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Abstract

The competition graph of a digraph D is a graph which has the same vertex set as
D and has an edge between x and y if and only if there exists a vertex v in D such that
(x, v) and (y, v) are arcs of D. For any graph G, G together with sufficiently many
isolated vertices is the competition graph of some acyclic digraph. The competition
number k(G) of a graph G is defined to be the smallest number of such isolated
vertices. In general, it is hard to compute the competition number k(G) for a graph
G and it has been one of important research problems in the study of competition
graphs to characterize a graph by its competition number. In this paper, we compute
the competition numbers of Hamming graphs.
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1. Introduction
The notion of a competition graph was introduced by Cohen [2] as a means of determining
the smallest dimension of ecological phase space (see also [3]). The competition graph
C(D) of a digraph D is a (simple undirected) graph which has the same vertex set as D
and an edge between vertices u and v if and only if there is a vertex x in D such that
(u, x) and (v, x) are arcs of D. Roberts [15] observed that if G is any graph, G together
with sufficiently many isolated vertices is the competition graph of an acyclic digraph.
Then he defined the competition number k(G) of a graph G to be the smallest number k
such that G together with k isolated vertices added is the competition graph of an acyclic
digraph.

Roberts [15] observed that the characterization of competition graphs is equivalent to
the computation of competition numbers. It does not seem to be easy in general to com-
pute k(G) for all graphs G, as Opsut [12] showed that the computation of the competition
number of a graph is an NP-hard problem (see [6], [7], [9] for graphs whose competition
numbers are known). It has been one of important research problems in the study of com-
petition graphs to characterize a graph by its competition number (see [1], [8], [10], [11],
[13], [14] for recent research).

For some special graph families, we have explicit formulae for computing competition
numbers. For example, if G is a choral graph without isolated vertices then k(G) = 1,
and if G is a nontrivial triangle-free connected graph then k(G) = |E(G)| − |V (G)| + 2
(see [15]).

In this paper, we study the competition numbers of Hamming graphs. For a positive
integer q, we denote a q-set {1, 2 . . . , q} by [q]. Also we denote the set of n-tuple over
[q] by [q]n. For positive integers n and q, the Hamming graph H(n, q) is a graph which
has the vertex set [q]n, and two vertices x and y are adjacent if dH(x, y) = 1, where dH :
[q]n × [q]n → Z is the Hamming distance defined by dH(x, y) := |{i ∈ [n] | xi 6= yi}|.
Note that the diameter of the Hamming graph H(n, q) is equal to n.

Since the Hamming graph H(n, q) is n(q − 1)-regular and the number of vertices of
H(n, d) is qn, it follows that the number of edges of the Hamming graph H(n, q) is equal
to 1

2
n(q − 1)qn.
If n = 1, then H(1, q) is the complete graph Kq with q elements and thus k(H(1, q)) =

1. If q = 1, then H(n, 1) is K1 and thus k(H(n, 1)) = 1. If q = 2 then H(n, 2) is triangle-
free and connected, so we have

k(H(n, 2)) = |E(H(n, 2))| − |V (H(n, 2))| + 2

= n2n−1 − 2n + 2

= (n − 2)2n−1 + 2.

However, in general, it is difficult to compute k(H(n, q)).
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In this paper, we give a lower bound for k(H(n, q)) and also give the exact values of
k(H(2, q)) and k(H(3, q)).

We use the following notation and terminology in this paper. For a digraph D, a
sequence v1, v2, . . . , vn of the vertices of D is called an acyclic ordering of D if (vi, vj) ∈
A(D) implies i > j. It is well-known that a digraph D is acyclic if and only if there
exists an acyclic ordering of D. For a digraph D and a vertex v of D, we define the
out-neighborhood N+

D (v) of v in D to be the set {w ∈ V (D) | (v, w) ∈ A(D)}, and the
in-neighborhood N−

D (v) of v in D to be the set {w ∈ V (D) | (w, v) ∈ A(D)}. A vertex
in the out-neighborhood N+

D (v) of a vertex v in a digraph D is called a prey of v in D.
For a graph G and a vertex v of G, we define the open neighborhood NG(v) of v in G to
be the set {u ∈ V (G) | uv ∈ E(G)}, and the closed neighborhood NG[v] of v in G to be
the set NG(v) ∪ {v}. We denote the subgraph of G induced by NG(v) (resp. NG[v]) by
the same symbol NG(v) (resp. NG[v]).

