two white tiles having a common edge do not overlap (in the sense that they
have no common interior point). If a white tile and a black tile share an edge,
then these tiles do overlap. No two black tiles share an edge.

(T3) Let τ be a black tile. None of b(τ), t(τ) is a vertex of another black tile. All edges
in ET (b(τ)) leave b(τ) (i.e., are directed from b(τ)). All edges in ET (t(τ)) enter
t(τ) (i.e., are directed to t(τ)).

We distinguish between three sorts of vertices by saying that v ∈ VT is: (a) a
terminal vertex if it is the bottom or top vertex of some black tile; (b) an ordinary
vertex if all tiles in FT (v) are white; and (c) a mixed vertex otherwise (i.e. v is the left
or right vertex of some black tile). Note that a mixed vertex may belong, as the left
or right vertex, to several black tiles.

Each tile τ ∈ T is associated, in a natural way, to a square in the solid n-cube
conv(2[n]), denoted by σ(τ): if τ = τ(X; i, j) then σ(τ) spans the vertices (correspond-
ing to) X, Xi, Xj, Xij in the cube. In view of (T1), the interiors of these squares
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are disjoint, and ∪(σ(τ) : τ ∈ T ) forms a 2-dimensional surface, denoted by DT , whose
boundary is the preimage by π of the boundary of Z; the vertices in bd(DT ) correspond
to the principal intervals ∅, [q] and [q..n] for q = 1, . . . , n. (For 1 ≤ p ≤ r ≤ n, we
denote the interval {p, p + 1, . . . , r} by [p..r]). The last axiom is:

(T4) DT is a disc (i.e., is homeomorphic to {x ∈ R
2 : x2

1 + x2
2 ≤ 1}).

The reversed g-tiling T rev of a g-tiling T is formed by replacing each tile τ(X; i, j)
of T by the tile τ([n] − Xij; i, j) (or by changing the orientation of all edges in ET , in
particular, in bd(Z)). Clearly (T1)–(T4) remain valid for T rev.

The effective spectrum, or simply the spectrum, of a g-tiling T is the collection BT

of (subsets of [n] represented by) non-terminal vertices in T . The full spectrum B̂T is
formed by all vertices in T . An example of g-tilings for n = 4 is drawn in the picture,
where the unique black tile is indicated by thick lines and the terminal vertices are
surrounded by circles (this is related to the wiring shown on the previous picture).
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Our main result on g-tilings is the following

Theorem 2.2 For any generalized tiling T (obeying (T1)–(T4)), the spectrum BT is
a semi-normal TP-basis. Conversely, for any semi-normal TP-basis B, there exists a
generalized tiling T such that BT = B.

(In particular, the cardinalities of the spectra of all g-tilings on Zn are the same and
equal to

(
n+1

2

)
+ 1.) The first part of this theorem will be proved in Section 5, and the

second one in Section 4.

We will explain in Section 7 that for each semi-normal basis B, there are precisely
one proper wiring W and precisely one g-tiling T such that BW = BT = B (see
Theorem 7.5); this is similar to the one-to-one correspondence between the normal
bases and pure tilings.

3 Elementary properties of generalized tilings

In this section we give additional definitions and notation and demonstrate several
corollaries from axioms (T1)–(T4) which will be used later on. Let T be a g-tiling on
Z = Zn.
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1. An edge e of GT is called black if there is a black tile containing e (as a side
edge); otherwise e is called white. The sets of white and black edges incident with a
vertex v are denoted by Ew

T (v) and Eb
T (v), respectively. For a vertex v of a tile τ , let

C(τ, v) denote the minimal cone at v containing τ (i.e., generated by the pair of edges
of τ incident to v), and let α(τ, v) denote the angle of this cone taken with sign + if
τ is white, and − if τ is black. The sum

∑
(α(τ, v) : τ ∈ FT (v)) is called the (full)

rotation angle at v and denoted by ρ(v) = ρT (v). We observe from (T1)–(T3) that
terminal vertices behave as follows.

Corollary 3.1 Let v be a terminal vertex belonging to a black ij-tile τ . Then:

(i) v is not connected by edge with another terminal vertex (whence |E b
T (v)| = 2);

(ii) |ET (v)| ≥ 3 (whence Ew
T (v) 6= ∅);

(iii) each edge e ∈ Ew
T (v) lies in the cone C(τ, v) (whence e is a q-edge for some

i < q < j);

(iv) ρ(v) = 0;

(v) v does not belong to the boundary of Z (whence any tile containing a boundary
edge of Z is white).

Indeed, since each edge of GT belongs to some tile, at least one of its end vertices
has both entering and leaving edges, and therefore (by (T3)), this vertex cannot be
terminal (yielding (i)). Next, if |ET (v)| = 2, then FT (v) would consist only of the tile
τ and its white copy; this is not the case by (T1) (yielding (ii)). Next, assume that
v = t(τ). Then v is the top vertex of all tiles in FT (v) (by (T3)). This together with
the facts that all tiles in FT (v) − {τ} are white and that any two white tiles sharing
an edge do not overlap (by (T2)) implies (iii) and (iv). When v = b(τ), the argument
is similar. Finally, v cannot be a boundary vertex pk or p′k for k 6= 0, n since the latter
vertices have both entering and leaving edges. In case v = p0, the tile τ would contain
both boundary edges p0p1 and p0p

′
n−1 (in view of (iii)). But then the white tile sharing

with τ the edge (r(τ), t(τ)) would trespass the boundary of Z. The case v = pn is
impossible for a similar reason (yielding (v)).

Note that (iii) in this corollary implies that

(3.1) if a black ij-tile τ and a (white) tile τ ′ share an edge e, then τ ′ is either an iq-tile
or a qj-tile for some i < q < j; also τ ′ ⊂ C(τ, v) and τ ⊂ C(τ ′, v′), where v and
v′ are the terminal and non-terminal ends of e, respectively.

2. The following important lemma specifies the rotation angle at non-terminal
vertices.

Lemma 3.2 Let v ∈ VT be a non-terminal vertex.

(i) If v belongs to bd(Z), then ρ(v) is positive and equals the angle between the
boundary edges incident to v.

(ii) If v is inner (i.e., not in bd(Z)), then ρ(v) = 2π.

Proof (i) For v ∈ bd(Z), let e, e′ be the boundary edges incident to v, where e, Z, e′

follow clockwise around v. Consider the maximal sequence e = e0, τ1, e1, . . . , τr, er of
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edges in ET (v) and tiles in FT (v) such that for q = 1, . . . , r, eq−1, eq are distinct edges
of the tile τq, and τq 6= τq+1 (when q < n). Using (3.1), one can see that all tiles in
this sequence are different and give the whole FT (v); also er = e′ and the tiles τ1, τr

are white. For each q, the ray at v containing eq is obtained by rotating the ray at
v containing eq−1 by the angle α(τq, v) (where the rotation is clockwise if the angle is
positive). So the sum of angles over this sequence amounts to ρ(v) and is equal to the
angle of e, e′.

To show (ii), let V := VT and E := ET . Also denote the set of terminal vertices by

V t, and the set of inner non-terminal vertices by V̂ . Since the boundary of Z contains
2n vertices and by (i),

|V | = |V t| + |V̂ | + 2n and
∑

v∈V ∩bd(Z)
ρ(v) = π · 2n − 2π = 2π(n − 1) (3.2)

Let Σ :=
∑

(ρ(v) : v ∈ V ) and Σ̂ :=
∑

(ρ(v) : v ∈ V̂ ). The contribution to Σ from
each white (black) tile is 2π (resp. −2π). Therefore, Σ = 2π(|T w|−|T b|). On the other

hand, in view of Corollary 3.1(iv) and the second relation in (3.2), Σ = Σ̂ + 2π(n− 1).
Then

Σ̂ = 2π(|T w| − |T b| − n + 1). (3.3)

Considering GT as a planar graph properly embedded in the disc DT and applying
Euler formula to it, we have |V | + |T | = |E| + 1. Each tile has four edges, the
number of boundary edges is 2n, and each inner edge belongs to two tiles; therefore,
|E| = 2n + (4|T | − 2n)/2 = 2|T | + n. Then |V | is expressed as

|V | = |E| − |T | + 1 = 2|T | + n − |T | + 1 = |T | + n + 1. (3.4)

Also |V | = |V̂ | + 2|T b| + 2n (using the first equality in (3.2) and the equality
|V t| = 2|T b|). This and (3.4) give

|V̂ | = |V | − 2|T b| − 2n = (|T | + n + 1) − 2|T b| − 2n = |T w| − |T b| − n + 1.

Comparing this with (3.3), we obtain Σ̂ = 2π|V̂ |. Now the desired equality ρ(v) = 2π

for each vertex v ∈ V̂ follows from the fact that ρ(v) equals 2π · d for some integer
d ≥ 1. The latter is shown as follows. Let us begin with a white tile τ1 ∈ FT (v) and its
edges e0, e1 ∈ ET (v), in this order clockwise, and form a sequence e0, τ1, e1, . . . , τr, er, . . .
similar to that in (i) above, until we return to the initial edge e0. Let Rq be the ray
at v containing eq. Since α(τq) > 0 when τq is white, and α(τq) + α(τq+1) > 0 when τq

is white and τq+1 is black (cf. (3.1)), the current ray R• must make at least one turn
clockwise before it returns to the initial ray R0. If it happens that the sequence uses
not all tiles in FT (v), we start with a new white tile to form a next sequence (for which
the corresponding ray makes at least one turn clockwise as well), and so one. Thus,
d ≥ 1, as required (implying d = 1).

Remark 1 If we postulate property (ii) in Lemma 3.2 as an axiom and add it to
axioms (T1)–(T3), then we can eliminate axiom (T4); in other words, (ii) and (T4)
are equivalent subject to (T1)–(T3). Indeed, reversing reasonings in the above proof,
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one can conclude that Σ̂ = 2π|V̂ | implies |V | + |T | = |E| + 1. The latter is possible
only if DT is a disc. (Indeed, if DT forms a regular surface with g handles and c
cross-caps, from which an open disc is removed, then Euler formula is modified as
|V | + |T | = |E| + 1 − 2g − c. Also |V | decreases when some vertices merge.)

3. Considering the sequence of rotations of the edge ray R• around a non-terminal
vertex v (like in the proof of Lemma 3.2), one can see that the sets Ew

T (v) and Eb
T (v)

are arranged as follows.

(3.5) For an ordinary or mixed vertex v ∈ VT , let ET (v) consists of edges e1, . . . , ep

following counterclockwise around v, and let e1 enter and ep leave v. Then:

(i) there is 1 ≤ p′ < p such that e1, . . . , ep′ enter v and ep′+1, . . . , ep leave v;

(ii) if v is the right vertex of r black tiles and the left vertex of r′ black tiles,
then r + r′ < min{p′, p − p′} and the black edges incident to v are exactly
ep−r+1, . . . , ep, e1, . . . , er and ep′−r′+1, . . . , ep′+r′;

(iii) the black tiles in FT (v) have the following pairs of edges incident to
v: {ep−r+1, e1}, . . . , {ep, er} and {ep′−r′+1, ep′+1}, . . . , {ep′, ep′+r′}, while the
white tiles in FT (v) have the following pairs of edges incident to v: (a)
{er+1, er+2}, . . . , {ep′−r′−1, ep′−r′}; (b) {ep′+r′+1, ep′+r′+2}, . . . , {ep−r−1, ep−r};
(c) {ep−r, e1}, . . . , {ep, er+1}; (d) {ep′−r′, ep′+1}, . . . , {ep′, ep′+r′+1}.

(If v is ordinary, then r = r′ = 0 and each (white) tile in FT (v) meets a pair of
consecutive edges eq, eq+1 or ep, e1.) The case with p = 9, p′ = 5, r = 2, r′ = 1 is
illustrated in the picture; here the black edges are drawn in bold and the white (black)
tiles at v are indicated by thin (bold) arcs.
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Note that (3.5) implies the following property (which will be used, in particular, in
Subsection 4.3):

(3.6) for a tile τ ∈ T and a vertex v ∈ {`(τ), r(τ)}, let e, e′ be the edges of τ entering
and leaving v, respectively, and suppose that there is an edge ẽ 6= e, e′ incident
to v and contained in C(τ, v); then ẽ is black; furthermore: (a) e′ is black if ẽ
enters v; (b) e is black if ẽ leaves v.

4. We will often use the fact (implied by (2.1)(ii)) that for any g-tiling T ,

(3.7) the graph GT = (VT , ET ) is graded for each color i ∈ [n], which means that for
any closed path P in GT , the numbers of forward i-edges and backward i-edges
in P are equal.
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Hereinafter, speaking of a path in a directed graph, we mean is a sequence P =
(ṽ0, ẽ1, ṽ1, . . . , ẽr, ṽr) in which each ẽp is an edge connecting vertices ṽp−1, ṽp; an edge
ẽp is called forward if it is directed from ṽp−1 to ṽp (denoted as ẽp = (ṽp−1, ṽp)), and
backward otherwise (when ẽp = (ṽp, ṽp−1). The path P is called: closed if v0 = vr,
directed if all its edges are forward, and simple if all vertices v0, . . . , vr are different.
P rev denotes the reversed path (ṽr, ẽr, ṽr−1, . . . , ẽ1, ṽ0).

4 From semi-normal bases to generalized tilings

In this section we prove the second assertion in Theorem 2.2, namely, the inclusion

Bn ⊆ BTn, (4.1)

where Bn is the set of semi-normal bases in 2[n] and BTn denotes the collection of
the sets BT generated by g-tilings on Zn. The proof falls into three parts, given in
Subsections 4.1–4.3.

