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Introduction

0.1 — The main subject of this paper concerns the role of “M-functions” in the value-
distribution theory, for logarithms and their derivatives, of L-functions L(s,x) over a
global base field K. Here, s = 0 +ti (¢ > 1/2) is fixed and x runs over a certain family
of Dirichlet characters on K. In the case of logarithmic derivatives L'/L(s, x), this is a
continuation of [8, 4, 6]. This paper forms a “complementary pair” with [7] where some
basic results for the case of log L(s, x) over K = Q are given. Here, the main results are for
both cases and over function fields over finite fields. But we also include the corresponding
conditional results (i.e., under GRH, the Generalized Riemann Hypothesis) over Q and
over imaginary quadratic fields, in order to show what one can expect in the “optimal
situation”. In spite of the obvious close connection in the subject itself, there are no
serious logical interdependences between [7] and the present paper. The approaches also
are quite different even when K = Q.

0.2 — Let us start with explaining the conditional results over Q. The L-function L(s, x)
associated with any non-principal Dirichlet character y is, under GRH, holomorphic and
non-vanishing on o = Re(s) > 1/2; hence its logarithm on this domain can be defined in
the natural manner. Thus,

(0.2.1) L(s,x): = L'(s,x)/L(s,x) (Casel)
= log L(s, x) (Case 2)

is holomorphic on ¢ > 1/2 in each case. But we shall fix any s in this domain, consider
L(s, x) rather as a function of x, and for any mild test function ® on C, study the mean
value of ®(L(s,x)) when y runs over some natural family of characters. For this study,
the basic role is played by the case where ® is a quasi-character C — C* of the additive
group C. Such quasi-characters are parametrized by two complex numbers 21, 25, as

(022 ) = oxp (et + 200))



(i = v/—1), and it is a character if and only if 2y, 2, are mutually conjugate. These are
not only basic in the function space on C, but also fit very well with this study, because
each of v, ,,(L(s, x)) has an Euler product expansion on o > 1 reflecting the Euler sum
decomposition of L(s,x). It should also be noticed that unless 1, ., is a character, its
value at L(s, x) can be “exponentially large”.

For each prime divisor ! f, let Avgg _¢ denote the average over all primitive Dirichlet
characters x with conductor f. Our first main result (Theorem 3 in §1.3) asserts that

(0.2.3) lim  Avge _¢ths, ., (L(s, X)) = My (21, 22) (0 >1/2, under GRH)

f prime
N(f)—o0

holds. In fact, the limit converges uniformly in the wider sense with respect to s, 21, 22.
To define M, (z1, z2), put

Z(s) = ((9)/¢(s) (Case 1),
= log((s) (Case 2),

((s) being the Riemann zeta function, and consider the Dirichlet series

(0.2.6) eXp(%zZ(s)) =Y An)n (0> 1).

It is easy to see that in each of Cases 1,2, A.(n) (n = 1,2,...) are polynomials in z and
multiplicative in n (see §1.2). Consider now the following Dirichlet series

(0.2.7) My(21,22) = ) Ae(m)As, (0™ (0> 1/2)

(so to speak, the “termwise product” of exp((iz;/2)Z(s)) and exp((iz2/2)Z(s))). This
series also converges absolutely and uniformly in the wider sense on ¢ > 1/2; and hence
defines an analytic function of 3 complex variables s, 21, 2o on this domain 2. For this,
GRH is unnecessary. The above function Mg(zl, 2z9) is its restriction to s = o € R.

The above mean value theorem is an analogue of Carlson’s mean value theorem on
the limit average of Dirichlet series over a vertical axis inside the critical strip [1] (cf. also
[14, 12, 13]). Two main differences are (i) we take averages over y, and (ii) the Dirichlet
series considered are of the type 1., ., (L(s, X))

'Here we use the notation system for the general case of K employed in the main text; thus, here, f
corresponds to a prime number f, and N(f) = f.
2in Case 1, it is already treated in [4].



0.3 — As for the base field K, in addition to K = Q, we shall also include imaginary
quadratic fields (also under GRH), and any algebraic function field of one variable over
a finite field with one assigned “infinite” prime divisor p... In short, K is any global
field with just one infinite prime. In the function field case, we shall normalize y by the
condition x(ps) = 1 to kill infinitely many trivial twists not changing the conductor.
The Euler factor corresponding to ps, should be dropped from each of L(s, x), L(s, ),
Ms(zl, z9). This applies also for the convolution Euler p..-factor in the function M, (z)
which appears later.

0.4 — The second main result, which is closely related to the first, concerns the equality
of the form
(0.4.1) fhm Avge ¢ P(L(s, X)) / M, ( w)|dw| (0 >1/2),

prime

N(f)—o0

where |dw| = dxdy/2m for w = x +yi, ¢ is a test function on C, and M, (w) is the density
function for the distribution of values of {L(s, x)}, constructed in [4](for Case 1), [7] (for
Case 2, where it is denoted by M, (w)); see also §5.6 of the present paper. At least in
Case 2, it has a long history since Bohr and Jessen; for this, cf. the Introduction of [7].

The connection between M, (w) and M,(z, z,) is
(0.4.2) M, (21, 25) = /C M, ()b, -, (w)|duo| (0>1/2, 2,2 € C):
in particular, if we put ¢, (w) = 1, -(w) = e (which is a character C — C!), then
0.4 V(=) = M(2,2) = | Mow)sfw)ldw

is the Fourier dual of M, (z).
In [6], the following weaker version

(0.4.4) nlleoo Aven(g< (Avgf _¢P(log L(s, x)) / M, ( w)ldw| (0 >1/2)
is established in Case 1 for the function field case for any ® which is continuous and with
at most a polynomial growth (which improves Theorem 7 of [4]). In [7], it is proved,
among other things, that in Case 2, (0.4.4) holds for K = Q unconditionally if ® is
continuous and bounded.

In the present article, we shall prove that (0.4.1) itself holds for each of Cases 1,2, if
(i) K is either any function field, or the rational number field or an imaginary quadratic
field, under GRH in the latter two cases, and (ii) if ® is any continuous function with
at most exponential growth. This improves [6] and complements [7]. Note that the case
¢ = 1), ,, corresponds to the first main result (0.2.3). This special case stands at the
crucial point in the proof, too.



0.5 — The above mean value theorem motivates us to study the analytic function
M,(z1, ) itself more closely. The most basic properties studied in [4] and in this pa-
per include the following. Firstly, Ms(zl, 29) has an Euler product expansion on o > 1/2.
Moreover, as can be expected, each Euler factor may be interpreted as the limit average
of the corresponding Euler factor of 1., ,(L(s, x)) (see (4.1.3)). Unlike the Euler product
expansion of each of 1., .,(L(s, x)), for which at most a conditional convergence can be
expected on 1/2 < o < 1, the Euler product expansion for its limit average M,(z1, 2o) is
absolutely convergent on o > 1/2.

Secondly, this function also admits an everywhere convergent power series expansion
in 21, zo with Dirichlet series coefficients (Theorem M in §4.1). Moreover, the coefficient
of 225 is essentially the limit average of P(“*)(L(s, x)), where P(@%) (w) = @w®w® (a,b > 0).
An amusing application shows, under GRH, that for any fixed ¢ > 1/2, y > 0, and for
N(f) sufficiently large, we have the inequalities

(0.5.1) Avee _gexp(2yRe(L(s,x)/L'(s,x))) < Avge _¢exp(—2yRe(L(s,x)/L'(s,x))),
AngX:f|L(SaX)|2y > AngX=f|L(3>X)|_2y-

For example, let y = 1. Then, in the limit N(f) — oo, the latter inequality “tends to”:

(0.5.3) (20)=> n?> Y a7

n squarefree

For these, see §4.2.

As for the zeros of M,(z1, z5), they are “merely” the collection of zeros of local Euler
factors, but still, a non-trivial basic object of study. An interesting case is where zo = Z1,
and especially where z; = yi, 2o = —yi with y € R. This, and the study of the global
“Plancherel Volume” of the density function for Case 1, can be found in [5].

Finally, the analytic property of M (z1, z2) on a wider domain

(0.5.4) {o > 0} \{1/2n, p/2n}nen¢(o)=0;

seems also remarkable but this will be discussed in a future article.

0.6 — The main results (Theorems 1-4) are summarized in §1, except for Theorem M
related to the function M;(z1,2) which is in §4. The remaining sections are for their
proofs.

The first Theorem 1 (§1.1; the proof in §2) axiomatizes the present type of the mean-
value theorem. A basic concept here is “uniformly admissible family of arithmetic func-
tions”. Theorem 2 (§1.2; the proof in §3) asserts that {\.}./<g is such a family. This is
for any global field (under GRH in the number field case). The key is the estimation of
|L£(s,x)| on this region, and since this comes inside the exponential sign, a fairly strong
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estimate is required. We shall first prove a “universal” estimate on Re(s) > 1/2 + ¢
for |L'/L(s, x)| by using one of the “explicit formulas” (Theorem-Exp in §3.5), and then
derive that for log L(s, x) by integration. The estimates thus obtained matches with
Titchmarsh’s conditional estimates of |log ((s)| and |¢’/{(s)| in his book (Theorem 14.5
of [15]). It is no wonder if an appropriate L-function version, with a careful treatment of
the dependence on N(f, ), already existed somewhere in an old literature. Since we could
not find such, we decided to give them full proofs at the cost of the length of the paper.

