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0 Introduction

This paper is the third of a series of articles on the exact WKB analysis

of higher order Painlevé equations; the first of the series is [KKoNT],

and the second one is [KT5]. In [KKoNT] we studied basic properties

of higher order Painlevé equations (PJ)m with a large parameter η

(J = I, II-1, II-2; m = 1, 2, . . .); we first constructed a particular

formal solution called a 0-parameter solution, and we then clarified the

relationship between

(i) the Stokes geometry of the linearization (∆PJ)m of (PJ)m
at the 0-parameter solution (often called the Fréchet deriva-

tive),

and

(ii) the Stokes geometry of (one of) the underlying pair (LJ)m
of linear differential equations (Lax pair) with the 0-parameter

solution substituted into the coefficients.

To avoid possible confusions of the reader we used in [KT5] the ter-

minologies “P -turning points” and “P -Stokes curves” (following the

suggestion of the referee) to mean “turning points of the Fréchet deriva-

tive” and “Stokes curves of the Fréchet derivative”, and in this paper

we follow [KT5] in using this wording. The main subject of [KT5] was

to establish a structure theorem for 0-parameter solutions of (PJ)m
(J = I, II-1, II-2); any 0-parameter solution can be formally and lo-

cally transformed near a simple P -turning point of the first kind to

a 0-parameter solution of the second order Painlevé-I equation with a

large parameter η:

(0.1)
d2λI

dt2
= η2(6λ2

I + t).
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In proving this result we made essential use of the geometric results

obtained in [KKoNT]. The above structure theorem is a generalization

of a result for the second order Painlevé equations ([KT1, Theorem

2.3]) to that applicable to an arbitrarily higher order equation (PJ)m.

It is worth emphasizing that [KT1] covers only 6 equations, the clas-

sical Painlevé equations (PI), (PII), . . . , (PVI), and that the results

in [KT5] are applied to infinitely many equations. The purpose of

this paper is to further generalize the results in [KT5] by replacing

0-parameter solutions with instanton-type (2m)-parameter solutions

([T1],[T2]) of (PJ)m; our main result (Theorem 5.1.1) means that Part

5 of the Toulouse Project ([KT3]) has been completed near a simple

P -turning point of the first kind. We note that in this paper we ba-

sically follow [Ko2] concerning notational issues; this means that we

use in this paper symbols that are slightly different from those used in

[KKoNT] and [KT5]. This is a nuissance, but it removes some clumsi-

ness from the presentation of [KT5]. The point is that [Ko2] presents

three different ways of expressing the same higher order Painlevé equa-

tions, (PJ)m, (P̃J)m and (GJ)m (J = I, 34, II-2 and IV). The first one

is given in terms of polynomials of unknown functions and their deriva-

tives, the second one is a system of first order non-linear differential

equations, and the third one is given by choosing some suitable Gar-

nier system and restricting it to an appropriate complex line; symbol

(GJ)m is not used in the literature, but for the sake of convenience we

use this symbol in this paper. Thus (PI)m in [KKoNT] and [KT5] is

designated as (P̃I)m in this paper. The Lax pair that underlies (PJ)m or

(P̃J)m is respectively denoted by (LJ)m or (L̃J)m; we arrange the two

equations in (LJ)m and (L̃J)m so that the first one of them is deformed

by the second one that contains the differentiation with respect to the

deformation parameter t, which is the independent variable of (PJ)m
and (P̃J)m in question. We emphasize that each of these three expres-
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sions of a higher order Painlevé equation has its own advantage. For

example, (PJ)m and (LJ)m are amenable to the concrete computation

because of its concise form and (P̃J)m and (GJ)m most neatly explain

the intrinsic meaning of the change of unknown functions from “u” to

“λ” that is used in [KT5]. In [KT5] the meaning of the transformation

was not explained well for (PII-1)m or (PII-2)m; with the introduction of

(P̃J)m we clearly see that the unknown function uj (j = 1, 2, . . . ,m)

of (P̃J)m is the j-th elementary symmetric polynomial of the unknown

functions λk’s of (GJ)m. The important role that (GJ)m plays in our

paper is basically due to its Hamiltonian structure on which the con-

struction of instanton-type solutions is based. (See [T1] and [T2].) For

the convenience of the reader, we list up in Appendix the symbols and

equations used in this paper, following the presentation of [Ko2].

The plan of this paper is as follows. In Section 1 we first rewrite the

Lax pair (LJ)m as a pair of a Schrödinger equation (SLJ)m and its de-

formation equation (DJ)m. As the derivation procedure of this system

of scalar equations is essentially the same for all J (J = I, 34, II-2, IV),

we present the explicit computation only for J = IV. (Cf. [KT5],

[KT7].) In Section 2 we summarize basic properties of (2m)-parameter

solutions of (PJ)m, which have been constructed and called instanton-

type solutions in [T2]. These solutions are the main target of our study

in this paper. We note that in studying the effect of substituting an

instanton-type solution into the coefficients of Q(J,m), the potential of

the Schrödinger equation (SLJ)m, we make use of the third order equa-

tion (2.2.2) that Q(J,m) satisfies together with the function a(J,m) that

appears in (DJ)m (Subsection 2.2). Although this equation is known

to be a basic one in the theory of deformations of linear differential

equations (cf., e.g., [KT4, (4.44)]), this is the first time that we have

used this equation as an essential ingredient in the study of (SLJ)m.

The equation (2.2.2) plays an important role also in Section 3. Using
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the results in Section 2, we establish in Section 3 a WKB theoretic

theorem (Theorem 3.1) to the effect that (SLJ)m with instanton-type

solutions substituted into its coefficients can be brought to a canonical

equation called (Can) near its double turning point x = λj0,0(t); in

particular, we describe how an instanton-type solution λj0 of (PJ)m is

related to the invariants ρ(j0) and σ(j0) that appear in the canonical

equation. (See Theorem 3.1 and 3.2 for the precise statements.) In

Section 4 we investigate the instanton structure of the invariants by

making use of the Hamiltonian structure of (GJ)m. The results on the

instanton structure of the invariants are used in an essential manner in

proving our main result (Theorem 5.1.1). In Appendix A we list up the

symbols and notations used in this paper; we follow [Ko2] as possible as

we can. Subsections A.1 ∼ A.4 are concerned with PI-hierarchy with

a large parameter η, Subsections A.5 ∼ A.8 are concerned with P34-

hierarchy with a large parameter η, and so on. Finally in Appendix B

we explain the parity structure of instanton-type solutions which is

used in Section 5.

1 Derivation of a Schrödinger equation (SLJ)m and its

deformation equation (DJ)m

The purpose of this section is to rewrite (LJ)m (or (L̃J)m) as a pair of

a Schrödinger equation (SLJ)m and its deformation equation (DJ)m
so that the Lax pair may be analyzed in the framework of [KT1],

[AKT] and [KT2]. Although we study only (LIV)m in a detailed man-

ner, our procedure is uniformly applicable to any of (LJ)m or (L̃J)m
(J = I, 34, II-2, IV). To emphasize this fact we rewrite (A.15.1) in a
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somewhat abstract style:

(1.1)





∂

∂x

(
ψ1

ψ2

)
= η

(
p q

r −p

)(
ψ1

ψ2

)
(1.1.a)

∂

∂t

(
ψ1

ψ2

)
= η

(
δ 1

ε −δ

)(
ψ1

ψ2

)
(1.1.b)

Here all the coefficients are those given by (A.15.1) with a solution

(u, v) of (PIV)m substituted. One can immediately see that any of

(LJ)m or (L̃J)m has this form with the exceptions of (L̃I)m and (L̃34)m;

in (L̃I)m and (L̃34)m the (1,2) component of the matrix in (1.1.b) is 2,

not 1. (Cf. Subsections A.3, A.7, A.11 and A.15.) We try to find a

system of scalar differential equations that ψ1 satisfies. It follows from

(1.1.a) that

(1.2)
∂2ψ1

∂x2
−
qx
q

∂ψ1

∂x
− (η2(p2 + qr) + η(px −

pqx
q

))ψ1 = 0.

Here and in what follows, qx etc. and qt etc. respectively stand for

∂q/∂x etc. and ∂q/∂t etc. To rewrite (1.2) in a form of a Schrödinger-

type equation, we introduce

(1.3) ψ = exp

(
1

2

∫ x

(−
qx
q

)dx

)
ψ1 = q−1/2ψ1.

Then ψ satisfies

(1.4)
∂2ψ

∂x2
= η2Q(IV,m)ψ

with

(1.5) Q(IV,m) = p2 + qr + η−1(px −
pqx
q

) + η−2

(
3q2

x

4q2
−
qxx
2q

)
.

The equation (1.4) corresponds to (SLJ) in [KT1], and we use a symbol

(SLIV)m to denote the Schrödinger equation. The next thing to do is
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to find its deformation equation. For this purpose we note that (1.1.b)

entails the following:

(1.6)
∂ψ1

∂t
= ηδψ1 + ηψ2.

Combining (1.6) with the first row of (1.1.a), we find

(1.7)
∂ψ1

∂x
= ηpψ1 + q

(
∂ψ1

∂t
− ηδψ1

)
.

Using (1.3) we obtain the following relation (1.8) from (1.7):

(1.8)
∂

∂x
(q1/2ψ) = q

∂

∂t
(q1/2ψ) + ηq1/2(p− qδ)ψ.

Then we find

(1.9) q
∂ψ

∂t
=
∂ψ

∂x
+

1

2
q−1qxψ − (

1

2
qt + ηp− ηqδ)ψ.

We now substitute the following explicit values of p, q and δ into (1.9):

(1.10) p =
1

4γx
(−(2x− u)(K + 2γt) − η−1dK

dt
− 2η−1γ),

(1.11) q =
1

2γx
(K + 2γt),

and

(1.12) δ = −x +
u

2
.

Then we find

1

2
qt + η(p− qδ)(1.13)

=
1

4γx

[
Kt + 2γ − η(2x− u)(K + 2γt)

−Kt − 2γ − 2η(K + 2γt)(−x+
u

2
)
]

= 0.
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Thus (1.9) assumes the following form:

(1.14)
∂ψ

∂t
= q−1∂ψ

∂x
−

1

2

(
∂

∂x
q−1

)
ψ.

Hence, if we choose

(1.15) a(IV,m) = q−1 =
2γx

(K + 2γt)
,

we obtain the required deformation equation:

(1.16) (DIV)m :
∂ψ

∂t
= a(IV,m)

∂ψ

∂x
−

1

2

∂a(IV,m)

∂x
ψ.

We note that the most peculiar part of η2Q(IV,m), i.e.,

(1.17) Q2 =
3qx

2

4q2
−
qxx
2q
,

satisfies

(1.18) a(IV,m)Q2,x + 2a(IV,m),xQ2 =
1

2
(a(IV,m))xxx.

In fact, one can readily see that both sides of (1.18) are equal to

(1.19)
1

2

(
−6q3

x

q4
+

6qxqxx
q3

−
qxxx
q2

)
,

without using any specific feature of q.

