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Abstract

We call a section of an elliptic surface to be everywhere integral if it

is disjoint from the zero-section. The set of everywhere integral sections

of an elliptic surface is always a finite set. We pose the basic problem

about this set when the base curve is P
1. In the case of a rational elliptic

surface, we obtain a complete answer, described in terms of the root lattice

E8 and its roots. Our results are related to some problems in Gröbner

basis, Mordell-Weil lattices and deformation of singularities, which have

served as the motivation and idea of proof as well.

1 Introduction

Let S be a smooth projective surface having an elliptic fibration f : S → C with
the zero-section O over a curve C, and let E be the generic fibre of f which
is an elliptic curve over the function field K = k(C) (k is a base field of any
characteristic). Assume that S has at least one singular fibre. Then the group
M = E(K) of K-rational points is finitely generated (Mordell-Weil theorem).
It can be identified with the group of sections of f . For each P in E(K), we
denote by (P ) the image curve of the corresponding section C → S; the curve
(P ) may be also called a “section” without confusion.

An element P of M is called everywhere integral ([15]) if (P ) is disjoint from
the zero-section (O). Let P be the set of all everywhere integral sections P ∈ M :

P = {P ∈ M |(P ) ∩ (O) = ∅} (1.1)

Theorem 1.1 The set P is a finite subset of the Mordell-Weil group M .

Proof By the height formula [10, Theorem 8.6], we have for any P ∈ M

〈P, P 〉 = 2χ + 2(PO) −
∑

w∈Rf

contrw(P ), (1.2)
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where the notation is as follows: χ is the arithmetic genus of S (a positive
integer), (PO) is the intersection number of two irreducible curves (P ) and (O)
on S, and contrw(P ) is the local contribution at w (a non-negative rational
number); the summation is over the set Rf of the points w ∈ C with f−1(w)
reducible. If P belongs to the set P, then it follows that 〈P, P 〉 ≤ 2χ. Thus
P forms a set of points with bounded height in M , and hence it is a finite set.
(Recall that, by the theory of Mordell-Weil lattices ([10]), the height pairing is
positive-definite on M modulo torsion.) q.e.d.

Now consider the case: C = P1, K = k(t). For the sake of simplicity, we
assume in the following that the base field k is algebraically closed. Suppose
that E/K is given by a generalized Weierstrass equation:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 (1.3)

and O is the point at infinity (x : y : 1) = (0 : 1 : 0). Without loss of generality,
we assume that the coefficients aν are polynomials in t and “minimal” in the
sense that if, for some l ∈ k[t], aν is divisible by lν for all ν, then l must be a
constant (i.e. l ∈ k). Then we have

deg aν ≤ νχ (ν = 1, 2, 3, 4, 6) (1.4)

where χ is the arithmetic genus of S, which is known to be characterized as the
smallest integer satisfying the the above condition.

Lemma 1.2 Let P ∈ M = E(K). Then P = (x, y) belongs to the set P if and
only if x, y are polynomials in t such that

deg(x) ≤ 2χ, deg(y) ≤ 3χ. (1.5)

Proof See the proof of [15, Theorem 2]. q.e.d.

Let

P = (x, y) :

{
x = x0 + x1t + · · · + x2χt2χ

y = y0 + y1t + · · · + y3χt3χ,
(1.6)

and let
z = z(P ) = (x0, x1, · · · , x2χ, y0, y1, · · · , y3χ). (1.7)

Then, substituting (1.6) into (1.3), we obtain a polynomial identity in t:

y2 + · · · − (x3 + · · · + a6) = φ0 + φ1t + · · · + φ6χt6χ. (1.8)

Let us denote by I the ideal generated by the coefficients φd of td in the poly-
nomial ring R:

I := (φ0, . . . , φ6χ) ⊂ R := k[x0, x1, · · · , x2χ, y0, y1, · · · , y3χ]. (1.9)

We call I the defining ideal of P. Obviously we have

P = (x, y) ∈ P ⇐⇒ z = z(P ) ∈ V (I) ⊂ A5χ+2 (1.10)
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with V (I) denoting, as usual, the affine scheme of common zeroes of I in the
affine space. The map P 7→ z(P ) defines a bijection from P to the reduced part
V (I)red of V (I), and in particular, we have

n := #P = #V (I)red (1.11)

Note that V (I)red = V (
√

I) where
√

I denotes the radical of I.
Now we consider the (irredundant) primary decomposition of the ideal I:

I = q1 ∩ · · · ∩ qn (1.12)

and the associated prime decomposition of the radical
√

I:
√

I = p1 ∩ · · · ∩ pn. (1.13)

Here each qi is a primary ideal in the polynomial ring R and pi =
√

qi is a
prime ideal. In fact, pi is the maximal ideal of the point z(P ) ∈ V (I) defined
by (1.7) for the corresponding P = Pi ∈ P. Let us call

µ(Pi) := dimk R/qi (1.14)

the multiplicity of Pi ∈ P (cf. [3, Ch.4], [8, Ch.4].)
We study the following question:

Question 1.3 Given an elliptic surface S over P1 of arithmetic genus χ, with
the generic fibre E given by (1.3) and (1.4) as above, what are (i) the number
of everywhere integral sections : n = #P, (ii) the linear dimension: dimk R/I,
and (iii) the multiplicity µ(Pi) = dimk R/qi for each i ≤ n?

