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Abstract

A minimum cost spanning tree game is called ultrametric if the cost function on

the edges of the underlying network is ultrametric. We show that every ultrametric

minimum cost spanning tree game is a cost allocation game on a rooted tree. It

follows that there exist optimal algorithms for computing the Shapley value, the

nucleolus and the egalitarian allocation of the ultrametric minimum cost spanning

tree games.

1 Introduction

Let N = {1, · · · , n}, where n ≥ 1 is an integer. Suppose that KN ′ is the complete graph
whose vertex set is N ′ = N ∪ {0} and function w which assigns a nonnegative cost w(e)
to each edge e of KN ′ is given. A minimum cost spanning tree game (MCST game for
short) is a cooperative (cost) game (N, cw) defined as follows: for S ⊆ N define cw(S) as
the cost of a minimum spanning tree of the subgraph of KN ′ induced by S ∪{0}. Bird [2]
showed that core of an MCST game is always nonempty by explicitly constructing a core
allocation, which is often called a Bird allocation (also see [8]). An ultrametric MCST
game is an MCST game where the cost function w on the edges of the underling graph is
an ultrametric, i.e., for each distinct i, j, k ∈ N ′ we have

w(i, k) ≤ max{w(i, j), w(j, k)}. (1)

In [2], Bird also showed that the core of any MCST game (N, cw) contains the core of
another MCST game (N, cw̄) associated with the cost function w̄, where for each i, j ∈ N ′

w̄(i, j) is defined as the maximum of w(k, l) over all the edges (k, l) in the path from i to
j in some minimum cost spanning tree of KN ′ . Bird called the latter core the irreducible
core. The cost function w̄ is known to be an ultrametric (see [18]), and conversely,
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each ultrametric function is derived in this way (see [17]). The irreducible core of an
MCST game (N, cw) and the associated game (N, cw̄) have been studied by many authors
(e.g. [2], [1], [14] and [18]). In particular, it is known that game (N, cw̄) is submodular (or
concave).

Cost allocation games on rooted trees are another class of cooperative (cost) games.
Let T = (V,A) be a rooted tree whose set of leaves is N = {1, . . . , n} and let l be a
function which assigns a nonnegative length l(a) to each edge a of T . For S ⊆ N define
tl(S) as the total length of edges that belongs to some path from a leaf i ∈ S to the
root. We call the resulting game (N, tl) a cost allocation game on a rooted tree. This
class of games are equivalent to the games studied by Megiddo [15] and the standard tree
games [9] (see [12]). Any cost allocation game on a rooted tree is submodular and there
exist efficient algorithms for computing solutions like the nucleolus and the egalitarian
allocation for them ([15], [7], [12]).

In this paper, we show that any ultrametric MCST game can be represented as a
cost allocation game on a rooted tree. It follows that for an ultrametric MCST game
we can compute the Shapley value, the nucleolus and the egalitarian allocation in O(n2)
time. It should be noted here, in contrast, that computing solutions of a general MCST
game are intractable: computing the nucleolus of the MCST games is NP-hard [5] and
testing membership in the core of MCST games is co-NP-complete [4]. The complexity
of computation of the Shapley value of the MCST games is still an open problem.

2 Basic definitions

In this section, we review definitions from cooperative game theory, and give definitions
of ultrametric MCST games and cost allocation games on rooted trees.

2.1 Cooperative games

A cooperative (cost) game (N, c) is a pair of a finite set N = {1, · · · , n} and a function
c: 2N → R with c(∅) = 0. We call N = {1, · · · , n} the set of the players and function c is
called the characteristic function. In the context of this paper, the value c(S) for S ⊆ N

is interpreted as the total cost of some activity when only the members in S cooperate, so
the direction of traditional inequalities in cooperative game theory is sometimes reversed.

