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SEPARABLE ENDOMORPHISMS OF SURFACES IN POSITIVE

CHARACTERISTIC

NOBORU NAKAYAMA

Abstract. The structure of non-singular projective surfaces admitting non-isomorphic

surjective separable endomorphisms is studied in the positive characteristic case. The

case of characteristic zero is treated in [2], [16] (cf. [3]). Many similar classification

results are obtained also in this case; on the other hand, some examples peculiar to the

positive characteristic are given explicitly.

1. Introduction

We work in the category of algebraic k-schemes for an algebraically closed field k of

characteristic p > 0. The main purpose of this article is to prove Theorems 1.1 and

1.2 below on the classification of non-singular projective surfaces X which admit non-

isomorphic surjective separable endomorphisms f : X → X. Here, f is a finite surjective

morphism of deg f > 1 and the field extension k(X)/f∗k(X) is separable. In the case of

characteristic zero, the non-singular projective surfaces admitting non-isomorphic surjec-

tive endomorphisms are classified by [2], [16] (cf. [3]) as follows:

• A toric surface.

• A P1-bundle over an elliptic curve.

• A P1-bundle over a curve of genus ≥ 2 which is trivialized after a finite étale base

change.

• An abelian surface.

• A hyperelliptic surface.

• An elliptic surface with Kodaira dimension one and Euler number zero.

Here, any elliptic surface in the last case admits an étale covering from the product of

an elliptic curve and a curve of genus ≥ 2. Even in the positive characteristic case, the

arguments in the papers above are effective for the classification. However, there are
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2 N. NAKAYAMA

strange phenomena not covered by the arguments. For example, there is a non-toric non-

singular rational surface admitting non-isomorphic surjective separable endomorphisms

(cf. Example 4.5 below).

Theorems 1.1 and 1.2 below almost correspond to the classification in characteristic

zero. For their proofs, we apply results and arguments in the classification theory of

algebraic surfaces of characteristic p > 0, mainly those by Bombieri and Mumford in [14],

[1].

Theorem 1.1. Let X be a non-singular projective surface admitting a non-isomorphic

surjective separable endomorphism f : X → X. Assume that the Kodaira dimension

κ(X) = −∞. Then, the following hold for the irregularity q(X) = dim Alb(X):

(1) If q(X) = 0, then X is a rational surface having at most finitely many negative

curves and −KX is big (cf. Convention 3.2). If p ∤ deg f or f is tame (cf.

Definition 2.1), in addition, then X is a toric surface.

(2) If q(X) = 1, then X is a P1-bundle over an elliptic curve.

(3) If q(X) ≥ 2, then X is a P1-bundle over a non-singular projective curve T of genus

q(X), X has no negative curves, and the relative anti-canonical divisor −KX/T

is numerically equivalent to an effective Q-divisor. If p ∤ deg f or f is tame, in

addition, then −KX/T is semi-ample, and there is a finite surjective morphism

T ′ → T from a non-singular projective curve T ′ such that X×T T
′ ≃ P1 ×T ′ over

T ′.

Here, a negative curve means a prime divisor on X with negative self-intersection

number (cf. Section 3).

Theorem 1.2. Let X be a non-singular projective surface of Kodaira dimension κ(X) ≥

0. Then, any surjective separable endomorphism of X is étale. Moreover, X admits

a non-isomorphic surjective separable endomorphism if and only if one of the following

conditions is satisfied :

(1) X is a minimal surface with κ(X) = 0 and χ(X,OX) = 0; in other words, X

is an abelian surface, a hyperelliptic surface, or a quasi-hyperelliptic surface (cf.

Fact 6.3 below).

(2) X is a minimal elliptic surface with κ(X) = 1 and χ(X,OX) = 0.

There are two remarks on the theorems. First, the converse direction in Theorem 1.1 is

not known, i.e., it is not clear whether a surface listed in Theorem 1.1 really admits non-

isomorphic surjective separable endomorphisms. So, the classification is not complete in

the case of κ(X) = −∞. Second, similarly to the case of characteristic zero, we have few
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information on the structure of non-isomorphic surjective separable endomorphisms of a

given surface.

Two peculiar examples related to Theorem 1.1 are given. One is the example mentioned

above, which is a non-toric rational surface admitting non-isomorphic surjective separable

endomorphisms. This is given in Example 4.5. The other is an example of a P1-bundle

over a curve of genus ≥ 2 such that it admits a non-isomorphic surjective endomorphism

but the P1-bundle structure is not trivialized after any finite base change whose degree

is not divisible by p. This is given by Proposition 5.5 (cf. Remark 5.6). Both examples

are related to Artin–Schreier coverings.

This article is organized as follows. In Section 2, we recall some basic properties of

“separable coverings” and “fibrations.” In Section 3, we study the set of negative curves,

which is the key object in the classification in the case of negative Kodaira dimension.

The case of rational surfaces, the case of irrational ruled surfaces, and the case of non-

negative Kodaira dimension are treated separately in the remaining sections. The proof

of Theorem 1.1 is given at the end of Section 5, and that of Theorem 1.2 is at the end of

Section 6.

Notation and conventions. We fix an algebraically closed field k of characteristic

p > 0 as a ground field. We use standard notation of algebraic geometry (cf. Table 1).

By a variety, we mean an integral separated k-scheme of finite type. Note that, since k

is algebraically closed, a variety is non-singular if and only if it is smooth over Spec k. A

curve (resp. surface) means a variety of dimension one (resp. two). Additional notation

and conventions etc. are given later (cf. Section 2, Convention 3.2, Definitions 3.4, 3.6).

Remark. The following formulas are well-known for non-singular projective surfaces X

(cf. [1]):

dim H2(X,OX) ≥ dim H1(X,OX) − q(X) ≥ 0,

12χ(X,OX) = K2
X + e(X) (so-called “Noether’s formula”),

b1(X) = b3(X) = 2q(X), 1 ≤ ρ(X) ≤ b2(X).

Acknowledgment. The author expresses his hearty thanks to the organizers of the third

conference of “Algebraic Geometry in East Asia” held at Korea Institute of Advanced

Study in November 2008. However, in the conference, the author gave a talk on endo-

morphisms of complex normal projective surfaces, whose subject is slightly different from

that of the present article. The results on endomorphisms of complex normal projective

surfaces are written in another paper [18].
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2. Preliminaries

In this section, we recall some basic results on separable coverings and fibrations of

normal varieties.

Let us begin with discussion on separable coverings. Let ϕ : V1 → V2 be a finite

surjective morphism of varieties. If the function field k(V1) is a separable extension of

ϕ∗k(V2), then ϕ is called separable. In this case, Ω1
V1/V2

is zero at the generic point of V1.

If V1 and V2 are normal, then the finite surjective morphism ϕ is called a covering (or a

finite covering). If further k(V1) is a Galois extension of ϕ∗k(V2), then the action of the

Galois group on V1 is regular and the quotient variety is isomorphic to V2. In this case,

ϕ is called a Galois covering.

Table 1. List of notation

κ(X) : The Kodaira dimension of X.

KX : The canonical divisor of X.

Alb(X) : The Albanese variety of X.

k(X) : The function field of X.

PX(E) : The projective bundle associated with a locally free sheaf

E on X.

bi(X) : The i-th Betti number: rank Hi(Xét,Zl), where p ∤ l.

e(X) : The Euler number:
∑

i≥0(−1)ibi(X).

q(X) : The irregularity: dim Alb(X) = (1/2)b1(X).

N(X) : The real vector space NS(X) ⊗ R, where NS(X) is the

Néron–Severi group.

Nef(X) : The nef cone.

NE(X) : The pseudo-effective cone.

ρ(X) : The Picard number: dim NS(X).

D1D2 : The intersection number of two divisors D1, D2.

D2 : The self-intersection number: DD.

∼ : The linear equivalence relation of divisors.
∼∼∼ : The numerical equivalence relation of divisors.

cl(D) : The numerical equivalence class (∈ N(X)) of a divisor D.

pa(D) : The arithmetic genus of a complete connected reduced

curve D (= dim H1(D,OD) = 1 − χ(D,OD)).

fk : The k-times composite f ◦ · · · ◦ f of an endomorphism

f : X → X.
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Suppose that V1 and V2 are non-singular and that ϕ is separable. Then, ϕ is flat, and

the canonical homomorphism ϕ∗Ω1
V2

→ Ω1
V1

induced from the pullback of differential one-

forms is injective. The determinant of the homomorphism is an injection ϕ∗Ωn
V2

→ Ωn
V1

of invertible sheaves, where n = dimV1 = dimV2. Hence, Ωn
V1

≃ ϕ∗Ωn
V2

⊗OV1
(Rϕ) for an

effective divisor Rϕ, equivalently, KV1
= ϕ∗(KV2

) + Rϕ, where KV denotes the canonical

divisor of V . The homomorphism ϕ∗Ω1
V2

→ Ω1
V1

is an isomorphism outside SuppRϕ.

Thus, ϕ is étale on V1 \ SuppRϕ. The effective divisor Rϕ is called the ramification

divisor.

Definition 2.1 (cf. [10], Section 2.1). Let ϕ : V1 → V2 be a finite surjective separable

morphism of normal varieties. It is called tame over a prime divisor Θ on V2 if the

following conditions are satisfied for any prime divisor Γ on V1 with ϕ(Γ) = Θ:

(1) The ramification index of ϕ along Γ is not divisible by p, where the ramification

index is the multiplicity of the divisor ϕ∗(Θ) along Γ.