4.1 Flips in g-tilings

Let T be a g-tiling. By an M-configuration in T we mean a quintuple of vertices
of the form Xi, Xj, Xk, Xij, Xjk with i < j < k (as it resembles the letter “M”),
which is denoted as CM(X; i, j, k). By a W-configuration in T we mean a quintuple
of vertices Xi, Xk, Xij, Xik, Xjk with i < j < k (as resembling “W”), briefly denoted
as CW (X; i, j, k). A configuration is called feasible if all five vertices are non-terminal,
i.e., they belong to BT .

We know that any normal basis B (in particular, B = In) is expressed as BT for
some pure tiling T , and therefore, B ∈ BTn. Thus, to conclude with (4.1), it suffices
to show the following assertion, which says that the set of g-tilings is closed under
transformations analogous to flips for semi-normal bases.

Proposition 4.1 Let a g-tiling T contain five non-terminal vertices Xi, Xk, Xij,
Xjk, Y , where i < j < k and Y ∈ {Xik, Xj}. Then there exists a g-tiling T ′ such
that BT ′ is obtained from BT by replacing Y by the other member of {Xik, Xj}.

Proof We may assume that Y = Xik, i.e., that we deal with the feasible
W-configuration CW (X; i, j, k) (since an M-configuration in T turns into a W-
configurations in the reversed g-tiling T rev). We rely on the following two facts which
will be proved Subsections 4.2 and 4.3.

(4.2) Any pair of non-terminal vertices X ′, X ′i′ in T is connected by edge.

(Therefore, for T as above, ET contains edges (Xi, Xij), (Xi, Xik), (Xk, Xik) and
(Xk, Xjk). Note that vertices X ′, X ′i′ need not be connected by edge if some of them
is terminal; e.g., in the picture before the statement of Theorem 2.2, the vertices with
X ′ = ∅ and i′ = 2 are not connected.)

12



(4.3) T contains the jk-tile τ with b(τ) = Xi and the ij-tile τ ′ with b(τ ′) = Xk.

Then `(τ) = Xij, r(τ) = `(τ ′) = Xik, r(τ ′) = Xk, and t(τ) = t(τ ′) = Xijk. Since
the vertices Xi, Xk are non-terminal, both tiles τ, τ ′ are white. See the picture.
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Assuming that (4.2) and (4.3) are valid, we argue as follows. First of all we observe
that

(4.4) the vertex v := Xik is ordinary.

Indeed, since both vertices Xi, Xik are non-terminal, the edge (Xi, Xik) cannot belong
to a black tile. So the edge (Xi, Xik), which belongs to the white tile τ and enters v,
is white. Also the edge (Xik, Xijk) of τ that leaves v is white (for if it belongs to a
black tile τ , then τ should have v′ := Xijk as its top vertex, but then the cone of τ at
v′ cannot simultaneously contain both edges (Xij, Xijk) and (Xjk, Xijk), contrary to
Corollary 3.1(iii)). Now one can conclude from (3.5) that there is no black tile having
its left or right vertex at v. So v is ordinary.

Let e0, . . . , eq be the sequence of edges entering v in the counterclockwise order;
then e0 = (Xi, Xik) and eq = (Xk, Xik). Since v is ordinary, each pair ep−1, ep

(p = 1, . . . , q) belongs to a white tile τp. Two cases are possible.

Case 1: The edges e := (Xij, Xijk) and e′ := (Xjk, Xijk) do not belong to the
same black tile. Consider two subcases.

(a) Let q = 1. We replace in T the tiles τ, τ ′, τ1 by three new white tiles: τ(X; i, j),
τ(X; j, k) and τ(Xj; i, k) (so the vertex v is replaced by Xj). See the picture.
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(b) Let q > 1. We remove the tiles τ, τ ′ and add four new tiles: the white tiles
τ(X; i, j), τ(X; j, k), τ(Xj; i, k) (as before) and the black tile τ(X; i, k) (so v becomes
terminal). See the picture for q = 3; here the added black tile is drawn in bold.
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Case 2: Both edges e and e′ belong to a black tile τ (which is τ(Xj; i, k)). We act
as in Case 1 with the only difference that τ is removed from T and the white ik-tile
at Xj (which is a copy of τ ) is not added. Then the vertex Xijk vanishes, v either
vanishes or becomes terminal, and Xj becomes non-terminal. See the picture; here
(a’) and (b’) concern the subcases q = 1 and q > 1, respectively, and the arc above the
vertex Xj indicates the bottom cone of τ in which some white edges (not indicated)
are located.
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Let T ′ be the resulting collection of tiles. It is routine to check that in all cases
the transformation of T into T ′ maintains the conditions on tiles and edges involved in
axioms (T1)–(T3) at the vertices Xi, Xk, Xij, Xjk, as well as at the vertices Xik and
Xijk when the last ones do not vanish. Also the conditions continue to hold at the
vertex X in Cases 1(a) and 2(a’) (with q = 1), and at the vertex Xj in Case 2 (when
the terminal vertex Xj becomes non-terminal). A less trivial task is to verify for T ′

the correctness at Xj in Case 1 and at X in Cases 1(b) and 2(b’). We assert that

(4.5) (i) VT does not contain Xj in Case 1; and (ii) VT does not contain X in Cases 1(b)
and 2(b’).

Then these vertices (in the corresponding cases) are indeed new in the arising T ′,
and now the required properties for them become evident by the construction. Note
that this implies (T4) as well. We will prove (4.5) in Subsection 4.3.

Thus, assuming validity of (4.2), (4.3), (4.5), we can conclude that T ′ is a g-tiling
and that BT ′ = (BT − {Xik}) ∪ {Xj}, as required.
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Remark 2 Adopting terminology for set-systems, we say that for the g-tilings T, T ′

as in the proof of Proposition 4.1, T ′ is obtained from T by the lowering flip w.r.t. the
feasible W-configuration CW (X; i, j, k). One can see that Xi, Xj, Xk, Xij, Xjk are
non-terminal vertices in GT ′; so they form a feasible M-configuration for T ′. Moreover,
it is not difficult to check that the corresponding lowering flip applied to the reverse of T ′

results in the g-tiling T rev. Equivalently: the raising flip of T ′ w.r.t. the configuration
CM(X; i, j, k) returns the initial T . An important consequence of this fact will be
demonstrated in Section 7 (see Theorem 7.5).

4.2 Strips in a g-tiling

In this subsection we show property (4.3). For this purpose, we introduce the following
notion (which will be extensively used subsequently as well).

Definition. For i ∈ [n], an i-strip (or a dual i-path) in a g-tiling T is a maximal
sequence Q = (e0, τ1, e1, . . . , τr, er) of edges and tiles in it such that: (a) τ1, . . . , τr are
different tiles, each being an iq- or qi-tile for some q, and (b) for p = 1, . . . , r, ep−1

and ep are the opposite i-edges of τp.

(Recall that speaking of an i′j ′-tile, we assume that i′ < j ′.) Clearly Q is determined
uniquely (up to reversing it and up to shifting cyclically when e0 = er) by any of its
edges or tiles. Also, unless e0 = er, one of e0, er lies on the left boundary, and the other
on the right boundary of Z; we default assume that Q is directed so that e0 ∈ `bd(Z).
In this case, going along Q, step by step, and using (T2), one can see that

(4.6) for consecutive elements e, τ, e′ in an i-strip Q: (a) if τ is either a white iq-tile or
a black qi-tile (for some q), then e leaves b(τ) and e′ enters t(τ); and (b) if τ is
either a white qi-tile or a black iq-tile, then e enters t(τ) and e′ leaves b(τ) (see
the picture where the i-edges e, e′ are drawn vertically).
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Let vp (resp. v′
p) be the beginning (resp. end) vertex of an edge ep in Q. Define the

right boundary of Q to be the path RQ = (v0, a1, v1, . . . , ar, vr), where ap is the edge of
τp connecting vp−1, vp. The left boundary LQ of Q is defined in a similar way (regarding
the vertices v′

p). From (4.6) it follows that

(4.7) for an i-strip Q, the forward edges of RQ are exactly those edges in it that belong
to either a white iq-tile or a black qi-tile in Q, and similarly for the forward edges
of LQ.

For I ⊆ [n], we call a maximal alternating I-subpath in RQ a maximal subsequence
P of consecutive elements in RQ such that each ap ∈ P is a q-edge with q ∈ I, and in
each pair ap, ap+1, one edge is forward and the other is backward in RQ (i.e., exactly
one of the tiles τp, τp+1 is black). A maximal alternating I-subpath in LQ is defined in
a similar way. The following fact is of importance.
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Lemma 4.2 A strip Q cannot be cyclic, i.e., its first and last edges are different.

Proof For a contradiction, suppose that some i-strip Q = (e0, τ1, e1, . . . , τr, er) is cyclic
(e0 = er). One may assume that (4.6) holds for Q (otherwise reverse Q). Take the
right boundary RQ = (a1, . . . , ar = a0) of Q. For q ∈ [n], let αq (βq) denote the number
of forward (resp. backward) q-edges in RQ. Since GT is graded, αq = βq (cf. (3.7)).

Assume that RT contains a q-edge with q > i. Put I> := [i + 1..n] and consider
a maximal alternating I>-subpath in RQ (regarding Q up to shifting cyclically and
taking indices modulo r). Using (3.1), we observe that if ap is an edge in P such that
τp is black, then the edges ap−1, ap+1 are contained in P as well; also both tiles τp−1, τp+1

are white. This together with (4.7) implies that the difference ∆P between the number
of forward edges and the number of backward edges in P is equal to 0 or 1, and that
∆P = 0 is possible only if P coincides with the whole RQ (having equal numbers of
forward and backward edges). On the other hand, the sum of numbers ∆P over the
maximal alternating I>-subpaths must be equal to

∑
q>i(αq − βq) = 0.

So RQ is an alternating I>-cycle. To see that this is impossible, notice that if
ap−1, ap, ap+1 are q′-, q-, and q′′-edges, respectively, and if the tile τp is black, then (3.1)
implies that q′, q′′ < q. Therefore, taking the maximum q such that RQ contains a
q-edge, we obtain αq = 0 and βq > 0; a contradiction. Thus, RQ has no q-edges with
q > i at all.

Similarly, considering maximal alternating I<-subpaths in RQ for I< := [i− 1] and
using (3.1) and (4.7), we conclude that RQ has no q-edge with q < i. Thus, a cyclic
i-strip is impossible.

Corollary 4.3 For a g-tiling T and each i ∈ [n], there is a unique i-strip Qi. It
contains all i-edges of T , begins at the edge pi−1pi and ends at the edge p′

ip
′
i−1 of bd(Z).

Using strip techniques, we are now able to prove property (4.3) in the assumption
that (4.2) is valid (the latter will be shown in the next subsection).

Proof of (4.3) Let X, i, j, k as in the hypotheses of Proposition 4.1 (with Y = Xik).
We consider the part Q of the j-strip between the j-edges e := (Xi, Xij) and e′ :=
(Xk, Xjk) (these edges exist by (4.2) and Q exists by Corollary 4.3). Suppose that
Q begins at e and ends at e′ and consider the right boundary RQ = (a1, . . . , ar) of Q.
This is a (not necessarily directed) path from Xi to Xk. Comparing RT with the path

P̃ from Xi to Xk formed by the forward k-edge (Xi, Xik) and the backward i-edge
(Xik, Xk), we have (since GT is graded):

αq − βq =





−1 for q = i,
1 for q = k,
0 otherwise,

(4.8)

where αq (βq) is the number of forward (resp. backward) q-edges in RQ. We show that
αi = 0, βi = 1, αk = 1, βk = 0 and αq = βq = 0 for q 6= i, k, by arguing as in the proof
of Lemma 4.2.

16



Let P1, . . . , Pd be the maximal alternating J>-subpaths in RQ, where J> := {j +
1, . . . , n}. Since each subpath Ph begins and ends with forward edges, we have ∆Ph

= 1.
Then ∆1+. . .+∆Pd

=
∑

q>j(αq−βq) = αk−βk = 1 (cf. (4.8)) implies d = 1. Moreover,
|P1| = 1. For if |P1| > 1, then P1 contains a backward edge (whose tile in Q is black),
and taking the maximum q such that P1 contains a q-edge, we obtain αq = 0 and
βq > 0, which is impossible. Hence P1 consists of a unique forward edge, and now (4.8)
implies that it is a k-edge.

Similarly, there is only one maximal alternating J<-subpath P ′ in RQ, where J< :=
{1, . . . , j − 1}, and P ′ consists of a unique backward i-edge.

Thus, RQ = (a1, a2), and one of a1, a2 is a forward k-edge, while the other is a

backward i-edge in RQ. If RQ = P̃ (i.e., a1 is a k-edge), then the tiles in Q are as
required in (4.3). And the case when a1 is an i-edge is impossible, since in this case the
first tile τ in Q uses the edge a1 = (X, Xi) entering v′ := Xi and the edge e = (Xi, Xij)
leaving v′, and the cone C(τ, v′) contains the white edge (Xi, Xik), contrary to (3.5).

Now suppose that Q goes from e′ to e. Then RQ begins at Xk and ends at Xi.
Define the numbers αq, βq as before. Then

∑
q>j(αq − βq) (equal to the numbers of

maximal alternating J>-subpaths in RQ) is nonnegative. But a similar value for the

path reverse to P̃ (also going from Xk to Xi) equals −1, due to the k-edge (Xi, Xik)
which is backward in this path; a contradiction.

