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0 Introduction

The principal aim of this paper is to form a basis for the exact WKB

analysis of a Schrödinger equation

(0.1)

(

d2

dx2
− η2Q(x, η)

)

ψ = 0 (η : a large parameter)

with one simple turning point and with one simple pole in the potential

Q. As [Ko1] and [Ko2] emphasize, the Borel transform of a WKB

solution of (0.1) displays, near the simple pole singularity, behavior

similar to that near a simple turning point. Hence it is natural to

expect that such an equation plays an important role in the exact

WKB analysis in the large. Such an expectation has recently been

enhanced by the discovery ([Ko4]) that the Voros coefficient of a WKB

solution of (0.1) with

(0.2) Q =
1

4
+
α

x
+ η−2 γ

x2
(α, γ : fixed complex numbers)

can be explicitly written down with the help of the Bernoulli numbers.

The potential Q given by (0.2) will play an important role in Section 2;

the Schrödinger equation with the potential Q of the form (0.2), that

is, the Whittaker equation with a large parameter η, gives us a WKB

theoretic canonical form of a Schrödinger equation with one simple

turning point and with one simple pole in its potential. We note that

the parameter α contained in the Whittaker equation in Section 2 is an

infinite series α(η) =
∑

k≥0

αkη
−k (αk: a constant), and we call such an

equation the ∞-Whittaker equation when we want to emphasize that

α is not a genuine constant but an infinite series as above.

In order to make a semi-global study of a Schrödinger equation with

one simple turning point and with a simple pole in its potential, we let

the simple pole singular point merge with the turning point and observe
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what kind of equation appears. For example, what if we let α tend to

0 in (0.2) with γ being kept intact? Interestingly enough, the result-

ing equation is what we call a ghost equation ([Ko3]); we have been

worrying where we should place the class of ghost equations in regard

to the whole WKB analysis. A ghost equation has no turning point

by its definition (cf. Remark 1.1 in Section 1); still a WKB solution

of a ghost equation displays singularity similar to that which a WKB

solution normally has near a turning point. The singularity is due to

the singularities contained in the coefficients of η−k (k ≥ 1) in the

potential Q. (See [Ko3] for details; there a ghost (point) is tentatively

called a“new” turning point.) In view of the above observation, we

regard a Schrödinger equation with one simple turning point and with

one simple pole in its potential as an equation obtained through per-

turbation of a ghost equation by a simple pole term aq(x, a)/x, where

a is a complex parameter and q(x, a) is a holomorphic function defined

on a neighborhood of (x, a) = (0, 0). An equation obtained by such a

procedure is called an equation with a merging pair of a simple pole

and a simple turning point, or, for short, an MPPT equation. Precisely

speaking, we call a Schrödinger equation (0.1) an MPPT equation if

its potential Q depends also on an auxiliary parameter a and has the

following form

(0.3) Q =
Q0(x, a)

x
+ η−1 Q1(x, a)

x
+ η−2 Q2(x, a)

x2
,

where Qj(x, a) (j = 0, 1, 2) are holomorphic near (x, a) = (0, 0) and

Q0(x, a) satisfies the following conditions (0.4) and (0.5):

(0.4) Q0(0, a) 6= 0 if a 6= 0,

(0.5) Q0(x, 0) = c
(0)
0 x + O(x2) holds with c

(0)
0 being a constant

different from 0.
Clearly we find a ghost equation at a = 0; furthermore the implicit
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function theorem together with the assumption (0.5) guarantees the

existence of a unique holomorphic function x(a) that satisfies

(0.6) Q0(x(a), a) = 0.

The assumption (0.4) entails

(0.7) x(a) 6= 0 if a 6= 0,

and the assumption (0.5) guarantees that, for a sufficiently small a(6=
0), x = x(a) is a simple turning point of the operator in question.

As the above naming “an MPPT equation” indicates, it is a coun-

terpart of an MTP equation in our context. An MTP equation, i.e.,

a merging-turning-points equation introduced in [AKT4] contains, by

definition, two simple turning points that merge into one double turn-

ing point as the parameter t tends to 0, whereas, in an MPPT equation,

a simple pole and a simple turning point merge into a ghost point where

neither zero nor singularity is observed in the highest degree (i.e., degree

0) in η part of the potential. The parallelism of these two notions is not

a superficial one. The reduction of an MPPT equation to a canonical

one is achieved in Sections 1 and 2 below in a way parallel to that used

in the reduction of MTP equation to a canonical one; first, in Section 1

we construct a WKB theoretic transformation that brings an MPPT

equation with the parameter a being 0 to a particular ∞-Whittaker

equation, that is, the ∞-Whittaker equation with the top degree part

of the parameter α(η) being 0 (i.e., α(η) =
∑

k≥1

αkη
−k), and then in Sec-

tion 2 we construct the transformation of a generic (i.e., a 6= 0 ) MPPT

equation to the ∞-Whittaker equation in the form of a perturbation

series in a, starting with the transformation constructed in Section 1.

In Sections 1 and 2 we focus our attention on the formal aspect of the

problem, and the estimation of the growth order of the coefficients that

appear in several formal series is given separately in Appendices A and
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B. One important implication of the estimates given in Appendix B

is that they endow the formal transformation with an analytic mean-

ing as a microdifferential operator through the Borel transformation.

Furthermore, as is shown in Theorem 1.7 and Theorem 2.7, the action

of the resulting microdifferential operator upon multi-valued analytic

functions such as Borel transformed WKB solutions, is described in

terms of an integro-differential operator of particular type; its kernel

function contains a differential operator of infinite order in x-variable.

Thus it is of local character in x-variable, whereas it is suited for the

global study related to the resurgence phenomena in y-variable. (See

e.g. [SKK] and [K] for the notion of a differential operator of infinite

order. See also [AKT4] that has first used a differential operator of

infinite order in exact WKB analysis.) As the domain of definition

of the integro-differential operator may be chosen to be uniform with

respect to the parameter a (Remark 2.3), our results in Section 2 are

of semi-global character, as is noted in Remark 4.1. This uniformity is

one of the most important advantages in introducing the notion of an

MPPT operator. It is worth emphasizing that the uniformity becomes

clearly visible through the Borel transformation. In order to use the

results obtained in Section 2 for the detailed study of the structure

of Borel transformed WKB solutions of an MPPT equation, we first

study in Section 3 analytic properties of Borel transformed WKB so-

lutions of the Whittaker equation, and then in Section 4 we analyze

Borel transformed WKB solutions of the ∞-Whittaker equation using

the results obtained in Section 3. The basis of the study in Section 3

is a recent result of Koike ([Ko4]), and the analysis in Section 4 makes

essential use of the estimate (B.3) of the coefficients {αk(a)}k≥0 of the

parameter α(a, η) =
∑

k≥0

αk(a)η
−k; the effect of this infinite series that

appears in the ∞-Whittaker equation is grasped as a microdifferential
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operator acting on Borel transformed WKB solutions of the Whittaker

equation. Combining all the results obtained in Sections 2 and 4 we

summarize in Section 5 basic properties of Borel transformed WKB

solutions of an MPPT equation with a 6= 0.

Acknowledgment.

We sincerely thank Professor T. Aoki for the stimulating discussions

with him on the subject discussed in this paper.

1 Construction of the transformation to the canonical

form, I. — the case where a = 0

The purpose of this section is to show how to construct the Borel

transformable series

(1.1) x(0)(x̃, η) =
∑

k≥0

x
(0)
k (x̃)η−k

and

(1.2) α(0)(η) =
∑

k≥0

α
(0)
k η−k

with α
(0)
0 being 0, i.e.,

(1.2
′
) α(0)(η) =

∑

k≥1

α
(0)
k η−k

so that the Schrödinger equation

(1.3)
(

d2

dx̃2
− η2

(Q̃0(x̃, 0)

x̃
+ η−1 Q̃1(x̃, 0)

x̃
+ η−2 Q̃2(x̃, 0)

x̃2

)

)

ψ̃(x̃, η) = 0

with Q̃j(x̃, 0) (j = 0, 1, 2) being holomorphic functions near the origin

that satisfy (1.5) below may be brought to a particular ∞-Whittaker
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equation

(1.4)

(

d2

dx2
− η2

(1

4
+
α(0)(η)

x
+ η−2 Q̃2(0, 0)

x2

)

)

ψ(x, η) = 0.

Here the adjective ”particular” refers to the vanishing of α
(0)
0 . The

Borel transformability of x(0) and α(0), i.e., the growth order condi-

tions on their coefficients will be separately discussed in Appendix B.

Thus the first task is to establish Theorem 1.1 below, which relates

the potentials in (1.3) and (1.4); the relation (1.6) enables us to relate

(1.3) and (1.4) in an appropriate way, as we will expound after proving

Theorem 1.1.

Theorem 1.1. Let Q̃j(x̃, a) (j = 0, 1, 2) be holomorphic functions

defined on a neighborhood of (x̃, a) = (0, 0), and suppose that the

following condition is satisfied:

(1.5) Q̃0(x̃, 0) = c
(0)
0 x̃+O(x̃2) with c

(0)
0 being a constant differ-

ent from 0.

Then there exist Borel transformable series x(0)(x̃, η) and α(0)(η)

respectively given in (1.1) and (1.2
′
) so that the following relations

(1.6) ∼ (1.9) hold on an open neighborhood U of the origin x̃ = 0:

x̃−1Q̃0(x̃, 0) + η−1x̃−1Q̃1(x̃, 0) + η−2x̃−2Q̃2(x̃, 0)(1.6)

=

(

dx(0)(x̃, η)

dx̃

)2
(

1

4
+

α(0)(η)

x(0)(x̃, η)
+ η−2 Q̃2(0, 0)

x(0)(x̃, η)2

)

− 1

2
η−2{x(0)(x̃, η); x̃},

(1.7) x
(0)
k (x̃) (k = 0, 1, 2, · · · ) is holomorphic on U ,
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(1.8) x
(0)
k (0) = 0 (k = 0, 1, 2, · · · ),

(1.9)
(

dx
(0)
0 /dx̃

)

(0) 6= 0.

Here {x(0)(x̃, η); x̃} stands for the Schwarzian derivative, i.e.,

(1.10)
d3x(0)/dx̃3

dx(0)/dx̃
− 3

2

(

d2x(0)/dx̃2

dx(0)/dx̃

)2

.

Remark 1.1. The assumption (1.5) entails that x̃−1Q̃0(x̃, 0) is holo-

morphic near x̃ = 0 and that it does not vanish there. Thus MPPT

operator restricted to {a = 0} is exactly of the form of a ghost operator

([Ko3]). Hence the content of Theorem 1.1 is essentially the same as

[Ko3, Proposition 2.1].

Proof. We construct x
(0)
k inductively, and to facilitate the required

computation we introduce a series z(0)(x̃, η) given by

(1.11) x̃−1x(0)(x̃, η).

By setting

(1.12) γ = Q̃2(0, 0),

we define R̃2 = R̃2(x̃) by

(1.13) x̃−1(Q̃2(x̃, 0) − γ).

Then we find

x̃−2Q̃2(x̃, 0) − γ(dx(0)/dx̃)2(x(0))−2(1.14)

= x̃−1
[

R̃2 − 2γ(dz(0)/dx̃)(z(0))−1 − γx̃(dz(0)/dx̃)2(z(0))−2
]

.

Hence our task is to construct series x(0)(x̃, η) and α(0)(η) so that they
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satisfy

Q̃0(x̃, 0) + η−1Q̃1(x̃, 0)

(1.15)

=

(

dx(0)

dx̃

)2(
x̃

4
+
α(0)

z(0)

)

+ η−2
[

− R̃2(x̃) + 2γ(dz(0)/dx̃)(z(0))−1

+ γx̃(dz(0)/dx̃)2(z(0))−2 − 1

2
x̃{x(0); x̃}

]

.

Since we will choose z
(0)
0 (x̃) so that it does not vanish at the origin the

following relations (1.16) and (1.17) guarantee that the right-hand side

of (1.15) is well-defined on a sufficiently small neighborhood U of the

origin:

(z(0))−1

(1.16)

=
1

z
(0)
0 (x̃)

(

1 − z
(0)
1 (x̃)

z
(0)
0 (x̃)

η−1 +
z

(0)
1 (x̃)2 − z

(0)
0 (x̃)z

(0)
2 (x̃)

z
(0)
0 (x̃)2

η−2 + · · ·
)

,

(

dx(0)

dx̃

)−1

(1.17)

=
1

z
(0)
0 (x̃) + x̃dz

(0)
0 /dx̃

(

1 − z
(0)
1 (x̃) + x̃dz

(0)
1 /dx̃

z
(0)
0 (x̃) + x̃dz

(0)
0 /dx̃

η−1 + · · ·
)

.

Let us now compare the coefficients of η0 in (1.15). Then we find

(1.18) Q̃0(x̃, 0) =

(

dx
(0)
0

dx̃

)2(

x̃

4
+
α

(0)
0

z
(0)
0

)

,
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and hence we choose

(1.19) α
(0)
0 = 0

and

(1.20) x
(0)
0 (x̃) = 2

∫ x̃

0

√

x̃−1Q̃0(x̃, 0) dx̃.

It then follows from (1.5) that

(1.21) z
(0)
0 (0) = 2

√

c
(0)
0 6= 0.

Next, using (1.19) we obtain the following relation (1.22) by comparing

the coefficients of η−1 in (1.15):

(1.22) Q̃1(x̃, 0) = 2
dx

(0)
0

dx̃

dx
(0)
1

dx̃

x̃

4
+

(

dx
(0)
0

dx̃

)2 (

α
(0)
1

z
(0)
0

)

.

Setting x̃ = 0 in (1.22) we find that α
(0)
1 should satisfy

(1.23) α
(0)
1 = Q̃1(0, 0)/z

(0)
0 (0).

Then we can find a holomorphic function f1(x̃) which satisfies

(1.24) Q̃1(x̃, 0) −
(

dx
(0)
0 (x̃)

dx̃

)2
α

(0)
1

z
(0)
0 (x̃)

= x̃f1(x̃).

Thus it suffices to solve

(1.25)
dx

(0)
1

dx̃
= 2

(

dx
(0)
0

dx̃

)−1

f1(x̃)

to find x
(0)
1 that satisfies (1.22). If we solve (1.25) with the initial

condition at x̃ = 0 being 0 on a sufficiently small disc U centered at

the origin, we obtain x
(0)
1 (x̃) that also satisfies the condition (1.8). The

construction of x
(0)
k and α

(0)
k (k ≥ 2) can be inductively done on the
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same disc U in a similar manner. For example, the comparison of the

coefficients of η−2 in (1.15) results in the following:

0 =

(

2
dx

(0)
0

dx̃

dx
(0)
2

dx̃
+
(dx

(0)
1

dx̃

)2
)

x̃

4
+ 2

dx
(0)
0

dx̃

dx
(0)
1

dx̃

α
(0)
1

z
(0)
0

(1.26)

+
(dx

(0)
0

dx̃

)2
(

α
(0)
2

z
(0)
0

− α
(0)
1 z

(0)
1

z
(0)2
0

)

− R̃2(x̃) +
2γ
dz

(0)
0

dx̃

z
(0)
0

+ γx̃









dz
(0)
0

dx̃

z
(0)
0









2

− 1

2
x̃{x(0)

0 ; x̃}.

Then we set x̃ = 0 in (1.26) to find

(1.27)

α
(0)
2 = (z

(0)
0 (0))−1









α
(0)
1

(

z
(0)
1 (0) − 2z

(0)
1 (0)

)

+ R̃2(0) −
2γ
dz

(0)
0

dx̃
(0)

z
(0)
0 (0)









.

After choosing α
(0)
2 as in (1.27) we can divide (1.26) by x̃ to find a

differential equation of the form

(1.28)
dx

(0)
2

dx̃
= f2(x̃),

where f2(x̃) is holomorphic on U . Thus we can find the required x
(0)
2 (x̃)

by solving (1.28) with the initial condition x
(0)
2 (0) = 0. The construc-

tion of α
(0)
k and x

(0)
k (x̃) can be performed in exactly the same manner:

first compute the coefficients of η−k in (1.15), set x̃ to be 0 to find

α
(0)
k so that we may divide the sum of the coefficients by x̃ to find a
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first order equation of normal form for x
(0)
k (x̃) with holomorphic coef-

ficients on U , and finally solve the differential equation with the initial

condition x
(0)
k (0) = 0.

Q.E.D.

As is well known in the exact WKB analysis (e.g. [KT2, Theorem

2.16 and Corollary 2.18]), the relation (1.6) between potentials enables

us to clarify the structure of WKB solutions of a general MPPT equa-

tion restricted to {a = 0} in terms of WKB solutions of a particular

(i.e., α
(0)
0 = 0) ∞-Whittaker equation; the concrete statements are as

follows:

Theorem 1.2. In the situation considered in Theorem 1.1, the

infinite series x(0)(x̃, η) and α(0)(η) satisfy

S̃(x̃, η) =
(dx(0)

dx̃

)

S(x(0)(x̃, η), α(0)(η), η)(1.29)

− 1

2

(d2x(0)(x̃, η)

dx̃2

)

/

(dx(0)(x̃, η)

dx̃

)

,

where S̃ and S are formal series in η−1 respectively beginning with

S̃−1(x)η and S−1(x)η which solve the Riccati equations

(1.30) S̃2 +
dS̃

dx
= η2

(Q̃0(x̃, 0)

x̃
+ η−1 Q̃1(x̃, 0)

x̃
+ η−2 Q̃2(x̃, 0)

x̃2

)

and

(1.31) S2 +
dS

dx
= η2

(1

4
+
α(0)(η)

x
+ η−2 Q̃2(0, 0)

x2

)

,

and for which

(1.32) arg S̃−1(x̃) = arg
(dx

(0)
0

dx̃
S−1

(

x
(0)
0 (x̃)

)

)
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holds (and hence S̃−1(x̃) and
(

dx
(0)
0 /dx̃

)

S−1

(

x
(0)
0 (x̃)

)

themselves

coincide.)

Theorem 1.3. Let us consider the situation assumed in Theo-

rem 1.1, and let ψ be a WKB solution of the ∞-Whittaker equa-

tion

(1.33)

(

d2

dx2
− η2

(1

4
+
α(0)(η)

x
+ η−2 Q̃2(0, 0)

x2

)

)

ψ = 0,

where α(0)(η) is the infinite series constructed there; in particular

(1.34) α
(0)
0 = 0.

Then for the infinite series x(0)(x̃, η) constructed there we find

(1.35) ψ̃(x̃, η) =
(dx(0)(x̃, η)

dx̃

)−1/2

ψ
(

x(0)(x̃, η), η
)

satisfies the following MPPT equation restricted to {a = 0}:
(1.36)
(

d2

dx̃2
− η2

(Q̃0(x̃, 0)

x̃
+ η−1 Q̃1(x̃, 0)

x̃
+ η−2 Q̃2(x̃, 0)

x̃2

)

)

ψ̃(x̃, η) = 0.

See [KT2, Section 2] for the derivation of Theorems 1.2 and 1.3

from Theorem 1.1; although the situation considered in [KT2] is a

much simpler one (the situation where only one simple turning point

is relevant) the logical structure of the derivation is exactly the same.