A cooperative game (N, c) is subadditive if for all S, T ⊆ N with S ∩ T = ∅ we have
c(S)+ c(T ) ≥ c(S ∪T ). Also, a game (N, c) is submodular (or concave) if for all S, T ⊆ N

we have c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ). The core of the cooperative game (N, c) is
defined as follows.

core(c) = {x | x ∈ R
N ,∀S ⊆ N : x(S) ≤ c(S), x(N) = c(N)}, (2)

where x(S) =
∑

i∈S x(i) for S ⊆ N .
The Shapley value Φ: N → R of game (N, c) is defined as

Φ(i) =
∑

i6∈S⊆N

|S|!(n − |S| − 1)!

n!
(c(S ∪ {i}) − c(S)) (i ∈ N). (3)
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For a vector x ∈ R
N let us denote by x̃ the vector in R

N obtained by rearranging
the components of x in nondecreasing order. For vectors x̃ and ỹ in R

n we say x̃ is
lexicographically greater than ỹ if there exists k = 1, · · · , n such that x̃i = ỹi (i = 1, · · · , k−
1) and x̃k > ỹk. For a submodular game (N, c) the egalitarian allocation is the unique
vector x in the core which lexicographically maximizes x̃ over the core. The concept of
egalitarian allocation for general cooperative games was introduced in [3] and that for
concave games was studied in [6].

For a cooperative game (N, c) and a vector x such that x(N) = c(N), the excess e(S, x)
of x for subset S ⊆ N is defined as

e(S, x) = c(S) − x(S). (4)

Given a vector x with x(N) = c(N) let us denote by θ(x) the sequence of components
e(S, x) (∅ ⊂ S ⊂ N) arranged in order of nondecreasing magnitude. The nucleolus [16] of
game (N, c) is defined to be the unique vector x which lexicographically maximizes θ(x)
over all the vectors x with x(N) = c(N).

2.2 (Ultrametric) MCST games

Let KN ′ be the complete graph with vertex set N ′ = {0, 1, · · · , n} and let w: N ′×N ′ → R

be a function such that w(i, i) = 0 for all i ∈ N ′ and w(i, j) = w(j, i) for all i, j ∈ N ′. We
call such a pair (KN ′ , w) a network. For each subset Γ of edges of KN ′ , we define the cost
w(Γ) of Γ by

w(Γ) =
∑

(i,j)∈Γ

w(i, j). (5)

For each S ⊆ N we write S ′ = S ∪ {0}. The minimum cost spanning tree game (or
MCST game for short) associated with network (KN ′ , w) is a cooperative game (N, cw)
defined by

cw(S) = min{w(Γ) | Γ is a spanning tree of KS′} (S ⊆ N), (6)

where KS′ is the subgraph of KN ′ induced by S ′. The core of an MCST game is always
nonempty. Indeed, a vector called a Bird allocation [2] is in the core (see [8]). It is easy
to see that an MCST game is subadditive. However, an MCST game is not submodular
in general.

A function w: N ′ × N ′ → R is called an ultrametric if for each distinct i, j, k ∈ N ′ we
have

w(i, k) ≤ max{w(i, j), w(j, k)}. (7)

Equivalently, w is an ultrametric if and only if for each distinct i, j, k ∈ N ′ the maximum
of w(i, j), w(j, k), w(i, k) is attained by at least two pairs. An MCST game (N, cw) is
called ultrametric if w is an ultrametric. It can be shown that every ultrametric MCST
game is submodular.

2.3 Cost allocation game on rooted trees

Let T = (V,A) be an undirected tree with root r and the set of leaves being N =
{1, . . . , n}. Let l: A → R+ be a function on A. We call such a pair (T, l) a rooted tree.
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Denote by Ai the set of edges on the unique path from i to r and for each S ⊆ N

define AS by AS =
⋃

i∈S Ai. Then, the cost allocation game (N, tl) on a rooted tree (T, l)
is defined by

tl(S) =
∑

a∈AS

l(a) (S ⊆ N). (8)

It is easy to see that any cost allocation game (N, tl) on a rooted tree is submodular.
Megiddo [15] showed that the Shapley value and the nucleolus of any cost allocation
game on a rooted tree can be found in O(n) and O(n3), respectively. Galil [7] improved
the latter time bound to O(n log n). Iwata and Zuiki [12] showed that the core of any
cost allocation game on a rooted tree can be represented as the set of feasible flows of a
network and gave O(n log n) algorithms for computing the nucleolus and the egalitarian
allocation. Summarizing, we have the following lemma.