Note that, by the Chinese Remainder theorem, we have

dimk R/I =
n∑

i=1

dimk R/qi =
n∑

i=1

µ(Pi). (1.15)

Hence (ii) will follow from (iii).
Before going further, we present an explicit example.

Example 1.4 Let E/k(t) be the elliptic curve

y2 = x3 + t5 + 1. (1.16)

Here we assume k has characteristic 0 or p > 5. Then (i) the number of
everywhere integral sections n = #P is equal to 240. (ii) The linear dimension
dimk R/I is equal to 240, too. (iii) For all P ∈ P, the multiplicity µ(P ) is equal
to 1.

Proof Let us show that dimk R/Iλ = 240 by a direct computation using the
method of Gröbner basis. To simplify the notation, we replace the ideal

I ⊂ R = k[x0, x1, x2, y0, y1, y2, y3]
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by a similar ideal
I ′ ⊂ R′ = k[u, x0, x1, y0, y1, y2]

by letting x2 = u2, y3 = u3. (Note that x3
2 − y2

3 is contained in I.) The Gröbner
basis method yields a “shape basis” of I ′, i.e. a set of generators of I ′ of the
form:

I ′ = (Ψ240(u), xi − φi(u), yj − ψj(u)|i = 0, 1, j = 0, 1, 2)

where Ψ, φi, ψj are polynomials of u and Ψ is a separable polynomial of degree
240. (The explicit form of the polynomial Ψ can be found in [12] or [14] if
desired.) Therefore we have

dimk R/I = dimk R′/I ′ = dim k[u]/(Ψ(u)) = 240.

Moreover the k-algebra R/I ∼= k[u]/(Ψ(u)) is isomorphic to a direct sum of
240 copies of k, which shows that I =

√
I and the primary decomposition of

I is given by the 240 maximal ideals corresponding to the 240 roots of the
polynomial Ψ(u). In other words, P consists of n = 240 elements and µ(P ) = 1
for each P . q.e.d.

In this paper, we give a complete answer to Question 1.3 in the case χ = 1,
i.e. where S is a rational elliptic surface. The main result (Theorems 2.1) will
be stated in the next section, whose proof will be given in §4. In §3 we study
the behavior of the 240 roots in the E8-frame of a rational elliptic surface under
specialization and obtain a basic theorem (Theorem 3.4). As a by-product, we
obtain a simple proof of the fact that the Mordell-Weil group M is generated
by the set P of everywhere integral sections (Theorem 3.5), whose known proof
depends on some case-by-case checking ([9]). In §5, a few examples are given as
illustration of our main result. Actually rational elliptic surfaces are classified
by Oguiso-Shioda [9] in terms of the trivial lattice and Mordell-Weil lattice. For
each type, we have determined the data n,m(P )(P ∈ P) appearing in Theorem
2.1, but the results will be given elsewhere. In the final section §6, we discuss
some open questions in case χ > 1.

As for the title of this paper, Gröbner basis computation is useful, as the
above example shows, in dealing with Question 1.3 when S or E is explicitly
given. We have profitably used the software “Risa/asir” (developped by the
authors of [8]) for some numerical experiments and for direct verification of our
results based on the theory of Mordell-Weil lattices and geometry of elliptic
surfaces. The idea from deformation of singularities (cf. [12]) is disguised as the
specialization arguments in the proof of our main results.

Convention: Throughout the paper, we keep the notation of §1; we some-
times write PS , IS , . . . to specify the dependence of P, I, . . . on the elliptic surface
S under consideration. We continue to assume that k is algebraically closed.

2 Answer in case χ = 1

To state our main results, let us first recall some basic facts on rational elliptic
surfaces, fixing the notation (cf. [9], [10, §10]).
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Let N = NS(S) denote the Néron-Severi lattice of an elliptic surface S with
a section. Let U be the rank two unimodular sublattice of N spanned by the
classes of the zero-section (O) and any fibre F . Let V = U⊥ be the orthogonal
complement of U in N , which is called the frame of S; we have N = U ⊕ V .
If S is a rational elliptic surface (RES), the frame V is a negative-definite even
unimodular lattice of rank 8, and hence it is isomorphic to E−

8 , the opposite
lattice of the root lattice E8 (cf. [2, Ch.4]).

