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Abstract

There are two distinct approaches to the study of initial value problem of
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1 Introduction

The main purpose of the present paper is to compare two approaches to the study

of dynamics of the periodic box-ball systems (PBBS for short) of type A
(1)
1 due to

Kuniba–Takagi–Takenouchi [13] (KTT for short) and Mada–Idzumi–Tokihiro [14]

(MIT for short). Our main result states that

KTT ≈ MIT.

The approach developed in [13] is based on the theory of the rigged configurations

(RC for short — for details concerning the RC-bijection, see e.g. [8, 15]), whereas

the approach developed by [14] is based on the 10-elimination procedure. To be more

specific, our main result describes precisely interrelations between the 10-elimination

algorithm and the RC-bijection in the case under consideration.

Brief history. The box-ball systems (BBS for short) have been introduced by

Takahashi–Satsuma in 1990 [18, 17] during their study of cellular automaton and at-

tempts to construct examples of those which have a solitonical nature. The periodic

version of BBS, PBBS, was then introduced in [23, 22]. From that time the BBS

were extensively studied since many deep and unexpected connections with different

branches of mathematics and mathematical physics were discovered. Among those

are connections with the theory of crystal base [3, 2], combinatorics [20, 1, 9], the

Riemann theta functions [10, 11], tropical algebraic geometry [4, 5], and also with

the theory of discrete KP and Toda type integrable systems [19, 21, 12].

The organization of the present paper is as follows. In Section 2, we briefly recall

the 10-elimination procedure. In Section 3, we recall the rigged configuration and

initial value problem of the PBBS in terms of the RC-bijection. In Section 4, we give

a precise interpretation of the 10-elimination in terms of the RC-approach (Theorem

4.3).

2 10-elimination

A state of the PBBS is given by a sequence of integers 0 and 1 on a circle. We

usually cut the circle at a suitable position to be determined below and treat it as

a sequence on a straight line which we call a path. In this paper, we always assume

that within each path, the number of letters 0 is equal to or bigger than the number

of letters 1. We will call such paths as positive weight paths. Due to the second

paragraph of Section 3.3 of [13], this assumption does not result in loss of generality.

Originally, a path is identified with a sequence of capacity one boxes, and 0 stands

for a vacant box and 1 stands for a ball within the box. Given a path p, we introduce

10-elimination procedure and notion of 0-solitons [14]. Input of the 10-elimination

procedure is a path p and output is a finite sequence of paths E0(p) := p, E1(p),

E2(p), · · · defined recursively as follows.

Suppose that we have constructed Ek−1(p). We give coordinate 1, 2, 3, · · · , to

each letter in Ek−1(p) from left to right. The 10-pair is a neighboring pair of 10
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where 1 at location j and 0 at location j + 1 for some j. Then Ek(p) is obtained

by erasing all 10-pairs of Ek−1(p). If Ek(p) does not contain letter 1 for some k,

stop the procedure. Let the number of 10-pairs in Ek(p) be ek. By definition, we

have ek−1 ≥ ek. Then we denote distinct lengths of rows of the transposed diagram
t(e1, e2, · · · ) by Lj. We assume that L1 > L2 > L3 > · · · > Ls and denote the

multiplicity of Lj by mLj
, i.e.,

t(e1, e2, · · · ) = (L
mL1
1 , L

mL2
2 , · · · , LmLs

s ). (1)

Position of the cut of the original circle is determined by the following condition.

Note that to each letter in Ek(p), we can specify the original position of p from which

the letter is originated. For a 10-pair in some Ek(p), we join the corresponding 1

and 0 in p by arc in this direction. Since the path is a positive weight path, we can

always choose a suitable cyclic shift so that no such arc cross the left or the right

end of p. In the sequel we assume that the path p is cut with this property.

Given a path p, we draw all possible arcs according to the procedure in the last

paragraph. Then one step time evolution of the path p is obtained by replacing

all connected 1 and 0 by 0 and 1, respectively, and leaving non-connected letters

unchanged. We denote the resulting time evolved path by T∞(p).