4.3 Strip contractions

The remaining properties (4.2) and (4.5) are proved by induction on n, relying on a
natural contracting operation on g-tilings (also important for purposes of Section 8).

Let T be a g-tiling on Zn and i ∈ [n]. We partition T into three subsets T 0
i , T−

i , T+
i

conisting, respectively, of all i∗- and ∗i-tiles, of the tiles τ(X; i′, j ′) with i′, j ′ 6= i and
i 6∈ X, and of the tiles τ(X; i′, j ′) with i′, j ′ 6= i and i ∈ X. Then T 0

i is the set of tiles
occurring in the i-strip Qi, and the tiles in T−

i are vertex disjoint from those in T +
i .

Definition. The i-contraction of T is the collection T/i obtained by removing the
members of T 0

i , keeping the members of T−

i , and replacing each τ(X; i′, j ′) ∈ T+
i by

τ(X − {i}; i′, j ′). The image of τ ∈ T in T/i is denoted by τ/i, regarding it as the
“void tile” {∅} if τ ∈ T 0

i .

The tiles of T/i live within the zonogon generated by the vectors ξq, q ∈ [n] −
{i} (and cover this zonogon). The regions DT−

i
and DT+

i
of the disc DT are simply

connected, as they arise when the interior of (the image of) the strip Qi is removed
from DT . The shape DT/i is obtained as the union of DT−

i
and DT+

i
−εi, where εi is the

i-th unit base vector in R
n. In other words, D+

i is shifted by −εi and the (image of)
the left boundary LQi

of Qi in it merges with (the image of) RQi
in DT−

i
. In general,

DT−

i
and DT+

i
− εi may intersect at some other points, and therefore, DT/i need not be

a disc (this happens when GT contains two vertices X, Xi not connected by edge, or
equivalently, such that X 6∈ RQi

and Xi 6∈ LQi
).

For our purposes it suffices to deal with the case i = n. We take advantages from
the important property that T/n is a feasible g-tiling, i.e., obeys (T1)–(T4). Instead of
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a direct proof of that property (in which verification of axiom (T4) is rather tiresome),
we prefer to appeal to explanations in Section 7 where a similar property is obtained on
the language of wirings along the way; see Corollary 7.4 in Remark 4. (More precisely,
Sections 6 and 7 establish a bijection β of the g-tilings to the proper wirings. One
shows that removing wn from a proper n-wiring W = (w1, . . . , wn) results in a proper
(n− 1)-wiring W ′. It turns out that the g-tiling β−1(W ′) is just (β−1(W ))/n, yielding
the result.)

We will use several facts, which are exposed in (i)–(iv) below.

(i) In light of explanations above, (T4) for T/n implies that

(4.9) any two vertices of the form X ′, X ′n in GT are connected by edge (which is an
n-edge, and therefore, X ′ ∈ RQn

and X ′n ∈ LQn
).

(ii) Clearly a tile τ ∈ T−
n ∪ T+

n contains a boundary edge of Zn if and only if τ/n
contains a boundary edge of Zn−1. Also tiles τ, τ ′ ∈ T−

n sharing an edge do not overlap
if and only if τ/n, τ ′/n do so, and similarly for T +

n . These facts imply that the white
(black) tiles of τ ∈ T−

n ∪ T+
n produce white (resp. black) tiles of T/n.

(iii) For an i′j ′-tile τ ∈ T with i′, j ′ 6= n, a vertex v ∈ {t(τ), b(τ)} cannot occur
in (the boundary of) Qn. Indeed, all edges in ET (v) are q-edges with q ≤ j ′ < n,
while each vertex occurring in Qn is incident with an n-edge. Also for a vertex X ′

not occurring in Qn, the local tile structure of T at X ′ is equivalent to that of T/n at
X ′ − {n}. Therefore,

(4.10) if X ′ is a non-terminal vertex for T , then X ′ − {n} is such for T/n.

Now we are ready to prove (4.2) and (4.5).

Proof of (4.2) Let X ′, X ′i′ be non-terminal vertices for T . If i′ = n then these
vertices are connected by edge in GT , by (4.9). Now let i′ 6= n. Then GT/n contains the

vertices X̃, X̃i′, where X̃ := X ′ − {n}, and these vertices are non-terminal, by (4.10).
So by induction these vertices are connected by an edge e in GT/n. Let τ ′ be a tile
in T/n containing e. Then the tile τ ∈ T−

n ∪ T+
n such that τ ′ = τ/n has an edge

connecting X ′ and X ′i′, as required.

Proof of (4.5) We use notation as in the proof of Proposition 4.1 and consider three
possible cases.

(A) Let k < n and n 6∈ X. Then all tiles in T containing the vertex v = Xik
are tiles in T/n, and Xi, Xk, Xik, Xij, Xjk are vertices for T/n forming a feasible W-
configuration in it (as they are non-terminal, by (4.10)). By induction GT/n contains
as a vertex neither Xj in Case 1, nor X in Cases 1(b) and 2(b’). Then the same is
true for GT , as required.

(B) Let k < n and n ∈ X. The argument is similar to that in (A) (taking into
account that all vertices X ′ for T that we deal with contain the element n, and the
corresponding vertices for T/n are obtained by removing this element).

(C) Let k = n. First we consider Case 1 and show (i) in (4.5). Suppose GT contains
the vertex Xj. Then GT contains the n-edge ẽ = (Xj, Xjn), by (4.9). This edge lies
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in the cone of τ ′ at Xjn (where τ ′ is the white ij-tile with b(τ ′) = Xn, r(τ ′) = Xjn
and t(τ ′) = Xijn). By (3.6), the edge e′ = (Xjn, Xijn) is black (since ẽ enters Xjn).
Therefore, the vertex Xijn is terminal, and moreover, it is the top vertex of a black
tile τ̃ (since Xijn has entering edges). The fact that the cone of τ̃ must contain the
n-edge e = (Xij, Xijn) implies that e is just the left-to-top edge of τ̃ . So both e, e′ are
edges of the same black tile τ̃ , which is not the case.

Now we consider Cases 1(b) and 2(b’) and show (ii) by arguing in a similar way.
Suppose GT contains the vertex X. Then GT contains the n-edge ẽ = (X, Xn), by (4.9).
This edge lies in the cone of τq at Xn (where, according to notation in the proof of
Proposition 4.1, τq is the white tile in T with r(τq) = Xn and t(τ ′) = Xin). By (3.6),
the edge e′′ := (Xn, Xin) of τq is black (since ẽ enters Xn). But each of the end
vertices Xn, Xin of e′′ has both entering and leaving edges, and therefore, it cannot
be terminal; a contradiction.

This completes the proof of inclusion (4.1).

5 From generalized tilings to semi-normal bases

In this section we complete the proof of Theorem 2.2 by proving the first assertion in
it, namely, we show the inclusion

BTn ⊆ Bn. (5.1)

This together with the reverse inclusion (4.1) will give BTn = Bn, as required.

Let T be a g-tiling. We have to prove that BT is a semi-normal basis.

If T has no black tile, then BT is already a normal basis, and we are done. So assume
T b 6= ∅. Our aim is to show the existence of a feasible W-configuration CW (X; i, j, k)
for T (formed by non-terminal vertices Xi, Xk, Xij, Xjk, Xik, where i < j < k).
Then we can transform T into a g-tiling T ′ as in Proposition 4.1, i.e., with BT ′ =
(BT − {Xik}) ∪ {Xj}. Under such a lowering flip (concerning g-tilings), the sum of
sizes of the sets involved in B• decreases. Then the required relation BT ∈ Bn follows
by induction on

∑
(|X ′| : X ′ ∈ BT ) (this sort of induction is typical when one deals

with tilings or related objects, cf. [2, 4, 7]).

In what follows by the height h(v) of a vertex v ∈ VT we mean the size of the
corresponding subset of [n]. The height h(τ) of a tile τ ∈ T is defined to be the height
of its left vertex; then h(τ) = h(r(τ)) = h(b(τ)) + 1 = h(t(τ)) − 1. The height of a
W-configuration CW (X; i, j, k) is defined to be |X| + 2.

In fact, we are able to show the following sharper version of the desired property.

Proposition 5.1 Let h ∈ [n]. If a g-tiling T has a black tile of height h, then there
exists a feasible W-configuration CW (X; i, j, k) of the same height h. Moreover, such
a CW (X; i, j, k) can be chosen so that Xijk is the top vertex of some black tile (of
height h).

(Note that, by the equivalence of (iii) and (iv) in Theorem A from the Introduction,
this proposition answers affirmatively Conjecture 5.5 in [7], even a strengthening of it.)
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Proof Let τ be a black tile of height h. Denote by M(τ) the set of vertices v such
that there is a white edge from v to t(τ). This set is nonempty (by Corollary 3.1(ii))
and each vertex in it is non-terminal. Suppose that some v ∈ M(τ) is ordinary, and
let λ and ρ be the (white) tiles sharing the edge (v, t(τ)) and such that v = r(λ) =
`(ρ). Then the five vertices b(λ), b(ρ), `(λ), v, r(ρ) form a W-configuration of height h
(since h(v) = h(τ) = h). Moreover, this configuration is feasible. Indeed, the vertices
`(λ), v, r(ρ) are non-terminal (since each has an entering edge and a leaving edge).
And the tile τ̃ that shares the edge (b(λ), v) with λ has v as its top vertex (taking into
account that τ̃ is white and overlaps neither λ nor ρ since v is ordinary); then b(λ) is
the left vertex of τ̃ , and therefore b(λ) is non-terminal. The vertex b(ρ) is non-terminal
for a similar reason. For an illustration, see the left fragment on the picture.
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We assert that a black tile τ of height h whose set M(τ) contains an ordinary vertex
does exist (yielding the result).

Suppose this is not so. We construct an alternating sequence of white and black
edges as follows. Choose a black tile τ of height h and a vertex v ∈ M(τ). Let e be
the white edge (v, t(τ)). Since v is mixed (by the supposition), there is a black tile τ ′

(of height h) such that either (a) v = r(τ ′) or (b) v = `(τ ′). We say that τ ′ lies on the
left from τ in the former case, and lies on the right from τ in the latter case. Let u′ be
the right-top edge (r(τ ′), t(τ ′)) of τ ′ in case (a), and the left-top edge (`(τ ′), t(τ ′)) in
case (b). Case (a) is illustrated on the right fragment of the picture above.

Repeat the procedure for τ ′: choose v′ ∈ M(τ ′) (which is mixed again by the
supposition); put e′ := (v′, t(τ ′)); choose a black tile τ ′′ such that either (a) v′ = r(τ ′′)
or (b) v′ = `(τ ′′); and define u′ to be be the edge (r(τ ′′), t(τ ′′)) in case (a), and the
edge (`(τ ′′), t(τ ′′)) in case (b). Repeat the procedure for τ ′′, and so on. Sooner or later
we must return to a black tile that has occurred earlier in the process. Then we obtain
an alternating cycle of white and black edges.

More precisely, there appear a cyclic sequence of different black tiles
τ1, . . . , τr−1, τr = τ0 of height h and an alternating sequence of white and black edges
C = (e0 = er, u1, e1, . . . , ur = u0) (forming a cycle in GT ) with the following properties,
for q = 1, . . . , r: (a) eq is the edge (vq, t(τq)) for some vq ∈ M(τq); (b) τq+1 is a black
tile whose right of left vertex is vq; and (c) uq+1 = (r(τq+1), t(τq+1)) when r(τq+1) = vq,
and uq+1 = (`(τq+1), t(τq+1)) when `(τq+1) = vq, where the indices are taken modulo r.
We consider C up renumbering the indices cyclically and assume that τq is an iqkq-tile,
that eq is a jq-edge, and that uq is a pq-edge. Then iq < jq < kq, pq = iq if τq lies on
the left from τq−1, and pq = kq if τq lies on the right from τq−1. Note that in the former
(latter) case the vertex vq lies on the left (resp. right) from vq−1 in the horizontal line
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at height h in Z. This implies that there exists a q such that τq lies on the left from
τq−1, and there exists a q′ such that τ ′

q lies on the right from τq′−1.

To come to a contradiction, consider a maximal subsequence Q of (cyclically) con-
secutive tiles in which each but first tile lies on the left from the previous one; one may
assume that Q = (τ1, τ2, . . . , τd). Then τ1 lies on the right from τ0, and therefore u1 is
the left-top edge of τ1, whence p1 = k1. Also we observe that

k1 ≥ k2 ≥ . . . ≥ kd. (5.2)

Indeed, for 1 ≤ q < d, let λ be the (white) tile containing the edge eq and such
that r(λ) = vq. This tile lies in the cone of τq at t(τq). So λ is an i′k′-tile with
iq ≤ i′ < k′ ≤ kq, and therefore the (bottom-right) edge ẽ of λ entering vq has color
k′ ≤ kq. Using (3.5)(iii), we observe that ẽ lies in the cone of the black tile τq+1 at
vq (taking into account that vq = r(τq+1)). This implies that the the bottom-right
edge e′ = (b(λ), vq) of τq+1 has color at most k′. Since uq+1 is parallel to e′, we obtain
kq+1 ≤ k′ ≤ kq, as required.

By (5.2), we have jq < kq ≤ k1 = p1 for all q = 1, . . . , d. Also if a tile τq′ lies
on the right from the previous tile τq′−1, then uq′ is the left-top edge of τq′ , whence
jq′ < kq′ = pq′ . Thus, the maximum of p1, . . . , pr is strictly greater than the maximum
of j1, . . . , jr. This is impossible since all u1, . . . , ur are forward edges, all e1 . . . , er are
backward edges in C, and the graph GT is graded.