NS(S) = U ⊕ V, V ∼= E−
8 . (2.1)

Thus we call the frame V of a RES as the E8-frame.
Let D = DS ⊂ V be the subset of “roots” in V :

D = {cl(D) ∈ V |D2 = −2}. (2.2)

By the above, it forms a root system of type E8. In particular, we have

#D = 240. (2.3)

For any P ∈ P = PS , we set

D(P ) := (P ) − (O) − F. (2.4)

Then we have D(P ) ⊥ U and D(P )2 = −2, hence D(P ) ∈ D. (N.B. Here
and in what follows, we sometimes write D ∈ D by abbreviating cl(D) ∈ D,
where cl(D) denotes the class of a divisor D in N . We write D1 ≡ D2 if
cl(D1) = cl(D2) in N .)

On the other hand, each reducible fibre f−1(v)(v ∈ Rf ) is decomposed as a
sum of its irreducible components with positive integer coefficients :

f−1(v) = Θv,0 +

mv−1∑

i=1

kv,iΘv,i (2.5)

where Θv,0 is the unique component intersecting the zero-section (O) and where
mv denotes the number of the irreducible components. Let Tv denote the sub-
lattice of N generated by Θv,i(i = 1, . . .mv − 1). It is known (see [6]) that each
Θv,i has self-intersection number −2 (i.e. Θv,i ∈ D) and Tv is a (negative) root
lattice of ADE-type determined by the type of the reducible fibre. Let T be
the sublattice of the E8-frame V defined by

T = ⊕v∈Rf
Tv ⊂ V ∼= E−

8 (2.6)

which is called the trivial lattice of S.
Now our main result is the following:

Theorem 2.1 Assume that S is a rational elliptic surface. Then (i) the number
of everywhere integral sections n = #P is bounded by 240:

0 ≤ n ≤ 240, (2.7)

5



and we have
n = 240 ⇐⇒ T = 0. (2.8)

(ii)
dimk R/I = 240 − ν(T ) (2.9)

where ν(T ) is the number of roots in the trivial lattice T .
(iii) For each i ≤ n, the multiplicity µ(Pi) (see (1.14)) is equal to the com-

binatorial multiplicity m(Pi) to be defined below. In other words, we have

µ(P ) = m(P ) for all P ∈ P. (2.10)

Definition 2.2 For any P ∈ P, let Rf (P ) denote the subset of v ∈ Rf such
that (P ) intersects some non-identity component Θv,i(i 6= 0) of f−1(v). The
root graph associated with P , denoted by ∆(P ), is the connected graph with the
vertices

D(P ),Θv,i (v ∈ Rf (P ), i 6= 0), (2.11)

where two vertices α, β are connected by an edge iff the intersection number
α ·β = 1. By a distinguished root of ∆(P ), we mean a linear combination of the
vertices of the form:

D = D(P ) +
∑

v,i

nv,iΘv,i (nv,i ∈ Z,≥ 0) (2.12)

satisfying D2 = −2. Further we denote by m(P ) the number of distinguished
roots in the root graph ∆(P ), and call it the combinatorial multiplicity of P .

The proof will be given in §4, after we establish the relationship of the two
sets P and D for a given RES (Theorem 3.4) in the next section..

3 Relationship of P and D
For a rational elliptic surface, the Mordell-Weil group M = E(K) is isomorphic
to the quotient group of the Néron-Severi group N by the subgroup U ⊕ T ,
hence to the quotient group V/T :

M ∼= N/(U ⊕ T ) ∼= V/T (3.1)

where V and T = ⊕Tv are defined before in §2 (see [9], [10]).
Now we study the relation of P and D, by restricting the natural projection

π : V → V/T ∼= M , to the set of the roots D ⊂ V :

π : D → M. (3.2)

Lemma 3.1 Assume T = 0. Then the Mordell-Weil lattice M is isomorphic
to E8, and P is equal to the set of sections P ∈ M of height 〈P, P 〉 = 2. In this
case, the map π gives a bijection: D → P. The inverse map P → D is given by
P 7→ D(P ).
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Proof If T = 0, the rational elliptic surface f : S → P1 has no reducible fibres,
and hence M ∼= E8 (see [10, §10] or [9]). Now the height formula (1.1) says that
for any P ∈ M

〈P, P 〉 = 2 + 2(PO)

where (PO) is the intersection number of (P ) and (O). Hence P has height 2
iff (PO) = 0, i.e. iff P ∈ P.

As the set of roots in E8, both P and D have the same cardinality 240. Thus
the map P 7→ D(P ) gives a bijection P → D, and it is clear that π(D(P )) = P
for any P . Hence the assertion. q.e.d.