From these two theorems, we obtain, directly, the next Theorem 3 (§1.3) which corre-
sponds to the first main result mentioned above (for the base fields stated in §0.3). Then,
in §4, some of the basic properties of M,(z1,2) are stated (Theorem M ) and proved.
Finally, in §5, we shall give a proof of Theorem 4 (stated in §1.4) which corresponds to
the second main result mentioned above. The proof is based on two key lemmas, Lemma
A (“the equality (0.4.1) for some special ® implies that for some more general "), and
Lemma B on the rapid decay property of M,(z) whose proof contains the explanation of
the explicit connections between the constructions in [9] and [7].



1 The main results

1.1 — Uniformly admissible family of arithmetic functions. Let K be a global
field, i.e., either an algebraic number field of finite degree (NF) or an algebraic function
field of one variable over a finite field F, (FF), given together with a finite set Py, of prime
divisors of K. We assume that P, contains all the archimedean primes (NF case) and is
non-empty also in the FF case. By an integral divisor we shall mean any divisor D of K
having a prime factorization of the form D =[] . p"™ (r, > 0).

For an integral divisor f, let Iz be the group of divisors of K coprime with fP,,, and
define

Gt = It/{(a); o = 1(mod f), o, > 0 (allreal archimedean primesv)},
where for each & € K*, (a) denotes the “prime-to-P,,” component of the principal divisor
generated by «, and «,, the v-component.! Note that G¢ is always finite (including the
FF case because P, is non-empty). Define

¢ - Iy — Gy: the projection,

Gy : the character group of Gy, with the unit element yj.
For each x € G and an integral divisor D, we define x(D) = x(ig(D)) if (D,f) =1, and
X(D) = 0 otherwise.

An arithmetic function will mean a C-valued function D +— A(D) on integral divisors.
It will be called admissible if it satisfies the following three conditions (A1)-(A3):

(A1) AD) <o N(D)¢  for any ¢ > 0.

(A2) For any integral divisor f and y € G¢\{xo}, consider the Dirichlet series

(1.1.1) a(s.x. )= > x(D)MD)N(D)™,
(D.f)=1

where the summation is over all integral divisors coprime with f. By (A1), this converges
absolutely and defines a holomorphic function on Re(s) > 1. The condition (A2) imposes
that this extends to a holomorphic function on Re(s) > 1/2.

(A3) In the FF case this simply imposes that
(1.1.2) 9a(5, X, F) Koo N(£)¢ holds on Re(s) > 1/2 + ¢
for any €,¢ > 0. In the NF cases, the condition is necessarily more complicated;

(1.1.3) Max(0, log |ga(s, x, £)|) < L(#)(£)' 7>+ £(t)*  on Re(s) > 1/2+¢

!The second system of conditions c,, > 0 is optional; the results remain valid if we do not impose this
(except of course for a slight difference in the formula for |Ge| in §2.1).
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for any 0 < € < 1/2, where t = Im(s) and

(1.1.4) ((f) = log(N(f) +2) if £is an integral divisor,
(1.1.5) ot) = log(|t] +2) if teR.

The holomorphic functions gy(s, x,f) will be called the g-functions associated with \. If
A is a family of admissible arithmetic functions such that the implicit constants in (A1)
and (A3) can be chosen to be independent of A € A, then A will be called a uniformly
admissible family of arithmetic functions. Important examples of such families will be
given in Theorem 2 (§1.2).

The notion of uniformly admissible family of arithmetic function is invented because
it seems to give a natural setting for the following mean value theorem. Unfortunately,
at least at present, we need to assume further in this theorem that |Py| = 1, i.e., either
K is the rational number field or an imaginary quadratic field and P, consists only of
the unique archimedean prime, or K is a function field over a finite field and P, consists
of just one prime divisor (to be called p.,). The point is that in such a case the group of
P..-units of K is finite, so that the order of Gy is comparable with N (f).

By Avg, xG(x), for a finite set X of characters y and a C-valued function G(x) of
X, we shall mean the usual average |X|™' 37 _y G(x).

Theorem 1 Let A be any uniformly admissible family of arithmetic functions, and
let A\, X run over A. Fiz any e such that 0 < e < 1/2, and let s = o + ti run over the
domain 0 > 1/2 4+ €. In the NF case, we also fir T > 0 and impose additionally that
[t| <T. Assume |Px| = 1. Then:

(i) For any integral divisor f, we have

(L1.6)  AVE cap ot (91 (s, X, D)gn (s, X, 1)) — A(D)X(D)N (D)™ < N(£)~2.
(D.f)=1

In particular, the quantity on the left hand side tends to 0 uniformly as N(f) — oc.
(i) Let £ run only over the prime divisors. Then

(117) lim Avgxeéf\{xo}(gk(sa X f)gN(S7 X f)) = Z WA/(D)N(D)_QU7

N(f)—oo

and the convergence is uniform w.r.t. A, N, s. Moreover, the above average may be replaced
by that over all x with the conductor f, = f.

The proof will be given in §2.

Remark For given Ay, ..., \x € A, define their *-product by

(1.1.8) Mk xA)(D) = > M(D1)..\(Dy).

D=D;...Dy
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Then this is also admissible, being associated with the product

(119) Gxi-- G-

This is because if S(D) denotes the number of distinct factors of D, then for any ¢ > 0 we
have S(D) <« N(D), as is well-known in the NF case and can be proved similarly in the
FF case (cf. [6]Appendix, for a unified proof). Moreover, if we fix k, then Ay := {\ x... %
Ak A1y - A € A} is again a uniformly admissible family of arithmetic functions. Thus,
Theorem 1 remains valid if gy, g\ are replaced by their k-th powers and A\(D), XN'(D), by
their k-th x-powers.

1.2 — The families {).}.<p associated with L-functions. = We shall consider

the Dirichlet L-function associated with each y € Gy, X # Xo, without Ps-component.
Namely, define

(1.2.1) Lis,x,0) = [ (1 = x(®)Np)™)7,
pePoc

which converges absolutely on Re(s) > 1 and extends to a holomorphic function on
Re(s) > 1/2. In the FF case, and in the NF case under GRH, it has no zeros on this
domain. In these cases, log L(s, x, f) on this domain is defined as the unique holomorphic
branch that vanishes at s = 4-00. Write:

(1.22) Lo f) = {ltL)gL(s,X,f) (Case2).

We shall show in the next Theorem that for any given R > 0, the family of functions

(1.2.3) exp (g (s, X,f))

parametrized by {z;|z| < R} forms (in each of Cases 1,2) a family of g-functions gy_ (s, x, f)
associated with a uniformly admissible family {\.}.|<r of arithmetic functions. To explain
this, first define the polynomials G,(z), H.(z) (r=0,1,2,...) of z as

(1.2.4) exp(zt/(1—1t)) ZG

(1.2.5) exp (—zlog(l—t)) = (1 —1t)~ Z H,(



by generating functions (|t| < 1). Explicitly, Go(z) = Hop(x) = 1, and for r > 1,

T

(1.2.6) G (z) = 2%(2:1)5@

k=
r 1 1
(1.2.7) Hy(z) = > H%(T)wk = o+ 1) (v +r—1),
k=1
where
1
(128) 519(7") - Z r1...Tk
r=ri+..+rg
Ty >1

Theorem 2  For each z € C and each integral divisor D = Hp p’r, define A\,(D) by

(1.2.9) A(D) = [ (™),

p|D
(1.2.10) A = {grii—_z;élogl\f(p)) Egz:;;

where i = v/—1. (In particular, \,(D) = 1 for D = (1).) Then, for any K and Ps,

(i) the family {\.}.<r satisfies (A1) uniformly, i.e., with < depending only on (¢
and) R.

(ii) Moreover, if we assume GRH in the NF case, then this also satisfies (A2)(A3)
and is a uniformly admissible family of arithmetic functions. The associated g-function
18 given by

(1.2.11) gx. (s, x,f) = exp <%£(s,x,f)) .

The proof will be given in §3.
1.3 — Direct consequences of Theorems 1,2. Now consider the Dirichlet series

(1.3.1) My(21,22) = Y _ Ao (D)Mo, (D)N(D)™>  (Re(s) > 1/2),

where the summation is over all integral divisors D of K. This converges absolutely
and uniformly on Re(s) > 1/2 + ¢, |z1],]|22] < R for any fixed ¢, R > 0, because
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A, (D), M., (D) <o N(D) (uniformly on |z, |22] < R) by Theorem 2; hence this is
a holomorphic function of three complex variables s, z1, 2o on the domain Re(s) > 1/2.
Note that MS(Zl,ZQ) is symmetric in 2y, 25. For 21,25 € C, let v,, ,, denote the quasi-
character of the additive group C defined by

(1.3.2) sz (W) = exP (%(zlw + w)) .

Theorem 3 Assume |Px| =1, and in the NF case assume also GRH. Then

(1.3.3) lim  (Aveg gt = (£(5, ) = Mo(21, 22)

f prime

N(f)—o0
uniformly on |z|, |ze| < R and for s = o + ti with 0 > 1/2+¢€, and [t| < T in the NF
case.

This is a direct consequence of Theorem 1(ii) and Theorem 2. Indeed, we have A, (D) =
A_E(D) and

(134) ¢z1,z2 (E(Su X f)) = 9x_z (87 X f)g)\z2 (87 X f)

Remark 1.3.5 When o > 1, (1.3.3) holds without GRH, because we may use \,(D)N(D)~'/2
instead of A\.(D).

Some basic analytic properties of MS(217ZQ) will be shown in §4. In Case 1 this is
mostly a review of results of [4]§3. We only mention here that when s = ¢ > 1/2, we have

(13.6) M1, 2) = [ Myl ).

Here, M,(w) = #pgp, Myp(w) (*: the convolution product) is the “A”-function (here
without P..-factors) constructed in [4](Case 1) [7](Case 2; denoted as M,,)?. In particular,
M,(z, %) is equal to the Fourier dual M, (z) of M,(z).

