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Abstract

The competition graph of a digraph D is a graph which has the same vertex set as
D and has an edge between two distinct vertices x and y if and only if there exists a
vertex v in D such that (x, v) and (y, v) are arcs of D. For any graph G, G together
with sufficiently many isolated vertices is the competition graph of some acyclic
digraph. The competition number k(G) of a graph G is defined to be the smallest
number of such isolated vertices. In general, it is hard to compute the competition
number k(G) for a graph G and characterizing a graph by its competition number
has been one of important research problems in the study of competition graphs.

The Johnson graph J(n, d) has the vertex set {vX | X ∈
([n]

d

)

}, where
([n]

d

)

denotes the set of all d-subsets of an n-set [n] = {1, . . . , n}, and two vertices vX1

and vX2
are adjacent if and only if |X1 ∩ X2| = d − 1. In this paper, we study the

edge clique number and the competition number of J(n, d). Especially we give the
exact competition numbers of J(n, 2) and J(n, 3).
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1 Introduction

The competition graph C(D) of a digraph D is a simple undirected graph which has the
same vertex set as D and has an edge between two distinct vertices x and y if and only
if there is a vertex v in D such that (x, v) and (y, v) are arcs of D. The notion of a
competition graph was introduced by Cohen [3] as a means of determining the smallest
dimension of ecological phase space (see also [4]). Since then, various variations have
been defined and studied by many authors (see [11, 15] for surveys and [1, 2, 7, 8, 9, 10,
12, 14, 19, 20] for some recent results). Besides an application to ecology, the concept of
competition graph can be applied to a variety of fields, as summarized in [17].

Roberts [18] observed that, for a graph G, G together with sufficiently many isolated
vertices is the competition graph of an acyclic digraph. Then he defined the competition
number k(G) of a graph G to be the smallest number k such that G together with k

isolated vertices is the competition graph of an acyclic digraph.
A subset S of the vertex set of a graph G is called a clique of G if the subgraph of G

induced by S is a complete graph. For a clique S of a graph G and an edge e of G, we say
e is covered by S if both of the endpoints of e are contained in S. An edge clique cover
of a graph G is a family of cliques such that each edge of G is covered by some clique
in the family. The edge clique cover number θE(G) of a graph G is the minimum size
of an edge clique cover of G. We call an edge clique cover of G with the minimum size
θE(G) a minimum edge clique cover of G. A vertex clique cover of a graph G is a family
of cliques such that each vertex of G is contained in some clique in the family. The vertex
clique cover number θV (G) of a graph G is the minimum size of a vertex clique cover
of G. Dutton and Brigham [5] characterized the competition graphs of acyclic digraphs
using edge clique covers of graphs.

Roberts [18] observed that the characterization of competition graphs is equivalent
to the computation of competition numbers. It does not seem to be easy in general to
compute k(G) for a graph G, as Opsut [16] showed that the computation of the compe-
tition number of a graph is an NP-hard problem (see [11, 13] for graphs whose compe-
tition numbers are known). For some special graph families, we have explicit formulae
for computing competition numbers. For example, if G is a choral graph without iso-
lated vertices then k(G) = 1, and if G is a nontrivial triangle-free connected graph then
k(G) = |E(G)| − |V (G)| + 2 (see [18]).

In this paper, we study the competition numbers of Johnson graphs. We denote an n-
set {1, . . . , n} by [n] and the set of all d-subsets of an n-set by

(

[n]
d

)

. The Johnson graph

J(n, d) has the vertex set {vX | X ∈
(

[n]
d

)

}, and two vertices vX1
and vX2

are adjacent if
and only if |X1 ∩ X2| = d − 1 (for reference, see [6]). For example, the Johnson graph
J(5, 2) is given in Figure 1. As it is known that J(n, d) ∼= J(n, n − d), we assume that
n ≥ 2d. Our main results are the following.
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Figure 1: The Johnson graph J(5, 2)

Theorem 1. For n ≥ 4, we have k(J(n, 2)) = 2.