Lemma 3.2 Suppose S is any rational elliptic surface. Let S̃ be a generic ra-
tional elliptic surface (see §4.1), and we consider a smooth specialization S̃ → S
preserving the elliptic fibration and the zero-section. Then it induces an isomor-
phism of the Néron-Severi lattices

σ : NS(S̃)
∼−→ NS(S), (3.3)

which gives rise to a bijection DS̃ → DS.

Proof In general, a specialization of smooth projective surfaces S̃ → S induces
an injective homomorphism NS(S̃) ↪→ NS(S) preserving the intersection pair-
ings. In the case of RES, it gives a lattice isomorphism of NS(S̃) onto NS(S) in
view of (2.1), which preserves the sublattices U, V by assumption. It is obvious
that the set of roots D in V , (2.2), is also preserved, proving the last assertion.
q.e.d.

(N.B. This result may be called the conservation law of the E8-roots on RES
under specialization or deformation: cf. [12])

Lemma 3.3 For any D ∈ DS, π(D) = P belongs to PS unless π(D) = O. In
this case, we have

D ≡ D(P ) + γ (γ ∈ T ) (3.4)

where γ is a linear combination of Θv,i(v ∈ Rf , i > 0) with non-negative integer
coefficients.

Proof Fix D ∈ DS , and assume that π(D) = P 6= O. We claim that P ∈ PS .
We may suppose that S is in the situation described in Lemma 3.2. Then

there exists some D̃ ∈ DS̃ such that σ(D̃) = D. Applying Lemma 3.1 to S̃
(which obviously has T = 0), we have

D̃ = D(P̃ ) := (P̃ ) − (Õ) − F̃ (3.5)

for some P̃ ∈ PS̃ , where Õ (or F̃ ) denotes the zero-section (or a fibre) of S̃.

Suppose that, under the specialization, the irreducible curve Γ̃ := (P̃ ) on S̃
reduces to an effective divisor on S:

Γ =
∑

j

Γj
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with the irreducible components Γj . By the conservation of intersection num-
bers, we have

1 = (Γ̃F̃ ) = (ΓF ) =
∑

j

(ΓjF )

with each (ΓjF ) ≥ 0. Hence there exists a unique Γj , say j = 1, such that

(Γ1F ) = 1, (ΓjF ) = 0 (j 6= 1).

Then Γ1 is a section of S, i.e. Γ1 = (P1) for some P1 ∈ M , and all other Γj are
contained in fibres. Obviously P1 is equal to P = π(D).

Next, in the intersection number relation:

0 = (Γ̃(Õ)) = (Γ(O)) = (PO) +
∑

j>1

(Γj(O)),

observe that (PO) ≥ 0 (because P 6= O by assumption) and (ΓjO) ≥ 0. Hence
we have (PO) = 0 and (ΓjO) = 0. The former implies that P ∈ PS , as
claimed, while the latter implies that the other components Γj(j > 1), if any, are
among the non-identity components Θv,i(i > 0) of reducible fibres. Therefore

D̃ specializes via σ to the following:

D∗ = (P ) − (O) − (F ) + γ, γ =
∑

v,i>0

mv,iΘv,i ∈ T (3.6)

where mv,i are some non-negative integers. On the other hand, since σ(D̃) = D,
we have D ≡ D∗. This proves Lemma 3.3. q.e.d.

Theorem 3.4 For any rational elliptic surface S with a section, let D be the
set of roots in the E8-frame. Then the map π : D → P ∪ {O} is a surjective
map unless T = 0, and D is decomposed into the disjoint union:

D = π−1(O)
⊔ ⊔

P∈P

π−1(P ). (3.7)

The inverse image π−1(O) is the set of roots in T (it is empty if T = 0). For
any P ∈ P, we have

π−1(P ) = {D ∈ D | D ≡ D(P ) +
∑

v,i>0

mv,iΘv,i (mv,i ≥ 0)} (3.8)

which is equal to the set of distinguished roots in the root graph ∆(P ) defined in
§2. In particular, its cardinality is equal to the combinatorial multiplicity of P :

m(P ) = #π−1(P ), (3.9)

and ∑

P∈P

m(P ) = 240 − ν(T ). (3.10)
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Proof This is clear by Lemma 3.1 and 3.3. The decomposition (3.7) of D is
just the union of the inverse images of π, and counting the cardinality gives the
relation (3.10). q.e.d.

As a by-product of the above proof, we obtain a conceptual proof of the
following fact (see [9, Theorem 2.5], [10, Theorem 10.8]), which has been proven
by using the classification of RES plus some case-by-case checking:

Theorem 3.5 For any rational elliptic surface with a section (defined over an
algebraically closed field of arbitarary characterisitic), the Mordell-Weil group
is generated by the set P of sections P which are disjoint from the zero-section.