In Case 2, where exp(L(s, x,f)) = L(s, x, f), Theorem 3 gives

izq
=L z
2

(1.37) lim (Avgfxzfus,x,f) L(s,x,fﬁ):m(zl,z?);

f prime
N(f)—oo

hence in particular:

2For a short-cut definition of M, relying on the classical Jessen-Wintner theory [9], see §5.6.
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Corollary 1.3.8 (Case 2) The assumptions being as in Theorem 3,

(1.3.9) i Avee |L(s, BT = M,(=Z,2);
N (E)—oo
(1.3.10) fhm Avgg _ e(L(s,x, )2/ L(s, x,£)#/?) = M,(2) = M,(2);
prime
N(f)—o0

in particular, for any y € R,

(1.3.11) i Aveg _o(L(s. v £)/Z(s D) = My (2i).
N(E) 0
As is shown in [5], M,(z) has, at least in Case 1, infinitely many purely imaginary
zeros, and at most finitely many other zeros. The following Corollary will be needed later

Corollary 1.3.12 The assumptions being as in Theorem 3, fix any e >0, T >0, a > 0,
and let s = o +ti run over o > 1/2+ €, and in the NF' case, additionally, |t| <T. Then
for any prime divisor £ we have

(1.3.13) Avgg _pexp(alL(s, x, f)]) < L.

Proof Write ¢, = L(s,x,f), Avg, = Avgy ¢ Since el < ealRe(b)l gallm(E)]
Schwarz inequality reduces the Corollary to Avg, 62“|Re 6 , Avg, e2alm(@)l « 1. But since
e2oRe(bl < [eat[2 4 |e=abx |2, e2allm(tl < ‘e—aiZXP 4 |€azﬁx|2 and since Avgx|eze><\2 <1
holds for z = +a, +ai, in view of Theorem 3, the Corollary follows. O

1.4 — Application to value distributions. As before, let L(s, x,f) = L/L'(s, x, f)
(Case 1), = log L(s, x,f) (Case 2), and let M,(z) be the associated M-function without
P..-component.

Theorem 4 Let 0 := Re(s) > 1/2, assume |Px| = 1, and in the NF case assume
also GRH. Then

(1.4.1) flim (Avng:fCI)( s, x, f / M, ( w)|dw|
N(E) 50

holds for any continuous function ® on C with at most exponential growth, i.e. when

d(w) < el holds with some a > 0. The equality (1.4.1) holds also when ® is the

characteristic function of either a compact subset of C or the complement of such a

subset.
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When moreover o > 1, then (1.4.1) holds unconditionally for any continuous function
® on C.

The proof will be given in §5. This Theorem for Case 1 for the FF case strengthens
Theorem B of [6] (and Theorem 7 of [4]) in various sense. The condition on the test
function ® is now considerably loosened, and here, the assertion is on the limit of the
average over f, which is stronger than the previous assertions on the limit, as m — oo, of
a weighted average over N(f) < m. It should also be added, however, that Theorem A
of [6], and the direct method for proving Theorem B as its application, may still deserve
attention for independent interest.
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2 Proof of Theorem 1

Throughout this section, we assume that | Py | = 1; i.e., either K is rational or imaginary
quadratic and P, consists only of the unique archimedean prime (NF case), or Py, = {pso}
for a given prime divisor p, (FF case).

2.1 — Preliminaries. We shall first prepare some basic materials that will be used
in the sequel. Notations being as in §1.1, for each x > 1 and an integral divisor f, let
n(c, f;z) for each ¢ € Gy denote the number of integral divisors D of K with N(D) < z
satisfying (D, f) =1 and i¢(D) = c.

Proposition 2.1.1 (i) For any f and z,

n(e, f;2) < 1+ N(f) 'a.
(ii) There exists A = Ax > 0 such that for any £ and any x < A- N(f),
(2.1.2) Max e, n(c, f;2) < 1.

Proof First, let K be a function field over F,. Then, since principal divisors have
norm equal to 1, two integral divisors (which means also that they are coprime with
Poo) belonging to the same class ¢ must have the equal norm. Now, Prop 3.3.16 of [6]
asserts that the number of integral divisors D with the given norm N (D) = ¢ satisfying
(D,f) =1 and i¢(D) = ¢ cannot exceed Max(1, g™ /N(f)). Therefore,

(2.1.3) n(c,f;7) < Max(1,qz/N(f)) < 1+ N(f)'a.

Moreover, if ¢™ < N(f) (so that ¢! < N(f)), there is at most one such D. Hence (ii)
holds with Ax = 1.

When K = Qand f € N, n(c, (f);x) < z/f+1; whence (i). Moreover, n(c,(f);z) <1
when z < f; hence (ii) holds with Aq = 1.

Now let K be imaginary quadratic, with class number h. To prove (i), let ; (1 <i <
h) be a set of representatives of the ideal classes in K, and for each ¢ (1 < i < h) choose
a fundamental domain (a parallelogram) €2; for the lattice 2(; embedded in C. Then as
a fundamental domain Q¢ for any divisor f # (0), we may choose some complex scalar
multiple of one of the ;. For each i, the number of distinct translations of €; (by an
element of the lattice 2;) that meet the disk {|¢|*> < 2} is < 1 + z; hence the number of
distinct translations of Q¢ (by an element of f) that meet {|¢]? < z} is < 1+ z/N(f).
Now (i) follows easily from the finiteness of the unit group of K. As for (ii), suppose that
D, D’ are distinct integral divisors belonging to ¢ such that N(D’) < N(D). This means
that D' = (a)D with some o = 1(modf), @ # 1, N(a) < 1. The last inequality gives
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N(a—1) <2(N(a)+ 1) < 4. On the other hand, (o — 1) D must be integral, # (0), and

divisible by f; hence N(a — 1)N(D) > N(f). Therefore, 4 > N(a — 1) > N(D) ' N(f);

i.e., N(D) > N(f)/4. Therefore, (ii) holds with Ax = 1/4. O
We shall also need the formula for the cardinality of the group Gy;

N(f) -
(2.1.4) Gl = dxchuc= = [T(1 = N®)™),

pIf
where dx = 1 (NF case), = degp (FF case), hg is the class number of K, and wg is
the number of residue classes mod f represented by some root of unity, except that it is

1 when K = Q. Note that wx = ¢ — 1 in the FF case over F,. Since

(2.1.5) [T 0=Nm™) > (ogy)™

N(p)<y
(cf [6]§3.7 for a proof for the FF case), the above formula gives

(2.1.6) % < |G| < N(f).

2.2 — The integral expression. The basic notations are as follows.

Fix e such that 0 < e < 1/2. The symbol < will depend on € but this dependence will
be suppressed from the notations.

s € C will always satisfy o := Re(s) > 1/2 + ¢;

f: any integral divisor;

X: areal parameter > 1.
Later, we shall choose X = N(f)?, with =1+ ¢/2;

A: a given uniformly admissible family of arithmetic functions;

A, N € A; write g = gy, ¢ = gy

Proposition 2.2.1 (i) On the space Re(s) > 1/2 + €, one can express g = g(s, x, f)
(x € Ge\{xo0}) as the difference

(2.2.2) 9=g+—9-
of two holomorphic functions

1
(223) 9+ = g+(57 X5 f7 X) = 5 / F("LU)Q(S +w, X, f)dewa
Re(w)=

211
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and

1

220 g=g G5 [ Tl X dw,
2mi Re(w)=¢—¢

where ¢ and € are any positive real numbers satisfying ¢ > Max(0,1 — o) and 0 < € < e.
Each of g, and g_ depends on the parameter X but not on ¢ or €.
(ii) g+ has a Dirichlet series expansion

(2.2.5) g:= 3 \(D)A(D)exp(~N(D)/X)N(D)™,

(D,f)=1

which 1s absolutely convergent for any x € Ge and any s € C.

Proof First, note that

1

(2.2.6) 95, £) = —— / D(w)g(s + w, x. £) X duw
21t Jp

holds, where B is the positively oriented rectangle bordering
(2.2.7) ¢ —e < Re(w) <c¢, Im(w)| < T

(T > 0). This is clear, because the integrand is holomorphic in w on (2.2.7) except for
a simple pole at w = 0 with the residue g(s, x,f). (In fact, since —1 < ¢ — € < 0, the
only pole of I'(w) on (2.2.7) is a simple pole at w = 0 (with the residue 1), and since
Re(s+w) > 1/2+¢€ > 1/2, g(s +w, x,f) is holomorphic on (2.2.7), by (A3).)

To prove (i), let us estimate the integrand on ¢ — e < Re(w) < ¢; [Im(w)| > T'. First,
| X < X¢ (because X > 1); secondly, in the FF case, g(s 4+ w, x, f) is holomorphic and
vertically periodic; hence bounded, and in the NF case, for each fixed s, f, ,

(2.2.8) (s + w, x,T)| < exp (C'log?(|Im(w)| + 2))

with some C' = C; ¢ > 0, by (A3). Thirdly,
(2:2.9) [T ()] < [Tm(uw)|*~/? exp(~ |m(w)))

for |Im(w)| > 1. Now (i) follows directly from these by letting 7" — oo in (2.2.6).

(ii) Since o + ¢ > 1, the Dirichlet series expansion

(2.2.10) g(s+w,x.f) = Y x(D)A(D)N(D)™*™"
(D,f)=1

15



is absolutely convergent on Re(w) = ¢, and the convergence is uniform with respect to
Im(w). Therefore,

(22.11) g+ = gi(s,x.f,X)

1 —s—w w
= 5t fo T |3 XDNOIND) | X

(D.f)=1
1
= Y _x(DIND)N(D)™* (—/ r(w)N(D)wxwdw) :
D 2mi Re(w)=c
But since
1
(2.2.12) — F(uw)a™du =e™* (a, ¢ > 0),

2mi Re(u)=c

we obtain the desired Dirichlet series expansion (2.2.5). Because of the exponential factor,
this converges absolutely for any s € C and any x € G¢. This can be seen easily by noting
that A\(D) < N(D), and that the number of D with N(D) = n is certainly < n. O

We define g, (s, x,f; X) for any x € Gy including x = Yo, by (2.2.5).