Lemma 2.1 (Megiddo [15], Galil [7], Iwata and Zuiki [12]) For each cost alloca-
tion game (N, tl) on a rooted tree the Shapley value, the nucleolus and the egalitarian
allocation can be computed in O(n), O(n log n) and O(n log n) time, respectively.

3 The reduction

Let (T, l) be a rooted tree with root r and the set of leaves being M . Let us denote by
dl(v, w) the length of the path from v to w in T with respect to function l: A → R+. We
call a rooted tree (T, l) equidistant if

(i) for all i, j ∈ M we have dl(i, r) = dl(j, r),

(ii) for all (v, w) ∈ A with v, w 6∈ M we have l(v, w) ≥ 0.

A rooted tree (T, l) with the set of leaves being M is said to represent a function w: M ×
M → R if

w(i, j) = dl(i, j) (i, j ∈ M). (9)

Lemma 3.1 (cf. Gusfield [10]) For a function w: N ′ ×N ′ → R, w is an ultrametric if
and only if there exists an equidistant rooted tree which represents w.

The statement of the following lemma can be found in [2].

Lemma 3.2 Suppose that (N, cw) is an ultrametric MCST game associated with network
(KN ′ , w). For S ⊆ N and i 6∈ S we have

cw(S ∪ {i}) = cw(S) + w(i, j∗), (10)

where j∗ ∈ S ′ is such that w(i, j∗) = min{w(i, j) |j ∈ S ′}.

(Proof) Let Γ be a minimum cost spanning tree of KS′ . It suffices to show that Γ∪{(i, j∗)}
is a minimum cost spanning tree of KS′∪{i}. For j ∈ S ′ with j 6= j∗ let us consider the
path

j∗ = j0, j1, · · · , jk = j (11)
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from j∗ to j in Γ. By the definition of j∗, we have w(i, j∗) ≤ w(i, j). Then, since w is an
ultrametric, we must have w(j, j∗) ≤ w(i, j). Since Γ is a minimum cost spanning tree of
KS′ we must have

w(jp−1, jp) ≤ w(j, j∗) (p = 1, · · · , k). (12)

Therefore, we have
w(jp−1, jp) ≤ w(i, j) (p = 1, · · · , k). (13)

Hence, it follows from the optimality condition of the minimum cost spanning tree [13,
Theorem 6.2] that Γ∪{(i, j∗)} is a minimum cost spanning tree of KS′∪{i} as required.

Theorem 3.3 For each ultrametric MCST game (N, cw) there exists a cost allocation
game (N, cl) on a rooted tree (T, l) such that

cw(S) = tl(S) (S ⊆ N). (14)

(Proof) Let (N, cw) be an ultrametric MCST game, where w: N ′ × N ′ → R is an ultra-
metric. By Lemma 3.1, there exists an equidistant rooted tree (T ′ = (V ′, A′), l′) which
represents w where the set of leaves of T ′ is N ′. Define l: A′ → R+ by

l(v, w) =

{

0 if (v, w) is on the path from 0 to the root,
2l′(v, w) otherwise

((v, w) ∈ A′). (15)

and let us consider the rooted tree (T ′, l).
It suffices to show that

cw(S) = tl(S
′) (S ⊆ N) (16)

since the desired rooted tree (T, l) can be derived by contracting all the edges on the path
from 0 to the root of T ′, where we let the newly created vertex be the root of T , provided
that we have (16).

We prove (16) by induction on |S|. For S = ∅ this is trivial. If S = {i} for some
i ∈ N , then we have

tl(S
′) = dl′(i, 0) = w(i, 0) = cw(S) (17)

since (T ′, l′) represents w.
Let 1 ≤ |S| < n and i ∈ N −S. We will show cw(S ∪{i}) = tl((S ∪{i})′). Let j∗ ∈ S ′

be such that
w(i, j∗) = min{w(i, j) | j ∈ S ′} (18)

and let v∗ ∈ V be the least common ancestor of i and j∗ in T ′. Let

P : i = v0, a1, v1, a2, · · · , vk−1, ak, vk = v∗ (19)

be the path from i to v∗ in T ′. Then, we have

w(i, j∗) =
k

∑

p=1

l(ap) (20)

since (T ′, l′) represents w.