(2) The induced finite surjective morphism ϕ|Γ : Γ → Θ is separable.

If ϕ is tame over any prime divisor on V2, then ϕ is called tame.

Note that if ϕ is étale, then ϕ is tame. As a version of Abhyankar’s lemma (cf. [9],

Exp. X, Lemma 3.6, Exp. XIII, Section 5, and [10], Section 2.3), we have the following:

Lemma 2.2. Let ϕ : V1 → V2 be a finite surjective morphism of normal varieties. Suppose

that V2 is non-singular, ϕ is étale outside a non-singular divisor Θ on V2 (i.e., V1 \

ϕ−1(Θ) → V2 \ Θ is étale), and that ϕ is tame. Then, for any point P ∈ ϕ−1(Θ), there

exist an étale neighborhood U1 → V1 of P , an affine étale neighborhood U2 = SpecA→ V2

of ϕ(P ), and an étale morphism U1 → U2(m, a) over V2 for the affine scheme

U2(m, a) = SpecA[T]/(Tm − a),

where m is a positive integer not divisible by p and the zero subscheme of a ∈ A is the

non-singular divisor Θ×V2
U2. In particular, V1 and ϕ−1(Θ) are non-singular, and ϕ−1(Θ)

is étale over Θ.

Lemma 2.3. Let ϕ : V1 → V2 be a finite surjective separable morphism of non-singular

varieties. Let Γ be a prime divisor on V1 and m the ramification index of ϕ along Γ.

Then, multΓ(Rϕ) ≥ m− 1. If p | m, then multΓ(Rϕ) ≥ m. If ϕ is tame over ϕ(Γ), then

multΓ(Rϕ) = m− 1.

Proof. Let x be a general point of Γ such that Γ is non-singular at x and ϕ(Γ) is non-

singular at ϕ(x). Then, there exist local coordinate systems (t1, . . . , tn) of V1 at x and
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(s1, . . . , sn) of V2 at ϕ(x) such that t1 is a local equation of Γ and s1 is a local equation

of ϕ(Γ). Then, ϕ∗(s1) = utm1 for a regular function u not vanishing at x. Since

ϕ∗(ds1) = tm−1
1 (mu dt1 + t1 du),

there is a regular function v such that

ϕ∗(ds1 ∧ · · · ∧ dsn) = vtm−1
1 (dt1 ∧ dt2 ∧ · · · ∧ dtn).

Hence, multΓ(Rϕ) ≥ m − 1. If p | m, then ϕ∗(ds1) = tm1 du; hence, multΓ(Rϕ) ≥ m

by the same argument above. Suppose that ϕ is tame over ϕ(Γ). By Lemma 2.2, étale

locally on V1 and V2, ϕ is regarded as a cyclic covering (t1, t2, . . . , tn) 7→ (s1, s2, . . . , sn) =

(tm1 , t2, . . . , tn). Hence,

ϕ∗(ds1 ∧ · · · ∧ dsn) = mtm−1
1 (dt1 ∧ dt2 ∧ · · · ∧ dtn).

Therefore, multΓ(Rϕ) = m− 1. �

Corollary 2.4. Let ϕ : V1 → V2 be a finite surjective separable morphism between non-

singular varieties. Let D2 be a reduced divisor on V2 such that ϕ is tame over D2, and

let D1 be the reduced divisor ϕ−1(D2) = ϕ∗(D2)red. Then, ∆ = Rϕ − ϕ∗(D2) +D1 is an

effective divisor having no common irreducible components with D1.

Proof. Since Rϕ is effective, so is ∆ at least on V1 \D1. If Γ is a prime component of D1,

then multΓ(∆) = 0 by Lemma 2.3. Thus, we are done. �

Note that the divisor ∆ in Corollary 2.4 satisfies KV1
+D1 = ϕ∗(KV2

+D2) + ∆.

Corollary 2.5. Let ϕ : C → P1 be a finite covering from a non-singular curve C such

that p ∤ degϕ. Assume that, for a point P ∈ P1, ϕ−1(P ) is a point, and ϕ is étale on

C \ ϕ−1(P ). Then, ϕ is an isomorphism.

Proof. We set Q := ϕ−1(P ). Then, ϕ∗(P ) = mQ for m = degϕ. Hence, ϕ is tame. By

Corollary 2.4, we have KC +Q = ϕ∗(KP1 + P ) + ∆ for an effective divisor ∆ on C with

Q /∈ Supp ∆. Since ϕ is étale outside Q, we have ∆ = 0. Hence,

2g − 2 < 2g − 2 + 1 = deg(KC +Q) = − degϕ < 0

for the genus g of C. Thus, g = 0 and degϕ = 1. Therefore, ϕ is an isomorphism. �

The following is a typical example of separable surjective morphisms ϕ : C → P1 with

p = degϕ which is étale over P1 \ {P} for a point P .

Example 2.6. Let f : P1 → P1 be the Artin–Schreier morphism defined by (x : y) 7→

(xp − xyp−1 : yp) for a homogeneous coordinate (x, y) of P1. Then, for the infinity

point P = (1 : 0), f−1(P ) = {P} and f is étale on P1 \ {P}. In particular, f is a
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separable finite covering of degree p. Here, f is not tame over P , since the ramification

index at P is p. Moreover, the ramification divisor Rf is calculated as (2p − 2)P , since

degRf = (1 − deg f) degKP1 = 2p− 2 by the ramification formula.

Next, we shall discuss on fibrations. First, we recall the notion of fibration of normal

varieties.

Definition 2.7. Let π : V → W be a proper surjective morphism of normal varieties. If

the canonical homomorphism OW → π∗OV is isomorphic, then π is called a fibration (or

a fiber space).

For a proper surjective morphism π : V → W of normal varieties, it is known that

π is a fibration if and only if the function field k(W ) is algebraically closed in k(V )

via π∗ : k(W ) → k(V ). Moreover, if π is a fibration, then any fiber of π is connected

(cf. [6], Théorème 4.3.1) and a general fiber of π is geometrically irreducible (cf. [7],

Proposition 4.5.9, [8], Théorème 9.7.7). However, even if π is a fibration, a general fiber

is not necessarily reduced.

Example 2.8. For n ≥ 2, let V be the hypersurface of Pn × Pn defined by
∑n

i=0 xiy
p
i = 0,

where (x0 : · · · : xn) and (y0 : · · · : yn) are homogeneous coordinates of Pn. Then the

projection V → Pn to the second factor is a Pn−1-bundle, while the projection V → Pn

to the first factor is a fibration whose closed fibers are all non-reduced.

For a fibration π : V → W , a general fiber is reduced if and only if the geometric

general fiber is reduced (cf. [8], Théorème 9.7.7); this is also equivalent to the condition

that k(V ) is a separable over k(W ) via π∗, i.e., k(V ) ⊗k(W ) L is reduced for any field L

over k(W ) (cf. [7], Proposition 4.6.1). Fortunately, if dimW = 1, then a general fiber of

a fibration π : V → W is always reduced by [11], Theorem 2 (cf. [20]).

For a fibration from a surface to a curve, we have the following well-known result in

the classification theory of surfaces, which is mentioned in [14] without proof.

Proposition 2.9. Let π : X → T be a fibration from a non-singular surface X to a non-

singular curve T such that KXC = 0 for any closed curve C ⊂ X contained in a fiber of

π. Then, a general fiber F of π is an irreducible and reduced curve of arithmetic genus

one. Moreover, if p > 3, then F is an elliptic curve, and if p ≤ 3, then F is an elliptic

curve or a cuspidal cubic curve.

Proof. As has been mentioned, k(X) is separable over π∗k(T ) and F is irreducible and

reduced. Hence, pa(F ) = 1 by (KX + F )F = 0, and consequently, F is isomorphic to a

plane cubic curve. Thus, it is enough to prove the last assertion. In many articles, the

proof of this part is done by referring to [21], Theorem 2. Here, we shall present another
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proof. Assume that the general fiber F is not an elliptic curve. Then F is a rational

curve with a unique singular point P , where P is a node or a cusp of type (2, 3); more

precisely, the completion Ô of the local ring OF,P is isomorphic to either kJu, vK/(uv) or

kJu, vK/(u2 − v3). Let (x, y) be a local coordinate of P2 at P and let φ = φ(x, y) be a

local defining equation of F . From the natural exact sequence

0 → OF (−F ) → Ω1
P2/k → Ω1

F/k → 0,

we have an isomorphism

Ext1
OF

(Ω1
F/k,OF )P ≃ OF,P/(φ, ∂φ/∂x, ∂φ/∂y) ≃ Ext1

Ô

(
Ω1

Ô/k
, Ô

)
.

Therefore, in order to calculate the dimension of Ext1 above, we may assume (x, y) =

(u, v), and φ = uv or φ = u2 − v3. As a consequence, we infer that the dimension of the

Ext1 is 1, 2, 3, and 4 according as the conditions: (i) P is a node, (ii) P is a cusp and

p > 3, (iii) P is a cusp and p = 3, and (iv) P is a cusp and p = 2.