Proposition 2.2.13  Let 0 = Re(s) > 1/2+ €. Then
(i) For any € >0 and x € G,

(2.2.14) 19+ (s,x, 5 X)| <o X2
(ii) For any € (0 <€ <€), T >0, and for Im(s)] < T, x € Ge\{xo},
(

2.2.15) g (s, %, F; X)| <ep (N(E) X)X,
Proof (i) Since

(2216)  gi(s £ X) = S X(D)A(D)exp(—N(D)/X)N (D)™,
(D,f)=1

we have, by (A1),

(2217) (s EX) < Y N(D) exp(—N(D)/X)N(D)™
(D.f)=1

< Za(n)ne’—(l/Z-l-e)e—n/X’
n=1
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where a(n) denotes the number of D with N(D) = n. But since >, _, a(n) < z for any
x > 1, we obtain, by partial summation,

(2.2.18) 19405, . E: X)| < / (8 dt,

1

where f(t) = t~% /X with a = (1/2+¢€) — €. But f/(t)/f(t) = —(X~' +at™!); hence
t1f(t)] <o (X7t +1)f(t); hence

lgs (s, x, £; X)| <o / (XYt + 1)t e Xdt = Xl_“/ (u+1)u e "du
1 1/X
< X'TT@2-a)+T(1—a)) < X170 = X1/,

This settles (i).
(ii) By definition,

1

(2.2.19) g-(s,x, £, X) = —/ F(w)g(s +w, x, £) X dw.
211 Re(w)=¢—¢

Since Re(w) = € — ¢, we have | X¥| = X~ and
(2.2.20) I(w) < exp(—gum(w)y).
In the FF case, since Re(s +w) > 1/2 + ¢, we have, by (A3),

(2.2.21) 19(s +w, X, F)| <orer N(£)7;

for any €', €” > 0; in particular, for ¢’ = €’; whence (2.2.15).

In the NF case, the situation is more complicated. Put Im(w) = u, so that Im(s+w) =
t + u. Then by (1.1.3)(since Re(s +w) > 1/2 + ¢') there exists C' = C > 0 such that

(2.2.22) l9(s 4w, x, )| < exp{C(L(t + w)e(£)' > + £t + u)*)}.

But since [t 4+ u| + 2 < (|¢t| + 2)(Ju| + 1), we may replace £(t + u) by £(t) + log(|u| 4+ 1);
hence also ((t+u)? by 2(((t)* +1og?(|u| +1)). Therefore, there exists C' = C/, ; > 0 such
that when |t| < T,

(2.2.23) |g(s +w, x, )| < exp(C"€(£)72) exp{C"(£(£)* > log(|u| 4+ 1) + log?(|u| + 1))},

which together with (2.2.19)(2.2.20) gives
(2.2.24) |g_(s,x,f;X)| < Xe/_e exp(C"@(f)l_ze’)/ e_u(u + 1)C/£(f)1725/60,logz(u_’_l)du‘
0
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By using the Schwarz inequality

s ([ o) ([ ) ([ o)

for fi(u) = e~ /2 (u41)¢"0" > , fo(u) = e7/2¢C" 08’ (4D and by noting that the integral
of fo(u)?du for this case is <o 7 1, we obtain

1/2

g (s, \, F; X)| <oz X< exp(CT0(£) %) ( / e (u 4 1)2C"0 du)
0

By putting u + 1 = v and comparing the integral with the ['-integral, we obtain
9-(5, £ X)| <o X exp(C'U(E)1 2 )T 2C"0(6) > + 1)1/2

)
< X Cexp(CU(F) %) exp(CL(F) 72 log(2070(£)12))
< X9 Cexp(C"U(£) ¥ log ((f))),

with some C” = C . > 0. But C"¢(f)~>'log({(f)) < ¢ holds for N(f) sufficiently large
depending on €, T'. Hence this is

Lo X exp(dl(f)) = X T(N(f) +2)° < X °N(f)<.

This settles the proof of (ii) also in the NF case. O

2.3 — Study of Avg ¢, <g+(X)gQ_(X)>. This average will give the main term of

AVE, cénixoy (0(X)9 (X)), and this estimation depends only on the property (Al) of the
admissible family. Here, and in what follows in this subsection, we shall suppress from
the notations the dependence on s,f, X. Thus,

(2.3.1) g:(x) = D x(D)MD)exp(—=N(D)/X)N(D)",
(D.f)=1

(2.3.2) gy(x) = > x(D)N(D)exp(=N(D)/X)N(D)"*
(D.f)=1

(x € éf) The orthogonality relation for characters gives directly

(2.3.3) S = Avg, e, (9+(X) = T()T'(c

ceGy
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where

(2.3.4) T(c) = 3. AD)exp(~N(D)/X)N(D)™,
ig(D)=c

T() = 3 N(D)exp(~N(D)/X)N(D)™*.
ig(D)=c

Now we shall make a full use of Prop 2.1.1. Let A = Ax > 0 be as in Prop 2.1.1(ii),
and decompose as T'(c) = Ti(c) + Ta(c), where Ti(c) (resp. Ty(c)) denotes the partial
sum over N(D) < AN(f) (resp. N(D) > AN(f)). Define T!(c) (i = 1,2) similarly. By
definition, the sum for T} (c) has at most one term. Call ¢ € G¢ small when there exists
an integral divisor D such that i¢(D) = ¢ and N(D) < AN(f). In this case, call D, the
unique such D. Thus,

Tie) = {A(Dc) exp(—N(D.)/X)N(Do)™  (c: small),

0 (otherwise).

Since ¢ — D, gives a bijection between small classes in Gy and integral divisors D satis-
fying (D,f) =1 and N(D) < AN(f), we obtain

(235)  Si=Y TOT()= Y. AMNDN(D)exp(~2N(D)/X)N(D)™.

ceGy (D,f)=1
N(D)<AN(f)
Note that
(2.3.6) Si< Y ND) ™ <Y ND) <1
D D
As for
(2.3.7) T)= S AD)exp(—N(D)/X)N(D)™,
ig(D)=c
N(D)>AN(f)
we shall prove
(2.3.8) Ty(c) <o N(F)LXY/2e e

for any € > 0. Since A(D) < N(D)¢, we have

(2.3.9) Tr(c) < Z ac(n)n 7 X,
n>AN(f)
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where a.(n) denotes the number of D with N(D) = n, i¢(D) = c. But since ) ac(n) <
N(f)~'z for x > AN(f) by Proposition 2.1.1 (i), we obtain (2.3.8) exactly by the same
argument as in the proof of Prop 2.2.13 (i). Therefore, by (2.1.6), Ey := Y .. [To(c)]?,

Ey =3 cq. | Ts(c)|? satisfy
(2.3.10) E,, F) < \Gf|N(f)*2X172(efe’) < N(f)lele(efe’).

Therefore, by (2.3.6) for (71 = 77),(2.3.10), and by the Schwarz inequality, we obtain

@311)  $-8 = > ((BO+TE)T() + T3e) - ThlTi(0))

ceGy

< (N(E)'X)Y2 4 N(f)1xe,
where a = 1 — 2(e — €¢/) > 0. We shall choose
(2.3.12) X =N, with0< <o,
so that N(f)71X“ is a negative power of N(f); hence
(2.3.13) S — 8, < (N(E)IX)2 = N(f)1Hed)/2,
We shall now treat the difference between S; and

(2.3.14) Z AND)N(D)N(D)™%.

(D.f)=

By the definitions of Sy, Sy, we have Sp — S; = E + E’, with

(2.3.15) E = Z MD)N(D)N(D)™ %,
(D,f)=
N(D)>AN(f)
E = Z AD)N(D) (1 — exp(—2N (D) /X)) N(D)~%.
N( :]\ll(f)
As for F,
(2.3.16) E< Y ND < > ND-
N(D)>AN(f) N(D)>AN(f)

But since the number of D with norm < x is < x, this gives

(2.3.17) E <</ tld(t17) /dt|dt < N(f)~°
AN(f)
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As for F’, since 0 < 1 — exp(—a) < a holds for any a > 0,
(2.3.18)

E< Y ND) *(l-exp(-2N(D)/X)) < 2AN(E)X Y N(D) " < N()X
N(D)<AN(f) D

hence for the above choice of X we have E' < N(f)!=7; hence

(2.3.19) Sy — S < N(f)™ + N(£)' 7.

Therefore, combining with (2.3.13) we obtain (for the above choice of X)
(2.3.20) S — Sy < N(£)T1HeB/2 1 N(£)=¢ + N(f)' 7.

Now the question is how to choose 5 > 0 so that all the exponents of N(f) on the right
hand side of (2.3.20) are negative and the minimal of their absolute values is large enough.
One of such choices is where ¢ = €/4, = 1+ ¢/2, in which case a = 1 — (3/2)¢, and the

three exponents are
(_E - (3/4)62)/27 ) _6/27

hence
(2.3.21) S — Sy < N(f)~/2.

(We shall see in §2.6 that this choice of  is appropriate also for the estimation of the
counterpart related to g_(x).)