Proof It is well-known that the root lattice E8 is generated by a basis consisting
of eight roots (see e.g. [2]). Hence the E8-frame V is generated by the set D of
roots. Since we have M ∼= V/T by (3.1), M is generated by π(D), hence by P
by the first part of Lemma 3.3. q.e.d.

4 Proof of Theorem 2.1

4.1 The case T = 0

First we consider the case T = 0. By Lemma 3.1, Theorem 2.1 reduces to the
following statement:

Theorem 4.1 Assume that S is a rational elliptic surface with T = 0. Then
we have

n = dimk R/I = 240, µ(P ) = m(P ) = 1 for all P ∈ P. (4.1)

Proof It suffices to prove the equality:

dimR/I = 240 (4.2)

in the statement (4.1). In fact, we already know that n = #P = 240 and that
m(P ) = 1 for each P ∈ P. The latter holds, because the root graph ∆(P )
consists of the vertex D(P ) alone as T = 0. In view of the Chinese Remainder
equality (1.15), we see that the claim (4.2) is equivalent to the following:

µ(P ) = 1 for all P ∈ P. (4.3)

Thus we proceed as follows to show (4.2) (see Lemma 4.3).
First we write down a “universal” rational elliptic surface. In view of the

condition (1.4) for χ = 1, we let Sλ denote the elliptic surface defined by the
Weierstrass equation (1.3) where we set

λ = (ai,j) (i ≤ 6, i 6= 5, j ≤ i), ai(t) =
i∑

j=0

ai,jt
j (i = 1, 2, 3, 4, 6). (4.4)
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Let
Λ = {λ|Sλ is a RES} (4.5)

and
Λ0 = {λ ∈ Λ|Sλ is a RES without reducible fibres }. (4.6)

In characteristic different from 2 and 3, one can choose ai(t) = 0 (i = 1, 2, 3)
(i.e. ai,j = 0 for i = 1, 2, 3 and all j) without loss of generality. In any case, Λ
is open in an affine space of suitable dimension, and Λ0 is an open subset of Λ.

We denote by Pλ and Iλ the set of everywhere integral sections P of Sλ and
its defining ideal, and by V (Iλ) the 0-dimensional affine scheme defined as in
§1.

Lemma 4.2 Assume χ = 1. Then {V (Iλ)|λ ∈ Λ} forms a flat family over Λ.

Proof (I owe this remark to Takeshi Saito.) For any χ, the ideal Iλ is generated
by 6χ + 1 elements by definition, while the number of variables xi, yj is (2χ +
1) + (3χ + 1) = 5χ + 2 (§1). Hence, if χ = 1, V (Iλ) is a complete intersection,
and the flatness follows from [4, Ch.IV]. q.e.d.

Lemma 4.3 Under the same assumption, {V (Iλ)|λ ∈ Λ0} forms a finite flat
family over Λ0.

Proof For any (geometric) point λ ∈ Λ0, V (Iλ) consists of 240 points by (1.10)
and Lemma 3.1. The affine coordinates of these points in the ambient affine
space of V (Iλ) are given by z(Pm) (1 ≤ m ≤ 240) (see (1.7)), if we set Pλ =
{Pm (1 ≤ m ≤ 240)}.

Now fix any λ ∈ Λ0. Let λ̃ be a generic point of Λ0, and let z(P̃ ) be a generic
point of Ṽ := V (Iλ̃). Take any specialization σ : λ̃ → λ, and any specialization

σ̃ of z(P̃ ) over σ. Since Ṽ is specialized to V (Iλ), bijectively as the point sets
consisting of 240 points, the point z(P̃ ) must specialize to one of z(Pm)′s, which
are obviously finite. This is the case for any choice of specialization σ̃, and hence
the family in question is a proper family (cf. [5, Ch.II] or [17, Ch.VII]). Since
it is a family of 0-dimensional schemes, the assertion follows. q.e.d.

Lemma 4.4 (i) The dimension dimk R/Iλ is constant for any λ ∈ Λ0(k).
(ii) The constant value is equal to 240.

Proof The claim (i) follows from a general result for finite flat morphisms (see
e.g. [7, Prop.8, Lect.6]). Thus, to prove (ii), it suffices to check it at one point
λ ∈ Λ0(k). For instance, take λ corresponding to the rational elliptic surface
y2 = x3 + t5 + 1 treated in Example 1.4 in §1. This proves Theorem 4.1.
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4.2 General case

Now we prove Theorem 2.1 in general.
For any λ ∈ Λ, let Dλ denote the set of roots in the E8-frame (2.1) on Sλ.
Let λ̃ be a generic point of Λ0, and let Pλ̃ = {P̃i (1 ≤ i ≤ 240)}. The set

Dλ̃ consists of D(P̃i)’s by Lemma 3.1.