This completes the proof of Theorem 2.2.

Remark 3 For black tiles τ, τ ′ ∈ T b, let us denote τ ′ ≺� τ if there is a white edge
(v, t(τ)) such that v is the right or left vertex of τ ′. The proof of Proposition 5.1 gives
the following additional result.

Corollary 5.2 The relation ≺� determines a partial order on T b.

Similarly, the relation ≺� determines a partial order on T b, where for τ, τ ′ ∈ T b, we
write τ ′ ≺� τ if there is a white edge (b(τ), v) such that v is the right or left vertex of
τ ′. It is possible that the graph on T b induced by ≺� (or ≺�) is a forest, but we do not
go in our analysis so far.

6 From generalized tilings to proper wirings

In this section we show the following

Proposition 6.1 For a g-tiling T on Zn, there exists a proper wiring W on Zn such
that BW = BT .

This and the converse assertion established in the next section will imply that the
collection BTn of the sets BT generated by g-tilings on Zn coincides with the collection
BWn of the sets BW generated by proper wirings W on Zn, and then Theorem 2.1 will
follow from Theorem 2.2.
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Proof Like we have identified each subset in [n] with the corresponding points in the
solid cube conv(2[n]) and in the zonogon Z = Zn, we may identify each tile τ in T
with the corresponding square σ(τ), and each edge in ET with the corresponding line-
segment in the disc DT ; we will use similar notation for related objects in Z and DT ,
specifying when needed which of them we deal with. Then the graph GT = (VT , ET )
turns into a planar directed graph properly embedded in DT .

The desired wiring W is constructed by drawing curves on DT related to strips (dual
paths) in GT . More precisely, for i ∈ [n], take the i-strip Qi = (e0, τ1, e1, . . . , τr, er)
(defined in Section 4), considering it as a sequence of edges and squares in DT . (Recall
that, when dealing with T , Qi contains all i∗- and ∗i-tiles in T (by Lemma 4.2), e0

is the edge pi−1pi on the left boundary `bd(Z), and er is the edge p′ip
′
i−1 on rbd(Z).)

For q = 1, . . . , r, draw the line-segment on the square τq connecting the median points
of the edges er−1 and er. This segment meets the central point of τq, denoted by
c(τq). The concatenation of these segments gives the desired (piece-wise linear) curve
ζi corresponding to Qi; we direct ζi according to the direction of Qi.

Let γ be a homeomorphic map of DT to Z such that each boundary edge of DT is
linearly mapped to the corresponding edge of bd(Z). To simplify notation (and when
no confuse can arise), we identify points of Z and DT by use of γ. Then the curves
ζ1, . . . , ζn turn into “wires” on T , forming the desired wiring W (each “wire” ζi begins
at the median point si of pi−1pi on `bd(Z) and ends at the medial point s′i of p′ip

′
i−1 on

rbd(Z)). Axiom (W1) for W is obvious.

To verify the other axioms, we first explain how the graphs GT and GW on DT

are related to each other (which is a sort of planar duality). The vertices of GW are
the central points c(τ) of squares τ (where corresponding pairs of wires are crossed)
and the points si, s

′
i. Each vertex v of GT corresponds to the face of GW where v is

contained, denoted by v∗ (and this is a one-to-one correspondence). The edges of color
i in GW (which are the pieces of ζi in its subdivision by the central points of squares
lying on ζi) one-to-one correspond to the i-edges of GT . More precisely, if an i-edge
e ∈ ET belongs to squares τ, τ ′ and if τ, e, τ ′ occur in this order in the i-strip, then the
i-edge of GW corresponding to e, denoted by e∗, is the piece of ζi between c(τ) to c(τ ′),
and this e∗ is directed from c(τ) to c(τ ′). Observe that e crosses e∗ from right to left
on the disc. (We assume that the clockwise orientations on DT and Z are agreeable by
γ.) The first and last pieces of ζi correspond to the boundary i-edges pi−1pi and p′ip

′
i−1

of GT , respectively.

Consider an ij-tile τ ∈ T , and let e, e′ be its i-edges, and u, u′ its j-edges, where
e, u leave b(τ) and e′, u′ enter t(τ). We know that: (a) if τ is white, then e occurs in Qi

before e′, while u occurs in Qj after u′, and (b) if τ is black, then e occurs in Qi after e′,
while u occurs in Qj before u′. In each case, in the disc DT , both e, e′ cross the wire ζi

from right to left (w.r.t. the direction of ζi), and similarly both u, u′ cross ζj from right
to left. Also it is not difficult to realize (using (T1),(T2)) that when τ is white, the
orientation of the tile τ in Z coincides with that of the square τ in DT , whereas when
τ is black, the clockwise orientation of τ in Z turns in the counterclockwise orientation
of τ in DT (justifying the term “orientation-reversing” for the vertex c(τ) of GW ). One
can conclude from these facts that: in case (a), ζj crosses ζi at c(τ) from left to right,
and therefore, the vertex c(τ) of GW is white, and in case (b), ζj crosses ζi at c(τ) from
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right to left, and therefore, the vertex c(τ) is black. (Both cases are illustrated in the
picture.) So the white (black) tiles of T generate the white (resp. black) vertices of
GW .
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Consider a vertex v of GT and an edge e ∈ ET (v). Then the edge e∗ belongs to
the boundary of the face v∗ of GW . As mentioned above, e crosses e∗ from right to
left on DT . This implies that e∗ is directed clockwise around v∗ if e leaves v, and
counterclockwise if e enters v. In view of axiom (T3), we obtain that

(6.1) the terminal vertices of GT and only these generate cyclic faces of GW ; moreover,
for τ ∈ T b, the boundary cycle of (t(τ))∗ is directed counterclockwise, while that
of (b(τ))∗ is directed clockwise.

(We use the fact that any non-terminal vertex v 6= p0, pn has both entering and leaving
edges, and therefore the boundary of the face v∗ has edges in both directions. When
v = p0, pn, a similar fact for v∗ is valid as well.)

Next, for each i ∈ [n], removing from DT the interior of the i-strip Qi (i.e., the
relative interiors of all edges and tiles in it) results in two closed regions Ω1, Ω2, the
former containing the vertex ∅, and the latter the vertex [n] (regarding the vertices as
subsets of [n]). The fact that all edges in Qi (which are the i-edges of GT ) go from
Ω1 to Ω2 implies that each vertex v of GT occurring in Ω1 (in Ω2) is a subset X not
containing (resp. containing) the element i. Then i 6∈ X(v∗) (resp. i ∈ X(v∗). Thus,
we obtain BW = BT .

A less trivial task is to show validity of (W2) for W . One can see that (W2) is
equivalent to the following assertion.

Claim Let wires ζi, ζj with i < j intersect at a white point x. Then the part ζ of ζi

from x to s′i and the part ζ ′ of ζj from x to s′j have no other common points.

Proof of the Claim Suppose this is not so and let y be the common point of ζ, ζ ′

closest to x in ζ. Then y is black (since x is white). Therefore, the ij-tile τ such
that x = c(τ) is white, and the ij-tile τ ′ such that y = c(τ ′) is black. Also in both
strips Qi and Qj, the tile τ occurs earlier than τ ′. One can see (cf. (4.6)) that in the
strip Qi, the edge succeeding τ is (r(τ), t(τ)) and the edge preceding τ ′ is (r(τ ′), t(τ ′)),
whereas in the strip Qj, the edge succeeding τ is (b(τ), r(τ)) and the edge preceding τ ′

is (b(τ ′), r(τ ′)). So the right boundary of Qi passes the vertices r(τ) and r(τ ′) (in this
order), and similarly for the left boundary of Qj.

Consider the part R of RQi
from r(τ) to r(τ ′) and the part L of LQj

from r(τ) to
r(τ ′). For q ∈ [n], let αq, α′

q, βq, β ′
q be the numbers of q-edges that are forward in R,
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forward in L, backward in R, and backward in L, respectively. Since GT is graded, we
have (∗) αq − βq = α′

q − β ′
q.

Now we argue in a similar spirit as in the proof of Lemma 4.2. Define I := {i +
1, . . . , j − 1}, ∆ :=

∑
q∈I(αq − βq), and ∆′ :=

∑
q∈I(α

′
q − β ′

q). We assert that ∆ > 0
and ∆′ < 0, which leads to a contradiction with (∗) above.

To see ∆ > 0, consider a q-edge e in R with q ∈ I, and let τ e denote the tile in Qi

containing e. Since q > i, τ e is white if e is forward, and τ e is black if e is backward
in R (cf. (4.7)). Using this, one can see that:

(i) for a q-edge e ∈ R such that q ∈ I and τ e is black, the next edge e′ in RQi
is a

forward q′-edge in R with q′ ∈ I (since the fact that τ e is a black iq-tile implies that
τ e′ is a white q′q-tile with i < q′ < q, in view of (3.1)); a similar property holds for the
previous edge (for e) in RQi

;

(ii) the last edge e of R is a forward q-edge with q ∈ I (since the tile τ e shares an
edge with the black ij-tile τ ′);

(iii) if the first edge e of R is backward, then it is a q-edge with q 6∈ I (since τ e is
black and shares an edge with the ij-tile τ).

These properties show that the first and last edges of any maximal alternating I-
subpath P in R are forward, and therefore P contributes +1 to ∆. Also at least one
such P exists, by (ii). So ∆ > 0, as required.

The inequality ∆′ < 0 is shown in a similar fashion, by considering L and swapping
“forward” and “backward” in the above reasonings (due to replacing q > i by q < j).
More precisely, for a q-edge e in L with q ∈ I, the tile τ e in Qj containing e is black if
e is forward, and white if e is backward (in view of q < j and (4.7)). This implies that:

(i’) for a q-edge e ∈ L such that q ∈ I and τ e is black, the next edge e′ in LQj
is a

backward q′-edge in L with q′ ∈ I; and similarly for the previous edge in LQj
;

(ii’) the last edge e of L is a backward q-edge with q ∈ I;

(iii’) if the first edge e of R is forward, then it is a q-edge with q 6∈ I.

Then the first and last edges of any maximal alternating I-subpath P in L are
backward, and therefore P contributes −1 to ∆′. Also at least one such P exists,
by (ii’). So ∆′ < 0, contrary to ∆ = ∆′.

Thus, (W2) is valid. Considering lenses formed by a pair of wires and using (6.1)
and (W2), one can easily obtain (W3). Finally, since |ET (v)| ≥ 3 holds for each
terminal vertex in GT (by Corollary 3.1(ii)), each cyclic face in GW is surrounded by at
least three edges, and therefore this face cannot be a lens. So the wiring W is proper.

This completes the proof of Proposition 6.1.

7 From proper wirings to generalized tilings

In this section we complete the proof of Theorem 2.1 by showing the property converse
to that in Proposition 6.1.

Proposition 7.1 For a proper wiring W on Z = Zn, there exists a g-tiling T on Z
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such that BT = BW .

Proof The construction of the desired T is converse, in a sense, to that described
in the proof of Proposition 6.1; it combines planar duality techniques and geometric
arrangements. We use definitions and notation from Section 2.

We associate to each (inner) face F of the graph GW the point (viz. the subset)
X(F ) in the zonogon, also denoted as F ∗. These points are just the vertices of tiles in
T . The edges concerning T are defined as follows. Let faces F, F ′ ∈ FW have a common
edge e formed by a piece of a wire wi, and let F lie on the right from wi according to
the direction of this wire (and F ′ lies on the left from wi). Then the vertices F ∗, F ′∗ are
connected by edge e∗ going from F ∗ to F ′∗. Note that in view of the evident relation
X(F ′) = X(F ) ∪ {i}, the direction of e∗ matches the edge direction for g-tilings.

The tiles in T one-to-one correspond to the intersection points of wires in W . More
precisely, let v be a common point of wires wi, wj with i < j. Then the vertex v of
GW has four incident edges ei, ei, ej, ej such that: ei, ei ⊂ wi; ej, ej ⊂ wj; ei, ej enter
v; and ei, ej leave v. Also one can see that for the four faces F containing v, the
subsets X(F ) are of the form X, Xi, Xj, Xij for some X ⊂ [n]. The tile surrounded
by the edges e∗i , e

∗
i , e

∗
j , e

∗
j connecting these subsets (regarded as points) is just the ij-tile

in T corresponding to v, denoted as v∗. Observe that the edges ei, ej, ei, ej follow in
this order counterclockwise around v if v is black (orientation-reversing), and clockwise
otherwise (when v is “orientation-respecting”). The tile v∗ is regarded as black in T
if v is black, and white otherwise. Both cases are illustrated in the picture where the
right fragment concerns the orientation-reversing case.
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Next we examine properties of the obtained collection T of tiles. The first and
second conditions in (T2) (concerning overlapping and non-overlapping tiles with a
common edge) follow from the above construction and explanations.

1) Consider an i-edge e = (u, v) in GW (a piece of the wire wi). If u 6= si and v 6= s′i,
then the dual edge e∗ belongs to exactly two tiles, namely, u∗ and v∗. If u = si, then
e∗ belongs to the unique tile v∗. Furthermore, for the faces F, F ′ ∈ FW containing e,
the sets X(F ), X(F ′) are the principal intervals [i − 1] and [i] (letting [0] := ∅). This
implies that e∗ is the boundary edge pi−1pi of Z, and this edge belongs to a unique tile
in T (which is, obviously, white). Considering v = s′i, we obtain a similar property for
the edges in rbd(Z). This gives the first and second condition in (T1).