The analytic meaning of Theorem 1.3 becomes much more transpar-

ent if we apply the Borel transformation to all the relevant functions

and equations; for example, the Borel transformed ∞-Whittaker equa-

tion turns out to be a microdifferential equation

(1.37)

(

∂2

∂x2
−
(1

4
+

1

x
α(0)
( ∂

∂y

)

) ∂2

∂y2
− Q̃2(0, 0)

x2

)

ψB(x, y) = 0,
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thanks to the estimate (B.3) in Appendix B of the growth order of

α
(0)
k (k ≥ 1). Before embarking on the analytic study of the Borel

transformed relations, we present an important relation between the

infinite series α(0)(η) and S̃(x̃, η) in Theorem 1.2. For that purpose we

recall the definition of the odd part Sodd of a solution S of the Riccati

equation with η-dependent potential.

Definition 1.1. ([AKT3, Definition 2.1]) Consider the following

Riccati equation with η-dependent potential:

(1.38) S(x, η) +
dS

dx
(x, η) = η2

(

∑

k≥0

Qk(x)η−k
)

.

Let S(±) respectively denote the solution of (1.38) that begins with

±η
√

Q0(x). Then the odd part Sodd of S is, by definition, given

by

(1.39) Sodd =
1

2
(S(+) − S(−)).

With the help of Definition 1.1, Theorem 1.2 immediately entails the

following

Corollary 1.4. For S and S̃ in Theorem 1.2 their odd parts satisfy

the following relation

(1.40) S̃odd(x̃, η) =
(dx(0)

dx̃

)

Sodd(x
(0)(x̃, η), α(0)(η), η),

if the branches of S̃−1 and S−1 are chosen so that (1.32) is satisfied.

Using this result we find the following

Proposition 1.5. ([Ko3, Proposition 2.1]) Let S̃odd denote the odd

part of S̃ in Theorem 1.2. Then we find

(1.41) Res
x̃=0

S̃odd = ηα(0).
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Proof. In view of the relation (1.40) it suffices to prove (1.41) for S

in Theorem 1.2. To verify (1.41) for Sodd, we study the concrete form

of solutions S(+) and S(−) of (1.31) whose top degree (i.e., degree 1

in η) parts are respectively given by +η/2 and −η/2. One can then

immediately see

(1.42) S
(±)
0 = ±α

(0)
1

x
.

Here, and in what follows, the sign ± is chosen correspondingly in each

formula. Next

(1.43) 2S
(±)
−1 S

(±)
1 +

(

S
(±)
0

)2

+
d

dx
S

(±)
0 =

α
(0)
2

x
+
Q̃2(0, 0)

x2

entails

(1.44) ±S(±)
1 =

α
(0)
2

x
+
β

(±)
1

x2

with constants β
(±)
1 . Similarly the computation of the coefficients of

η−l (l ≥ 1) in (1.31) entails

(1.45) ±S(±)
l+1 +

∑

j+k=l
j,k≥0

S
(±)
j S

(±)
k +

d

dx
S

(±)
l =

α
(0)
l+2

x
.

Since each S
(±)
j (j ≥ 0) is a sum of pole terms, (1.45) implies

(1.46) ±S(±)
l+1 =

α
(0)
l+2

x
+ (multiple pole terms).

Thus the residue of Sodd = 1
2(S

(+) − S(−)) at the origin is α(0), as is

expected. This completes the proof of the proposition.

Q.E.D.

We have so far studied the formal aspect of the problem; the growth

order conditions (B.3) and (B.4) (with a = 0) that {x(0)
k (x̃)}k≥0 and
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{α(0)
k }k≥0 respectively satisfy enable us to obtain much deeper ana-

lytic results. Applying the Borel transformation ([KT2]) to (1.35), we

find that ψ̃B(x̃, y), the Borel transform of ψ̃(x̃, η), and ψB(x
(0)
0 (x̃), y),

the Borel transform of ψ(x
(0)
0 (x̃), η), are related by a microdifferen-

tial operator. This is one of the most important observations made in

[AKT1, Section 2], where a simple turning point problem was studied.

Following the presentation of [AY] and [AKT4], we formulate this fact

in Theorem 1.6 below as the existence of intertwining operators of a

Borel transformed MPPT operator with a = 0 and the Borel trans-

formed particular (i.e., α
(0)
0 = 0) ∞-Whittaker operator; furthermore

the intertwining operators enjoy beautiful expressions which are most

amenable to the study of the exact WKB analysis. (Theorem 1.7.)

To state Theorem 1.6 and Theorem 1.7 we make some notational

preparations. First we let g(x) denote the inverse function of

(1.47) x = x
(0)
0 (x̃),

where x
(0)
0 (x̃) is the function given by (1.20), that is,

(1.48) x = x
(0)
0 (g(x)), x̃ = g(x

(0)
0 (x̃)).

The existence of g(x) is guaranteed by the condition (1.9). Then, by

rewriting the Borel transform Ã of an MPPT operator restricted to

{a = 0}, i.e.,

(1.49) Ã =
∂2

∂x̃2
− Q̃0(x̃, 0)

x̃

∂2

∂y2
− Q̃1(x̃, 0)

x̃

∂

∂y
− Q̃2(x̃, 0)

x̃2
,

in (x, y)-coordinate, we find by (1.18) and (1.19)

Ã
∣

∣

x̃=g(x)
=
(dg

dx

)−2
[

∂2

∂x2
−
(d2g/dx2

dg/dx

) ∂

∂x

]

(1.50)
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− Q̃0(g(x), 0)

g(x)

∂2

∂y2
− Q̃1(g(x), 0)

g(x)

∂

∂y
− Q̃2(g(x), 0)

g(x)2

=
(dg

dx

)−2

[

∂2

∂x2
−
(d2g/dx2

dg/dx

) ∂

∂x
− 1

4

∂2

∂y2

− (dg/dx)2

g(x)
Q̃1(g(x), 0)

∂

∂y
− (dg/dx)2

g(x)2
Q̃2(g(x), 0)

]

.

We now define microdifferential operators L and M respectively by

L =
∂2

∂x2
−
(d2g/dx2

dg/dx

) ∂

∂x

(1.51)

− 1

4

∂2

∂y2
− (dg/dx)2

g(x)
Q̃1(g(x), 0)

∂

∂y
− (dg/dx)2

g(x)2
Q̃2(g(x), 0)

and

(1.52) M =
∂2

∂x2
−
(1

4
+
α(0)(∂/∂y)

x

) ∂2

∂y2
− Q̃2(0, 0)

x2
.

Then we have the following

Theorem 1.6. Let ω0 be an open neighborhood of x = 0, and set

(1.53) Ω0 = {(x, y; ξ, η) ∈ T ∗
C

2
(x,y); x ∈ ω0, η 6= 0}

and

(1.54) Ω∗
0 = {(x, y; ξ, η) ∈ Ω0; x 6= 0}.

Then there exist microdifferential operators X and Y defined on

Ω0 that satisfy

(1.55) LX = YM
on Ω∗

0 and that are invertible on Ω0.

17



Proof. In this proof, and in what follows, we follow [A] in the usage

of terminologies and ideograms in symbol calculus; for example, for a

microdifferential operator X , σ(X ) stands for its symbol, and for a

symbol s(x, y, ξ, η), : s(x, y, ξ, η) : designates the corresponding nor-

mal ordered product operator, and so on. As was first emphasized by

[AKT1],

(1.56)

ψ
(

x(0)(x̃, η), η
)

= ψ
(

x
(0)
0 (x̃) + x

(0)
1 (x̃)η−1 + x

(0)
2 (x̃)η−2 + · · · , η

)

that appears in the right-hand side of (1.35) can be formally rewritten

as

(1.57)
∑

n≥0

1

n!

(

∑

k≥1

x
(0)
k (x̃)η−k

)n ( ∂n

∂xn
ψ(x, η)

)∣

∣

∣

x=x
(0)
0 (x̃)

,

and hence its Borel transform is expressed in (x, y)-coordinate as
(

∑

n≥0

1

n!

(

∑

k≥1

x
(0)
k (g(x))

( ∂

∂y

)−k
)n ∂n

∂xn

)

ψB(x, y)(1.58)

= : exp
((

∑

k≥1

x
(0)
k (g(x))η−k

)

ξ
)

: ψB(x, y).

Having this expression in mind, we try to find operators X and Y in

the following form:

(1.59) X = : C(x, η) exp(r(x, η)ξ) : ,

(1.60) Y = : C∗(x, η) exp(r(x, η)ξ) : ,

where C(x, η), C∗(x, η) and r(x, η) are symbols of microdifferential

operators respectively of order 0, 0 and −1. As the notation indicates

we suppose they are free from (y, ξ). Let rk(x) denote the coefficient

of η−k in r; that is,

(1.61) r(x, η) =
∑

k≥1

rk(x)η−k.
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Then, by the symbol calculus of the composition of operators, we find

(1.62) σ(LX ) = σ(L)σ(X ) + σξ(L)σx(X ) +
1

2!
σξξ(L)σxx(X ).

Note that X is free from y and that

(1.63)
∂p

∂ξp
σ(L) = 0 if p ≥ 3.

Here and in what follows we use the subscripts x (resp., ξ) to designate

the differentiation by x (resp., ξ): rx = dr/dx, rxx = d2r/dx2, etc.

We also use the letter E as an abbreviation of exp(r(x, η)ξ). Under

these conventions we find

σ(LX )

(1.64)

=
[

ξ2− 1

4
η2− gxx

gx
ξ− (gx)

2

g
Q̃1(g(x), 0)η− (gx)

2

g2
Q̃2(g(x), 0)

]

CE

+
(

2ξ − gxx
gx

)(

CxE + rxξCE
)

+
1

2!
(2)
(

CxxE + 2CxrxξE + CrxxξE + C(rxξ)
2E
)

= (1 + rx)
2Cξ2E +

[

2(1 + rx)Cx −
gxx
gx

(1 + rx)C + rxxC
]

ξE

+
[(

− 1

4
η2 − (gx)

2

g
Q̃1(g(x), 0)η − (gx)

2

g2
Q̃2(g(x), 0)

)

C

− gxx
gx
Cx + Cxx

]

E.

In parallel with (1.64), by setting

(1.65) β(η) = ηα(0)(η) =
∑

k≥1

α
(0)
k η−k+1
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and

(1.66) γ = Q̃2(0, 0),

we find

σ(YM)

(1.67)

=
∑

n≥0

1

n!

( ∂n

∂ξn
σ(Y)

)( ∂n

∂xn
σ(M)

)

= (C∗E)
(

ξ2 − 1

4
η2 − β(η)η

x
− γ

x2

)

+
∑

n≥1

1

n!

(

rnC∗E
)

((−1)n+1n!β(η)η

xn+1
+

(−1)n+1(n + 1)!γ

xn+2

)

= (C∗E)
(

ξ2− 1

4
η2
)

−(C∗E)
[

∑

n≥0

β(η)η

x

(−r
x

)n
+
∑

n≥0

(n + 1)γ

x2

(−r
x

)n
]

= (C∗E)
(

ξ2 − 1

4
η2
)

− (C∗E)
[β(η)η

x

(

1 +
r

x

)−1
+
γ

x2

(

1 +
r

x

)−2
]

= (C∗E)
(

ξ2 − 1

4
η2 − β(η)η

x + r
− γ

(x + r)2

)

.

Hence we obtain the following relations by comparing the coefficients

of ξlE (l = 2, 1, 0) in (1.64) and (1.67):

(1.68) (1 + rx)
2C = C∗

(1.69) (1 + rx)
(

2Cx −
gxx
gx
C
)

+ rxxC = 0
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[

− 1

4
η2 − (gx)

2

g
Q̃1(g(x), 0)η − (gx)

2

g2
Q̃2(g(x), 0)

]

C − gxx
gx
Cx + Cxx

(1.70)

= C∗
(

− 1

4
η2 − β(η)η

x + r
− γ

(x + r)2

)

.

If we set

(1.71) s(x, η) = x + r(x, η),

(1.69) is rewritten as follows:

(1.72)
Cx
C

=
1

2

(gxx
gx

− sxx
sx

)

.

Hence C is fixed by g and s aside from a constant multiple Γ:

(1.73) C = Γ(gx)
1/2(sx)

−1/2.

As the arbitrariness of Γ is absorbed by the freedom in choosing the

constant multiple of C∗ if we define it by (1.68), i.e.,

(1.74) C∗ = s2
xC.

Thus we may choose Γ = 1 in (1.73) without loss of generality. Sub-

stituting (1.74) into (1.70), we obtain

1

4
η2 +

(gx)
2

g(x)
Q̃1(g(x), 0)η +

(gx)
2

g(x)2
Q̃2(g(x), 0)(1.75)

= s2
x

(1

4
η2 +

β(η)η

s
+
γ

s2

)

− C−1
(gxx
gx
Cx − Cxx

)

.

Further (1.18) entails

(1.76)
Q̃0(x̃, 0)

x̃

∣

∣

∣

x̃=g(x)
=

1

4

(dx
(0)
0

dx̃

)2∣
∣

∣

x̃=g(x)
=

1

4
gx(x)−2.
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Hence we may rewrite (1.75) as

Q̃0(g(x), 0)

g(x)
η2 +

Q̃1(g(x), 0)

g(x)
η +

Q̃2(g(x), 0)

g(x)2
(1.77)

= g−2
x s2

x

(1

4
η2 +

β(η)η

s
+
γ

s2

)

−D(x, η)

where

(1.78) D(x, η) = gx(x)−2C(x, η)−1
(gxx(x)

gx(x)
Cx(x, η) − Cxx(x, η)

)

.

Thus our task is to find the series s(x, η) that satisfies (1.77), and we

want to find the required series in terms of x(0)(x̃, η) constructed in the

proof of Theorem 1.1, by somehow relating (1.77) with (1.6). In order

to relate (1.77) with (1.6), we substitute x = x
(0)
0 (x̃) into (1.77) so that

the relation is described in terms of the x̃-variable. To facilitate the

description of (1.77) in x̃-coordinate, we introduce

(1.79) s̃(x̃, η) = s(x
(0)
0 (x̃), η)

and

(1.80) C̃(x̃, η) = C(x
(0)
0 (x̃), η).

Then we find

(1.81)

ds̃

dx̃
=

(

ds

dx

∣

∣

∣

x=x
(0)
0 (x̃)

)

dx
(0)
0

dx̃
=

(

ds

dx

∣

∣

∣

x=x
(0)
0 (x̃)

)(

(dg

dx

)−1∣
∣

∣

x=x
(0)
0 (x̃)

)

,

and hence by (1.73) with Γ = 1

(1.82) C̃(x̃, η) =
(ds̃

dx̃

)−1/2

.

On the other hand it follows from the definition (1.80) of C̃(x̃, η) that

(1.83) C(x, η) = C̃(g(x), η),
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(1.84) Cx(x, η) =

(

dC̃

dx̃

∣

∣

∣

x̃=g(x)

)

dg

dx
,

(1.85) Cxx(x, η) =

(

d2C̃

dx̃2

∣

∣

∣

x̃=g(x)

)

(dg

dx

)2

+

(

dC̃

dx̃

∣

∣

∣

x̃=g(x)

)

d2g

dx2
.

Thus the substitution of (1.84) and (1.85) into (1.78) shows

D(x, η)=g−2
x C(x, η)−1

(

−d
2C̃

dx̃2

∣

∣

∣

x̃=g(x)

)

g2
x(1.86)

= −C(x, η)−1

(

d2C̃

dx̃2

∣

∣

∣

x̃=g(x)

)

.

We now use (1.82) to compute C̃x̃x̃ (= d2C̃/dx̃2):

(1.87)
d2C̃

dx̃2
= −1

2

(ds̃

dx̃

)−1/2
(

s̃x̃x̃x̃
s̃x̃

− 3

2

(s̃x̃x̃
s̃x̃

)2
)

.

Then the substitution of x = x
(0)
0 (x̃) into (1.86) entails

(1.88)

D
(

x
(0)
0 (x̃), η

)

=
1

2
C̃(x̃, η)−1

(ds̃

dx̃

)−1/2
(

s̃x̃x̃x̃
s̃x̃

− 3

2

(s̃x̃x̃
s̃x̃

)2
)

=
1

2
{s̃; x̃}.

Now we substitute x = x
(0)
0 (x̃) into (1.77) and use (1.81) and (1.88) to

obtain

Q̃0(x̃, 0)

x̃
η2 +

Q̃1(x̃, 0)

x̃
η +

Q̃2(x̃, 0)

x̃2
(1.89)

=
(ds̃

dx̃

)2
(

1

4
η2 +

β(η)η

s̃(x̃, η)
+

γ

s̃(x̃, η)2

)

− 1

2
{s̃; x̃}.

Comparing (1.89) with (1.6) we find by (1.65) and (1.66) that the series

x(0)(x̃, η) constructed in the proof of Theorem 1.1 gives us the series
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s̃(x̃, η) that satisfies (1.89). Furthermore the growth order condition

(B.4) in Appendix B guarantees that s̃(x̃, η) is the symbol of a mi-

crodifferential operator of order 0. Therefore we obtain the required

symbol s(x, η) by setting

(1.90) s(x, η) = s̃(g(x), η).

Note that the top degree part of s(x, η), i.e., s0(x) is, by its definition,

x
(0)
0 (g(x)) = x. Hence the series s given by (1.90) has the form (1.71).

Hence r(x, η) is the symbol of a microdifferential operator of order

−1. Furthermore the fact that s0(x) = x together with (1.73) and

(1.74) entails that the highest degree in η parts, i.e., degree 0 parts

of C and C∗ are both (gx)
1/2, which never vanishes on a sufficiently

small neighborhood ω0 of the origin. This implies that C and C∗ are

invertible on Ω0, and hence X = CE and Y = C∗E are also invertible

there. Since

(1.91) σ(LX ) = σ(YM)

holds on Ω∗
0 by the way of constructing X and Y , we find

(1.92) LX = YM
on Ω∗

0. This completes the proof of the theorem.

Q.E.D.

Remark 1.2. As is evident from the above proof of Theorem 1.6, The-

orem 1.6 may be understood as a Borel-transformed version of Theo-

rem 1.3. Actually it follows from (1.59), (1.81) and (1.73) with Γ being

1 that, if we write down the Borel transform of (dx(0)(x̃, η)/dx̃)−1/2

ψ(x(0)(x̃, η), η) in (x, y)-coordinate (not in (x̃, y)-coordinate) for a

WKB solution of (1.33), we then find XψB(x, y) for the operator X
in Theorem 1.6.
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In stating Theorem 1.6 we have considered the relation (1.55) only

on Ω∗
0. This is just because operators L and M contain singularities

at x = 0. As is clear from the above construction, operators X and Y
are well-defined on Ω0. Furthermore, as we will show in Appendix C,

Proposition C.1 and Theorem B.1 in Appendix B entail Theorem 1.7

below. In stating the theorem, we let U (resp., Sj (j = 1, 2, · · · , N))

denote an open set (resp., an analytic hypersurface) given by the fol-

lowing:

(1.93) U = {(x, y) ∈ C
2; |x|, |y| < δ}

and

(1.94) Sj = {(x, y) ∈ U ; y = sj(x)},
where δ is a sufficiently small positive number. We also define

(1.95) U ∗ = U −
(

{(x, y) ∈ U ; x = 0} ∪
( N
∪
j=1

Sj
)

)

.