Take any point λ ∈ Λ(k) and any specialization σ : λ̃ → λ. By Lemma 3.2,
Dλ̃ is mapped bijectively to Dλ under the specialization, and, by Lemma 3.3,

each D(P̃i) is mapped either to some element of T or to an element of the form
(3.4) for some P ∈ Pλ. For a fixed P ∈ Pλ, the number of P̃i’s corresponding
to P in the above sense is equal to the multiplicity µ(P ), because each P̃i has
multiplicity 1 by (4.2) which has just been established above. Comparing this
with the decomposition (3.7) of D = Dλ in Theorem 3.4, we conclude that
µ(P ) = m(P ) for each P ∈ Pλ. This proves the claim (iii) of Theorem 2.1.

Next, to prove (ii), we combine (1.15) with (iii) just proven above:

dimk R/Iλ =
∑

P∈P

µ(P ) =
∑

P∈P

m(P )

By (3.10) in Theorem 3.4, this implies

dimk R/Iλ = 240 − ν(T ).

Thus we have proven the claim (ii) of Theorem 2.1.
The claim (i) is obvious: we have

n = #P ≤ dimkR/I ≤ 240,

where the first inequality holds by (1.10) and the second one from (ii) above.
The assertion (2.8) follows from (ii). This completes the proof of Theorem 2.1.
q.e.d.

4.3 Further information in a special case (cf. [11], [12])

The idea of the above proof is adapted from our previous work [11, §8] and [12],
treating a slightly less general family which admits a singular fibre of type II
(a cuspidal cubic). We remark here that, if we restrict our attention to that
family, everything in the above proof becomes clearer and more explicit.

Namely we consider

Eλ : y2 = x3 + x(p0 + p1t + p2t
2 + p3t

3) + q0 + q1t + q2t
2 + q3t

3 + t5 (4.7)

where
λ = (p0, p1, p2, p3, q0, q1, q2, q3) ∈ A8.

Assume that λ is generic (i.e. p0, . . . , q3 are algebraically independent) over
Q, and let k be the algebraic closure of k0 := Q(λ) = Q(p0, . . . , q3). Then
the elliptic surface Sλ is a RES without reducible fibres and Mλ = Eλ(k(t)) is
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isomorphic to the root lattice E8. Take a basis {P1, . . . .P8} forming the Dynkin
diagram of type E8, and let ui = sp∞(Pi) ∈ k, where

sp∞ : Eλ(k(t)) −→ k (4.8)

denotes the specialization homomorphism: for any P , sp∞(P ) is defined as the
unique intersection point of the section (P ) and the singular fibre of type II
f−1(∞).

By the fundamental theorems for the algebraic equations of type E8 ([11,
Theorems 8.3, 8.4, 8.5]), we have the following results:
(i) K = Q(u1, . . . , u8) is the splitting field of Eλ/Q(λ)(t), i.e. we have Eλ(K(t)) =
Eλ(k(t)) and K is the smallest extension of Q(λ) with this property.
(ii) K/Q(λ) is a Galois extension with Galois group W (E8) (the Weyl group of
type E8).
(iii) W (E8) acts on the polynomial ring Q[u1, . . . , u8], and the ring of invariants
is equal to Q[λ] := Q[p0, . . . , q3]. In other words, {p0, . . . , q3} forms a set of fun-
damental invariants of W (E8) (of weight 20, 14, 8, 2, 30, 24, 18, 12 respectively).
(iv) The minimal polynomial Φ(X) of u1 over Q(λ) splits completely in K and
it has coefficients in Q[λ]:

Φ(X, λ) =
240∏

i=1

(X − ui) ∈ Q[λ][X], (4.9)

where each root ui is Z-linear combination of u1, . . . , u8. The 240 ui form a root
system of type E8.
(v) For each i ≤ 240, there is a section Pi ∈ Eλ(k(t)) of the form:

Pi = (
1

u2
i

t2 + at + b,
1

u3
i

t3 + ct2 + dt + e), sp∞(Pi) = ui (4.10)

where the coefficients a, b, c, d, e belong to Q(λ)(ui) ∩ Q[u1, . . . , u8].

Let u := (u1, . . . , u8) ∈ A8. Then it follows from (iii) above that the map
φ : u 7→ λ = φ(u) defines a finite ramified Galois covering A8 → A8 with
Galois group W (E8), which is unramified on the open set U ⊂ A8 where the
“discriminant” δ(λ) (cf. [1]) does not vanish:

δ(λ) = Φ(0, λ) =
240∏

i=1

ui. (4.11)

Furthermore Su := Sφ(λ) defines a smooth family of rational elliptic surfaces
parametrized by the affine space A8 upstairs (see [12, Prop.4.3] and references
given there).