Theorem 2. For n ≥ 6, we have k(J(n, 3)) = 4.

We use the following notation and terminology in this paper. For a digraph D, an
ordering v1, v2, . . . , vn of the vertices of D is called an acyclic ordering of D if (vi, vj) ∈
A(D) implies i < j. It is well-known that a digraph D is acyclic if and only if there exists
an acyclic ordering of D. For a digraph D and a vertex v of D, the out-neighborhood
of v in D is the set {w ∈ V (D) | (v, w) ∈ A(D)}. A vertex in the out-neighborhood
of a vertex v in a digraph D is called a prey of v in D. For simplicity, we denote the
out-neighborhood of a vertex v in a digraph D by PD(v) instead of usual notation N+

D(v).
For a graph G and a vertex v of G, we define the (open) neighborhood NG(v) of v in G

to be the set {u ∈ V (G) | uv ∈ E(G)}. We sometimes also use NG(v) to stand for the
subgraph induced by its vertices.

2 A lower bound for the competition number of J(n, d)

In this section, we give lower bounds for the competition number of the Johnson graph
J(n, d).

Lemma 3. Let n and d be positive integers with n ≥ 2d. For any vertex x of the Johnson
graph J(n, d), we have θV (NJ(n,d)(x)) = d.

Proof. If d = 1, then J(n, d) is a complete graph and the lemma is trivially true. Assume
that d ≥ 2. Take any vertex x in J(n, d). Then x = vA for some A ∈

(

[n]
d

)

. For any vertex
vA in J(n, d), the set

Si(vA) := {vB | B = (A \ {i}) ∪ {j} for some j ∈ [n] \ A}

forms a clique of J(n, d) for each i ∈ A. To see why, take two distinct vertices vB and
vC in Si(vA). Then B = (A \ {i}) ∪ {j} and C = (A \ {i}) ∪ {k} for some distinct
j, k ∈ [n] \ A. Clearly |B ∩ C| = d − 1, and so vB and vC are adjacent in J(n, d).
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Take a vertex vB in NJ(n,d)(vA). Then B = (A \ {i}) ∪ {j} for some i ∈ A and
j ∈ [n] \ A and so vB ∈ Si(vA). Thus {Si(vA) | i = 1, . . . , d} is a vertex clique cover of
NJ(n,d)(vA). Thus θV (NJ(n,d)(vA)) ≤ d. On the other hand,

|((A \ {i}) ∪ {j}) ∩ ((A \ {i′}) ∪ {j ′})| = d − 2

if i, i′ ∈ A and j, j ′ ∈ [n] \ A satisfy i 6= i′ and j 6= j ′ (such i, i′, j, j ′ exist since
n ≥ 2d ≥ 4). This implies that θV (NJ(n,d)(vA)) ≥ d. Hence θV (NJ(n,d)(vA)) = d.

Opsut [16] gave a lower bound for the competition number of a graph G as follows:

k(G) ≥ min{θV (NG(v)) | v ∈ V (G)}.

Together with Lemma 3, we have k(J(n, d)) ≥ d for positive integers n and d satisfying
n ≥ 2d. The following theorem gives a better lower bound for k(J(n, d)) if d ≥ 2.

Theorem 4. For n ≥ 2d ≥ 4, we have k(J(n, d)) ≥ 2d − 2.