Theorem 1.7. Let X be the microdifferential operator given by

(1.59). Then its action upon a multi-valued analytic function ϕ(x, y)

defined on U ∗ is represented as an integro-differential operator of

the form

(1.96) Xϕ(x, y) =

∫ y

y0

K(x, y − y′, ∂/∂x)ϕ(x, y′)dy′,

where K(x, y, ∂/∂x) is a differential operator of infinite order that

is defined on {(x, y) ∈ C
2; |x| < C and |y| < C ′ for some positive

constants C and C ′}, and y0 is a constant that fixes the action

of (∂/∂y)−1 as an integral operator. (See Figure 1.1 below.) The

operator Y given by (1.60) also enjoys a similar expression.

Remark 1.3. When the operand ϕ is a Borel transformed WKB solu-

tion of a particular (i.e., α
(0)
0 = 0) ∞-Whittaker equation, the relevant
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Figure 1.1.

singular points are only y = s1(x) = x/2 and y = s2(x) = −x/2
([Ko3]); that is, no fixed singularities are observed in this case. (See

[KT2, Future Directions and Problems] for the notion and importance

of fixed singularities (versus movable ones like the pair (s1(x), s2(x)))

as above.) On the other hand, the power of the expression (1.96) is

most manifest when we study the structure of a Borel trasformed WKB

solution near its fixed singular points, as we will do in Section 5. Hence

we do not discuss the action of operators upon Borel transformed WKB

solutions of an MPPT equation with a = 0 any more. One more rea-

son to avoid here the further discussion of WKB solutions of an MPPT

equation with a = 0, i.e., a ghost equation, is that we have not yet been

able to find a universal and canonical way (like that to be used in The-

orem 2.2 in the next section) of normalizing WKB solutions applicable

to all ghost equations. This is mainly due to the existence of infinitely

many simple poles in Sodd, as is shown in Corollary 1.4, and it stands

in total contrast to the situation of MPPT equation with a 6= 0, which

we will discuss in Section 2 and Section 5.
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2 Construction of the transformation to the canonical

form, II. — the case where a 6= 0

The purpose of this section is to find a canonical form of an MPPT

equation, i.e., a Schrödinger equation obtained by the addition of a

term aq(x, a)/x to the potential of the ghost equation; to begin with

we present the following

Theorem 2.1. Let Q̃j(x̃, a) (j = 0, 1, 2) be holomorphic functions

defined on a neighborhood of (x̃, a) = (0, 0), and suppose that

(2.1) Q̃0(0, a) 6= 0 if a 6= 0,

and

(2.2) Q̃0(x̃, 0) = c
(0)
0 x̃ + O(x̃2) holds with c

(0)
0 being a constant

different from 0.

Then there exist an open neighborhood U of x̃ = 0, an open neigh-

borhood V of a = 0, holomorphic functions x
(j)
k (x̃) (j, k ≥ 0) de-

fined on U and constants α
(j)
k for which the following conditions

(2.3) ∼ (2.8) are satisfied:

(2.3)

(

dx
(0)
0

dx̃

)

(0) 6= 0,

(2.4) x
(j)
k (0) = 0 for every j and k,

(2.5) xk(x̃, a) =
∑

j≥0

x
(j)
k (x̃)aj is holomorphic on U × V,

(2.6) αk(a) =
∑

j≥0

α
(j)
k a

j is holomorphic on V,

27



(2.7) x(x̃, a, η) =
∑

k≥0 xk(x̃, a)η
−k and

α(a, η) =
∑

k≥0 αk(a)η
−k are Borel transformable series,

x̃−1Q̃0(x̃, a) + η−1x̃−1Q̃1(x̃, a) + η−2x̃−2Q̃2(x̃, a)

(2.8)

=

(

∂x(x̃, a, η)

∂x̃

)2
(

1

4
+

α(a, η)

x(x̃, a, η)
+ η−2 Q̃2(0, a)

x(x̃, a, η)2

)

− 1

2
η−2{x; x̃}.

In this section we only describe how to construct x
(j)
k (x̃) and α

(j)
k

so that they formally satisfy (2.8); (2.5), (2.6) and (2.7) are proved in

Appendix B (Theorem B.1).

The construction of {x(j)
k } and {α(j)

k } makes use of the perturbation

in powers of a, starting with x(0)(x̃, η) and α(0)(η) constructed in the

preceding section. We introduce z(x̃, a, η) given by

(2.9) x̃−1x(x̃, a, η)

to find (2.10) below in parallel with (1.15):

Q̃0(x̃, a) + η−1Q̃1(x̃, a) =

(

dx

dx̃

)2(
x̃

4
+
α(a, η)

z

)

(2.10)

+ η−2

(

−R̃2(x̃, a) + 2Q̃2(0, a)
zx̃
z

+ Q̃2(0, a)x̃
(zx̃
z

)2

− 1

2
x̃{x; x̃}

)

,

where

(2.11) R̃2(x̃, a) =
(

Q̃2(x̃, a) − Q̃2(0, a)
)

/x̃.

As (1.16) shows, (z(0))−1 is a well-defined (formal) series in η−1 thanks

to (1.21); hence z−1 is a well-defined formal power series of a:

z−1 =
(

z(0) + az(1) + a2z(2) + · · ·
)−1

(2.12)
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=
(

z(0)
)−1
(

1− a
(z(1)

z(0)
+ a

z(2)

z(0)
+ · · ·

)

+ a2
(z(1)

z(0)
+ a

z(2)

z(0)
+ · · ·

)2

+ · · ·
)

.

Thus, if we let R denote the coefficient of η−2 in the right-hand side of

(2.10), we find it can be formally expanded as a power series of a:

(2.13) R = R(0) + aR(1) + a2R(2) + · · · ,
where

(2.14) R(N) is free from a and expressed in terms of z(j0), z
(j1)
x̃ ,

z
(j2)
x̃x̃ , z

(j3)
x̃x̃x̃ (0 ≤ j0, j1, j2, j3 ≤ N) and x̃;

furthermore (2.14) entails

(2.15) the coefficient R
(N)
l of η−l in R(N) is expressed in terms

of x̃ and z
(j)
k and its derivatives with 0 ≤ j ≤ N and

0 ≤ k ≤ l − 2.

Here z
(j)
k stands for the coefficient of η−k of z(j).

Theorem 1.1 shows that x(0) and z(0) = x̃−1x(0) satisfy (2.10) with

a = 0. The comparison of coefficients of a1 in (2.10) leads to

∂

∂a

(

Q̃0(x̃, a) + η−1Q̃1(x̃, a)
)

∣

∣

∣

a=0
(2.16)

=
x̃

2

(

x
(0)
x̃ x

(1)
x̃

)

+
2α(0)

z(0)

(

x
(0)
x̃ x

(1)
x̃

)

+
(

x
(0)
x̃

)2 α(1)

z(0)

−
(

x
(0)
x̃

)2 α(0)z(1)

z(0)2
+η−2R(1).

In what follows we let Q̃
(j)
k (x̃) (k = 0, 1) denote the following:

(2.17)
1

j!

∂j

∂aj
Q̃k(x̃, a)

∣

∣

∣

a=0
.
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Let us first pick up every coefficient of η0 in (2.16), including some

terms which actually vanish:

Q̃
(1)
0 (x̃) =

x̃

2

(

dx
(0)
0

dx̃

dx
(1)
0

dx̃

)

+
2α

(0)
0

z
(0)
0

(

dx
(0)
0

dx̃

dx
(1)
0

dx̃

)

(2.16.0)

+

(

dx
(0)
0

dx̃

)2
α

(1)
0

z
(0)
0

−
(

dx
(0)
0

dx̃

)2
α

(0)
0 z

(1)
0

z
(0)2
0

.

In the right-hand side of (2.16.0) the second term and the fourth term

vanish because α
(0)
0 vanishes by (1.19). Hence, by setting x̃ = 0 in

(2.16.0), we obtain

(2.18) Q̃
(1)
0 (0) = α

(1)
0 z

(0)
0 (0).

Choosing α
(1)
0 as above, we find a holomorphic function h(x̃) that sat-

isfies

(2.19) Q̃
(1)
0 (0) −

(

dx
(0)
0

dx̃

)2
α

(1)
0

z
(0)
0

= x̃h(x̃).

Hence, by dividing (2.16.0) by x̃, we arrive at

(2.20)
1

2

dx
(0)
0

dx̃

dx
(1)
0

dx̃
= h(x̃).

Then we solve (2.20) with the initial condition

(2.21) x
(1)
0 (0) = 0.

Thus we find a solution x
(1)
0 such that z

(1)
0 = x̃−1x

(1)
0 is holomorphic

near x̃ = 0 and that satisfies (2.16.0).

Next we collect terms of degree −1 in η in (2.16); this time we
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dispose of terms containing α
(0)
0 as a factor. Then we find

Q̃
(1)
1 (x̃)

(2.16.1)

=
x̃

2

(

dx
(0)
0

dx̃

dx
(1)
1

dx̃
+
dx

(0)
1

dx̃

dx
(1)
0

dx̃

)

+ 2

(

dx
(0)
0

dx̃

dx
(1)
0

dx̃

)

α
(0)
1

z
(0)
0

+ 2

(

dx
(0)
0

dx̃

dx
(0)
1

dx̃

)

α
(1)
0

z
(0)
0

+

(

dx
(0)
0

dx̃

)2 (

α
(1)
1

z
(0)
0

− α
(1)
0 z

(0)
1

z
(0)2
0

)

−
(

dx
(0)
0

dx̃

)2
α

(0)
1 z

(1)
0

z
(0)2
0

=





x̃

2

dx
(0)
0

dx̃

dx
(1)
1

dx̃
+

(

dx
(0)
0

dx̃

)2
α

(1)
1

z
(0)
0





+

[

x̃

2

dx
(0)
1

dx̃

dx
(1)
0

dx̃
+ 2

(

dx
(0)
0

dx̃

dx
(1)
0

dx̃

)

α
(0)
1

z
(0)
0

+ 2

(

dx
(0)
0

dx̃

dx
(0)
1

dx̃

)

α
(1)
0

z
(0)
0

−
(

dx
(0)
0

dx̃

)2
α

(1)
0 z

(0)
1

z
(0)2
0

−
(

dx
(0)
0

dx̃

)2
α

(0)
1 z

(1)
0

z
(0)2
0

]

.

Hence (2.16.1) evaluated at x̃ = 0 reads as follows:

Q̃
(1)
1 (0)

(2.22)

= z
(0)
0 (0)α

(1)
1 + 2z

(1)
0 (0)α

(0)
1 + 2z

(0)
1 (0)α

(1)
0 − α

(1)
0 z

(0)
1 (0)− α

(0)
1 z

(1)
0 (0)
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= z
(0)
0 (0)α

(1)
1 + z

(1)
0 (0)α

(0)
1 + z

(0)
1 (0)α

(1)
0 .

Since all terms in (2.22) are, except for z
(0)
0 (0)α

(1)
1 , values of functions

which have already been fixed, (2.22) fixes the constant α
(1)
1 . Further-

more this choice of α
(1)
1 enables us to divide (2.16.1) by x̃ to find a

differential equation of the form

(2.23)
dx

(1)
1 (x̃)

dx̃
= f(x̃)

for a holomorphic function f(x̃) defined near the origin. We then solve

(2.23) with the initial condition

(2.24) x
(1)
1 (0) = 0

to obtain the required x
(1)
1 (x̃). The treatment of terms of η−l in (2.16)

can be done in a similar way; we first find

0 =
x̃

2

(

dx
(0)
0

dx̃

dx
(1)
l

dx̃
+ Fl

)

+

(

2α
(0)
0

z
(0)
0

dx
(0)
0

dx̃

dx
(1)
l

dx̃
+Gl

)

(2.16.l) (l ≥ 2)

+

((

dx
(0)
0

dx̃

)2
α

(1)
l

z
(0)
0

+Hl

)

−
((

dx
(0)
0

dx̃

)2
α

(0)
0 z

(1)
l

(z
(0)
0 )2

+Kl

)

+R
(1)
l ,

where Fl etc. are respectively collections of terms of degree l in η−1

that originate from (x
(0)
x̃ x

(1)
x̃ ) etc. and that have been already fixed

(like (dx
(0)
j /dx̃) (dx

(1)
k /dx̃) (j+k = l, 0 ≤ k ≤ l−1). In the above, in

order to manifest the origin ofGl and Kl we have included terms which

are actually 0, i.e., terms multiplied by α
(0)
0 . Thus (2.16.l) assumes the

following form:

(2.25)
x̃

2

(

dx
(0)
0

dx̃

dx
(1)
l

dx̃

)

+

(

dx
(0)
0

dx̃

)2
α

(1)
l

z
(0)
0

+ Ll = 0,

32



where Ll is a sum of terms which have already been fixed. Thus we

should, and really do, choose

(2.26) α
(1)
l = −

(

1

z
(0)
0

Ll

)∣

∣

∣

∣

∣

x̃=0

.

Then dividing (2.25) by x̃ we obtain

(2.27)

(

1

2

dx
(0)
0

dx̃

)

dx
(1)
l

dx̃
= h(x̃)

with a holomorphic function h near the origin. Hence we can solve

(2.27) with the initial condition x
(1)
l (0) = 0. Then the resulting func-

tion x
(1)
l together with the constant α

(1)
l satisfies (2.16.l).

It is now evident that we can construct {α(j)
k , x

(j)
k } for any (j, k)

by the same procedure. Actually the comparison of the coefficients of

aN gives us an equation (EN), and the computation of the coefficients

of η−l in (EN) presents the equation (EN , l) to be resolved. In the

equation (EN , l), {x(j)
k , z

(j)
k , α

(j)
k } are regarded to be known objects if

(i) j ≤ N − 1

or

(ii) j = N, k ≤ l − 1.

The concrete form of (EN , l) is as follows;

(2.28) 0 =
x̃

2

dx
(0)
0

dx̃

dx
(N)
l

dx̃
+

(

dx
(0)
0

dx̃

)2
α

(N)
l

z
(0)
0

+ (known functions).

Here we note that −Q̃(N)
l is included among known functions when

l is 0 or 1. Thus we first fix α
(N)
l so that the equation (2.28) is di-

visible by x̃, and then the equation for x
(N)
l obtained by the division

by x̃ assumes the normal form. Thus we can solve the equation with

the initial condition x
(N)
l (0) = 0. Thus we can construct x(x̃, a, η)
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=
∑

j,k≥0

x
(j)
k (x̃)ajη−k and α(a, η) =

∑

j,k≥0

α
(j)
k a

jη−k that satisfy (2.8).

The convergence of these series in a and their Borel transformability

concerning η are assured by Theorem B.1 in Appendix B.

Q.E.D.

Remark 2.1. (i) It is worth emphasizing that the growth order proper-

ties of {x(j)
k , α

(j)
k } as j tends to ∞ and those as k tends to ∞ are sub-

stantially different despite the fact that the construction of {x(j)
k , α

(j)
k }

can be done in a symmetric way with respect to indexes j and k; the

equation for x
(N)
l can be found by first writing down the equation (El)

through the comparison of the coefficients of η−l under the assumption

that all coefficients of η−l
′
(l′ ≤ l− 1) are known and then finding out

the required equation by the comparison of the coefficients of aN in

(El) under the assumption that all the coefficients of aN
′
(N ′ ≤ N −1)

in (El) are known. The asymmetry of the growth order is tied up with

the estimation of higher order derivatives contained in the seemingly

ancillary term η−2x̃{x; x̃}/2 in (2.10). (See Remark B.2 in Appendix

B.)

(ii) It is also noteworthy that the convergence property (2.5) (with

k = 0) automatically entails the following geometric result: it follows

from (2.3) and (2.8) that the solution x̃ = x̃0(a) of the equation

(2.29) x0(x̃, a) + 4α0(a) = 0,

whose existence is guaranteed again by (2.3) for |a| sufficiently small,

satisfies

(2.30) Q̃0(x̃0(a), a) = 0.

Otherwise stated, the function x = x0(x̃, a) maps the simple turning

point of the given MPPT equation to that of the ∞-Whittaker equa-
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tion. Note that it should be difficult to image such a picture only by

tracing the algebraic construction of x(x̃, a, η) given above.

In parallel with the reasoning in Section 1, Theorem 2.1 gives us

several results on the structure of WKB solutions of a generic (i.e.,

a 6= 0) MPPT equation. Among other things, we first note Theorem 2.2

below. To obtain Theorem 2.2 we make essential use of the simple

turning point x̃ = x̃0(a); it is known ([AKT2, Proposition 1.6]) that

S̃odd, the odd part of a solution S̃ of the associated Riccati equation,

has singularities of square-root type near a simple turning point x̃ = t

in general. Hence the integral

(2.31)

∫ x̃

t

S̃odddx̃

is well-defined ([KT2, (2.24)]), and we use this integral to define a

WKB solution ψ̃± of an MPPT equation that is normalized at the

simple turning point in question, that is,

(2.32) ψ̃±(x̃, a, η) =
1

√

S̃odd

exp
(

±
∫ x̃

x̃0(a)

S̃odd(x̃, a, η)dx̃
)

.

As is shown in [KT2, Section 2], we can deduce Theorem 2.2 below

from Theorem 2.1 using the above normalization of WKB solutions.

Theorem 2.2. Let ψ̃+(x̃, a, η) be a WKB solution of an MPPT

equation (2.33) below, and suppose that it is normalized at its sim-

ple turning point as above.

(2.33)
( d2

dx̃2
− η2Q̃(x̃, a, η)

)

ψ̃(x̃, a, η) = 0 (a 6= 0),

where

(2.34) Q̃ =
Q̃0(x̃, a)

x̃
+ η−1Q̃1(x̃, a)

x̃
+ η−2Q̃2(x̃, a)

x̃2
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satisfies (2.1) and (2.2). Then, for a sufficiently small a ( 6= 0),

we can find a WKB solution ψ+(x, η;α(a, η)) of the ∞-Whittaker

equation

(2.35)
(

d2

dx2
− η2

(1

4
+
α(a, η)

x
+ η−2Q̃2(0, a)

x2

)

)

ψ
(

x, η;α(a, η)
)

= 0

that is also normalized at its simple turning point x = −4α0(a) so

that it satisfies the following relation:

(2.36) ψ̃+(x̃, a, η) =
(∂x(x̃, a, η)

∂x̃

)−1/2

ψ+

(

x(x̃, a, η), η;α(a, η)
)

,

where x(x̃, a, η) and α(a, η) are the series constructed in Theo-

rem 2.1.

The proof of Theorem 2.2 is essentially the same as that of Corollary

2.18 in [KT2], and we omit it here. We call the attention of the reader

to the fact that normalization of the WKB solution ψ̃(x̃, η) is not fixed

in the corresponding result in Section 1, i.e., Theorem 1.3.

As there is no problem related to the normalization concerning solu-

tions of the Riccati equation, we can obtain the results similar to The-

orem 1.2 and Corollary 1.4 by using the series x(x̃, a, η) and α(a, η)

constructed in Theorem 2.1. For example we obtain the following The-

orem 2.3 as a counterpart of Corollary 1.4.