Finally, we introduce a notion of 0-solitons. As we have seen, 10-pairs of Ek−1(p)

are erased in Ek(p). In the following diagram, m(> 0) 10-pairs between X and Y

are erased:

Ek−1(p) = · · ·X(10)mY · · · 10-elimination−−−−−−−−−−−−→ Ek(p) = · · ·XY · · · .

Under this setting,

(a) if XY = 11, 01, 00, then there are m 0-solitons at position X of Ek(p),

(b) if XY = 10, then there are (m − 1) 0-solitons at position X of Ek(p).

We can grasp the meaning of the 0-soliton if we consider the inverse procedure to

get Ek−1(p) from Ek(p): 0-solitons give information about how many extra 10-pairs

should be inserted between XY to get Ek−1(p). Here, notice that if XY = 10, it is

guaranteed that there is at least one 0-soliton between XY in Ek−1(p) so that we

have no need to specify it. Based on this observation, we see that there are precisely

mLj
0-solitons at ELj(p). Denote the positions of 0-solitons of ELj(p) by

x
(j)
1 ≤ x

(j)
2 ≤ · · · ≤ x(j)

mLj
. (2)

As we will see, the data Lj combined with x
(j)
i provide sufficient information to solve

initial value problem of the PBBS.

Example 2.1 Let us take the length 32 path

p = 00111011100100011110001101000000.

Then 10-elimination procedure goes as follows.
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E0(p) = 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0,

E1(p) = 0 0 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0,

E2(p) = 0 0 1 1 1 0 0 1 1 0 0 0 0 0,

E3(p) = 0 0 1 1 0 1 0 0 0 0,

E4(p) = 0 0 1 0 0 0,

E5(p) = 0 0 0 0.

From these data, we obtain the following data:

(e0, e1, e2, e3, e4) = (6, 3, 2, 2, 1), (3)
t(e0, e1, e2, e3, e4) = (L

mL1
1 , L

mL2
2 , L

mL3
3 , L

mL4
4 ) = (51, 41, 21, 13), (4)

{x(1)
1 , x

(2)
1 , x

(3)
1 , x

(4)
1 , x

(4)
2 , x

(4)
3 } = {2, 3, 10, 4, 7, 15}. (5)

We draw arcs on p as follows:

0 0 1 1 1 0 1 1 1 0 0 1 0 0 0 1 1 1 1 0 0 0 1 1 0 1 0 0 0 0 0 0

We reverse all connected 10-pairs and obtain

T∞(p) = 00000100011011100001110010111100

as the one step time evolution. �

3 Rigged configurations and the KTT theorem

3.1 Rigged configuration

Let X = {x1 < x2 < · · · < xN} be an ordered set, and α be a composition of size

N . A standard tabloid of shape α is a filling of the shape α by elements of the

ordered set X such that the elements in each row are strictly increasing. Let ν be a

partition. Then mi(ν) is the number of occurrences of i in ν and ℓ(ν) is the length

of ν.

Definition 3.1 A path of type B⊗L
1 (= path of length L for short) is a sequence

p = a1a2 · · · aL where ai ∈ {0, 1} for all 1 ≤ i ≤ L. To each path p = a1 · · · aL we

associate a two row standard Young tabloid according to the following rule: we put

i to the first row if ai = 0, and to the second row otherwise. �

Our first goal is to remind a construction of the rigged configuration bijection

in the special case of A
(1)
1 . An input of the RC-bijection is a standard tabloid T of

shape (λ1, λ2). The output of the RC-bijection is a rigged partition, i.e., a partition

ν = (ν1, ν2, · · · ) of size λ2 together with a collection of integer numbers

{Jα,i | 1 ≤ i ≤ ν1 s.t. mi(ν) ̸= 0, 1 ≤ α ≤ mi(ν)} (6)
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such that

−i ≤ Jα,i ≤ Pi(ν) := L − 2Qi(ν), (7)

and certain additional restrictions that are not important for our considerations.

Here Qi(ν) :=
∑

a min(i, νa) represents number of boxes contained in the left i

columns of diagram ν. The integers Jα,i are called the riggings and Pi(ν) are called

the vacancy numbers.