2.4 — Differences between modified averages. = We now compare the averages of
9+(x)9(x) over the whole group x € Ge, with that over the complement of yo, and also
when f is a prime divisor, with that over {x;f, = f} (Note that when the class number
is greater than one, there can be non-principal characters with the conductor (1).) It is
easy to see that these differences are

1
(2.4.1) < 1 (Moo 00 M e (1) -

Hence by Prop 2.2.13(i) and by (2.1.6), this is
< |G| 71X < (log N(F))N(F)~1+F < N(F)THHe9/2 <« N(F) =2,

Therefore, by combining this with the main estimation (2.3.20) of the previous subsection,
we obtain

(2.4.2) AVE, et o} (94 (0094 (X)) = So < N(£)™7,

together with that when f is a prime divisor, the average may be replaced by that over
{x;: £, =1}
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2.5 — Final stage of the proof. It remains to estimate the difference

/

(2.5.1) AVE, i 101 (900G (X)) = AVE, can 101 (94 ()4 (X))-
Recall that g = g1 —g-, ¢ = ¢/, — ¢g_. But
(2.5.2) AVgXeéf\{X0}|g+(X)‘27 AVngéf\{XOﬂgir(X)P < 1,

because of S < 1 (which follows from (2.3.6)(2.3.13)), and because of the estimations in
§3.4. On the other hand, by Prop 2.2.13(ii),

(2.5.3) AVgXEGf\{Xo}|9—<X)|2a AVE i o} 19- ()P < (N(H)X)* X~

for any ¢’ > 0. Hence if we choose €” so small that 2¢”(1+ ) < €(8—1), which is possible
since # > 1, we obtain

(2.5.4) AVgXeéf\{X0}|9—(X)|2> AVgXeéf\{XO}|gi )P < N()™.

Therefore, by the Schwarz inequality, (2.5.1) is < N(f)~/2. Therefore, together with
(2.4.2) we obtain

(2.5.5) AVE, i o} (9009 (X)) = So < N(£)~2.

When f is a prime divisor, this average may be replaced by that over {x; f, = f}.

Finally, in this case, it is clear that the sum for Sy, which is over all D with the
condition (D, f) = 1, and the sum over all D without this condition, differs only by a
quantity < N(f)° 727 < N(f)~!. This completes the proof of Theorem 1.
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3 Proof of Theorem 2

3.1 — Estimations of \.(D). Let z run only over |z| < R. We shall prove

(3.1.1) \.(D) <pe N(D)*

for any ¢ > 0, which will settle the first statement of Theorem 2. Since H,, G, are
polynomials with positive coefficients and since 5 (r) < (Zj),
(3.1.2) | H,(iz/2)] < Hy(|2]/2) < Gi(]2]/2) < G(]2[log N(p));
hence
[A:(p")] < Gi(|z|log N(p)) < exp(24/7|z[log N(p))

holds in both Cases 1,2, by [4] Sublemma 3.10.1 (and (;_}) < (})). Now since we may
assume A.(D) # 0 in proving (3.1.1), we may take the log of |\.(D)]| for estimation.
Denoting by Supp(D) the set of prime factors of D we obtain

log [A.(D)] < 2v/[2] > 4/rplog N(p) < 2+/]2]\/[Supp(D)] | rylog N(p)

p|D p|D

(3.1.3) < 2V R+/|Supp(D)|log N (D).

(The second inequality is by the Schwarz inequality.) On the other hand, by [4] Sublemma
3.10.5, we have

log N(D)

(3.1.4) |Supp(D)| <« ogloe N(D) 7 2

Therefore, (3.1.3) gives

log N(D)
V9oglog N(D) +2°

Therefore, for any € > 0, log |A\,(D)| < €' log N(D) if N(D) > g 1. This proves (3.1.1).

(3.1.5) log |\.(D)| < g

3.2 — The function g, (s, x,f). We shall now prove that

(3.2.1) exp <i2 L(s, X,f)) > X(D)X\.(D)N(D)™*

(D.f)=1

holds on Re(s) > 1 for any y € G¢\{xo}. But on this domain, each has an absolutely
convergent Euler product decomposition and the equality between their p-components is
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given by the equality (1.2.4) with z = —21log N(p), t = x(p)N(p)~* in Case 1, and by
(1.2.5) with z = £, ¢ = x(p)N(p)~* in Case 2. Therefore,

(3.2.2) 9. (s, x. f) = eXp(%E(&X,f))-

It is holomorphic on Re(s) > 1/2 in the FF case, and under GRH, also in the NF case.
This settles (A2). Now we are going to prove (A3) in several steps.

3.3 — Reduction of A3 to Theorem-Est. The property (A3) will be proved as a
Corollary of the following estimation Theorem.

Theorem-Est  Let x € Ge\{xo0}, and s = o + ti, with o > 1/2+ ¢ (¢ > 0). Then

E(f)2_2" -1
l1—0

L/
L] < (FF)

< % (ﬁ(t) + i((tf);) (NF; under GRH).

When o = 1, (((£)>727 — 1)/(1 — o) should be replaced by its limit at o = 1; namely by
2log ((f).

Corollary-Est  Let L(s,x,f) be either L'/L(s,x,f) or log L(s, x,f), and for any
0<e<1/2,letc>1/2+¢€. Then

L(s, x, F)] < £(F)' ™ (FF)
<L U(F)E <€(t) + “) ) (NF; under GRH).

((f)

Reduction of Corollary-Est to Theorem-Est.
(Case 1) For each y > 1,

l—0 1 Yy
(3.3.1) gy~ / w=du
1—-0 1
is monotone decreasing with o. Therefore,

2—20 __ 1-2¢ __
0(f) 1_ ) 1

(3:32) -0 ~1—(1/2+¢)

But since the right hand side of (3.3.2) is <. £(f)!~2¢, the Corollary for Case 1 follows
immediately from Theorem-Est.
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(Case 2) Put gy := Max(c,2). Then

ottt 11

(3.3.3) log L(s, x,f) = / f(s, X, f)ds + log L(og + ti, x, f).

oo+ti
Since |log L(og + ti, x, )| < |log(k(2)| <k 1, where (x(s) denotes the Dedekind zeta
function of K, and since |0 — 09| < 2 — 1/2 < 1, the Corollary for Case 2 follows
immediately from that for Case 1 by estimation of the integrand. O

From the Corollary follows directly that the present family {gx_(s, x,f)}|.j<r satisfies
(A3). Thus, Theorem 2 is reduced to Theorem-Est.

3.4 — Reduction of Theorem-Est to a Key Lemma. As usual, for any integral
divisor D of K, let A(D) = log N(p) when D = p" for some prime divisor p and r > 1,
and A(D) = 0 otherwise. For y > 1 and x € G¢, put

(41)  wlsnfi<y) = Y wDIADIN(D) ",
N(D)<y
(342) b)) = Gyt S x(DADN(D)

When f = f, (the conductor of x), we shall suppress f from these notations and write
as (s, x;< vy), ¥(s,x;y). We shall assume hereafter that y is separated from 1, i.e.,
1 —y !> 1. Then we have

ylfcr_l
l—0o

Y
(3.4.3) = / wTdu > (y— 1)y > y'7
1

and also an elementary unconditional estimation (cf. [4](6.4.9)):

log N(p)
N(p)7 -1

ylfo' -1

y
< / uwodu+y' Tt < .
1 1 — g

(3.4.4) (s, x. iyl < Y

N(p)<y

We shall reduce the proof of Theorem-Est to the following
Key Lemma For s = o + ti with o > 1/2 + € and for y > 1 separated from 1,

/

—<s,x>+w<s,x;y>' < g (FF)

L
<o yMEOE)() 4+ 0(t)?) + ¥ (NF; under GRH)
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(The term 3! can be replaced by a one which tends to 0 as y — oo whenever o > 1/2;
but this is more complicated and not necessary for the present purpose.)

Now this reduction can be done by using the following intermediate objects and the
decomposition, for a suitable choice of y.

L/
(3.4.5) ‘f(s,x,f)‘ <T+II+IIT+1V,
where
L/ L/ !

4. [ =|— f) — — I =|— :
(3.4.6) 7 (5:5) = = (5,X), 7 (80 + (s, x:9)
(3.4.7) ITT = (s, x, £59) — (s, x;9), IV = [o(s, x, £19)|.
First, by (3.4.4), we have

1—0o
Y -1

4. e 1

(3.4.8) V< T

Secondly, I and IIT are also minor terms obviously bounded by

log N (p)

(3.4.9) o -1

= [1 + [27
pIE
where I; (resp. Iy) are the partial sums over N(p) < ¢(f)? (resp. N(p) > £(f)?). By
(3.4.4) we have
0(f 2—20 __ 1
(3.4.10) et
l1—o0o

As for I, since (logy)/(y” — 1) is monotone decreasing for y > 1, and since } 1 <
((f)/log £(f) by [4]Sublemma 3.10.5, we have

2log ((f) 1-2 2-2
4.11 L < ——" 1<) = < L(f)*=°.
(3.4.11) Q—E(f)%—l; < U(£)% < ()
Therefore,
2—20 __ 1
(3.4.12) IR < L

l1—-o0
Now put y = £(f)? (> (log3)? > 1). Then (3.4.8) and (3.4.12) give

g f 2—20 __ 1
(3.4.13) I+ 11141V < ”1—;
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while the Key lemma gives

(3.4.14) Il <. ((£)*% (FF)
<o E)P20(0(t) 4 £(1)?/0(F)) + £(£)>%  (NF; under GRH)

hence by combining these with (3.4.3) we obtain Theorem-Est. Thus, Theorem-Est is
reduced to the Key Lemma.

The Key Lemma in the FF case is proved in [4](6.8.4). To prove this in the NF case,
we shall make use of the following “explicit formula”.

