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Introduction

0.1 – The main subject of this paper concerns the role of “M -functions” in the value-
distribution theory, for logarithms and their derivatives, of L-functions L(s, χ) over a
global base field K. Here, s = σ + ti (σ > 1/2) is fixed and χ runs over a certain family
of Dirichlet characters on K. In the case of logarithmic derivatives L′/L(s, χ), this is a
continuation of [8, 4, 6]. This paper forms a “complementary pair” with [7] where some
basic results for the case of logL(s, χ) overK = Q are given. Here, the main results are for
both cases and over function fields over finite fields. But we also include the corresponding
conditional results (i.e., under GRH, the Generalized Riemann Hypothesis) over Q and
over imaginary quadratic fields, in order to show what one can expect in the “optimal
situation”. In spite of the obvious close connection in the subject itself, there are no
serious logical interdependences between [7] and the present paper. The approaches also
are quite different even when K = Q.

0.2 – Let us start with explaining the conditional results over Q. The L-function L(s, χ)
associated with any non-principal Dirichlet character χ is, under GRH, holomorphic and
non-vanishing on σ = Re(s) > 1/2; hence its logarithm on this domain can be defined in
the natural manner. Thus,

L(s, χ) : = L′(s, χ)/L(s, χ) (Case 1)(0.2.1)

= logL(s, χ) (Case 2)

is holomorphic on σ > 1/2 in each case. But we shall fix any s in this domain, consider
L(s, χ) rather as a function of χ, and for any mild test function Φ on C, study the mean
value of Φ(L(s, χ)) when χ runs over some natural family of characters. For this study,
the basic role is played by the case where Φ is a quasi-character C → C× of the additive
group C. Such quasi-characters are parametrized by two complex numbers z1, z2, as

(0.2.2) ψz1,z2(w) = exp

(
i

2
(z1w̄ + z2w)

)
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(i =
√
−1), and it is a character if and only if z1, z2 are mutually conjugate. These are

not only basic in the function space on C, but also fit very well with this study, because
each of ψz1,z2(L(s, χ)) has an Euler product expansion on σ > 1 reflecting the Euler sum
decomposition of L(s, χ). It should also be noticed that unless ψz1,z2 is a character, its
value at L(s, χ) can be “exponentially large”.

For each prime divisor 1 f , let Avgfχ=f denote the average over all primitive Dirichlet
characters χ with conductor f . Our first main result (Theorem 3 in §1.3) asserts that

(0.2.3) lim
f prime

N(f)→∞

Avgfχ=fψz1,z2(L(s, χ)) = M̃σ(z1, z2) (σ > 1/2, under GRH)

holds. In fact, the limit converges uniformly in the wider sense with respect to s, z1, z2.
To define M̃σ(z1, z2), put

Z(s) = ζ ′(s)/ζ(s) (Case 1),(0.2.4)

= log ζ(s) (Case 2),(0.2.5)

ζ(s) being the Riemann zeta function, and consider the Dirichlet series

(0.2.6) exp(
iz

2
Z(s)) =

∞∑
n=1

λz(n)n−s (σ > 1).

It is easy to see that in each of Cases 1,2, λz(n) (n = 1, 2, ...) are polynomials in z and
multiplicative in n (see §1.2). Consider now the following Dirichlet series

(0.2.7) M̃s(z1, z2) =
∞∑

n=1

λz1(n)λz2(n)n−2s (σ > 1/2)

(so to speak, the “termwise product” of exp((iz1/2)Z(s)) and exp((iz2/2)Z(s))). This
series also converges absolutely and uniformly in the wider sense on σ > 1/2, and hence
defines an analytic function of 3 complex variables s, z1, z2 on this domain 2. For this,
GRH is unnecessary. The above function M̃σ(z1, z2) is its restriction to s = σ ∈ R.

The above mean value theorem is an analogue of Carlson’s mean value theorem on
the limit average of Dirichlet series over a vertical axis inside the critical strip [1] (cf. also
[14, 12, 13]). Two main differences are (i) we take averages over χ, and (ii) the Dirichlet
series considered are of the type ψz1,z2(L(s, χ)).

1Here we use the notation system for the general case of K employed in the main text; thus, here, f
corresponds to a prime number f , and N(f) = f .

2in Case 1, it is already treated in [4].
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0.3 – As for the base field K, in addition to K = Q, we shall also include imaginary
quadratic fields (also under GRH), and any algebraic function field of one variable over
a finite field with one assigned “infinite” prime divisor p∞. In short, K is any global
field with just one infinite prime. In the function field case, we shall normalize χ by the
condition χ(p∞) = 1 to kill infinitely many trivial twists not changing the conductor.
The Euler factor corresponding to p∞ should be dropped from each of L(s, χ), L(s, χ),
M̃s(z1, z2). This applies also for the convolution Euler p∞-factor in the function Mσ(z)
which appears later.

0.4 – The second main result, which is closely related to the first, concerns the equality
of the form

(0.4.1) lim
f prime

N(f)→∞

Avgfχ=fΦ(L(s, χ)) =

∫
C

Mσ(w)Φ(w)|dw| (σ > 1/2),

where |dw| = dxdy/2π for w = x+yi, Φ is a test function on C, and Mσ(w) is the density
function for the distribution of values of {L(s, χ)}χ constructed in [4](for Case 1), [7] (for
Case 2, where it is denoted by Mσ(w)); see also §5.6 of the present paper. At least in
Case 2, it has a long history since Bohr and Jessen; for this, cf. the Introduction of [7].

The connection between Mσ(w) and M̃s(z1, z2) is

(0.4.2) M̃σ(z1, z2) =

∫
C

Mσ(w)ψz1,z2(w)|dw| (σ > 1/2, z1, z2 ∈ C);

in particular, if we put ψz(w) = ψz,z̄(w) = eiRe(z̄w) (which is a character C → C1), then

(0.4.3) M̃σ(z) := M̃σ(z, z̄) =

∫
C

Mσ(w)ψz(w)|dw|

is the Fourier dual of Mσ(z).
In [6], the following weaker version

(0.4.4) lim
m→∞

AvgN(f)≤m

(
Avgfχ=fΦ(logL(s, χ))

)
=

∫
C

Mσ(w)Φ(w)|dw| (σ > 1/2)

is established in Case 1 for the function field case for any Φ which is continuous and with
at most a polynomial growth (which improves Theorem 7 of [4]). In [7], it is proved,
among other things, that in Case 2, (0.4.4) holds for K = Q unconditionally if Φ is
continuous and bounded.

In the present article, we shall prove that (0.4.1) itself holds for each of Cases 1,2, if
(i) K is either any function field, or the rational number field or an imaginary quadratic
field, under GRH in the latter two cases, and (ii) if Φ is any continuous function with
at most exponential growth. This improves [6] and complements [7]. Note that the case
Φ = ψz1,z2 corresponds to the first main result (0.2.3). This special case stands at the
crucial point in the proof, too.
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0.5 – The above mean value theorem motivates us to study the analytic function
M̃s(z1, z2) itself more closely. The most basic properties studied in [4] and in this pa-
per include the following. Firstly, M̃s(z1, z2) has an Euler product expansion on σ > 1/2.
Moreover, as can be expected, each Euler factor may be interpreted as the limit average
of the corresponding Euler factor of ψz1,z2(L(s, χ)) (see (4.1.3)). Unlike the Euler product
expansion of each of ψz1,z2(L(s, χ)), for which at most a conditional convergence can be
expected on 1/2 < σ ≤ 1, the Euler product expansion for its limit average M̃s(z1, z2) is
absolutely convergent on σ > 1/2.

Secondly, this function also admits an everywhere convergent power series expansion
in z1, z2 with Dirichlet series coefficients (Theorem M̃ in §4.1). Moreover, the coefficient
of za

1z
b
2 is essentially the limit average of P (a,b)(L(s, χ)), where P (a,b)(w) = w̄awb (a, b ≥ 0).

An amusing application shows, under GRH, that for any fixed σ > 1/2, y > 0, and for
N(f) sufficiently large, we have the inequalities

Avgfχ=f exp(2yRe(L(s, χ)/L′(s, χ))) < Avgfχ=f exp(−2yRe(L(s, χ)/L′(s, χ))),(0.5.1)

Avgfχ=f |L(s, χ)|2y > Avgfχ=f |L(s, χ)|−2y.(0.5.2)

For example, let y = 1. Then, in the limit N(f) → ∞, the latter inequality “tends to”:

(0.5.3) ζ(2σ) =
∑

n

n−2σ >
∑

n squarefree

n−2σ.

For these, see §4.2.
As for the zeros of M̃s(z1, z2), they are “merely” the collection of zeros of local Euler

factors, but still, a non-trivial basic object of study. An interesting case is where z2 = z̄1,
and especially where z1 = yi, z2 = −yi with y ∈ R. This, and the study of the global
“Plancherel Volume” of the density function for Case 1, can be found in [5].

Finally, the analytic property of M̃s(z1, z2) on a wider domain

(0.5.4) {σ > 0} \ {1/2n, ρ/2n}n∈N,ζ(ρ)=0,

seems also remarkable but this will be discussed in a future article.

0.6 – The main results (Theorems 1-4) are summarized in §1, except for Theorem M̃
related to the function M̃s(z1, z2) which is in §4. The remaining sections are for their
proofs.

The first Theorem 1 (§1.1; the proof in §2) axiomatizes the present type of the mean-
value theorem. A basic concept here is “uniformly admissible family of arithmetic func-
tions”. Theorem 2 (§1.2; the proof in §3) asserts that {λz}|z|≤R is such a family. This is
for any global field (under GRH in the number field case). The key is the estimation of
|L(s, χ)| on this region, and since this comes inside the exponential sign, a fairly strong
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estimate is required. We shall first prove a “universal” estimate on Re(s) ≥ 1/2 + ϵ
for |L′/L(s, χ)| by using one of the “explicit formulas” (Theorem-Exp in §3.5), and then
derive that for logL(s, χ) by integration. The estimates thus obtained matches with
Titchmarsh’s conditional estimates of | log ζ(s)| and |ζ ′/ζ(s)| in his book (Theorem 14.5
of [15]). It is no wonder if an appropriate L-function version, with a careful treatment of
the dependence on N(fχ), already existed somewhere in an old literature. Since we could
not find such, we decided to give them full proofs at the cost of the length of the paper.

From these two theorems, we obtain, directly, the next Theorem 3 (§1.3) which corre-
sponds to the first main result mentioned above (for the base fields stated in §0.3). Then,
in §4, some of the basic properties of M̃s(z1, z2) are stated (Theorem M̃) and proved.
Finally, in §5, we shall give a proof of Theorem 4 (stated in §1.4) which corresponds to
the second main result mentioned above. The proof is based on two key lemmas, Lemma
A (“the equality (0.4.1) for some special Φ implies that for some more general Φ”), and
Lemma B on the rapid decay property of Mσ(z) whose proof contains the explanation of
the explicit connections between the constructions in [9] and [7].
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1 The main results

1.1 – Uniformly admissible family of arithmetic functions. Let K be a global
field, i.e., either an algebraic number field of finite degree (NF) or an algebraic function
field of one variable over a finite field Fq (FF), given together with a finite set P∞ of prime
divisors of K. We assume that P∞ contains all the archimedean primes (NF case) and is
non-empty also in the FF case. By an integral divisor we shall mean any divisor D of K
having a prime factorization of the form D =

∏
p̸∈P∞

prp (rp ≥ 0).

For an integral divisor f , let If be the group of divisors of K coprime with fP∞, and
define

Gf = If/{(α);α ≡ 1(mod f), αv > 0 (all real archimedean primes v)},
where for each α ∈ K×, (α) denotes the “prime-to-P∞” component of the principal divisor
generated by α, and αv, the v-component.1 Note that Gf is always finite (including the
FF case because P∞ is non-empty). Define

if : If → Gf : the projection,

Ĝf : the character group of Gf , with the unit element χ0.