Let us briefly remind a construction of a map from the set of two row standard

tabloids to the set of the rigged partitions. The construction runs as follows. Let

b1 · · · · · · bλ2
be the second row of a given two row standard tabloid. The first step

of our construction is to consider tabloid b1 and define the corresponding rigged

partition to be ( J1,1) where J1,1 = b1−2. The next step is to consider tabloid b1 b2

and define the corresponding rigged partition to be ( J1,2) where J1,2 = b2 − 4

if b2 − b1 = 1, and ( J2,1

J1,1

) where J1,1 = b1 − 2 and J2,1 = b2 − 4 if b2 − b1 > 1. We

emphasize that in the case b2 − b1 = 1, the first row of the configuration ν := is

singular, i.e., it contains the rigging with the maximal possible value.

We proceed further by induction. Assume that tabloid b1 · · · · · · bk (1 ≤ k <

λ2), corresponds to the rigged partition

{ν̃, J̃α,i | 1 ≤ α ≤ mi(ν̃)}, | ν̃ | = k. (8)

The next step is to describe the rigged partition {ν, Jα,i} that corresponds to tabloid

b1 · · · · · · bk bk+1
. If bk+1 − bk > 1, or equivalently abk+1−1 = 0, then ν = (ν̃, 1)

and Jα,i = J̃α,i if i > 1, or i = 1 and α ≤ m1(ν̃), and Jm1(ν),1 = bk+1 − 2(ℓ(ν̃) + 1) =

J̃m1(ν̃)+bk+1−bk−2. In the case bk+1−bk = 1, there should exist non empty singular

strings, i.e., rows whose riggings are equal to the corresponding vacancy numbers.

Take a singular string, say ν̃a, of the longest length. Then the corresponding rigged

partition is defined to be {ν, Jα,i}, where νi = ν̃i if i ̸= a, and νa = ν̃a +1. Moreover,

Jα,i = J̃α,i if i ̸= a, Jmνa (ν),νa = bk+1 − 2
∑

j min(νa, νj).

Example 3.2 Let us consider the path p treated in Example 2.1. The correspond-

ing tabloid is
1 2 6 101113141520212225272829303132
3 4 5 7 8 9 1216171819232426

In other words, the second row of the tabloid records positions of occurrences of

letter 1 in p. Corresponding to the second row of the tabloid, the RC-bijection

proceeds as follows:

∅ 3−→ 1
4−→ 0

5−→ −1
7−→ −1

3

8−→ −2
3
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9−→ −3
3

12−→ −3
6
3

16−→ −3
8
6
3

17−→ −3
5

6
3

18−→ −3
2

6
3

19−→ −3
−1

6
3

23−→ −3
−1

13
6
3

24−→ −3
−1

8
6
3

26−→ −3
−1

8
14
6
3

In the above diagrams, we attach each rigging on the right of the corresponding

row of the partition. The last rigged configuration in the above sequence gives the

output of RC-bijection applied to p. �

3.2 Kuniba–Takagi–Takenouchi’s construction

3.2.1 Crystals Bl

Let Bl be the classical crystal [6] corresponding to the l-fold symmetric tensor rep-

resentation of U ′
q(A

(1)
1 ). As the set, Bl = {(x0, x1) ∈ Z2

≥0 | x0 +x1 = l}. Note that in

usual notation, say that used in [13], our 0 and 1 are denoted by 1 and 2, respectively.

We sometimes represent elements of Bl by semi-standard Young tableaux (without

frame for simplicity). More precisely, the element (x0, x1) is also represented by
x0︷ ︸︸ ︷

0 · · · 0
x1︷ ︸︸ ︷

1 · · · 1. In this notation we usually denote (1, 0) and (0, 1) simply by 0 and 1,

respectively. We can define tensor product Bl ⊗Bk. As the set, it is the product of

the two sets and it is known that we can define algebraic structure on them. Then

we can define the map R : Bl⊗B1 → B1⊗Bl which is compatible with the algebraic

structure. Explicitly, it is given by

(x0, x1) ⊗ 0 7−→

{
0 ⊗ (l, 0) if (x0, x1) = (l, 0)