We also note that, if we choose γ = 2,

(1.20) q =
1

2x
(U + C + 2t) =

1

2x

m∏

j=1

(x− λj)

holds. (Cf. (A.15.8) and (A.16.1); similar relations hold also for other

J ’s.)

Relations (1.18) and (1.20) play important roles in our WKB-theoretic

study of (SLJ)m in the subsequent sections.
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Remark 1.1. The simultaneous equations (SLIV)m and (DIV)m share

with the pair of equations (SLJ)m and (DJ)m (J = I, II-2) the follow-

ing property: the singular point x = λj,0 of (DIV)m is a double turning

point of (SLIV)m. Making use of this property, we can confirm all the

results in [KT5] also for J = IV, that is, we can prove the regularity

near x = λj,0 of Sodd for (SLIV)m with a 0-parameter solution substi-

tuted into its coefficients (cf. [KT5, Theorem 2.4]) and we can further

prove the reduction theorem for a 0-parameter solution λj (cf. [KT5,

Theorem 3.2]) not only for J = I, II-2 but also for J = IV (and also

for J = 34).

2 Basic properties of instanton-type solutions

In Subsection 2.1 we recall basic properties of a (2m)-parameter so-

lution of (PJ)m constructed by Takei ([T1],[T2]). Such a solution is

usually called an instanton-type solution. As is noted in Section 0, the

argument of [T2] applies to all J = I, 34, II-2 and IV thanks to the ex-

istence of Hamilton-Jacobi system (GJ)m that is equivalent to (PJ)m
([Ko1], [Ko2]). By its definition an instanton-type solution contains a

term of order (−1/2) in η, and when substituted into the coefficients of

Q(J,m) it may provoke the appearance of a term of the form Q1/2η
−1/2

in the resulting potential Q. Fortunately we can confirm in Subsection

2.2 that Q1/2 actually vanishes thanks to the compatibility of (SLJ)m
and (DJ)m, and hence we can develop WKB analysis of (SLJ)m with

an instanton-type solution substituted into its coefficients.

2.1 Structure of an instanton-type solution ([T2, Theo-

rem 1])

Here, and in what follows, we use the symbol νj(t) to denote a root of

the characteristic equation of the Fréchet derivative (∆PJ)m of (PJ)m
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at some 0-parameter solution. As is confirmed in [KKoNT] and [KoN],

we may, and do, label νj’s so that

(2.1.1) νj+m = −νj (1 ≤ j ≤ m)

may hold. To construct a (2m)-parameter solution, we first fix a point

t0 for which the following conditions are satisfied:

(2.1.2) t0 is not a P -turning point of (PJ)m,

(2.1.3)
m∑

j=1

njνj(t) does not vanish identically for any (n1, . . . , nm) ∈ Z
m\{0}.

Then, on a neighborhood of t0, we can construct an instanton-type

solution (uj, vj)1≤j≤m of (P̃J)m which has the following form:

uj(t, η;α) = uj,0(t) + η−1/2uj,1/2(t,Ψ,Φ)(2.1.4)

+η−1uj,1(t,Ψ,Φ) + · · ·

vj(t, η;α) = vj,0(t) + η−1/2vj,1/2(t,Ψ,Φ)(2.1.5)

+η−1vj,1(t,Ψ,Φ) + · · · ,

where uj,l/2(t,Ψ,Φ) and vj,l/2(t,Ψ,Φ)(l = 1, 2, . . . ) are polynomials

of (Ψ,Φ) of degree at most l which depend analytically on t. Here

Ψ = (Ψ1, . . . ,Ψm) and Φ = (Φ1, . . . ,Φm) are “instantons”, that is,

formal series of exponential type of the form

(2.1.6) Ψj = αj exp
{
η

∫ t( ∞∑

k=0

η−k
∑

|µ|=k

(µj + 1)gµ+ej(t, η)σ
µ
)
dt
}
,

(2.1.7)

Φj = αj+m exp
{
−η

∫ t( ∞∑

k=0

η−k
∑

|µ|=k

(µj + 1)gµ+ej(t, η)σ
µ
)
dt
}
,
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where j ∈ {1, . . . ,m}, αj (1 ≤ j ≤ 2m) are free complex numbers,

σ stands for (σ1, . . . , σm) with σj = αjαj+m, µ = (µ1, . . . , µm) (µj ∈

Z, µj ≥ 0), ej = (0, . . . , 0,
j

1̆, 0, . . . , 0) are multi-indices, and for each

multi-index ν = (ν1, . . . , νm) gν(t, η) is a formal power series of η−1/2

with analytic coefficients of the following form:

(2.1.8) gν(t, η) =

∞∑

l=0

η−l/2gν,l/2(t).

Furthermore we obtain the following result concerning their struc-

ture.

Theorem 2.1.1. ([T2, Theorem 1 and Remark 1])

(i) The top order part (uj,0, vj,0) of (uj(t, η;α, β), vj(t, η;α, β)) co-

incides with the top order part (ûj,0, v̂j,0) of the 0-parameter solu-

tion (ûj, v̂j).

(ii) The top order part of gej(t, η), i.e., gej ,0(t), coincides with

νj(t).

Remark 2.1.1. Although we have given the statement for a solution

(uj, vj)l≤j≤m of (P̃J)m, the instanton structure of {λj}
m
j=1 is seen to be

the same as that of (uj, vj)1≤j≤m by the fact that λj (j = 1, 2, · · · ,m)

are solutions of

(2.1.9) U(x) + C̃(x, t) = 0,

where U(x) = xm−
m∑
j=1

ujx
m−1 and C̃(x, t) is 0 for J = I, t/2 for

J = 34, C(x) =
m∑
j=1

cjx
m−j for J = II-2 and C(x) + 2t for J = IV.
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2.2 Vanishing of Q1/2

In view of the definition of the Borel transformation, wave functions

discussed in the exact WKB analysis should have the form

(2.2.1) exp(ηr−1(x))(1 + o(η0)).

On the other hand, the term of the degree (−1/2) in η in an instanton

type solution may provoke the appearance of a term of degree (−1/2)

in η in the potential Q, i.e., Q(J,m) with an instanton-type solution

substituted into its coefficients. If it were the case, we could not expect

(2.2.1) in view of the way of constructing a WKB solution via the

associated Riccati equation. Fortunately the compatibility of (SLJ)m
and (DJ)m forces such a term to vanish. In fact, one expression of the

compatibility condition is

(2.2.2)
∂Q(J,m)

∂t
= a(J,m)

∂Q(J,m)

∂x
+ 2

∂a(J,m)

∂x
Q(J,m) −

1

2
η−2∂

3
a(J,m)

∂x3
.

(See [KT4, (4.44)] for example.) In view of Theorem 2.1.1 (ii), Q1/2

should be of the form

(2.2.3)
∑

j

aj(x, t) exp(φj(t)η) +
∑

k

bk(x, t) exp(−φk(t)η),

with

(2.2.4) φj(t) =

∫ t

νj(s)ds.

If it were not 0, the left-hand side of (2.2.2) should contain a non-zero

term which is of degree (1/2) in η. But the right-hand side of (2.2.2)

cannot contain such a term, as it contains the differentiation only with

respect to x. Therefore we find

(2.2.5) Q1/2 = 0.

We will use this result frequently in the sequel without explicitly men-

tioning so.
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3 Local reduction of (SLJ)m to (Can) near a double turn-

ing point

Hereinafter we always assume that an instanton-type solution (uj, vj)

(1 ≤ j ≤ m) of (P̃J)m (or (λj, µj) (1 ≤ j ≤ m) of (GJ)m) is substi-

tuted into the coefficients of the potential Q(J,m) of (SLJ)m. Then, if

we let τ be a simple P -turning point of the first kind of (PJ)m that

does not coincide with any other P -turning points of (PJ)m, there ex-

ists a pair of a double turning point x = λj0,0(t) and a simple turning

point x = a(t) of (SLJ)m which merge at t = τ ([KKoNT], [KoN]).

Let t∗ be a point sufficiently close to τ that lies in a P -Stokes curve

emanating from τ , and let V be a sufficiently small neighborhood of

t∗. Furthermore we suppose

(3.1) λj,0(t∗) 6= λk,0(t∗) (j 6= k)

for any (j, k). Then we have the following

Theorem 3.1. In the situation described above, we can find a

neighborhood U of x = λj0,0(t), a formal series

(3.2) z(x, t, η) = z0(x, t, η)+η−1/2z1/2(x, t, η)+η−1z1(x, t, η)+ · · · ,

whose coefficients zl/2(x, t, η) are holomorphic on U × V , and for-

mal series

(3.3) E(j0)(t, η) = E
(j0)
0 (t, η) +E

(j0)
1/2 (t, η)η−1/2 +E

(j0)
1 (t, η)η−1 + · · ·

and

(3.4) ρ(j0)(t, η) = ρ
(j0)
0 (t, η) + ρ

(j0)
1/2 (t, η)η−1/2 + ρ

(j0)
1 (t, η)η−1 + · · · ,

whose coefficients are holomorphic on V , so that the following con-
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ditions (3.5) ∼ (3.10) may hold:

z0 is free from η,(3.5)

∂z0

∂x
never vanishes on U × V,(3.6)

z0(λj0,0(t), t) = 0,(3.7)

z1/2 identically vanishes,(3.8)

Q(J,m)(x, t, η)

(3.9)

=

(
∂z

∂x

)2
[
4z(x, t, η)2 + η−1E(j0)(t, η)

+
η−3/2ρ(j0)(t, η)

z(x, t, η) − z(λj0(t, η), t, η)
+

3η−2

4(z(x, t, η) − z(λj0(t, η), t, η))
2

]

−
1

2
η−2{z(x, t, η); x}

holds on U×V , where {z; x} stands for the Schwarzian derivative,

(3.10) the η-dependence of zl/2(x, t, η), E
(j0)
l/2 (t, η) and ρ

(j0)
l/2 (t, η)

is through the instanton terms that λj0(t, η) contains.

Theorem 3.2. The series E(j0)(t, η) and ρ(j0)(t, η) in the preceding

theorem are written down in term of {λj}
m
j=1 and z(x, t, η) in (3.2)
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in the following manner:

ρ(j0)(t, η) = − η−1/2

(
∂z

∂x
(λj0(t, η), t, η)

)−1

(3.11)

×

[
1

2

(
∂

∂t
λj0(t, η)

)(
1

(x− λj0(t, η))a(J,m)

)

+
1

2

(
∂a(J,m)/∂x

a(J,m)
+

1

(x− λj0(t, η))

)

+
3

4

∂2z/∂x2

∂z/∂x

)]∣∣∣∣∣
x=λj0

(t,η)

,

(3.12) E(j0)(t, η) = (ρ(j0)(t, η))2 − 4(η1/2z(λj0(t, η), t, η))
2.