For each χ ∈ Ĝf and an integral divisor D, we define χ(D) = χ(if (D)) if (D, f) = 1, and
χ(D) = 0 otherwise.

An arithmetic function will mean a C-valued function D 7→ λ(D) on integral divisors.
It will be called admissible if it satisfies the following three conditions (A1)-(A3):

(A1) λ(D) ≪ϵ′ N(D)ϵ′ for any ϵ′ > 0.

(A2) For any integral divisor f and χ ∈ Ĝf\{χ0}, consider the Dirichlet series

(1.1.1) gλ(s, χ, f) =
∑

(D,f)=1

χ(D)λ(D)N(D)−s,

where the summation is over all integral divisors coprime with f . By (A1), this converges
absolutely and defines a holomorphic function on Re(s) > 1. The condition (A2) imposes
that this extends to a holomorphic function on Re(s) > 1/2.

(A3) In the FF case this simply imposes that

(1.1.2) gλ(s, χ, f) ≪ϵ,ϵ′ N(f)ϵ′ holds on Re(s) ≥ 1/2 + ϵ

for any ϵ, ϵ′ > 0. In the NF cases, the condition is necessarily more complicated;

(1.1.3) Max(0, log |gλ(s, χ, f)|) ≪ϵ ℓ(t)ℓ(f)
1−2ϵ + ℓ(t)2 on Re(s) ≥ 1/2 + ϵ

1The second system of conditions αv > 0 is optional; the results remain valid if we do not impose this
(except of course for a slight difference in the formula for |Gf | in §2.1).
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for any 0 < ϵ < 1/2, where t = Im(s) and

ℓ(f) = log(N(f) + 2) if f is an integral divisor,(1.1.4)

ℓ(t) = log(|t| + 2) if t ∈ R.(1.1.5)

The holomorphic functions gλ(s, χ, f) will be called the g-functions associated with λ. If
Λ is a family of admissible arithmetic functions such that the implicit constants in (A1)
and (A3) can be chosen to be independent of λ ∈ Λ, then Λ will be called a uniformly
admissible family of arithmetic functions. Important examples of such families will be
given in Theorem 2 (§1.2).

The notion of uniformly admissible family of arithmetic function is invented because
it seems to give a natural setting for the following mean value theorem. Unfortunately,
at least at present, we need to assume further in this theorem that |P∞| = 1, i.e., either
K is the rational number field or an imaginary quadratic field and P∞ consists only of
the unique archimedean prime, or K is a function field over a finite field and P∞ consists
of just one prime divisor (to be called p∞). The point is that in such a case the group of
P∞-units of K is finite, so that the order of Gf is comparable with N(f).

By Avgχ∈XG(χ), for a finite set X of characters χ and a C-valued function G(χ) of
χ, we shall mean the usual average |X|−1

∑
χ∈X G(χ).

Theorem 1 Let Λ be any uniformly admissible family of arithmetic functions, and
let λ, λ′ run over Λ. Fix any ϵ such that 0 < ϵ < 1/2, and let s = σ + ti run over the
domain σ ≥ 1/2 + ϵ. In the NF case, we also fix T > 0 and impose additionally that
|t| ≤ T . Assume |P∞| = 1. Then:

(i) For any integral divisor f , we have

(1.1.6) Avgχ∈Ĝf\{χ0}(gλ(s, χ, f)gλ′(s, χ, f)) −
∑

(D,f)=1

λ(D)λ′(D)N(D)−2σ ≪ N(f)−ϵ/2.

In particular, the quantity on the left hand side tends to 0 uniformly as N(f) → ∞.
(ii) Let f run only over the prime divisors. Then

(1.1.7) lim
N(f)→∞

Avgχ∈Ĝf\{χ0}(gλ(s, χ, f)gλ′(s, χ, f)) =
∑
D

λ(D)λ′(D)N(D)−2σ,

and the convergence is uniform w.r.t. λ, λ′, s. Moreover, the above average may be replaced
by that over all χ with the conductor fχ = f .

The proof will be given in §2.

Remark For given λ1, ..., λk ∈ Λ, define their ∗-product by

(1.1.8) (λ1 ∗ ... ∗ λk)(D) =
∑

D=D1...Dk

λ1(D1)...λk(Dk).
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Then this is also admissible, being associated with the product

(1.1.9) gλ1 ...gλk
.

This is because if S(D) denotes the number of distinct factors of D, then for any ϵ′ > 0 we
have S(D) ≪ϵ′ N(D)ϵ′ , as is well-known in the NF case and can be proved similarly in the
FF case (cf. [6]Appendix, for a unified proof). Moreover, if we fix k, then Λk := {λ1 ∗ ... ∗
λk;λ1, ..., λk ∈ Λ} is again a uniformly admissible family of arithmetic functions. Thus,
Theorem 1 remains valid if gλ, gλ′ are replaced by their k-th powers and λ(D), λ′(D), by
their k-th ∗-powers.

1.2 – The families {λz}|z|≤R associated with L-functions. We shall consider

the Dirichlet L-function associated with each χ ∈ Ĝf , χ ̸= χ0, without P∞-component.
Namely, define

(1.2.1) L(s, χ, f) =
∏
p̸∈P∞

(1 − χ(p)N(p)−s)−1,

which converges absolutely on Re(s) > 1 and extends to a holomorphic function on
Re(s) > 1/2. In the FF case, and in the NF case under GRH, it has no zeros on this
domain. In these cases, logL(s, χ, f) on this domain is defined as the unique holomorphic
branch that vanishes at s = +∞. Write:

L(s, χ, f) =

{
L′

L
(s, χ, f) (Case 1),

logL(s, χ, f) (Case 2).
(1.2.2)

We shall show in the next Theorem that for any given R > 0, the family of functions

(1.2.3) exp

(
iz

2
L(s, χ, f)

)
parametrized by {z; |z| ≤ R} forms (in each of Cases 1,2) a family of g-functions gλz(s, χ, f)
associated with a uniformly admissible family {λz}|z|≤R of arithmetic functions. To explain
this, first define the polynomials Gr(x), Hr(x) (r = 0, 1, 2, ...) of x as

(1.2.4) exp(xt/(1 − t)) =
∞∑

r=0

Gr(x)t
r,

(1.2.5) exp (−x log(1 − t)) = (1 − t)−x =
∞∑

r=0

Hr(x)t
r,
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by generating functions (|t| < 1). Explicitly, G0(x) = H0(x) = 1, and for r ≥ 1,

Gr(x) =
r∑

k=1

1

k!

(
r − 1

k − 1

)
xk,(1.2.6)

Hr(x) =
r∑

k=1

1

k!
δk(r)x

k =
1

r!
x(x+ 1)...(x+ r − 1),(1.2.7)

where

(1.2.8) δk(r) =
∑

r=r1+...+rk
r1,...,rk≥1

1

r1...rk

.

Theorem 2 For each z ∈ C and each integral divisor D =
∏
p p

rp, define λz(D) by

λz(D) =
∏
p|D

λz(p
rp),(1.2.9)

λz(p
r) =

{
Gr(− iz

2
logN(p)) (Case 1),

Hr(
iz
2
) (Case 2),

(1.2.10)

where i =
√
−1. (In particular, λz(D) = 1 for D = (1).) Then, for any K and P∞,

(i) the family {λz}|z|≤R satisfies (A1) uniformly, i.e., with ≪ depending only on (ϵ′

and) R.
(ii) Moreover, if we assume GRH in the NF case, then this also satisfies (A2)(A3)

and is a uniformly admissible family of arithmetic functions. The associated g-function
is given by

(1.2.11) gλz(s, χ, f) = exp

(
iz

2
L(s, χ, f)

)
.

The proof will be given in §3.

1.3 – Direct consequences of Theorems 1,2. Now consider the Dirichlet series

(1.3.1) M̃s(z1, z2) =
∑
D

λz1(D)λz2(D)N(D)−2s (Re(s) > 1/2),

where the summation is over all integral divisors D of K. This converges absolutely
and uniformly on Re(s) ≥ 1/2 + ϵ, |z1|, |z2| ≤ R for any fixed ϵ, R > 0, because
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λz1(D), λz2(D) ≪ϵ′ N(D)ϵ′ (uniformly on |z1|, |z2| ≤ R) by Theorem 2; hence this is
a holomorphic function of three complex variables s, z1, z2 on the domain Re(s) > 1/2.
Note that M̃s(z1, z2) is symmetric in z1, z2. For z1, z2 ∈ C, let ψz1,z2 denote the quasi-
character of the additive group C defined by

(1.3.2) ψz1,z2(w) = exp

(
i

2
(z1w̄ + z2w)

)
.

Theorem 3 Assume |P∞| = 1, and in the NF case assume also GRH. Then

(1.3.3) lim
f prime

N(f)→∞

(
Avgfχ=fψz1,z2(L(s, χ, f))

)
= M̃σ(z1, z2)

uniformly on |z1|, |z2| ≤ R and for s = σ + ti with σ ≥ 1/2 + ϵ, and |t| ≤ T in the NF
case.

This is a direct consequence of Theorem 1(ii) and Theorem 2. Indeed, we have λz(D) =
λ−z̄(D) and

(1.3.4) ψz1,z2(L(s, χ, f)) = gλ−z̄1
(s, χ, f)gλz2

(s, χ, f).

Remark 1.3.5 When σ > 1, (1.3.3) holds without GRH, because we may use λz(D)N(D)−1/2

instead of λz(D).

Some basic analytic properties of M̃s(z1, z2) will be shown in §4. In Case 1 this is
mostly a review of results of [4]§3. We only mention here that when s = σ > 1/2, we have

(1.3.6) M̃σ(z1, z2) =

∫
C

Mσ(w)ψz1,z2(w)|dw|.

Here, Mσ(w) = ∗p̸∈P∞Mσ,p(w) (∗: the convolution product) is the “M”-function (here
without P∞-factors) constructed in [4](Case 1) [7](Case 2; denoted as Mσ)2. In particular,
M̃σ(z, z̄) is equal to the Fourier dual M̃σ(z) of Mσ(z).

In Case 2, where exp(L(s, χ, f)) = L(s, χ, f), Theorem 3 gives

(1.3.7) lim
f prime

N(f)→∞

(
Avgfχ=fL(s, χ, f)

iz1
2 L(s, χ, f)

iz2
2

)
= M̃σ(z1, z2);

hence in particular:
2For a short-cut definition of Mσ relying on the classical Jessen-Wintner theory [9], see §5.6.
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Corollary 1.3.8 (Case 2) The assumptions being as in Theorem 3,

lim
f prime

N(f)→∞

Avgfχ=f |L(s, χ, f)
iz
2 |2 = M̃σ(−z̄, z);(1.3.9)

lim
f prime

N(f)→∞

Avgfχ=f (L(s, χ, f)iz/2/L(s, χ, f)iz/2) = M̃σ(z̄) = M̃σ(z);(1.3.10)

in particular, for any y ∈ R,

(1.3.11) lim
f prime

N(f)→∞

Avgfχ=f (L(s, χ, f)/L(s, χ, f))y = M̃σ(2iy).

As is shown in [5], M̃σ(z) has, at least in Case 1, infinitely many purely imaginary
zeros, and at most finitely many other zeros. The following Corollary will be needed later

Corollary 1.3.12 The assumptions being as in Theorem 3, fix any ϵ > 0, T > 0, a > 0,
and let s = σ + ti run over σ ≥ 1/2 + ϵ, and in the NF case, additionally, |t| ≤ T . Then
for any prime divisor f we have

(1.3.13) Avgfχ=f exp(a|L(s, χ, f)|) ≪ 1.