Theorem 2.3. Let S and S̃ respectively be a solution of

(2.37) S2 +
dS

dx
= η2

(

1

4
+
α(a, η)

x
+ η−2Q̃2(0, a)

x2

)

and

(2.38) S̃2 +
dS̃

dx̃
= η2Q̃(x̃, a, η),
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and suppose that

(2.39) arg S̃−1(x̃, a) = arg

(

dx0(x̃, a)

dx̃
S−1

(

x0(x̃, a), α0(a)
)

)

holds. Then they satisfy

(2.40) S̃odd(x̃, a, η) =

(

dx(x̃, a, η)

dx̃

)

Sodd

(

x(x̃, a, η), α(a, η), η
)

.

We refer the reader to [KT2, Section 2] for the proof.

Now we note the following important

Lemma 2.4. Let S be a solution of (2.37) whose top degree part

S−1(x, α0) is chosen so that it is positive for positive x and α0.

Then we find

(2.41)

∮

γ(α0)

Sodd

(

x, α(a, η), η
)

dx = 2πiα(a, η)η,

where γ(α0) designates a closed curve in the cut plane shown in

Figure 2.1 below.

Figure 2.1.

Proof. By a straightforward computation we find

(2.42) S
(±)
−1 = ±1

2

√

x + 4α0

x
,
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(2.43) S
(±)
0 =

α0

x(x + 4α0)
± α1√

x
√
x + 4α0

.

Then we can readily find the concrete form of S
(±)
l (l ≥ 1) by the

induction on l:

(2.44) S
(±)
l =

∑

c(±)
p,q (l)x−

p
2(x + 4α0)

− q
2 ,

where c
(±)
p,q (l) are constants, p and q are integers that satisfy

(2.45) p + q = 2m, m = l + 1, l, · · · , 1.

Furthermore we see that the surviving constant c
(±)
p,q (l) with p+ q = 2

is only for p = q = 1 and that

(2.46) c
(±)
1,1 (l) = αl+1.

By computing the residue at ∞ of x−p/2(x + 4α0)
−q/2, we find

(2.47)

∮

γ(α0)

√

x + 4α0

x
dx = 4πiα0,

(2.48)

∮

γ(α0)

dx
√

x(x + 4α0)
= 2πi

and

(2.49)

∮

γ(α0)

dx

xp/2(x + 4α0)q/2
= 0 if p + q = 2m ≥ 4.

Therefore (2.43), (2.44) and (2.46) imply

(2.50)

∮

γ(α0)

Sodddx = 2πiα(η)η.

Q.E.D.

Combining Theorem 2.3 and Lemma 2.4 we obtain the following
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Proposition 2.5. Let S̃ be a solution of the Riccati equation (2.38)

that is associated with a generic MPPT equation. Then with an

appropriate choice of the branch of S̃−1, we find

(2.51)

∮

γ̃(a)

S̃odd(x̃, a, η)dx̃ = 2πiα(a, η)η,

where γ̃(a) designates a closed curve in the cut plane shown in

Figure 2.2.

Figure 2.2.

In view of the logical structure of the discussions in Section 1, one

naturally expects that some intertwining microdifferential operators

between a generic MPPT operator and an ∞-Whittaker operator may

be constructed with the help of the series x(x̃, a, η) and α(a, η) con-

structed in Theorem 2.1. This expectation can be readily validated if

we introduce a holomorphic function g(x, a), instead of g(x) given in

(1.48), which satisfies

(2.52) x = x0

(

g(x, a), a
)

, x̃ = g
(

x0(x̃, a), a
)

on a neighborhood of (x, a) = (0, 0). The unique existence of such a

holomorphic function is guaranteed by (2.3), and hence we find

(2.53) g(x, 0) = g(x).
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The proof of Theorems 2.6 and 2.7 below are essentially the same as

that of Theorems 1.6 and 1.7. Here we only repeat the definitions of

relevant operators for the convenience of the reader. First L designates

a Borel transformed generic MPPT operator expressed in (x, a, y)-

coordinate and then multiplied by (∂g/∂x)2. That is,

(2.54) L =
∂2

∂x2
−
(

∂2g/∂x2

∂g/∂x

)

∂

∂x
−
(∂g

∂x

)2

Q̃
(

g(x, a), a,
∂

∂y

)

.

In parallel with (1.52) we designate by M the Borel transformed ∞-

Whittaker equation, that is,

(2.55)
∂2

∂x2
−
(

1

4
+
α(a, ∂/∂y)

x

)

∂2

∂y2
− Q̃2(0, a)

x2
.

Using the series x(x̃, a, η) =
∑

k≥0

xk(x̃, a)η
−k constructed in Theo-

rem 2.1, we define another series r(x, a, η) by

(2.56)
∑

k≥1

xk
(

g(x, a), a
)

η−k.

Then, using the same reasoning as in the proof of Theorems 1.6, we

obtain Theorem 2.6 below with the help of Theorem B.1 in Appendix

B.

Theorem 2.6. There exist invertible microdifferential operators

X and Y with a holomorphic parameter a that satisfy

(2.57) LX = YM
near (x, a) = (0, 0) with the exception of xη = 0. The concrete

form of operators X and Y are as follows:

(2.58) X =:
(∂g

∂x

)1/2(

1 +
∂r

∂x

)−1/2

exp
(

r(x, a, η)ξ
)

: ,

(2.59) Y =:
(∂g

∂x

)1/2(

1 +
∂r

∂x

)3/2

exp
(

r(x, a, η)ξ
)

: .
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Remark 2.2. In parallel with Remark 1.2, we see from (2.56) and

(2.58) that Theorem 2.6 is a Borel-transformed version of Theorem 2.2;

Xψ+,B is the Borel transform of (∂x(x̃, a, η)/∂x̃)−1/2 ψ+(x(x̃, a, η), η;

α(α, η)) written down in (x, y)-coordinate (not in (x̃, y)-coordinate),

where ψ+ is a WKB solution of the ∞-Whittaker equation (2.35).

Furthermore Theorem B.1 together with Proposition C.1 entails the

following

Theorem 2.7. The action of the microdifferential operator X
upon the Borel transformed WKB solution ψ+,B of the ∞-Whittaker

equation is expressed as an integro-differential operator of the fol-

lowing form:

(2.60) Xψ+,B =

∫ y

y0

K(x, a, y − y′, ∂/∂x)ψ+,B(x, a, y′)dy′,

where K(x, a, y, ∂/∂x) is a differential operator of infinite order

that is defined on {(x, a, y) ∈ C
3; (x, a) ∈ ω for an open neighbor-

hood ω of the origin and |y| < C for some positive constant C},
and y0 is a constant that fixes the action of (∂/∂y)−1 as an integral

operator.

Remark 2.3. Since α0(a) tends to 0 as a tends to 0, Theorem B.1

guarantees that we can choose ω to be of the form ω0 ×D, where

(2.61) D = {a ∈ C; |a| < δ for some positive constant δ},
and

(2.62) ω0 is a simply connected open set in C that contains the ori-

gin and the simple turning point of the ∞-Whittaker equa-

tion, i.e., x = −4α0(a), for every a in D.

Then the integral operator in the right-hand side of (2.60) acts on any

multi-valued analytic function defined on ω0×D×{y ∈ C; |y−y0| <
C}.
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3 Analytic properties of WKB solutions of the

Whittaker equation with a large parameter

In order to analyze WKB solutions of the ∞-Whittaker equation, which

plays a central role in subsequent sections as the canonical form of an

MPPT equation for a 6= 0, we first recall several basic facts about

WKB solutions of the Whittaker equation with a large parameter η,

i.e., the equation:

(3.1)

(

d2

dx2
− η2

(1

4
+
α

x
+ η−2 γ(γ + 1)

x2

)

)

ψ = 0,

where α ( 6= 0) and γ are complex numbers. We refer the reader to

[KoT] for the details. As [Ko4] has recently found, the Voros coefficient

φ(α, γ; η) for (3.1) can be explicitly expressed in terms of the Bernoulli

numbers and its Borel transform φB(α, γ; y) is concretely written down

by elementary functions. Here the Voros coefficient means, by defini-

tion,

(3.2)

∫ ∞

−4α

(Sodd − ηS−1)dx,

where Sodd designates the odd part of a solution S of the Riccati equa-

tion associated with (3.1), that is,

(3.3) S2 +
dS

dx
= η2

(1

4
+
α

x
+ η−2 γ(γ + 1)

x2

)

.

As we see in Theorem 3.1 below, the concrete form of φB(α, γ; y)

enables us to find the singularity structure of Borel transformed WKB

solution of (3.1) through the relation

(3.4) ψ+(x, η) = (exp(φ(α, γ; η)))ψ
(∞)
+ (x, η),

where ψ+(x, η) (resp., ψ
(∞)
+ (x, η)) designates the WKB solution of

(3.1) that is normalized at the simple turning point x = −4α (resp.,
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at infinity); that is,

(3.5) ψ+(x, η) =
1√
Sodd

exp
(

∫ x

−4α

Sodddx
)

and

(3.6)

ψ
(∞)
+ (x, η) =

1√
Sodd

exp
(

∫ x

−4α

ηS−1dx +

∫ x

∞

(

Sodd − ηS−1

)

dx
)

.

An important property of ψ
(∞)
+ (x, η) is that it is Borel summable on

the condition that

(3.7) the path of integration from ∞ to x in the right-hand side

of (3.6) never touches a Stokes curve of (3.1).

See [KoT] for the proof of the Borel summability of ψ
(∞)
+ (x, η). See

also [DDP1] and [DP] for the corresponding result for the Weber equa-

tion. Thus (3.4) implies that the computation of the alien derivative

of ψ+(x, η) is reduced to that of expφ(α, γ; η). In order to compute

the latter one we first recall the concrete form of φB(α, γ; y) and then

employ the alien calculus ([P], [Sa]) to obtain the required result.

Now, the result in [Ko4] tells us the following:

φB(α, γ; y)(3.8)

=
1

2y

(

exp(y/α) + 1

exp(y/α) − 1

)

cosh
(γy

α

)

− α

y2
+

1

2y
sinh

(γy

α

)

.

A straightforward computation shows that

(3.9) φB(α, γ; y) =
1

2α

(1

6
+ γ + γ2

)

+O(y) near y = 0

and that

φB(α, γ; y)(3.10)
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=

(

exp(2mπiγ) + exp(−2mπiγ)

4mπi

)

1

y − 2mπiα
+O(1)

near y = 2mπiα (m : a non-zero integer).

Thus φB(α, γ; y) is seen to be a single-valued analytic function with

simple poles located at y = 2mπiα (m 6= 0). The computation of the

alien derivative ∆φ of such a series, i.e., a series whose Borel transform

is single-valued and only with simple poles, is exceptionally simple;

(3.11) ∆φ =
∑

m≥1

∆y=2mπiαφ

with

(3.12) ∆y=2mπiαφ =
exp(2mπiγ) + exp(−2mπiγ)

2m
.

(See [P] and [Sa].) Hence, by using the alien calculus, we find

(3.13) ∆y=2mπiα(expφ) =
exp(2mπiγ) + exp(−2mπiγ)

2m
expφ.

(See [P], [CNP] and [Sa].) For the convenience of the description of

several formulae below we introduce

(3.14) y+(x) =

∫ x

−4α

S−1dx =

∫ x

−4α

√

x + 4α

4x
dx.

Then, on the condition that (3.7) is satisfied, we find

(3.15) ∆
(

exp(−y+(x)η)ψ
(∞)
+ (x, η)

)

= 0.

Hence we conclude that

∆y=−y+(x)+2mπiα

(

exp(−y+(x)η)ψ+(x, η)
)

(3.16)

= ∆y=−y+(x)+2mπiα

(

exp(−y+(x)η) exp(φ(α, γ; η))ψ
(∞)
+ (x, η)

)
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=
exp(2mπiγ) + exp(−2mπiγ)

2m

×
(

exp(−y+(x)η) exp(φ(α, γ; η))ψ
(∞)
+ (x, η)

)

=
exp(2mπiγ) + exp(−2mπiγ)

2m

(

exp(−y+(x)η)ψ+(x, η)
)

holds if x is chosen so that the condition (3.7) may be satisfied.

Summing up the obtained results, we find the following

Theorem 3.1. Let ψ+(x, η) denote the WKB solution of the Whit-

taker equation that is normalized at the simple turning point x =

−4α as in (3.5). Then its Borel transform ψ+,B(x, y) is singular

at

(3.17) y = −y+(x) + 2mπiα (m = 0,±1,±2, · · · ),
where y+(x) is the function given by (3.14), and its alien deriva-

tive there, i.e., ∆y=−y+(x)+2mπiαψ+(x, η) satisfies the relation (3.18)

below for x that can be connected with a point at infinity by a path

that is contained in the interior of a Stokes region of the Whittaker

equation.
(

∆y=−y+(x)+2mπiαψ+

)

B
(x, y)(3.18)

=
exp(2mπiγ) + exp(−2mπiγ)

2m
ψ+,B(x, y − 2mπiα).
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4 Structure of WKB solutions of the ∞-Whittaker equa-

tion

As Theorems 2.1, 2.2 and 2.7 show, the WKB-theoretic canonical form

of an MPPT equation for a 6= 0 is the ∞-Whittaker equation

(4.1)
(

d2

dx2
−η2

(1

4
+
α(a, η)

x
+ η−2 c(a)

x2

)

)

ψ̃
(

x, η;α(a, η), c(a)
)

= 0,

where α(a, η) satisfies the condition (B.3) and c(a) is Q̃2(0, a). Hence

the study of singularity structure of Borel transformed WKB solutions

of an MPPT equation for a 6= 0 is reduced to the study of the cor-

responding objects of the ∞-Whittaker equation. Thus the analysis

of the ∞-Whittaker equation is our next target, and by relating (4.1)

with the Whittaker equation

(4.2)

(

d2

dx2
− η2

(1

4
+
α

x
+ η−2 c

x2

)

)

ψ(x, η;α, c) = 0

we achieve the target. A crucial idea in achieving it is the use of

microdifferential operators, which becomes possible thanks to the esti-

mate (B.3) of {α(j)
k }. (See also (B.32.k.j).)

In what follows, to avoid technical complexities, we assume the fol-

lowing condition:

(4.3)

(

∂Q̃0

∂a

)

(0, 0) 6= 0.

This is a natural strengthening of the assumption (2.1); actually by

using the Taylor expansion of Q̃0(x̃, a), one immediately sees that the

assumption (4.3) together with (2.2) entails (2.1). It is also clear from

(2.18) that (4.3) entails

(4.4) α
(1)
0 6= 0,
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and hence we find by using (2.6)

(4.5)
dα0(a)

da

∣

∣

∣

a=0
6= 0.

Therefore we may employ α0 as an independent variable in substitution

for a; thus we regard αj(a) (j ≥ 1) as functions of α0 in what follows.

Now, in order to relate the Borel transformed WKB solution ψB
of the Whittaker equation (3.1) and the Borel transformed WKB so-

lution ψ̃B of the ∞-Whittaker equation, we rewrite a WKB solution

ψ̃
(

x, η;α(α0, η), c(α0)
)

of (4.1) in the following manner:

ψ̃
(

x, η;α(α0, η), c(α0)
)

(4.6)

=

(

∑

n≥0

(α1η
−1 + α2η

−2 + · · · )n
n!

∂n

∂αn0
ψ
(

x, η;α0, c
)

)

∣

∣

∣

c=c(α0)
,

where ψ
(

x, η;α0, c
)

designates a WKB solution of (4.2) with

(4.7) α = α0.

Then the estimate (B.3) that αk’s satisfy enables us to apply the Borel

transformation to (4.6); we then find

(4.8) ψ̃B(x, y) =

(

A
(

α0,
∂

∂y
,
∂

∂α0

)

ψB
(

x, y;α0, c
)

)

∣

∣

∣

c=c(α0)
,

where

(4.9)

A
(

α0,
∂

∂y
,
∂

∂α0

)

=
∑

n≥0

(

α1(∂/∂y)
−1 + α2(∂/∂y)

−2 + · · ·
)n

n!

∂n

∂αn0

is a well-defined microdifferential operator on

(4.10) {(y, α0; η, θ) ∈ T ∗
C

2; |α0| < δ0, η 6= 0}
for some positive constant δ0. In what follows we identify η and θ

respectively with the symbol σ(∂/∂y) and the symbol σ(∂/∂α0); using
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these symbols we may write

(4.11) A =:
∑

n≥0

(

α1η
−1 + α2η

−2 + · · ·
)n
θn

n!
: .

In parallel with the above treatment of Borel transformed WKB solu-

tions with the use of a microdifferential operator relevant to the pa-

rameter α, the Borel transform VB(y) of the exponential of the Voros

coefficient of the ∞-Whittaker equation can be expressed in terms of

the corresponding function of the Whittaker equation in the following

manner:

(4.12) VB(y) =
(

A(α0, ∂/∂y, ∂/∂α0)
((

expφ
(

α0, c, η
))

B

))

∣

∣

∣

c=c(α0)
.

Remark 4.1. Although the target variable is α0, not x, we can use

the same reasoning as in Section 2 to see the concrete expression of

the operator A as an integro-differential operator; the right-hand side

of (4.8) and (4.12) should be understood as a multi-valued analytic

function acted upon by an integro-differential operator determined by

the microdifferential operator A. While the estimate (B.3) guarantees

the existence of a common domain of definition of the operator as

a tends to 0, the quantity α0(a) tends to 0 as a tends to 0. On

the other hand (3.17) means that a fixed singular point of ψ+,B(x, y)

(“fixed”with respect to y = −y+(x)) is located at y = −y+(x) +

2mπiα. Thus each individual fixed singular point of ψ̃+,B(x, y) is

contained, for sufficiently small a, in the domain of definition of the

integro-differential operator in question. Hence, in what follows, we do

not worry about the existence of a sufficiently large domain of definition

of the integro-differential operator; if necessary, we assume that a (or,

equivalently α0) is sufficiently close to 0.

Using the results obtained in the preceding section for the Whittaker

equation we obtain the following
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Theorem 4.1. Let ψ̃+(x, η) and φ(α(a), γ(a); η) respectively de-

note

(4.13)
1

√

S̃odd

exp

(∫ x

−4α0(a)

S̃odddx

)

and

(4.14)

∫ ∞

−4α0(a)

(

S̃odd − ηS̃−1

)

dx,

where S̃odd designates the odd part of a solution S̃ of the following

Riccati equation

(4.15) S̃2 +
dS̃

dx
= η2

(

1

4
+
α(a)

x
+ η−2 γ(a)2 + γ(a)

x2

)

with

(4.16) γ(a)2 + γ(a) = c(a).

Then the Borel transform ψ̃+,B(x, y) of ψ̃+(x, η) and the Borel

transform VB of the exponentiated Voros coefficient V = exp
(

φ(α(a),

γ(a); η)
)

satisfy the following relations:

(

∆y=−y+(x)+2mπiα0
ψ̃+

)

B
(x, y)

(4.17)

=
exp(2mπiγ(α0)) + exp(−2mπiγ(α0))

2m

× : exp
(

− 2mπi(α1 + α2η
−1 + · · · )

)

: ψ̃+,B(x, y − 2mπiα0),

(

∆y=2mπiα0V
)

B
(y)(4.18)

=
exp(2mπiγ(α0)) + exp(−2mπiγ(α0))

2m
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× : exp
(

− 2mπi(α1 + α2η
−1 + · · · )

)

: VB(y − 2mπiα0),

where m = 1, 2, 3, · · · , and y+(x) denotes

(4.19)

∫ x

−4α0

√

x + 4α0

4x
dx.