The proper wiring W possesses the following important property, which will be
proved later (see Lemma 7.2): (∗) each face F in GW has at most one i-edge for each i,
and all sets X(F ) among F ∈ FW are different. This implies that T has no tile copies,
yielding the third condition in (T1). Also property (∗) and the planarity of GW imply
validity of axiom (T4).

2) For a face F ∈ FW , let E(F ) denote the set of its edges not contained in bd(Z).
By the construction and explanations above,
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(7.1) the edges in E(F ) one-to-one correspond to the edges incident to the vertex
v = F ∗ of GT ; moreover, for e ∈ E(F ), the corresponding edge e∗ enters v if e is
directed counterclockwise (around F ), and leaves v otherwise.

This implies that v has both entering and leaving edges if and only if F is non-cyclic,
unless v = p0 or pn. (Here we also use an easy observation that if F contains an edge
pi−1pi or p′ip

′
i−1 for some 1 < i < n − 1, then E(F ) has edges in both directions.)

Consider a cyclic face F ∈ F cyc
W , and let C = (v0, e1, v1, . . . , er, vr = v0) be its

boundary cycle, where for p = 1, . . . , r, the edge ep goes from vp−1 to vp. Denote the
color of ep by ip. Suppose C is directed clockwise. Then for each p, we have ip−1 < ip if
vp is white, and ip−1 > ip if vp is black (taking the indices modulo r). Hence C contains
at least one black point (for otherwise we would have i0 < . . . < ir = i0). Moreover,

(7.2) C contains exactly one black point.

Indeed, let vp be black. Then vp is the root of the (even) lens L of wires wip−1 and wip

such that F ⊆ L. (This lens is obtained when we take the the part w′ of wip−1 from
sip−1 to vp and the part w′′ of wip from vp to s′ip, the former containing the edge ep−1

and the latter containing ep. In view of ip−1 > ip, w′ must cross wip at some point
x 6= vp, and x cannot lie on the part of wip from sip to vp, by axiom (W2). So x lies
on w′′, and L arises when we choose as x the last point of w′ meeting w′′ − {vp}.) By
axiom (W3), L is bijective to F . The existence of another black vertex in C would
cause the appearance of another lens bijective to F , which is impossible. So (7.2) is
valid. This implies that the vertex F ∗ (which has only leaving edges, by (7.1)) is the
bottom vertex of exactly one black tile. When C is directed counterclockwise, we have
ip−1 > ip if vp is white, and ip−1 < ip if vp is black, implying (7.2) again, which in turn
implies that F ∗ is the top vertex of exactly one black tile. Thus, T obeys (T3).

3) If a cyclic face F and another face F ′ in GW have a common edge e = (u, v),
then F ′ is non-cyclic. Indeed, the edge e′ preceding e in the boundary cycle of F enters
the vertex u. The wire in W passing through e′ leaves u by an edge e′′. Obviously,
e′′ belongs to F ′. Since the edges e, e′′ of F ′ have the same beginning vertex, F ′ is
non-cyclic. Hence the cyclic faces in GW are pairwise disjoint, implying that no pair
of black tiles in T share an edge (the third condition in (T2)).

Thus, T is a g-tiling. If a face F of GW lies on the left from a wire wi, then the
vertices F ∗ and [n] occur in the same region when the interior of the i-strip is removed
from the disc DT . This implies that the sets X(F ), F ∈ FW , are just the vertices of
T . Then BT = BW , as required.

It remains to show the following (cf. (∗) in the above proof).

Lemma 7.2 Let W be a proper wiring. Then:

(i) for each face F in GW , all edges surrounding F belong to different wires;

(ii) there are no different faces F, F ′ ∈ FW such that X(F ) = X(F ′).

Proof Suppose that a face F contains two i-edges e, e′ for some i. One may assume
that the wire wi meets e earlier than e′ and that wi does not meet F between these
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edges. One can see that e, e′ have the same direction in the boundary of F , and the
face F ′ 6= F containing e is different from the face F ′′ 6= F containing e′. Then
X(F ′) = X(F ′′). Therefore, (i) follows from (ii).

To show (ii), we use induction on n (the assertion is obvious if n = 2). Let W ′ :=
(w1, . . . , wn−1). Clearly W ′ obeys axioms (W1),(W2). One can see that if none of
cyclic faces of GW ′ is separated by wn, then (W3) is valid for W ′ as well. So suppose
that some cyclic face F of GW ′ is separated by wn. Let v be a black vertex in F (such
a vertex exists, for otherwise the edge colors along the boundary cycle of F would be
monotone increasing or monotone decreasing, which is impossible). Then there is a

lens L for W ′ such that F ⊆ L and v is the root of L. Take the face F̃ of GW such
that v ∈ F̃ ⊃ F . By (W3) for W , F̃ is cyclic (since L and v continue to be a lens and

its root when wn is added to W ′). Assume that the boundary cycle C of F̃ is directed

clockwise (when C is directed counterclockwise, the argument is similar). Since F̃ 6= F ,
C should contain consecutive edges e′ = (u′, u), e′′ = (u, u′′) with colors n and i < n,
respectively. Then the wire wi crosses wn at u from left to right. This implies that the
vertex u is black and there is an in-lens L′ rooted at u and containing F̃ . But F̃ is
bijective to L; a contradiction.

Thus, W ′ is a wiring (obeying (W1)–(W3)). We first prove (ii) in the assumption
that W ′ is proper. Then by induction all sets X(F ), F ∈ FW ′, are different. Suppose

there are faces F̃ , F̃ ′ ∈ FW such that X(F̃ ) = X(F̃ ′). Let F and F ′ be the faces

for W ′ containing F̃ and F̃ ′, respectively. Then X(F ) = X(F̃ ) − {n} and X(F ′) =

X(F̃ ′) − {n}. This implies X(F ) = X(F ′), and therefore F = F ′. Furthermore, wn

separates F at most twice (for otherwise F = F̃ ∪ F̃ ′, whence X(F̃ ) 6= X(F̃ ′)).

Then there exist two points u, v on wn such that: (a) u occurs in wn earlier than v,
and (b) the piece P of wn from u to v lies outside F except for the points u, v where P
and F meet. In particular, u, v are vertices of GW . Let Q be the part of the boundary
of F between u and v such that the simply connected region Ω bounded by P and
Q is disjoint from the interior of F . We choose such u, v so that wn does not meet
the interior of Q (which is always possible). First we examine the case when P goes
clockwise around Ω; see the picture.
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Let e be the edge in EW contained in Q and incident to v; then e has color i < n.
Take the maximal connected piece Q′ of wi lying in Ω and containing e. Since wi does

27



not meet the interior of F , the end x of Q′ different from v lies on P . Then Q and the
piece P ′ of P from x to v form an in-lens L for W . Since P ′ is directed from x to v,
Q′ must be directed from v to x (by (W2)); in particular, e leaves v. So wn crosses wi

at v from right to left, and therefore, the vertex v is black and is the root of L. Let F ′

be face in GW lying in L and containing v (which is cyclic), and let C be its boundary
cycle. Since W is proper, F ′ 6= L, whence C 6= P ′ ∪ Q′. Then C contains an edge e′

with color j 6= i, n (one can take as e′ the edge of C that either succeeds e or precedes
the last edge on P ). Take the maximal connected piece R of wj, from a point y to a
point z say, that lies in Ω and contains e′. It is not difficult to realize that y occurs in
P earlier than z. This violates (W2) for wj, wn.

When P goes counterclockwise around Ω, a contradiction is shown in a similar way.
(In this case, we take as e the edge on Q incident to u; one shows that e enters e,
whence the vertex u is black.)

Finally, we assert that the wiring W ′ is always proper. Indeed, suppose this is not
so and consider an “empty” ij-lens L (where i < j), i.e., forming a face in GW ′. One
may assume that L is an odd lens with lower vertex u and upper vertex v (the case of
an even “empty” lens is examined in a similar way). Then v is black (the root of L),
and the boundary of L is formed by the piece P of wi from u to v and the piece Q of
wj from v to u (giving the edges in GW ′ connecting u and v). Consider the (cyclic)
face F in GW lying in L and containing v, and let C be its boundary cycle. Since W
is proper, F 6= L. Then, besides the i-edge (in P ) entering v, say, e = (x, v), and the
j-edge (in Q) leaving v, say, e′ = (v, y), the cycle C contains some n-edge e′′. Note
that e′′ cannot connect two points on P or two points on Q, for otherwise there would
appear an “empty” in- or jn-lens. This implies that e′′ goes from y to x (respecting
the direction on C). But then wn crosses wj from right to left, whence the vertex y is
black. Thus, the face F contains two black vertices, contradicting (7.2).

Propositions 6.1 and 7.1 imply the desired equality BTn = BWn, and now Theo-
rem 2.1 follows from Theorem 2.2. Analyzing the transformation of a g-tiling into a
proper wiring described in Section 6 and the converse transformation described above
(and using reasonings above), one can conclude that the composition of such trans-
formations returns the initial g-tiling (or the initial proper wiring). This implies the

following (where, as before, BT and B̂T stand for the effective and full spectra of a
g-tiling T , respectively, and similarly for wirings).

Theorem 7.3 There is a bijection β of the set Tn of g-tilings to the set Wn of proper
wirings on Zn such that BT = Bβ(T ) holds for each T ∈ Tn. Furthermore, for each
proper wiring W , all subsets X(F ) ⊆ [n] determined by the faces F for W (forming

B̂W ) are different, and one holds B̂W = B̂T , where T = β−1(W ).

We conclude this section with several remarks and additional results.

Remark 4 As is shown in the proof of Lemma 7.2, for any proper wiring W =
(w1, . . . , wn), the set W ′ = (w1, . . . , wn−1) forms a proper wiring as well (concerning
the zonogon Zn−1. Clearly a similar result takes place when we remove the wire w1.
As a generalization, we obtain that for any 1 ≤ i < j ≤ n, the set (wi, . . . , wj) forms a
proper wiring on the corresponding subzonogon. One can see that removing wn from
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W corresponds to the contracting operation concerning n in the g-tiling β−1(W ), and
this results in the set of tiles determined by W ′ (via β−1). This gives the following
important result to which we have appealed in Section 4.

Corollary 7.4 For a g-tiling T on Zn, its n-contraction T/n is a (feasible) g-tiling on
Zn−1.

Remark 5 Properties of g-tilings and proper wirings established during the proofs
of Theorems 2.1 and 2.2 enables us to obtain the following result saying that these
objects are determined by their spectra.

Theorem 7.5 For each semi-normal basis B, there are a unique g-tiling T and a
unique proper wiring W such that B = BT = BW .

Proof Due to Theorem 7.3, it suffices to prove this uniqueness property for g-tilings.
We apply induction on h(B) :=

∑
(|X| : X ∈ B). Suppose there are different g-tiles

T, T ′ with BT = BT ′ =: B. This is impossible when none of T, T ′ has black tiles.
Indeed, the vertices of GT and GT ′ (which are the sets in B) are the same and they
determine the edges of these graphs, by (4.2). So GT = GT ′ . This graph is planar and
subdivides Zn into little parallelograms, which are just the tiles in T and the tiles in T ′.
Then T = T ′. Now let T (say) have a black tile. By Proposition 5.1, T has a feasible
W-configuration CW (X; i, j, k), and we can make the corresponding lowering flip for T ,

obtaining a g-tiling T̃ with B eT = (B−{Xik})∪{Xj}. Since BT = BT ′, CW (X; i, j, k)
is a feasible W-configuration for T ′ as well, and making the corresponding lowering flip
for T ′, we obtain a g-tiling T̃ ′ with B eT ′ = B eT . We have h(B eT ) < h(B), whence, by

induction, T̃ = T̃ ′. But the raising flip in T̃ w.r.t. the (feasible) M-configuration
CM(X; i, j, k) returns T , as mentioned in Remark 2 in Subsection 4.1. Hence T = T ′;
a contradiction.

8 Weakly separated set-systems

The goal of this section is to prove the following theorem answering Leclerc–Zelevinsky’s
conjecture mentioned in the Introduction.

Theorem 8.1 Any largest weakly separated collection C ⊆ 2[n] is a semi-normal TP-
basis.

For brevity we will abbreviate “weakly separated collection” as “ws-collection”.
Recall that we say that a ws-collection C ⊆ 2[n] is largest if its cardinality |S| is
maximum among all ws-collections in 2[n]; this maximum is equal to

(
n+1

2

)
+ 1 [7]. An

important example is the set In of intervals in [n] (including the empty set). Also it
was shown in [7] that a (lowering or raising) flip in a ws-collection produces again a
ws-collection. Note that a six tuple Xi, Xj, Xk, Xij, Xik, Xjk (where i < j < k and
X ∩ {i, j, k} = ∅) is not a ws-collection; therefore, the cardinality of a ws-collection
preserves under flips. Due to these facts, the set Cn of largest ws-collections includes Bn

(the set of semi-normal bases for T Pn). Theorem 8.1 says that the converse inclusion
takes place as well. As a result, we will conclude with the following
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Corollary 8.2 Cn = Bn.

In view of Theorem 2.2, to obtain Theorem 8.1, it suffices to show the following

Theorem 8.3 Any C ∈ Cn is the spectrum BT of some g-tiling T on Zn.

In the proof of this proposition we will use some additional (relatively simple) facts
established in [7]. Let C ∈ Cn. To construct the desired tiling for C, we consider the
projection C ′ of C into 2[n−1], i.e., the collection of subsets X ⊆ [n−1] such that either
X ∈ C or Xn ∈ C or both. Partition C ′ into three subcollections M, N, S, where

M := {X : X ∈ C 63 Xn}, N := {X : Xn ∈ C 63 X}, S := {X : X, Xn ∈ C}.