By the separability of k(X)/π∗k(T ), the natural sequence

0 → π∗Ω1
T → Ω1

X/k → Ω1
X/T → 0

is exact. Hence, there is a coherent OX-ideal I such that

Ext1
OX

(Ω1
X/T ,OX) ⊗ π∗Ω1

T ≃ OX/I,

Ext1
OF

(Ω1
F/k,OF ) ≃ (OX/I) ⊗OF ≃ OF/IOF .

Let S ⊂ X be the reduced closed subscheme identified with the support of OX/I.

Then, S ∩ F = {P}. In particular, S ⊂ X → T is a dominant purely inseparable

morphism. If S → T is isomorphic, then π : X → T is smooth along S, since X is

non-singular; this is a contradiction. Therefore, degS/T ≥ p. On the other hand,

degS/T ≤ dimk(OF/IOF )P ≤ 2 if (i) P is a node or if (ii) P is a cusp and p > 3, by the

calculation of the dimension of the Ext1 above. Hence, p ≤ 3 and P is a cusp. �

Definition 2.10. Let π : X → T be a fibration from a normal surfaceX to a non-singular

curve T . If a general fiber of π is an elliptic curve (resp. a cuspidal cubic curve), then π

is called an elliptic fibration (resp. a quasi-elliptic fibration). In this case, X is called an

elliptic surface (resp. a quasi-elliptic surface).

A fibration π is called minimal if X is non-singular and any fiber of π contains no

(−1)-curves. Here, a (−1)-curve is by definition a non-singular rational curve C ⊂ X

with C2 = −1; this is also called an exceptional curve of the first kind.

Remark 2.11. If an elliptic surface (resp. a quasi-elliptic surface) π : X → T is minimal,

then KXC = 0 for any closed curve contained in a fiber. In fact, if KXC 6= 0, then there
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is an irreducible component Γ in the same fiber such that KXΓ < 0, since KXπ
∗(t) = 0

for any t ∈ T . Here, if Γ2 < 0, then Γ is a (−1)-curve by 2pa(Γ) − 2 = (KX + Γ)Γ < 0;

if Γ2 ≥ 0, then the fiber π∗(t) is a multiple of Γ, since π∗(t) is connected and π∗(t)Γ = 0;

thus KXΓ = 0, a contradiction.

Lemma 2.12. Let π : X → T be an elliptic fibration from a normal surface X to a non-

singular curve T . Assume that any fiber of π does not contain rational curves. Then, X

is non-singular, π is minimal, and the support of every fiber is an elliptic curve.

Proof. Let µ : Z → X be a resolution of singularities. Contracting (−1)-curves contained

in fibers of π ◦µ : Z → T , we have a proper birational morphism ν : Z → Y to a minimal

elliptic surface Y over T . Let ̟ : Y → T be the induced elliptic fibration. Let Γ be the

proper transform in Y of an irreducible component of a fiber of π. Then, Γ is also an

irrational irreducible component of a fiber F of ̟. Hence, 0 ≤ 2pa(Γ) − 2 = (KY + Γ)Γ.

If F is reducible, then Γ2 < 0. But KY F = 0 and KY Γ > 0 imply that Γ2
1 < 0 and

KY Γ1 < 0 for some other irreducible component Γ1 of F ; hence Γ1 is a (−1)-curve.

Therefore, F is irreducible, and hence F = mΓ for some m ≥ 1. Since pa(Γ) = 1 by

KY Γ = Γ2 = 0 and since Γ is irrational, Γ is an elliptic curve. Therefore, the support of

any fiber of ̟ is an elliptic curve. In particular, the rational curves contained in fibers

of π ◦ µ : Z → T are all exceptional for both µ and ν. Hence, X ≃ Y over T . Thus, we

are done. �

Theorem 6.1 below explains in detail the structure of the elliptic fibration π : X → T

in Lemma 2.12 above. The following result seems to be well-known.

Lemma 2.13. Let π : X → T be an elliptic fibration from a non-singular projective

surface X. If χ(X,OX) = e(X) = 0, then the support of any fiber of π is an elliptic

curve.

Proof. We have K2
X = 12χ(X,OX) − e(X) = 0. If π is not minimal, then we have a

birational morphism µ : X → Y for a minimal elliptic surface Y over T , where 0 = K2
X <

K2
Y . However, since KY F = 0 for a general fiber F of π, we have K2

Y ≤ 0 by the Hodge

index theorem. Therefore, π is a minimal elliptic fibration, and hence KXC = 0 for any

closed curve C contained in a fiber of π (cf. Remark 2.11). Let U ⊂ T be a non-empty

open subset such that π|π−1(U) : π
−1(U) → U is smooth. Then Ω1

X/T is locally free of

rank one over π−1(U). Thus, we have a surjection Ω1
X/T → JM for an invertible sheaf

M on X and an ideal sheaf J on X such that the kernel is a torsion sheaf on X and

SuppOX/J is a finite subset of X \ π−1(U). Therefore, we have an effective divisor B

on X with SuppB ∩ π−1(U) = ∅ and an exact sequence

0 → π∗Ω1
T ⊗OX(B) → Ω1

X → JM → 0.
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Considering the Chern classes of Ω1
X , we have M ≃ OX(KX − π∗(KT ) −B) and

c2(Ω
1
X) = c1(π

∗Ω1
T ⊗OX(B))c1(M) + c2(JM)

= (π∗(KT ) +B)(KX − π∗(KT ) −B) + length(OX/J )

= −B2 + length(OX/J ) ≥ length(OX/J ) ≥ 0,

since KXπ
∗(KT ) = KXB = 0 and B2 ≤ 0. Note that B2 = 0 if and only if kB = π∗(Θ)

for a positive integer k and an effective divisor Θ on T (cf. Lemma in the proof of [1],

Theorem 2). Thus, from the assumption e(X) = c2(Ω
1
X) = 0, we have J = OX and

B2 = 0. In particular, we have an exact sequence

(2.1) 0 → OX(π∗(KT ) +B) → Ω1
X → OX(KX − π∗(KT ) −B) → 0,

where BC = 0 for any closed curve C contained in fibers of π.

Let C be an irreducible component of the fiber π∗(t) over a point t ∈ T \U . Then, we

have a natural exact sequence

(2.2) 0 → OC(−C) → Ω1
X |C → Ω1

C → 0.

By (2.1), we have a homomorphism

ϕC : OC(−C) → OX(KX − π∗(KT ) −B)|C

to an invertible sheaf on C of degree zero. Suppose that ϕC is not zero. Then, C2 = 0,

and ϕC is an isomorphism. In this case, (2.2) is split and Ω1
C ≃ OX(π∗(KT ) + B)|C is

locally free. Therefore, C is an elliptic curve, and π∗(t) = mC for some m > 0. Suppose

next that ϕC is zero. Then, we have an injection

ψC : OC(−C) → OX(π∗(KT ) +B)|C

to an invertible sheaf on C of degree zero. Hence, C2 = 0 and ψC is an isomorphism.

Then, Ω1
C is isomorphic to the locally free sheaf OX(KX −π∗(KT )−B)|C . Thus, C is an

elliptic curve, and π∗(t) = mC for some m > 0. Therefore, the support of any fiber π∗(t)

is an elliptic curve. �

3. Negative curves and endomorphisms

Let X be a non-singular projective surface. A prime divisor Γ on X is called a negative

curve if the self-intersection number Γ2 is negative. Let Neg(X) denote the set of negative

curves on X. In this section, we shall give basic properties on the negative curves related

to endomorphisms. In particular, we shall show that Neg(X) is finite if X admits a non-

isomorphic surjective separable endomorphism. This is known in the case of characteristic

zero by [16].
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Let N(X) be the real vector space NS(X)⊗R for the Néron–Severi group NS(X) of X.

Here, dim N(X) equals the Picard number ρ(X). Let f : X → Y be a surjective morphism

of non-singular projective surfaces. For the pull-back and push-forward of divisors, we

have

f ∗(D)E = Df∗(E) and (deg f)D = f∗(f
∗(D))

for divisors D on Y and E on X. These are known as the projection formula. The

maps D 7→ f ∗(D) and E 7→ f∗(E) induce the homomorphisms f ∗ : N(Y ) → N(X) and

f∗ : N(X) → N(Y ), respectively. Here, f∗ ◦ f
∗ is the multiplication map by deg f . In

particular, f ∗ is injective and f∗ is surjective. Note that if g : Y → Z is a surjective

morphism to another non-singular projective surface Z, then f ∗ ◦ g∗ = (g ◦ f)∗ and

g∗ ◦ f∗ = (g ◦ f)∗.

Remark (cf. [2], Lemma 2.3, (1)). Let f : X → X be a surjective endomorphism of a

non-singular projective surface X. Then, f ∗ : N(X) → N(X) and f∗ : N(X) → N(X) are

isomorphisms. In particular, f is a finite morphism, since no curve is contracted by f .

The following is proved in [16] in characteristic zero, and the same proof works in this

case:

Lemma 3.1. Let f : X → X be a non-isomorphic separable surjective endomorphism.

Then, Neg(X) is a finite set, and there is a positive integer k such that (fk)∗Γ =

(deg f)k/2Γ for any Γ ∈ Neg(X), where fk stands for the k-times composite f ◦ · · · ◦ f .

Since this is a key lemma for our study of endomorphisms of surfaces, we write the

proof.