3.5 — An explicit formula. Let K be any number field, let P,, consist only of
the archimedean primes of K, and let x be a primitive Dirichlet character on K, so that
L(s, x,f) is the usual L-function L(s, x). Put §, =1 (resp. 0) for x = xo (resp. x # Xo)-

Theorem-Exp Let 0 = Re(s) > 1/2 and y > 1. Then:

Yy :
— + {(s,sign(x); y),

S s—1 s—p

(3.5.1) Lf(s,x) + (s, x;9) = 0y <ys - ) +D

where p Tuns over all non-trivial zeros of L(s,x), Z; = limy—0o 3 <r» and

(352)  ls;sien(x)iy) = Y ;yiﬂ

trivial zeros
B yfi s , yfifs
= (a+ry) Z S+i+(a +79) el

>0, even i>1,o0dd

Here, a (resp. a') denotes the number of real places of K at which x is unramified (resp.
ramified), and ro is the number of complez places of K.

For the proof see §3.7.

3.6 — Reduction of the Key Lemma (NF case) to Theorem-Exp.
To avoid inessential complications we shall restrict our attention to the case where
P, consists only of the archimedean primes. (The difference arising in the general case
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can be estimated easily as in the estimations of I, I11] in §3.4.) Recall Theorem-Exp for
X # Xo, which reads as

I/ ' p—S
(3.6.1) T (5X) F (s xiy) = > Sy_p + (s, sign(x); y)-

As before, let 0p = Max(o,2). Then this gives directly

!/

(3.6.2) Pl +vsun=rra+r
where
(3.6.3) P o=y (%(anx) +¢(007X;y)> ;
1 1 -
(3.6.4) Q = ;(S_ —00_p>y :
(3.6.5) R = {(s,sign(x);y) — y°° *L(o0,sign(x);y).

The sum over p in @) is, unlike that in the above explicit formula itself, absolutely con-
vergent.

(Estimation of P) Since og > 2 > 1, L'/L(0y, x) has an absolutely convergent Dirichlet
series expansion

L/
(366) 0'07 Z A )—JO;

hence )

Y
I g A —0o0
L(O-Oa )_I_Q/)O-(hxy‘ <<0_0_1

1—og

< ylmoo

(By partial summation, using ZN(D)Sz A(D) < x.) Hence

(3.6.7) P <y

(Estimation of R) It is easy to see that £(s,sign(y);y) < y~7; hence

(3.6.8) Ry
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(Estimation of @), under GRH) By definition, and by GRH,

(3.6.9) QI<y" ) (s —’Z(;(;OS'— )

Write p = 1/2 4+ iy. The only property on the distribution of v on the real axis that we
are going to use is the standard estimation, cf. e.g. [11];

(3.6.10) n(@) = {0 11 — 7] < 1} < logdy + [K : Q] log(|] +2)

for any = € R, where d,, = |dx|N(f,) (dx: the discriminant of /). Thus, in our notations,
(3.6.11) ny(x) < U(f) + ().

Now since

< Nt + |oo — o < [t] +3/2 < |t| + 2,
V2|s—p| > (0—1/2)+[t—q|>e+|t—q] > 2+t -1,
V2|og —p| > (00— 1/2)+ |7 = 3/2+ 4] > 2+ |,

we have, by (3.6.9),

|<70 —3|

1/2—0c 1
(3012 O < ) L E T
(3.6.13) <y (lt] + 2)(U(E)Bi(t) + Ba(t)),
where

[ 1 [~ log(|z| +2)

eo1) 0= [ gt BO= [ e
It is easy to see that

log(|t| +2) log”([t| +2)
(3.6.15) Bi(t) <« W, By(t) < W
Therefore,
(3.6.16) Q| < Y2 (U(f)e(t) + £(1)?).
Therefore, (3.6.7)(3.6.8)(3.6.16) combined give
(3.6.17) £/(s, X) + (s, y)| eyt T +yT +yEOR)0(t) + 0()?).

L

But since 3y~ < y' 79, this settles the proof of the Key Lemma assuming Theorem-Exp.
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3.7 — Proof of Theorem-Exp. First, Weil’s explicit formula [17], applied to the
function F(x) on R defined by F(z) = e1/275)* (0 < x < logy), F(z) =0 (z < 0 or
x >logy), F(z) = (F(z+0) + F(x —0))/2 (everywhere), gives directly:

y—s_l yl—s_l
7.1 :
(3.7.1) U(s,x;y) + 5x( | )

!

pPs—1 1
= Zy—+—(long—Nlog7r)
s 2

!
1
Yo LA +7bc;(s‘g

* 2 2 2

)+ £(s,sign(x); y),

where dy, = |dg|N(fy), N = [K : Q] and G(s) = I'(s)/T(s). (Note: £% log?2 appears
from two different terms in the Weil formula, cancelling each other.)
On the other hand, the partial fractional decomposition of L'/L(s, x) gives

672 Eev+a () - Z L Liogd, - Nlogn)
7. 7 (5x \sto—7) = DRy 5 (log dy ogm
a-+ry .S a +ry  s+1

- g Q)G

Here, the key formula is in [11] (the formula (5.9)), but in addition, we need the (con-
ditional) convergence of the sums le(l —p)~ ! and Z/p p~t (cf. [8]§2), and the formula
in Theorem 2 of loc. cit., which asserts that the limit of the left hand side of (3.7.2) as
s — 1 1is equal to

/+ 7,2
2

a—+ 1o

a
(v + log4m) +

11
P

where v denotes the usual Euler constant. By summing up (3.7.1)(3.7.2) we obtain the
desired explicit formula.
This completes the proof of Theorem 2.
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4  The analytic function M,(z, z2).

4.1 — Let K and P, be as at the beginning of §1.1. We shall exhibit some basic
properties of the complex analytic function

(4.1.1) (z,2)= > A (D)A,(D)N(D)™>

D:integral

of s, 21,22 (Re(s) > 1/2) defined in §1.3. This will supplement some results given in [4]§3.7
(Case 1) and [7] (Case 2). Its analytic property on Re(s) > 0 will be discussed in a future
article. First, note that A\,(D) (as well as x(D)) is multiplicative in D and hence it has
an Euler product expansion, at least formally.

Theorem M (i) Let p be any prime divisor of K not contained in Ps,, and Re(s)> 0.
Define a continuous function gs,(t) on C' = {t € C;|t| = 1} by
—(log N(p))N(p)~*t
4.1.2 t) = 1
(112 1) LRI (Case)
= —log(l— N(p)~ %) (Case 2)

(the principal branch of the logarithm), and put

~ 1
(11.3) Mepleroia) = [ oo (5e100lt) + 22005000 ) 't
c!

where d*t denotes the normalized Haar measure on Ct. Then with the notations of §1.2,

(4.1.4) M,p(21,2) = E:AZ1 A, (P7)N(p) 2"
a.b

= 1> (i)t A

+ab>1( i/2)" s R

where the sign is minus (resp. plus ) for Case 1 (resp. Case 2), and

(ab)  _ a+b r—1 r—1 —2rs
119 iy = GosNer 3 (2D (o)) vw e

- Z 3a(r)ds(r) N (p) 72" (Case?2).

r>Max(a,b)

(i) M(21, 20) has an absolutely convergent Euler product expansion on Re(s) > 1/2;

(416) 21,22 H Msp Zl,ZQ
PZPoo
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This convergence is uniform on Re(s) > 1/2 + €, |z1], |22| < R, for each fized €, R > 0.

(i) My(21,22) for each s with Re(s) > 1/2 has an everywhere absolutely convergent
power Series erpansion

a.b

~ e wp) 202

(4.1.7) My(z1,22) = 14 ) (Fi/2) " p{? allblZ’
ab>1 o

with the same choice of the sign as above. Here, uga’b) denotes the following Dirichlet
series which is absolutely convergent on Re(s) > 1/2;

(4.1.8) pl? = " A(D)A(D)N(D) ™,

where each Ai(D) is a non-negative real number determined from the polynomial coeffi-
cients of \,(D) by the formula

(4.1.9) A(D)=>" A’f}if) ) (fiz/2)F

(the same choice of the sign).
(iv) As before, put

(4.1.10) (1) = exp (%(zlw + zzw))

(21, 20,w € C), and for o > 1/2, let M,(z) denote the “M-function” defined and studied
in [4)(Case 1) [7] (Case 2). (In the latter, it is denoted as M,(z).) Then

(4.1.11) My(z1, 25) = / M, (W), ., (w)|dw].
C
In particular, M,(z,%) is the Fourier dual M, (z) of M,(z).

Proof (i) Recall the definition (4.1.2) of g, ,(¢), and note that |N(p)~*¢| < 1. For each
k € N, the power series expansion of the k-th power g, ,(t)* in N(p)~*¢ reads as

(4.1.12) gsp()F =D a(N(p) 1),

r=1
where al¥ = 0 for r < k, and for r > k,
-1
(4.1.13) a® = (—logN(p))* <; 1) (Case 1)
= 0k(r) (Case 2)
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(cf. §1.2). Hence by the definition of A,(p"),

0 agjk) r a?(ﬂk)
(4.1.14) I (iz/2)F = I (iz/2)F = X (p")
k=1 k=1

for any » > 1 and z € C. Therefore,

(4.1.15) exp(%zgsm(t)) = 1+ Y %(z‘z/2)ka§’“)(N(p)‘5t)r
D AN () )

But since Msﬁp(zl, Z9) is nothing but the constant term in the Fourier expansion of

(4.1.10) exp (5185007 + 20500

int" (n €Z), (4.1.4) follows directly.