Proof. For the notational convenience let B−1ρ denote the inverse

Borel transform of ρ. (This is just to avoid the use of the sign ∆ρ

when ρ is the Borel transform of a formal series χ, although ∆ρ is

sometimes used to mean ∆χ in references in alien calculus.) Then it

follows from (4.8) and the definition of the alien derivative that we

obtain

(

∆y=−y+(x)+2mπiα0
ψ̃+

)

B
(x, y)

(4.20)

=
(

∆y=−y+(x)+2mπiα0
B−1

(

A
(

α0,
∂

∂y
,
∂

∂α0

)

ψ+,B(x, y;α0, c)
)

)

B
(x, y)

∣

∣

∣

c=c(α0)

=

(

A
(

α0,
∂

∂y
,
∂

∂α0

)((

∆y=−y+(x)+2mπiα0
ψ+

)

B

(

x, y, α0, c
))

(x, y)

)

∣

∣

∣

c=c(α0)
.

Then it follows from Theorem 3.1 that the rightmost term of (4.20)

coincides with
(

A
(

α0,
∂

∂y
,
∂

∂α0

)

[exp(2mπiγ) + exp(−2mπiγ)

2m
(4.21)

× ψ+,B(x, y − 2mπiα0;α0, c)
])∣

∣

∣

c=c(α0)
.

To relate this function with ψ̃+,B(x, y−2mπiα0) we use the technique

of [AKT4]; we introduce the following coordinate transformation from

(y, α0) to (ỹ, α̃0):

(4.22)

{

ỹ = y − 2mπiα0

α̃0 = α0.
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Correspondingly η̃ = σ(∂/∂ỹ) and θ̃ = σ(∂/∂α̃0) are related with η

and θ in the following manner:

(4.23)

{

η = η̃

θ = −2mπiη̃ + θ̃.

Using (ỹ, α̃0)-variable, we then find

(

A
(

α0,
∂

∂y
,
∂

∂α0

)

ψ+,B(x, y − 2mπiα0;α0, c)
)∣

∣

∣

c=c(α0)

(4.24)

=
(

:
∑

n≥0

(α1η̃
−1 + α2η̃

−2 + · · · )n(θ̃ − 2mπiη̃)n

n!
:

× ψ+,B

(

x, ỹ; α̃0, c
)

)∣

∣

∣

c=c(α̃0)

=
(

:
∑

n≥0

1

n!
(α1η̃

−1 + α2η̃
−2 + · · · )n

∑

k+l=n
k,l≥0

n!

k!l!
θ̃k(−2mπiη̃)l :

× ψ+,B

(

x, ỹ; α̃0, c
)

)∣

∣

∣

c=c(α̃0)

=
(

:
∑

l≥0

1

l!

(

− 2mπi(α1 + α2η̃
−1 + · · · )

)l
:

× :
∑

k≥0

1

k!
(α1η̃

−1 + α2η̃
−2 + · · · )kθ̃k : ψ+,B

(

x, ỹ; α̃0, c
)

)∣

∣

∣

c=c(α̃0)

=
(

: exp(−2mπi(α1 + α2η̃
−1 + · · · )

)

:

×A
(

α̃0,
∂

∂ỹ
,
∂

∂α̃0

)

ψ+,B

(

x, ỹ; α̃0, c
)

)∣

∣

∣

c=c(α̃0)

=: exp(−2mπi(α1 + α2η
−1 + · · · )

)

: ψ̃+,B

(

x, y − 2mπiα0

)

.
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Combining (4.20), (4.21) and (4.24), we obtain (4.17). The proof of

(4.18) can be given in exactly the same manner.

Q.E.D.

5 Analytic properties of Borel transformed WKB solu-

tions of an MPPT equation for a 6= 0

In the preceding section we have seen that the Borel transform ψB of

a WKB solution of the ∞-Whittaker equation

(5.1)
(

d2

dx2
− η2

(1

4
+
α(a, η)

x
+ η−2 c(a)

x2

)

)

ψ
(

x, η;α(a, η), c(a)
)

= 0

can be represented in the form

(5.2)
(

A
(

α0, ∂/∂y, ∂/∂α0

)

ψ0,B(x, y;α0, c)
)

∣

∣

∣

c=c(α0)
,

where A is a microdifferential operator and ψ0,B is a Borel transformed

WKB solution ψ0 of the Whittaker equation

(5.3)

(

d2

dx2
− η2

(1

4
+
α0

x
+ η−2 c

x2

)

)

ψ0(x, η;α0, c) = 0,

where α0 and c are complex numbers. We note that we have changed

the notation (ψ̃, ψ) used in Section 4 to (ψ, ψ0) for the convenience of

the presentation in this section. On the other hand, Theorem 2.2 shows

that the study of a WKB solution ψ̃+(x̃, a, η) of an MPPT equation

for a 6= 0 can be reduced to that of a WKB solution ψ+ of the ∞-

Whittaker equation in that they are related as in (5.4) below with the

infinite series x(x̃, a, η) and α(a, η) constructed in Theorem 2.1:

(5.4)

ψ̃+(x̃, a, η) =

(

∂x(x̃, a, η)

∂x̃

)−1/2

ψ+

(

x(x̃, a, η), η;α(a, η), Q̃2(0, a)
)

.
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Furthermore, as is noted in Remark 2.2, the growth order condition

(B.4) that {xk(x̃, a)}k≥0 satisfies has enabled us to rewrite (5.4) as the

following microdifferential relation between ψ̃+,B and ψ+,B:

(5.5) ψ̃+,B(x, a, y) = Xψ+,B(x, y),

where

(5.6) X =:

(

∂g

∂x
(x, a)

)1/2(

1 +
∂r

∂x

)−1/2

exp
(

r(x, a, η)ξ
)

:

with the notations in Section 2. (See (2.58).) In view of the concrete

expression (2.60) of X as an integro-differential operator, we find by

Theorem 4.1 that the singularities of ψ̃+,B(x, a, y) are confined to

(5.7) y = −y+(x, a) + 2mπiα0(a) (m = 0,±1,±2, · · · )
in a sufficiently small neighborhood of the origin (x, a, y) = (0, 0, 0),

where

(5.8) y+(x, a) =

∫ x

−4α0(a)

√

x + 4α0(a)

4x
dx.

Then it follows from the comparison of degree 0 part of (2.8) that the

corresponding point is expressed in (x̃, a, y)-coordinate as follows:

(5.9) y = −y+(x̃, a) + 2mπiα0(a)

where

(5.10) y+(x̃, a) =

∫ x̃

x̃0(a)

√

Q̃0(x̃, a)

x̃
dx̃

with x̃0(a) in (2.30) (i.e., the simple turning point of the MPPT equa-

tion in question.) Since the alien derivative of ψ+,B at the point is

given by (4.17), the application of the operator X entails the following
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Theorem 5.1. Let ψ̃+(x̃, a, η) be a WKB solution of a generic

(i.e., a 6= 0) MPPT equation that is normalized as in (2.32). Then

for each positive integer m the following relation (5.11) holds for

sufficiently small a(6= 0):

(

∆y=−y+(x̃,a)+2mπiα0(a)ψ̃+

)

B
(x̃, a, y)

(5.11)

=
exp(2mπiγ(a)) + exp(−2mπiγ(a))

2m

× : exp
(

−2mπi(α1(a)+ α2(a)η
−1+ · · · )

)

: ψ̃+,B

(

x̃, a, y − 2mπiα0(a)
)

where

(5.12) y+(x̃, a) =

∫ x̃

x̃0(a)

√

Q̃0(x̃, a)

x̃
dx̃,

(5.13) γ(a)2 + γ(a) = Q̃2(0, a)

and

(5.14) αj(a) =
1

2πi

∮

γ̃(a)

S̃j−1(x̃, a)dx̃

with γ̃(a) being the closed curve in Figure 2.2 and with S̃k desig-

nating the degree k part of S̃odd, the odd part of S̃ that satisfies

(5.15) S̃2 +
dS̃

dx̃
= η2Q̃(x̃, a).
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A Convergence of the top order part of the transforma-

tion which brings an MPPT equation to its canonical

form

In Appendix A and Appendix B, we give the estimates of the transfor-

mation

x(x̃, a, η) =
∞
∑

k=0

∞
∑

j=0

x
(j)
k (x̃)ajη−k(A.1)

that appears in Section 2, which brings an MPPT equation

(

d2

dx̃2
− η2

(

Q̃0(x̃, a)

x̃
+ η−1Q̃1(x̃, a)

x̃
+ η−2Q̃2(x̃, a)

x̃2

))

ψ̃(x̃, η) = 0

(A.2)

to its canonical form
(

d2

dx2
− η2

(

1

4
+
α(a, η)

x
+ η−2γ(a)

x2

))

ψ(x, η) = 0(A.3)

with

α(a, η) =
∞
∑

k=0

∞
∑

j=0

α
(j)
k a

jη−k.(A.4)

Here we assume that Q̃j(j = 0, 1, 2) are holomorphic in a neighborhood

of (x̃, a) = (0, 0) and satisfy

Q̃0(0, 0) = 0,(A.5)

∂Q̃0

∂x̃
(0, 0) 6= 0,(A.6)

γ(a) = Q̃2(0, a).(A.7)

We also obtain the estimates of α(a, η) in the course of the estimation

of x(x̃, a, η).
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The series x(x̃, a, η) and α(a, η) are constructed so that they satisfy

(2.8), that is,

Q̃0(x̃, a)

x̃
+ η−1Q̃1(x̃, a)

x̃
+ η−2Q̃2(x̃, a)

x̃2
(A.8)

=

(

∂x

∂x̃

)2(
1

4
+
α(a, η)

x
+ η−2γ(a)

x2

)

− 1

2
η−2{x; x̃}.

For simplicity, we use the following notations: For multi-indices κ̃ =

(κ1, · · · , κµ) and λ̃ = (λ1, · · · , λµ) in N
µ
0 with N0 = {0, 1, 2, · · · }, we

define

|λ̃|µ :=

µ
∑

j=1

λj,(A.9)

λ̃! :=

µ
∏

j=1

λj!,(A.10)

C(λ̃) :=

µ
∏

j=1

C(λj), C(λj) :=
3

2π2(λj + 1)2
.(A.11)

For (λj, κj)-dependent (j = 1, 2, · · · , µ) quantities ρ
λj
κj and σκj

we also

use the following notations:

ρλ̃κ̃ :=

µ
∏

j=1

ρ
λj
κj ,(A.12)

∑∗

|κ̃|µ=l

σκ̃ :=



















1 for µ = 0,
∑

|κ̃|µ=l,
κj≥1

µ
∏

j=1

σκj
for µ ≥ 1.(A.13)

In what follows x
(j)
k or functions related to it such as dx

(j)
k /dx̃ etc.

typically stands for ρjk. We also use the notation
∑∗

|λ̃|µ=l

ρλ̃κ̃ to mean
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imposing the constraint on λj exactly in the same way as in (A.13).

We denote the supremum of a function f(x̃) on {x̃ ∈ C; |x̃| ≤ r} by

(A.14) ‖f‖[r] := sup
|x̃|≤r

|f(x̃)|.

As in Section 2, we introduce z(x̃, a, η) given by

(A.15) z(x̃, a, η) := x̃−1x(x̃, a, η).

The purpose of Appendix A is to confirm (2.5) and (2.6) for k = 0,

that is, to prove Proposition A.1 below. As we will see in Appendix B

the convergence of the series x0(x̃, a) and α0(a) plays a central role in

our subsequent discussions.

Proposition A.1. Let

x0(x̃, a) =
∞
∑

j=0

x
(j)
0 (x̃)aj and α0(a) =

∞
∑

j=0

α
(j)
0 aj(A.16)

be the top order part (with respect to η−1) of the transformation

and the coefficient of the canonical form constructed in Section 2

respectively. Then, x0(x̃, a) and α0(a) converge in a neighborhood

of (x̃, a) = (0, 0).

Proof. To begin with, we briefly recall how to construct x
(j)
0 and α

(j)
0 .

Comparing the coefficients of η0 in (A.8), we have

Q̃0(x̃, a)

x̃
=

(

∂x0

∂x̃

)2(
1

4
+
α0(a)

x0

)

.(A.17)

Further, by comparing the coefficients of a0 in (A.17), we find

Q̃0
(0)

(x̃) =

(

dx
(0)
0

dx̃

)2(

x̃

4
+
α

(0)
0

z
(0)
0

)

,(A.18)
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where Q̃k
(j)

denotes the Taylor coefficient (with respect to a) of Q̃k at

a = 0 (cf. (2.17)). Our choice of x
(0)
0 and α

(0)
0 are as follows:

(A.19) α
(0)
0 = 0, x

(0)
0 (x̃) =

∫ x̃

0

2

√

Q̃0
(0)

(y)

y
dy.

It follows from (A.6) that x
(0)
0 thus chosen is holomorphic in a neigh-

borhood of 0 and satisfies

x
(0)
0 (0) = 0,(A.20)

dx
(0)
0

dx̃
(0) 6= 0.(A.21)

By a similar procedure, we determine x
(j)
0 and α

(j)
0 succesively in the

following way: first comparing the coefficients of aj in (A.17), we have

Q̃0
(j)

(x̃) =
∑

j1+j2+j3=m

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃

(A.22)

×






δ0,j3

x̃

4
+

∑

j′1+j
′
2=j3

α
(j′1)
0

z
(0)
0

j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(−1)µz
˜(λ)

0
(

z
(0)
0

)µ






.

Here, and in what follows, δp,q designates Kronecker’s delta (i.e., = 1 for

p = q and = 0 if p 6= q). By multiplying (A.22) by−2z
(0)
0

(

dx
(0)
0 /dx̃

)−2

and taking w = x
(0)
0 (x̃) as a new independent variable, we can rewrite

(A.22) as follows:

w
d

dw
x

(j)
0 + 2α

(j)
0 = 2Φ(j)(w).(A.23)
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Here the explicit form of Φ(j)(w) is given by the following:

Φ(j)(w) := −
∑

j1+j2+j3=j
1≤j3≤j−1

dx
(j1)
0

dw

dx
(j2)
0

dw

∑

j′1+j
′
2=j3

α
(j′1)
0

(A.24)

×
j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(−1)µz
˜(λ)

0
(

z
(0)
0

)µ

−
∑∗

j′1+j
′
2=m

α
(j′1)
0

j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(−1)µz
˜(λ)

0
(

z
(0)
0

)µ

− w

4

∑∗

j1+j2=m

dx
(j1)
0

dw

dx
(j2)
0

dw
+ z

(0)
0

(

dx
(0)
0

dx̃

)−2

Q̃0
(j)

(w).

We then define α
(j)
0 by

α
(j)
0 := Φ(j)(0).(A.25)

With this choice of α
(j)
0 we solve (A.23) to obtain

x
(j)
0 (w) = 2

∫ w

0

Φ(j)(w̃) − α
(j)
0

w̃
dw̃.(A.26)

In view of the definition of α
(j)
0 , we find that x

(j)
0 (w) is holomorphic in

some neighborhood of {w ∈ C; |w| ≤ r} for some r > 0.

To verify the convergence of the series x0(x̃, a) and α0(a), we use

the majorant series method; that is, we construct a majorant series

A(a) =
∑

j≥0

A(j)aj of x0(x̃, a) and α0(a). Hence our task is to find a

sequence {A(j)}j≥0 of complex numbers so that they satisfy the follow-
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ing relation (A.27.j) for every j ≥ 0:


































∣

∣

∣α
(j)
0

∣

∣

∣ ≤ A(j)

4
,

∥

∥

∥x
(j)
0

∥

∥

∥

[r]
≤ A(j),

∥

∥

∥

∥

∥

dx
(j)
0

dw

∥

∥

∥

∥

∥

[r]

,
∥

∥

∥z
(j)
0

∥

∥

∥

[r]
≤ A(j)

r
.

(A.27.j)

To begin with, we choose A(0) and A(1) so that they respectively satisfy

(A.27.0) and (A.27.1). To define A(j) (j ≥ 2) we introduce an auxiliary

constant C so that the following relations may be satisfied:
∥

∥

∥
Q̃0

(j)
∥

∥

∥

[r]
≤ Cj+1,(A.28)

∥

∥

∥

∥

∥

∥

(

dx
(0)
0

dw

)−1
∥

∥

∥

∥

∥

∥

[r]

,

∥

∥

∥

∥

∥

∥

(

dx
(0)
0

dx̃

)−1
∥

∥

∥

∥

∥

∥

[r]

,

∥

∥

∥

∥

(

z
(0)
0

)−1
∥

∥

∥

∥

[r]

≤ C.(A.29)

Since Q̃0(w, a) is holomorphic at (w, a) = (0, 0) and (dx
(0)
0 /dx̃)(0),

z
(0)
0 (0) 6= 0, we can find such a constant C by taking r(> 0) sufficiently

small. Using this constantC we recursively defineA(j) by the following:

A(j) :=
∑

j1+j2+j3=j
1≤j3≤j−1

A(j1)A(j2)

r2

∑

j′1+j
′
2=j3

j′1≥1

A(j′1)
j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(

C

r

)µ

A
˜(λ)

(A.30)

+
∑∗

j′1+j
′
2=j

A(j′1)
j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(

C

r

)µ

A
˜(λ)

+
∑∗

j1+j2=j

A(j1)A(j2)

r
+ 4Cj+3A

(0)

r
.
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By using the induction on j we prove that A(j) satisfies (A.27.j).

Let us now suppose A(j) satisfies (A.27.j) for 0 ≤ j ≤ m− 1. Then

by using (A.24), (A.28), (A.29) and (A.30) we find

∥

∥

∥Φ(m)
∥

∥

∥

[r]
≤

∑

j1+j2+j3=m
1≤j3≤m−1

∥

∥

∥

∥

∥

dx
(j1)
0

dw

∥

∥

∥

∥

∥

[r]

∥

∥

∥

∥

∥

dx
(j2)
0

dw

∥

∥

∥

∥

∥

[r]

∑

j′1+j
′
2=j3

|α(j′1)
0 |

(A.31)

×
j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

∥

∥

∥z
˜(λ)

0

∥

∥

∥

[r]

∥

∥

∥

∥

(

z
(0)
0

)−1
∥

∥

∥

∥

µ

[r]

+
∑∗

j′1+j
′
2=m

|α(j′1)
0 |

j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

∥

∥

∥
z

˜(λ)
0

∥

∥

∥

[r]

∥

∥

∥

∥

(

z
(0)
0

)−1
∥

∥

∥

∥

µ

[r]

+
|w|
4

∑∗

j1+j2=m

∥

∥

∥

∥

∥

dx
(j1)
0

dw

∥

∥

∥

∥

∥

[r]

∥

∥

∥

∥

∥

dx
(j2)
0

dw

∥

∥

∥

∥

∥

[r]

+
∥

∥

∥z
(0)
0

∥

∥

∥

[r]

∥

∥

∥

∥

∥

∥

(

dx
(0)
0

dx̃

)−1
∥

∥

∥

∥

∥

∥

2

[r]

∥

∥

∥Q̃0
(m)

(w)
∥

∥

∥

[r]

≤
∑

j1+j2+j3=m
1≤j3≤m−1

A(j1)A(j2)

r2

∑

j′1+j
′
2=j3

j′1≥1

A(j′1)

4

×
j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(

C

r

)µ

A
˜(λ)

+
∑∗

j′1+j
′
2=m

A(j′1)

4

j′2
∑

µ=min{1,j′2}

∑∗

|λ̃|µ=j′2

(

C

r

)µ

A
˜(λ)
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+
r

4

∑∗

j1+j2=m

A(j1)A(j2)

r2
+ Cm+3A

(0)

r

=
A(m)

4
.