1 ⊗ (x0 + 1, x1 − 1) otherwise,
(9)

(x0, x1) ⊗ 1 7−→

{
1 ⊗ (0, l) if (x0, x1) = (0, l)

0 ⊗ (x0 − 1, x1 + 1) otherwise.
(10)

R is a bijection and called the combinatorial R matrix. We write the relation

R(u⊗ b) = b′⊗u′ simply as u⊗ b ≃ b′⊗u′, and similarly for any consequent relation

of the form a⊗ u⊗ b⊗ c ≃ a⊗ b′ ⊗ u′ ⊗ c. When we consider elements of p ∈ B⊗L
1 ,

we sometimes omit symbols ⊗ and identify them with paths.
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3.2.2 Time evolutions

Given a path p = b1 ⊗ b2 ⊗ · · · ⊗ bL ∈ B⊗L
1 , we define the time evolution operators

Tl for l ∈ Z>0 of the PBBS in the following way. Take ul := (l, 0) ∈ Bl and define

vl ∈ Bl by

ul ⊗ p ≃ p∗l ⊗ vl, (p∗l ∈ B⊗L
1 ). (11)

In practice, we can compute the map R step by step as follows:

ul ⊗ b1 ⊗ b2 ⊗ · · · ⊗ bL ≃ b∗1 ⊗ u
(1)
l ⊗ b2 ⊗ · · · ⊗ bL ≃ b∗1 ⊗ b∗2 ⊗ u

(2)
l ⊗ b3 ⊗ · · · ⊗ bL

≃ · · · ≃ b∗1 ⊗ b∗2 ⊗ · · · ⊗ b∗L ⊗ u
(L)
l , (12)

where u
(i)
l ∈ Bl and u

(L)
l = vl. This element vl depends on the path p. Then,

according to Section 2 of [13], we have

vl ⊗ p ≃ p∗∗l ⊗ vl. (13)

Using this non-trivial relation, we define

Tl(p) := p∗∗l . (14)

Since combinatorial R matrix acts trivially on B1 ⊗ B1, T1 is just the cyclic shift

operator: T1(b1 ⊗ · · · ⊗ bL−1 ⊗ bL) = bL ⊗ b1 ⊗ · · · ⊗ bL−1. The commutativity

TlTk = TkTl for all l, k ∈ Z>0 holds due to the Yang–Baxter relation ([13] Theorem

2.2). In general, there is sufficiently large N so that TN = TN+1 = · · · =: T∞. This

definition of T∞ coincides with the definition in Section 2 (Example 2.7 of [13]).

3.2.3 Action variable

Consider the path p = b1 ⊗ · · · ⊗ bL of weight λ = (λ1, λ2), where λi = #{a | ba = i}
satisfying λ1 ≥ λ2. Then we can always find d (1 ≤ d ≤ L) such that T d

1 (p) =

b′1 ⊗ · · · ⊗ b′L has the following property: for any 1 ≤ i ≤ L,

#{a | b′a = 1, a ∈ [i, L]} ≤ #{a | b′a = 0, a ∈ [i, L]}. (15)

Let the rigged configuration corresponding to this T d
1 (p) be (ν, J). We define the

action variable of the path p by ν. From the condition (15), we see that the con-

figuration part of the RC data corresponding to T d
1 (p)⊗N is

N︷ ︸︸ ︷
ν ∪ ν ∪ · · · ∪ ν. Due to

Corollary 3.5 of [13], ν is conserved under arbitrary time evolution. In the following,

for the given action variable ν, we put

H = {i ∈ Z≥1 |mi ̸= 0} = {i1 < i2 < · · · < is}. (16)
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3.2.4 Angle variable

Let us define angle variable according to [13]. In order to explain motivation of the

construction, let us mention the following simple property.