For a clique S of a graph G and an edge e of G, we say e is covered by S if both of
the endpoints of e are contained in S. An edge clique cover of a graph G is a family of
cliques of G such that each edge of G is covered by some clique in the family. The edge
clique cover number θE(G) of a graph G is the minimum size of an edge clique cover of
G. An edge clique cover of G is called a minimum edge clique cover of G if its size is
equal to θE(G). A vertex clique cover of a graph G is a family of cliques of G such that
each vertex of G is contained in some clique in the family. The smallest size of a vertex
clique cover of G is called the vertex clique cover number, and is denoted by θV (G).

We denote a path with n vertices by Pn, a cycle with n vertices by Cn, and a complete
multipartite graph by Kn1,...,nm .

2. Main Results

2.1. A lower bound for the competition number of H(n, d)

For j ∈ [n] and p ∈ [q]n−1, we put

Sj(p) := {x ∈ [q]n | πj(x) = p}, (2.1)

where πj : [q]n → [q]n−1 is a map defined by

(x1, ..., xj−1, xj, xj+1, ..., xn) 7→ (x1, ..., xj−1, xj+1, ..., xn).

Note that Sj(p) is a clique of H(n, q) with size q. Put

F(n, q) := {Sj(p) | j ∈ [n],p ∈ [q]n−1}. (2.2)

Then F(n, q) is the family of maximal cliques of H(n, q).
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In the computation of the competition number of a graph, usually it is not so easy
to give a sharp lower bound. In this subsection, we give a sharp lower bound for the
competition numbers of Hamming graphs.

Lemma 1. Let n ≥ 2 and q ≥ 2. For any vertex x of H(n, q), we have θV (NH(n,q)(x)) =
n.

Proof. Take any x ∈ [q]n. Then the vertex x is adjacent to a vertex y such that πj(x) =
πj(y) for some j ∈ [n]. We can easily check from the definition of H(n, q) that, for any
j ∈ [n], the set Sj(πj(x)) := {y ∈ [q]n | πj(x) = πj(y)} forms a clique of H(n, q). Since
NH(n,q)(x) = ∪j∈[n]Sj(πj(x)) \ {x}, the family {Sj(πj(x)) | j ∈ [n]} is a vertex clique
cover of NH(n,q)(x) and so θV (NH(n,q)(x)) ≤ n.

Moreover, note that Sj(πj(x)) ∩ Sj′(πj′(x)) = {x} for j, j′ ∈ [n] where j 6= j′. Take
yj ∈ Sj(πj(x)) \ {x} for each j ∈ [n]. Then y1, y2, . . . , yn are n vertices of NH(n,q)(x)
such that no two of them can be covered by a same clique and so θV (NH(n,q)(x)) ≥ n.

Opsut showed the following lower bound for the competition number of a graph.

Theorem 2 ([12]). For a graph G, it holds that k(G) ≥ min{θV (NG(v)) | v ∈ V (G)}.

By Lemma 1 and Theorem 2, we have the following.

Corollary 3. Let n ≥ 2 and q ≥ 2. Then it holds that k(H(n, q)) ≥ n.

Lemma 4. Let n ≥ 2 and q ≥ 2, and let K be a clique of H(n, q) with size at least 2.
Then there is a unique maximal clique S ∈ F(n, q) containing K.

Proof. Take any x, y ∈ K with x 6= y and let x = (x1, x2 . . . , xn) and y = (y1, y2, . . . , yn).
Since x and y are adjacent, there is a unique integer j ∈ [n] such that πj(x) = πj(y). Then

xj 6= yj. (2.3)