Also for q = 0, . . . , n − 1, define

C ′

q := {X ∈ C ′ : |X| = q}, Mq := M ∩ C ′

q, Nq := N ∩ C ′

q,

referring to C ′
q as the q-th layer in C ′. It is shown in [7] that

(8.1) for each q = 0, . . . , n − 1, S ∩ C ′
q contains exactly one element.

We call S the separator in C ′ and denote its elements by S0, . . . , Sn−1, where |Sq| = q.
Property (8.1) implies that |C ′| = |C| − |S| =

(
n+1

2

)
+ 1− n =

(
n
2

)
+ 1, and as is shown

in [7],

(8.2) C ′ is a ws-collection, and therefore it is a largest ws-collection in 2[n−1].

Two more observations in [7] are:

(8.3) (i) S0 ≺ S1 ≺ · · · ≺ Sn−1;

(ii) for each q = 0, . . . , n− 1 and any Y ∈ Mq and Y ′ ∈ Nq, one hold Y ≺ Sq and
Sq ≺ Y ′.

Now we start proving Theorem 8.3. This is led by two inductions. The first induc-
tion is by n. The result is trivial for n ≤ 2. Let n > 2 and assume by induction that
there is a g-tiling T ′ on Zn−1 such that BT ′ = S ′. Our aim is to transform T ′ into a
g-tiling on Zn whose spectrum is S. This is performed by constructing a certain path
P in the graph GT ′ that goes through the separator S and, further, by expanding P
into an n-strip. The expansion operation that we apply is converse to the n-contraction
operation developed in Subsection 4.3. This operation deserves to be discussed as an
independent topic, and for this reason we interrupt our proof for a while.

8.1 n-contraction and n-expansion

First of all we examine, in more details, the n-contraction operation in an arbitrary
g-tiling T on Zn. Let P be the reverse path to the right boundary RQ of the n-strip
Q. It possesses a number of important features, as follows:
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(8.4) For the path P = (v0, e1, v1, . . . , er, vr) as above and the colors i1, . . . , ir of its
edges e1, . . . , er, respectively, the following hold:

(i) P begins at the minimal point p0 of Zn and ends at pn−1;

(ii) none of v0, . . . , vr is the top or bottom vertex of a black ij-tile with i, j < n;

(iii) P has no pair of consecutive backward edges;

(iv) if eq = (vq−1, vq) and eq+1 = (vq+1, vq) (i.e., eq is forward and eq+1 is backward
in P ), then iq > iq+1;

(v) if eq = (vq, vq−1) and eq+1 = (vq, vq+1) (i.e., eq is backward and eq+1 is
forward in P ), then iq < iq+1.

Indeed, the first and last edges of Q are pn−1pn and p0p
′
n−1, yielding (i). Property (ii)

follows from the facts that each vertex vq has an incident n-edge (which belongs to Q)
and that all edges incident to the top or bottom vertex of a black ij-tile have colors
between i and j (see Corollary 3.1(iii)). The forward (backward) edges of P are the
backward (resp. forward) edges of RQ. Therefore, each forward (backward) edge eq

of P belongs to a white (resp. black) iqn-tile, taking into account the maximality of
color n; cf. (4.7). Then for any two consecutive edges eq, eq+1, at least one of them is
forward, yielding (iii) (for otherwise the vertex vq is terminal and has both entering
and leaving edges, which is impossible). Next, let τ be the iqn-tile (in Q) containing
eq, and τ ′ the iq+1n-tile containing eq+1. If eq is forward and eq+1 is backward in P ,
then τ ′ is black, vq is the left vertex of τ ′, and the iq-edge e opposite to eq in τ enters
the top vertex of τ ′. Since e lies in the cone of τ ′ at t(τ ′), we have iq+1 < iq < n, as
required is (iv). And if eq is backward and eq+1 is forward, then τ is black and vq is
its bottom vertex. Since eq+1 lies in the cone of τ at b(τ), we have iq < iq+1 < n, as
required in (v).

Recall that the n-contraction operation applied to T shrinks the n-strip in such a
way that RQ merge with the left boundary LQ of Q. From (8.4)(ii) it follows that
in the resulting g-tiling T ′ on Zn−1, the path P as above no longer contains terminal
vertices at all.

Next we describe the converse operation that transforms a pair consisting of an
arbitrary g-tiling T ′ on Zn−1 and a certain path in GT ′ into a g-tiling on Zn. To
explain the construction, we first consider an arbitrary simple path P in GT ′ which
begins at p0, ends at the maximal point pn−1 of Zn−1, and may contain backward edges.
Since the graph GT ′ is planar (and has a natural embedding in the disc DT ′), the path
P subdivides GT ′ into two connected subgraphs G′ = G′

P and G′′ = G′′
P such that:

G′ ∪ G′′ = GT ′, G′ ∩ G′′ = P , G′ contains `bd(Zn−1), and G′′ contains rbd(Zn−1);
we call G′ (G′′) the left (resp. right) subgraph w.r.t. P . Then each tile of T becomes
a face of one of G′, G′′ (and the inner faces of G′, G′′ are only such), and for an edge
e of P not in bd(Zn−1), the two tiles sharing e occur in different subgraphs. So T is
partitioned into two subsets, one being the set of faces of G′, and the other of G′′.

The n-expansion operation for (T ′, P ) makes G′, G′′ disconnected by cutting GT ′

along P and then glue them by adding the corresponding n-strip. More precisely, we
shift the vertices of G′′ by the vector ξn, i.e., each vertex X in it changes to Xn; this
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induces the corresponding shift of edges and tiles in G′′. The vertices of G′ preserve.
So each vertex X occurring in the path P produces two vertices, namely, X and Xn.
As a result, for each edge e = (X, Xi) of P , there appears its copy ẽ = (Xn, Xin)
in the shifted G′′; we connect e and ẽ by the corresponding (new) in-tile, namely, by
τ(X; i, n). This added tile is colored white if e is a forward edge of P , and black if e is
backward. The colors of all old tiles preserve.

We refer to the resulting set T of tiles, with the partition into white and black ones,
as the n-expansion of T ′ along P . Since the right boundary of the shifted G′′ becomes
the part of rbd(Zn) from the point p′n−1 (={n}) to pn (=[n]), it follows that the union
of the tiles in T is Zn. Also it is easy to see that the shape DT in conv(2[n]) associated
to T is again a disc (as required in axiom (T4)), and that T obeys axiom (T1). The
path P generates the n-strip Q for T (consisting of the added ∗n-tiles and the edges
of the form (X, Xn)), and we observe that RQ = P−1 and that LQ is the shift of P−1

by ξn. Therefore, the n-contraction operation applied to T returns T ′.

To ensure validity of the remaining axioms (T2) and (T3), we have to impose
additional conditions on the path P . In fact, they are similar to those exposed in (8.4).
Moreover, these conditions are necessary and sufficient.

Lemma 8.4 Let P = (p0 = v0, e1, v1, . . . , er, vr = pn−1) be a simple path in GT ′. Then
the following are equivalent:

(i) the n-expansion T of T ′ along P is a (feasible) g-tiling on Zn;

(ii) P contains no terminal vertices for T ′ and satisfies (8.4)(iii),(iv),(v).

Proof Let P be as in (ii). We have to verify axioms (T2),(T3) for T . Let P ′ =
(v′

0, e
′
1, v

′
1, . . . , e

′
r, v

′
r) and P ′′ = (v′′

0 , e
′′
1, v

′′
1 , . . . , e

′′
r , v

′′
r ) be the copies of P in the graphs

G′ and G′′ (taken apart), respectively. It suffices to check conditions in (T2),(T3) for
objects involving elements of P ′, P ′′ (since for any vertex of G′ not in P ′, the structure
of its incident edges and tiles, as well as white/black coloring of tiles, is inherited from
GT ′, and similarly for G′′).

Consider a vertex vq with 1 ≤ q < r. Let EL
q (ER

q ) denote the set of edges in ET ′(vq)
lying on the left (resp. right) when we move along P and pass through eq, vq, eq+1; we
include eq, eq+1 in both EL

q and ER
q . Let F L

q (F R
q ) denote the set of tiles in FT ′(vq)

of which both edges incident to vq belong to EL
q (resp. ER

q ). Note that each tile
τ ∈ FT ′(vq) must occur in either F L

q or F R
q , i.e., τ is not separated by eq or eq+1

(taking into account that all vertices of P are non-terminal, and therefore the edges of
P are white, and considering the behavior of edges and tiles at a non-terminal vertex
exhibited in (3.5)). By the construction of G′, G′′, any two tiles of T ′ that share an
edge not in P are faces of the same graph among G′, G′′, and if a tile τ ∈ T ′ has an
edge contained in `bd(Zn−1) − P (resp. rbd(Zn−1) − P ), then τ is a face of G′ (resp.
G′′). Using these observations, one can conclude that

(8.5) for 1 ≤ q < r, EL
q and F L

q are entirely contained in G′, while ER
q and F R

q are
entirely contained in G′′.

For q = 1, . . . , r, let τL
q (τR

q ) denote the tile in T ′ (if exists) that contains the edge
eq and lies on the left (resp. right) when we traverse eq from vq−1 to vq. By (8.5), τL

q
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is in G′ and τR
q is in G′′. Also each of τL

q , τR
q is white. Let τq be the iqn-tile in T that

was added to connect the edges e′q and e′′q . Then

e′q = (b(τq), `(τq)) and e′′q = (r(τq), t(τq)). (8.6)

Suppose that eq is forward in P . Then τq is white. Since eq is directed from vq−1 to
vq and τL

q lies on the left from eq when moving from vq−1 to vq, eq belongs to the right
boundary of τL

q . This and (8.6) imply that τq and τL
q do not overlap. In its turn, τR

q

contains eq in its left boundary; this together with (8.6) implies that τq and the shifted
τR
q (sharing the edge e′′q) do not overlap as well. Now suppose that eq is backward in

P . Then τq is black. Since eq is directed from vq to vq−1 and τL
q lies on the left from

eq when moving from vq−1 to vq, eq belongs to the left boundary of τL
q . This implies

that τq and τL
q overlap. Similarly, τq and τR

q overlap. Thus, (T2) holds for τq, τ
L
q and

for τq, τ
R
q , as required. Also the non-existence of pairs of consecutive reverse edges in

P implies that no black tiles in T share an edge.

To verify (T3), consider a black tile τq. Then 1 < q < r, the edges eq−1, eq+1 are
forward, and eq is backward in P . Also iq−1, iq+1 > iq (by (8.4)(iv),(v)). Observe that
the set ER

q−1 consists of the edges in ET ′(vq−1) that enter vq−1 and have color j such
that iq ≤ j ≤ iq−1 (including eq−1, eq). All these edges are white (as is seen from (3.5)).
The second copies of these edges (shifted by ξn) plus the n-edge (v′

q−1, v
′′
q−1) are exactly

those edges of GT that are incident to the top vertex v′′
q−1 of τq. It its turn, the set EL

q

consists of the edges in ET ′(vq) that leave vq and have color j such that iq ≤ j ≤ iq+1,
and these edges are white. Exactly these edges plus the n-edge (v ′

q, v
′′
q ) form the set of

edges of GT incident to b(τq). (See the picture.) This gives (T3) for T .
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Thus, (ii) implies (i) in the lemma. The converse implication (i)→(ii) follows
from (8.4) and the fact (mentioned earlier) that for the n-expansion T of T ′ along
P , the n-contraction operation applied to T produces T ′, and under this operation the
n-strip for T shrinks into P−1. This completes the proof of the lemma.

Let us call a path P as in (ii) of Lemma 8.4 legal. It is the concatenation of
P1, . . . , Pn−1, where Pp is the maximal subpath of P whose edges connect levels p − 1
and p, i.e., are of the form (X, Xi) with |X| = p− 1. We refer to Pp as p-th segment of
P and say that this segment is ordinary if it has only one edge, and zigzag otherwise.
The beginning vertices of segments together with pn−1 are called critical in P (so there
is exactly one critical vertex in each level); these vertices will play an important role in
what follows. Note that the critical vertices of a legal path P = (v0, e1, v1, . . . , er, vr)
are v0 = p0, vr = pn−1 and the intermediate vertices vq such that eq enters and eq+1

leaves vq. We distinguish between two sorts of non-critical vertices vq by saying that vq

is a ∨-vertex if both eq, eq+1 leave vq, and a ∧-vertex if both eq, eq+1 enter vq. Observe
that
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(8.7) regarding a vertex of P as a subset X of [n − 1], the following hold: (a) if X is
critical, then both X, Xn are in BT ; (b) if X is a ∧-vertex, then X ∈ BT and
Xn 6∈ BT ; and (c) if X is a ∨-vertex, then X 6∈ BT and Xn ∈ BT (where T is
the n-expansion of T ′ along P ).

Indeed, from the proof of Lemma 8.4 one can see that: if X is critical, then both
vertices X, XT of GT have entering and leaving edges, so they are non-terminal; if X
is a ∧-vertex, then Xn is terminal while X is not; and if X is a ∨-vertex, then X is
terminal while Xn is not (see the above picture).

It follows that

(8.8) BT = B′ ∪ B′′, where B′ consists of all non-terminal vertices X in G′
P that are

not ∨-vertices in P , and B ′′ consists of all Xn such that X is a non-terminal
vertex in G′′

P that is not a ∧-vertex of P .

We also notice that

(8.9) for each p = 1, . . . , n − 1, the graph Hp induced by the set of white edges con-
necting levels p − 1 and p in GT ′ is a forest; therefore, any legal path for T ′ is
determined by the set of its critical vertices.