Proof Write ℓχ = L(s, χ, f), Avgχ = Avgfχ=f . Since ea|ℓχ| ≤ ea|Re(ℓχ)|ea|Im(ℓχ)|,

Schwarz inequality reduces the Corollary to Avgχe
2a|Re(ℓχ)|, Avgχe

2a|Im(ℓχ)| ≪ 1. But since

e2a|Re(ℓχ)| < |eaℓχ|2 + |e−aℓχ|2, e2a|Im(ℓχ)| < |e−aiℓχ |2 + |eaiℓχ|2, and since Avgχ|ezℓχ|2 ≪ 1
holds for z = ±a,±ai, in view of Theorem 3, the Corollary follows. 2

1.4 – Application to value distributions. As before, let L(s, χ, f) = L/L′(s, χ, f)
(Case 1), = logL(s, χ, f) (Case 2), and let Mσ(z) be the associated M -function without
P∞-component.

Theorem 4 Let σ := Re(s) > 1/2, assume |P∞| = 1, and in the NF case assume
also GRH. Then

(1.4.1) lim
f prime

N(f)→∞

(
Avgfχ=fΦ(L(s, χ, f))

)
=

∫
C

Mσ(w)Φ(w)|dw|

holds for any continuous function Φ on C with at most exponential growth, i.e. when
Φ(w) ≪ ea|w| holds with some a > 0. The equality (1.4.1) holds also when Φ is the
characteristic function of either a compact subset of C or the complement of such a
subset.
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When moreover σ > 1, then (1.4.1) holds unconditionally for any continuous function
Φ on C.

The proof will be given in §5. This Theorem for Case 1 for the FF case strengthens
Theorem B of [6] (and Theorem 7 of [4]) in various sense. The condition on the test
function Φ is now considerably loosened, and here, the assertion is on the limit of the
average over f , which is stronger than the previous assertions on the limit, as m→ ∞, of
a weighted average over N(f) ≤ m. It should also be added, however, that Theorem A
of [6], and the direct method for proving Theorem B as its application, may still deserve
attention for independent interest.
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2 Proof of Theorem 1

Throughout this section, we assume that |P∞| = 1; i.e., eitherK is rational or imaginary
quadratic and P∞ consists only of the unique archimedean prime (NF case), or P∞ = {p∞}
for a given prime divisor p∞ (FF case).

2.1 – Preliminaries. We shall first prepare some basic materials that will be used
in the sequel. Notations being as in §1.1, for each x ≥ 1 and an integral divisor f , let
n(c, f ;x) for each c ∈ Gf denote the number of integral divisors D of K with N(D) ≤ x
satisfying (D, f) = 1 and if (D) = c.

Proposition 2.1.1 (i) For any f and x,

n(c, f ;x) ≪ 1 +N(f)−1x.

(ii) There exists A = AK > 0 such that for any f and any x < A ·N(f),

(2.1.2) Maxc∈Gf
n(c, f ; x) ≤ 1.

Proof First, let K be a function field over Fq. Then, since principal divisors have
norm equal to 1, two integral divisors (which means also that they are coprime with
p∞) belonging to the same class c must have the equal norm. Now, Prop 3.3.16 of [6]
asserts that the number of integral divisors D with the given norm N(D) = qm satisfying
(D, f) = 1 and if (D) = c cannot exceed Max(1, qm+1/N(f)). Therefore,

(2.1.3) n(c, f ; x) ≤ Max(1, qx/N(f)) ≪ 1 +N(f)−1x.

Moreover, if qm < N(f) (so that qm+1 ≤ N(f)), there is at most one such D. Hence (ii)
holds with AK = 1.

When K = Q and f ∈ N, n(c, (f);x) ≤ x/f+1; whence (i). Moreover, n(c, (f);x) ≤ 1
when x < f ; hence (ii) holds with AQ = 1.

Now let K be imaginary quadratic, with class number h. To prove (i), let Ai (1 ≤ i ≤
h) be a set of representatives of the ideal classes in K, and for each i (1 ≤ i ≤ h) choose
a fundamental domain (a parallelogram) Ωi for the lattice Ai embedded in C. Then as
a fundamental domain Ωf for any divisor f ̸= (0), we may choose some complex scalar
multiple of one of the Ωi. For each i, the number of distinct translations of Ωi (by an
element of the lattice Ai) that meet the disk {|ξ|2 ≤ x} is ≪ 1 + x; hence the number of
distinct translations of Ωf (by an element of f) that meet {|ξ|2 ≤ x} is ≪ 1 + x/N(f).
Now (i) follows easily from the finiteness of the unit group of K. As for (ii), suppose that
D,D′ are distinct integral divisors belonging to c such that N(D′) ≤ N(D). This means
that D′ = (α)D with some α ≡ 1(mod f), α ̸= 1, N(α) ≤ 1. The last inequality gives
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N(α− 1) ≤ 2(N(α) + 1) ≤ 4. On the other hand, (α− 1)D must be integral, ̸= (0), and
divisible by f ; hence N(α − 1)N(D) ≥ N(f). Therefore, 4 ≥ N(α − 1) ≥ N(D)−1N(f);
i.e., N(D) ≥ N(f)/4. Therefore, (ii) holds with AK = 1/4. 2

We shall also need the formula for the cardinality of the group Gf ;

(2.1.4) |Gf | = δKhK
N(f)

wK

∏
p|f

(1 −N(p)−1),

where δK = 1 (NF case), = deg p∞ (FF case), hK is the class number of K, and wK is
the number of residue classes mod f represented by some root of unity, except that it is
1 when K = Q. Note that wK = q − 1 in the FF case over Fq. Since

(2.1.5)
∏

N(p)≤y

(1 −N(p)−1) ≫ (log y)−1

(cf [6]§3.7 for a proof for the FF case), the above formula gives

(2.1.6)
N(f)

logN(f)
≪ |Gf | ≪ N(f).

2.2 – The integral expression. The basic notations are as follows.

Fix ϵ such that 0 < ϵ < 1/2. The symbol ≪ will depend on ϵ but this dependence will
be suppressed from the notations.

s ∈ C will always satisfy σ := Re(s) ≥ 1/2 + ϵ;
f : any integral divisor;
X: a real parameter ≥ 1.

Later, we shall choose X = N(f)β, with β = 1 + ϵ/2;
Λ: a given uniformly admissible family of arithmetic functions;
λ, λ′ ∈ Λ; write g = gλ, g

′ = gλ′ .

Proposition 2.2.1 (i) On the space Re(s) ≥ 1/2 + ϵ, one can express g = g(s, χ, f)
(χ ∈ Ĝf\{χ0}) as the difference

(2.2.2) g = g+ − g−

of two holomorphic functions

(2.2.3) g+ = g+(s, χ, f ;X) =
1

2πi

∫
Re(w)=c

Γ(w)g(s+ w, χ, f)Xwdw,

14



and

(2.2.4) g− = g−(s, χ, f ;X) =
1

2πi

∫
Re(w)=ϵ′−ϵ

Γ(w)g(s+ w, χ, f)Xwdw,

where c and ϵ′ are any positive real numbers satisfying c > Max(0, 1 − σ) and 0 < ϵ′ < ϵ.
Each of g+ and g− depends on the parameter X but not on c or ϵ′.

(ii) g+ has a Dirichlet series expansion

(2.2.5) g+ =
∑

(D,f)=1

χ(D)λ(D) exp(−N(D)/X)N(D)−s,

which is absolutely convergent for any χ ∈ Ĝf and any s ∈ C.

Proof First, note that

(2.2.6) g(s, χ, f) =
1

2πi

∫
B

Γ(w)g(s+ w, χ, f)Xwdw

holds, where B is the positively oriented rectangle bordering

(2.2.7) ϵ′ − ϵ ≤ Re(w) ≤ c, |Im(w)| ≤ T

(T > 0). This is clear, because the integrand is holomorphic in w on (2.2.7) except for
a simple pole at w = 0 with the residue g(s, χ, f). (In fact, since −1 < ϵ′ − ϵ < 0, the
only pole of Γ(w) on (2.2.7) is a simple pole at w = 0 (with the residue 1), and since
Re(s+ w) ≥ 1/2 + ϵ′ > 1/2, g(s+ w, χ, f) is holomorphic on (2.2.7), by (A3).)

To prove (i), let us estimate the integrand on ϵ′ − ϵ ≤ Re(w) ≤ c; |Im(w)| ≥ T . First,
|Xw| ≤ Xc (because X ≥ 1); secondly, in the FF case, g(s + w, χ, f) is holomorphic and
vertically periodic; hence bounded, and in the NF case, for each fixed s, f , χ,

(2.2.8) |g(s+ w, χ, f)| ≪ exp
(
C log2(|Im(w)| + 2)

)
with some C = Cs,χ,f > 0, by (A3). Thirdly,

(2.2.9) |Γ(w)| ≪ |Im(w)|c−1/2 exp(−π
2
|Im(w)|)

for |Im(w)| ≥ 1 . Now (i) follows directly from these by letting T → ∞ in (2.2.6).

(ii) Since σ + c > 1, the Dirichlet series expansion

(2.2.10) g(s+ w, χ, f) =
∑

(D,f)=1

χ(D)λ(D)N(D)−s−w
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is absolutely convergent on Re(w) = c, and the convergence is uniform with respect to
Im(w). Therefore,

g+ = g+(s, χ, f , X)(2.2.11)

=
1

2πi

∫
Re(w)=c

Γ(w)

 ∑
(D,f)=1

χ(D)λ(D)N(D)−s−w

Xwdw

=
∑
D

χ(D)λ(D)N(D)−s

(
1

2πi

∫
Re(w)=c

Γ(w)N(D)−wXwdw

)
.

But since

(2.2.12)
1

2πi

∫
Re(u)=c

Γ(u)a−udu = e−a (a, c > 0),

we obtain the desired Dirichlet series expansion (2.2.5). Because of the exponential factor,
this converges absolutely for any s ∈ C and any χ ∈ Ĝf . This can be seen easily by noting
that λ(D) ≪ N(D), and that the number of D with N(D) = n is certainly ≪ n. 2

We define g+(s, χ, f ;X) for any χ ∈ Ĝf including χ = χ0, by (2.2.5).

Proposition 2.2.13 Let σ = Re(s) ≥ 1/2 + ϵ. Then

(i) For any ϵ′ > 0 and χ ∈ Ĝf ,

(2.2.14) |g+(s, χ, f ;X)| ≪ϵ′ X
1/2+ϵ′−ϵ.

(ii) For any ϵ′ (0 < ϵ′ < ϵ), T > 0, and for |Im(s)| ≤ T , χ ∈ Ĝf\{χ0},

(2.2.15) |g−(s, χ, f ;X)| ≪ϵ′,T (N(f)X)ϵ′X−ϵ.

Proof (i) Since

(2.2.16) g+(s, χ, f ;X) =
∑

(D,f)=1

χ(D)λ(D) exp(−N(D)/X)N(D)−s,

we have, by (A1),

|g+(s, χ, f ;X)| ≪
∑

(D,f)=1

N(D)ϵ′ exp(−N(D)/X)N(D)−σ(2.2.17)

≤
∞∑

n=1

a(n)nϵ′−(1/2+ϵ)e−n/X ,
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where a(n) denotes the number of D with N(D) = n. But since
∑

n≤x a(n) ≪ x for any
x ≥ 1, we obtain, by partial summation,

(2.2.18) |g+(s, χ, f ;X)| ≪
∫ ∞

1

t|f ′(t)|dt,

where f(t) = t−ae−t/X , with a = (1/2 + ϵ) − ϵ′. But f ′(t)/f(t) = −(X−1 + at−1); hence
t|f ′(t)| ≪ϵ′ (X−1t+ 1)f(t); hence

|g+(s, χ, f ;X)| ≪ϵ′

∫ ∞

1

(X−1t+ 1)t−ae−t/Xdt = X1−a

∫ ∞

1/X

(u+ 1)u−ae−udu

≪ X1−a(Γ(2 − a) + Γ(1 − a)) ≪ X1−a = X1/2+ϵ′−ϵ.