Proof. Put k := k(J(n, d)). Then there exists an acyclic digraph D such that C(D) =
J(n, d)∪ Ik, where Ik = {z1, z2, . . . , zk} is a set of isolated vertices. Let x1, x2, . . . , x(n

d)
,

z1, z2, . . . , zk be an acyclic ordering of D. Let v1 := x(n

d)
and v2 := x(n

d)−1. By Lemma

3, we have θV (NJ(n,d)(xi)) = d for i = 1, . . . ,
(

n

d

)

. Thus vi has at least d distinct prey in
D, that is,

|PD(vi)| ≥ d. (2.1)

Since x1, x2, . . . , x(n

d)
, z1, z2, . . . , zk is an acyclic ordering of D, we have

PD(v1) ∪ PD(v2) ⊂ Ik ∪ {v1}. (2.2)

Moreover, we may claim the following:

Claim. For any two adjacent vertices vX1
and vX2

of J(n, d), we have |PD(vX1
) \

PD(vX2
)| ≥ d − 1.

Proof of Claim. Suppose that vX1
and vX2

are adjacent in J(n, d). Then |X1∩X2| = d−1
and

|[n] \ (X1 ∪ X2)| ≥ 2d − |X1| − |X2| + |X1 ∩ X2| = d − 1.

We take d − 1 elements from [n] \ (X1 ∪ X2), say z1, z2, . . . , zd−1, and put X1 ∩ X2 :=
{y1, y2, . . . , yd−1}.

For each 1 ≤ j ≤ d − 1, we put Zj := X1 ∪ {zj} \ {yj}. Then |Zj| = d and so vZj

is a vertex in J(n, d). Note that |Zj ∩ X1| = d − 1 and |Zj ∩ X2| = d − 2. Thus vZj
is

adjacent to vX1
while it is not adjacent to vX2

. Therefore

PD(vX1
) ∩ PD(vZj

) 6= ∅ and PD(vX2
) ∩ PD(vZj

) = ∅.
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Now we show that

PD(vX1
) \ PD(vX2

) ⊇
d−1
⋃

j=1

(

PD(vX1
) ∩ PD(vZj

)
)

. (2.3)

Take a vertex x in
⋃d−1

i=1

(

PD(vX1
) ∩ PD(vZj

)
)

. Then x ∈ PD(vX1
) and x ∈ PD(vZj

)
for some j ∈ {1, . . . d − 1}. Since PD(vX2

) ∩ PD(vZj
) = ∅, x 6∈ PD(vX2

) and so
x ∈ PD(vX1

) \ PD(vX2
). Thus (2.3) follows.

Note that for any j ∈ {1, . . . d − 1}, since PD(vX1
) ∩ PD(vZj

) 6= ∅,

|PD(vX1
) ∩ PD(vZj

)| ≥ 1. (2.4)

Moreover, PD(vX1
)∩PD(vZi

) and PD(vX1
)∩PD(vZj

) are mutually disjoint for i 6= j. To
see why, note that |Zj ∩Zi| = d− 2 for i 6= j. Therefore vZi

and vZj
are not adjacent and

so PD(vZi
) ∩ PD(vZj

) = ∅. Thus

(PD(vX1
) ∩ PD(vZi

)) ∩
(

PD(vX1
) ∩ PD(vZj

)
)

= ∅. (2.5)

From (2.3), (2.4), and (2.5), it follows that

|PD(vX1
) \ PD(vX2

)| ≥
d−1
∑

i=1

|PD(vX1
) ∩ PD(vZj

)| ≥ d − 1.

This completes the proof of the claim.

Now suppose that v1 and v2 are not adjacent in J(n, d). Then v1 and v2 do not have a
common prey in D, that is,

PD(v1) ∩ PD(v2) = ∅. (2.6)

By (2.1), (2.2) and (2.6), we have

k + 1 ≥ |PD(v1) ∪ PD(v2)| = |PD(v1)| + |PD(v2)| ≥ 2d.

Hence k ≥ 2d − 1 > 2d − 2.
Next suppose that v1 and v2 are adjacent in J(n, d). Then v1 and v2 have at least one

common prey in D, that is,
|PD(v1) ∩ PD(v2)| ≥ 1. (2.7)

By the above claim,

|PD(v1) \ PD(v2)| ≥ d − 1 and |PD(v2) \ PD(v1)| ≥ d − 1. (2.8)

Then

k + 1 ≥ |PD(v1) ∪ PD(v2)| (by (2.2))

= |PD(v1) \ PD(v2)| + |PD(v2) \ PD(v1)| + |PD(v1) ∩ PD(v2)|

≥ (d − 1) + (d − 1) + 1 (by (2.7) and (2.8))

= 2d − 1.