Remark 3.1. In what follows we use the symbol σ(j0)(t, η) to denote

(3.13) η1/2z(λj0(t, η), t, η),

Note that (3.7) implies that the degree of σ(j0)(t, η) with respect to η

is at most 0 despite the multiplication by η1/2 (if we count the degree

of instanton terms to be 0, as usual).

Definition 3.1. The equation (Can) is, by definition, the follow-

ing Schrödinger equation:

(3.14)

(
−
∂2

∂z2
+ η2Qcan(z, E, ρ, σ, η)

)
ϕ = 0,

where

(3.15) Qcan = 4z2 + η−1E +
η−3/2ρ

z − η−1/2σ
+

3η−2

4(z − η−1/2σ)2

with

(3.16) E = ρ2 − 4σ2.
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To prove Theorem 3.1 and Theorem 3.2, we need the following

Lemma 3.3. Let cl(t, η) (l = −2,−1, 0, 1, 2, · · · ) denote the coeffi-

cient of (x−λj0(t, η))
l in the expansion of Q(J,m) (J = I, 34, II-2, IV)

in powers of (x−λj0(t, η)) with t being sufficiently close to t∗. Then

we find

(3.17) c0 = η2c2−1.

Proof. For the sake of definiteness we discuss the case J = IV. This

is the situation that seems to be most complicated in its appearance.

Actually the computation in other cases is slightly simpler than that

given below, and the logical structure of the proof is the same in all

cases. Throughout the proof of this lemma we let Q denote Q(IV,m)

with an instanton-type solution being substituted into its coefficients.

As in Section 1, we let Q2 denote

(3.18)
3q2

x

4q2
−
qxx
2q
,

with q being given in (1.11) and we define Q̃ by

(3.19) η2Q−Q2

(cf. (1.17)). For the sake of the notational simplicity we assume j0 = 1

in what follows. We also set

(3.20) Xj = x− λj(t, η).

Then for J = IV with γ = 2, we see by (1.20) and (1.15)

(3.21) q =
1

2x

m∏

j=1

Xj

and

(3.22) a(= a(IV,m)) = q−1 =
2x

m∏
j=1

Xj

.
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Note that the factor x−1 in q does not appear for J = I or II-2; it

appears only for J = 34 or IV.

Our strategy of the proof is to write down the relation (2.2.2) in

power series of X1 (including negative degrees). We start with the

following relation (3.23) that is obtained by the substitution of (1.18)

into (2.2.2):

(3.23) η2Qt = Q2,t + Q̃t = aQ̃x + 2axQ̃,

where Qt etc. stand for ∂Q/∂t etc. First we note

(3.24)
qx
q

=

m∑

j=1

1

Xj
−

1

x
.

Since (
qx
q

)

x

= −
q2
x

q2
+
qxx
q
,

we use (3.24) to find

Q2 =
3q2

x

4q2
−
qxx
2q

(3.25)

=
1

4

q2
x

q2
−

1

2

(
qx
q

)

x

=
1

4




m∑

j=1

1

Xj




2

−
1

2x




m∑

j=1

1

Xj




+
1

2




m∑

j=1

1

X2
j



−
1

4x2
.
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Hence we obtain

(3.26) Q2,t =
1

2

(
m∑

j=1

1

Xj

)(
m∑

j=1

λ
′

j

X2
j

)
−

1

2x




m∑

j=1

λ
′

j

X2
j


 +

m∑

j=1

λ
′

j

X3
j

,

where λ
′

j etc. stand for dλj/dt etc. On the other hand, in view of the

explicit form (1.5) of Q, we see that Q̃ has the form

(3.27)
α(t, η)

X1
+ β(t, η) +O(X1)

when expanded in powers of X1, which is regarded as a small quantity.

We now compute the coefficients of X−l
1 (l = 3, 2) in (3.23).

Let Λj (j ≥ 2) denote

(3.28) Λj = λ1 − λj.

We first compute the expansion of a and ax in X1. If we write a as

(3.29) a =
1

X1
f(x) with f(x) =

2x
m∏

j=2

Xj

,

we readily find

a =
1

X1

(
f(λ1) +

df

dx
(λ1)X1 +O(X2

1)

)
(3.30)

=
f(λ1)

X1

(
1 + (

d

dx
log f)

∣∣∣
x=λ1

X1 +O(X2
1)

)

and
d

dx
log a = −

1

X1
+ (

d

dx
log f)

∣∣∣
x=λ1

+O(X1)(3.31)

= −
1

X1

(
1 − (

d

dx
log f)

∣∣∣
x=λ1

X1 +O(X2
1)

)
.
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Hence we obtain

ax = a
d

dx
log a(3.32)

= −
f(λ1)

X2
1

(
1 + (

d

dx
log f)

∣∣∣
x=λ1

X1 +O(X2
1)

)

×

(
1 − (

d

dx
log f)

∣∣∣
x=λ1

X1 +O(X2
1)

)

= −
f(λ1)

X2
1

+O(1).

Here the symbol O(1) means that the part consists of terms which

contain a factor of the form Xp
1 (p ≥ 0). We note that the absence

of terms of order O(X−1
1 ) in ax is observed for J ’s other than IV; the

existence of the extra factor x in a has nothing to do with this fact.

Since

(3.33) f(λ1) =
2λ1
m∏

j=2

Λj

and

(3.34) (
d

dx
log f)

∣∣∣
x=λ1

=
1

λ1
−

m∑

j=2

1

Λj
,

it then follows from (3.27), (3.30) and (3.32) that

aQ̃x + 2axQ̃

(3.35)

=

(
f(λ1)

X1
+ f(λ1)(

d

dx
log f)

∣∣∣
x=λ1

+O(X1)

)(
−
α

X2
1

+O(1)

)
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+ 2

(
−
f(λ1)

X2
1

+O(1)

)(
α

X1
+ β +O(X1)

)

=
[
−
αf(λ1)

X3
1

− αf(λ1)(
d

dx
log f)

∣∣∣
x=λ1

1

X2
1

+O(X−1
1 )
]

+
[
−

2αf(λ1)

X3
1

−
2βf(λ1)

X2
1

+O(X−1
1 )
]

= −
3αf(λ1)

X3
1

− f(λ1)
[
α(

d

dx
log f)

∣∣∣
x=λ1

+ 2β
] 1

X2
1

+O(X−1
1 )

= −
6αλ1
m∏

j=2

Λj

1

X3
1

−
2λ1
m∏

j=2

Λj

[
α
( 1

λ1
−

m∑

j=2

1

Λj

)
+ 2β

] 1

X2
1

+O(X−1
1 ).

On the other hand, (3.26) and (3.27) entail that the left-hand side of

(3.23), i.e.,

(3.36) η2Qt = Q2,t + Q̃t,

has the form

[
3λ

′

1

2X3
1

+
λ
′

1

2

(
m∑

j=2

1

Xj
−

1

x

)
1

X2
1

+O(X−1
1 )

]
+

[
αλ

′

1

X2
1

+
α

′

X1
+ O(1)

]
(3.37)

=
3λ

′

1

2X3
1

+
λ
′

1

2




m∑

j=2

1

Λj
−

1

λ1
+ 2α


 1

X2
1

+ O(X−1
1 ).
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By comparing (3.35) and (3.37), we find

(3.38) −6αλ1 =
3

2
λ
′

1

m∏

j=2

Λj

and

λ
′

1

2




m∑

j=2

1

Λj
−

1

λ1
+ 2α



(3.39)

=

[
2αλ1

(
m∑

j=2

1

Λj

)
− 2α− 4βλ1

]
1

m∏

j=2

Λj

.

Thus we obtain

(3.40) α = −
λ
′

1

4λ1

m∏

j=2

Λj

and

(3.41) −λ
′

1




m∑

j=2

1

Λj
−

1

λ1


 +

λ
′2
1

4λ1

m∏

j=2

Λj =
4βλ1
m∏

j=2

Λj

,

i.e.,

(3.42) β =


 λ

′

1

4λ1

m∏

j=2

Λj




2

−
λ
′

1

4λ1




m∑

j=2

1

Λj
−

1

λ1




m∏

j=2

Λj.

Next let us compute the contribution from Q2 to η2Q, i.e., δ−1 and δ0
given below:

(3.43) δ−1 = η2c−1 − α
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and

(3.44) δ0 = η2c0 − β.

To find these quantities we rewrite Q2 in (3.25) in powers of X1 as

follows:

Q2 =
1

4X2
1

+
1

2X1




m∑

j=2

1

Xj



 +
1

4




m∑

j=2

1

Xj




2

−
1

2xX1

(3.45)

−
1

2x




m∑

j=2

1

Xj


 +

1

2X2
1

+
1

2




m∑

j=2

1

X2
j


−

1

4x2

=
3

4X2
1

+
1

2

m∑

j=2

1

Λj

(
1

X1
−

1

Xj

)
+

1

4




m∑

j=2

1

Xj




2

−
1

2λ1

(
1

X1
−

1

x

)
−

1

2x




m∑

j=2

1

Xj



 +
1

2




m∑

j=2

1

X2
j



−
1

4x2

=
3

4X2
1

+
1

2




m∑

j=2

1

Λj
−

1

λ1


 1

X1
−

1

2

m∑

j=2

1

Λ2
j

+
1

4




m∑

j=2

1

Λj




2

+
1

2λ2
1

−
1

2λ1




m∑

j=2

1

Λj
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+
1

2

m∑

j=2

1

Λ2
j

−
1

4λ2
1

+O(X1)

=
3

4X2
1

+
1

2




m∑

j=2

1

Λj
−

1

λ1



 1

X1

+
1

4




m∑

j=2

1

Λj




2

−
1

2λ1




m∑

j=2

1

Λj


 +

1

4λ2
1

+ O(X1).

Thus we find

(3.46) δ−1 =
1

2




m∑

j=2

1

Λj
−

1

λ1





and

δ0 =
1

4




m∑

j=2

1

Λj




2

−
1

2λ1




m∑

j=2

1

Λj


 +

1

4λ2
1

(3.47)

=

[
1

2

(
m∑

j=2

1

Λj
−

1

λ1

)]2

.

Combining (3.40), (3.42), (3.46) and (3.47), we find

(3.48) η2c−1 = −
λ
′

1

4λ1

m∏

j=2

Λj +
1

2




m∑

j=2

1

Λj
−

1

λ1




and

η2c0 =


 λ

′

1

4λ1

m∏

j=2

Λj




2

−
λ
′

1

4λ1




m∑

j=2

1

Λj
−

1

λ1




m∏

j=2

Λj(3.49)
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+

[
1

2

(
m∑

j=2

1

Λj
−

1

λ1

)]2

=

[
λ
′

1

4λ1

m∏

j=2

Λj −
1

2

(
m∑

j=2

1

Λj
−

1

λ1

)]2

Therefore we obtain the required relation:

(3.50) (η2c−1)
2 = η2c0,

i.e.,

(3.51) c0 = η2c2−1.