Lemma 3.3 Let p be a path of length L satisfying the condition (15), and (ν, Jα,i) be

the corresponding rigged configuration. Then the rigged configuration corresponding

to the path πN =

N︷ ︸︸ ︷
p ⊗ p ⊗ · · · ⊗ p is equal to

ν(πN) = ν ∪ ν ∪ · · · ∪ ν, (17)

J(πN) =
N⨿

a=1

{Jk+ami,i | i ∈ H, 1 ≤ k ≤ mi}, (18)

where Jk+ami,i := Jk,i + aPi(ν). �

Motivated by this lemma, define J̄ as follows:

J̄ = J̄ (ν) = Ji1 × Ji2 × · · · × Jis , (19)

Ji = {(Jk,i)k∈Z | Jk,i ∈ Z, Jk,i ≤ Jk+1,i, Jk+mi,i = Jk,i + Pi(ν) for all k}. (20)

Definition 3.4 For j ∈ Z≥1, define the map σj : Ji −→ Ji by

σj : (Jk,i)k∈Z 7−→ (J ′
k,i)k∈Z, J ′

k,i = Jk+δi,j ,i + 2 min(i, j). (21)

We extend σj to the map J̄ −→ J̄ by σj(J̄ ) = σj(J̄i1)× σj(J̄i2)× · · · × σj(J̄is). �

The operators σj are the key to define angle variable. By definition, we have σjσk =

σkσj for any j, k ∈ Z≥1. Therefore the set A := {σn1
i1

σn2
i2

· · ·σns
is

|n1, n2, · · · , ns ∈ Z}
is abelian group.

Definition 3.5 (1) Define equivalence relation ≃ for elements of J̄ by J ≃ K

(J,K ∈ J̄ ) if there exist σ ∈ A such that J = σ(K).

(2) Define the set J = J (ν) by

J = J̄ / ≃ . (22)

An element of J is called angle variable. �

Now we shall explain how to compute the operators σk based on explicit example.

To begin with, we have to embed a sequence of the riggings (Jk,i)1≤k≤mi
attached to

length i rows of ν into the set Ji by the map

ι : (Jk,i)1≤k≤mi
−→ (Jk,i)k∈Z (23)

using periodicity Jk+mi,i = Jk,i + Pi(ν).
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Example 3.6 Consider the following length L = 19 paths:

q = 0011010001110100011, q′ = 0001110100011001101. (24)

Notice that q = T 6
1 (q′). The rigged configurations corresponding to q and q′ are

q 7−→ (µ, J) =

2
6

0
3

0

, q′ 7−→ (µ, J ′) =

4
9

3
3

0

.

We compute actions of σ2 and σ1 on the rigged configuration (µ, J) corresponding to

q. Since µ = (3, 2, 2, 1, 1), we have Q3(µ) = 9, Q2(µ) = 8 and Q1(µ) = 5. Therefore

the vacancy numbers are P3(µ) = 1, P2(µ) = 3 and P1(µ) = 9. We would like to

explain the following computations:

2
6

0
3

0

σ27−→

4
8

7
7

4

σ17−→

10
15

9
9

6

= 6 +

4
9

3
3

0

• Action of σ2 is divided into the following two parts. (a) For the riggings

associated to length 2 rows, i.e., (0, 3) we embed them into J2 by ι as follows:

(0, 3) 7−→ (· · · ,−6,−3,−3, 0, 0, 3,3, 6, 6, 9, · · · ). (25)

Here the original (0, 3) is regarded as (J1,2, J2,2) which is enlarged with periodicity

P2(µ) = 3. As a result of σ2, we take riggings (J2,2, J3,2) = (3, 3). (b) For the

riggings associated to length i rows, we further add 2 min(i, 2).

• Similarly, action of σ1 is computed as follows. (a) For the riggings associated

to length 1 rows, i.e., (4, 8) we embed them into J1 by ι as follows:

(4, 8) 7−→ (· · · ,−14,−10,−5,−1, 4, 8,13, 17, 22, 26, · · · ). (26)

Here the original (4, 8) is regarded as (J1,1, J2,1) which is enlarged with periodicity

P1(µ) = 9. As a result of σ1, we take riggings (J2,1, J3,1) = (8, 13). (b) For the

riggings associated to length i rows, we further add 2 min(i, 1).