Hence it holds that k ≥ 2d − 2.
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3 An edge clique cover of J(n, d)

In this section, we build a minimum edge clique cover of J(n, d).
Given a Johnson graph J(n, d), we define a family Fn

d of cliques of J(n, d) as follows.
For each Y ∈

(

[n]
d−1

)

, we put

SY := {vX | X = Y ∪ {j} for j ∈ [n] − Y }

Note that SY is a clique of J(n, d) with size n − d + 1. We let

Fn
d := {SY | Y ∈

(

[n]

d − 1

)

}. (3.1)

Then it is not difficult to show that Fn
d is the collection of cliques of maximum size.

Moreover the family Fn
d is an edge clique cover of J(n, d). To wee why, take any edge

vX1
vX2

of J(n, d). Then |X1 ∩ X2| = d − 1 and both of vX1
and vX2

belong to the clique
SX1∩X2

∈ Fn
d . Thus Fn

d is an edge clique cover of J(n, d).
We will show that Fn

d is a minimum edge clique cover of J(n, d). Prior to that, we
present the following theorem. For two distinct cliques S and S ′ of a graph G, we say S

and S ′ are edge disjoint if |S ∩ S ′| ≤ 1.

Theorem 5. θE(J(n, d)) =
(

n

d−1

)

and any minimum edge clique cover of J(n, d) consists
of edge disjoint maximum cliques.

Proof. Let E be a minimum edge clique cover for J(n, d), that is, θE(J(n, d)) = |E|.
Since Fn

d is an edge clique cover with |Fn
d | =

(

n

d−1

)

, we have θE(J(n, d)) ≤
(

n

d−1

)

.
Now we show that |E| ≥

(

n

d−1

)

. Since the size of a maximum clique is n − d + 1, we

have |E(S)| ≤
(

n−d+1
2

)

for each S ∈ E where E(S) =
(

S

2

)

. Therefore,

|E(J(n, d))| ≤
∑

S∈E

|E(S)| ≤

(

n − d + 1

2

)

× |E|, (3.2)

and the first equality holds if and only if none of two distinct cliques in E have a common
edge, and the second equality holds if and only if any element of E is a maximum clique
in J(n, d).

Since the Johnson graph J(n, d) is a d(n−d)-regular graph and the number of vertices
of J(n, d) is

(

n

d

)

,

|E(J(n, d))| =
1

2
d(n − d) ×

(

n

d

)

=

(

n − d + 1

2

)

×

(

n

d − 1

)

. (3.3)

From (3.2) and (3.3), it follows that
(

n−d+1
2

)

×
(

n

d−1

)

≤
(

n−d+1
2

)

× |E|. Thus we have
(

n

d−1

)

≤ |E|. Hence we can conclude that θE(J(n, d)) =
(

n

d−1

)

.
Furthermore, two equalities in (3.2) must hold, and therefore any minimum edge

clique cover of J(n, d) consists of edge disjoint maximum cliques.
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Since |Fn
d | =

(

n

d−1

)

, the following corollary is an immediate consequence of Theorem
5:

Corollary 6. The edge clique cover Fn
d of J(n, d) defined in (3.1) is a minimum edge

clique cover of J(n, d).

4 Proofs of Theorems 1 and 2

First, we define an order ≺ on the set
(

[n]
d

)

as follows. Take two distinct elements X1 and
X2 in

(

[n]
d

)

. Let X1 = {i1, i2, . . . , id} and X2 = {j1, j2, . . . , jd} where i1 < . . . < id and
j1 < . . . < jd. Then we define X1 ≺ X2 if there exists t ∈ {1, . . . , d} such that is = js

for 1 ≤ s ≤ t − 1 and it < jt. It is easy to see that ≺ is a total order.
Now we prove Theorem 1.