This follows from the fact that for a path in Hp formed by three edges e, e′, e′′ (in this
order), the edges e and e′′ do not intersect; equivalently: the colors i, i′, i′′ of these
edges (respectively) satisfy either i, i′′ < i′ or i, i′′ > i′ . (To see the latter, suppose,
for instance, that i < i′ < i′′ and that e and e′ have the same beginning vertex, i.e.,
e = (X, Xi) and e′ = (X, Xi′) for some X. Then e′′ enters Xi′. Using (3.5), one can
see that there exists a white ĩi′-tile τ such that i ≤ ĩ < i′, b(τ) = X and r(τ) = Xi′,
and there exists a white i′̂i-tile ρ such that i′ < î ≤ i′′, t(ρ) = Xi′ and r(ρ) = X. But
such τ and ρ overlap, contrary to (T2).)

Finally, since the n-strip in a g-tiling on Zn is determined uniquely, we can conclude
with the following

Corollary 8.5 The correspondence (T ′, P ) 7→ T , where T ′ is a g-tiling on Zn−1, P is
a legal path for T ′, and T is the n-expansion of T ′ along P , gives a bijection between
the set of such pairs (T ′, P ) and the set of g-tilings on Zn.

8.2 Drawing a legal path through the separator

We continue the proof of Theorem 8.3, using terminology, notation and results from
above. Our aim is to show the following

Proposition 8.6 Let M, N, S satisfy (8.3). Then there exists a legal path P for T ′

such that:

(i) S is the set of critical vertices of P ;

(ii) M is the set of non-terminal vertices of the left subgraph G′
P that are neither

critical nor ∨-vertices of P ;

(iii) N is the set of non-terminal vertices of the right subgraph G′′
P that are neither

critical nor ∧-vertices of P .
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Then, by reasonings in the previous subsection (cf. (8.8) and Lemma 8.4), the
n-expansion of T ′ along P gives the desired g-tiling T on Zn: its spectrum BT is
M ∪ {Xn : X ∈ N} ∪ {X, Xn : X ∈ S}. Therefore, BT = C, yielding Theorem 8.3.

Like the proof of inclusion (5.1) in Section 5, we prove Proposition 8.6 by induction
on the total size

∑
(|X| : X ∈ BT ′) of the spectrum of T ′ (which is the second induction

in the proof of Theorem 8.3). The idea is as follows. If T has a feasible W-configurations
(defined in Section 4), we choose one of them and make the corresponding lowering

flip, obtaining a g-tiling T̃ on Zn−1 whose spectrum has a smaller total size. We also

transform M, N, S into appropriate sets M̃, Ñ , S̃ for T̃ maintaining property (8.3). By

induction there exists a legal path P̃ as required in the proposition for T̃ , M̃ , Ñ , S̃.
Then we show that P̃ can be transformed into the desired legal path for T ′, M, N, S.

When T ′ has no feasible W-configuration, T ′ is the standard tiling (i.e., BT ′ = In−1),
in which case the result is proved directly (giving a base for the induction). Moreover,
this can be easily done for an arbitrary pure tiling T ′, by arguing as follows. We know
that the spectrum BT ′ (formed by all vertices of GT ′ since T ′b = ∅) is a normal basis,
so BT ′ is a strongly separated collection, by a result in [7]. For p = 1, . . . , n − 1,
consider the graph (forest) Hp as in (8.9). Observe that any tile τ ∈ T ′ containing
an edge in Hp either has the top vertex in level p or the bottom vertex in level p −
1 (and therefore, τ contains two edges in Hp). Also such tiles τ are pairwise non-
overlapping and cover the region Ωp in Zn−1 between the horizontal lines (R, p − 1)
and (R, p). These facts imply that Hp is connected, i.e., it is a tree; moreover, Hp is
embedded in Ωp without intersection of non-adjacent edges. So any two vertices u, v
of Hp are connected by a unique path P (u, v) in Hp. The concatenation of the paths
P (S0, S1), P (S1, S2), . . . , P (Sn−2, Sn−1) is the (unique) legal path going through the
separator S. Finally, if X1, . . . , Xd are the vertices in the same level p (1 ≤ p < n− 1)
ordered from left to right, then X1 ≺ · · · ≺ Xd. (This follows from the transitivity of ≺
for strongly separated collections and from the fact that consecutive vertices X q, Xq+1

are connected in Hp by a 2-edge path (Xq, e, Y, e′, Xq+1) such that both e, e′ leave
Y and their colors i, i′ (respectively) satisfy i < i′, implying Xq ≺ Xq+1, in view of
Xq = Y i and Xq+1 = Y i′.) Now (i)–(iii) in Proposition 8.6 easily follow from (8.3).

In a general case, we will use the following observation from [7]:

(8.10) if sets A, A′, A′′ ⊆ [n′] are weakly separated, and if |A| ≤ |A′| ≤ |A′′|, A ≺ A′

and A′ ≺ A′′, then A ≺ A′′.

Another property important to us is the following.

Lemma 8.7 Let Y ⊆ [n′] be weakly separated from each of Xk, Xij, Xik, Xjk ⊆ [n′]
and different from Xjk, where i < j < k and X ∩ {i, j, k} = ∅. Let |Y | ≥ |X| + 2 and
Xik ≺ Y . Then Xjk ≺ Y .

(Recall that when writing A ≺ B or AB A, we assume that A 6= B.)

Proof Note that the obvious relations Xij ≺ Xik and Xk ≺ Xik together with
Xik ≺ Y imply Xij, Xk ≺ Y , by (8.10). In order to obtain Xjk ≺ Y , we show
that none of the relations Y BXjk, Y ≺ Xjk, and Xjk B Y is possible (taking into
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account that Xjk and Y are weakly separated and Xjk 6= Y ). Let Y ′ := Y − Xjk
and Z := Xjk − Y .

(i) Suppose Y BXjk. Let {Z1, Z2} be the partition of Z such that Z1 ≺ Y ′ ≺ Z2.
Since |Y ′| ≥ 2, Y ′ contains an element α 6= i. Take β ∈ Z2; then α < β. We have:
α ∈ Y − Xij, α ∈ Y − Xik, and β belongs to at least one of Xij − Y and Xik − Y .
But β ∈ Xij − Y contradicts Xij ≺ Y , and β ∈ Xik − Y contradicts Xik ≺ Y .

(ii) Suppose Y ≺ Xjk. If Y ′ contains an element α 6= i, we come to a contradiction
by taking an element β ∈ Z (satisfying α < β, in view of Y ′ ≺ Z) and arguing as in (i).
So Y ′ = {i}, whence |Y | ≥ |X| + 2 holds with equality. Then Z consists of a single
element β, and we have i < β and Y = Xijk − {β}. Therefore, Y − Xik = {j} and
Xik−Y = {β}, implying β < j, in view of Xij ≺ Y . Now considering the pair Y, Xk,
we have i ∈ Y − Xk, β ∈ Xk − Y and i < β. This is impossible since Xk ≺ Y .

(iii) Suppose XjkBY . Partition Y ′ into subsets Y1, Y2 such that Y1 ≺ Z ≺ Y2. We
have |Z| ≥ 2 and i 6∈ Z. Therefore, Z contains an element β 6= i, j. Then β ∈ Xik−Y
and Y1 ≺ {β}, whence the relation Xik ≺ Y is possible only if Y1 = {i}. Now for the
pair Y, Xk, we have i ∈ Y − Xk, β ∈ Xk − Y and i < β, contrary to Xk ≺ Y .

Now we finish the proof of Proposition 8.6. We choose a feasible W-configuration
K = CW (X; i, j, k) such that, besides the five sets Xi, Xk, Xij, Xik, Xjk,

(8.11) the spectrum BT ′ contains the set X; equivalently: the edges (Xi, Xik) and
(Xk, Xik) belong to the same (white) tile, namely, τ(X; i, k)

(see Case 1(a) in the proof of Proposition 4.1). Such a property holds if K has the
minimum possible height h (=|X| + 1). Indeed, by Proposition 5.1, there exists no
black tile of height < h. If the edges (Xi, Xik) and (Xk, Xik) do not belong to the
same tile (which is of height h − 1), then the vertex Xik has an entering q-edge e
with i < q < k (i.e., lying between (Xi, Xik) and (Xk, Xik)). The beginning vertex
Y of e has only one leaving edge (namely, e) and at least two entering edges. Now
by repeatedly applying a simple descending procedure (similar to searching a hexagon
in [4]), we are able to find a vertex Z of height |Z| < h−1 that has exactly one leaving
edge and exactly two entering edges. Then the three (white) tiles sharing Z form a
hexagon containing a required W-configuration CW (X ′; i′, j ′, k′) (where the lowest tile
is τ(X ′; i′, k′)).

We make the lowering flip for K. The resulting g-tiling T̃ on Zn−1 has the spectrum

B eT = (BT ′ − {Xik}) ∪ {Xj}. Our aim is to assign sets M̃, Ñ , S̃ for T̃ in a due way

and to draw a legal path P̃ through S̃ and, finally, to transform P̃ into the desired
legal path P through the separator S in GT ′. We consider two possible cases, letting
h := |Xik|.

Case 1: Xik belongs to S, i.e., Xik = Sh. The set Xik vanishes in B eT , and we

assign S̃ by replacing Sh by Xjk =: S̃h and keeping the members in the other levels:
S̃q := Sq for q 6= h. Accordingly, we put M̃q := Mq and Ñq := Nq for the levels where

the spectrum preserves, i.e., for q 6= h, h−1, and put M̃h := Mh and Ñh := Nh−{Xjk}.
Under these assignments and by (8.3), we obtain:
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(i) S̃0 ≺ · · · ≺ S̃n−1, and

(ii) for q = 0, . . . , h−2, h, . . . , n−1 and any Y ∈ M̃p and Y ′ ∈ Ñp, one hold Y ≺ S̃q

and S̃q ≺ Y ′.

Here: S̃h−1 ≺ S̃h (=Xjk) follows from Sh−1 ≺ Sh = Xik ≺ Xjk (by (8.10));

Y ≺ S̃h for Y ∈ M̃h follows from Y ≺ Xik ≺ Xjk; and the relations S̃h ≺ S̃h+1 and
S̃h ≺ Y ′ for Y ′ ∈ Ñh follow from Lemma 8.7.

As to level h− 1, we include in M̃h−1 (Ñh−1) all members of Mh−1 (resp. Nh−1). A
less trivial task is to assign a due inclusion for the new element Xj appeared in level
h − 1. A priori, the following four cases are possible for the separating element Sh−1:
(a) Sh−1 = Xk; (b) Sh−1 � Xi; (c) Sh−1 � Xk; and (d) Xi ≺ Sh−1 ≺ Xk. In reality,
cases (c) and (d) cannot occur.

Indeed, suppose Sh−1 � Xk. A routine examination (in spirit of one in the proof of
Lemma 8.7) shows that this relation together with Sh−1 ≺ Sh = Xik and |Sh−1| = |Xik|
is possible only if Xk − Sh−1 = {α} and Sh−1 − Xk = {i} for some α < i, i.e., Sh−1

is viewed as Xik − {α}. This means that GT ′ contains the α-edge e going from Sh−1

to Xik (since these are non-terminal vertices and by (4.2)). In view of α < i, e lies
strictly inside the cone of τ at `(τ) = Xik, where τ is the ij-tile in T ′ containing
the edges (Xk, Xik) and (Xik, Xijk). But this contradicts the fact that the vertex
Xik is ordinary (cf. (4.4) and (3.6)). Next suppose Xi ≺ Sh−1 ≺ Xk. One can check
that this is possible only if either (i) Sh−1 = Xβ or (ii) Sh−1 = Xik − {β} for some
i < β < k. Then GT ′ contains the β-edge (X, Xβ) (lying in the cone of the bottom
vertex of τ = τ(X; i, k)) in case (i), and the β-edge (Xik−{β}, Xik) (lying in the cone
of τ at t(τ) = Xik) in case (ii). Clearly none of these situations is possible. (This is
where we essentially use the choice of a configuration so as to obey (8.11).)

In case (a), we have Xj ≺ Sh−1 and attribute Xj to M̃h−1. In case (b), we have

Sh−1 ≺ Xj (in view of Xi ≺ Xj) and attribute Xj to Ñh−1.

Thus, (8.3) holds for the constructed M̃, Ñ , S̃, and by induction there exists a legal

path P̃ in G eT satisfying (i)–(iii) in Proposition 8.6 w.r.t. M̃, Ñ , S̃. It remains to explain

how to transform P̃ into the desired P . We will use the following observation:

(8.12) the vertex Xijk of GT ′ is non-terminal.

Indeed, suppose Xijk is terminal; then it is the top vertex of some black pq-tile τ =
τ(X ′; p, q). Since the edge (Xik, Xijk) lies strictly inside the cone of τ at Xijk, we
have p < j < q, and the vertex Xik is expressed as X ′pq − {j}. Take a white edge
e = (X ′, X ′α) leaving the bottom vertex of τ ; then p < α < q (such an edge exists since
|ET ′(b(τ))| ≥ 3). The vertex X ′α is non-terminal and |X ′α| = |Xik|. We have j ∈ X ′,
Xik − X ′α = {p, q} and X ′α − Xik = {j, α} (or ={j} if j = α). Since p < j, α < q,
we obtain X ′αBXik. This is impossible since Xik = Sh is comparable by ≺ with all
non-terminal vertices in level h.

Now we consider cases (a),(b) as above.