This completes the proof of Lemma 3.3.

Proof of Theorem 3.1 and Theorem 3.2. In proving Theorem 3.1 we

construct the series z(x, t, η) by using the induction on the degree of η.

To explain how Lemma 3.3 is used in the induction procedure, we first

examine the structure of the right-hand side of (3.9) assuming that the

series z is given, regardless of the validity of the equality (3.9). In what

follows we assume j0 = 1 for the notational simplicity, as in the proof

of Lemma 3.3. In view of the relations

(3.52)

(
∂z

∂x

)2
1

z − z(λ1, t, η)
=
z′(λ1)

x− λ1
+

3

2
z′′(λ1) + · · · ,

(
∂z

∂x

)2
1

(z − z(λ1, t, η))2
=

1

(x− λ1)2
+
z′′(λ1)

z′′(λ1)

1

x− λ1

(3.53)

+

{
2

3

z′′′(λ1)

z′(λ1)
−

1

4

(
z′′(λ1)

z′(λ1)

)2
}

+ · · · ,
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where z′(λ1) etc. stand for the derivatives of z(x, t, η) with respect to

x that is evaluated at x = λ1, we find the right-hand side of (3.9) is of

the following form:

3η−2

4(x− λ1)2
+ η−3/2

{
ρ(1)z′(λ1) +

3

4
η−1/2 z

′′(λ1)

z′(λ1)

}
1

x− λ1

(3.54)

+ η−1

{
z′(λ1)

2E(1) +
3

2
η−1/2ρ(1)z′′(λ1) +

9

16
η−1

(
z′′(λ1)

z′(λ1)

)2
}

+ 4z′(λ1)
2z(λ1)

2 + r1,

where r1 is a sum of terms of order O(x − λ1). If we further assume

(3.12), we find the coefficients c̃l (l = −1, 0) of (x − λ1)
l in (3.54)

satisfy the following:

(3.55) c̃0 = η2c̃2−1.

Thus Lemma 3.3 lets us expect that we can construct the required

series z by first adjusting the coefficients of (x − λ1)
−1 in both sides

of (3.9) and then defining the constant E(1) by (3.12). Note that the

most singular part, i.e., the double pole part, is the same in both sides

of (3.9). To put this expectation into practice, we use the induction on

the degree of η. In what follows we choose

(3.56) z0(x, t) =

(∫ x

λ1,0

√
Q(J,m),0 dx

)1/2

.

We also note that the relation (2.2.5) enables us to choose

(3.57) z1/2 = 0.

As a convention we choose

(3.58) ρ
(1)
−1/2 = E

(1)
−1/2 = 0.
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Our task is to construct the series z(x, t, η) so that (3.9) may hold. In

view of Lemma 3.3 and (3.54), the series should eventually satisfy

(3.59) ρ(1) = η3/2 c−1

z′(λ1)
−

3

4
η−1/2 z′′(λ1)

(z′(λ1))2
,

(3.60) E(1) = ρ(1)2 − 4ηz(λ1, t, η)
2.

To construct the required series, we let ∆ = ∆0 + ∆1/2 η
−1/2 + ∆1 η

−1

+ ∆3/2 η
−3/2 + · · · (with ∆1/2 = 0) denote the left-hand side of (3.9)

minus its right-hand side. We then prove the following assertion (A)n
by the induction on n, starting with n = −1.

(A)n We can construct z(j+2)/2, ρ
(1)
j/2 and E

(1)
j/2 (j = 0, 1, . . . , n) so

that the following relations (3.61)n and (3.62)n are satisfied:

∆j/2 = 0 for j = 0, 1, . . . , n + 2(3.61)n

(3.59) and (3.60) hold modulo terms of(3.62)n

order at most or equal to η−(n+1)/2.

It is clear that (A)−1 holds by (3.56), (3.57) and (3.58). Let us suppose

(A)n−1 to hold. We can then construct ρ
(1)
n/2 (resp., E

(1)
n/2) as the homo-

geneous part of degree n/2 (with respect to η−1) of the right-hand side

of (3.59) (resp., (3.60)). Note that in constructing ρ
(1)
n/2 through (3.59)

we only need zj/2 up to j = n + 1 since c−1 = O(η−1) holds thanks

to Lemma 3.3. Thus (3.62)n is attained. On the other hand, ∆(n+2)/2

has the following form:

∆(n+2)/2 =8z2
0

(
∂z0

∂x

)
∂z(n+2)/2

∂x
(3.63)

+ 8z0

(
∂z0

∂x

)2

z(n+2)/2 + R(n+2)/2,
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where R(n+2)/2 is a function defined by {zj/2}j≤n+1, {ρj/2}j≤n−1 and

{Ej/2}j≤n. Furthermore (3.62)n attained above guarantees that

(3.64)

n+2∑

j=0

∆j/2η
−j/2

has no singularity at x = λ1 and that it vanishes there modulo terms

of order at most or equal to η−(n+3)/2, while the induction hypothesis

entails

(3.65) ∆j/2 = 0 (j = 0, 1, . . . , n + 1).

Therefore we find

(3.66) ∆(n+2)/2 = 0

at x = λ1,0. Since

(3.67) z0(λ1,0(t), t) = 0

by its definition, we conclude

(3.68) R(n+2)/2(λ1,0(t), t) = 0.

This means that we can divide the equation

(3.69) ∆(n+2)/2 = 0

by z0(x, t) to find an ordinary differential equation for z(n+2)/2 that is

with regular singularity at x = λ1,0(t) with the characteristic index

−1. Thus we can find a holomorphic solution z(n+2)/2 of (3.69), as

is required by (3.61)n. Hence the induction proceeds, completing the

proof of Theorem 3.1. In particular we have obtained (3.59) and (3.60).
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Then (3.48) and (3.59) entail that we have, for J = IV,

ρ(1) = −η−1/2

(
∂z

∂x
(λ1(t, η), t, η)

)−1

(3.70)

×


 λ

′
1

4λ1

m∏

j=2

Λj −
1

2




m∑

j=2

1

Λj
−

1

λ1


 +

3

4


∂

2z/∂x2

∂z/∂x

∣∣∣∣∣
x=λ1(t,η)




 .

On the other hand the explicit form (3.22) of a(IV,m) readily implies

1

X1a(IV,m)

∣∣∣∣∣
x=λ1(t,η)

=

∏m
j=2 Λj

2λ1
(3.71)

and

(
∂a(IV,m)/∂x

a(IV,m)
+

1

X1

) ∣∣∣∣∣
x=λ1(t,η)

= −




m∑

j=2

1

Λj
−

1

λ1


 .(3.72)

Combining (3.70), (3.71) and (3.72) we obtain (3.11) for J = IV. The

computation can be done in the same way for other J ’s. This completes

the proof of Theorem 3.2.

4 Splitting of the top order part of (∆GJ)m

Once we obtain Theorems 3.1 and 3.2, the next thing to do would

be to try to extend the domain of definition of the series z(x, t, η) so

that it may contain the simple turning point x = a(t) of (SLJ)m that

merges with x = λj0,0(t) at t = τ . Such an extension is done in [KT2]

when m = 1. As we will see in Section 5, we need to confirm some

particular instanton structure of ρ(j0) and σ(j0) in attaining such an

extention when m is greater than 1; our reasoning there requires that
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the top degree part ρ
(j0)
0 and σ

(j0)
0 of ρ(j0) and σ(j0) contain instanton

terms whose phase functions are “related to” the P -turning point in

question. Here a phase function related to the P -turning point in

question is, by definition,

(4.1)

∫ t

τ

νj0(t)dt or

∫ t

τ

νj0+m(t)dt

in the labeling (2.1.1). To confirm (4.1) we use in this paper Theo-

rem 4.1 below. Our proof of (4.1) in [KT6] is somewhat more com-

plicated but more elementary in the sense that it does not use the

Hamiltonian form of (PJ)m.

Theorem 4.1. The top degree part of the Fréchet derivative (∆GJ)m
of (GJ)m (J = I, 34, II-2, IV) at a 0-parameter solution splits into

a direct sum of 2 × 2 systems.

Proof. Let K denote the Hamiltonian of (GJ)m and let (λ(0), µ(0))

denote a 0-parameter solution of (GJ)m. An explicit way of the pre-

sentation of Theorem 4.1 is then given as follows:

(4.2)

(
∂2K

∂λj∂λk

∣∣∣∣∣
(λ,µ)=(λ(0),µ(0))

)

0

= 0 (j 6= k),

(4.3)

(
∂2K

∂λj∂µk

∣∣∣∣∣
(λ,µ)=(λ(0),µ(0))

)

0

= 0 (j 6= k),

and

(4.4)

(
∂2K

∂µj∂µk

∣∣∣∣∣
(λ,µ)=(λ(0),µ(0))

)

0

= 0 (j 6= k).

Here

(4.5)

(
∂2K

∂λj∂λk

∣∣∣∣∣
(λ,µ)=(λ(0),µ(0))

)

0

= 0
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etc. denote the 0-th degree (in η) part of ∂2K/∂λj∂λk etc. evaluated

at the 0-parameter solution. In what follows let the symbol

(4.6)

[
∂2K

∂λj∂λk

]

0

stand for (4.5). We also use the symbol Nj to denote

(4.7)
∏

k 6=j

(λj − λk)
−1.

To begin with we observe that the results in [Ko1] and [Ko2] (cf. Ap-

pendix) imply that

(4.8) K =
m∑

j=1

NjF (λj, µj, t)

for some polynomial F (λ, µ, t). Hence we find

(4.9)
∂K

∂µj
= Nj

(
∂F

∂µ

)
(λj, µj, t).

Therefore we have

(4.10)
∂2K

∂µj∂µk
= 0 (j 6= k),

which immediately entails (4.4). It also follows from (4.9) that

(4.11)
∂2K

∂λk∂µj
=
∂Nj

∂λk

(
∂F

∂µ

)
(λj, µj, t)

holds if j 6= k. On the other hand, looking at the highest degree part

of (GJ)m in η, we find

(4.12)

[
∂K

∂µj

]

0

= 0, j = 1, 2, . . . ,m.
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Then (4.9) entails

(4.13)

[
∂F

∂µ
(λj, µj, t)

]

0

= 0, j = 1, 2, . . . ,m.

Therefore (4.11) proves (4.3). Thus what remains to be proved is

(4.2). In proving (4.2) we may assume without loss of generality that

(j, k) = (2, 1). In order to prove (4.2), we first show

(4.14)
∂2K

∂λ1∂λ2
= (λ1 − λ2)

−1∂K

∂λ1
+ (λ2 − λ1)

−1∂K

∂λ2
.

Since we find

(4.15)

[
∂K

∂λj

]

0

= 0, j = 1, 2, . . . ,m

by observing the highest degree part of (GJ)m in η, we can deduce

(4.2) from (4.14). In what follows we use symbols Fj and F ′
j to denote

respectively

(4.16) F (λj, µj, t)

and

(4.17)

(
∂F

∂λ

)
(λj, µj, t);

for example we have

(4.18)
∂K

∂λ1
=

m∑

j=1

∂Nj

∂λ1
Fj +N1F

′
1.