To deduce (A.27.m) from (A.31) we use the following

Lemma A.2. Let v(w) be a holomorphic function on Dr = {w; |w|
≤ r}. We consider the following differential equation for u(w):

w
du

dw
(w) + 2α = 2v(w),(A.32)

where α is a constant. Then there exist a constant α and a holo-

morphic function u(w) on Dr that vanishes at w = 0 so that (A.32)

and the following inequalities are satisfied:

|α| ≤ ‖v‖[r] ,(A.33)

‖u‖[r] ≤ 4 ‖v‖[r] ,(A.34)
∥

∥

∥

∥

du

dw

∥

∥

∥

∥

[r]

,
∥

∥

∥

u

w

∥

∥

∥

[r]
≤ 4

r
‖v‖[r] .(A.35)

Proof. By setting w to be 0 in (A.32) we find

α = v(0),(A.36)

and then we define

u(w) = 2

∫ w

0

v(w̃) − α

w̃
dw̃.(A.37)

Then we easily see that u(w) is a holomorphic solution of (A.32) on

Dr that vanishes at w = 0. For this choice of α and u(w), (A.33)

is clearly satisfied, and the first inequality of (A.35) is an immediate

consequence of the Schwarz lemma, because u(w) satisfies (A.38) below
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as a solution of (A.32).
∥

∥

∥

∥

w
du

dw

∥

∥

∥

∥

[r]

≤ 2 ‖v‖[r] + 2|α| ≤ 4 ‖v‖[r] .(A.38)

Since u(0) = 0, we also find the following:

‖u‖[r] ≤
∥

∥

∥

∥

∫ w

0

du

dw
(w̃)dw̃

∥

∥

∥

∥

[r]

(A.39)

≤ r

∥

∥

∥

∥

du

dw

∥

∥

∥

∥

[r]

≤ 4 ‖v‖[r] .

We thus obtain the second inequality of (A.35) by using the Schwarz

lemma again.

Q.E.D.

By applying Lemma A.2 to α
(m)
0 and x

(m)
0 , we obtain (A.27.m). Thus

the induction proceeds. This means that we have confirmed that

A(a) :=
∑

j≥0

A(j)aj(A.40)

is a majorant series of α0(a) and x0(x̃, a). Hence what we should

show is the convergence of the series (A.40). The required convergence

follows from the implicit function theorem by the following reasoning:

first, by comparing the coefficients of aj, we observe that A(a) satisfies

the following equation:

A =A(0) + A(1)a +
1

r2
(A2 − (A(0))2)(A− A(0))

(

1

1 − (A− A(0))C/r

)

(A.41)

+ (A− A(0))

(

1

1 − (A− A(0))C/r
− 1

)
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+
1

r
(A− A(0))2 + 4C3A

(0)

r

(Ca)2

1 − Ca
.

Therefore if we define Ξ(a,A) by

Ξ(a,A) :=(A−A(0) − A(1)a)

(A.42)

− 1

r2
(A2 − (A(0))2)(A− A(0))

(

1

1 − (A− A(0))C/r

)

− (A− A(0))

(

1

1 − (A− A(0))C/r
− 1

)

− 1

r
(A− A(0))2 − 4C3A

(0)

r

(Ca)2

1 − Ca
,

then we find that A(a) is a solution of Ξ(a,A) = 0. Since Ξ is holo-

morphic in a neighborhood of (a,A) = (0, A(0)) and satisfies

Ξ(0, A(0)) = 0,

(

∂Ξ

∂A

)

(0, A(0)) = 1 6= 0,(A.43)

it follows from the implicit function theorem that Ξ(a,A) = 0 has

a unique holomorphic solution satisfying A(0) = A(0) near (a,A) =

(0, A(0)). Hence A(a) is convergent. This implies the convergence of

the series α0(a) and x0(x̃, a).

Q.E.D.

B Estimation of the transformation which brings an

MPPT equation to its canonical form

The purpose of this subsection is to prove (2.5), (2.6) and (2.7), that

is, to prove the following
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Theorem B.1. Let

x(x̃, a, η) =
∞
∑

k=0

xk(x̃, a)η
−k(B.1)

be the transformation that brings an MPPT equation (2.33) to the

canonical form (2.35) with

α(a, η) =
∞
∑

k=0

αk(a)η
−k.(B.2)

Then, x and α satisfy the following conditions for some positive

constants r0 and A0:

(i) xk and αk(k = 0, 1, 2, · · · ) are holomorphic respectively on

{(x̃, a); |x̃| ≤ r0, |a| ≤ r0} and {a; |a| ≤ r0}.

(ii) the following inequalities hold for k = 1, 2, · · · :
sup
|a|≤r0

|αk(a)| ≤ k!Ak
0,(B.3)

sup
|x̃|,|a|≤r0

|xk(x̃, a)| ≤ k!Ak
0,(B.4)

sup
|x̃|,|a|≤r0

∣

∣

∣

∣

∂xk
∂x̃

(x̃, a)

∣

∣

∣

∣

≤ k!Ak
0.(B.5)

In order to prove Theorem B.1, we use the following lemmas fre-

quently:

Lemma B.2. For l, µ ∈ N = {1, 2, 3, · · · } with µ ≤ l, the following

inequality holds:

(B.6)
∑∗

|λ̃|µ=l

λ̃! ≤ 4µ−1(l − µ + 1)!.
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Proof. We shall verify (B.6) by induction on µ ≥ 1. For the case

µ = 1, (B.6) is trivial. For µ = 2, we have

∑∗

|λ̃|2=l

λ1!λ2! = (l − 1)!









2 +
∑

λ1+λ2=l
λ1,λ2≥2

λ1!λ2!

(l − 1)!









(B.7)

= (l − 1)!

(

2 +
2

l − 1

l−2
∑

λ=2

λ(λ− 1) · · · 3
(l − 2)(l − 3) · · · (l − λ + 1)

)

≤ 2(l − 1)!

(

1 +
l − 2

l − 1

)

≤ 4(l − 1)!.

If we assume that (B.6) holds for µ− 1 ≥ 1, then we obtain
∑∗

|λ̃|µ=l

λ̃! =
∑

l′+λµ=l

l′≥µ−1,λµ≥1

λµ!
∑∗

λ1+···+λµ−1=l′
λ1! · · ·λµ−1!(B.8)

≤
∑

l′+λµ=l

l′≥µ−1,λµ≥1

4µ−2(l′ − µ + 2)!λµ!

= 4µ−2
∑

l′+λµ=l−µ+2

l′≥1,λµ≥1

l′!λµ!

≤ 4µ−1(l − µ + 1)!.

Q.E.D.

Lemma B.3. For λ̃ = (λ1, · · · , λµ) ∈ N
µ
0 with N0 = {0, 1, 2, · · · },

the following inequality holds for C(λ̃) given by (A.11):

(B.9)
∑

|λ̃|µ=l

C(λ̃) ≤ C(l).
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Proof. We first prove (B.9) for the case µ = 2:
(

3

2π2

)2
∑

λ1+λ2=l

1

(λ1 + 1)2
1

(λ2 + 1)2
≤ 3

2π2

1

(l + 1)2
.(B.10)

Since
∞
∑

λ=0

1

(λ + 1)2
=
π2

6
,(B.11)

we have

∑

λ1+λ2=l

(l + 2)2

(λ1 + 1)2(λ2 + 1)2

(B.12)

=
∑

λ1+λ2=l

(

1

λ1 + 1
+

1

λ2 + 1

)2

=
l
∑

λ1=0

1

(λ1 + 1)2
+
∑

λ1+λ2=l

2

(λ1 + 1)(λ2 + 1)
+

l
∑

λ2=0

1

(λ2 + 1)2

≤ 2
∞
∑

λ=0

1

(λ + 1)2
+ 2





l
∑

λ1=0

1

(λ1 + 1)2





1/2



l
∑

λ2=0

1

(λ2 + 1)2





1/2

≤ 4
∞
∑

λ=0

1

(λ + 1)2
=

2π2

3
.

Then (B.10) immediately follows from this. Since (B.9) is trivial for

the case µ = 1, we obtain (B.9) for µ ≥ 2 by the succesive use of

(B.10).

Q.E.D.
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Proof of Theorem B.1. We rewrite (A.8) as (2.10), that is,

Q̃0(x̃, a) + η−1Q̃1(x̃, a)

(B.13)

=

(

dx

dx̃

)2(
x̃

4
+
α(a, η)

z

)

+ η−2

(

−R̃2(x̃, a) + 2
dz

dx̃

γ(a)

z
+ x̃

(

dz

dx̃

)2
γ(a)

z2

)

− 1

2
η−2{x; x̃}x̃.

Here R̃2(x̃, a) is the function given by (2.11), that is,

R̃2(x̃, a) =
Q̃2(x̃, a) − γ(a)

x̃
.(B.14)

The choice (A.7) of γ(a) guarantees that R̃2(x̃, a) is holomorphic in

a neighborhood of (x̃, a) = (0, 0). By comparing the coefficients of

η−k(k ≥ 1), we obtain

δk,1Q̃1(x̃, a)

(B.15)

=
∑

k1+k2+k3=k

dxk1

dx̃

dxk2

dx̃

∑

k′1+k
′
2=k3

αk′1
z0

k′2
∑

ν=min{1,k′2}

∑∗

|κ̃|ν=k′2

(−1)νzκ̃
zν0

+
x̃

2

dx0

dx̃

dxk
dx̃

+
x̃

4

∑∗

k1+k2=k

dxk1

dx̃

dxk2

dx̃
− δk,2R̃2(x̃, a)

+ 2γ(a)
∑

k1+k2=k−2

dzk1

dx̃

1

z0

k2
∑

ν=min{1,k2}

∑∗

|κ̃|ν=k2

(−1)νzκ̃
zν0

+ x̃γ(a)
∑

k1+k2+k3=k−2

dzk1

dx̃

dzk2

dx̃

1

z2
0

k3
∑

ν=min{1,k3}

∑∗

|κ̃|ν=k3

(−1)ν(ν + 1)
zκ̃
zν0
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− x̃

2

∑

k1+k2=k−2

d3xk1

dx̃3

(

dx0

dx̃

)−1 k2
∑

ν=min{1,k2}

∑∗

|κ̃|ν=k2

(−1)ν
dxκ̃
dx̃

(

dx0

dx̃

)−ν

+
3

4
x̃

∑

k1+k2+k3=k−2

d2xk1

dx̃2

d2xk2

dx̃2

(

dx0

dx̃

)−2

×
k3
∑

ν=min{1,k3}

∑∗

|κ̃|ν=k3

(−1)ν(ν + 1)
dxκ̃
dx̃

(

dx0

dx̃

)−ν
.

Further, by comparing the coefficients of aj in (B.15) and taking w =

x
(0)
0 (x̃) as a new independent variable, we have

w
dx

(j)
k

dw
+ 2α

(j)
k = 2

(

dx
(0)
0

dx̃

)−2

z
(0)
0 Φ

(j)
k ,(B.16)

where Φ
(j)
k is

Φ
(j)
k = Φ

(j)
k,1 + Φ

(j)
k,2 + Φ

(j)
k,3(B.17)

and Φ
(j)
k,i (i = 1, 2, 3) are defined as follows:

Φ
(j)
k,1 = − 2

∑

k1+k2=k−2

∑

j1+j2+j3+j4=j

γ(j1)
dz

(j2)
k1

dx̃

(B.18)

×
k2
∑

ν=min{1,k2}
(−1)ν(z−ν−1

0 )(j3)
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=j4

z
(λ̃)
κ̃

− x̃
∑

k1+k2+k3=k−2

∑

j1+j2+j3+j4+j5=j

γ(j1)
dz

(j2)
k1

dx̃

dz
(j3)
k2

dx̃
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×
k3
∑

ν=min{1,k3}
(−1)ν(ν + 1)(z−ν−2

0 )(j4)
∑∗

|κ̃|ν=k3

∑

|λ̃|ν=j5

z
(λ̃)
κ̃

+
x̃

2

∑

k1+k2=k−2

∑

j1+j2+j3=j

d3x
(j1)
k1

dx̃3

×
k2
∑

ν=min{1,k2}
(−1)ν

(

(

dx0

dx̃

)−ν−1
)(j2)

∑∗

|κ̃|ν=k2

∑

|λ̃|ν=j3

dx
(λ̃)
κ̃

dx̃

− 3

4
x̃

∑

k1+k2+k3=k−2

∑

j1+j2+j3+j4=j

d2x
(j1)
k1

dx̃2

d2x
(j2)
k2

dx̃2

×
k3
∑

ν=min{1,k3}
(−1)ν(ν + 1)

(

(

dx0

dx̃

)−ν−2
)(j3)

×
∑∗

|κ̃|ν=k3

∑

|λ̃|ν=j4

dx
(λ̃)
κ̃

dx̃

+ δk,2R̃2
(j)

(w),

Φ
(j)
k,2 =δk,1Q̃1

(j)
(w)

(B.19)

− x̃

4

∑∗

k1+k2=k

∑

j1+j2=j

dx
(j1)
k1

dx̃

dx
(j2)
k2

dx̃

−
∑

k1+k2+k3=k
1≤k3≤k−1

∑

l1+l2+l3=j

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

∑

k′1+k
′
2=k3

∑

l′1+l
′
2+l

′
3=l3

α
(l′1)
k′1
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×
k′2
∑

ν=min{1,k′2}
(−1)ν(z−ν−1

0 )(l
′
2)
∑∗

|κ̃|ν=k′2

∑

|λ̃|ν=l′3

z
(λ̃)
κ̃

−
∑∗

k1+k2=k

∑

j1+j2+j3+j4=j

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃
α

(j3)
k1

×
k2
∑

ν=1

∑

j′1+j
′
2=j4

(−1)ν(z−ν−1
0 )(j

′
1)
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=j′2

z
(λ̃)
κ̃ ,

Φ
(j)
k,3 = −

∑

j1+j2+j3+j4=j
j3≤j−1

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃
α

(j3)
k (z−1

0 )(j4)

(B.20)

− x̃

2

∑

j1+j2=j
j2≤j−1

dx
(j1)
0

dx̃

dx
(j2)
k

dx̃

−
∑

k1+k2=k

∑

j1+j2+j3+j4=j
1≤j3

dx
(j1)
k1

dx̃

dx
(j2)
k2

dx̃
α

(j3)
0 (z−1

0 )(j4)

−
∑

j1+j2+j3+j4=j
1≤j3

dx
(j1)
0

dx̃

dx
(j2)
0

dx̃
α

(j3)
0

×
k
∑

ν=1

∑

j′1+j
′
2=j4

(−1)ν(z−ν−1
0 )(j

′
1)
∑∗

|κ̃|ν=k

∑

|λ̃|ν=j′2

z
(λ̃)
κ̃ .

Here we denote the coefficients of aj of z−ν0 and (dx0/dx̃)−ν respectively

by (z−ν0 )(j) and
(

(dx0/dx̃)−ν
)(j)

.

The above decomposition of Φ
(j)
k into three parts Φ

(j)
k,i (i = 1, 2, 3) is
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made so that we may dominate each term in Φ
(j)
k,i by constants of the

uniform form

(B.21) ciM
(j)
k ,

where ci and M
(j)
k are described with the notations to be given later

in the following manner:

c1 = δ0/A,(B.22)

c2 = δ0,(B.23)

c3 = B/C,(B.24)

M
(j)
k = k!(Aε−1)kC(j)Cjδ0M.(B.25)

We also note that Φ
(j)
1,1 is regarded to be 0 as a convention. As we

discussed in the proof of Theorem 2.1, α
(j)
k and x

(j)
k are determined by

α
(j)
k =

(

z
(0)
0 (0)

)−1

Φ
(j)
k (0)(B.26)

x
(j)
k =

∫ w

0

2

w̃





(

dx
(0)
0

dx̃

)−2

z
(0)
0 Φ

(j)
k (w̃) − α

(j)
k



 dw̃.(B.27)

We now estimate the growth order of x
(j)
k and α

(j)
k as j and k tend to

infinity, by using the induction on the double index (j, k) appropriately

ordered. Since we proved in Appendix A that
∑

j≥0 x
(j)
0 (x̃)aj and

∑

j≥0 α
(j)
0 aj are convergent near the origin, we can find constantsC0, B

and ρ so that the following relations (B.28) ∼ (B.31) hold:

∥

∥

∥x
(0)
0

∥

∥

∥

[r]
,
∥

∥

∥z
(0)
0

∥

∥

∥

[r]
,

∥

∥

∥

∥

∥

dx
(0)
0

dx̃

∥

∥

∥

∥

∥

[r]

,

∥

∥

∥

∥

∥

∥

(

dx
(0)
0

dx̃

)−1
∥

∥

∥

∥

∥

∥

[r]

,

∥

∥

∥

∥

(

z
(0)
0

)−1
∥

∥

∥

∥

[r]

≤ C0C(0),

(B.28)
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‖x̃(w)‖[r] ,

∥

∥

∥

∥

∥

(

dx̃

dw

)−1
∥

∥

∥

∥

∥

[r]

, sup
|w|≤r,|a|≤ρ

∣

∣

∣

∣

∣

(

dx0

dx̃

)−1
∣

∣

∣

∣

∣

,

sup
|w|≤r,|a|≤ρ

∣

∣

∣
(z0)

−1
∣

∣

∣
, sup
|a|≤ρ

|α0| ≤ C0,

(B.29)

∥

∥

∥
z

(j)
0

∥

∥

∥

[r]
,

∥

∥

∥

∥

∥

dx
(j)
0

dx̃

∥

∥

∥

∥

∥

[r]

, |α(j)
0 |,

∥

∥

∥
Q̃

(j)
1

∥

∥

∥

[r]
,
∥

∥

∥
R̃

(j)
2

∥

∥

∥

[r]
, |γ(j)| ≤ C0C(j)Bj,

(B.30)

∥

∥

∥

∥

∥

∥

(

(

dx0

dx̃

)−ν
)(j)

∥

∥

∥

∥

∥

∥

[r]

,
∥

∥

∥

(

z−ν0

)(j)
∥

∥

∥

[r]
≤ Cν

0C(j)Bj.

(B.31)

We now try to show that the following dominance relation (B.32.k.j)

(k ≥ 1, j ≥ 0) holds for some constants A,C and δ0 which satisfy

(B.33) and (B.34) below:

∥

∥

∥x
(j)
k

∥

∥

∥

[r−ε]
,
∥

∥

∥z
(j)
k

∥

∥

∥

[r−ε]
,

∥

∥

∥

∥

∥

dx
(j)
k

dw

∥

∥

∥

∥

∥

[r−ε]
, |α(j)

k | ≤ k!(Aε−1)kC(j)Cjδ0

(B.32.k.j)

for any ε that satisfies (B.35) below:

1 <
√
Aδ0, 0 < δ0 � 1,(B.33)

0 <B � C,(B.34)

0 <ε < r/3.(B.35)

We note that (B.32.1.0) is validated by (B.33) if we chooseA sufficiently

large.