Take any z ∈ K \{x, y} and let z = (z1, z2, . . . , zn). We will show that πj(z) = πj(x) by
contradiction. Suppose that πj(z) 6= πj(x). Since x and z are adjacent, there is j1 ∈ [n]
with j1 6= j such that πj1(x) = πj1(z), and thus xj = zj . Since y and z are adjacent,
there is j2 ∈ [n] with j2 6= j such that πj2(y) = πj2(z), and thus yj = zj . Thus we have
xj = zj = yj , which is a contradiction to (2.3). Therefore, πj(z) = πj(x). It implies that
there is an integer j ∈ [n] such that πj(x) = πj(z) for all z ∈ K. Hence K is contained
in S := Sj(p) ∈ F(n, q) with p = πj(x) ∈ [q]n−1. From the uniqueness of j ∈ [n] and
the fact that p = πj(x) does not depend on the choice of x ∈ K, it follows that S is the
unique maximal clique containing K.
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Lemma 5. Let n ≥ 2 and q ≥ 2. Let D be an acyclic digraph such that C(D) =
H(n, q) ∪ Ik with Ik = {z1, z2, . . . , zk}. Let z1, z2, . . . , zk, v1, v2, . . . , vqn be an acyclic
ordering of D. Let Ui := {v1, . . . , vi}. Then

|{S ∈ F(n, q) | S ∩ Ui 6= ∅}| ≤ k + i − 1.

Proof. For a digraph D, we define N−(D) := {N−
D (x) | x ∈ V (D), |N−

D (x)| ≥ 2}. We
will show that

|{S ∈ F(n, q) | S ∩ Ui 6= ∅}| ≤ |{K ∈ N−(D) | K ∩ Ui 6= ∅}|. (2.4)

For convenience, let A := {S ∈ F(n, q) | S ∩ Ui 6= ∅} and B := {K ∈ N−(D) |
K ∩ Ui 6= ∅}. By Lemma 4, each element K in B is contained in exactly one element S
in F(n, d). From the fact that (K ∩Ui) ⊆ (S ∩Ui) and K ∩Ui 6= ∅, we have S ∩Ui 6= ∅
and so S ∈ A. Therefore, to show (2.4), it is sufficient to show that each element of A
contains an element of B.

Take an element S ∈ A. Then there is a vertex x ∈ S such that x ∈ S ∩ Ui. Since
n ≥ 2, there is another vertex y ∈ S \{x}. By Lemma 4, S is the unique clique in F(n, q)
containing x and y.

Since C(D) = H(n, q) ∪ Ik and the vertices x and y are adjacent, there is a common
prey u of x and y in D. Then x ∈ N−

D (u) ∩ Ui and so N−
D (u) ∈ B. Then, by Lemma 4,

there is the unique clique S ′ in F(n, q) containing N−
D (u). Since N−

D (u) contains x and
y, S ′ is the unique clique containing x and y. Therefore S ′ = S and so S contains an
element N−

D (u) ∈ B.
Let Si := {N−

D (x) | x ∈ Ui−1 ∪ Ik, |N−
D (x)| ≥ 2}. Then |Si| ≤ k + i − 1. From the

acyclicity of D, it holds that {K ∈ N−(D) | K ∩ Ui 6= ∅} = {K ∈ Si | K ∩ Ui 6= ∅}.
Therefore it follows that

|{K ∈ Si | K ∩ Ui 6= ∅}| ≤ |Si| ≤ k + i − 1, (2.5)

Hence, from (2.4) and (2.5), the theorem holds.

Theorem 6. For n ≥ 3 and q ≥ 3, we have k(H(n, q)) ≥ 3n − 4.

Proof. Let D be an acyclic digraph such that C(D) = H(n, q)∪Ik with Ik = {z1, z2, . . . , zk},
where k := k(H(n, q)). Let z1, z2, . . . , zk, v1, v2, . . . , vqn be an acyclic ordering of D. Let
U3 := {v1, v2, v3}. By Lemma 5, it holds that

|{S ∈ F(n, q) | S ∩ U3 6= ∅}| ≤ k + 2. (2.6)

In addition, it holds that |{S ∈ F(n, q) | S ∩ U3 6= ∅}| ≥ 3n − 2 whose proof will be
shown in next paragraph. Therefore, we have 3n − 2 ≤ k + 2, or k ≥ 3n − 4.
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Now it remains to show that |{S ∈ F(n, q) | S ∩ U3 6= ∅}| ≥ 3n − 2. Consider the
subgraph of H(n, q) induced by U3, say H . Then H is isomorphic to one of following:

(1)K3 (2)P3 (3)P2 ∪ I1 (4)I3.

(1) H ∼= K3. By Lemma 4, U3 is contained exactly one maximal clique. We may assume
that U3 is contained in S1((1, . . . , 1︸ ︷︷ ︸

n−1

)), and so may assume that

U3 = {(1, 1, . . . , 1︸ ︷︷ ︸
n

), (2, 1, . . . , 1︸ ︷︷ ︸
n−1

), (3, 1, . . . , 1︸ ︷︷ ︸
n−1

)}.

