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Abstract

The notion of a competition graph was introduced by J. E. Cohen in 1968. The
competition graph C(D) of a digraph D is a (simple undirected) graph which has
the same vertex set as D and has an edge between two distinct vertices x and y if
and only if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For
any graph G, G together with sufficiently many isolated vertices is the competition
graph of some acyclic digraph. In 1978, F. S. Roberts defined the competition number
k(G) of a graph G as the minimum number of such isolated vertices. In general, it
is hard to compute the competition number k(G) for a graph G and it has been one
of important research problems in the study of competition graphs to characterize a
graph by its competition number. In 1982, R. J. Opsut gave two lower bounds for the
competition number of a graph. In this paper, we give a generalization of both of the
Opsut’s lower bounds for the competition numbers of graphs.

Keywords: competition graph; competition number; vertex clique cover number; edge
clique cover number
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1. Introduction
Throughout this paper, all graphs G are simple and undirected. The notion of a compe-
tition graph was introduced by J. E. Cohen [4] in connection with a problem in ecology
(see also [5]). The competition graph C(D) of a digraph D is a graph which has the
same vertex set as D and has an edge between two distinct vertices x and y if and only
if there exists a vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G,
G together with sufficiently many isolated vertices is the competition graph of an acyclic
digraph. From this observation, F. S. Roberts [16] defined the competition number k(G)
of a graph G to be the minimum number k such that G together with k isolated vertices is
the competition graph of an acyclic digraph:

k(G) := min{k ∈ Z≥0 | G ∪ Ik = C(D) for some acyclic digraph D}, (1.1)

where Ik denotes a set of k isolated vertices.
For a digraph D, an ordering v1, v2, . . . , vn of the vertices of D is called an acyclic

ordering of D if (vi, vj) ∈ A(D) implies i < j. It is well-known that a digraph D is
acyclic if and only if there exists an acyclic ordering of D.

A subset S ⊆ V (G) of the vertex set of a graph G is called a clique of G if the
subgraph G[S] of G induced by S is a complete graph. For a clique S of a graph G and an
edge e of G, we say e is covered by S if both of the endpoints of e are contained in S. An
edge clique cover of a graph G is a family of cliques such that each edge of G is covered
by some clique in the family (see [17] for applications of edge clique covers). The edge
clique cover number θE(G) of a graph G is the minimum size of an edge clique cover of
G. A vertex clique cover of a graph G is a family of cliques such that each vertex of G is
contained in some clique in the family. The vertex clique cover number θV (G) of a graph
G is the minimum size of a vertex clique cover of G.

R. D. Dutton and R. C. Brigham [6] characterized the competition graph of an acyclic
digraph in terms of an edge clique cover as follows (see also [14], [18]).

Theorem 1.1 (Dutton and Brigham [6], Theorem 2). A graph G is the competition graph
of an acyclic digraph if and only if there exist an ordering v1, . . . , vn of the vertices of G
and an edge clique cover {S1, ..., Sn} of G such that vi ∈ Sj implies i < j.

The above theorem characterizes graphs whose competition numbers are equal to 0. But
R. J. Opsut [15] showed that the problem of determining whether a graph is the competi-
tion graph of an acyclic digraph or not is NP-complete. It follows that the computation of
the competition number of a graph is an NP-hard problem, and thus it does not seem to be
easy in general to compute k(G) for an arbitrary graphs G (see [9], [10], [12] for graphs
whose competition numbers are known). It has been one of important research problems
in the study of competition graphs to characterize a graph by its competition number (see
[1], [2], [3], [7], [8], [11], [13], [19] for recent research).
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R. J. Opsut gave the following two lower bounds for the competition number of a
graph.

Theorem 1.2 (Opsut [15], Proposition 5). For any graph G,

k(G) ≥ θE(G) − |V (G)| + 2. (1.2)

Theorem 1.3 (Opsut [15], Proposition 7). For any graph G,

k(G) ≥ min{θV (NG(v)) | v ∈ V (G)}, (1.3)

where NG(v) := {u ∈ V (G) | uv ∈ E(G)} is the open neighborhood of a vertex v in the
graph G.

It should be noted that the above two are the only sharp lower bounds known to us by
today which hold for the competition numbers of any graphs.

In this paper, we give a generalization of the Opsut’s lower bounds, which also holds
for the competition numbers of any graphs. In particular, our main result contains both
lower bounds given in Theorems 1.2 and 1.3 as special cases. The proof of our main result
is elementary, but the new lower bound given in this paper would be a strong tool in the
study of the competition number of a graph.

2. Main Results
Let G be a graph and F ⊆ E(G) be a subset of the edge set of G. An edge clique cover
of F in G is a family of cliques of G such that each edge in F is covered by some clique
in the family. We define the edge clique cover number θE(F ; G) of F ⊆ E(G) in G as
the minimum size of an edge clique cover of F in G:

θE(F ; G) := min{|S| | S is an edge clique cover of F in G}. (2.1)

By definition, it follows that the edge clique cover number θE(E(G); G) of E(G) in a
graph G is equal to the edge clique cover number θE(G) of the graph G.