Concerning ∂Nj/∂λ1 etc., we can readily confirm the following rela-

tions:

(4.19)
∂N1

∂λ1
= −

(
∑

k≥2

(λ1 − λk)
−1

)
N1,
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(4.20)
∂Nj

∂λ1
= (λj − λ1)

−1Nj (j ≥ 2),

(4.21)
∂N1

∂λj
= (λ1 − λj)

−1N1 (j ≥ 2),

(4.22)
∂N2

∂λ2
= −



∑

k 6=2

(λ2 − λk)
−1


N2.

Hence we find

(4.23)

∂2N1

∂λ1∂λ2
= −2(λ1 − λ2)

−2N1 − (λ1 − λ2)
−1

(
∑

k≥3

(λ1 − λk)
−1

)
N1

and

(4.24)

∂2N2

∂λ1∂λ2
= −2(λ2 − λ1)

−2N2 − (λ2 − λ1)
−1

(
∑

k≥3

(λ2 − λk)
−1

)
N2.

Combining these relations, we obtain

(4.25)

∂K

∂λ1
= N1F

′
1 −

(
∑

k≥2

(λ1 − λk)
−1

)
N1F1 +

∑

j≥2

(λj − λ1)
−1NjFj,

∂K

∂λ2
=N2F

′
2 − (λ2 − λ1)

−1N2F2 −

(
∑

k≥3

(λ2 − λk)
−1

)
N2F2(4.26)

+ (λ1 − λ2)
−1N1F1 +

∑

j≥3

(λj − λ2)
−1NjFj,
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∂2K

∂λ1∂λ2
= (λ2 − λ1)

−1N2F
′
2 − 2(λ2 − λ1)

−2N2F2

(4.27)

− (λ2 − λ1)
−1

(
∑

k≥3

(λ2 − λk)
−1

)
N2F2

− 2(λ1 − λ2)
−2N1F1 − (λ1 − λ2)

−1

(
∑

k≥3

(λ1 − λk)
−1

)
N1F1

+ (λ1 − λ2)
−1N1F

′
1 +
∑

j≥3

(λj − λ2)
−1(λj − λ1)

−1NjFj.

Then (4.25) and (4.26) imply

(λ1 − λ2)
−1∂K

∂λ1
+ (λ2 − λ1)

−1∂K

∂λ2
(4.28)

=(λ1 − λ2)
−1N1F

′
1 − (λ1 − λ2)

−2N1F1

− (λ1 − λ2)
−1

(
∑

k≥3

(λ1 − λk)
−1

)
N1F1

− (λ1 − λ2)
−2N2F2 + (λ1 − λ2)

−1



∑

j≥3

(λj − λ1)
−1NjFj




+ (λ2 − λ1)
−1N2F

′
2 − (λ2 − λ1)

−2N2F2

− (λ2 − λ1)
−1

(
∑

k≥3

(λ2 − λk)
−1

)
N2F2
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− (λ1 − λ2)
−2N1F1 + (λ2 − λ1)

−1



∑

j≥3

(λj − λ2)
−1NjFj


 .

Let us now compare (4.27) and (4.28). First, the coefficient of N1F
′
1

(resp., N2F
′
2) is (λ1−λ2)

−1 (resp., (λ2−λ1)
−1) in either case. Secondly

the coefficient of N1F1 is

(4.29) −2(λ1 − λ2)
−2 − (λ1 − λ2)

−1

(
∑

k≥3

(λ1 − λk)
−1

)

in either case. Note that −(λ1 − λ2)
−2N1F1 originates from both

∂K/∂λ1 and ∂K/∂λ2 in (4.28), giving the factor −2(λ1 −λ2)
−2. The

situation is the same for the coefficient of N2F2. Finally let us compare

the coefficients of NjFj (j ≥ 3). It is

(4.30) (λj − λ2)
−1(λj − λ1)

−1

in (4.27), while in (4.28) it is

(λ1 − λ2)
−1(λj − λ1)

−1 + (λ2 − λ1)
−1(λj − λ2)

−1(4.31)

= (λ1 − λ2)
−1((λj − λ1)

−1 − (λj − λ2)
−1)

= (λj − λ1)
−1(λj − λ2)

−1.

Thus they coincide. Summing up all these comparisons, we have con-

firmed (4.14). This completes the proof of Theorem 4.1.

5 Structure theorem for instanton-type solutions of (PJ)m
near a simple P -turning point of the first kind

The purpose of this section is to prove our main result (Theorem 5.1.1)

which shows that near a simple P -turning point of (PJ)m of the first
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kind we can transform an instanton-type solution λJ of (GJ)m associ-

ated with the P -turning point to an appropriate 2-parameter solution

of (PI)1, the classical (i.e., second order) Painlevé-I equation. In Sub-

section 5.1 we first fix our notations and then we present our main re-

sult. In Subsection 5.2 we recall the definition of the system (DCan),

i.e., the simultaneous equations (Can) and its deformation equation

(Dcan), which was introduced in [KT2]. Then in Subsection 5.3 we

show the local equivalence near the double turning point x = λj0,0(t)

between (DCan) and the simultaneous equations (SLJ)m and (DJ)m,

which shall be denoted by (DSLJ)m in what follows. In Subsection 5.4

the local equivalence is further ameliorated to become a semi-global one

covering not only the double turning point but also a simple turning

point x = a(t) of (SLJ)m that is found (Subsection 5.1) in conjuc-

tion with the P -turning point τ in question. The resulting semi-global

equivalence plays a key role in Theorem 5.1.1.

5.1 The geometric setting for the main result

In order to state our main result in a precise manner, let us first

clarify the geometric setting which we use in our subsequent discussion.

It is basically the same as the situation we encountered in Section 3. See

also [KT5, Section 3]. Let us start with a simple P -turning point τ of

the first kind of (PJ)m (J = I, 34, II-2, IV) that does not coincide with

any other P -turning points of (PJ)m. As was noted in Section 3, there

exists a pair of turning points of (SLJ)m, one a double turning point

x = λj0,0(t) and the other a simple turning point x = a(t), which merge

at t = τ . These two turning points of (SLJ)m will play a central role

in our analysis in Subsections 5.3 and 5.4. Next we fix a point σ (6= τ )

that is sufficiently close to τ and that lies in a P -Stokes curve emanating

from τ . A characteristic feature of σ is that the double turning point

x = λj0,0(σ) and the simple turning point x = a(σ) are connected by
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a Stokes curve γ (i.e., a Stokes “segment”) of (SLJ)m. Actually the

mathematical definition of the “sufficient closeness of σ and τ” is given

through the appearance of this degeneration of the Stokes geometry of

(SLJ)m. (See [KT5, Appendix B] for the proof.) Since τ is supposed

to be of the first kind, we can find a pair of characteristic roots, say

(νj0, νj0+m), of the Fréchet derivative (∆GJ)m so that

(5.1.1) νj0+m = −νj0,

(5.1.2) νj0(τ ) = νj0+m(τ ) = 0,

and

(5.1.3)

∫ t

τ

νj0(s)ds = 2

∫ λj0,0(t)

a(t)

√
Q(J,m),0(x, t)dx

hold. We let φj0(t) denote

(5.1.4)

∫ t

τ

νj0(s)ds.

Note that the P -Stokes curve in which σ lies is given by

(5.1.5) Im φj0(t) = 0.

Note also that Theorem 4.1 implies that the degree (−1/2) part (in η)

λj0,1/2 of the instanton-type solution λj0 of (GJ)m is of the form

(5.1.6) αj0,0a(t) exp(ηφj0(t)) + αj0+m,0b(t) exp(−ηφj0(t))

with some constants αj0,0 and αj0+m,0 and some analytic functions a(t)

and b(t) (cf. (2.1.4) and (2.1.5) in Subsection 2.1).

Using the setting so far described, we now present our main result

which asserts that the solution λj0(t, η) of (GJ)m can be locally trans-

formed near σ to an appropriate 2-parameter solution of the classical

Painlevé-I equation.
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Theorem 5.1.1. Suppose

(5.1.7) E
(j0)
0 6= 0.

Then there exist a 2-parameter solution λ̃I(t̃, η; β̃1(η), β̃2(η)) of the

equation

(5.1.8)
d2λ̃I

dt̃2
= η2(6λ̃2

I + t̃ ),

where β̃i(η) =
∑

l≥0 β̃i,lη
−l (i = 1, 2) with β̃i,l being a constant,

a neighborhood ω of the point σ, a neighborhood Ω of the Stokes

segment γ, x̃(x, t, η) =
∑

l≥0 x̃l/2(x, t, η)η
−l/2 with x̃l/2 being holo-

morphic on Ω × ω and t̃(t, η) =
∑

l≥0 t̃l/2η
−l/2 with t̃l/2 being holo-

morphic on ω for which the following hold:

(5.1.9) x̃(λj0(t, η), t, η) = λ̃I(t̃(t, η), η; β̃),

(5.1.10) αj0,0 = 2cβ̃1,0 and αj0+m,0 = 2c−1β̃2,0 holds for a constant

c that depends only on E
(j0)
0 ,

(5.1.11) x̃1/2 and t̃1/2 vanish identically,

(5.1.12) the η-dependence of x̃l/2 and t̃l/2 is only through instan-

ton terms that they contain, and x̃0, x̃1, t̃0 and t̃1 are

free from instanton terms.

5.2 Systems (DCan) and (DSLJ)m

As is shown in [KT2, Proposition 2.1], the system (Can) in Defini-

tion 3.1 is compatible with another equation (deformation equation)

(5.2.1) (Dcan)
∂ϕ

∂s
= Acan

∂ϕ

∂z
−

1

2

∂Acan

∂z
ϕ

with

(5.2.2) Acan =
1

2(z − η−1/2σcan)
,
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on the condition that (ρcan(s, η), σcan(s, η)) satisfies the following Hamil-

tonian system:

(5.2.3) (Hcan) :





dρcan

ds
= −4ησcan

dσcan

ds
= −ηρcan.

In what follows we use the symbol (DCan) to denote the simultaneous

system of equations (Can) and (Dcan):

(5.2.4)



(
−
∂2

∂z2
+ η2Qcan(z, Ecan(s, η), ρcan(s, η), σcan(s, η), η)

)
ϕ = 0,

∂

∂s
ϕ = Acan

∂ϕ

∂z
−

1

2

∂Acan

∂z
ϕ.

In parallel with this notation we use the symbol (DSLJ)m to denote

the simultaneous system of equations (SLJ)m and (DJ)m, that is,

(5.2.5)






(
−
∂2

∂x2
+ η2Q(J,m)

)
ψ = 0,

∂

∂t
ψ = a(J,m)

∂ψ

∂x
−

1

2

∂a(J,m)

∂x
ψ.