Then {S ∈ F(n, q) | S ∩ U3 6= ∅} consists of 3n − 2 elements, that is,

{S1((1, . . . , 1︸ ︷︷ ︸
n−1

))} ∪

 n⋃
i=2

{Si((1, . . . , 1︸ ︷︷ ︸
n−1

)), Si((2, 1, . . . , 1︸ ︷︷ ︸
n−2

)), Si((3, 1, . . . , 1︸ ︷︷ ︸
n−2

))}

 .

(2) H ∼= P3. We may assume that

U3 = {(1, . . . , 1︸ ︷︷ ︸
n

), (2, 1, . . . , 1︸ ︷︷ ︸
n−1

), (1, 2, 1, . . . , 1︸ ︷︷ ︸
n−2

)}.

Then {S ∈ F(n, q) | S ∩ U3 6= ∅} consists of 3n − 2 elements, that is,

{S2((2, 1, . . . , 1︸ ︷︷ ︸
n−2

)), S1((1, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

))}

∪

 q⋃
i=1

{Si((1, . . . , 1︸ ︷︷ ︸
n−1

))}

 ∪

 q⋃
i=3

{Si((2, 1, . . . , 1︸ ︷︷ ︸
n−2

)), Si((1, 2, 1, . . . , 1︸ ︷︷ ︸
n−3

)}

 .

(3) H ∼= P2 ∪ I1 or (4) H ∼= I3. Then H has an isolated vertex, say v. Since the n cliques
of F(n, d) containing v does not contain the other vertices of U3, it is sufficient to show
that {S ∈ F(n, q) | S ∩ (U3 \ {v}) 6= ∅} has at least 2n − 2 elements. Since, for each
vertex u ∈ U3 \ {v}, there are n cliques of F(n, d) containing u and there is at most one
clique of F(n, d) containing the two vertices of U3 \ {v}. Thus we can conclude that
{S ∈ F(n, q) | (S ∩ U3) \ {v} 6= ∅} has at least 2n − 1 elements. We complete the
proof.

In subsection 2.4, we can see that the bound in Theorem 6 is sharp.
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2.2. An edge clique cover of H(n, q)

Lemma 7. The following hold.

(a) The family F(n, q) defined by (2.10) and (2.2) is an edge clique cover of H(n, q).

(b) θE(H(n, q)) = nqn−1.

(c) Any minimum edge clique cover of H(n, q) consists of edge disjoint maximum
cliques.

Proof. Take any edge xy of H(n, q). Then dH(x, y) = 1. Let j ∈ [n] be the index such
that xj 6= yj and let p := πj(x) = πj(y). Then both of x and y are contained in the clique
Sj(p) ∈ F(n, q). Thus F(n, q) is an edge clique cover of H(n, q).

Let E be a minimum edge clique cover for H(n, q), that is, θE(H(n, q)) = |E|. Since
F(n, q) is an edge clique cover with |F(n, q)| = nqn−1, we have |E| ≤ nqn−1.

Now we will show that |E| ≥ nqn−1. Since the maximum size of a clique of H(n, q)
is q, we have |E(S)| ≤

(
q
2

)
for each S ∈ E , where E(S) :=

(
S
2

)
. Therefore,

|E(H(n, q))| ≤
∑
S∈E

|E(S)| ≤
(

q

2

)
× |E|, (2.7)

and the first equality holds if and only if none of two distinct cliques in E have a common
edge, and the second equality holds if and only if any element of E is a maximum clique
in H(n, q).

Note that |E(H(n, q))| = 1
2
n(q − 1)qn. From the equality that

|E(H(n, q))| =
1

2
n(q − 1) × qn = n × 1

2
(q − 1)q × qn−1 =

(
q

2

)
× nqn−1,

it follows that (
q

2

)
× nqn−1 = |E(H(n, q))| ≤

∑
S∈E

|E(S)| ≤
(

q

2

)
× |E|.

Thus we have nqn−1 ≤ |E|, or nqn−1 = |E|. Moreover, since two equalities of (2.7) hold,
we can conclude that any minimum edge clique cover of H(n, q) consists of edge disjoint
maximum cliques.