Let G be a graph and U ⊆ V (G) be a subset of the vertex set of G. We define

NG[U ] := {v ∈ V (G) | v is adjacent to a vertex in U} ∪ U, (2.2)
EG[U ] := {e ∈ E(G) | e has an endvertex in U}. (2.3)

We denote by the same symbol NG[U ] the subgraph of G induced by NG[U ]. Note that
EG[U ] is contained in the edge set of the subgraph NG[U ]. We denote by

(
V
m

)
the set of

all m-subsets of a set V .
Now we are ready to state our main result. The following is our main theorem.
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Theorem 2.1. Let G = (V,E) be a graph. Then

k(G) ≥ max
m∈{1,...,|V |}

min
U∈(V

m)

(
θE(EG[U ]; NG[U ]) − |U | + 1

)
. (2.4)

To prove our main theorem, we show the following lemma.

Lemma 2.2. Let G = (V,E) be a graph. Let m be an integer such that 1 ≤ m ≤ |V |.
Then

k(G) ≥ min
U∈(V

m)
θE(EG[U ]; NG[U ]) − m + 1. (2.5)

Proof. Let k := k(G) for convenience. Fix an integer m such that 1 ≤ m ≤ |V |.
Let D be an acyclic digraph such that C(D) = G ∪ Ik, where Ik := {z1, ..., zk} is a
set of k isolated vertices. Let v1, ..., vn, z1, ..., zk be an acyclic ordering of D, and put
W := {vn−m+1, ..., vn}. Note that |W | = m. Let

S := {N−
D (w) ∩ NG[W ] | w ∈ (W ∪ Ik) \ {vn−m+1}},

where N−
D (w) := {v ∈ V (D) | (v, w) ∈ A(D)} is the in-neighborhood of a vertex w in

the digraph D. For each w ∈ (W ∪ Ik) \ {vn−m+1}, since N−
D (w) forms a clique of the

graph G, the set N−
D (w) ∩ NG[W ] forms a clique of the induced subgraph NG[W ] of G.

Thus S is a family of cliques of NG[W ].
Since v1, ..., vn, z1, ..., zk is an acyclic ordering of D, it holds that the out-neighborhood

N+
D (u) := {v ∈ V (D) | (u, v) ∈ A(D)} of a vertex u in the digraph D is contained in

the set (W ∪ Ik) \ {vn−m+1} for each vertex u ∈ W . Take any edge e = uv ∈ EG[W ],
where u ∈ W and v ∈ NG(u). Since u and v are adjacent, there exists a common
prey w ∈ N+

D (u) ∩ N+
D (v) ⊆ (W ∪ Ik) \ {vn−m+1}. Then the edge e is covered by

N−
D (w) ∩ NG[W ] ∈ S .

Therefore the family S is an edge clique cover of of EG[W ] in NG[W ]. So we have
θE(EG[W ]; NG[W ]) ≤ |S| = m+ k− 1, that is, θE(EG[W ]; NG[W ])−m+1 ≤ k. Thus

min
U∈(V

m)
θE(EG[U ]; NG[U ]) − m + 1 ≤ θE(EG[W ]; NG[W ]) − m + 1 ≤ k(G).

Hence the lemma holds.

Proof of Theorem 2.1. Since the inequality (2.5) holds for any m ∈ {1, ..., |V |}, it follows
that the inequality (2.4) holds.

Remark 2.3. Consider the case m = 1 in the inequality (2.5). Then we obtain

k(G) ≥ min
v∈V (G)

θE(EG[v]; NG[v]).
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Since a family {S1, ..., Sr} of cliques is an edge clique cover of EG[v] in G if and only
if {S1 ∩ NG[v], ..., Sr ∩ NG[v]} is an edge clique cover of EG[v] in NG[v], it holds that
θE(EG[v]; NG[v]) = θE(EG[v]; G). Since a family {S1, ..., Sr} of cliques is an edge
clique cover of EG[v] in G if and only if {S1 \ {v}, ..., Sr \ {v}} is a vertex clique
cover of NG(v) in G, it holds that θE(EG[v]; G) = θV (NG(v)). Therefore we have
θE(EG[v]; NG[v]) = θV (NG(v)). Hence the above inequality coincides with the Opsut’s
lower bound (1.3) in Theorem 1.3.

Remark 2.4. Consider the case m = |V | − 1 in the inequality (2.5). Then we obtain

k(G) ≥ min
v∈V

θE(EG[V \ {v}]; NG[V \ {v}]) − |V | + 2.

Since G = (V,E) has no loops, it holds that EG[V \ {v}] = E. If the vertex v is not
isolated in G, then we have NG[V \ {v}] = V and thus θE(EG[V \ {v}]; NG[V \ {v}]) =
θE(E; G) = θE(G). If v is an isolated vertex, then we have NG[V \ {v}] = V \ {v} and
thus θE(EG[V \ {v}]; NG[V \ {v}]) = θE(E; G−{v}) = θE(E; G) = θE(G). Hence the
above inequality coincides with the Opsut’s lower bound (1.2) in Theorem 1.2.
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