(ii) Fix any €, R > 0, and let s, 21, 22 run over Re(s) > 1/2 + €, |z1|,|22] < R. It
is obvious from the absolute convergence of the Dirichlet series (4.1.1) that the product
v <y M, (21, 25) converges to M,(z1,2,) as y — oo uniformly. Our assertion, the
absolute convergence of the infinite product, requires also that the infinite sum

(4.1.17) D [Mop(z1,2) = 1
PZPoo

converges uniformly. But by (4.1.4) and Theorem 2 (i),

(4.1.18) |Mp(21,22) — 1] < Z [Asu (P Aea (p7) IV () 727
r=1
@RZN<%%§Z )T < 2N (p)
r=1 r=1

(take € = €/2); hence this is clear.

(iii) First, a few preliminary remarks on Ax(D). When k£ = 0, we have Ay(D) = 0
(resp. 1) for D # (1) (resp. D = (1)). When k =1, A;(D) = 0 unless D = p” with some
p & P, and r > 1, and in this case,

Ay(D) = {logN(p) (Case 1),

(4.1.19) 1/r (Case 2).
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For k£ > 1, Aj can also be expressed as the k-th iteration of Ay;
(4.1.20) A(D) =Y Ay(Dy)..Ai(Dy).
D=D;...Dy,

(In Case 1, this is shown in [4]. In Case 2, the proof runs as follows. Let D =[], pl»
be the prime factorization of D, and ¢, be independent variables. Then since A, (D) is
multiplicative, it is equal to the coefficient of [], ¢}* in

(4.1.21) IO xwnt) = T[O Hiliz/2)t)

v v

= exp(—(iz/2) > log(1—1,))

= ) %(iz/?)k(— > log(l—t,))"

k=0

But since the coefficient of [], ¢ in (=3, log(1 — ¢,))* is nothing but the right hand
side of (4.1.20), we obtain the equality (4.1.20).)

In particular, p,go’o) =1, uga’o) = MS’”’) = 0 for ab # 0. Since the Dirichlet coefficients
in (4.1.8) for a,b > 1 are non-negative for all D and positive for, say, D = p?*®  we have
(4.1.22) i) >0 (a,b>1).

Now let us prove (iii). In Case 1, this is proved in [4](Theorem 5 in §3.7). The
proof for Case 2 is almost parallel, but let us sketch this proof. Fix s with Re(s) > 1/2,
and put w; = iz;/2 (j = 1,2). Since the Dirichlet series (4.1.1) converges uniformly on
|wi|, Jwe| < 1, we obtain, first by termwise differentiation, then by putting w; = wy = 0,
and then by (4.1.9);

DT M (21, 22) d°\., (D) "\, (D) .
4.1.2 = ) ! 2 N(D)™%
( 3) ( Owsows 00) > ( owy )0 ( ows )0 (D)

= 3 AD)M(D)N(D) > = e,

Since M,(z1, 22) is entire, the power series (4.1.7) must converge (absolutely) everywhere.

(iv) We shall use the rapidly decreasing property M, (w) = O(e‘MwP) for any A > 0,
to be proved later (Lemma B §5). The integral on the right-hand side of (4.1.11) is the
limit of that over |w| < R which is holomorphic in zi, z3, and the convergence is uniform
in a wider sense with respect to z1, zo. Therefore, each side of (4.1.11) is a holomorphic
function of zj, zo. Since they are equal when z, = Z;, as is proved in [4](Case 1) [7](Case
2), they must be equal for any z, 29 € C.

This completes the proof of Theorem M.
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4.2 — Some remarks. (I) From (4.1.7) and (4.1.11), we obtain, by partial derivation,
(4.2.1) ple?) = (£1) a+b/M (w)|dw,
where +1 = —1 (resp. 1) for Case 1 (resp. Case 2) throughout this subsection, and

Pl (w) = ww® (a,b > 0). Thus, by Theorem 4 (to be proved later) applied to ® =
P@b) e also obtain

(4.2.2) plet) = (£1)et? Jim - Avgg PV (L(s, %)),
N(f) o
under the same assumption as in Theorem 4. In Case 1, this equality for s = 1 is

proved unconditionally over K = Q [8], and over function fields, for any s with o > 1/2
[4] Theorem 7(iii) *
(IT) When iz,/2 = izy/2 = y € R, so that ,, ,,(w) = exp(2yRe(w)), (4.1.7) gives

(a,b)
@23) (N (ufi2ui) — 3 (-2yfi~2g/i)) g = ED S (30 Byt

Note that when y # 0, this is non-zero and has the same sign as (£1). Under the
assumption of Theorem 3, this is the limit of

(424) h,s(f7 y) — Avng:f<e2yRe£(s’X) _ 672yRe£(57X)>/4y
as N(f) — oo; hence for any fized s and y # 0, the inequalities

(4.2.5) hs(f,y) < 0 (Casel),
(4.2.6) > 0 (Case?2),

hold as long as N (f) is sufficiently large. On the other hand, we have
(4.2.7) hs(f,0) = Avge _¢Re(L(s, X)),

and since (4.2.3) is = 0 for y = 0, this must tend to 0 as N(f) — oo.
The sign of hs(f,0) for each individual f offers a more delicate problem. For example,
let K =Q and s = 1. Then for any odd prime f, (f —2)h1((f),0) is equal to

(4.2.8) > Re(L'(L,0)/L(1,x)) = 75— (Casel),
h=f

(4.2.9) Zlog|L(1,X)] = logry (Case 2).

'Rigorously speaking. in [4], degpo, = 1 is assumed which is inessential; cf. also [6].
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Here, #; denotes the residue of the Dedekind zeta function (x,(s) of the cyclotomic
field Ky = Q(us) at s = 1, 75 denotes the quotient of the constant term of its Laurent
expansion at s = 1 divided by xy (the “Euler-Kronecker constant (invariant)” in the sense
of [2]), and v = 71, the usual Euler constant. The first named author considers it very
likely that, in contrast to the above inequalities (4.2.5)(4.2.6),

(4.2.10) hi((f),0) > 0 (Case 1)
(4.2.11) < 0 (Case 2)

both hold 2. Among these, the first inequality is essentially a part of the conjectures on
the behaviour of 7y raised in [3]. The second, which is equivalent with x; < 1, maybe
new even as a conjecture. A more basic question is whether (x (0)/((0) =1 —277 — ...
is everywhere monotone increasing on o > 1 — €, as some numerical evidences suggest. In
fact, both are immediate consequences of this hypothesis.

(III) In Case 2, by the second formula for H,(x) in (1.2.7), and by (4.1.4), the local

factor M, (21, 22) is nothing but the Gauss hypergeometric function

a.b y a(a+1).b(b+1) ,

(a.bei) =147 1.2.c(c+1) ’

for
a=izn/2, b=ixn/2, c=1; t=N(p)~™>.

In particular, when a = b = y = £1, they are
(1= N ™)™ 1+ N(p)™,

respectively; hence

(4.2.12) M,(2/i,2/i) = > N(D)™*

D integral
(4.2.13) M,(=2/i,=2/i) = > N(D)™.
D integral
squarefree
Finally, as for the limit formula
(4.2.14) lim Avng:f\L(s,X)F = ((20)

f—o0

(Case 2, over Q) also referred to as an example in the Introduction, this is known to hold
unconditionally by [10] Theorem 1.

2These may look rather contradictory to the above inequalities (4.2.5)(4.2.6), but imagine the last
moment of sunset for Case 1, and that of sunrise for Case 2. Namely, the graph of hq((f),y) for each f
crosses the horizontal axis near y = 0 on both sides and, as f — 00, the graph tends to that of —Cy?+- - -

(Case 1), Cy* + - (Case 2), where C' = u§1’2)/2 > 0.
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5 Proof of Theorem 4

The most basic ingredient for the proof of Theorem 4 is Theorem 3, but we shall also
need two other fairly basic results, Lemma A (§5.1) and Lemma B (§5.2). In §5.3 we shall
give a proof of Theorem 4 assuming these two lemmas; then we shall give proofs of these
lemmas in later subsections.

5.1 — Changing test functions. Let RY = {z = (2,...,24); ; € R(1 <i < d)}
be the d-dimensional Euclidean space (d = 1,2,...), and |dz| = (dw;...dzg)/(2m)%¥? be
the self-dual Haar measure with respect to the self-dual pairing e!®*"? of R¢, where
(z,2') = S°% | a2}, Write, as usual, |z| = (z,2)/2. In what follows, a function will mean
a C-valued function on R

For any function f belonging to L', its Fourier transform f" and the inverse Fourier

transform fV are defined by
(5.11) 1) = [ welayl 5@ = [ el

Let A = A(R?) denote the space of all f € L' N L* such that f" also belongs to
L*N L> and that (f")Y = f holds. (By definition, L™ consists of all continuous functions
which vanish at infinity; f € L' N L* implies f € LP for all 1 < p < c0.) Let us recall
here the following basic facts (cf. e.g. [16]). If f € L', then f € A holds if and only if f
is continuous and f” belongs to L'. Moreover, for any f, g € A, we have

5.12 | P&y @ldel = [ Falgto)ldal.

Call S = S(RY) the Schwartz space, i.e., the set of all C*®-functions f such that for any
partial derivative D of any order and for any k& > 0, |z|*D(f) tends to 0 as |z| — oo.
Then § is contained in A, and is stable under the Fourier transform. In particular, any
compactly supported C*°-function belongs to A.

By a good density function on R?, we shall mean any non-negative real valued contin-
uous function M (z) on R? that belongs to A and satisfies

(5.1.3) /M(m)|dm] _1

Note that M” necessarily satisfies

(5.1.4) IMMNz)| <1 MA(a) = MMN—z).