Corollary 8. The family F(n, q) defined by (2.10) and (2.2) is a minimum edge clique
cover of H(n, q).

Proof. It follows from the fact that |F(n, q)| = nqn−1 and Lemma 7.
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2.3. The competition number of H(2, q)

In this subsection, we give the competition number of a Hamming graph H(2, q) with
q ≥ 2.

First, we define a total order ≺ on the set [q]n as follows. Take two distinct elements
x and y in [q]n. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn). Then we define x ≺ y
if there exists t ∈ [n] such that xs = ys for s ≤ t − 1 and xt < yt.

The lexicographic ordering of V (H(n, q)) is the ordering v1, v2, . . . , vqn such that
v1 ≺ v2 ≺ . . . ≺ vqn .

Theorem 9. For q ≥ 2, we have k(H(2, q)) = 2.

Proof. By Corollary 3, it follows that k(H(2, q)) ≥ 2. Now we show that k(H(2, q)) ≤ 2.
We define a digraph D as follows.

V (D) = V (H(2, q)) ∪ {z1, z2},

A(D) =

(
q⋃

i=2

{(x, (1, i − 1)) | x ∈ S1(i)}

)
∪

(
q⋃

i=2

{(x, (i − 1, q)) | x ∈ S2(i)}

)
∪{(x, z1) | x ∈ S1(1)} ∪ {(x, z2) | x ∈ S2(1)},

where Sj(i) with j ∈ {1, 2} and i ∈ [q] is the clique of H(2, q) defined by (2.10).
Since {N−

D (v) | v ∈ V (D), |N−
D (v)| ≥ 2} = F(2, q), it is easy to check that C(D) =

H(2, q) ∪ {z1, z2}. In addition, the ordering obtained by adding z1, z2 on the head of the
lexicographic ordering of V (H(2, q)) is an acyclic ordering of D. To see why, take an
arc (x, y) ∈ A(D). If x ∈ S1(1) or x ∈ S2(1) then y is either z1 or z2. If x ∈ S1(i)
or x ∈ S2(i) for some 2 ≤ i ∈ [q], then x = (l, i) or x = (i, l) for some l ∈ [q] Since
y = (1, i − 1) or y = (i − 1, q), we have y ≺ x. Therefore D is acyclic. Hence we have
k(H(2, q)) ≤ 2.

2.4. The competition number of H(3, q)

In this subsection, we give the competition number of a Hamming graph H(3, q) with
q ≥ 3.

Lemma 10. For q ≥ 3, we have k(H(3, q)) ≥ 6.

Proof. Let G = H(3, q). By Theorem 6, we have k(G) ≥ 5. Suppose that k(G) = 5.
Then there exists an acyclic digraph D such that C(D) = G∪I5 with I5 = {z1, z2, . . . , z5}.
Let z1, z2, . . . , z5, v1, v2, . . . , vq3 be an acyclic ordering of D. Let Ui := {v1, . . . , vi}. For
convenience, let

A1 : = {S ∈ F(3, q) | S ∩ U4 6= ∅},
A2 : = {S ∈ F(3, q) | S ∩ {v5} 6= ∅}.

8



Now we consider the subgraph G[U4] of G induced by U4. Any graph on 4 vertices is
isomorphic to one of the following.

(1) K4 (2) K1,1,2 (3) K4 − E(P3) (4) C4

(5) P4 (6) K1,3 (7) K3 ∪ I1 (8) K2 ∪ K2

(9) P3 ∪ I1 (10) K2 ∪ I2 (11) I4

Since H(3, q) does not contain an induced subgraph isomorphic to K1,1,2 by Lemma 4,
G[U4] is one of the above graphs except (2). For each cases, the number |A1| is given as
follows.

(1) 9 (2) − (3) 9 (4) 8
(5) 9 (6) 9 (7) 10 (8) 10
(9) 10 (10) 11 (11) 12

By Lemma 5, we have |A1| ≤ 8. Therefore G[U4] ∼= C4 and so |A1| = 8.
Since |A1| = 8 and |A2| = 3, |A1 ∩A2| = |A1|+ |A2| − |A1 ∪A2| = 11− |A1 ∪A2|.