This settles (i).

(ii) By definition,

(2.2.19) g−(s, χ, f ;X) =
1

2πi

∫
Re(w)=ϵ′−ϵ

Γ(w)g(s+ w, χ, f)Xwdw.

Since Re(w) = ϵ′ − ϵ, we have |Xw| = Xϵ′−ϵ, and

(2.2.20) Γ(w) ≪ exp(−π
2
|Im(w)|).

In the FF case, since Re(s+ w) ≥ 1/2 + ϵ′, we have, by (A3),

(2.2.21) |g(s+ w, χ, f)| ≪ε′,ϵ′′ N(f)ϵ′′ ;

for any ϵ′, ϵ′′ > 0; in particular, for ϵ′′ = ϵ′; whence (2.2.15).

In the NF case, the situation is more complicated. Put Im(w) = u, so that Im(s+w) =
t+ u. Then by (1.1.3)(since Re(s+ w) ≥ 1/2 + ϵ′) there exists C = Cϵ′ > 0 such that

(2.2.22) |g(s+ w, χ, f)| ≤ exp{C(ℓ(t+ u)ℓ(f)1−2ϵ′ + ℓ(t+ u)2)}.

But since |t + u| + 2 ≤ (|t| + 2)(|u| + 1), we may replace ℓ(t + u) by ℓ(t) + log(|u| + 1);
hence also ℓ(t+u)2 by 2(ℓ(t)2 + log2(|u|+1)). Therefore, there exists C ′ = C ′

ϵ′,T > 0 such
that when |t| ≤ T ,

(2.2.23) |g(s+ w, χ, f)| ≤ exp(C ′ℓ(f)1−2ϵ′) exp{C ′(ℓ(f)1−2ϵ′ log(|u| + 1) + log2(|u| + 1))},

which together with (2.2.19)(2.2.20) gives

(2.2.24) |g−(s, χ, f ;X)| ≪ Xϵ′−ϵ exp(C ′ℓ(f)1−2ϵ′)

∫ ∞

0

e−u(u+ 1)C′ℓ(f)1−2ϵ′

eC′ log2(u+1)du.
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By using the Schwarz inequality

(2.2.25)

(∫ ∞

0

f1(u)f2(u)du

)2

≤
(∫ ∞

0

f1(u)
2du

)(∫ ∞

0

f2(u)
2du

)
for f1(u) = e−u/2(u+1)C′ℓ(f)1−2ϵ′

, f2(u) = e−u/2eC′ log2(u+1), and by noting that the integral
of f2(u)

2du for this case is ≪ϵ′,T 1, we obtain

|g−(s, χ, f ;X)| ≪ϵ′,T X
ϵ′−ϵ exp(C ′ℓ(f)1−2ϵ′)

(∫ ∞

0

e−u(u+ 1)2C′ℓ(f)1−2ϵ′

du

)1/2

.

By putting u+ 1 = v and comparing the integral with the Γ-integral, we obtain

|g−(s, χ, f ;X)| ≪ϵ′,T Xϵ′−ϵ exp(C ′ℓ(f)1−2ϵ′)Γ(2C ′ℓ(f)1−2ϵ′ + 1)1/2

≪ Xϵ′−ϵ exp(C ′ℓ(f)1−2ϵ′) exp(C ′ℓ(f)1−2ϵ′ log(2C ′ℓ(f)1−2ϵ′))

≪ Xϵ′−ϵ exp(C ′′ℓ(f)1−2ϵ′ log ℓ(f))),

with some C ′′ = C ′′
ϵ′,T > 0. But C ′′ℓ(f)−2ϵ′ log(ℓ(f)) < ϵ′ holds for N(f) sufficiently large

depending on ϵ′, T . Hence this is

≪ϵ′,T X
ϵ′−ϵ exp(ϵ′ℓ(f)) = Xϵ′−ϵ(N(f) + 2)ϵ′ ≪ Xϵ′−ϵN(f)ϵ′ .

This settles the proof of (ii) also in the NF case. 2

2.3 – Study of Avgχ∈Ĝf

(
g+(χ)g′+(χ)

)
. This average will give the main term of

Avgχ∈Ĝf\{χ0} (ḡ(χ)g′(χ)), and this estimation depends only on the property (A1) of the
admissible family. Here, and in what follows in this subsection, we shall suppress from
the notations the dependence on s, f , X. Thus,

g+(χ) =
∑

(D,f)=1

χ(D)λ(D) exp(−N(D)/X)N(D)−s,(2.3.1)

g′+(χ) =
∑

(D,f)=1

χ(D)λ′(D) exp(−N(D)/X)N(D)−s(2.3.2)

(χ ∈ Ĝf ). The orthogonality relation for characters gives directly

(2.3.3) S := Avgχ∈Ĝf
(g+(χ)g′+(χ)) =

∑
c∈Gf

T (c)T ′(c),
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where

T (c) =
∑

if (D)=c

λ(D) exp(−N(D)/X)N(D)−s,(2.3.4)

T ′(c) =
∑

if (D)=c

λ′(D) exp(−N(D)/X)N(D)−s.

Now we shall make a full use of Prop 2.1.1. Let A = AK > 0 be as in Prop 2.1.1(ii),
and decompose as T (c) = T1(c) + T2(c), where T1(c) (resp. T2(c)) denotes the partial
sum over N(D) < AN(f) (resp. N(D) ≥ AN(f)). Define T ′

i (c) (i = 1, 2) similarly. By
definition, the sum for T1(c) has at most one term. Call c ∈ Gf small when there exists
an integral divisor D such that if (D) = c and N(D) < AN(f). In this case, call Dc the
unique such D. Thus,

T1(c) =

{
λ(Dc) exp(−N(Dc)/X)N(Dc)

−s (c : small),

0 (otherwise).

Since c 7→ Dc gives a bijection between small classes in Gf and integral divisors D satis-
fying (D, f) = 1 and N(D) < AN(f), we obtain

(2.3.5) S1 :=
∑
c∈Gf

T1(c)T
′
1(c) =

∑
(D,f)=1

N(D)<AN(f)

λ(D)λ′(D) exp(−2N(D)/X)N(D)−2σ.

Note that

(2.3.6) S1 ≪
∑
D

N(D)ϵ−2σ ≪
∑
D

N(D)−1−ϵ ≪ 1.

As for

(2.3.7) T2(c) =
∑

if (D)=c
N(D)≥AN(f)

λ(D) exp(−N(D)/X)N(D)−s,

we shall prove

(2.3.8) T2(c) ≪ϵ′ N(f)−1X1/2+ϵ′−ϵ

for any ϵ′ > 0. Since λ(D) ≪ N(D)ϵ′ , we have

(2.3.9) T2(c) ≪
∑

n≥AN(f)

ac(n)nϵ′−σe−n/X ,
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where ac(n) denotes the number ofD withN(D) = n, if (D) = c. But since
∑

n≤x ac(n) ≪
N(f)−1x for x ≥ AN(f) by Proposition 2.1.1 (i), we obtain (2.3.8) exactly by the same
argument as in the proof of Prop 2.2.13 (i). Therefore, by (2.1.6), E2 :=

∑
c∈Gf

|T2(c)|2,
E ′

2 :=
∑

c∈Gf
|T ′

2(c)|2 satisfy

(2.3.10) E2, E
′
2 ≪ |Gf |N(f)−2X1−2(ϵ−ϵ′) ≪ N(f)−1X1−2(ϵ−ϵ′).

Therefore, by (2.3.6) for (T1 = T ′
1),(2.3.10), and by the Schwarz inequality, we obtain

S − S1 =
∑
c∈Gf

(
((T1(c) + T2(c))(T

′
1(c) + T ′

2(c)) − T1(c)T
′
1(c)
)

(2.3.11)

≪ (N(f)−1Xα)1/2 +N(f)−1Xα,

where α = 1 − 2(ϵ− ϵ′) > 0. We shall choose

(2.3.12) X = N(f)β, with 0 < β < α−1,

so that N(f)−1Xα is a negative power of N(f); hence

(2.3.13) S − S1 ≪ (N(f)−1Xα)1/2 = N(f)(−1+αβ)/2.

We shall now treat the difference between S1 and

(2.3.14) S0 =
∑

(D,f)=1

λ(D)λ′(D)N(D)−2σ.

By the definitions of S1, S0, we have S0 − S1 = E + E ′, with

E =
∑

(D,f)=1
N(D)≥AN(f)

λ(D)λ′(D)N(D)−2σ,(2.3.15)

E ′ =
∑

(D,f)=1
N(D)<AN(f)

λ(D)λ′(D) (1 − exp(−2N(D)/X))N(D)−2σ.

As for E,

(2.3.16) E ≪
∑

N(D)≥AN(f)

N(D)ϵ−2σ ≤
∑

N(D)≥AN(f)

N(D)−1−ϵ.

But since the number of D with norm ≤ x is ≪ x, this gives

(2.3.17) E ≪
∫ ∞

AN(f)

t|d(t−1−ϵ)/dt|dt≪ N(f)−ϵ.
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As for E ′, since 0 < 1 − exp(−a) < a holds for any a > 0,
(2.3.18)

E ′ ≪
∑

N(D)<AN(f)

N(D)ϵ−2σ(1−exp(−2N(D)/X)) < 2AN(f)X−1
∑
D

N(D)−1−ϵ ≪ N(f)X−1;

hence for the above choice of X we have E ′ ≪ N(f)1−β; hence

(2.3.19) S0 − S1 ≪ N(f)−ϵ +N(f)1−β.

Therefore, combining with (2.3.13) we obtain (for the above choice of X)

(2.3.20) S − S0 ≪ N(f)(−1+αβ)/2 +N(f)−ϵ +N(f)1−β.

Now the question is how to choose β > 0 so that all the exponents of N(f) on the right
hand side of (2.3.20) are negative and the minimal of their absolute values is large enough.
One of such choices is where ϵ′ = ϵ/4, β = 1 + ϵ/2, in which case α = 1− (3/2)ϵ, and the
three exponents are

(−ϵ− (3/4)ϵ2)/2, −ϵ, −ϵ/2;

hence

(2.3.21) S − S0 ≪ N(f)−ϵ/2.

(We shall see in §2.6 that this choice of β is appropriate also for the estimation of the
counterpart related to g−(χ).)

2.4 – Differences between modified averages. We now compare the averages of
g+(χ)g′+(χ) over the whole group χ ∈ Ĝf , with that over the complement of χ0, and also
when f is a prime divisor, with that over {χ; fχ = f} (Note that when the class number
is greater than one, there can be non-principal characters with the conductor (1).) It is
easy to see that these differences are

(2.4.1) ≪ 1

|Gf |

(
Maxχ∈Ĝf

|g+(χ)|Maxχ∈Ĝf
|g′+(χ)|

)
.

Hence by Prop 2.2.13(i) and by (2.1.6), this is

≪ |Gf |−1Xα ≪ (logN(f))N(f)−1+αβ ≪ N(f)(−1+αβ)/2 ≪ N(f)−ϵ/2.

Therefore, by combining this with the main estimation (2.3.20) of the previous subsection,
we obtain

(2.4.2) Avgχ∈Ĝf\{χ0}(g+(χ)g′+(χ)) − S0 ≪ N(f)−ϵ/2,

together with that when f is a prime divisor, the average may be replaced by that over
{χ; fχ = f}.
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2.5 – Final stage of the proof. It remains to estimate the difference

(2.5.1) Avgχ∈Ĝf\{χ0}(g(χ)g′(χ)) − Avgχ∈Ĝf\{χ0}(g+(χ)g′+(χ)).