Subcase 1a: Sh−1 = Xk. Then the h-th segment P̃h of P̃ is ordinary; it goes from
S̃h−1 = Sh−1 to S̃h = Xjk through the edge (Xk, Xjk). The beginning part of P̃ , from
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p0 to S̃h−1, does not pass the vertex Xj, since in the subgraph H̃h−1 (defined as in (8.9)

for T̃ ) this vertex has only one incident edge, namely, (X, Xj). We replace in P̃ the

segment P̃h by the 3-edge path (Xk, Xik, Xijk, Xjk) (denoting a path by the sequence
of its vertices). Let P be the resulting path; if the edge (Xjk, Xijk) occurs in P twice

(which happens when the segment P̃h+1 passes Xijk), we remove both occurrences,
making P simple. Since the vertex Xijk is non-terminal (by (8.12)), all vertices of P

are such. Moreover, comparing P and P̃ , one can see that P is a legal path in GT ′

whose set of critical vertices is just S. The segment structure of P differs from that
of P̃ by only two segments, namely, by h-th and (h + 1)-th segments whose last and
first vertices, respectively, has changed from Xjk to Xik. See the picture below where
(fragments of) P̃ and P are drawn in bold and critical vertices are indicated with

circles. Comparing P̃ , M̃ , Ñ , S̃ with P, M, N, S and using some observations above, it
is routine to check that the latter quadruple satisfies (i)–(iii) in Proposition 8.6.
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Subcase 1b: Sh−1 � Xi. We assert that the segment P̃h (from S̃h−1 = Sh−1 to

S̃h = Xjk) contains the edge (Xj, Xjk), and therefore, it also contains (Xj, Xij). For
suppose the contrary. Then the concatenation Q of the path (Xi, Xij, Xj, Xjk) and

the reverse of P̃h is a simple (zigzag) path from Xi to Sh−1 in H̃h. By explanations

in the previous subsection, any connected component of H̃h has a planar layout, i.e.,
non-adjacent edges in it (regarded as line-segments) do not intersect. This implies that
for the sequence e1, . . . , ed of edges of Q (where e1 = (Xi, Xij), e2 = (Xj, Xij), and
d is even), the sequence i1, . . . , id of its colors has alternating signs by comparison,
namely, i1 = j > i2 = i < i3 > i4 < · · · > id−1 < id. Now since Sh−1 − Xi (resp.
Xi − Sh−1) consists of the colors iq with q odd (resp. even), one can conclude that
Sh−1 � Xi is impossible.

Thus, P̃ contains the subpath R = (Xij, Xj, Xjk) (or R′ = (Xi, Xij, Xj, Xjk)).
We replace R by the 4-edge path (Xij, Xi, Xik, Xijk, Xjk) (resp. replace R′ by the 3-
edge path (Xi, Xik, Xijk, Xjk)), obtaining the desired legal path P in GT ′ as required
in the proposition. See the picture below. (Like Subcase 1a, if the edge (Xjk, Xijk)
occurs in P twice, we remove both occurrences from it.)
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Case 2: Xik 6∈ S. This case is essentially simpler. We put S̃ := S, M̃q := Mq and

Ñq := Nq for q 6= h−1, h. The sets M̃h, Ñh are obtained from Mh, Nh by removing Xik

from the corresponding set. To define M̃h−1, Ñh−1, we use the fact (shown in Case 1)
that Xi ≺ Sh−1 ≺ Xk is impossible. When Sh−1 � Xi, the new element Xj in level

h − 1 is added to Ñq (since Sh−1 ≺ Xj, in view of Xi ≺ Xj); so M̃h−1 := Mh−1 and

Ñh−1 := Nh−1 ∪ {Xj}. When Sh−1 � Xk, Xj is added to M̃h−1.

The corresponding legal path P̃ in G eT (existing by induction) produces a legal

path P in GT ′ in a natural way. If P̃ does not pass the vertex Xj, then P := P̃ .
And if Xj is in P̃ , then P̃ contains the subpath Q = (Xij, Xj, Xjk) (for Xj would

be critical if P̃ passed through X, Xj, Xij or X, Xj, Xjk). We replace Q by the path
(Xij, Xi, Xik, Xk, Xjk). The resulting path P is as required.

This completes the proof of Proposition 8.6, yielding Theorem 8.1.

9 Generalizations

In this concluding section we outline two generalizations, omitting proofs (which are
close to the corresponding proofs in this paper or in [2]). They will be discussed in full,
with details and related topics, in a separate paper.

A. The obtained relationships between semi-normal bases, proper wirings and gen-
eralized tilings are extendable to the case of an integer n-box Bn,a = {x ∈ Z

[n] : 0 ≤
x ≤ a}, where a ∈ Z

n
+. Recall that a function f on Bn,a is a TP-function if it satisfies

f(x + 1i + 1k) + f(x + 1j) (9.1)

= max{f(x + 1i + 1j) + f(x + 1k), f(x + 1i) + f(x + 1j + 1k)}

for any x and 1 ≤ i < j < k ≤ n, provided that all six vectors occurring as arguments
in this relation belong to Bn,a, where 1q denotes q-th unit base vector. In this case
the standard basis of the TP-functions consists of the vectors x such that xi, xj > 0
for i < j implies xq = aq for q = i + 1, . . . , j − 1 (see [2]); such vectors are called
fuzzy-intervals. Normal and semi-normal bases are corresponding collections of integer
vectors in Bn,a, defined by a direct analogy with the Boolean case.

The semi-normal bases in the box case admit representations via natural general-
izations of proper wiring and g-tiling diagrams concerning the Boolean case, which are
defined as follows.

The zonogon for a given a is the set Zn,a := {λ1ξ1 + . . . + λnξn : λi ∈ R, 0 ≤ λi ≤
ai, i = 1, . . . , n}, where the vectors ξi are chosen as above. For each i ∈ [n] and
q = 0, 1, . . . , ai, define the point pi,q := a1ξ1 + . . .+ ai−1ξi−1 + qξi (on the left boundary
of Zn,a) and the point p′i,q := anξn + . . . ai+1ξi+1 + qξi (on the right boundary). These
points are regarded as the vertices on the boundary of Zn,a, and the edges in it are the
directed line-segments pi,q−1pi,q and p′i,qp

′
i,q−1 When q ≥ 1, we define si,q (s′i,q) to be the

median point on the edge pi,q−1pi,q (resp. p′i,qp
′
i,q−1).

A generalized tiling T on Z = Zn,a is defined by essentially the same axioms (T1)–
(T4) from Subsection 2.2. A wiring W on Z consists of wires wi,q going from si,q to
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s′i,q, i = 1, . . . , n, q = 1, . . . , ai. It is also defined by the same axioms (W1)–(W3) from
Subsection 2.1.

Note that for any i and 1 ≤ q < q′ ≤ ai, the point s′i,q occurs earlier than s′i,q′ in the
right boundary of Z (beginning at p0), which corresponds to the order of si,q, si,q′ in the
left boundary of Z. This and axiom (W2) imply that the wires w := wi,q and w′ := wi,q′

are always disjoint. Indeed, suppose that w and w′ meet and take the first point x of
w′ that belongs to w. Let Ω0, Ω1 be the connected components of Z − (P ∪ P ′), where
P is the part of w from x to s′i,q, P ′ is the part of w′ from si,q′ to x, and Ω0 contains
p0. Then the end point s′i,q′ of w′ is in Ω1. Furthermore, when the wire w′ crosses w
at x, it enters the region Ω0. Therefore, the part of w′ from x to s′i,q′ must intersect
P ∪P ′ at some point y 6= x. But y ∈ P is impossible by (W2) and y ∈ P ′ is impossible
because w′ is not self-intersecting.

Like the Boolean case, for a g-tiling T , the set (spectrum) BT consists of non-
terminal vertices (= n-vectors) for T . For a wiring W and an (inner) face F of its
associated planar graph, let x(F ) denote the n-vector whose i-th entry is the number
of wires wi,q such that F lies on the left from wi,q. Then BW is defined to be the
collection of vectors x(F ) over all non-cyclic faces F .

Theorems 2.1 and 2.2 remain valid for these extended settings (where Zn is replaced
by Zn,a), and proving methods are essentially the same as those in Sections 4–7, with
minor refinements on some steps. (In particular, instead of a unique dual i-path (i-
strip) for each i, we now deal with ai dual i-paths, each connecting a boundary edge
pi,q−1pi,q to p′i,qp

′
i,q−1, which does not cause additional difficulty in the proof.)

B. The second generalization involves an arbitrary permutation ω on [n]. (In fact,
so far we have dealt with the longest permutation ω0, where ω0(i) = n + 1 − i). For
i, j ∈ [n], we write i ≺ω j if i < j and ω(i) < ω(j). This relation is transitive and
gives a partial order on [n]. Let Xω ⊆ 2[n] be the set (lattice) of ideals X of ([n],≺ω),
i.e., i ≺ω j and j ∈ X implies i ∈ X. In particular, Xω is closed under taking a
union or intersection of its members. Below we specify settings and outline how results
concerning ω0 can be extended to ω.

(i) By a TP-function for ω, or an ω-TP-function, we mean a function f defined on
the set Xω (rather than 2[n]) and satisfying (1.1) when all six sets in it belong to Xω.
Note that Xi, Xk, Xij, Xjk ∈ Xω implies that each of X, Xj, Xik, Xijk is in Xω as
well (since each of the latter is obtained as the intersection or union of a pair among
the former). The notion of TP-basis is extended to the set T Pω of ω-TP-functions in
a natural way. It turns out that the role of standard basis is now played by the set Iω

of ω-dense sets X ∈ Xω, which means that there are no triples i < j < k such that
i, k ∈ X 63 j and each of the sets X − {i}, X − {k} and (X − {i, k}) ∪ {j} belongs to
Xω. In particular, Iω contains the sets [i], {i′ : i′ �ω i} and {i′ : ω(i′) ≤ ω(i)} for each
i ∈ [n]; when ω = ω0, Iω turns into the set In of intervals in [n]. (It is rather easy to
prove that any ω-TP-function is determined by its values on Iω; this is done by exactly
the same method as applied in [2] to show a similar fact for T Pn and In. The fact that
the restriction map T Pω → R

Iω is surjective (which is more intricate) can be shown
by extending a flow approach developed in [2] for the cases of TP-functions on Boolean
cubes and integer boxes.) Normal and semi-normal bases for the ω-TP-functions are
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defined via flips from the standard basis Iω, by analogy with those for ω0.

(ii) Instead of the zonogon Zn, we now should consider the region in the plane
bounded by two paths: the left boundary of Zn and the path Pω formed by the points
p′i,ω := ξω(i+1)+. . .+ξω(n) (i = 0, . . . , n) connected by the (directed) segments p′

i,ωp′i−1,ω.
We denote this region as Zω and call it the ω-deformation of the zonogon Zn, or,
liberally, the ω-zonogon. A wiring for ω is a collection W of wires w1, . . . , wn in Zω

satisfying axioms (W1)–(W3) and such that each wi begins at the point si (as before)
and ends at the median point s′i,ω of p′i,ωp′i−1,ω (a wire wi degenerates into a point if
the boundary edges pi−1pi and p′i,ωp′i−1,ω coincide). Note that if i ≺ω j then s′i,ω occurs
earlier than s′j,ω in the right boundary Pω of Zω, and therefore, the wires wi and wj

does not meet (as explained in part A above). This implies that all sets in the full
spectrum of W belong to Xω.

In its turn, a generalized tiling T for ω is defined in the same way as for ω0, with
the only differences that now the union of tiles in T is Zω and that the corresponding
shape DT is required to be simply connected (then DT is homeomorphic to Zω). (De-
pending on ω, points pi,ω and p′i,ω for some i may coincide, so DT need not be a disc
in general.) The constructions and arguments in Sections 6,7, based on planar duality,
can be transferred without essential changes to the ω case, giving a natural one-to-one
correspondence between the g-tilings and proper wirings for ω. (In particular, the fact
that i-th wire wi in a proper wiring W for ω turns into the i-strip Qi in the corre-
sponding g-tiling T (which begins with the i-edge pi−1pi in `bd(Zω) and ends with the
i-edge p′i,ωp′i−1,ω in rbd(Zω)) implies that all vertices of GT represent sets in Xω.) The
arguments in Sections 4,5 continue to work in the ω case as well. As a result, we obtain
direct generalizations of Theorems 2.1 and 2.2 to an arbitrary permutation ω.

Remark 7 In fact, the generalization in part A is a special case of the one in part B.
More precisely, given a ∈ Z

n
+, define ai := a1 + . . . + ai, i = 0, . . . , n (letting a0 := 0).

Let us form a permutation ω′ on [an] as follows: for i = 1, . . . , n and q = 1, . . . , ai,

ω′(ai−1 + q) := an − ai + q,

i.e., ω′ permutes the blocks B1, . . . , Bn, where Bi := {ai−1 +1, . . . , ai}, according to the
permutation ω0 on [n], and preserves the order of elements within each block. Then
there is a one-to-one correspondence between the vectors x ∈ Bn,a and the ideals X of
([an],≺ω′), namely: X ∩ Bi consists of the first xi elements of Bi, for each i. Under
this correspondence, (9.1) is equivalent to (1.1). Although the shape of the zonogon
Zn,a looks somewhat different compared with Zω′ (since the generating vectors ξ• for
different elements in a block are non-colinear), it is easy to see that the wirings for
the former and the latter are, in fact, the same. (This implies an equivalence of the
g-tilings for these two cases, which is not seen immediately.) So the integer box case
is reduced, in all aspects we deal with, to the permutation one.
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