From the fact that
A1 ∪ A2 = {S ∈ F(3, q) | S ∩ U5 6= ∅},

it holds that |A1 ∪ A2| ≤ 9 by Lemma 5 Therefore, |A1 ∩ A2| ≥ 2.
Take two distinct cliques S, S ′ ∈ A1 ∩A2. Then S ∩U4 6= ∅, S ′ ∩U4 6= ∅ and so take

x ∈ S ∩ U4 and y ∈ S ′ ∩ U4. If x = y or x and y are adjacent, then S = S ′ by Lemma 4.
Therefore x and y are not adjacent. Then together fact that G[U4] ∼= C4, without loss of
generality, we may assume that

U4 := {(1, 1, 1), (1, 1, 2), (1, 2, 2), (1, 2, 1)},
x := (1, 1, 1),

y := (1, 2, 2).

Since x and v5 are adjacent, one of following holds:

π1(v5) = π1(x) = (1, 1), π2(v5) = π2(x) = (1, 1), π3(v5) = π3(x) = (1, 1). (2.8)

Since y and v5 are adjacent, one of following holds:

π1(v5) = π1(y) = (2, 2), π2(v5) = π2(y) = (1, 2), π3(v5) = π3(y) = (1, 2). (2.9)

However, it is impossible that v5 satisfies both one of (2.8) and one of (2.9). We reach a
contradiction. Hence we conclude k(H(3, q)) ≥ 6.

In the following, we will show the following theorem.

Theorem 11. For q ≥ 3, we have k(H(3, q)) = 6.
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For q1, q2, q3 ≥ 2, we denote by H3(q1, q2, q3) a graph with V (H3(q1, q2, q3)) = [q1]×
[q2] × [q3] such that two vertices x and y are adjacent if dH(x, y) = 1.

Define

π1 : [q1] × [q2] × [q3] → [q2] × [q3], (x1, x2, x3) 7→ (x2, x3),

π2 : [q1] × [q2] × [q3] → [q1] × [q3], (x1, x2, x3) 7→ (x1, x3),

π3 : [q1] × [q2] × [q3] → [q1] × [q2], (x1, x2, x3) 7→ (x1, x2).

For given vectors p1 ∈ [q2] × [q3], p2 ∈ [q1] × [q3], p3 ∈ [q1] × [q2], let

S1(p1) := {x ∈ [q1] × [q2] × [q3] | π1(x) = p1},
S2(p2) := {x ∈ [q1] × [q2] × [q3] | π2(x) = p2},
S3(p3) := {x ∈ [q1] × [q2] × [q3] | π3(x) = p3}.

Note that S1(p1), S2(p2), and S3(p3) are maximal cliques of H3(q1, q2, q3). We denote the
set of all maximal cliques S1(p1), S2(p2) and S3(p3) by F3(q1, q2, q3). Then F3(q1, q2, q3)
is an edge clique cover of H3(q1, q2, q3).

Theorem 12. For q1, q2, q3 ≥ 2, we have k(H3(q1, q2, q3)) ≤ 6 and there exists an acyclic
digraph D such that C(D) = H3(q1, q2, q3) ∪ I6 and {N−

D (v) | v ∈ V (D), |N−
D (v)| ≥

2} = F3(q1, q2, q3).

Proof. For any digraph D, we define N−(D) := {N−
D (v) | v ∈ V (D), |N−

D (v)| ≥ 2}.
We will show by induction on m = q1 + q2 + q3. Note that m ≥ 6. Suppose m = 6 or
q1 = q2 = q3 = 2, then H3(2, 2, 2) = H(3, 2). From the fact that H(3, 2) is connected
and triangle-free, k(H(3, 2)) = |E(H(3, 2))| − |V (H(3, 2))| + 2 = 12 − 8 + 2 = 6 and
any acyclic digraph D such that C(D) = H(3, 2) ∪ I6 satisfies that N−

D (v) is either an
empty set or a maximum clique for each vertex v ∈ V (D).