Now we will confirm (B.32.k.j) for every (k, j) (k ≥ 1, j ≥ 0) by

using the following induction procedure:
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[I] We first confirm (B.32.n.m) by assuming that (B.32.n′.m′)(0 ≤
m′, 1 ≤ n′ ≤ n− 1) and (B.32.n.m′) (0 ≤ m′ ≤ m− 1) are all

validated,

and then

[II] we confirm (B.32.n.0) by assuming that (B.32.n′.0) (0 ≤ n′ ≤
n− 1) are validated.

As we know (B.32.1.0) is valid for a sufficiently large A, these confir-

mations suffice for our purpose. To attain this goal we first note that

application of Lemma A.2 to (B.16) entails the following relations:
∥

∥

∥x
(j)
k

∥

∥

∥

[r−ε]
≤ 4(C0C(0))3

∥

∥

∥Φ
(j)
k

∥

∥

∥

[r−ε]
,(B.36)

∥

∥

∥

∥

∥

dx
(j)
k

dw

∥

∥

∥

∥

∥

[r−ε]
,
∥

∥

∥z
(j)
k

∥

∥

∥

[r−ε]
≤ 4

r − ε
(C0C(0))3

∥

∥

∥Φ
(j)
k

∥

∥

∥

[r−ε]
.(B.37)

From (B.26) we also find

|α(j)
k | ≤ C0C(0)

∥

∥

∥Φ
(j)
k

∥

∥

∥

[r−ε]
.(B.38)

Thus it suffices for us to estimate Φ
(j)
k under the appropriate induction

hypothesis.

Let us first consider the case [I]; we assume that (B.32.n′.m′) (0 ≤
m′, 1 ≤ n′ ≤ n − 1) and (B.32.n.m′) (0 ≤ m′ ≤ m − 1) have been

validated, and we try to prove the following estimates:
∥

∥

∥
Φ

(m)
n,i

∥

∥

∥

[r−ε]
≤ ciM

(m)
n(B.39.i)

for i = 1, 2, 3. Here ci and M
(m)
n are given by (B.22) ∼ (B.25) with

M in (B.25) being a constant independent of n,m, δ0, C, A.

Before embarking on the estimation we note the following
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Lemma B.4. Suppose that (B.32.k.j) holds. Then we find
∥

∥

∥

∥

∥

d2x
(j)
k

dw2

∥

∥

∥

∥

∥

[r−ε]
,

∥

∥

∥

∥

∥

dz
(j)
k

dw

∥

∥

∥

∥

∥

[r−ε]
≤ e(k + 1)!Akε−k−1C(j)Cjδ0,(B.40)

∥

∥

∥

∥

∥

d3x
(j)
k

dw3

∥

∥

∥

∥

∥

[r−ε]
≤ e2(k + 2)!Akε−k−2C(j)Cjδ0.(B.41)

Proof. Let ε̃ denote kε/(k + 1). Then (B.32.k.j) entails

sup
|w|≤r−ε̃

|z(j)
k (w)| ≤ k!Akε̃−kC(j)Cjδ0(B.42)

= k!Ak

(

1 +
1

k

)k

ε−kC(j)Cjδ0

≤ ek!Akε−kC(j)Cjδ0,

where e = exp(1). On the other hand, Cauchy’s formula tells us

dz
(j)
k (w)

dw
=

1

2π
√
−1

∫

|w̃−w|=(k+1)−1ε

z
(j)
k (w̃)

(w̃ − w)2
dw̃.(B.43)

In view of the definition of ε̃ we find w̃ that appears in the above

contour integral satisfies the following (B.44) for w with |w| ≤ r − ε:

|w̃| ≤ |w̃ − w| + |w|(B.44)

≤ (k + 1)−1ε + r − ε

= r − ε̃.

Hence (B.42) shows (B.40) for dz
(j)
k /dw. The estimation of d2x

(j)
k /dw

2

and d3x
(j)
k /dw

3 can be done in exactly the same manner.

Q.E.D.

Remark B.1. For a holomorphic function f(x̃) of x̃ and a change of

variables x̃ = x̃(w), the following relations hold for the differentiation
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of f(x̃) with respect to the two variables x̃ and w:

df

dx̃
(x̃(w)) =

(

dx̃(w)

dw

)−1
d

dw
f(x̃(w)),(B.45)

d2f

dx̃2
(x̃(w)) =

(

dx̃(w)

dw

)−2
d2

dw2
f(x̃(w))(B.46)

+
1

2

d

dw

(

dx̃(w)

dw

)−2
d

dw
f(x̃(w)),

d3f

dx̃3
(x̃(w)) =

(

dx̃(w)

dw

)−3
d3

dw3
f(x̃(w))(B.47)

+
d

dw

(

dx̃(w)

dw

)−3
d2

dw2
f(x̃(w))

+
1

2

(

dx̃(w)

dw

)−1
d2

dw2

(

dx̃(w)

dw

)−2
d

dw
f(x̃(w)).

Since (dx̃/dw)−1 satisfy (B.29) we obtain the following estimate from

Cauchy’s inequality:
∥

∥

∥

∥

∥

dk

dwk

(

dx̃(w)

dw

)−l
∥

∥

∥

∥

∥

[r−ε]
≤ k!ε−k

∥

∥

∥

∥

∥

(

dx̃(w)

dw

)−l
∥

∥

∥

∥

∥

[r]

(B.48)

≤ k!ε−kC l
0.

Using the relations (B.45) ∼ (B.47) and the estimate (B.48) we obtain

the following inequalities:
∥

∥

∥

∥

df

dx̃
(x̃(w))

∥

∥

∥

∥

[r−ε]
≤C0

∥

∥

∥

∥

d

dw
f(x̃(w))

∥

∥

∥

∥

[r−ε]
,(B.49)

∥

∥

∥

∥

d2f

dx̃2
(x̃(w))

∥

∥

∥

∥

[r−ε]
≤C2

0

∥

∥

∥

∥

d2

dw2
f(x̃(w))

∥

∥

∥

∥

[r−ε]
(B.50)

+
ε−1

2
C2

0

∥

∥

∥

∥

d

dw
f(x̃(w))

∥

∥

∥

∥

[r−ε]
,
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∥

∥

∥

∥

d3f

dx̃3
(x̃(w))

∥

∥

∥

∥

[r−ε]
≤C3

0

∥

∥

∥

∥

d3

dw3
f(x̃(w))

∥

∥

∥

∥

[r−ε]
(B.51)

+ ε−1C3
0

∥

∥

∥

∥

d2

dw2
f(x̃(w))

∥

∥

∥

∥

[r−ε]

+ ε−2C3
0

∥

∥

∥

∥

d

dw
f(x̃(w))

∥

∥

∥

∥

[r−ε]
.

Then the following estimates immediately follow from the above in-

equalities (B.49) ∼ (B.51) and Lemma B.4 for k ≥ 1:

∥

∥

∥

∥

∥

dz
(j)
k

dx̃

∥

∥

∥

∥

∥

[r−ε]
≤ C0e(k + 1)!Akε−k−1C(j)Cjδ0,

(B.52)

∥

∥

∥

∥

∥

dlx
(j)
k

dx̃l

∥

∥

∥

∥

∥

[r−ε]
≤ lC l

0e
l−1(k + l − 1)!Akε−k−l+1C(j)Cjδ0 (l = 1, 2, 3).

(B.53)

For k = 0, we have the following estimates from (B.30) by the same

discussion of Lemma B.4:
∥

∥

∥

∥

∥

dz
(j)
0

dx̃

∥

∥

∥

∥

∥

[r−ε]
≤ eε−1C(j)BjC2

0 ,(B.54)

∥

∥

∥

∥

∥

dlx
(j)
0

dx̃l

∥

∥

∥

∥

∥

[r−ε]
≤ lel−1(l − 1)!ε−l+1C(j)BjC l+1

0 (l = 1, 2, 3).(B.55)

Remark B.2. Lemma B.4 explains the background reason of the asym-

metry of the estimate of |x(j)
k | with respect to j and k; we dominate

|x(j)
k | by Cj+1 as j tends to infinity, whereas we include a much worse

factor k! to control their behavior as k tends to infinity. As the estimate
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(B.64) below shows, the seemingly innocent term

−x̃
2

d3xk−2

dx̃3

(

dx0

dx̃

)−1

(B.56)

in (B.15) forces us to introduce the k!-factor for making the induction

reasoning run smoothly. This observation indicates that the singular

perturbative character of the problem in question originates mainly

from the Schwarzian derivative multiplied by η−2 in (B.13).

Now we begin the estimation of Φ
(m)
n,i (i = 1, 2, 3).

1) The estimation of Φ
(m)
n,1 .

First we estimate Φ
(m)
n,1 . The background of the expected form (B.39.1)

is as follows: we observe that the sum of suffixes in each term that

are relevant to η−1, that is, the sum of kp’s, is n − 2. Hence by using

(B.32.k.j) we will encounter the factor An−2 in the resulting estimate.

Then (B.33) may be used to rewrite it as follows:

An−2 = AnA−2 < AnA−1δ2
0.(B.57)

Thus we expect the extra factor A−1 in our estimation. Let us con-

cretely check whether this argument really goes well. We shall estimate

the first term of (B.18) for n ≥ 2: By using (B.30), (B.31), induction

hypothesis (B.32), (B.52) and (B.54) we have the following estimate:

∥

∥

∥

∥

∥

∥

2
∑

k1+k2=n−2

∑

l1+l2+l3+l4=m

γ(l1)
dz

(l2)
k1

dx̃

(B.58)

×
k2
∑

ν=min{1,k2}
(−1)ν(z−ν−1

0 )(l3)
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l4

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

[r−ε]

≤ 2
∑

k1+k2=n−2

∑

l1+l2+l3+l4=m

C3
0C(l1)B

l1e(k1 + 1)!Ak1ε−k1−1C(l2)C
l2
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×
k2
∑

ν=min{1,k2}
Cν+1

0 C(l3)B
l3
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l4

κ̃!(Aε−1)k2C(λ̃)C l4δν0 .

Here we applied (B.52) to dz
(l2)
k1
/dx̃ for k1 ≥ 1 with replacing δ0 of

(B.52) by C0 in order to estimate dz
(l2)
k1
/dx̃ (k1 ≥ 1) and dz

(l2)
0 /dx̃ in

the same form. Further, by applying Lemma B.3 to the summation on

l1, · · · , l4 and λ̃ and also by using (B.34), we find

2
∑

k1+k2=n−2

∑

l1+l2+l3+l4=m

C3
0C(l1)B

l1e(k1 + 1)!Ak1ε−k1−1C(l2)C
l2

(B.59)

×
k2
∑

ν=min{1,k2}
Cν+1

0 C(l3)B
l3
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l4

κ̃!(Aε−1)k2C(λ̃)C l4δν0

≤ 2eC4
0C(m)Cmε−n+1An−2

×
∑

k1+k2=n−2

(k1 + 1)!

k2
∑

ν=min{1,k2}
(C0δ0)

ν
∑∗

|κ̃|ν=k2

κ̃!.

Then we obtain the following estimation from Lemma B.2:

2eC4
0C(m)Cmε−n+1An−2

(B.60)

×
∑

k1+k2=n−2

(k1 + 1)!

k2
∑

ν=min{1,k2}
(C0δ0)

ν
∑∗

|κ̃|ν=k2

κ̃!

≤ 2eC4
0C(m)Cmε−n+1An−2
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×









(n− 1)! +
∑

k1+k2=n−2
1≤k2

(k1 + 1)!k2!

k2
∑

ν=1

(C0δ0)
ν4ν−1(k2 − ν + 1)!

k2!









≤ 2eC4
0C(m)Cm(Aε−1)nεA−2

×



(n− 1)! +
∑∗

k′1+k2=n−1

k′1!k2!C0δ0

∞
∑

ν=1

(4C0δ0)
ν−1 1

ν!





≤ 2eC4
0C(m)Cm(Aε−1)nεA−2

×



(n− 1)! + C0δ0e
4C0δ0

∑∗

k′1+k2=n−1

k′1!k2!





≤ 2eC4
0C(m)Cm(Aε−1)nεA−2

(

(n− 1)! + 4C0δ0e
4C0δ0(n− 2)!

)

.

Consequently, since we can assume that δ0 is sufficiently small as

C0δ0e
4C0δ0 < 1,(B.61)

we obtain the following inequality from (B.57):
∥

∥

∥

∥

∥

∥

2
∑

k1+k2=n−2

∑

l1+l2+l3+l4=m

γ(l1)
dz

(l2)
k1

dx̃
(B.62)

×
k2
∑

ν=min{1,k2}
(−1)ν(z−ν−1

0 )(l3)
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l4

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

[r−ε]

≤ n!(Aε−1)nC(m)Cmδ2
0A

−12eC4
0ε

(

1

n
+

4

n(n− 1)

)

.
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We find that similar estimates hold for other terms:

∥

∥

∥

∥

∥

∥

x̃
∑

k1+k2+k3=n−2

∑

l1+l2+l3+l4+l5=m

γ(l1)
dz

(l2)
k1

dx̃

dz
(l3)
k2

dx̃

(B.63)

×
k3
∑

ν=min{1,k3}
(−1)ν(ν + 1)(z−ν−2

0 )(l4)
∑∗

|κ̃|ν=k3

∑

|λ̃|ν=l5

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

[r−ε]

≤
∑

k1+k2+k3=n−2

∑

l1+l2+l3+l4+l5=m

C6
0C(l1)C(l2)C(l3)A

k1+k2Bl1C l2+l3

× e2(k1 + 1)!(k2 + 1)!ε−k1−k2−2

×
k3
∑

ν=min{1,k3}
(ν + 1)Cν+2

0 C(l4)B
l4
∑∗

|κ̃|ν=k3

∑

|λ̃|ν=l5

κ̃!(Aε−1)k3C(λ̃)C l5δν0

≤ e2C8
0A

−2(Aε−1)nC(m)Cm





∑∗

k′1+k
′
2=n

k′1!k
′
2!

+
∑∗

k′1+k
′
2+k3=n

k′1!k
′
2!k3!

k3
∑

ν=1

(ν + 1)(C0δ0)
ν4ν−1(k3 − ν + 1)!

k3!





≤ e2C8
0A

−2(Aε−1)nC(m)Cm

×
(

4(n− 1)! + 16(n− 2)!C0δ0

∞
∑

ν=1

(4C0δ0)
ν−1 2

(ν − 1)!

)

≤ n!(Aε−1)nC(m)Cmδ2
0A

−1

(

4

n
+

32

n(n− 1)

)

C8
0e

2,
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∥

∥

∥

∥

∥

∥

x̃

2

∑

k1+k2=n−2

∑

l1+l2+l3=m

d3x
(l1)
k1

dx̃3

(B.64)

×
k2
∑

ν=min{1,k2}
(−1)ν

(

(

dx0

dx̃

)−ν−1
)(l2)

∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l3

dx
(λ̃)
κ̃

dx̃

∥

∥

∥

∥

∥

∥

[r−ε]

≤
∑

k1+k2=n−2

∑

l1+l2+l3=m

3

2
C4

0C(l1)A
k1C l1e2(k1 + 2)!ε−k1−2

×
k2
∑

ν=min{1,k2}
Cν+1

0 C(l2)B
l2
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l3

Cν
0 κ̃!(Aε−1)k2C(λ̃)C l3δν0

≤ 3

2
e2C5

0C(m)Cm(Aε−1)nA−2

×



n! +
∑∗

k′1+k2=n

k′1!k2!C
2
0δ0

∞
∑

ν=1

(4C2
0δ0)

ν−1 1

ν!





≤ 3

2
e2C5

0C(m)Cm(Aε−1)nA−2
(

n! + 4C2
0δ0e

4C2
0δ0(n− 1)!

)

≤ n!(Aε−1)nC(m)Cmδ2
0A

−1

(

1 +
4

n

)

3C5
0e

2

2
,

∥

∥

∥

∥

∥

∥

3

4
x̃

∑

k1+k2+k3=n−2

∑

l1+l2+l3+l4=m

d2x
(l1)
k1

dx̃2

d2x
(l2)
k2

dx̃2

(B.65)

×
k3
∑

ν=min{1,k3}
(−1)ν(ν + 1)

(

(

dx0

dx̃

)−ν−2
)(l3)

∑∗

|κ̃|ν=k3

∑

|λ̃|ν=l4

dx
(λ̃)
κ̃

dx̃

∥

∥

∥

∥

∥

∥

[r−ε]
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≤
∑

k1+k2+k3=n−2

∑

l1+l2+l3+l4=m

3C5
0C(l1)C(l2)A

k1+k2C l1+l2

× e2(k1 + 1)!(k2 + 1)!ε−k1−k2−2

k3
∑

ν=min{1,k3}
(ν + 1)Cν+2

0 C(l3)B
l3

×
∑∗

|κ̃|ν=k3

∑

|λ̃|ν=l4

Cν
0 κ̃!(Aε−1)k3C(λ̃)C l4δν0

≤ 3e2C7
0A

−2(Aε−1)nC(m)Cm

×





∑∗

k′1+k
′
2=n

k′1!k
′
2! + 2C2

0δ0e
4C2

0δ0
∑∗

k′1+k
′
2+k3=n

k′1!k
′
2!k3!





≤ n!(Aε−1)nC(m)Cmδ2
0A

−13

(

4

n
+

32

n(n− 1)

)

C7
0e

2,

∥

∥

∥δn,2R̃2
(m)

(z)
∥

∥

∥

[r−ε]
≤ δn,2(Aε

−1)2C(m)Cmδ2
0A

−1C0.

(B.66)

In the estimation of (B.64) and (B.65), we assumed that δ0 is suffi-

ciently small as

C2
0δ0e

4C2
0δ0 < 1.(B.67)

Since n ≥ 2 and A−1, ε < 1, we obtain (B.39.1).

The worst estimate in the above appears in (B.64) since no factor

that weakens n! is contained. This is the reason why (B.3) ∼ (B.5)

must contain the factor k!.

2) The estimation of Φ
(m)
n,2 .

The appearance of the extra factor δ0 in the estimate
∥

∥

∥δn,1Q̃1
(m)

(z)
∥

∥

∥

[r−ε]
≤ Aε−1C(m)Cmδ2

0C0ε(B.68)

is an immediate consequence of the assumption (B.33). To obtain this

extra factor in the estimation of other terms of Φ
(m)
n,2 , we note each
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term in the summation contains two factors each of whose suffix k is

greater than or equal to 1. It then follows from the induction hypothesis

that we find the extra δ0 factor. Let us confirm the estimation of the

most complicated term in Φ
(m)
n,2 . Since x

(j)
k , α

(j)
k (k ≥ 1) and x

(j)
0 , α

(j)
0

respectively satisfy different type of estimation (B.32.k.j) and (B.30),

we have to separate its summand depending on its suffix. However the

procedure of its estimation is essentially the same with that of (B.58).