Proof. Step 1 (cf. [16], Lemma 9). We shall show that the mapping Γ 7→ f(Γ) induces

an injection ψ : Neg(X) → Neg(X). Let Γ be a negative curve on X. Assume that

f(Γ) = f(Γ′) for some prime divisor Γ′. Then, f∗(Γ
′) = αf∗(Γ) for some rational number

α > 0, since f∗(Γ) = dΓf(Γ) for the mapping degree dΓ of Γ → f(Γ). Hence, the class of

Γ′−αΓ in N(X) is zero by the injectivity of f∗. In particular, ΓΓ′ = αΓ2 < 0. Therefore,

Γ = Γ′. As a consequence, we have f ∗(f(Γ)) = mΓ for some m ≥ 1. Here, f(Γ) is a

negative curve by

(deg f)f(Γ)2 = f ∗(f(Γ)) · f ∗(f(Γ)) = m2Γ2 < 0.

Thus, Γ 7→ f(Γ) induces an injection ψ : Neg(X) → Neg(X).

Step 2 (cf. [16], Lemma 10). Let Γ be a negative curve. We shall show that fk(Γ) ⊂

SuppRf for some k ≥ 0. For an integer k ≥ 0, we definemk by f ∗(fk+1(Γ)) = mkf
k(Γ). It
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is enough to show thatmk > 1 for some k. Assume the contrary. Then, (deg f)fk+1(Γ)2 =

(fk(Γ))2 for any k. We have a contradiction by

Γ2 = (deg f)f(Γ)2 = · · · = (deg f)kfk(Γ)2 ∈
⋂∞

k=0
(deg f)kZ = 0.

Step 3 (cf. [16], Proposition 11). Let Neg(X)◦ be the set of negative curves Γ such that

Γ ⊂ SuppRf . This is a finite set, and

Neg(X) =
⋃

k≥0
(ψk)−1(Neg(X)◦)

by Step 2. Since ψ is injective, Neg(X) is a finite set by [3], Lemma 3.4 (cf. The proof

of [16], Proposition 11). Let k be the order of the permutation ψ : Γ 7→ f(Γ) of the finite

set Neg(X). Then, (fk)∗(Γ) = nk,ΓΓ for some positive integer nk,Γ for any Γ ∈ Neg(X).

By calculation

(deg f)kΓ2 =
(
(fk)∗(Γ)

)2
= n2

k,ΓΓ2,

we have nk,Γ = (deg f)k/2. Thus, we are done. �

Convention 3.2. An element of N(X) is regarded as the numerical equivalence class

cl(D) of an R-divisor D on X, where R-divisor means a formal R-linear combination of

finitely many prime divisors. The numerical equivalence relation is denoted by ∼∼∼. Note

that D ∼∼∼ 0 if and only of DC = 0 for any closed curve C on X. An R-divisor D is called

nef if DC ≥ 0 for any closed curve C on X. The nef cone Nef(X) is by definition the set

of cl(D) for all the nef R-divisors D on X. An effective R-divisor is by definition a divisor

of the form
∑
aiΓi, where Γi is a prime divisor and all ai ≥ 0. The pseudo-effective cone

NE(X) is the closure of the cone NE(X) consisting of cl(D) for all the effective R-divisors

D on X. An R-divisor D is called pseudo-effective (resp. big) if cl(D) ∈ NE(X) (resp.

cl(D) is in the interior of NE(X)).

Let f : X → Y be a surjective morphism of non-singular projective surfaces. Then,

f ∗ Nef(Y ) = Nef(X)∩f ∗ N(Y ) and f∗ NE(X) = NE(Y ) for the homomorphisms f ∗ : N(Y )

→ N(X) and f∗ : N(X) → N(Y ). The following is shown in [18], Section 4.4.

Proposition 3.3. Let f : X → X be a non-isomorphic surjective endomorphism of a

non-singular projective rational surface X. Let f ∗ : N(X) → N(X) be the pullback homo-

morphism. If X 6≃ P1 × P1, then some power (f ∗)k = f ∗ ◦ · · · ◦ f ∗ is a scalar map.

Proof. In the proof, we may replace f with a composite fk = f ◦ · · · ◦f , freely. Hence, by

Lemma 3.1, we may assume that f ∗(Γ) = dΓ for any Γ ∈ Neg(X), where d is the positive

integer equal to (deg f)1/2. If ρ(X) = 1, then N(X) is one-dimensional, so f ∗ is a scalar

map. Suppose that ρ(X) = 2 and X 6≃ P1 × P1. Then, X is a Hirzebruch surface having

a negative section Γ. Thus f ∗(Γ) = dΓ. Let F be a fiber of the P1-bundle structure on
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X. Then, f ∗(F ) ∼∼∼ mF for some m > 0, since NE(X) is spanned by cl(F ) and cl(Γ)

and since f ∗ NE(X) = NE(X). Here, m = d by d2 = deg f = f ∗(F )f ∗(Γ) = md. Thus,

f ∗ : N(X) → N(X) is a scalar map.

Suppose that ρ(X) ≥ 3. Then, there is a (−1)-curve C on X (cf. [15], Theorem (2.1)).

Here, f ∗(C) = dC. Let µ : X → Y be the blowing down of C. Then, N(X) =

µ∗ N(Y )⊕R cl(C). Since C is the unique curve contracted by µ◦ f : X → Y , as the Stein

factorization of µ ◦ f , we have an endomorphism fY : Y → Y such that fY ◦ µ = µ ◦ f .

Thus, f ∗ : N(X) → N(X) is isomorphic to the direct sum of f ∗
Y : N(Y ) → N(Y ) and

d× : R cl(C) → R cl(C). Therefore, we can reduce to the case ρ(X) = 3. In this case,

ρ(Y ) = 2. If Y 6≃ P1 × P1, then f ∗ is a scalar map, since f ∗
Y is the multiplication map by

d. Hence, we may assume that Y ≃ P1 × P1. For i = 1, 2, let Fi be the fiber of the i-th

projection Y → P1 which contains the point µ(C). Then, the proper transform F ′
i of Fi

in X is also a negative curve. Hence, f ∗F ′
i = dF ′

i , which induces f ∗
Y (Fi) = dFi. Thus,

f ∗
Y : N(Y ) → N(Y ) is the multiplication map by d, since N(Y ) is generated by cl(F1) and

cl(F2). Therefore, f ∗ : N(X) → N(X) is a scalar map. Thus we are done. �

Definition 3.4. Let X be a non-singular projective surface. We define

NX :=
∑

Γ∈Neg(X)
Γ

when Neg(X) is finite.

The following result is proved in [3], Lemma 3.7 in the case of characteristic zero. The

same proof almost works in the positive characteristic case, but we need to modify some

arguments by applying Lemma 2.2 and Corollaries 2.4 and 2.5.

Lemma 3.5. Assume that X admits a non-isomorphic surjective endomorphism f : X →

X with p ∤ deg f . Then, a connected component of NX is one of the following :

(1) An elliptic curve.

(2) A cyclic chain of rational curves.

(3) A straight chain of rational curves.

Here, “cyclic chains of rational curves” and “straight chains of rational curves” are

defined as follows:

Definition 3.6. Let D be a reduced and connected divisor on a non-singular projective

surface. If D is expressed as
∑k

i=1Ci for mutually distinct non-singular rational curves

Ci such that

CiCj =





1 if |i− j| = 1;

0 if |i− j| > 1,
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then D is called a straight chain of rational curves. If D is expressed as
∑k

i=1Ci for

irreducible components Ci satisfying the following conditions, then D is called a cyclic

chain of rational curves :

(1) If k = 1, then D = C1 is a nodal cubic curve.

(2) If k ≥ 2, then, for any i, Ci ≃ P1, (D − Ci)Ci = 2, and (D − Ci) ∩ Ci consists of

two points.

Proof of Lemma 3.5. By replacing f with a power fk, we may assume that f ∗(Γ) = dΓ for

any negative curve Γ, by Lemma 3.1, where d2 = deg f . Hence, the degree of f |Γ : Γ → Γ

is d, and f |Γ is separable. Thus, f is tame over Γ. By Corollary 2.4, we have an effective

divisor ∆ on X such that ∆ has no common irreducible component with NX and

(3.1) KX +NX = f ∗(KX +NX) + ∆.

In particular, any irreducible component of ∆ is nef. Let D be a connected component

of NX . Then, by Lemma 2.2, f |D : D → D is étale over D \ (SingD ∪ Supp ∆). We set

D◦ := D \ (SingD). Since we have

KD = (f |D)∗KD + ∆|D

from (3.1), the ramification divisor of f |D over D◦ is just ∆|D◦ . If Γ is an irreducible

component of D, then, by (3.1), we have

(3.2) degKΓ + (D − Γ)Γ = (KX +NX)Γ = −
1

d− 1
∆Γ ≤ 0.

Summing up for all the Γ, we have

(3.3) 2pa(D) − 2 = degKD = (KX +NX)D = −
1

d− 1
∆D ≤ 0.

In particular, pa(D) ≤ 1.