Recall that g = g+ − g−, g
′ = g′+ − g′−. But

(2.5.2) Avgχ∈Ĝf\{χ0}|g+(χ)|2, Avgχ∈Ĝf\{χ0}|g
′
+(χ)|2 ≪ 1,

because of S ≪ 1 (which follows from (2.3.6)(2.3.13)), and because of the estimations in
§3.4. On the other hand, by Prop 2.2.13(ii),

(2.5.3) Avgχ∈Ĝf\{χ0}|g−(χ)|2, Avgχ∈Ĝf\{χ0}|g
′
−(χ)|2 ≪ (N(f)X)2ϵ′′X−ϵ

for any ϵ′′ > 0. Hence if we choose ϵ′′ so small that 2ϵ′′(1+β) ≤ ϵ(β−1), which is possible
since β > 1, we obtain

(2.5.4) Avgχ∈Ĝf\{χ0}|g−(χ)|2, Avgχ∈Ĝf\{χ0}|g
′
−(χ)|2 ≪ N(f)−ϵ.

Therefore, by the Schwarz inequality, (2.5.1) is ≪ N(f)−ϵ/2. Therefore, together with
(2.4.2) we obtain

(2.5.5) Avgχ∈Ĝf\{χ0}(g(χ)g′(χ)) − S0 ≪ N(f)−ϵ/2.

When f is a prime divisor, this average may be replaced by that over {χ; fχ = f}.
Finally, in this case, it is clear that the sum for S0, which is over all D with the

condition (D, f) = 1, and the sum over all D without this condition, differs only by a
quantity ≪ N(f)ϵ′−2σ ≪ N(f)−1. This completes the proof of Theorem 1.
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3 Proof of Theorem 2

3.1 – Estimations of λz(D). Let z run only over |z| ≤ R. We shall prove

(3.1.1) λz(D) ≪R,ϵ′ N(D)ϵ′

for any ϵ′ > 0, which will settle the first statement of Theorem 2. Since Hr, Gr are
polynomials with positive coefficients and since δk(r) ≤

(
r−1
k−1

)
,

(3.1.2) |Hr(iz/2)| ≤ Hr(|z|/2) ≤ Gr(|z|/2) ≤ Gr(|z| logN(p));

hence
|λz(p

r)| ≤ Gr(|z| logN(p)) ≤ exp(2
√
r|z| logN(p))

holds in both Cases 1,2, by [4] Sublemma 3.10.1 (and
(

r−1
k−1

)
≤
(

r
k

)
). Now since we may

assume λz(D) ̸= 0 in proving (3.1.1), we may take the log of |λz(D)| for estimation.
Denoting by Supp(D) the set of prime factors of D we obtain

log |λz(D)| ≤ 2
√

|z|
∑
p|D

√
rp logN(p) ≤ 2

√
|z|
√
|Supp(D)|

√∑
p|D

rp logN(p)

≤ 2
√
R
√
|Supp(D)| logN(D).(3.1.3)

(The second inequality is by the Schwarz inequality.) On the other hand, by [4] Sublemma
3.10.5, we have

(3.1.4) |Supp(D)| ≪ logN(D)

log logN(D) + 2
.

Therefore, (3.1.3) gives

(3.1.5) log |λz(D)| ≪R
logN(D)√

log logN(D) + 2
.

Therefore, for any ϵ′ > 0, log |λz(D)| ≤ ϵ′ logN(D) if N(D) ≫ϵ′,R 1. This proves (3.1.1).

3.2 – The function gλz(s, χ, f). We shall now prove that

(3.2.1) exp

(
iz

2
L(s, χ, f)

)
=

∑
(D,f)=1

χ(D)λz(D)N(D)−s

holds on Re(s) > 1 for any χ ∈ Ĝf\{χ0}. But on this domain, each has an absolutely
convergent Euler product decomposition and the equality between their p-components is
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given by the equality (1.2.4) with x = − iz
2

logN(p), t = χ(p)N(p)−s in Case 1, and by
(1.2.5) with x = iz

2
, t = χ(p)N(p)−s in Case 2. Therefore,

(3.2.2) gλz(s, χ, f) = exp(
iz

2
L(s, χ, f)).

It is holomorphic on Re(s) > 1/2 in the FF case, and under GRH, also in the NF case.
This settles (A2). Now we are going to prove (A3) in several steps.

3.3 – Reduction of A3 to Theorem-Est. The property (A3) will be proved as a
Corollary of the following estimation Theorem.

Theorem-Est Let χ ∈ Ĝf\{χ0}, and s = σ + ti, with σ ≥ 1/2 + ϵ (ϵ > 0). Then∣∣∣∣L′

L
(s, χ, f)

∣∣∣∣ ≪ϵ
ℓ(f)2−2σ − 1

1 − σ
(FF )

≪ϵ
ℓ(f)2−2σ − 1

1 − σ

(
ℓ(t) +

ℓ(t)2

ℓ(f)

)
(NF ; under GRH).

When σ = 1, (ℓ(f)2−2σ − 1)/(1 − σ) should be replaced by its limit at σ = 1; namely by
2 log ℓ(f).

Corollary-Est Let L(s, χ, f) be either L′/L(s, χ, f) or logL(s, χ, f), and for any
0 < ϵ < 1/2, let σ ≥ 1/2 + ϵ. Then

|L(s, χ, f)| ≪ϵ ℓ(f)1−2ϵ (FF )

≪ϵ ℓ(f)1−2ϵ

(
ℓ(t) +

ℓ(t)2

ℓ(f)

)
(NF ; under GRH).

Reduction of Corollary-Est to Theorem-Est.
(Case 1) For each y > 1,

(3.3.1)
y1−σ − 1

1 − σ
=

∫ y

1

u−σdu

is monotone decreasing with σ. Therefore,

(3.3.2)
ℓ(f)2−2σ − 1

1 − σ
≤ ℓ(f)1−2ϵ − 1

1 − (1/2 + ϵ)
.

But since the right hand side of (3.3.2) is ≪ϵ ℓ(f)
1−2ϵ, the Corollary for Case 1 follows

immediately from Theorem-Est.
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(Case 2) Put σ0 := Max(σ, 2). Then

(3.3.3) logL(s, χ, f) =

∫ σ+ti

σ0+ti

L′

L
(s, χ, f) ds+ logL(σ0 + ti, χ, f).

Since | logL(σ0 + ti, χ, f)| ≤ | log ζK(2)| ≪K 1, where ζK(s) denotes the Dedekind zeta
function of K, and since |σ − σ0| < 2 − 1/2 ≪ 1, the Corollary for Case 2 follows
immediately from that for Case 1 by estimation of the integrand. 2

From the Corollary follows directly that the present family {gλz(s, χ, f)}|z|≤R satisfies
(A3). Thus, Theorem 2 is reduced to Theorem-Est.

3.4 – Reduction of Theorem-Est to a Key Lemma. As usual, for any integral
divisor D of K, let Λ(D) = logN(p) when D = pr for some prime divisor p and r ≥ 1,
and Λ(D) = 0 otherwise. For y > 1 and χ ∈ Ĝf , put

ψ(s, χ, f ;< y) =
∑

N(D)<y

χ(D)Λ(D)N(D)−s,(3.4.1)

ψ(s, χ, f ; y) = ψ(s, χ, f ;< y) +
1

2

∑
N(D)=y

χ(D)Λ(D)N(D)−s.(3.4.2)

When f = fχ (the conductor of χ), we shall suppress f from these notations and write
as ψ(s, χ;< y), ψ(s, χ; y). We shall assume hereafter that y is separated from 1, i.e.,
1 − y−1 ≫ 1. Then we have

(3.4.3)
y1−σ − 1

1 − σ
=

∫ y

1

u−σdu ≥ (y − 1)y−σ ≫ y1−σ,

and also an elementary unconditional estimation (cf. [4](6.4.9)):

(3.4.4) |ψ(s, χ, f ; y)| ≤
∑

N(p)≤y

logN(p)

N(p)σ − 1
≪
∫ y

1

u−σdu+ y1−σ ≪ y1−σ − 1

1 − σ
.

We shall reduce the proof of Theorem-Est to the following

Key Lemma For s = σ + ti with σ ≥ 1/2 + ϵ and for y > 1 separated from 1,∣∣∣∣L′

L
(s, χ) + ψ(s, χ; y)

∣∣∣∣ ≪ϵ y1/2−σℓ(f) (FF)

≪ϵ y1/2−σ(ℓ(f)ℓ(t) + ℓ(t)2) + y1−σ (NF; under GRH)

25



(The term y1−σ can be replaced by a one which tends to 0 as y → ∞ whenever σ > 1/2;
but this is more complicated and not necessary for the present purpose.)

Now this reduction can be done by using the following intermediate objects and the
decomposition, for a suitable choice of y.

(3.4.5)

∣∣∣∣L′

L
(s, χ, f)

∣∣∣∣ ≤ I + II + III + IV,

where

(3.4.6) I =

∣∣∣∣L′

L
(s, χ, f) − L′

L
(s, χ)

∣∣∣∣, II =

∣∣∣∣L′

L
(s, χ) + ψ(s, χ; y)

∣∣∣∣
(3.4.7) III = |ψ(s, χ, f ; y) − ψ(s, χ; y)|, IV = |ψ(s, χ, f ; y)|.

First, by (3.4.4), we have

(3.4.8) IV ≪ y1−σ − 1

1 − σ
.

Secondly, I and III are also minor terms obviously bounded by

(3.4.9)
∑
p|f

logN(p)

N(p)σ − 1
= I1 + I2,

where I1 (resp. I2) are the partial sums over N(p) ≤ ℓ(f)2 (resp. N(p) > ℓ(f)2). By
(3.4.4) we have

(3.4.10) I1 ≪
ℓ(f)2−2σ − 1

1 − σ
.

As for I2, since (log y)/(yσ − 1) is monotone decreasing for y > 1, and since
∑
p|f 1 ≪

ℓ(f)/ log ℓ(f) by [4]Sublemma 3.10.5, we have

(3.4.11) I2 ≤
2 log ℓ(f)

ℓ(f)2σ − 1

∑
p|f

1 ≪ ℓ(f)1−2σ ≪ ℓ(f)2−2σ.

Therefore,

(3.4.12) I, III ≪ ℓ(f)2−2σ − 1

1 − σ
.

Now put y = ℓ(f)2 (≥ (log 3)2 > 1). Then (3.4.8) and (3.4.12) give

(3.4.13) I + III + IV ≪ ℓ(f)2−2σ − 1

1 − σ
;
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while the Key lemma gives

II ≪ϵ ℓ(f)2−2σ (FF)(3.4.14)

≪ϵ ℓ(f)2−2σ(ℓ(t) + ℓ(t)2/ℓ(f)) + ℓ(f)2−2σ (NF; under GRH)

hence by combining these with (3.4.3) we obtain Theorem-Est. Thus, Theorem-Est is
reduced to the Key Lemma.

The Key Lemma in the FF case is proved in [4](6.8.4). To prove this in the NF case,
we shall make use of the following “explicit formula”.

3.5 – An explicit formula. Let K be any number field, let P∞ consist only of
the archimedean primes of K, and let χ be a primitive Dirichlet character on K, so that
L(s, χ, f) is the usual L-function L(s, χ). Put δχ = 1 (resp. 0) for χ = χ0 (resp. χ ̸= χ0).

Theorem-Exp Let σ = Re(s) > 1/2 and y > 1. Then:

(3.5.1)
L′

L
(s, χ) + ψ(s, χ; y) = −δχ

(
y−s

s
+

y1−s

s− 1

)
+

′∑
ρ

yρ−s

s− ρ
+ ℓ(s, sign(χ); y),

where ρ runs over all non-trivial zeros of L(s, χ),
∑′

ρ = limT→∞
∑

|ρ|≤T , and

ℓ(s, sign(χ); y) =
∑

trivial zeros

yµ−s

s− µ
(3.5.2)

= (a+ r2)
∑

i≥0, even

y−i−s

s+ i
+ (a′ + r2)

∑
i≥1, odd

y−i−s

s+ i
.