Now we consider specializing the generic point of the affine space upstairs u =
(u1, . . . , u8) to some u0 = (u0

1, . . . , u
0
8). It induces a unique specialization λ =

φ(u) → λ0 = φ(u0) in the affine space downstairs. By (v) above, we can write
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each Pi as Pi(u) with its coefficients of t lying in Q(λ)(ui)∩Q[1/ui, u1, . . . , u8].
Hence, as far as u0

i 6= 0, Pi has a unique specialization P 0
i with sp∞(P 0

i ) = u0
i .

Thus, if δ(λ0) 6= 0, Pi → P 0
i gives a bijection of the set of 240 roots in the

MWL Mλ to that in Mλ0 . (N.B. The map ui → u0
i is not necessarily injective

even if we assume δ(λ0) 6= 0. See [11, p.685] for such an example.)
On the other hand, if δ(λ0) = 0, then there exist some i such that u0

i = 0.
In this case, Pi must specialize to O in Mλ0 . The number ν of such i’s is equal
to ν(T ), the number of roots in the trivial lattice T ⊂ NS(Sλ0). In other words,
the multiplicity of the factor X in the polynomial Φ(X, λ0) is equal to ν(T ). If
we set Pλ0 = {Q1, . . . , Qn}, then we have

Φ(X, λ0) =
240∏

i=1

(X − u0
i ) = Xν

n∏

j=1

(X − sp∞(Qj))
m(Qj). (4.12)

Thus, for a fixed u0 = u0
i , the multiplicity of (X − u0) in Φ(X, λ0) is equal to

the sum of m(Qj)’s such that sp∞(Qj) = u0.

5 Examples

By [9], the Mordell-Weil lattice (abbreviated as MWL) of a rational elliptic
surface is classified into 74 types by the triple {T,L, M}, where (i) T =

∑
v Tv

is the trivial lattice (2.6), with the opposite sign, embedded in E8, (ii) L is the
narrow MWL E(K)0 which is isomorphic to the orthogonal complement of T
in E8, and (iii) M is the MWL E(K) which is the direct sum of the dual lattice
of L and the torsion group T ′/T , where T ′ is the primitive closure of T in E8.

For each type {T,L, M}, we have determined the set P ⊂ M , n = #P, and
the combinatorial multiplicities m(P ) for each P ∈ P. The summary will be
reported elsewhere.

Here we illustrate our results with a few classical examples. Examples in §5.1
are the prototype of the present work treated in the earlier paper [12]. Next
§5.2 shows more complicated new features, dealing with the familiar Legendre
curve.

5.1 Cases of higher Mordell-Weil rank (cf. [12, §5])

For a rational elliptic surface, the rank r = rkM is bounded by 8 and the higher
MW-rank cases correspond to the cases of smaller rkT . The first four cases in
[9] are the following (where rkT ≤ 2): (i)T = 0, L = M = E8, (ii)T = A1, L =
E7,M = E∗

7 , (iii)T = A2, L = E6,M = E∗
6 , (iv)T = A⊕2

1 , L = D6,M = D∗
6 .

The set P of everywhere integral sections in M consists of the roots in the
root lattice L and the minimal vectors of M = L∗ (the dual lattice of L) for the
first three cases. Thus n = #P is equal to the number ν(L) of the roots in L,
plus the number of minimal vectors in case (ii) or (iii):

(i) n = 240, (ii) n = 126 + 56 = 182, (iii) n = 72 + 54 = 126.
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(ii)

x xm

D(P ) θv,1

(iii)

x x xm

D(P ) θv,1 θv,2

(iv)

x x xm

θv′,1 D(P ) θv,1

Figure 1: Root graph ∆(P )

If P ∈ P is a root of L, then the multiplicity m(P ) is 1, because the root
graph consists of the single vertex D(P ). On the other hand, if P is a minimal
vector of M = L∗, then the multiplicity m(P ) is equal to m(P ) = 2 in case
(ii) and m(P ) = 3 in case (iii), because then the root graph ∆(P ) is given,
respectively, by Figure 1. Here the root D(P ) is denoted by the encircled vertex
and other roots Θv,i in (2.11) by the black vertices. (We write θ for Θ in the
following.)

In case (iv), the set P consists of 60 roots of L = D6, 12 minimal vectors of
height 〈P, P 〉 = 1 in M = D∗

6 , plus 64 Q ∈ M with height 〈Q,Q〉 = 3/2. We
have m(P ) = 4 and m(Q) = 2, as shown by Figure 1 (iv) or (ii) respectively.
Compare [12, §5].