Assume that pa(D) = 1. Then, ωD = OX(KX + D) ⊗ OD ≃ OD, and ∆ ∩ D = ∅

by (3.3). Hence, f |D is étale over D◦. Suppose that D is irreducible. Then D is an

elliptic curve or a cubic curve with a node or a cusp of type (2, 3). However, the cusp

case does not occur. For, otherwise, f |D is étale over D◦ ≃ A1; this is impossible by

Corollary 2.5. Suppose next that D is reducible. Let Γ be an irreducible component of

D. Then (D − Γ) ∩ Γ 6= ∅. By (3.2), we have Γ ≃ P1 and (D − Γ)Γ = 2. The finite

surjective morphism f |Γ : Γ → Γ is of degree d and is étale outside (D − Γ) ∩ Γ. Hence,

(D − Γ) ∩ Γ consists of two points by Corollary 2.5. Since the property holds for any

irreducible component Γ of D, we infer that D is a cyclic chain of rational curves.

Assume next that pa(D) = 0. Then, H1(D,OD) = 0. Hence, every irreducible compo-

nent of D is P1. There is an irreducible component Γ1 such that ∆Γ1 > 0 by (3.3). Then,

(D − Γ1)Γ1 = 1 and ∆Γ = d− 1 by (3.2). Thus, there is another irreducible component
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Γ2 of D such that ∆Γ2 > 0 by (3.3). If Γ is an irreducible component different from Γ1

and Γ2, then Γ ∩ ∆ = ∅ and (D − Γ)Γ = 2 by (3.3) and (3.2). In this case, since f |Γ is

étale outside (D − Γ) ∩ Γ, by Corollary 2.5, (D − Γ) ∩ Γ consists of two points. Then

these properties imply that D is a straight chain of rational curves. �

In the case of characteristic zero, the following result onNX is proved by Proposition 14,

(3), and Theorem 17 in [16]. Since the same arguments in their proofs work in the positive

characteristic case, we omit the proof.

Proposition 3.7. Let X be a non-singular rational surface with Neg(X) finite. Then,

any negative curve on X is a non-singular rational curve. Assume further that any

connected component of NX is either a cyclic chain of rational curves or a straight chain

of rational curves. Then, X is a toric surface.

4. Rational surfaces

If X is a non-singular projective rational surface with ρ(X) ≤ 2, then −KX is big and

Neg(X) consists of at most one curve. For the case ρ(X) ≥ 3, we have the following:

Theorem 4.1. Let X be a non-singular projective rational surface with ρ(X) > 2. Sup-

pose that −KX is pseudo-effective and that, for any negative curve Γ, −mΓKX − Γ is

pseudo-effective for some mΓ > 0. Then, −KX is big, Neg(X) is finite, and NE(X) is a

polyhedral cone generated by the classes of negative curves.

This is a generalization of [17], Proposition 3.3. For the proof, we need:

Lemma 4.2. Let X be a non-singular projective surface such that −KX is pseudo-

effective. Let P be the positive part of the Zariski decomposition of −KX . Suppose

that P 6∼∼∼ 0 P 2 = 0, and PΓ = 0 for any Γ ∈ Neg(X). Then, X is a P1-bundle over an

elliptic curve and Neg(X) = ∅.

Proof. Let −KX = P +N be the Zariski decomposition (cf. [22], [5]). Then, (−KX)2 =

P 2 + N2 ≤ 0. There is a birational morphism µ : X → Y to a non-singular projective

surface Y without (−1)-curves. It is well-known that Y is a P1-bundle over a curve or

Y ≃ P2 (cf. [15], Theorem (2.1)). Moreover, K2
Y = 8(1 − g) if Y is a P1-bundle over a

curve of genus g. Since PΓ = 0 for any µ-exceptional curve Γ, there is a nef Q-divisor

P0 on Y such that P = µ∗P0. If γ is a negative curve on Y or an irreducible component

of µ∗(N), then γ = µ∗(Γ) for a negative curve Γ on X, and hence P0γ = PΓ = 0.

Let µ∗N = P1 + N1 be the Zariski decomposition, where P1 is the positive part. Then,

P0P1 = 0. Since P0 6∼∼∼ 0, by the Hodge index theorem, P1
∼∼∼ rP0 for some rational number

r ≥ 0. For the Zariski decomposition −KY = PY +NY of −KY = µ∗(−KX) = P0+µ∗(N),
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the positive part PY equals P0 + P1
∼∼∼ (r + 1)P0, and NY = N1 by the uniqueness

of the Zariski decomposition. Hence, the Zariski decomposition of −KY satisfies the

same condition as −KX , i.e., PY 6∼∼∼ 0, P 2
Y = 0, PY γ = 0 for any negative curve γ

on Y . In particular, K2
Y ≤ 0. Therefore, Y is not rational, and Y is a P1-bundle

over a curve T of genus g ≥ 1. Let F be a fiber of π. Then, PY 6∼∼∼ αF for any

α ∈ R; for, otherwise, we have 2α = (−KY )PY = P 2
Y + PYNY = 0. Thus, PY F > 0.

Since N(Y ) is two-dimensional, NE(Y ) is fan-shaped; thus NE(Y ) is generated by cl(PY )

and cl(F ). In particular, NE(Y ) = Nef(Y ) and Neg(Y ) = ∅. Hence, NY = 0 and

−8(g − 1) = K2
Y = P 2

Y = 0. Thus, T is an elliptic curve. If µ : X → Y is not an

isomorphism, then there is a reducible fiber of X → Y → P1, which consists of negative

curves; hence Pπ∗(F ) = PY F = 0, a contradiction. Therefore, X ≃ Y . This completes

the proof. �

Proof of Theorem 4.1. Step 1. First of all, we shall show that Neg(X) is finite. If −KX

is big, then the finiteness of Neg(X) is proved by [19], Proposition 4.4 (cf. The first half

of the proof of [17], Proposition 3.3). Thus, we may assume that −KX is not big. Let

−KX = P +N be the Zariski decomposition of −KX , where P is the positive part. Then,

P 2 = 0. Moreover, PΓ = 0 for any negative curve Γ, since PΓ ≤ −mΓKXP = mΓP
2 = 0;

hence, P ∼∼∼ 0 by Lemma 4.2. For a negative curve Γ, −KX − rΓ is pseudo-effective for

r := m−1
Γ ; let −KX −rΓ = P1 +N1 be the Zariski decomposition, where P1 is the positive

part. Since P +N = P1 +N1 + rΓ, we have P ≥ P1, equivalently, N1 + rΓ ≥ N . Since

P ∼∼∼ 0, we have P1 = P ∼∼∼ 0 and N = N1 + rΓ. In particular, N ≥ rΓ. This implies that

SuppN contains all the negative curves. Consequently, Neg(X) is finite.

Step 2. Let Λ be the polyhedral cone in N(X) generated by the classes of negative

curves on X. Then, Λ ⊂ NE(X). We shall show that if Λ = NE(X), then −KX is

big. Assume the contrary. Then, cl(−KX) is contained in a face of Λ = NE(X), thus

−KXD = 0 for a nef divisor D 6∼∼∼ 0. However, in this situation, DΓ = 0 for any negative

curve Γ by 0 ≤ DΓ ≤ −mΓKXD = 0; hence D ∼∼∼ 0 by Λ = NE(X), a contradiction.

Therefore, we have only to prove: Λ = NE(X).

Step 3. For z ∈ NE(X), we define a closed convex set

Λ≤z := {y ∈ Λ | z − y ∈ NE(X)}.

We shall show that Λ≤z 6= {0} if z 6= 0. Assume the contrary. Then, there is an R-

divisor D such that D 6∼∼∼ 0 and Λ≤cl(D) = {0}. Clearly, cl(D) 6∈ Λ. By considering the

Zariski decomposition of D, we infer that D is nef. Since ρ(X) > 2, every KX-negative

extremal ray of NE(X) is generated by the class of a (−1)-curve, by [15], Theorem (2.1).

Hence, KXD ≥ 0 by the cone theorem ([15], Theorem (1.4)). This implies that KXD = 0
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and DΓ = 0 for any negative curve Γ, since 0 ≤ DΓ ≤ −mΓKXD ≤ 0. Since X is a

rational surface, we have a birational morphism µ : X → Y to a non-singular rational

surface Y with ρ(Y ) ≤ 2. Then, D = µ∗D0 for a nef R-divisor D0 on Y and −KYD0 =

µ∗(−KX)D0 = −KXD = 0. Here, we have D0
∼∼∼ 0 by the Hodge index theorem, since

−KY is big. This contradicts D = µ∗(D0) 6∼∼∼ 0.

Step 4. There is a linear form χ : N(X) → R such that χ > 0 on NE(X) \ {0}.

For z ∈ NE(X) and y ∈ Λ≤z, we have χ(y) ≤ χ(z). Hence, the closed convex set

Λ≤z is compact for any z ∈ NE(X). We set c(z) = max{χ(y) | y ∈ Λ≤z}. Then,

c(z+ y) ≥ c(z) +χ(y) for any y ∈ Λ and z ∈ NE(X). Assume that z 6∈ Λ. Then, there is

a vector y0 ∈ Λ≤z such that χ(y0) = c(z). Since z − y0 ∈ NE(X) \ Λ, by Step 3, we have

0 < c(z − y0) ≤ c(z)− χ(y0) = 0. This is a contradiction. Therefore, NE(X) = Λ. Thus,

the proof of Theorem 4.1 has been completed. �

Corollary 4.3. Let X be a non-singular projective rational surface admitting a non-

isomorphic surjective separable endomorphism. Then −KX is big.