Although Theorem 3.1 guarantees that

(5.2.6) ψ(x, t, η) =

(
∂z

∂x

)−1/2

ϕ(z(x, t, η), t, η)

solves (SLJ)m near x = λj0,0(t) if ϕ is a solution of (Can) with

(ρcan, σcan) = (ρ(j0), σ(j0)), ψ given by (5.2.6) does not satisfy (DJ)m in

general; we have to find an appropriate correspondence between s and

t besides the change of variables z and x. The results in [KT2] indicate

that we should be able to find such a correspondence by requiring the
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existence of infinite series

(5.2.7) s(t, η) =
∑

l≥0

sl/2(t)η
−l/2

which satisfies

(5.2.8) ρ(j0)(t, η) = ρcan(s(t, η), η)

and

(5.2.9) σ(j0)(t, η) = σcan(s(t, η), η).

In the subsequent subsections we first construct the series s(t, η) that

contains some free parameters and then adjust the constants so that

the series z(x, t, η) and s(t, η) thus constructed may satisfy (5.1.9). At

the first step we show in Subsection 5.3 that

(5.2.10) ψ(x, t, η) =

(
∂z

∂x

)−1/2

ϕ(z(x, t, η), s(t, η), η)

is a solution of (DSLJ)m near x = λj0,0(t) if ϕ(z, s, η) is a solution

of (DCan). In Subsection 5.4 we construct a semi-global equivalence

between (DSLJ)m and (DSLI)1 on a neighborhood of the Stokes seg-

ment γ of (SLJ)m by appropriately combining the transformations

constructed in Subsection 5.3, and then we prove that the constructed

equivalence gives the required relation (5.1.9).

5.3 Correspondence between (DSLJ)m and (DCan)

The purpose of this section is to establish a local correspondence

near x = λj0,0(t) between a solution of (DCan) and that of (DSLJ)m
by finding an appropriate transformation s = s(t, η). Our first task is

to construct s(t, η) so that s satisfies (5.2.8) and (5.2.9). To undertake

this task we first note that the compatibility of (SLJ)m with the de-

formation equation (DJ)m entails the following invariance property of

the constant E(j0)(t, η) in Theorems 3.1 and 3.2.
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Lemma 5.3.1. The series E(j0)(t, η) is independent of t.

Proof. Let Sodd denote the odd part of S(J,m), that is,

(5.3.1)
1

2

(
S+

(J,m) − S−
(J,m)

)
,

where S±
(J,m) respectively denotes the solution of the Riccati equation

associated with (SLJ)m, namely

(5.3.2) S2 +
dS

dx
= η2Q(J,m),

whose highest degree part in η is ±η
√
Q(J,m),0. An important property

of Sodd, or, as is often the case, denoted by S(J,m),odd, is that it satisfies

(5.3.3)
∂S(J,m),odd

∂t
=

∂

∂x
(a(J,m)S(J,m),odd),

as a consequence of the deformation equation (DJ)m that the wave

function ψ satisfies (cf. [AKT, Section 2]). It is also well-known (e.g.,

[KT4, Corollary 2.1.7]) that (3.9) entails

(5.3.4) Sodd(x, t, η) =
dz

dx
Scan,odd(z(x, t; η), t, η),

where we define Scan,odd in the same way as Sodd by using Qcan instead

of Q(J,m) in (5.3.2). As a consequence of these properties we obtain
∮

|x−λj0,0|=δ

Sodddx(5.3.5)

=

∮

|x−λj0,0|=δ

Scan,odd(z(x, t, η), t, η)
∂z

∂x
dx

=

∮

|z|=δ′
Scan,odddz =

πi

2
E(j0)
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for sufficiently small positive numbers δ and δ ′. On the other hand,

(5.3.3) and the definition of Sodd entail

(5.3.6)
∂

∂t

∮
Sodddx =

∮
∂

∂x
(a(J,m)Sodd)dx = 0.

This completes the proof of the lemma.

We also note that, if we define Ecan(s, η) by

(5.3.7) Ecan = ρ2
can − 4σ2

can,

the series Ecan is also independent of s; in fact (Hcan) implies

d

ds
Ecan = 2ρcan

dρcan

ds
− 8σcan

dσcan

ds
(5.3.8)

= −8ηρcanσcan + 8ησcanρcan

= 0.

Actually the series Ecan can be explicitly expressed in terms of the

constant defined by (σcan, ρcan) as follows: (σcan, ρcan) has the following

form as a solution of (Hcan):

(5.3.9) σcan(s, η) = A(η) exp(2ηs) +B(η) exp(−2ηs),

(5.3.10) ρcan(s, η) = −2A(η) exp(2ηs) + 2B(η) exp(−2ηs),

where A(η) =
∑

l≥0Al/2η
−l/2 and B(η) =

∑
l≥0Bl/2η

−l/2 with Al/2

and Bl/2 being constants. It then follows from (5.3.7) that

(5.3.11) Ecan = −16A(η)B(η).

In particular, we find

(5.3.12) Ecan,0 = −16A0B0.

On the other hand, for the α-dependence of E(j0) we have the following
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Lemma 5.3.2. (i) The highest degree part E
(j0)
0 of E(j0) =

∑
l≥0E

(j0)
l/2 η

−l/2

satisfies

(5.3.13) E
(j0)
0 = C0αj0,0αj0+m,0

for some non-zero constant C0 which is independent of the free

parameters {αj}1≤j≤2m contained in an instanton-type solution.

(ii) For any odd integer l, E
(j0)
l/2 vanishes.

Proof. It follows from (3.11) and (5.1.6) that

ρ
(j0)
0 = −

(
∂z0

∂x
(λj0,0)

)−1

(αj0,0a(t)φ
′
j0

(t) exp(ηφj0(t))(5.3.14)

− αj0+m,0b(t)φ
′
j0

(t) exp(−ηφj0(t))/2b
(j0)
(J,m),0(λj0,0)

where

b
(j0)
(J,m)(x, t, η) = (x− λj0(t, η))a(J,m)(x, t, η).(5.3.15)

On the other hand, (3.13) implies

σ
(j0)
0 =

∂z0

∂x
(λj0,0(t))(αj0,0a(t) exp(ηφj0(t))(5.3.16)

+ αj0+m,0b(t) exp(−ηφj0(t)).

In order to compute E
(j0)
0 , we now prepare the following

Sublemma 5.3.3. For J = I, 34, II-2 or IV we find

(5.3.17)

(
∂z0

∂x

)4
∣∣∣∣∣
x=λj0,0

= ν2
j0

/(
4b

(j0)
(J,m),0(λj0,0)

)2

for z0 in (3.2).

Proof of Sublemma 5.3.3. Let us first recall that

(5.3.18) Q(J,m),0 = (detB0)/(a(J,m),0)
2
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holds for the matrix B used to define the Lax pair that underlies (PJ)m
in the notation of Appendix A. (See [KKoNT] and [KoNT] for the proof

of (5.3.18).) Then the Taylor expansion of the highest degree part of

(3.9) shows with the help of (5.3.18)

(5.3.19)
detB0

(x− λj0,0)
2(a(J,m),0)2

∣∣∣∣∣
x=λj0,0

= 4

(
∂z0

∂x

)4
∣∣∣∣∣
x=λj0,0

.

Since we know ([KKoNT, Proposition 2.1.3 and (2.3.8)], [KoNT])

(5.3.20) detB0

∣∣∣
x=λj0,0

=
ν2
j0

4
,

we conclude

(5.3.21)

(
∂z0

∂x

)4
∣∣∣∣∣
x=λj0,0

= ν2
j0

/(
4b

(j0)
(J,m),0(λj0,0)

)2

.

This completes the proof of the sublemma. �

We now resume the proof of Lemma 5.3.2. Since it follows from the

definition of E(j0) that

(5.3.22) E
(j0)
0 = (ρ

(j0)
0 )2 − 4(σ

(j0)
0 )2

holds, we deduce the following relation (5.3.23) from (5.3.14) and (5.3.16):

E
(j0)
0 =

(
α2
j0,0
a2 exp(2ηφj0) + α2

j0+m,0
b2 exp(−2ηφj0)

)
(5.3.23)

×

[
1

4

(
∂z0

∂x
(λj0,0)

)−2

φ′2j0

(
b

(j0)
(J,m),0(λj0,0)

)−2

− 4

(
∂z0

∂x
(λj0,0)

)2
]

−
1

2
αj0,0αj0+m,0ab

(
∂z0

∂x
(λj0,0)

)−2

φ′2j0

(
b

(j0)
(J,m),0(λj0,0)

)−2
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− 8αj0,0αj0+m,0ab

(
∂z0

∂x
(λj0,0)

)2

.

As it follows from the definition that

(5.3.24) νj0 = φ′j0,

(5.3.17) and (5.3.23) entail

(5.3.25) E
(j0)
0 = −16αj0,0αj0+m,0ab

(
∂z0

∂x
(λj0,0)

)2

.

Then we find by Lemma 5.3.1 that

(5.3.26) C0(t) =
def
a(t)b(t)

(
∂z0

∂x
(λj0,0(t), t)

)2

is independent of t. Thus we obtain (5.3.13). This completes the proof

of the assertion (i). To confirm the assertion (ii) we again note (3.12).

Then by the “alternating parity” structure of instanton-type solutions

(Appendix B), E
(j0)
l/2 (l: odd) is a sum of monomials of instantons of

odd degree. This means that it cannot be a constant unless it vanishes

identically. Therefore Lemma 5.3.1 shows (ii).

In view of our definition of instanton-type solutions (Appendix B),

the assumption αj0,0αj0+m,0 6= 0 enables us to choose (A(η), B(η)) in

(5.3.9) and (5.3.10) so that the following relations may hold:

(5.3.27) Ecan = E(j0),

(5.3.28) Al/2 = Bl/2 = 0.

Fixing (A(η), B(η)) in this manner, we construct s(t, η) so that it sat-

isfies (5.2.8) and (5.2.9). To describe the precise structure of s(t, η)

we summarize its properties in Lemma 5.3.4 below. We call the atten-

tion of the reader to the fact that the series s(t, η) relates the objects

44



attached to (DSLJ)m with those attached to (DCan). Thus its role

is substantially different from that of the series t̃(t, η) used in Theo-

rem 5.1.1 and to be explicitly constructed in Theorem 5.4.1. The series

t̃(t, η) relates the objects attached to (DSLJ)m with those attached to

(DSLI)1.