In each case, check the identity:

126 · 1 + 56 · 2 = 238 = 240 − 2, 2 = ν(A1) (5.1)

72 · 1 + 54 · 3 = 234 = 240 − 6, 6 = ν(A2) (5.2)

60 · 1 + 64 · 2 + 12 · 4 = 236 = 240 − 4, 4 = ν(A⊕2
1 ) (5.3)

5.2 The Legendre surface

Let E be defined by the Legendre form:

E : y2 = x(x − 1)(x − t). (5.4)

Let K = k(t) where k is any field of characteristic 6= 2. The elliptic surface
defined by this equation is obviously a rational surface, since the function field
K(E) = k(t, x, y) is equal to k(x, y).

There are two singular fibres of type I2 at t = 0, 1 and one of type I∗2 at
t = ∞. The trivial sublattice T = A⊕2

1 ⊕ D6 is of index 4 in E8, and the
Mordell-Weil group is M = E8/T ∼= (Z/2Z)2, a torsion group of order 4. More
explicitly, we have

E(K) = {O, P1 = (0, 0), P2 = (1, 0), P3 = (t, 0)} (5.5)

Thus P consists of three 2-torsions {P1, P2, P3} and n = #P = 3. Figure
2 shows how each section (Pj) intersects the irreducible components θv,i(v =
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Figure 2: Legendre elliptic surface

0, 1,∞) of three singular fibres. (N.B. Two different sections do not intersect.
The picture is not correct in that (P1) and (P3) look as if they intersect.)

We can determine their (combinatorial) multiplicities as follows:

m(P1) = 64, m(P2) = 64, m(P3) = 48 (5.6)

Indeed the root graph ∆(P ) for P = P1 is shown by Figure 3 (and similarly
for P = P2), while ∆(P ) for P = P3 is as in Figure 4.

Then, by counting the number of distinguished roots in the root graph ∆(P ),
(5.3) can be verified. For instance, to show that m(P1) = 64, consider first the
distinguished roots ξ = D(P ) + · · · not containing the vertex θ0,1 in Figure
3. Thus we seek for the number of “positive roots” in the Dynkin diagram of
type E7 whose coefficient of D(P ) is 1. As is well-known (see [1]), there exist
33 positive roots in the Dynkin diagram of type E7 containing the left vertex
D(P ), but one of them is of the form 2D(P ) + · · ·. Hence we have exactly 32
ξ of the required form. Then, considering ξ + θ0,1 for each such ξ, we obtain
another set of 32 distinguished roots. In this way, we check that the number of
distinguished roots in the root graph ∆(P1) is equal to 2 · 32, i.e. m(P1) = 64.

Incidentally, it should be remarked that the root graph of an everywhere
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Figure 3: Root graph ∆(P ) for P = P1
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θ∞,2
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Figure 4: Root graph ∆(P ) for P = P3

integral section P is a visual counterpart of the height formula for P . For
instance, the height formula (1.2) for P = Pi above is:

〈P1, P1〉 = 2 + 0 − 6/4 − 1/2 − 0 (5.7)

〈P2, P2〉 = 2 + 0 − 6/4 − 0 − 1/2 (5.8)

〈P3, P3〉 = 2 + 0 − 1 − 1/2 − 1/2 (5.9)

where the local contribution terms contrv(P ) (see [10, p.229]) on the right hand
side are written in the order of v = ∞, 0, 1.

Now Theorem 2.1 implies that, if I denotes the defining ideal of P, then the
primary decomposition of I is of the form I = q1∩q2∩q3, with qi corresponding
to Pi(i = 1, 2, 3), and we have

dimk R/qi = 64(i = 1, 2), dimk R/q3 = 48, dimk R/I = 176. (5.10)

As mentioned before, Gröbner basis computation allows one to make a direct
verification of such a result.

6 Open questions

When the arithmetic genus χ is greater than 1, Question 1.3 remains open. Let
us pose a few more specific questions here.

We use the same notation as in §1. In particular, P denotes the set of every-
where integral sections (1.1) on a given elliptic surface S over P1 of arithmetic
genus χ, and I denotes its defining ideal (1.9).
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Question 6.1 Assume that P ∈ P has height 〈P, P 〉 = 2χ. Is the multiplicity
µ(P ) equal to 1?

The assumption is equivalent to saying that P ∈ P belongs to the narrow
Mordell-Weil lattice, or that the sections (P ) and (O) intersect the same irre-
ducible component for every reducible fibre. Question 6.1 is true if χ = 1 by
Theorem 2.1, since the assumption implies that the combinatorial multiplicity
m(P ) = 1.

In particular, we ask:

Question 6.2 Assume that the trivial lattice T = 0, or equivalently, there are
no reducible fibres. Then is it true that I =

√
I?

Next consider the case χ = 2, i.e. S is an elliptic K3 surface.

Question 6.3 What is the maximum cardinality n = #P when S varies among
elliptic K3 surfaces?

Question 6.4 Assume χ = 2. Can one give some combinatorial description of
the multiplicity µ(P ) for P ∈ P?
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