Proof. We may assume that ρ(X) > 2: Indeed, if ρ(X) ≤ 2, then −KX is big. Thus,

Neg(X) 6= ∅. Note that Neg(X) is finite by Lemma 3.1. Let f : X → X be the non-

isomorphic surjective separable endomorphism. By replacing f with a power fk, we may

assume that f satisfies the following conditions by Lemma 3.1 and Proposition 3.3:

(1) d = (deg f)1/2 is a positive integer.

(2) f ∗(Γ) = dΓ for any Γ ∈ Neg(X).

(3) f ∗(D) ∼∼∼ dD for any divisor D on X.

Then, multΓ(Rf ) ≥ d − 1 for the ramification divisor Rf by Lemma 2.3. In particular,

there is an effective divisor ∆ such that KX + NX = f ∗(KX + NX) + ∆, where NX =
∑

Γ∈Neg(X) Γ. Since f ∗(KX +NX) ∼∼∼ d(KX +NX), −(KX +NX) ∼∼∼ (d− 1)−1∆ is pseudo-

effective. Then, −KX is big by Theorem 4.1. �

Proposition 4.4. Let X be a non-singular projective rational surface admitting a non-

isomorphic surjective separable endomorphism f : X → X. If f is tame or p ∤ deg f , then

X is toric.

Proof. We may assume that ρ(X) > 2, since any non-singular projective rational surface

with Picard number ≤ 2 is always toric. Moreover, as in the proof of Corollary 4.3, we may

assume that f ∗(Γ) = dΓ for any Γ ∈ Neg(X) and for the positive integer d = (deg f)1/2.

Hence, f is tame over any Γ ∈ Neg(X) even if p ∤ deg f . If p | deg f , then p | d and f is

not tame along any Γ ∈ Neg(X). Thus, p ∤ deg f . Then, by Lemma 3.5, any connected

component of NX is an elliptic curve, a cyclic chain of rational curves, or a straight chain

of rational curves. Therefore, X is a toric surface by Proposition 3.7. �
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Theorem 1.1, (1) is derived from Lemma 3.1, Corollary 4.3 and Proposition 4.4. The

following is an example of non-toric rational surfaces admitting non-isomorphic surjective

separable endomorphisms.

Example 4.5. Let f : P2 → P2 be the endomorphism defined by

P2 ∋ (X : Y : Z) 7→ (Xp − XZp−1 : Yp − YZp−1 : Zp).

Then f ∗(H) = pH for the line H = {Z = 0} and the restriction P2 \ H → P2 \ H of f

is étale. Let S be the set of points P ∈ P2 such that f−1(P ) = P . Then, S ⊂ H. Since

f |H : H → H is just the endomorphism given by (X : Y : 0) 7→ (Xp : Yp : 0), we infer that

S = {P0, P1, . . . , Pp−1, P∞}, where Pi := (1 : i : 0) for 0 ≤ i ≤ p− 1 and P∞ := (0 : 1 : 0).

Let ψi : P2 ···→P1 be the projection from Pi for 0 ≤ i ≤ p− 1 or i = ∞. Here, ψi is given

explicitly by

(X : Y : Z) 7→





(−iX + Y : Z), for 0 ≤ i ≤ p− 1;

(X : Z), for i = ∞.

Let h : P1 → P1 be the endomorphism defined by

P1 ∋ (u : v) 7→ (up − uvp−1 : v).

Then, ψi ◦ f = h ◦ ψi. In fact, this follows directly in case i = ∞, and in the other cases,

this follows from the calculation

−i(Xp − XZp−1) + (Yp − YZp−1) = −iXp + Yp − (−iX + Y)Zp−1

= (−iX + Y)p − (−iX + Y)Zp−1

for 0 ≤ i ≤ p − 1, where we use ip = i. Therefore, the endomorphism f lifts to an

endomorphism f̃ : X̃ → X̃ of the blown up surface X̃ of P2 along S. The proper transform

of H is a curve with self-intersection number 1 − (p+ 1) = −p < 0 and intersects all the

exceptional curves for X̃ → P2. Since the number of the exceptional curves is p+ 1 ≥ 3,

the surface X̃ is not toric. In fact, for a non-singular projective toric surface, a negative

curve is contained in the complement of the open torus, and the complement is a cyclic

chain of rational curves; hence every negative curve on the toric surface intersects at most

two other negative curves.

5. Irrational ruled surfaces

Let X be an irrational and ruled surface, i.e., κ(X) = −∞ and q(X) > 0. Then,

we have a ruling π : X → T to a non-singular projective irrational curve T uniquely

up to isomorphism. Here, a general fiber of π is P1, π is given by the Albanese map,

and the genus of T is q(X). We shall study the structure of the surface X when it
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admits a non-isomorphic surjective separable endomorphism. Let f : X → X be such an

endomorphism.

Lemma 5.1. There is an étale endomorphism h : T → T such that π ◦ f = h ◦ π. If

q(X) > 1, then h is an automorphism of finite order.

Proof. By the universality of the Albanese map, we have an endomorphism h : T → T

with π ◦ f = h ◦ π. Since f is separable, so is h. By the ramification formula KT =

h∗(KT ) +Rh, we have

degKT = deg h∗(KT ) + degRh ≥ (deg h) degKT ≥ 0.

Therefore, Rh = 0, and h is étale. If q(X) > 1, then degKT = 2q(X) − 2 > 0 and

deg h = 1; thus h is an automorphism. Moreover, in this case, h is of finite order, since

Aut(T ) is finite when degKT > 0. �

Lemma 5.2 ([16], Proposition 14, (1)). The ruling π : X → T is a P1-bundle.

Proof. Assume the contrary. Then, there is a reducible fiber F = π∗(t). Let Γ be an

irreducible component of F . Then, Γ is a negative curve. By Lemma 3.1, by replacing f

with a suitable power fk, we may assume that f ∗(Γ) = dΓ and d2 = deg f > 1. Then,

h−1(t) = {t}. This implies that h is an automorphism of T , since h is étale by Lemma 5.1.

We have f ∗F = π∗h∗(t) = F . In particular, f ∗Γ = Γ. This contradicts f ∗(Γ) = dΓ with

d > 1. �

Remark. Every P1-bundle over an elliptic curve seems to admit a non-isomorphic surjec-

tive separable endomorphism. In fact, this is true in the case of characteristic zero (cf.

[16], Proposition 5). This is also true in the case where the P1-bundle has a negative

section, which is proved by the same argument as in the proof of [16], Proposition 5, (1).

By [12], Theorem 3.1, we can prove the following result on P1-bundles over curves,

which is not related to the existence of endomorphisms. In the case of characteristic zero,

this is proved in [16], Theorem 8.

Proposition 5.3. Let π : X → T be a P1-bundle over a non-singular projective curve T .

Then the following three conditions are mutually equivalent :

(1) −KX/T is semi-ample.

(2) There exist at least three distinct closed curves C on X such that π(C) = T and

C2 = 0.

(3) There is a finite surjective morphism T ′ → T from a non-singular projective curve

T ′ such that X ×T T
′ is a trivial bundle over T ′.
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Proof. The implications (1) ⇒ (2) and (2) ⇒ (3) are proved by the same argument

as in the proof of [16], Theorem 8. Hence, it is enough to prove (3) ⇒ (1). For the

pullback X ′ := X ×T T
′ → T ′ of the P1-bundle π, let ν : X ′ = X ×T T

′ → X be the

first projection. Then, −KX′/T ′ ∼ ν∗(−KX/T ). Let D1, D2 be two distinct fibers of

the projection X ′ ≃ P1 × T ′ → P1. Then, D1 ∼ D2 and −KX′/T ′ ∼ 2Di for i = 1, 2.

Therefore,

2ν∗(D1) ∼ 2ν∗(D2) ∼ ν∗(−KX′/T ′) ∼ m(−KX/T ),

where m := deg ν = deg(T ′/T ). Since X ′ → P1 has infinitely many fibers, we may assume

that ν(D1) 6= ν(D2). Then, ν(D1)ν(D2) = 0 by (−KX/T )2 = 0; hence ν(D1)∩ν(D2) = ∅.

Therefore, |−mKX/T | is base point free. Thus, we are done. �

Proposition 5.4. Let X be a P1-bundle over a non-singular projective curve T of genus

at least two and let f : X → X be a non-isomorphic surjective separable endomorphism.

Then, X contains no negative curves, and −KX/T is numerically equivalent to an effective

Q-divisor. If p ∤ deg f or if f is tame, then there is a finite surjective morphism T ′ → T

from another non-singular projective curve T ′ such that X ×T T
′ is a trivial P1-bundle

over T ′.

Proof. Let π : X → T be the P1-bundle. Then, π ◦ f = h ◦ π for an automorphism of T

of finite order by Lemma 5.1. By replacing f with a power fk, we may assume that h is

the identity map.

Assume that X contains a negative curve Γ. We may assume that f ∗(Γ) = dΓ for the

integer d = (deg f)1/2 > 1 by Lemma 3.1. For a fiber F = π∗(t), we have f ∗(F ) = F ,

and FΓ = 0 by

d2FΓ = (deg f)FΓ = f ∗(F )f ∗(Γ) = dFΓ.

Hence, Γ is contained in a fiber of π, but there is no negative curve in any fiber, since π

is a P1-bundle. Therefore, X contains no negative curves.