Lemma 5.3.4. Let us consider the problem in the setting de-

scribed in Subsection 5.1. In particular, let ω denote a neigh-

borhood of the point σ that is close to, but different from, the

P -turning point τ in question. Then we can construct a series

s(t, η) =
∑

l≥0 sl/2(t, η)η
−l/2 so that it satisfies the following condi-

tions:

(5.3.29) σcan(s(t, η), η) = σ(j0)(t, α, η),

(5.3.30) ρcan(s(t, η), η) = ρ(j0)(t, α, η),

(5.3.31) each sl/2(t, η) is holomorphic on ω,

(5.3.32) s0(t) =
1

2
φj0(t),

(5.3.33) s1/2 = 0,

s1(t) =
1

2
log

(
A−1

0 αj0,0a(t)
∂z0

∂x
(λj0,0(t), t)

)
(5.3.34)

(
=

1

2
log

(
B0α

−1
j0+m,0

b(t)−1∂z

∂x
(λj0,0(t), t)

−1

))
,

(5.3.35) sl/2(t, η) (l ≥ 3) is a polynomial of instantons of degree

(l − 2).
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Proof. Here and in what follows we use the symbol

(5.3.36) [σcan(s0(t) + η−1s1(t), η)]l

to denote the degree l part (in η−1) of σcan(s0(t) + η−1s1(t), η) with

counting the degree of an instanton to be 0 by convention. We first

construct (s0, s1/2(= 0), s1) by using

(5.3.37) [σcan(s0(t) + η−1s1(t), η)]0 = σ(j0)(t, η),

and then confirm that it also satisfies

(5.3.38) [ρcan(s0(t) + η−1s1(t), η)]0 = ρ(j0)(t, η).

We find by (5.3.16) that

(5.3.39) A0 exp(2ηs0 + 2s1) = αj0,0a(t)
∂z0

∂x
(λj0,0(t)) exp(ηφj0(t))

and

(5.3.40)

B0 exp(−2ηs0 − 2s1) = αj0+m,0b(t)
∂z0

∂x
(λj0,0(t)) exp(−ηφj0(t))

should be satisfied. It is then clear that we should choose s0 and s1 so

that they satisfy

(5.3.41) s0(t) =
1

2
φj0(t),

(5.3.42) A0 exp(2s1(t)) = αj0,0a(t)
∂z0

∂x
(λj0,0(t), t)

and

(5.3.43) B0 exp(−2s1(t)) = αj0+m,0b(t)
∂z0

∂x
(λj0,0(t), t).

On the other hand, (5.3.12) and (5.3.25) tell us that the condition

(5.3.27) reads as

(5.3.44) −16A0B0 = −16αj0,0αj0+m,0a(t)b(t)

(
∂z0

∂x
(λj0,0(t), t)

)2

.
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Note that

(5.3.45) C0(t) = a(t)b(t)

(
∂z0

∂x
(λj0,0(t), t)

)2

is independent of t (cf. (5.3.26)). Thanks to (5.3.44), (5.3.42) and

(5.3.43) are simultaneously solved if we choose s1(t) so that it satisfies

(5.3.46) exp(2s1(t)) = A−1
0 αj0,0a(t)

∂z0

∂x
(λj0,0(t), t).

Furthermore the relation (5.3.21) guarantees the functions s0(t) and

s1(t) thus chosen also satisfy

(5.3.47) [ρcan(s0(t) + η−1s1(t)]0 = ρ
(j0)
0 (t, η)

(with the interchange of indices of j0 and j0+m so that the appropriate

sign of νj0 is chosen in the relation (5.3.21)). In fact, (5.3.47) holds if

(5.3.41) and

2A0 exp(2s1)

(5.3.48)

=
1

2
αj0,0a(t)

(
∂z0

∂x
(λj0,0(t), t)

)−1

φ′j0(t)
(
b

(j0)
(J,m),0(λj0,0(t), t)

)−1

,

while (5.3.48) follows from (5.3.21), (5.3.24) and (5.3.42). Thus we

have found s0 and s1 that satisfy (5.3.37) and (5.3.38).

Let us now embark on the construction of sl/2(t, η) (l ≥ 3) by the

induction on l; we construct sl/2 by supposing that sl′/2 (l′ ≤ l − 1)

have been given. The method is basically the same as that used in the

proof of Lemma 3.1 of [KT2]. However, as ρ(j0) and σ(j0) may contain

instanton terms other than exp(±nηφj0(t)) (n ∈ Z), we have to pay

some attention in the construction procedure. To make our argument

clearer we prepare the following
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Sublemma 5.3.5. Let T denote exp(ηφj0(t)) and let f =
∑p

l=−p alT
l

and g =
∑p

l=−p blT
l be instanton-type solutions given by (2.1.4) and

(2.1.5). Assume that

(5.3.49) (αT − βT−1)f = (αT + βT−1)g

holds for some instanton-free series α and β whose top degree parts

α0 and β0 satisfy

(5.3.50) α0β0 6= 0.

Then there exists an instanton-type solution h =
∑p−1

l=−p+1 clT
l

which satisfies

(5.3.51) f = (αT + βT−1)h.

Furthermore cl is a linear combination of ak’s (−p ≤ k ≤ p) whose

coefficients are described in terms of α, β, α−1 and β−1.

Proof of Sublemma 5.3.5. Let feven (resp., fodd, geven and godd) denote

the even degree (in T ) part of f (resp., the odd degree part of f , the

even degree part of g and the odd degree part of g). By rewriting

(5.3.49) as

(5.3.52) (αT 2 − β)f = (αT 2 + β)g,

we compare the even degree parts and the odd degree parts in (5.3.52)

to find

(5.3.53) (αT 2 − β)feven = (αT 2 + β)geven

and

(5.3.54) (αT 2 − β)fodd = (αT 2 + β)godd;

hence we obtain

(5.3.55) (αT − βT−1)feven = (αT + βT−1)geven
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and

(5.3.56) (αT − βT−1)fodd = (αT + βT−1)godd.

Therefore it suffices to show the existence of h by

(i) assuming f and g are both of even degree in T

and

(ii) assuming f and g are both of odd degree in T .

As the logical structure of the proof is the same either in case (i) or in

case (ii), here we only consider the case (i), i.e., the even degree case.

Let us suppose

(5.3.57) f =
n∑

l=−n

a2lT
2l

and

(5.3.58) g =
n∑

l=−n

b2lT
2l.

Then, multiplying both sides by α−1T 2n+1, we find (5.3.55) can be

written as

(5.3.59) (T 2 − α−1β)(T 2nf) = (T 2 + α−1β)(T 2ng).

Hence it follows from (5.3.59) that

(5.3.60) (T 2nf)
∣∣∣
T 2=−α−1β

= 0.

In what follows we use the following expression for T 2nf and T 2ng:

(5.3.61) T 2nf =
n∑

l=−n

a2lT
2(l+n) =

2n∑

l=0

ãlT
2(2n−l),
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(5.3.62) T 2ng =
n∑

l=−n

b2lT
2(l+n) =

2n∑

l=0

b̃lT
2(2n−l),

that is, we let ãj = a2(n−j) and b̃j = b2(n−j) (j = 0, . . . , 2n). Under

this notation we can readily confirm the following “division” formula:

(5.3.63) T 2nf =

2n∑

l=0

ãlT
2(2n−l) = (T 2+α−1β)

2n−1∑

l=0

c̃lT
2(2n−1−l)+ c̃2n,

where c̃0 = ã0 and

(5.3.64) c̃l = ãl + (−α−1β)ãl−1 + · · · + (−α−1β)lã0

for l = 1, . . . , 2n. In particular, (5.3.60) implies

(5.3.65) c̃2n = (T 2nf)
∣∣∣
T 2=−α−1β

= 0,

and hence we obtain

(5.3.66) T 2nf = (T 2 + α−1β)
2n−1∑

l=0

c̃lT
2(2n−1−l),

that is,

(5.3.67) f = α−1(αT + βT−1)

(
2n−1∑

l=0

c̃lT
2n−1−2l

)
.

Thus, letting

(5.3.68) h = α−1
2n−1∑

l=0

c̃lT
2n−1−2l,

we obtain (5.3.51). This completes the proof of Sublemma 5.3.5. �

We now resume the proof of Lemma 5.3.4. By using the Taylor

expansion of exp±2(s3/2η
−1/2 + · · · + sl/2η

−(l−2)/2), we deduce the
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relation (5.3.70) below from the requirement

[
σcan(s0(t) + s1(t)η

−1 + s3/2(t, η)η
−3/2 + · · · + sl/2(t, η)η

−l/2, η)
]

(l−2)/2

(5.3.69)

= σ
(j0)
(l−2)/2(t, η),

(5.3.70)

sl/2(t, η) =
Xl/2

2(A0 exp(2ηs0 + 2s1) −B0 exp(−(2ηs0 + 2s1)))
,

where Xl/2 is a polynomial of instantons of degree (l − 1) by the in-

stanton structure of σ(j0) (cf. Appendix B) together with the induction

hypothesis, i.e., (5.3.35). Furthermore it follows from (5.3.69) and

(5.3.27) that

(5.3.71)[
ρcan(s0(t) + · · · + sl/2(t, η)η

−l/2, η)2
]

(l−2)/2
=
[
ρ(j0)(t, η)2

]
(l−2)/2

holds. Hence (5.3.38) entails

(5.3.72)
[
ρcan(s0(t) + · · · + sl/2(t, η)η

−l/2, η)
]

(l−2)/2
= ρ

(j0)
(l−2)/2(t, η).

Then, in parallel with the way of deducing (5.3.70) from (5.3.69), we

obtain from (5.3.72) the following relation:

(5.3.73)

sl/2(t, η) =
Yl/2

−4(A0 exp(2ηs0 + 2s1) +B0 exp(−(2ηs0 + 2s1)))
,

where Yl/2 is a polynomial of instantons of degree (l−1) by the instan-

ton structure of ρ(j0) together with the induction hypothesis. Combin-

ing (5.3.70) and (5.3.73) we now find

(5.3.74) (αT − βT−1)Xl/2 = −
1

2
(αT + βT−1)Yl/2

by choosing

(5.3.75) α = A0 exp(2s1),
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(5.3.76) β = −B0 exp(−2s1),

(5.3.77) T = exp(2ηs0).

Therefore Sublemma 5.3.5 guarantees that Xl/2 is divisible by (αT +

βT−1) in the polynomial ring generated with T and T −1 with instan-

tons in the coefficients. Hence (5.3.70) implies that sl/2 is of the re-

quired instanton structure (5.3.35). Thus the induction proceeds, com-

pleting the proof of Lemma 5.3.4.

Remark 5.3.1. Although we have imposed constraints (5.3.27) and

(5.3.28), there still remains arbitrariness in the choice of either A2l/2

or B2l/2, say A2l/2. This arbitrariness is inherited to sl/2.

The series s(t, η) constructed in Lemma 5.3.4 together with the

series constructed in Theorem 3.1 brings the simultaneous equation

(DSLJ)m to (DCan); the precise statement is as follows.

Proposition 5.3.6. Let us consider the problem in the setting of

Subsection 5.1; in particular, we assume (5.1.7). Let ϕ(z, s, η) be a

WKB solution of (Can) that satisfies (Dcan) also, and let ψ(x, t, η)

be given by the following:

(5.3.78) ψ(x, t, η) =

(
∂z(x, t, η)

∂x

)−1/2

ϕ(z(x, t, η), s(t, η), η),

where z = z(x, t, η) and s = s(t, η) are the transformations given

respectively by Theorem 3.1 and Lemma 5.3.4. Then ψ(x, t, η)

satisfies (DSLJ)m, i.e., the simultaneous equations (5.2.5) near

x = λj0,0(σ).