Here, a (resp. a′) denotes the number of real places of K at which χ is unramified (resp.
ramified), and r2 is the number of complex places of K.

For the proof see §3.7.

3.6 – Reduction of the Key Lemma (NF case) to Theorem-Exp.
To avoid inessential complications we shall restrict our attention to the case where

P∞ consists only of the archimedean primes. (The difference arising in the general case
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can be estimated easily as in the estimations of I, III in §3.4.) Recall Theorem-Exp for
χ ̸= χ0, which reads as

(3.6.1)
L′

L
(s, χ) + ψ(s, χ; y) =

′∑
ρ

yρ−s

s− ρ
+ ℓ(s, sign(χ); y).

As before, let σ0 = Max(σ, 2). Then this gives directly

(3.6.2)
L′

L
(s, χ) + ψ(s, χ; y) = P +Q+R,

where

P = yσ0−s

(
L′

L
(σ0, χ) + ψ(σ0, χ; y)

)
,(3.6.3)

Q =
∑

ρ

(
1

s− ρ
− 1

σ0 − ρ

)
yρ−s,(3.6.4)

R = ℓ(s, sign(χ); y) − yσ0−sℓ(σ0, sign(χ); y).(3.6.5)

The sum over ρ in Q is, unlike that in the above explicit formula itself, absolutely con-
vergent.

(Estimation of P ) Since σ0 ≥ 2 > 1, L′/L(σ0, χ) has an absolutely convergent Dirichlet
series expansion

(3.6.6)
L′

L
(σ0, χ) = −

∑
D

Λ(D)χ(D)N(D)−σ0 ;

hence ∣∣∣∣L′

L
(σ0, χ) + ψ(σ0, χ; y)

∣∣∣∣ ≤ ∑
N(D)≥y

Λ(D)N(D)−σ0 ≪ y1−σ0

σ0 − 1
≪ y1−σ0 .

(By partial summation, using
∑

N(D)≤x Λ(D) ≪ x.) Hence

(3.6.7) P ≪ y1−σ.

(Estimation of R) It is easy to see that ℓ(s, sign(χ); y) ≪ y−σ; hence

(3.6.8) R ≪ y−σ.
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(Estimation of Q, under GRH) By definition, and by GRH,

(3.6.9) |Q| ≤ y1/2−σ
∑

ρ

|σ0 − s|
|(s− ρ)(σ0 − ρ)|

.

Write ρ = 1/2 + iγ. The only property on the distribution of γ on the real axis that we
are going to use is the standard estimation, cf. e.g. [11];

(3.6.10) nχ(x) := #{ρ; |γ − x| ≤ 1} ≪ log dχ + [K : Q] log(|x| + 2)

for any x ∈ R, where dχ = |dK |N(fχ) (dK : the discriminant of K). Thus, in our notations,

(3.6.11) nχ(x) ≪ ℓ(f) + ℓ(x).

Now since

|σ0 − s| ≤ |t| + |σ0 − σ| < |t| + 3/2 < |t| + 2,√
2|s− ρ| ≥ (σ − 1/2) + |t− γ| ≥ ϵ+ |t− γ| ≫ϵ 2 + |t− γ|,√

2|σ0 − ρ| ≥ (σ0 − 1/2) + |γ| ≥ 3/2 + |γ| ≫ 2 + |γ|,

we have, by (3.6.9),

|Q| ≪ y1/2−σ(|t| + 2)
∑

ρ

1

(|γ| + 2)(|t− γ| + 2)
(3.6.12)

≪ y1/2−σ(|t| + 2)(ℓ(f)B1(t) +B2(t)),(3.6.13)

where

(3.6.14) B1(t) =

∫ ∞

−∞

1

(|x| + 2)(|t− x| + 2)
dx, B2(t) =

∫ ∞

−∞

log(|x| + 2)

(|x| + 2)(|t− x| + 2)
dx.

It is easy to see that

(3.6.15) B1(t) ≪
log(|t| + 2)

|t| + 2
, B2(t) ≪

log2(|t| + 2)

|t| + 2
.

Therefore,

(3.6.16) |Q| ≪ y1/2−σ(ℓ(f)ℓ(t) + ℓ(t)2).

Therefore, (3.6.7)(3.6.8)(3.6.16) combined give

(3.6.17)

∣∣∣∣L′

L
(s, χ) + ψ(s, χ; y)

∣∣∣∣≪ϵ y
1−σ + y−σ + y1/2−σ(ℓ(f)ℓ(t) + ℓ(t)2).

But since y−σ ≪ y1−σ, this settles the proof of the Key Lemma assuming Theorem-Exp.
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3.7 – Proof of Theorem-Exp. First, Weil’s explicit formula [17], applied to the
function F (x) on R defined by F (x) = e(1/2−s)x (0 < x < log y), F (x) = 0 (x < 0 or
x > log y), F (x) = (F (x+ 0) + F (x− 0))/2 (everywhere), gives directly:

ψ(s, χ; y) + δχ

(
y−s − 1

s
+
y1−s − 1

s− 1

)
(3.7.1)

=

′∑
ρ

yρ−s − 1

s− ρ
+

1

2
(log dχ −N log π)

+
a+ r2

2
G(
s

2
) +

a′ + r2
2

G(
s+ 1

2
) + ℓ(s, sign(χ); y),

where dχ = |dK |N(fχ), N = [K : Q] and G(s) = Γ
′
(s)/Γ(s). (Note: ±N

2
log 2 appears

from two different terms in the Weil formula, cancelling each other.)
On the other hand, the partial fractional decomposition of L′/L(s, χ) gives

L′

L
(s, χ) + δχ

(
1

s
+

1

s− 1

)
=

′∑
ρ

1

s− ρ
− 1

2
(log dχ −N log π)(3.7.2)

− a+ r2
2

G(
s

2
) − a′ + r2

2
G(
s+ 1

2
).

Here, the key formula is in [11] (the formula (5.9)), but in addition, we need the (con-

ditional) convergence of the sums
∑′

ρ(1 − ρ)−1 and
∑′

ρ ρ
−1 (cf. [8]§2), and the formula

in Theorem 2 of loc. cit., which asserts that the limit of the left hand side of (3.7.2) as
s→ 1 is equal to

(3.7.3)

′∑
ρ

1

1 − ρ
− 1

2
log dχ +

a+ r2
2

(γ + log 4π) +
a′ + r2

2
(γ + log π),

where γ denotes the usual Euler constant. By summing up (3.7.1)(3.7.2) we obtain the
desired explicit formula.

This completes the proof of Theorem 2.
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4 The analytic function M̃s(z1, z2).

4.1 – Let K and P∞ be as at the beginning of §1.1. We shall exhibit some basic
properties of the complex analytic function

(4.1.1) M̃s(z1, z2) =
∑

D: integral

λz1(D)λz2(D)N(D)−2s

of s, z1, z2 (Re(s) > 1/2) defined in §1.3. This will supplement some results given in [4]§3.7
(Case 1) and [7] (Case 2). Its analytic property on Re(s) > 0 will be discussed in a future
article. First, note that λz(D) (as well as χ(D)) is multiplicative in D and hence it has
an Euler product expansion, at least formally.

Theorem M̃ (i) Let p be any prime divisor of K not contained in P∞, and Re(s)> 0.
Define a continuous function gs,p(t) on C1 = {t ∈ C; |t| = 1} by

gs,p(t) =
−(logN(p))N(p)−st

1 −N(p)−st
(Case 1)(4.1.2)

= − log(1 −N(p)−st) (Case 2)

(the principal branch of the logarithm), and put

(4.1.3) M̃s,p(z1, z2) =

∫
C1

exp

(
i

2
(z1gs,p(t

−1) + z2gs,p(t))

)
d×t,

where d×t denotes the normalized Haar measure on C1. Then with the notations of §1.2,

M̃s,p(z1, z2) =
∞∑

r=0

λz1(p
r)λz2(p

r)N(p)−2rs(4.1.4)

= 1 +
∑
a,b≥1

(±i/2)a+bµ
(a,b)
s,p

za
1z

b
2

a!b!
,

where the sign is minus (resp. plus ) for Case 1 (resp. Case 2 ), and

µ
(a,b)
s,p = (logN(p))a+b

∑
r≥Max(a,b)

(
r − 1

a− 1

)(
r − 1

b− 1

)
N(p)−2rs (Case 1)(4.1.5)

=
∑

r≥Max(a,b)

δa(r)δb(r)N(p)−2rs (Case 2).

(ii) M̃s(z1, z2) has an absolutely convergent Euler product expansion on Re(s) > 1/2;

(4.1.6) M̃s(z1, z2) =
∏
p̸∈P∞

M̃s,p(z1, z2).

31



This convergence is uniform on Re(s) ≥ 1/2 + ϵ, |z1|, |z2| ≤ R , for each fixed ϵ, R > 0.

(iii) M̃s(z1, z2) for each s with Re(s) > 1/2 has an everywhere absolutely convergent
power series expansion

(4.1.7) M̃s(z1, z2) = 1 +
∑
a,b≥1

(±i/2)a+bµ(a,b)
s

za
1z

b
2

a!b!
,

with the same choice of the sign as above. Here, µ
(a,b)
s denotes the following Dirichlet

series which is absolutely convergent on Re(s) > 1/2;

(4.1.8) µ(a,b)
s =

∑
D

Λa(D)Λb(D)N(D)−2s,

where each Λk(D) is a non-negative real number determined from the polynomial coeffi-
cients of λz(D) by the formula

(4.1.9) λz(D) =
∞∑

k=0

Λk(D)

k!
(±iz/2)k

(the same choice of the sign).

(iv) As before, put

(4.1.10) ψz1,z2(w) = exp

(
i

2
(z1w + z2w)

)
(z1, z2, w ∈ C), and for σ > 1/2, let Mσ(z) denote the “M-function” defined and studied
in [4](Case 1) [7] (Case 2). (In the latter, it is denoted as Mσ(z).) Then

(4.1.11) M̃σ(z1, z2) =

∫
C

Mσ(w)ψz1,z2(w)|dw|.

In particular, M̃σ(z, z) is the Fourier dual M̃σ(z) of Mσ(z).

Proof (i) Recall the definition (4.1.2) of gs,p(t), and note that |N(p)−st| < 1. For each
k ∈ N, the power series expansion of the k-th power gs,p(t)

k in N(p)−st reads as

(4.1.12) gs,p(t)
k =

∞∑
r=1

a(k)
r (N(p)−st)r,

where a
(k)
r = 0 for r < k, and for r ≥ k,

a(k)
r = (− logN(p))k

(
r − 1

k − 1

)
(Case 1)(4.1.13)

= δk(r) (Case 2)
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(cf. §1.2). Hence by the definition of λz(p
r),

(4.1.14)
∞∑

k=1

a
(k)
r

k!
(iz/2)k =

r∑
k=1

a
(k)
r

k!
(iz/2)k = λz(p

r)

for any r ≥ 1 and z ∈ C. Therefore,

exp(
iz

2
gs,p(t)) = 1 +

∑
r, k≥1

1

k!
(iz/2)ka(k)

r (N(p)−st)r(4.1.15)

=
∞∑

r=0

λz(p
r)(N(p)−st)r.

But since M̃s,p(z1, z2) is nothing but the constant term in the Fourier expansion of

(4.1.16) exp

(
i

2
(z1gs,p(t

−1) + z2gs,p(t))

)
in tn (n ∈ Z), (4.1.4) follows directly.