Consequently, by [12], Theorem 3.1, −KX/T is nef and NE(X) = Nef(X) is spanned

by cl(F ) and cl(−KX/T ). The pullback homomorphism f ∗ : N(X) → N(X) is an auto-

morphism preserving Nef(X). Since f ∗(F ) = F for a fiber F , there is a rational number

r > 0 such that f ∗(−KX/T ) ∼∼∼ r(−KX/T ). Here, we have r = deg f by

2 deg f = f ∗(−KX/T )f ∗F = r(−KX/T )F = 2r.

Therefore, −(deg f − 1)KX/T
∼∼∼ Rf by the ramification formula KX = f ∗(KX) + Rf .

Since Rf is effective, the first assertion has been proved.

In the rest of the proof, we assume either that p ∤ deg f or that f is tame. Let S be

the set of closed curves C on X such that C2 = 0 and π(C) = T , equivalently, cl(C) is

contained in the ray R≥0 cl(−KX/T ). Any irreducible component C of Rf belongs to S.
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In fact, Rf contains no fiber F = π∗(t), since f ∗(F ) = F ; hence π(C) = T . We have

R2
f = 0 by Rf

∼∼∼ (deg f − 1)(−KX/T ). Hence C2 = 0, since Neg(X) = ∅. In order to

prove the remaining assertion, we may assume that S consists of at most two curves, by

Proposition 5.3. Taking suitable base change, we may assume furthermore that the curves

in S are sections of π. Let {C1} or {C1, C2} be the set S. Then an irreducible component

of Rf is one of Ci. Any irreducible component of f ∗(Ci) belongs to S, since (f ∗(Ci))
2 = 0.

Therefore, by replacing f with f ◦ f if necessary, we may assume that f−1(Ci) = Ci for

any i. Here, we have f ∗(Ci) = (deg f)Ci, by (deg f)CiF = f ∗(Ci)f
∗(F ) = f ∗(Ci)F .

Assume that Rf is irreducible. Let C1 be the irreducible component. Then, X \ C1 =

f−1(X \ C1) is étale over X \ C1 by f . In particular, for a fiber F = π−1(t) ≃ P1, the

restriction f |F : F → F is étale outside the point F ∩C1. By Lemma 2.5, deg f |F = deg f

is divisible by p. But in this case, f is not tame, since f ∗(C1) = (deg f)C1. This

contradicts our assumption.

Therefore, Rf is reducible and it has just two irreducible components C1, C2, where

C1 ∩ C2 = ∅ by C1C2 = 0. Then, there is a divisor L on T such that C2 ∼ C1 + π∗(L),

and X ≃ PT (OT ⊕OT (L)). Since f ∗(Ci) = (deg f)Ci for i = 1, 2, we have

(deg f)π∗(L) ∼ f ∗π∗(L) = π∗(L).

Hence, (deg f − 1)L ∼ 0, i.e., OT (L) is a torsion in Pic(T ). We have a finite surjective

morphism τ : T ′ → T such that τ ∗(L) ∼ 0. In fact, Spec over T of a suitable OT -algebra
⊕b−1

i=0 OT (−iL) for the order b of OT (L) produces such T ′ → T . Thus, X ×T T ′ ≃

P1 × T ′. �

Remark. In Proposition 5.4, the finite surjective morphism T ′ → T may not be separable.

In the case of characteristic zero, we can find such a morphism T ′ → T as a finite étale

covering (cf. [16], Theorem 15).

The following gives examples of π : X → T and f in Proposition 5.4 with p = deg f .

Proposition 5.5. Let T be a non-singular projective curve and let η be a non-zero element

of H1(T,OT ) such that ηp ∈ kη, where η 7→ ηp denotes the p-linear map H1(T,OT ) →

H1(T,OT ) induced from the absolute Frobenius morphism of T . Let E be the locally

free sheaf on T of rank two obtained as the extension of OT by OT corresponding to

η ∈ Ext1
T (OT ,OT ) ≃ H1(T,OT ). Let π : X = PT (E) → T be the P1-bundle associated

with E and let C ⊂ X be the section corresponding to the injection OC → E. Then, there

is a non-isomorphic surjective separable endomorphism f : X → X of degree p over T

such that f−1(C) = C and f |X\C : X \ C → X \ C is étale.

Proof. By a scalar multiplication, we may assume that ηp+(c−1)η = 0 for some constant

c ∈ k \ {0}. Let U = {Ui}i∈I be an open affine covering of T . Then, η is represented by
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a Čech 1-cocycle {ηi,j} of OT with respect to U , i.e., ηi,j ∈ H0(Ui ∩ Uj,OT ) satisfy

ηi,i = 0, and ηi,j + ηj,k + ηk,i = 0 on Ui ∩ Uj ∩ Uk

for i, j, k ∈ I. Let u ∈ H0(T, E) be the image of 1 under the injection OT → E . Then,

we have sections vi ∈ H0(Ui, E) for i ∈ I such that

E|Ui
= OUi

u⊕OUi
vi and vj = vi + ηi,ju on Ui ∩ Uj

for any i, j ∈ I. Note that {ηp
i,j} is also a Čech 1-cocycle of OT , and its cohomology class

is just ηp. Since ηp + (c− 1)η = 0, we have functions ai ∈ H0(Ui,OT ) such that

ηp
i,j + (c− 1)ηi,j = ai|Ui∩Uj

− aj|Ui∩Uj

for any i, j ∈ I. We define a homomorphism Φi : E|Ui
→ Symp(E)|Ui

by

Φi(u) = up and Φi(vi) = v
p
i + cup−1vi + aiu

p,

where ulv
p−l
i for 0 ≤ l ≤ p are regarded as sections of Symp(E) over Ui and they form a

free basis of Symp(E)|Ui
as an OUi

-module. Since vj = vi + ηi,ju, we have

Φi(vj) − Φj(vj) = Φi(vi) + ηi,jΦi(u) − Φj(vj)

= (vi − vj)
p + cup−1(vi − vj) + (ηi,j + ai − aj)u

p

= (−ηp
i,j − (c− 1)ηi,j + ai − aj)u

p = 0

on Ui ∩Uj. Hence, {Φi} can be glued to a global homomorphism Φ: E → Symp(E) on T .

The natural surjection π∗E ≃ π∗π∗OX(C) → OX(C) induces a surjection π∗(Symp(E)) →

OX(pC). The composite

π∗E
Φ∗(Φ)
−−−→ π∗(Symp(E)) → OX(pC)

is surjective by the construction of Φ. Hence, Φ induces a surjective endomorphism

f : X → PX(E) = X of degree p over T such that f ∗OX(C) ≃ OX(pC). Moreover,

f ∗(C) = pC, since C is defined by u and pC is defined by Φ(u) = up. For the fiber

F = π−1(t) over a point t ∈ Ui, the induced endomorphism f |F of F ≃ P1 is isomorphic

to

(x : y) 7→ (xp : yp + cxp−1y + ai(t)x
p),

which is a kind of Artin–Schreier morphism. Hence, f |X\C : X \C → X \C is étale, since

c 6= 0. �

Remark 5.6. There is a non-singular projective curve T of genus at least two such that

ηp ∈ kη for some non-zero element η ∈ H1(T,OT ). Let π : X → T be the P1-bundle

constructed as in Proposition 5.5. Then, X ×T T
′ 6≃ P1 × T ′ for any finite surjective

morphism T ′ → T with p ∤ deg(T ′/T ), since H1(T,OT ) → H1(T ′,OT ′) is injective.
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However, there is a finite surjective morphism T ′ → T such that X ×T T
′ ≃ P1 × T ′.

In fact, by considering the Albanese map α : T → A := Alb(T ) and the multiplication

map ̟ : A → A by p, we have a finite surjective morphism τ : T ′ → T and a morphism

β : T ′ → A such that α ◦ τ = ̟ ◦ β. Since α∗ : H1(A,OA) → H1(T,OT ) is isomorphic

and since ̟∗ : H1(A,OA) → H1(A,OA) is zero, τ ∗(η) = 0 in H1(T ′,OT ′). Therefore,

X ×T T
′ ≃ P1 × T ′.

We close this section by proving Theorem 1.1.

Proof of Theorem 1.1. The first assertion (1) of Theorem 1.1 is derived from Lemma 3.1,

Corollary 4.3, and Proposition 4.4. The remaining assertions (2) and (3) are derived from

Lemma 5.2, Proposition 5.3, and Proposition 5.4. �

6. The case of non-negative Kodaira dimension

We shall prove Theorem 1.2 in this section. We begin with the following existence the-

orem of non-isomorphic surjective separable endomorphisms for certain elliptic surfaces.

Theorem 6.1. Let π : X → T be an fibration from a non-singular projective surface X

to a non-singular projective curve T . Assume that the support of any fiber is an elliptic

curve. Then, X admits a non-isomorphic surjective separable endomorphism f : X → X

such that π ◦ f = π.

Proof. Step 1. There is a non-singular ample divisor C on X such that C ⊂ X → T is

a separable finite surjective morphism. In fact, for an ample divisor H on X and for a

smooth fiber F , H0(X,OX(kH)) → H0(F,OX(kH)|F ) is surjective for k ≫ 0, hence, by

Bertini’s theorem, there is a non-singular ample divisor C ∈ |kH| such that C|F is also

non-singular. As a consequence, C → T is étale along C ∩ F , and C → T is separable.