∥

∥

∥

∥

∥

∥

∥

∥

∑

k1+k2+k3=n
1≤k3≤n−1

∑

l1+l2+l3=m

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

∑

k′1+k
′
2=k3

∑

l′1+l
′
2+l

′
3=l3

α
(l′1)
k′1

(B.69)

×
k′2
∑

ν=min{1,k′2}
(−1)ν(z−ν−1

0 )(l
′
2)
∑∗

|κ̃|ν=k′2

∑

|λ̃|ν=l′3

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

∥

[r−ε]

=

∥

∥

∥

∥

∥

∥

∑

l1+l2+l3=m





∑∗

k1+k2+k3=n

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃
+ 2

∑∗

k+k3=n

dx
(l1)
0

dx̃

dx
(l2)
k

dx̃





×
∑

l′1+l
′
2+l

′
3=l3











α
(l′1)
0

k3
∑

ν=1

∑∗

|κ̃|ν=k3

+
∑

k′1+k
′
2=k3

1≤k′1

α
(l′1)
k′1

k′2
∑

ν=min{1,k′2}

∑∗

|κ̃|ν=k′2











× (−1)ν(z−ν−1
0 )(l

′
2)
∑

|λ̃|ν=l′3

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

∥

[r−ε]

≤
∑

l1+l2+l3=m

C2
0C(l1)C(l2)





∑∗

k1+k2+k3=n

C l1+l2k1!k2!(Aε
−1)k1+k2δ2

0
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+2
∑∗

k+k3=n

Bl1C l2k!(Aε−1)kδ0





×
∑

l′1+l
′
2+l

′
3=l3



C0C(l′1)B
l′1

k3
∑

ν=1

∑∗

|κ̃|ν=k3

+
∑

k′1+k
′
2=k3

1≤k′1

k′1!(Aε
−1)k

′
1C(l′1)C

l′1δ0

k′2
∑

ν=min{1,k′2}

∑∗

|κ̃|ν=k′2











× Cν+1
0 C(l′2)B

l′2
∑

|λ̃|ν=l′3

κ̃!(Aε−1)|κ̃|νC(λ̃)C l′3δν0

≤ (Aε−1)nC(m)CmC2
0





∑∗

k1+k2+k3=n

k1!k2!δ
2
0 + 2

∑∗

k+k3=n

k!δ0





×



C0

k3
∑

ν=1

∑∗

|κ̃|ν=k3

Cν+1
0 κ̃!δν0

+
∑

k′1+k
′
2=k3

1≤k′1

k′1!δ0

k′2
∑

ν=min{1,k′2}

∑∗

|κ̃|ν=k′2

Cν+1
0 κ̃!δν0











≤ (Aε−1)nC(m)CmC2
0





∑∗

k1+k2+k3=n

k1!k2!δ
2
0 + 2

∑∗

k+k3=n

k!δ0





×
(

C3
0k3!δ0

∞
∑

ν=1

(4C0δ0)
ν−1

ν!
+ k3!C0δ0
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+
∑∗

k′1+k
′
2=k3

k′1!k
′
2!(C0δ0)

2
∞
∑

ν=1

(4C0δ0)
ν−1

ν!





≤ n!(Aε−1)nC(m)Cmδ2
0

× C3
0

(

16δ0
n(n− 1)

+
8

n

)

(

(C2
0 + 4C0δ0)e

4C0δ0 + 1
)

.

Similarly we can estimate the other terms as follows:

∥

∥

∥

∥

∥

∥

x̃

4

∑∗

k1+k2=n

∑

l1+l2=m

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

∥

∥

∥

∥

∥

∥

[r−ε]

(B.70)

≤ C0

4

∑∗

k1+k2=n

∑

l1+l2=m

k1!k2!(Aε
−1)k1+k2C(l1)C(l2)C

l1+l2δ2
0C

2
0

≤ n!(Aε−1)nC(m)Cmδ
2
0C

3
0

n
,

∥

∥

∥

∥

∥

∥

∑∗

k1+k2=n

∑

l1+l2+l3+l4=m

dx
(l1)
0

dx̃

dx
(l2)
0

dx̃
α

(l3)
k1

(B.71)

×
k2
∑

ν=1

∑

l′1+l
′
2=l4

(−1)ν(z−ν−1
0 )(l

′
1)
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l′2

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

∥

[r−ε]

≤
∑∗

k1+k2=n

∑

l1+l2+l3+l4=m

C2
0C(l1)C(l2)C(l3)B

l1+l2k1!(Aε
−1)k1C l3δ0

×
k2
∑

ν=1

∑

l′1+l
′
2=l4

Cν+1
0 C(l′1)B

l′1
∑∗

|κ̃|ν=k2

∑

|λ̃|ν=l′2

κ̃!C(λ̃)(Aε−1)k2C l′2δν0

86



≤ n!(Aε−1)nC(m)Cmδ2
0

4C4
0e

4C0δ0

n
.

Therefore we obtain (B.39.2).

3) The estimation of Φ
(m)
n,3 .

To find the extra factor BC−1 in the estimate of each term in Φ
(m)
n,3 ,

we first note that the constant B is dominated by the inverse of the

radius of convergence of z0, α0, etc. (cf. (B.30)) and that the constant

C is relevant to the radius of convergence of zm, αm, etc. Hence we

obtain this factor thanks to the fact that each term in the summation in

Φ
(m)
n,3 contains a factor that originates from the coefficient of η0aj (j ≥

1); for example, we find

∥

∥

∥

∥

∥

∥

∥

∥

∑

l1+l2+l3+l4=m
l3≤m−1

dx
(l1)
0

dx̃

dx
(l2)
0

dx̃
α(l3)
n (z−1

0 )(l4)

∥

∥

∥

∥

∥

∥

∥

∥

[r−ε]

(B.72)

≤
∑

l1+l2+l3+l4=m
l3≤m−1

C3
0C(l1)C(l2)C(l3)C(l4)B

l1+l2+l4C l3n!(Aε−1)nδ0

≤ n!(Aε−1)nC(m)Cmδ0
B

C
C3

0 ,

because l1 + l2 + l4 = m− l3 ≥ 1 holds by the constraint of the range of

indexes which is due to the fact that α
(m)
n is excluded in the summation.

Similarly we find
∥

∥

∥

∥

∥

∥

∥

∥

∑

k1+k2=n

∑

l1+l2+l3+l4=m
1≤l3

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃
α

(l3)
0 (z−1

0 )(l4)

∥

∥

∥

∥

∥

∥

∥

∥

[r−ε]

(B.73)
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=

∥

∥

∥

∥

∥

∥

∥

∥

∑

l1+l2+l3+l4=m
1≤l3





∑∗

k1+k2=n

dx
(l1)
k1

dx̃

dx
(l2)
k2

dx̃

+2
dx

(l1)
0

dx̃

dx
(l2)
n

dx̃

)

α
(l3)
0 (z−1

0 )(l4)

∥

∥

∥

∥

∥

[r−ε]

≤
∑

l1+l2+l3+l4=m
1≤l3

C4
0C(l1)C(l2)C(l3)C(l4)(Aε

−1)n

×





∑∗

k1+k2=n

C l1+l2k1!k2!δ
2
0 + 2Bl1C l2n!δ0



Bl3+l4

≤ n!(Aε−1)nC(m)Cmδ0
B

C
C4

0

(

4δ0
n

+ 2

)

.

This time the condition that l3 ≥ 1 is due to the fact that α
(0)
0 vanishes.

By the same reasoning we also find

∥

∥

∥

∥

∥

∥

∥

∥

x̃

2

∑

l1+l2=m
l2≤m−1

dx
(l1)
0

dx̃

dx
(l2)
n

dx̃

∥

∥

∥

∥

∥

∥

∥

∥

[r−ε]

(B.74)

≤ C0

2

∑

l1+l2=m
l2≤m−1

C0C(l1)B
l1C0n!(Aε−1)nC(l2)C

l2δ0

≤ n!(Aε−1)nC(m)Cmδ0
B

C

C3
0

2
,
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∥

∥

∥

∥

∥

∥

∥

∥

∑

l1+l2+l3+l4=m
1≤l3

dx
(l1)
0

dx̃

dx
(l2)
0

dx̃
α

(l3)
0

(B.75)

×
n
∑

ν=1

∑

l′1+l
′
2=l4

(−1)ν(z−ν−1
0 )(l

′
1)
∑∗

|κ̃|ν=n

∑

|λ̃|ν=l′2

z
(λ̃)
κ̃

∥

∥

∥

∥

∥

∥

∥

[r−ε]

≤
∑

l1+l2+l3+l4=m
1≤l3

C3
0C(l1)C(l2)C(l3)B

l1+l2+l3

×
n
∑

ν=1

∑

l′1+l
′
2=l4

Cν+1
0 C(l′1)B

l′1
∑∗

|κ̃|ν=n

∑

|λ̃|ν=l′2

κ̃!C(λ̃)(Aε−1)nC l′2δν0

≤ n!(Aε−1)nC(m)Cmδ0
B

C
C5

0e
4C0δ0.

Hence we obtain (B.39.3).

In conclusion, Φ
(m)
n satisfies the following inequality:

∥

∥

∥Φ(m)
n

∥

∥

∥

[r−ε]
≤ n!(Aε−1)nC(m)Cmδ0

(

δ0
A

+ δ0 +
B

C

)

M.(B.76)

By taking δ0 sufficiently small at first and then, A and C sufficiently

large, we can assume that the following holds:

6r−1(C0C(0))3M

(

δ0
A

+ δ0 +
B

C

)

< 1.(B.77)

Since 0 < ε < r/3, from (B.36) ∼ (B.38), (B.76) and (B.77), we

obtain (B.32.k.j). Thus the induction proceeds in the case [I], and it

remains to consider the case [II]; we are to confirm (B.32.n.0) under

the assumption (B.32.k.0) (1 ≤ k ≤ n − 1). But, we can readily

confirm this fact by the same estimation as in the case [I]. Actually
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Φ
(0)
n,3 vanishes in this case, and the estimation is easier than before.

Therefore we obtain (B.32.k.j) for every k ≥ 1 and j ≥ 0. Then by

fixing ε > 0 and taking r0 and A0 in Theorem B.1 as min{r− ε, C−1}
and Aε−1, respectively, we obtain Theorem B.1.

Q.E.D.

C Representation of the action of X as an integro-

differential operator

Using the results obtained in Appendix B we now study how the mi-

crodifferential operator X constructed in Theorem 1.6 and Theorem

2.6 acts upon multi-valued analytic functions. Although the situation

where this operator appears is different from the situation where its

counterpart (also denoted by X ) appeared in [AKT4], their structures

are essentially the same; the reasoning in [AKT4, Appendix C] applies

to our case almost word for word. But, in order to make this paper self-

contained, we describe the core part of the argument in this appendix.

As the following reasoning indicates, the operator X constructed in

Theorem 1.6 and that in Theorem 2.6 can be dealt with in exactly the

same manner. In what follows we discuss the operator X constructed

in Theorem 2.6 for the sake of definiteness. It then follows from (2.58)

that it has the following form:

X =:

(

∂g

∂x

)1/2(

1 +
∂r

∂x

)−1/2

exp(r(x, a, η)ξ) :,(C.1)

where

r = r(x, a, η) =
∑

k≥1

rk(x, a)η
−k(C.2)

rk = xk(g(x, a), a)(C.3)
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and g(x, a) is the inverse function of x = x0(x̃, a) given in (2.52), that

is,

x = x0(g(x, a), a).(C.4)

Here xk(k ≥ 0) is the function given in (2.5) and ξ stands for the

symbol σ(∂/∂x) of the differential operator ∂/∂x. For the sake of

convenience, we introduce r†k(x) by
(

∂g

∂x

)−1(

1 +
∂r

∂x

)

=

∞
∑

k=0

r†k(x, a)η
−k.(C.5)

Then the coefficients {hk}k≥0 and {fl,k}1≤l≤k in the expansion (C.6)

and (C.7) below can be explicitly expressed in terms of {rk} and {r†k}
as undermentioned in (C.8) and (C.9):

(

∂g

∂x

)1/2(

1 +
∂r

∂x

)−1/2

=
∞
∑

k=0

hk(x, a)η
−k,(C.6)

exp(r(x, a, η)ξ) = 1 +
∑

1≤l≤k
η−kξlfl,k(x, a),(C.7)















h0 = (r†0)
1/2,

hk = (r†0)
1/2

k
∑

l=1

(−1)lΓ(l + 1
2)

l!Γ(1
2)

∑∗

|λ̃|l=k

r†
λ̃

(r†0)
l

(k ≥ 1),
(C.8)

and

fl,k =
1

l!

∑∗

|λ̃|l=k

rλ̃.(C.9)

Hence it follows from the definition (C.1) of X that its total symbol

σ(X ) is written down as follows:

∞
∑

k=0

η−k



hk +
k
∑

k′=1

k′
∑

l=1

ξlhk−k′fl,k′



 .(C.10)
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As the parameter a does not play an important role in the following

discussion, we omit to write a for the sake of simplicity.

Since rk and r†k are respectively given by (C.3) and (C.5), Theorem

B.1 and its proof tell us that there exist a neighborhood ω1 of (x, a) =

(0, 0) and a constant C0 > 0 such that

sup
ω1

|rk| ≤ k!Ck
0 (k = 1, 2, · · · ),(C.11)

sup
ω1

|r†k| ≤ k!Ck
0 (k = 1, 2, · · · ),(C.12)

and

max

{

sup
ω1

|r†0|, sup
ω1

|(r†0)−1|
}

≤ C0.(C.13)

Then it follows from Lemma B.2 that the following holds:

sup
ω1

|hk| ≤ C
1/2
0

k
∑

l=1

Γ(l + 1
2
)

l!Γ(1
2)

∑∗

|λ̃|l=k

λ̃!Ck+l
0(C.14)

≤ C
k+1/2
0

k
∑

l=1

4l−1(k − l + 1)!C l
0

≤ C
3/2
0 k!Ck

0

k
∑

l=1

4l−1C l−1
0

(l − 1)!

≤ C
3/2
0 e4C0k!Ck

0

for k ≥ 1 and

sup
ω1

|fl,k| ≤
(k − l + 1)!

l!
4l−1Ck

0 (1 ≤ l ≤ k).(C.15)

Using these estimates together with Proposition C.1 below we obtain

Theorem 2.7. Although the following Proposition C.1 is the same as

Proposition C.1 in [AKT4], we include it here for the convenience of

the reader.
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Proposition C.1. For a domain U in Cx, let Ω denote

Ω = {(x, y; ξ, η) ∈ T ∗(U × Cy); η 6= 0},(C.16)

and let P = P (x, ∂/∂x, ∂/∂y) be a microdifferential operator of

order 0 on Ω with the total symbol

σ(P ) =
∞
∑

k=0

Pk(x, η
−1ξ)η−k.(C.17)

Here, we assume that each Pk(x, ζ) is an entire function of ζ and

that the following growth order condition should hold: There exists

a constant C0 > 0 so that, for any compact subset K of U × Cζ,

we can find another constant MK satisfying

sup
(x,ζ)∈K

|Pk(x, ζ)| ≤MKk!Ck
0(C.18)

for k = 0, 1, 2, · · · . Then, the action of P upon a (multi-valued)

analytic function φ(x, y) is represented in the following form:

Pφ(x, y) =

∫ y

y0

K(x, y − y′, d/dx)φ(x, y′)dy′,(C.19)

where K(x, y, d/dx) is a differential operator of infinite order that

is defined on {(x, y); x ∈ U and |y| < 1/C0} and y0 is an arbi-

trarily chosen point that fixes the action of (∂/∂y)−1 as an integral

operator.

Although we omit the proof of Proposition C.1 and refer the reader

to [AKT4] for it, we describe below how the differential operator K is

expressed in terms of Pk: Let al,k(x) denote the coefficient of ζ l in the

Taylor expansion of Pk, i.e.,

Pk(x, ζ) =

∞
∑

l=0

al,k(x)ζ l.(C.20)
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Then we find

Pφ(x, y) =
∞
∑

l=0

∞
∑

k=0

: η−k−lal,k(x) :

(

∂

∂x

)l

φ(x, y)

(C.21)

=

∫ y

y0

( ∞
∑

l=0

∞
∑

k=0

al,k(x)
(y − y′)k+l−1

(k + l − 1)!

(

∂

∂x

)l
)

φ(x, y′)dy′

for some reference point y0 that fixes the action of : η−k−l : upon

φ(x, y). Hence the operator K should have the form
∞
∑

l=0

( ∞
∑

k=0

al,k(x)
yk+l−1

(k + l − 1)!

)

(

∂

∂x

)l

(C.22)

and our task is to show that

cl(x, y) =
∞
∑

k=0

al,k(x)
yk+l−1

(k + l − 1)!
(C.23)

enjoys the following property:

(C.24) For any compact subset K ′ of U , any constant r that is

smaller than C−1
0 and any positive constant ε, there exists

a constant M for which

sup
x∈K ′,|y|≤r

|cl(x, y)| ≤M
εl

(l − 1)!

holds for l = 1, 2, · · · .
This fact can be confirmed by the assumption (C.18) (cf. [AKT4]).

In order to apply Proposition C.1 to the microdifferential operator

X in question, we rewrite the total symbol (C.10) of X in the following

manner:




∞
∑

j=0

hjη
−j





(

1 +
∑

1≤l≤k
fl,kη

−kξl
)

(C.25)
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=





∞
∑

j=0

hjη
−j





(

1 +
∞
∑

k=0

η−k
∞
∑

l=1

fl,l+k(ηξ)
−l
)

=
∞
∑

j=0

hjη
−j +

∞
∑

j,k=0

η−(j+k)hj

∞
∑

l=1

fl,l+k(η
−1ξ)l

=
∞
∑

m=0

η−m



hm +
∞
∑

l=1





∑

j+k=m

hjfl,l+k



 (η−1ξ)l



 .

Thus, if we define Pm(x, ζ) by

Pm(x, ζ) = hm +

∞
∑

l=1





∑

j+k=m

hjfl,l+k



 ζ l,(C.26)

we find that the total symbol of X has the form (C.17). Then (C.14)

and (C.15) entail the following:

|Pm| ≤ |hm| +
∞
∑

l=1









∑

j+k=m,
j,k≥0

|hjfl,l+k|









|ζ|l(C.27)

≤ C
3/2
0 e4C0m!Cm

0

+
∞
∑

l=1





∑

j+k=m

C
3/2
0 e4C0

j!(k + 1)!

l!
4l−1Cj+k+l

0



 |ζ|l.

Then the application of Lemma B.2 shows that this is further domi-
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nated in the following way:

C
3/2
0 e4C0Cm

0











m! +

∞
∑

l=1

4l−1C l
0|ζ|l
l!











∑

j+k̃=m+1,
j≥0,k̃≥1

j!k̃!





















(C.28)

≤ C
3/2
0 e4C0Cm

0

[

m! +
1

4

∞
∑

l=1

(4C0|ζ|)l
l!

((m + 1)! + 4m!)

]

≤ C
3/2
0 e4C0Cm

0 (m + 1)!

(

1 +
5

4

∞
∑

l=1

(4C0|ζ|)l
l!

)

= C
3/2
0 e4C0

(

1 +
5

4
(e4C0|ζ| − 1)

)

(m + 1)!Cm
0 .

Therefore Pm(x, ζ) given by (C.26) is an entire function of ζ and it

satisfies the growth order condition (C.18). Hence Proposition C.1

entails that the operator X is represented as in (C.19) with a differential

operator K of infinite order. This completes the proof of Theorem 2.7.
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