To summarize, we have σ1σ2(J) = 6 + J ′. This computation has the following

interpretation [16]. (a) 6 corresponds to the exponent in T 6
1 (q′) = q. (b) As for

σ1σ2, we see that in order to get q from q′, we have to move six letters 001101 form

right of q′ to left. These six letters contains two solitons of length 2 and 1, which

explains the form of composition σ1σ2. �
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3.2.5 Direct and inverse scattering transform

Recall that we can choose an integer d such that p′ = T d
1 (p) satisfies condition (15).

We define direct scattering transform Φ by

Φ : P(ν) −→ Z × P̃(ν) −→ J̄ (ν) −→ J (ν)

p 7−→ (d, p′) 7−→ ι(J) + d 7−→ [ι(J) + d]
(27)

where P̃(ν) is the subset of P(ν) consisting of all paths satisfying condition (15).

In [13], it was shown that the inverse map Φ−1 is well-defined.

Theorem 3.7 ([13], Theorem 3.12) Define Tl on J (ν) by

Tl : (Jk,i)k∈Z,i∈H 7−→ (Jk,i + min(i, l))k∈Z,i∈H . (28)

Then the following diagram commutes:

P(ν)
Φ−−−→ J (ν)

Tl

y yTl

P(ν)
Φ−−−→ J (ν)

(29)

�

4 Interpretation of 10-elimination in terms of the

rigged configurations

Let p be a path of type B⊗L
1 .

Theorem 4.1 Let x
(j)
i be a position of the i-th 0-soliton located on the ELj(p). Let

T (p) be a two-row tabloid corresponding to the path p, and J1, · · · , Jg be the riggings

corresponding to tabloid T (p) under the RC-bijection. Then,

x
(j)
i = Ji,Lj

+ Lj. (30)

Proof. We use induction on the length of path. Let the configuration corresponding

to length L path under the RC-map be νL. The case L = 1 is clear. Let L > 1. Let

π be a path of length L + 1. Then one can distinguish two cases: π = p0 or π = p1.

In the first case, the positions of 0-solitons as well as RC data remain the same.

In the case π = p1 we have to distinguish further two cases: π = p′01 and

π = p′′11. In the case π = p′01, the rigged configuration corresponding to the path

π can be obtained from that corresponding to the path π′ = p′0 of length L by

creating the new length 1 singular string: The rigging corresponding to the new

singular string is equal to

Jm1(νL+1),1 = L + 1 − 2(ℓ(νL) + 1). (31)
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Therefore

Jm1(νL+1),1 + 1 = L − 2ℓ(νL). (32)

But it is easily seen that exactly one new 0-soliton appears in the position L−2ℓ(νL).

In the case π = p′11 we observe that the position of all 0-soliton do not change. Now

we have to check that all numbers Ji,Lj
+Lj do not change as well. Indeed, according

to the RC-algorithm, we have to add one box to the singular string in the highest

position. After creating the new singular string, its rigging becomes equal to the old

one minus 1. But the length of the new string becomes bigger by exactly 1. That

means that the modified riggings (i.e., sum of length of row and the corresponding

rigging) do not change. �

Let X = {x0 < x1 < · · · < xN < · · · } be an ordered set. For any x ∈ X, x = xi,

define x± = xi±1 ∈ X, if i ≥ 1, and x−
0 = x0. Let α be a composition. A standard

X-tabloid of the shape α is a filling of the diagram corresponding to the composition

α by the elements from the totally ordered set X \{x0} such that the elements along

each row are strictly increasing, and the all elements of the filling in question are

distinct. An element x ∈ T is called descent (resp. acsent) if either x ̸= x1 and

the element x+ belongs to T , and located in the tabloid T below (resp. above) the

element x, or x = x1 and it does’t belong to the first row of the tabloid T. We denote

by Des(T ) = {x+| x ∈ T is a descent} (resp. Acs(T ) = {x−| x ∈ T is an acsent}).
Let d(T ) = # |Des(T ) | (resp. a(T ) = # |Acs(T ) | ).