Step 2. Let T ′ → T be the Galois closure of C → T , i.e., T ′ is the normalization of

C in the Galois closure of k(C)/k(T ). We consider the base change of π by the Galois

covering T ′ → T . Let X ′ be the normalization of X ×T T
′ and let π′ : X ′ → T ′ be the

induced elliptic fibration. Then, any irreducible component of a fiber of π′ is an irrational

curve, since it dominates a fiber of π which is assumed to be an elliptic curve. Therefore,

by Lemma 2.12, X ′ is non-singular and the support of any fiber of π′ is also an elliptic

curve. Now the natural morphism T ′ → C ×T T
′ induces a section e : T ′ → X ′ of π′.

Hence, any fiber of π′ is reduced. As a consequence, all the fibers are non-singular and

π′ is a smooth morphism. Moreover, π′ together with the section e is an abelian scheme

by [13], Theorem 6.14.

Step 3. We regard the Galois group G of T ′/T as an automorphism group of T ′. For

σ ∈ G, let Lσ : X ′ → X ′ be the automorphism induced from idX ×σ : X×T T
′ → X×T T

′.
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Here, π′ ◦ Lσ = σ ◦ π′. Thus, we have an action of G on X ′ such that π′ : X ′ → T ′ is

G-equivariant. In order to construct an endomorphism of X, we use the argument in

the proof of [4], Theorem 2.26. The set S of sections of π′ : X ′ → T ′ is an abelian group

by the abelian group scheme structure, where e is the zero section. A section b ∈ S

defines the translation morphism tr(b) : X ′ → X ′ over T ′. Then, Lσ is expressed uniquely

as tr(bσ) ◦ ασ for a section bσ ∈ S and for an automorphism ασ : X ′ → X ′ such that

π′ ◦ασ = σ ◦ π′ and ασ ◦ e = e ◦ σ. Here, ασ is regarded as a homomorphism between the

abelian schemes σ ◦ π′ : X ′ → T ′ and π′ : X ′ → T ′ over T ′ (cf. [13], Corollary 6.4). We

define

σ · b := ασ ◦ b ◦ σ−1

for σ ∈ G and b ∈ S. Then, ασ ◦ tr(b) ◦ α−1
σ = tr(σ · b). Moreover, we have

ασ1σ2
= ασ1

◦ ασ2
and bσ1σ2

= bσ1
+ σ1 · bσ2

for σ1, σ2 ∈ G, by Lσ1σ2
= Lσ1

◦Lσ2
. Thus, S has a leftG-module structure by (σ, b) 7→ σ·b,

and {bσ} is a 1-cocycle defining an element β of H1(G, S). Then, nGβ = 0 for the order

nG of G, where nG = deg T ′/T . Let n be the least common multiple of nG and p. Then,

we have a section c ∈ S such that nbσ = σ · c− c for any σ ∈ G.

Let µn+1 : X ′ → X ′ be the multiplication map by n + 1 with respect to the abelian

scheme structure of π′ : X ′ → T ′. We define f ′ := tr(c) ◦ µn+1. Then, f ′ is a non-

isomorphic étale endomorphism of X ′, since p ∤ deg f ′ = (n + 1)2 > 1. For σ ∈ G, we

have Lσ ◦ f ′ = f ′ ◦ Lσ by

tr(bσ) ◦ ασ ◦ tr(c) ◦ µn+1 = tr(bσ + σ · c) ◦ ασ ◦ µn+1

= tr(c+ (n+ 1)bσ) ◦ µn+1 ◦ ασ = tr(c) ◦ µn+1 ◦ tr(b) ◦ ασ.

Therefore, f ′ descends to a surjective separable endomorphism f : X → X such that

π ◦ f = π and deg f = (n+ 1)2 > 1. Thus, we are done. �

Lemma 6.2 (cf. [2], Lemma 2.3). Let f : X → X be a surjective separable endomorphism

of a non-singular projective surface X of κ(X) ≥ 0. Then, f is étale. If deg f > 1, then

KX is nef (i.e., X is minimal), X has no negative curves, κ(X) ≤ 1, and χ(X,OX) =

e(X) = 0.

Proof. By the ramification formula KX = f ∗(KX) +Rf , if Rf 6= 0, then we have

KXA = (fk)∗(KX)A+
(
(fk−1)∗(Rf ) + · · · +Rf

)
A ≥ k

for any ample divisor A and any positive integer k; this is a contradiction. Hence, Rf = 0,

and f is étale. Assume that deg f > 1. Then, X has no negative curve by Lemma 3.1.
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Hence, KX is nef, since κ(X) ≥ 0. Since f is étale, we have

χ(X,OX) = (deg f)χ(X,OX), e(X) = (deg f)e(X), and

K2
X = f ∗(KX)f ∗(KX) = (deg f)K2

X .

Hence, χ(X,OX) = e(X) = K2
X = 0. In particular, κ(X) ≤ 1. �

The following is well-known as a part of the classification theory of non-singular pro-

jective surfaces by Bombieri and Mumford [1]:

Fact 6.3. The non-singular projective minimal surfaces X satisfying κ(X) = χ(X,OX) =

0 are classified as follows: The irregularity q(X) = 1 or 2 for such a surface X. Here,

q(X) = 2 if and only if X is abelian. Suppose that q(X) = 1. Then, 12KX ∼ 0, b1(X) =

b2(X) = ρ(X) = 2, and the Albanese map α : X → Alb(X) is a fibration to an elliptic

curve. If α is an elliptic fibration, then X is called a hyperelliptic surface. If not, α is a

quasi-elliptic fibration (cf. Definition 2.10), and X is called a quasi-hyperelliptic surface.

The case of quasi-hyperelliptic surfaces occurs only when p ≤ 3 (cf. Proposition 2.9).

The following assertion is known by [1], Theorem 3 and its proof: If X is a hyperelliptic

surface or a quasi-hyperelliptic surface, then there is an elliptic fibration π : X → T ≃ P1

such that the support of any fiber of π is an elliptic curve.

Lemma 6.4. Let f : X → X be a non-isomorphic surjective separable endomorphism

of a non-singular projective surface X of κ(X) ≥ 0. Suppose that there exist a fibra-

tion π : X → T to a non-singular projective curve T and an automorphism h : T → T

satisfying π ◦ f = h ◦ π. Then, the support of every fiber of π is an elliptic curve.

Proof. By Lemma 6.2, f is étale. Let Ft be the fiber π∗(t) over a point t ∈ T . Then,

Ft = f ∗(Fh(t)). Hence, KXFt = 0 by

KXFt = f ∗(KX)f ∗(Fh(t)) = (deg f)KXFh(t) = (deg f)KXFt.

Note that every fiber of π is irreducible, since X has no negative curve by Lemma 6.2.

Thus, Ft = mtΓt for a prime divisor Γt and for some mt > 0, in which pa(Γt) = 1 by

KXΓt = 0. Restricting f to Ft, we have an étale morphism Ft → Fh(t) of degree deg f > 1.

Hence, mt = mh(t), and the induced morphism Γt → Γh(t) is étale of the same degree. If

Γh(t) is rational, then the normalization of Γh(t) produces a non-trivial étale covering over

P1; this is impossible. Therefore, Γt is an elliptic curve for any t ∈ T . �

Finally, we shall prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that X admits a non-isomorphic surjective separable en-

domorphism f : X → X. Then, X is a minimal surface, f is étale, χ(X,OX) = e(X) = 0,

and κ(X) = 0 or 1 by Lemma 6.2. Hence, if κ(X) = 0, then the condition (1) is satisfied.
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Assume that κ(X) = 1. Then, by [14], we have the so-called “Iitaka fibration” π : X → T

to a non-singular projective curve T such that bKX ∼ π∗(H) for some b > 0 and a very

ample divisor H on T . In order to check the condition (2), it is enough to prove that π

is an elliptic fibration. By the uniqueness of the Iitaka fibration, considering the Stein

factorization of π ◦ f , we have an endomorphism h : T → T such that π ◦ f = h◦π. Here,

we have H ∼ h∗(H) by

π∗(H) ∼ bKX ∼ f ∗(bKX) ∼ f ∗π∗(H) = π∗h∗(H).

Thus, h is an automorphism, since we have deg h = 1 from degH = (deg h)(degH) > 0.

Applying Lemma 6.4 to π : X → T and h, we infer that π is an elliptic fibration.

The rest of the proof of Theorem 1.2 is to construct a non-isomorphic surjective separa-

ble endomorphism of any surface X satisfying one of the conditions (1) and (2). We may

assume that X is not abelian, since, for any abelian variety, the multiplication map by

a positive integer not divisible by p is a non-isomorphic surjective étale endomorphism.

Then, there is an elliptic fibration π : X → T such that the support of any fiber is an

elliptic curve. In fact, if X satisfies (1), then X is a hyperelliptic surface or a quasi-

hyperelliptic surface, and the existence of such π is known as in Fact 6.3. If X satisfies

(2), then K2
X = e(X) = 0 by the minimality of X and Noether’s formula. Hence, the sup-

port of any fiber of the elliptic surface X is an elliptic curve by Lemma 2.13. Therefore,

X admits a non-isomorphic surjective separable endomorphism by Theorem 6.1. Thus,

we are done. �
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cohérents (première partie), Publ. Math. I.H.É.S. 11 (1961), 5–167.
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de schémas (seconde partie), Publ. Math. I.H.É.S. 24 (1965), 5–231.
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