Proof of Theorem 1. As k(J(n, 2)) ≥ 2 by Theorem 4, it remains to show k(J(n, 2)) ≤
2. We define a digraph D as follows:

V (D) = V (J(n, 2)) ∪ I2

where I2 = {z1, z2}, and

A(D) =
n−2
⋃

i=1

{(x, v{i+1,i+2}) | x ∈ S{i} ∈ Fn
2 } ∪

2
⋃

i=1

{(x, zi) | x ∈ S{n−2+i} ∈ Fn
2 }.

Since the vertices of each clique in the edge clique cover Fn
2 has a common prey in D, it

holds that C(D) = J(n, 2) ∪ I2. Each vertex in Si is denoted by vX for some X ∈
(

[n]
2

)

which contains i. Then by the definition of ≺, vX ≺ v{i+1,i+2} for i = 1, . . . , n− 2. Thus,
there exists an arc from a vertex x to a vertex y in D if and only if either x = vX and
y = vY with X ≺ Y , or x = vX and y = zi with X ∈ S{n−1} ∪ S{n} and i ∈ {1, 2}.
Therefore D is acyclic. Thus we have k(J(n, 2)) ≤ 2 and this completes the proof.

Proof of Theorem 2. By Theorem 4, we have k(J(n, 3)) ≥ 4. It remains to show k(J(n, 3)) ≤
4. We define a digraph D as follows:

V (D) = V (J(n, 3)) ∪ I4
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where I4 = {z1, z2, z3, z4}, and

A(D) =

n−3
⋃

i=1

n−2
⋃

j=i+1

{

(x, v{i,j+1,j+2}) | x ∈ S{i,j} ∈ Fn
3

}

∪
n−3
⋃

i=1

{

(x, v{i+1,i+2,i+3}) | x ∈ S{i,n−1} ∈ Fn
3

}

∪
n−4
⋃

i=1

{

(x, v{i+1,i+2,i+4}) | x ∈ S{i,n} ∈ Fn
3

}

∪
3

⋃

i=1

{(x, zi) | x ∈ S{n−4+i,n} ∈ Fn
3 }

∪{(x, z4) | x ∈ S{n−2,n−1} ∈ Fn
3 }.

It is easy to check that

Fn
3 = {S{i,j} | i = 1, . . . , n − 3; j = i + 1, . . . , n − 2} ∪ {S{i,n−1} | i = 1, . . . , n − 3}

∪{S{i,n} | i = 1, . . . , n − 4} ∪ {S{n−3,n}, S{n−2,n}, S{n−1,n}} ∪ {S{n−2,n−1}}.

Thus C(D) = J(n, 3) ∪ I4. Moreover, any vertex x ∈ S{i,j} is denoted by vX for some
X ∈

(

[n]
3

)

which contains i and j. By the definition of ≺, X ≺ {i, j + 1, j + 2}. In
a similar manner, for x in other cliques in Fn

3 , we may show that (x, y) ∈ A(D) if
and only if either x = vX and y = vY with X ≺ Y , or x = vX and y = zi with
X ∈ S{n−3,n} ∪ S{n−2,n} ∪ S{n−1,n} ∪ S{n−2,n−1} and i ∈ {1, 2, 3, 4}. Thus D is acyclic.
Hence k(J(n, 3)) ≤ 4.

5 Concluding Remarks

In this paper, we gave some lower bounds for the competition numbers of Johnson graphs,
and computed the competition numbers of Johnson graphs J(n, 2) and J(n, 3). It would
be natural to ask: What is the exact value of the competition number of a Johnson graph
J(n, 4) for n ≥ 8? Eventually, what is the exact values of the competition numbers of
Johnson graphs J(n, q)?
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