(ii) Fix any ϵ, R > 0, and let s, z1, z2 run over Re(s) ≥ 1/2 + ϵ, |z1|, |z2| ≤ R. It
is obvious from the absolute convergence of the Dirichlet series (4.1.1) that the product∏

N(p)≤y M̃s,p(z1, z2) converges to M̃s(z1, z2) as y → ∞ uniformly. Our assertion, the
absolute convergence of the infinite product, requires also that the infinite sum

(4.1.17)
∑
p̸∈P∞

|M̃s,p(z1, z2) − 1|

converges uniformly. But by (4.1.4) and Theorem 2 (i),

|M̃s,p(z1, z2) − 1| ≤
∞∑

r=1

|λz1(p
r)λz2(p

r)|N(p)−2rσ(4.1.18)

≪ϵ′,R

∞∑
r=1

N(p)(2ϵ′−2σ)r ≤
∞∑

r=1

N(p)(−1−ϵ)r < 2N(p)−1−ϵ

(take ϵ′ = ϵ/2); hence this is clear.

(iii) First, a few preliminary remarks on Λk(D). When k = 0, we have Λ0(D) = 0
(resp. 1) for D ̸= (1) (resp. D = (1)). When k = 1, Λ1(D) = 0 unless D = pr with some
p ̸∈ P∞ and r ≥ 1, and in this case,

Λ1(D) =

{
logN(p) (Case 1),

1/r (Case 2).
(4.1.19)
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For k ≥ 1, Λk can also be expressed as the k-th iteration of Λ1;

(4.1.20) Λk(D) =
∑

D=D1...Dk

Λ1(D1)...Λ1(Dk).

(In Case 1, this is shown in [4]. In Case 2, the proof runs as follows. Let D =
∏

ν prν
ν

be the prime factorization of D, and tν be independent variables. Then since λz(D) is
multiplicative, it is equal to the coefficient of

∏
ν t

rν
ν in∏

ν

(
∞∑

r=0

λz(p
r
ν)t

r
ν) =

∏
ν

(
∞∑

r=0

Hr(iz/2)trν)(4.1.21)

= exp(−(iz/2)
∑

ν

log(1 − tν))

=
∞∑

k=0

1

k!
(iz/2)k(−

∑
ν

log(1 − tν))
k.

But since the coefficient of
∏

ν t
rν
ν in (−

∑
ν log(1 − tν))

k is nothing but the right hand
side of (4.1.20), we obtain the equality (4.1.20).)

In particular, µ
(0,0)
s = 1, µ

(a,0)
s = µ

(0,b)
s = 0 for ab ̸= 0. Since the Dirichlet coefficients

in (4.1.8) for a, b ≥ 1 are non-negative for all D and positive for, say, D = pa+b, we have

(4.1.22) µ(a,b)
σ > 0 (a, b ≥ 1).

Now let us prove (iii). In Case 1, this is proved in [4](Theorem 5 in §3.7). The
proof for Case 2 is almost parallel, but let us sketch this proof. Fix s with Re(s) > 1/2,
and put wj = izj/2 (j = 1, 2). Since the Dirichlet series (4.1.1) converges uniformly on
|w1|, |w2| ≤ 1, we obtain, first by termwise differentiation, then by putting w1 = w2 = 0,
and then by (4.1.9);(

∂a+bM̃s(z1, z2)

∂wa
1∂w

b
2

)
(0,0)

=
∑
D

(
∂aλz1(D)

∂wa
1

)
0

(
∂bλz2(D)

∂wb
2

)
0

N(D)−2s(4.1.23)

=
∑
D

Λa(D)Λb(D)N(D)−2s = µ(a,b)
s .

Since M̃s(z1, z2) is entire, the power series (4.1.7) must converge (absolutely) everywhere.
(iv) We shall use the rapidly decreasing property Mσ(w) = O(e−λ|w|2) for any λ > 0,

to be proved later (Lemma B §5). The integral on the right-hand side of (4.1.11) is the
limit of that over |w| ≤ R which is holomorphic in z1, z2, and the convergence is uniform
in a wider sense with respect to z1, z2. Therefore, each side of (4.1.11) is a holomorphic
function of z1, z2. Since they are equal when z2 = z1, as is proved in [4](Case 1) [7](Case
2), they must be equal for any z1, z2 ∈ C.

This completes the proof of Theorem M̃ .
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4.2 – Some remarks. (I) From (4.1.7) and (4.1.11), we obtain, by partial derivation,

(4.2.1) µ(a,b)
σ = (±1)a+b

∫
Mσ(w)P (a,b)(w)|dw|,

where ±1 = −1 (resp. 1) for Case 1 (resp. Case 2) throughout this subsection, and
P (a,b)(w) = w̄awb (a, b ≥ 0). Thus, by Theorem 4 (to be proved later) applied to Φ =
P (a,b), we also obtain

(4.2.2) µ(a,b)
σ = (±1)a+b lim

f prime
N(f)→∞

Avgfχ=fP
(a,b)(L(s, χ)),

under the same assumption as in Theorem 4. In Case 1, this equality for s = 1 is
proved unconditionally over K = Q [8], and over function fields, for any s with σ > 1/2
[4]Theorem 7(iii) 1.

(II) When iz1/2 = iz2/2 = y ∈ R, so that ψz1,z2(w) = exp(2yRe(w)), (4.1.7) gives

(4.2.3)
(
M̃σ(2y/i, 2y/i) − M̃σ(−2y/i,−2y/i)

)
/4y =

(±1)

2

∑
k≥3, odd

(
∑

k=a+b
a,b≥1

µ
(a,b)
σ

a!b!
)yk−1.

Note that when y ̸= 0, this is non-zero and has the same sign as (±1). Under the
assumption of Theorem 3, this is the limit of

(4.2.4) hs(f , y) = Avgfχ=f (e
2yReL(s,χ) − e−2yReL(s,χ))/4y

as N(f) → ∞; hence for any fixed s and y ̸= 0, the inequalities

hs(f , y) < 0 (Case 1),(4.2.5)

> 0 (Case 2),(4.2.6)

hold as long as N(f) is sufficiently large. On the other hand, we have

(4.2.7) hs(f , 0) = Avgfχ=fRe(L(s, χ)),

and since (4.2.3) is = 0 for y = 0, this must tend to 0 as N(f) → ∞.
The sign of hs(f , 0) for each individual f offers a more delicate problem. For example,

let K = Q and s = 1. Then for any odd prime f , (f − 2)h1((f), 0) is equal to∑
fχ=f

Re(L′(1, χ)/L(1, χ)) = γf − γ (Case 1),(4.2.8)

∑
fχ=f

log |L(1, χ)| = log κf (Case 2).(4.2.9)

1Rigorously speaking. in [4], deg p∞ = 1 is assumed which is inessential; cf. also [6].
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Here, κf denotes the residue of the Dedekind zeta function ζKf
(s) of the cyclotomic

field Kf = Q(µf ) at s = 1, γf denotes the quotient of the constant term of its Laurent
expansion at s = 1 divided by κf (the “Euler-Kronecker constant (invariant)” in the sense
of [2]), and γ = γ1, the usual Euler constant. The first named author considers it very
likely that, in contrast to the above inequalities (4.2.5)(4.2.6),

h1((f), 0) > 0 (Case 1)(4.2.10)

< 0 (Case 2)(4.2.11)

both hold 2. Among these, the first inequality is essentially a part of the conjectures on
the behaviour of γf raised in [3]. The second, which is equivalent with κf < 1, maybe
new even as a conjecture. A more basic question is whether ζKf

(σ)/ζ(σ) = 1 − 2−σ − ...
is everywhere monotone increasing on σ > 1− ϵ, as some numerical evidences suggest. In
fact, both are immediate consequences of this hypothesis.

(III) In Case 2, by the second formula for Hr(x) in (1.2.7), and by (4.1.4), the local
factor M̃s,p(z1, z2) is nothing but the Gauss hypergeometric function

F (a, b, c; t) = 1 +
a.b

1.c
t+

a(a+ 1).b(b+ 1)

1.2.c(c+ 1)
t2 + · · · ,

for
a = iz1/2, b = iz2/2, c = 1; t = N(p)−2s.

In particular, when a = b = y = ±1, they are

(1 −N(p)−2s)−1, 1 +N(p)−2s,

respectively; hence

M̃s(2/i, 2/i) =
∑

D integral

N(D)−2s(4.2.12)

M̃s(−2/i,−2/i) =
∑

D integral
squarefree

N(D)−2s.(4.2.13)

Finally, as for the limit formula

(4.2.14) lim
f→∞

Avgfχ=f |L(s, χ)|2 = ζ(2σ)

(Case 2, over Q) also referred to as an example in the Introduction, this is known to hold
unconditionally by [10] Theorem 1.

2These may look rather contradictory to the above inequalities (4.2.5)(4.2.6), but imagine the last
moment of sunset for Case 1, and that of sunrise for Case 2. Namely, the graph of h1((f), y) for each f
crosses the horizontal axis near y = 0 on both sides and, as f → ∞, the graph tends to that of −Cy2+ · · ·
(Case 1), Cy2 + · · · (Case 2), where C = µ

(1,2)
1 /2 > 0.
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5 Proof of Theorem 4

The most basic ingredient for the proof of Theorem 4 is Theorem 3, but we shall also
need two other fairly basic results, Lemma A (§5.1) and Lemma B (§5.2). In §5.3 we shall
give a proof of Theorem 4 assuming these two lemmas; then we shall give proofs of these
lemmas in later subsections.

5.1 – Changing test functions. Let Rd = {x = (x1, ..., xd); xi ∈ R (1 ≤ i ≤ d)}
be the d-dimensional Euclidean space (d = 1, 2, ...), and |dx| = (dx1...dxd)/(2π)d/2 be
the self-dual Haar measure with respect to the self-dual pairing ei⟨x,x′⟩ of Rd, where
⟨x, x′⟩ =

∑d
i=1 xix

′
i. Write, as usual, |x| = ⟨x, x⟩1/2. In what follows, a function will mean

a C-valued function on Rd.
For any function f belonging to L1, its Fourier transform f∧ and the inverse Fourier

transform f∨ are defined by

(5.1.1) f∧(x) =

∫
f(y)ei⟨x,y⟩|dy|, f∨(x) =

∫
f(y)e−i⟨x,y⟩|dy|.

Let Λ = Λ(Rd) denote the space of all f ∈ L1 ∩ L∞ such that f∧ also belongs to
L1∩L∞ and that (f∧)∨ = f holds. (By definition, L∞ consists of all continuous functions
which vanish at infinity; f ∈ L1 ∩ L∞ implies f ∈ Lp for all 1 ≤ p ≤ ∞.) Let us recall
here the following basic facts (cf. e.g. [16]). If f ∈ L1, then f ∈ Λ holds if and only if f
is continuous and f∧ belongs to L1. Moreover, for any f, g ∈ Λ, we have

(5.1.2)

∫
f∧(x)g∧(x)|dx| =

∫
f(x)g(x)|dx|.

Call S = S(Rd) the Schwartz space, i.e., the set of all C∞-functions f such that for any
partial derivative D of any order and for any k ≥ 0, |x|kD(f) tends to 0 as |x| → ∞.
Then S is contained in Λ, and is stable under the Fourier transform. In particular, any
compactly supported C∞-function belongs to Λ.

By a good density function on Rd, we shall mean any non-negative real valued contin-
uous function M(x) on Rd that belongs to Λ and satisfies

(5.1.3)

∫
M(x)|dx| = 1.

Note that M∧ necessarily satisfies

(5.1.4) |M∧(x)| ≤ 1 M∧(x) = M∧(−x).

Consider any finite measure space X∗ = (X,ω) with the total measure ω(X) = 1. In
other words, a finite set X is equipped with a weight function ω(χ) ≥ 0 (χ ∈ X) satisfying
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∑
χ ω(χ) = 1. For any C-valued function ϕ on X, we define the weighted average

(5.1.5) AvgX∗ϕ =

∫
ϕω =

∑
χ∈X

ω(χ)ϕ(χ).