To continue, let us recall that under the rigged configuration bijection to a (semi)

standard tabloid T of shape α = (α1, . . . , αr) one associates a collection of partitions

(ν(1), . . . , ν(r−1)) such that |ν(k)| =
∑

j≥k+1 αj, k = 1, . . . , r − 1, and a set of non-

negative integers (riggings) {J (k)
i,j }, j = ν

(k)
1 , ν

(k)
2 , . . . , 1 ≤ i ≤ #|s, j = ν

(k)
s |, with

certain constraints, see e.g. [8] for details. Let T be a (semi) standard tabloid, we

will call the partition ν(1) which appears after applying the RC-bijection to T , to be

the first configuration corresponding to the tabloid T.

Our next goal is to define recursively a sequence of standard tabloids T0 = T ,

T1, T2, · · · to be used to define the shape of the first configuration corresponding to

a tabloid T under the RC-bijection. Thus let us describe how to obtain tabloid Ti

from that Ti−1, i ≥ 1. Namely, consider the descent set Des(Ti−1), and denote by

Ti the tabloid obtained from that Ti−1 by deleting all entries of Ti−1 which are equal

to either x or x− for all x ∈ Des(Ti−1).

Theorem 4.2 ([7]) Let T be a standard tabloid, denote by ν the shape of the first

configuration corresponding to tabloid T under the RC-bijection. Then

ν ′
i = # |Des(Ti−1) | , i = 1, 2, · · · , (33)

where ν ′ is the transposition of ν. �

In the case when a tabloid T has two rows and corresponds to a positive weight

path, one can use a similar construction by using the sets Acs(Ti−1) instead of those
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Des(Ti−1). It is easy to see that in the A
(1)
1 case, for positive weight paths we also

have

ν ′
i = # |Acs(Ti−1) | , i ≥ 1. (34)

As a corollary, we see that in the case under consideration, the 10-elimination

algorithm produces the same shape as the RC-algorithm does:

ν = (L
mL1
1 , L

mL2
2 , · · · , LmLs

s ), (35)

where ν is the configuration associated with the given path under RC-algorithm,

and L
mLi
i (i = 1, 2, · · · , s) are determined by the 10-elimination algorithm.

To summarize, we obtain the following main theorem of our paper.

Theorem 4.3 Let p be a B⊗L
1 path of A

(1)
1 . Then we have

(ν, J) = {(Li, x
(i)
α − Li)}1≤i≤s,1≤α≤mLi

(36)

where (ν, J) is the rigged configuration associated with the given path under RC-

algorithm, and L
mLi
i , x

(i)
α are the parameters determined by the 10-elimination algo-

rithm. �

Example 4.4 Consider the length 32 path p treated in Example 2.1. Let us com-

pare (4) and (5) with the result of Example 3.2. Indeed, (4) coincides with the

partition (5, 4, 2, 1, 1, 1) obtained in Example 3.2. As for (30), we compute

{x(1)
1 − L1, x

(2)
1 − L2, x

(3)
1 − L3, x

(4)
1 − L4, x

(4)
2 − L4, x

(4)
3 − L4} = {−3,−1, 8, 14, 6, 3}

which coincides with the riggings obtained in Example 3.2.

We now demonstrate how the rigged configuration essentially obtained by 10-

elimination will yield the solution of the initial value problem. As an example, we

compute T 10000
∞ (p). Under T 10000

∞ , the riggings behave as

T 10000
∞ :

−3
−1

8
14
6
3

7−→

49997
39999

20008
10014
10006
10003

To save space, we hereafter abbreviate such computation as

(−3,−1, 8, 14, 6, 3)
T 10000
∞−−−→ (49997, 39999, 20008, 10014, 10006, 10003). (37)

The remaining task is to find a proper representative in the equivalence class cor-

responding to the rigging vector on the right hand side so that we can apply the

rigged configuration bijection. To begin with, recall that the action of the cyclic

shift operator T d
1 on the rigging vector simply means constant shift d = (d, d, · · · , d)

12



mod L, where L is the length of the system. Then we can always choose a suitable

element σ ∈ A and a constant vector d so that the riggings J ′ = σ(J) − d satisfy