Consider any finite measure space X* = (X,w) with the total measure w(X) = 1. In
other words, a finite set X is equipped with a weight function w(x) > 0 (x € X) satisfying
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Zx w(x) = 1. For any C-valued function ¢ on X, we define the weighted average

(5.1.5) Avgy.¢ = / pw= > w(x)o(x)

EX

Consider, now, any pair X** = (X* /) of an X* = (X,w) and a mapping £ : X — R
We shall need some terminology related to “approximation” of the given measure space
(R%, M (x)|dz|) by the ¢-images of such finite measure spaces X*. Namely, for a sequence
{X*} of X* = (X*,4,), and a test function ® on R, consider the condition

n—oo

(5.1.6) lim Avgy.(®o/,) /M x)|dz|.

(So to speak, “approximation at the level ®”.) What we shall need is to deduce, from the
validity of (5.1.6) for some special classes of functions ® to that for more general cases of
funtions ¢.

Lemma A Let M(z) be any good density function on R, and { X*},>1 be a sequence
of pairs X** = (X*,4,) of a finite measure space X* and a mapping £, : X,, — R%.

(i) Suppose that (5.1.6) holds for any additive characters ® = W) : x — ¥ and
that the convergence is uniform in the wider sense w.r.t. the parameter y € R%. Then
(5.1.6) holds for any function ® belonging to A. In particular, it holds for any compactly
supported C*-function.

(i) Suppose (5.1.6) holds for all compactly supported C°°-functions ® on R?. Then:
(a) it holds for any bounded continuous function ®;

(b) it holds for any continuous function ® satisfying

(5.1.7) 1B()] < do(lal).

if there exists a continuous monotone non-decreasing function ¢o(r) > 0 of r > 0 satisfying
lim, o ¢o(r) = 00 and

(5.1.8) / M(2)ol[z])|dz] < oo,
(5.1.9) Avgy.(doo [a])? < 1

(c) its holds when ® is the characteristic function (the defining function) of either a
compact subset of R% or the complement of such a subset.
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5.2 — Rapid decay of M,(z), a la Jessen-Wintner. We shall need the following
property of M, (z), which essentially goes back to Jessen-Wintner [9].

Lemma B Fiz o > 1/2. Then in each of Cases 1,2, we have

(5.2.1) M,(z) = O(e ) any A > 0.

This proof will be given in §5.7.

5.3 — Proof of Theorem 4 assuming Lemmas A,B We shall apply Lemma A to
the following situation:

C for R? (note that Re(zw) = (z,w) (z, w € C)),

M,(z) (o > 1/2) for M(x),

The set of prlme divisors f (# po in the FF case) of K, instead of n = 1,2,.

The set G := {x € Gg; £, = f} for X,,, with w, = 1/|G’| for all y € G;
and finally,

L(s,x,f) for £,(x) (for each s with ¢ = Re(s) > 1/2).

Since 9, ; (z € C) runs over all additive characters of C, Theorem 3 for the case
29 = Z1 asserts that the assumption of Lemma A (i) is satisfied. Therefore, by Lemma
A (i), the first common assumption of Lemma A(ii) is satisfied. Now take any a > 0
and put ¢o(r) = exp(ar). It remains to show that this satisfies the assumption of (ii)(b).
But (5.1.8) is obvious by Lemma B, while (5.1.9) is nothing but Corollary 1.3.12. When
o > 1, Theorem 3 holds unconditionally (Remark 1.3.5), |L(s,x,f)| is bounded, and
M, (w) is compactly supported [4](Case 1)[7](Case 2); hence the validity of (1.4.1) for
any continuous function ® is a trivial consequence of that for any compactly supported
continuous function. Therefore, Theorem 4 is reduced to Lemmas A and B.

5.4 — Proof of Lemma A (i). @ We shall first prove (i). By assumption and by
(5.1.1), we have

(5.4.1) lim Avgxz(@b(y) oly) = M"y) (uniformly on |y| < R)
for any R > 0, where 1) (z) = ¢/®¥ . Now let ® be any element of A and put

(5.4.2) An(®) = Avgy. (Do l,,) /M (2)|dz].
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(Since M, ® € A, the above integral is finite.) Write X = (X, w,). Then since (®")" =
o, M(z) = M(x ) and M"(y) = M"(—y), (5.1.2) gives

(543)  AL(D) = D wi(x)® / M (z)®(z)|dx]

(5.4.4) - 3w / B (y)e 009 | gy — / M (—y) @ (y)|dy]
- /(Z wa(x)e! 000 —MA(—y)> O (y)|dy|

_ / (Avey: (0 0 £,) — M"(~y)) B"(3)|dyl.

But since [¢(¥) ()|, |M”(y)| < 1, we obtain for any R > 0,

(5.4.5) [An(®)] S/ IAVgX;;(@D(_y)Ofn)—MA(—y)||¢A(y)||dy|+2/ |2 ()| dyl-

ly|<R ly|>R

Since ® € A and hence in particular " € L', the total integral of |®"| is finite. Call this
value /. Now, given any € > 0, choose R so large that the second term on the right hand
side of (5.4.5) is < €. Then choose € > 0 such that €I < e. Then by (5.4.1),

(5.4.6) [Avg . (0 0 l,) = MM (—y)| < ¢

holds on |y| < R for sufficiently large n, which implies |A,(®)| < 2¢ for such large n. This
settles the proof of (i).

5.5 — Proof of Lemma A (ii) First, the validity of (5.1.6) for any compactly
supported C*°-function implies that for any compactly supported continuous function,
because the latter can be approximated by the former.

As for (c¢), this can be proved directly by approximation of the characteristic function
of a given compact set by continuous compactly supported functions, as is explained in
detail in the two dimensional case in [6]§4.3.

Now to prove (a)(b), let ® satisfy the assumptions of one of (a)(b), and put «,, =
Avgy. (P ol,). In each case, oy, (n =1,2,...) is a bounded sequence. Let o be any of its
limit points. It is the limit of some subsequence «,,,. The goal is to prove

(5.5.1) a—/M x)|dx|.
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To prove this, note first that for any R > 0 there exists a compactly supported continuous
function @y satisfying

(5.5.2) |@(z) — ()] < (1 — chr(z))|®(z)]

where chr denotes the characteristic function of {|z| < R}. Indeed, if E(u) is any
compactly supported continuous function such that 0 < E(u) < 1 everywhere and E(u) =
1 for Ju| <1, then ®r(x) = ®(x)E(x/R) has this property. Now choose such ®p for each
R, and put a,, p = Avg X;;(CID rol,). Since ®p is compactly supported and continuous, we
have

(5.5.3) lim o,z = /M(x)(I)R(x)|dx|.

n—oo

Now, (5.5.2) gives

(5.5.4) an —anr = Avgy.((®—Pg)oly)

< Bur = Avgy. (1 — chg)|®| o £,),
and also
(5.5.5) ]%im M(x)Pg(z)|dx| = /M(J:)q)(x)|dx|

Now suppose that @ is bounded. Then 3, r < Avgy.((1 — chg) o £,) which tends
to f|x|>RM(x)\dx| as n — 00, because we already know that (5.1.6) holds for 1 — chg.
Therefore, (5.5.4) for n,, v — oo gives

(5.5.6) o /M(m)(l)R(x)|dx| < [ M@)da|

lz|=R

Therefore, by letting R — oo we obtain (5.5.1) when ® is bounded.
When |®(z)] < ¢o(|z]|) as in (b), (5.1.7)(5.1.9) and the Schwarz inequality give (note
that 1 — chg is the same as its square):

(5.5.7) h < (Ava (1 - chg) o £,))(Avey; (d0 0 [6])?)
< Avgy (1 - chp)oly),

But since ¢o(r) is positive and monotone non-decreasing, we have, trivially,
(1 = chr)(2)do(R)* < do(l2])*.
Therefore,

(5.5.8) Avg . ((1 = chg) 0 £,) < ¢o(R) > Avgy, (¢o o [€a])* < do(R) .
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Therefore, by (5.5.7), we obtain 3, p < ¢o(R)"!. Therefore, (5.5.4) for n, with v — oo
gives

(5.5.9) o /M(x)q>R(a;)\dx| < do(R)":

hence by letting R — oo we obtain (5.5.1) also for this case. This completes the proof of
Lemma A.

5.6 — Proof of Lemma B. The general theory developed in [9], from §7 on, starts
with any holomorphic function F'(z) on |z| < p (in our case p = 1) satisfying F'(0) =
0, F'(0) # 0, and from §8, also with any sequence {r,},>1 of positive real numbers
satisfying r,, < r for some r < p and > 72 < co. Then the existence of the “continuous
density” D(z) for the distribution on C of the values of

(5.6.1) > F(r,e’n)

(0 < 6, < 1) is established, and some basic analytic properties of D(z) are proved (loc.
cit. Theorems 14-16).

Here, (just for Case 1) we need the following (slight) generalization. Let {\,},>1
be another sequence of positive real numbers satisfying A\,;' < 1 and > A2r2 < oo.
Consider now the distribution of

(5.6.2) D A F (rpe” )

on C. Then Theorems 14-16 remain valid; in particular, the existence of the density
(function) D(z) (Theorem 14) and the property D(z) < e *° for any A > 0 (Theorem
16) remain valid. (Incidentally, the condition 7,! < n in Theorem 15 need not be
modified.)
Now, take
Fl) = {z/(z —1) (Case 1),
—log(1 —2) (Case 2),
(so that p = 1). Moreover, in Theorem 14, take {p;p # p} instead of n € N, take
N(p)=¢ for r,, take log N(p) (resp. 1) for A\, in Case 1 (resp. Case 2). Then for each
o > 1/2 and for each of Cases 1,2, the above conditions are satisfied and the corresponding

density function D(z) is nothing but our M, (z). Therefore, (the modified) Theorem 16
of [9] gives Lemma B (see also Theorem 19 for Case 2, with N(p) in place of p,).
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