Suppose that the statement is true for m = q1 + q2 + q3 where m ≥ 6. Take a graph
H3(q1, q2, q3) such that m+1 = q1 + q2 + q3. Since q1 + q2 + q3 > 3, one of q1, q2, or q3 is
greater than 2. Without loss of generality, we may assume that q1 > 2. Consider a graph
H3(q1 − 1, q2, q3). Then by the induction hypothesis, we have k(H3(q1 − 1, q2, q3)) ≤ 6
and there exists an acyclic digraph D0 such that C(D0) = H3(q1 − 1, q2, q3) ∪ I6 and

N−(D0) = F3(q1 − 1, q2, q3). (2.10)

Let v1, v2, . . . , vq1q2q3−q2q3+6 be an acyclic ordering of D0. For convenience, we put w1 :=
vq1q2q3−q2q3+5 and w2 := vq1q2q3−q2q3+6.

Let H∗ be the subgraph of H3(q1, q2, q3) induced by

V ∗ := V (H3(q1, q2, q3)) − V (H3(q1 − 1, q2, q3))

= {(q1, p2, p3) | p2 ∈ [q2], p3 ∈ [q3]}.
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Now we will define a digraph D1 as follows.

V (D1) = V ∗ ∪ {w1, w2},

A(D1) =

(
q3⋃

i=2

{(x, (q1, 1, i − 1)) | x ∈ S2(q1, i)}

)

∪

(
q2⋃

i=2

{(x, (q1, i − 1, q)) | x ∈ S3(q1, i)}

)
∪ {(x,w1) | x ∈ S2(q1, 1)} ∪ {(x,w2) | x ∈ S3(q1, 1)}.

The ordering obtained by adding w1, w2 on the head of the lexicographic ordering of V ∗

is an acyclic ordering of D1, and let w1, w2, . . . , wq2q3+2 be the ordering. In addition,

N−(D1) = {S2((q1, i)), S3((q1, i
′)) | i ∈ [q3], i

′[q2]}. (2.11)

Therefore D1 is an acyclic digraph such that C(D1) = H∗ ∪ {w1, w2}.
Note that, for p = (p2, p3) ∈ [q2] × [q3], the clique in H3(q1, q2, q3) obtained by

deleting the vertex (q1, p2, p3) from an element S1(p) of H3(q1, q2, q3) is a maximal clique
of H3(q1 − 1, q2, q3). Then by (2.10), for each p ∈ [q2] × [q3], the set {v ∈ V (D0) |
N−

D0
(v) = S1(p) \ {(q1, p2, p3)}} is not empty, and so we take an element yp of this set.

Now we will define a digraph D as follows.

V (D) = V (H3(q1, q2, q3)) ∪ I6

A(D) = A(D0) ∪ A(D1)

∪{((q1, p2, p3), yp) | p = (p2, p3) ∈ [q2] × [q3]}

Note that since N−
D0

(w1) = N−
D0

(w2) = ∅,

{N−
D (w1), N

−
D (w2)} = {S2(q1, 1), S2(q1, 1)}. (2.12)

From the construction of D and the equations that (2.10), (2.11) and (2.12), we can
conclude that N−(D) = F3(q1, q2, q3) and so E(C(D)) = E(H3(q1, q2, q3)). Thus,
C(D) = H3(q1, q2, q3) ∪ I6.

Then the ordering

v1, v2, . . . , vq1q2q3−q2q3+6, w3, w4, . . . , wq2q3+2 (2.13)

is an acyclic ordering of D. To see why, take an arc a = (x, y) ∈ A(D). If a ∈ A(D0) ∪
A(D1), then y is appeared in front to x in (2.13), since D0 and D1 is acyclic. If a 6∈
A(D0)∪A(D1) then x ∈ {w3, w4, . . . , wq2q3+2} and y ∈ {v1, v2, . . . , vq1q2q3−q2q3+6}, thus
y is appeared in proceed to x in (2.13). Thus D is an acyclic digraph.

Hence k(H3(q1, q2, q3)) ≤ 6 and theorem holds.

Proof of Theorem 11. By Lemma 10, we have k(H(3, q)) ≥ 6. By Theorem 12, we
obtain that k(H(3, q)) = k(H3(q, q, q)) ≤ 6. Hence Theorem 11 holds.
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3. Concluding Remarks
In this paper, we gave the exact values of the competition numbers of Hamming graphs
with diameter 2 or 3.

We conclude this paper with leaving the following questions for further study.

• What is the competition number of a Hamming graph H(4, q) with diameter 4?

• What is the competition number of a ternary Hamming graph H(n, 3) for n ≥ 4?

• Give the exact values or a good bound for the competition numbers of Hamming
graphs H(n, q).
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