0 ≤ J ′
1,i ≤ J ′

2,i ≤ · · · ≤ J ′
mi,i

≤ Pi(ν), ∀i ∈ H. (38)

Let us explain the method based on the example under consideration. In this case,

we have L = 32, ν = (5, 4, 2, 1, 1, 1), and thus P5(ν) = 4, P4(ν) = 6, P2(ν) = 14

and P1(ν) = 20. Remind that by acting σk, the riggings corresponding to rows with

length strictly bigger than k gains uniform shift by 2 · k. From this property, we

can adjust the riggings successively from longer rows to shorter ones. In the above

example, suppose that we apply σN
4 for some integer N . Then the rigging corre-

sponding to length 5 row gains N × (2 · 4) = 8N whereas the rigging corresponding

to length 4 row gains N × (P4(ν) + 2 · 4) = 14N (remind that m4(ν) = 1). By

choosing N = 1667, we get

RHS of (37)
σ1667
4−−−→ (63333, 63337, 26676, 13348, 13340, 13337). (39)

Similarly, from P2(ν) = 14, we get

RHS of (39)
σ2619
4−−−→ (73809, 73813, 73818, 18586, 18578, 18575). (40)

Finally, from P1(ν) = 20 and m1(ν) = 3, we get

RHS of (40)
σ3·2762
1−−−−→ (90381, 90385, 90390, 90398, 90390, 90387)

= 90381 + (0, 4, 9, 17, 9, 6).

Such adjustment is always possible because the vacancy numbers corresponding to

all rows of ν except for the longest rows are strictly positive (Lemma 3.9 of [13]).

On the rigged configuration (ν, J ′), J ′ = (0, 4, 9, 17, 9, 6), we can apply the RC-

bijection (see Appendix A to [13]), or equivalently the explicit formula (42) to get

the corresponding path p′:

p′ = 00000111011100100001100011101100.

Since 90381 ≡ 13 (mod 32), we have

T 90381
1 (p′) = T 13

1 (p′) = 11000111011000000011101110010000,

which reconstructs the computation in the final part of [14]. �

Remark 4.5 There are explicit formula for the initial value problem of the PBBS in

terms of the ultradiscrete (or tropical) Riemann theta function [10, 11]. The formulae

are direct consequence of the formula (42) bellow and are logically independent to the

main claims of [13]. These formulae are parametrized by the rigged configurations

and thus can be completely determined by the data Lj and x
(j)
i derived from the

10-elimination procedure. �

13



Remark 4.6 All considerations in this section can be used for linear systems as

well as the BBS. Let p be an arbitrary linear path. Then we can embed p into

semi-infinite system by

p ↪→ p ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · · . (41)

Then we can use Theorem 4.3 and considerations following it without any changes.

In [12, 15] complete solution of the initial value problem of the BBS was derived

for all
⊗

i Bli type paths of A
(1)
n . We quote here the formula in the special case of

B⊗L
1 of A

(1)
1 . Let the path be p = b1⊗ b2⊗· · ·⊗ bL ∈ B⊗L

1 and denote the element bk

by (1− x(k), x(k)), i.e., if bk = 1 then x(k) = 1 and x(k) = 0 otherwise. Denote the

corresponding rigged configuration by (ν, J) = (νi, Ji)
g
i=1. Here we do not assume

that all νi, i = 1, 2, . . . are distinct. Then

x(k) = τ0(k) − τ0(k − 1) − τ1(k) + τ1(k − 1), (42)

τr(k) = − min
n∈{0,1}g

{
g∑

i=1

(Ji + rνi − k)ni +

g∑
i,j=1

min(νi, νj)ninj

}
(r = 0, 1), (43)

where n = (n1, n2, · · · , ng). As for the time evolution, the rigged configuration cor-

responding to Tl(p⊗ 1⊗ 1⊗ · · · ) is (νi, Ji + min(νi, l))
g
i=1 and we can plug this into

(42) directly. Note that these formulae are parametrized by the rigged configura-

tions. Therefore these formulae are completely determined by the data Lj and x
(j)
i

derived from the 10-elimination procedure. �
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