Claim. For all p = 1, · · · , k, if ap ∈ AS′ , then we have l(ap) = 0.
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(Proof) Suppose that ap ∈ AS′ and l(ap) > 0 for some p = 1, · · · , k. Then, since ap ∈ AS′ ,
vertex vp−1 is a common ancestor of i and some ̂ ∈ S ′. Then, by l(ap) > 0 we must have
w(i, ̂) < w(i, j∗), which contradicts the choice (18) of j∗. (End of the proof of the Claim)

It follows from Lemma 3.2, the induction hypothesis and the Claim that

tl((S ∪ {i})′) =
∑

a∈A
S′

l(a) +
k

∑

p=1

l(ap) (21)

= cw(S) + w(i, j∗) (22)

= cw(S ∪ {i}), (23)

which completes the proof of the present theorem.

We have the following corollary from Theorem 3.3.

Corollary 3.4 For any ultrametric MCST game the Shapley value, the nucleolus and the
egalitarian allocation can be computed in O(n2) time.

(Proof) Given an ultrametric function w, we can construct the equidistant tree (T ′, l′)
which represents w in O(n2) time (see [10], [11]). Then, by Lemma 2.1, the Shapley
value, the nucleolus and the egalitarian allocation of the game (N, tl) can be found in
time dominated by O(n2). Therefore, we have O(n2) time bound for computations of all
these solutions.

We have seen that any ultrametric MCST game can be represented as a cost allocation
game on a rooted tree (T, l). The rooted tree (T, l) can be derived from an equidistant
rooted tree (T ′, l′) by compressing the path from 0 to the root. We call such a rooted
tree nearly equidistant. More precisely, a rooted tree (T, l) is called nearly equidistant if
for each immediate descendant v of the root of T , the subtree rooted at v is equidistant.
Note that an equidistant rooted tree is nearly equidistant.

Theorem 3.5 For each ultrametric MCST game (N, cw) there exists a cost allocation
game (N, tl) on a nearly equidistant rooted tree (T, l) such that cw = tl. Conversely, for
each cost allocation game (N, tl) on a nearly equidistant rooted tree (T, l), there exists an
ultrametric MCST game (N, cw) such that cw = tl.

(Proof) The first statement follows from Theorem 3.3.
We prove the second statement. Let (T, l) be a nearly equidistant rooted tree whose

set of leaves is N . Let vp (p = 0, 1, · · · , k) be the immediate descendants of the root r and
let Tp be the equidistant subtree rooted at vp (p = 0, 1, · · · , k). For each p = 0, 1, · · · , k
let us denote by δp the distance dl(i, r) from a leaf i of Tp to the root r. We can assume
without loss of generality that δ0 ≥ δ1 ≥ · · · ≥ δk.

Define a rooted tree (T ′ = (V ′, A′), l′) as follows.

V ′ = V ∪ {r1, · · · , rk, 0}, (24)

A′ = (A − {(vp, r) | p = 1, · · · , k}) ∪ {(vp, rp) | p = 1, · · · , k}

∪{(rp, rp−1) | p = 2, · · · , k} ∪ {(r1, r), (0, rk)}, (25)
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l′(a) =























l(vp, r) if a = (vp, rp) for some p = 1, · · · , k,
δ0 − δ1 if a = (r1, r),
δp−1 − δp if a = (rp, rp−1) for some p = 2, · · · , k,
δk if a = (0, rk),
l(a) otherwise

(a ∈ A′). (26)

It is easy to see that rooted tree (T ′, l′) thus defined is equidistant, and hence, it follows
from Lemma 3.1 that there exists ultrametric w: N ′ × N ′ → R which is represented by
(T ′, l′). The construction of (T, l) in the proof of Theorem 3.3 shows that we have cw = tl.

4 Conclusion

We showed that any ultrametric MCST game can be represented as a cost allocation
game on a rooted tree. The reduction is done in time O(n2) time and it follows that the
Shapley value, the egalitarian allocation and the nucleolus of an ultrametric MCST game
can be computed in time O(n2).
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