Consider, now, any pair X∗∗ = (X∗, ℓ) of an X∗ = (X,ω) and a mapping ℓ : X → Rd.
We shall need some terminology related to “approximation” of the given measure space
(Rd,M(x)|dx|) by the ℓ-images of such finite measure spaces X∗. Namely, for a sequence
{X∗∗

n } of X∗∗
n = (X∗

n, ℓn), and a test function Φ on Rd, consider the condition

(5.1.6) lim
n→∞

AvgX∗
n
(Φ ◦ ℓn) =

∫
M(x)Φ(x)|dx|.

(So to speak, “approximation at the level Φ”.) What we shall need is to deduce, from the
validity of (5.1.6) for some special classes of functions Φ to that for more general cases of
funtions Φ.

Lemma A Let M(x) be any good density function on Rd, and {X∗∗
n }n≥1 be a sequence

of pairs X∗∗
n = (X∗

n, ℓn) of a finite measure space X∗
n and a mapping ℓn : Xn → Rd.

(i) Suppose that (5.1.6) holds for any additive characters Φ = ψ(y) : x → ei⟨x,y⟩, and
that the convergence is uniform in the wider sense w.r.t. the parameter y ∈ Rd. Then
(5.1.6) holds for any function Φ belonging to Λ. In particular, it holds for any compactly
supported C∞-function.

(ii) Suppose (5.1.6) holds for all compactly supported C∞-functions Φ on Rd. Then:
(a) it holds for any bounded continuous function Φ;
(b) it holds for any continuous function Φ satisfying

(5.1.7) |Φ(x)| ≤ ϕ0(|x|),

if there exists a continuous monotone non-decreasing function ϕ0(r) > 0 of r ≥ 0 satisfying
limr→∞ ϕ0(r) = ∞ and ∫

M(x)ϕ0(|x|)|dx| < ∞,(5.1.8)

AvgX∗
n
(ϕ0 ◦ |ℓn|)2 ≪ 1;(5.1.9)

(c) its holds when Φ is the characteristic function (the defining function) of either a
compact subset of Rd or the complement of such a subset.
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5.2 – Rapid decay of Mσ(z), a la Jessen-Wintner. We shall need the following
property of Mσ(z), which essentially goes back to Jessen-Wintner [9].

Lemma B Fix σ > 1/2. Then in each of Cases 1,2, we have

(5.2.1) Mσ(z) = O(e−λ|z|2) any λ > 0.

This proof will be given in §5.7.

5.3 – Proof of Theorem 4 assuming Lemmas A,B We shall apply Lemma A to
the following situation:

C for R2 (note that Re(zw) = ⟨z, w⟩ (z, w ∈ C)),
Mσ(z) (σ > 1/2) for M(x),
The set of prime divisors f (̸= p∞ in the FF case) of K, instead of n = 1, 2, ...,
The set Ĝ′

f := {χ ∈ Ĝf ; fχ = f} for Xn, with ωχ = 1/|Ĝ′
f | for all χ ∈ Ĝ′

f ;
and finally,

L(s, χ, f) for ℓn(χ) (for each s with σ = Re(s) > 1/2).

Since ψz,z̄ (z ∈ C) runs over all additive characters of C, Theorem 3 for the case
z2 = z̄1 asserts that the assumption of Lemma A (i) is satisfied. Therefore, by Lemma
A (i), the first common assumption of Lemma A(ii) is satisfied. Now take any a > 0
and put ϕ0(r) = exp(ar). It remains to show that this satisfies the assumption of (ii)(b).
But (5.1.8) is obvious by Lemma B, while (5.1.9) is nothing but Corollary 1.3.12. When
σ > 1, Theorem 3 holds unconditionally (Remark 1.3.5), |L(s, χ, f)| is bounded, and
Mσ(w) is compactly supported [4](Case 1)[7](Case 2); hence the validity of (1.4.1) for
any continuous function Φ is a trivial consequence of that for any compactly supported
continuous function. Therefore, Theorem 4 is reduced to Lemmas A and B.

5.4 – Proof of Lemma A (i). We shall first prove (i). By assumption and by
(5.1.1), we have

(5.4.1) lim
n→∞

AvgX∗
n
(ψ(y) ◦ ℓn) = M∧(y) (uniformly on |y| ≤ R)

for any R > 0, where ψ(y)(x) = ei⟨x,y⟩. Now let Φ be any element of Λ and put

(5.4.2) ∆n(Φ) = AvgX∗
n
(Φ ◦ ℓn) −

∫
M(x)Φ(x)|dx|.
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(Since M, Φ ∈ Λ, the above integral is finite.) Write X∗
n = (Xn, ωn). Then since (Φ∧)∨ =

Φ, M(x) = M(x) and M∧(y) = M∧(−y), (5.1.2) gives

∆n(Φ) =
∑

χ∈Xn

ωn(χ)Φ(ℓn(χ)) −
∫
M(x)Φ(x)|dx|(5.4.3)

=
∑

χ∈Xn

ωn(χ)

∫
Φ∧(y)e−i⟨ℓn(χ),y⟩|dy| −

∫
M∧(−y)Φ∧(y)|dy|(5.4.4)

=

∫ (∑
χ∈Xn

ωn(χ)ei⟨ℓn(χ),−y⟩ −M∧(−y)

)
Φ∧(y)|dy|

=

∫ (
AvgX∗

n
(ψ(−y) ◦ ℓn) −M∧(−y)

)
Φ∧(y)|dy|.

But since |ψ(−y)(x)|, |M∧(y)| ≤ 1, we obtain for any R > 0,

(5.4.5) |∆n(Φ)| ≤
∫
|y|≤R

|AvgX∗
n
(ψ(−y) ◦ ℓn)−M∧(−y)||Φ∧(y)||dy| + 2

∫
|y|≥R

|Φ∧(y)||dy|.

Since Φ ∈ Λ and hence in particular Φ∧ ∈ L1, the total integral of |Φ∧| is finite. Call this
value I. Now, given any ϵ > 0, choose R so large that the second term on the right hand
side of (5.4.5) is < ϵ. Then choose ϵ′ > 0 such that ϵ′I < ϵ. Then by (5.4.1),

(5.4.6) |AvgX∗
n
(ψ(−y) ◦ ℓn) −M∧(−y)| < ϵ′

holds on |y| ≤ R for sufficiently large n, which implies |∆n(Φ)| < 2ϵ for such large n. This
settles the proof of (i).

5.5 – Proof of Lemma A (ii) First, the validity of (5.1.6) for any compactly
supported C∞-function implies that for any compactly supported continuous function,
because the latter can be approximated by the former.

As for (c), this can be proved directly by approximation of the characteristic function
of a given compact set by continuous compactly supported functions, as is explained in
detail in the two dimensional case in [6]§4.3.

Now to prove (a)(b), let Φ satisfy the assumptions of one of (a)(b), and put αn =
AvgX∗

n
(Φ ◦ ℓn). In each case, αn (n = 1, 2, ...) is a bounded sequence. Let α be any of its

limit points. It is the limit of some subsequence αnν . The goal is to prove

(5.5.1) α =

∫
M(x)Φ(x)|dx|.
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To prove this, note first that for any R > 0 there exists a compactly supported continuous
function ΦR satisfying

(5.5.2) |Φ(x) − ΦR(x)| ≤ (1 − chR(x))|Φ(x)|

where chR denotes the characteristic function of {|x| ≤ R}. Indeed, if E(u) is any
compactly supported continuous function such that 0 ≤ E(u) ≤ 1 everywhere and E(u) =
1 for |u| ≤ 1, then ΦR(x) = Φ(x)E(x/R) has this property. Now choose such ΦR for each
R, and put αn,R = AvgX∗

n
(ΦR ◦ ℓn). Since ΦR is compactly supported and continuous, we

have

(5.5.3) lim
n→∞

αn,R =

∫
M(x)ΦR(x)|dx|.

Now, (5.5.2) gives

αn − αn,R = AvgX∗
n
((Φ − ΦR) ◦ ℓn)(5.5.4)

≪ βn,R := AvgX∗
n
((1 − chR)|Φ| ◦ ℓn),

and also

(5.5.5) lim
R→∞

∫
M(x)ΦR(x)|dx| =

∫
M(x)Φ(x)|dx|.

Now suppose that Φ is bounded. Then βn,R ≪ AvgX∗
n
((1 − chR) ◦ ℓn) which tends

to
∫
|x|≥R

M(x)|dx| as n → ∞, because we already know that (5.1.6) holds for 1 − chR.

Therefore, (5.5.4) for nν , ν → ∞ gives

(5.5.6) α−
∫
M(x)ΦR(x)|dx| ≪

∫
|x|≥R

M(x)|dx|.

Therefore, by letting R → ∞ we obtain (5.5.1) when Φ is bounded.
When |Φ(x)| ≤ ϕ0(|x|) as in (b), (5.1.7)(5.1.9) and the Schwarz inequality give (note

that 1 − chR is the same as its square):

β2
n,R ≤ (AvgX∗

n
((1 − chR) ◦ ℓn))(AvgX∗

n
(ϕ0 ◦ |ℓn|)2)(5.5.7)

≪ AvgX∗
n
((1 − chR) ◦ ℓn).

But since ϕ0(r) is positive and monotone non-decreasing, we have, trivially,

(1 − chR)(x)ϕ0(R)2 ≤ ϕ0(|x|)2.

Therefore,

(5.5.8) AvgX∗
n
((1 − chR) ◦ ℓn) ≤ ϕ0(R)−2AvgX∗

n
(ϕ0 ◦ |ℓn|)2 ≪ ϕ0(R)−2.
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Therefore, by (5.5.7), we obtain βn,R ≪ ϕ0(R)−1. Therefore, (5.5.4) for nν with ν → ∞
gives

(5.5.9) α−
∫
M(x)ΦR(x)|dx| ≪ ϕ0(R)−1;

hence by letting R → ∞ we obtain (5.5.1) also for this case. This completes the proof of
Lemma A.

5.6 – Proof of Lemma B. The general theory developed in [9], from §7 on, starts
with any holomorphic function F (z) on |z| < ρ (in our case ρ = 1) satisfying F (0) =
0, F ′(0) ̸= 0, and from §8, also with any sequence {rn}n≥1 of positive real numbers
satisfying rn ≤ r for some r < ρ and

∑
n r

2
n < ∞. Then the existence of the “continuous

density” D(z) for the distribution on C of the values of

(5.6.1)
∑

n

F (rne
2πiθn)

(0 ≤ θn < 1) is established, and some basic analytic properties of D(z) are proved (loc.
cit. Theorems 14-16).

Here, (just for Case 1) we need the following (slight) generalization. Let {λn}n≥1

be another sequence of positive real numbers satisfying λ−1
n ≪ 1 and

∑
n λ

2
nr

2
n < ∞.

Consider now the distribution of

(5.6.2)
∑

n

λnF (rne
2πiθn)

on C. Then Theorems 14-16 remain valid; in particular, the existence of the density
(function) D(z) (Theorem 14) and the property D(z) ≪ e−λ|z|2 for any λ > 0 (Theorem
16) remain valid. (Incidentally, the condition r−1

n ≪ n in Theorem 15 need not be
modified.)

Now, take

F (z) =

{
z/(z − 1) (Case 1),

− log(1 − z) (Case 2),

(so that ρ = 1). Moreover, in Theorem 14, take {p; p ̸= p∞} instead of n ∈ N, take
N(p)−σ for rn, take logN(p) (resp. 1) for λn in Case 1 (resp. Case 2). Then for each
σ > 1/2 and for each of Cases 1,2, the above conditions are satisfied and the corresponding
density function D(z) is nothing but our Mσ(z). Therefore, (the modified) Theorem 16
of [9] gives Lemma B (see also Theorem 19 for Case 2, with N(p) in place of pn).
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