Proof. First we note that the s-dependence of Qcan is through Ecan,

ρcan and σcan. Since we obtain Scan by recursively solving the Riccati

equation

(5.3.79) S2
can +

∂Scan

∂z
= η2Qcan
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in an algebraic way, the s-dependence of Scan is also only through Ecan

(= ρ2
can − 4σ2

can), ρcan and σcan, that is,

(5.3.80) Scan(z, s, η) = Scan(z, ρcan(s, η), σcan(s, η), η).

Now, as is well-known (e.g. [KT4, Corollary 2.1.7]), the relation

between Q(J,m) and Qcan given by (3.9) implies the following relation

(5.3.81) between Sodd given by (5.3.1) and Scan,odd:

(5.3.81)

Sodd(x, t, η) =
∂z(x, t, η)

∂x
Scan,odd(z(x, t, η), ρ

(j0)(t, η), σ(j0)(t, η)).

On the other hand, (5.3.29) and (5.3.30) means that the right-hand

side of (5.3.81) is identical with

(5.3.82)
∂z

∂x
Scan,odd(z(x, t, η), ρcan(s(t, η), η), σcan(s(t, η), η)).

Hence, by using (5.3.80), we find

(5.3.83) Sodd(x, t, η) =
∂z(x, t, η)

∂x
Scan,odd(z(x, t, η), s(t, η), η).

Then, differentiating (5.3.83) by t, we obtain

∂Sodd

∂t
=
∂2z

∂x∂t
Scan,odd(z(x, t, η), s(t, η), η)(5.3.84)

+
∂z

∂x

(
∂Scan,odd(z(x, t, η), s(t, η), η)

∂z

∂z

∂t

+
∂Scan,odd(z(x, t, η), s(t, η), η)

∂s

∂s

∂t

)
.
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It then follows from (5.3.3) and (5.3.83) that

∂

∂x

{
a(J,m)

∂z

∂x
Scan,odd(z(x, t, η), s(t, η), η)

}
(5.3.85)

=
∂

∂x

{
∂z

∂t
Scan,odd(z(x, t, η), s(t, η), η)

}

+
∂z

∂x

∂s

∂t

∂Scan,odd(z(x, t, η), s(t, η), η)

∂s
.

Since we know

(5.3.86)
∂Scan,odd

∂s
=

∂

∂z
(AcanScan,odd),

we can rewrite (5.3.85) as

∂

∂x

{(
a(J,m)

∂z

∂x
−
∂z

∂t

)
Scan,odd(z(x, t, η), s(t, η), η)

}
(5.3.87)

=
∂s

∂t

∂z

∂x

∂

∂z
{(AcanScan,odd)(z(x, t, η), s(t, η), η)}

=
∂s

∂t

∂

∂x
{(AcanScan,odd)(z(x, t, η), s(t, η), η)} ,

that is,

(5.3.88)
∂

∂x

{(
a(J,m)

∂z

∂x
−
∂z

∂t
−Acan

∂s

∂t

)
Scan,odd(z(x, t, η), s(t, η), η)

}
= 0.

Here we recall [KT1, Proposition 2.2]; its proof applies to the current

situation without any changes and it shows the following:

(5.3.89)
∂ψ(x, t, η)

∂t
= a(J,m)

∂ψ

∂x
−

1

2

∂a(J,m)

∂x
ψ

follows from the relation

(5.3.90) a(J,m)
∂z

∂x
−
∂z

∂t
− Acan

∂s

∂t
= 0
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on the condition that ϕ solves (DCan). Thus our task is to deduce

(5.3.90) from (5.3.88). To attain this task we follow the way of reason-

ing in [KT2, Section 3]; that is, we introduce the following two symbols

J and K and we deduce J = 0 from the relation (5.3.93) below by

using the induction on the degree in η−1/2 in J :

J = 2(z(x, t, η) − η−1/2σcan(s(t, η), η))(5.3.91)

×

(
a(J,m)

∂z(x, t, η)

∂x
−
∂z(x, t, η)

∂t
−Acan

∂s(t, η)

∂t

)
,

(5.3.92) K =
η−1Scan,odd(z(x, t, η), s(t, η), η)

2(z(x, t, η) − η−1/2σcan(s(t, η), η)
.

It is then clear that (5.3.88) can be rewritten as

(5.3.93)
∂

∂x
(JK) = 0.

In order to make the induction argument run smoothly, we prepare the

following sublemmas:

Sublemma 5.3.7. In the current situation we find

ρ(j0)(t, η)



(

2b
(j0)
(J,m)

(
∂z

∂x

)2
)∣∣∣∣∣

x=λj0

−
∂s

∂t




(5.3.94)

= −η−1/2



{
∂

∂x

(
b

(j0)
(J,m)

)(∂z
∂x

)
+

(
3

2
b

(j0)
(J,m)

∂2z

∂x2
−
∂z

∂t

)} ∣∣∣∣∣
x=λj0


 .

Sublemma 5.3.8. Let X denote x − λj0 and let O(X l) denote a
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sum of terms containing a factor Xm (m ≥ l). Then we find

J =



[
2b

(j0)
(J,m)

(
∂z

∂x

)2
] ∣∣∣∣∣

x=λj0

−
∂s

∂t




(5.3.95)

+

[(
3b

(j0)
(J,m)

∂2z

∂x2
+ 2

∂

∂x

(
b

(j0)
(J,m)

)(∂z
∂x

)
− 2

∂z

∂t

)
∂z

∂x

] ∣∣∣∣∣
x=λj0

X +O(X2).

Proof of Sublemma 5.3.7. Using the definition of σ(j0), we differentiate

both sides of (5.3.29) with respect to t to find

(5.3.96)

dσcan

ds

∣∣∣∣∣
s=s(t,η)

∂s

∂t
= η1/2



∂z
∂x

∣∣∣∣∣
x=λj0

(t,η)

dλj0
dt

+
∂z

∂t

∣∣∣∣∣
x=λj0

(t,η)



 .

On the other hand, (3.11) entails

dλj0
dt

= −

[
2η1/2ρ(j0)b

(j0)
(J,m)

∂z

∂x
(5.3.97)

+
∂

∂x

(
b

(j0)
(J,m)

)
+

3

2
b

(j0)
(J,m)

∂2z/∂x2

∂z/∂x

]∣∣∣∣∣
x=λj0

.

Then by using (5.2.3), (5.3.30) and (5.3.97) we obtain

η1/2ρ(j0)

(
2b

(j0)
(J,m)

(
∂z

∂x

)2
)∣∣∣∣∣

x=λj0

− η1/2ρ(j0)
∂s

∂t
(5.3.98)

= −

[
∂

∂x

(
b

(j0)
(J,m)

)(∂z
∂x

)
+

3

2
b

(j0)
(J,m)

∂2z

∂x2
−
∂z

∂t

] ∣∣∣∣∣
x=λj0

.
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Thus we have confirmed (5.3.94). �

Proof of Sublemma 5.3.8. Using (5.3.29), the definition of σ(j0) and

the Taylor expansion in X , we obtain

J = 2

{
∂z

∂x

∣∣∣∣∣
x=λj0

X +
1

2

∂2z

∂x2

∣∣∣∣∣
x=λj0

X2(5.3.99)

+O(X3)

}{
1

X

(
b

(j0)
(J,m)

∣∣∣∣∣
x=λj0

+
∂b

(j0)
(J,m)

∂x

∣∣∣∣∣
x=λj0

X

+O(X2)

)(
∂z

∂x

∣∣∣∣∣
x=λj0

+
∂2z

∂x2

∣∣∣∣∣
x=λj0

X

+O(X2)

)
−

(
∂z

∂t

∣∣∣∣∣
x=λj0

+O(X)

)}
−
∂s

∂t

= 2b
(j0)
(J,m)

(
∂z

∂x

)2
∣∣∣∣∣
x=λj0

−
∂s

∂t

+

[
3b

(j0)
(J,m)

∂z

∂x

∂2z

∂x2
+ 2

∂

∂x

(
b

(j0)
(J,m)

)(∂z
∂x

)2

− 2
∂z

∂x

∂z

∂t

]∣∣∣∣∣
x=λj0

X +O(X2).

Thus we have verified (5.3.95). �

Let us now resume the proof of Proposition 5.3.6. Our strategy is

57



to employ (5.3.93) to prove that

(5.3.100) J =
∑

k≥0

η−k/2Jk/2

vanishes by using the induction on k. Let us first confirm J0 = 0.

Since E0 does not vanish by assumption (5.1.7),

(5.3.101) ρ
(j0)
0 6= 0.

Hence (5.3.94) shows

(5.3.102) 2b
(j0)
(J,m),0

(
∂z0

∂x

)2
∣∣∣∣∣
x=λj0,0

−
∂s0

∂t
= 0,

and then Sublemma 5.3.8 implies

(5.3.103) J0

∣∣∣
x=λj0,0

= 0.

Since K0 = 1, this means

(5.3.104) J0K0

∣∣∣
x=λj0,0

= 0.

Therefore (5.3.93) proves J0K0, and hence J0 also, vanishes identically.

Let us now suppose

(5.3.105) Jk/2 = 0 for k ≤ k0.

Since

(5.3.106)
∂z0

∂x

∣∣∣
x=λj0,0

6= 0,

(∂z/∂x)|x=λj0
is invertible and its inverse is of degree equal to or at
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most 0 in η. Hence Sublemma 5.3.8 entails
(
∂J

∂x

∣∣∣
x=λj0

)/ (
2
∂z

∂x

∣∣∣
x=λj0

)
(5.3.107)

= −



∂z
∂t

−
3

2
b

(j0)
(J,m)

∂2z

∂x2
−
∂b

(j0)
(J,m)

∂x

∂z

∂x




∣∣∣∣∣
x=λj0

.

Then (5.3.105) implies that the left-hand side of (5.3.107), and hence

its right-hand side also, is of degree equal to or at most (−(k0 + 1)/2)

in η. As the right-hand side of (5.3.94) is (−1)η−1/2 multiple of the

right-hand side of (5.3.107), the left-hand side of (5.3.94) is of degree

equal to or at most (−(k0 +2)/2). Again using the assumption (5.1.7),

we then find that

(5.3.108)



(

2b
(j0)
(J,m)

(
∂z

∂x

)2
)∣∣∣∣∣

x=λj0

−
∂s

∂t




(k0+1)/2

,

i.e., the degree −((k0 + 1)/2) part in η of the second factor of the

left-hand side of (5.3.94), should vanish. Then Sublemma 5.3.8 implies

(5.3.109) J(k0+1)/2

∣∣∣
x=λj0,0

= 0.

On the other hand the induction hypothesis (5.3.105) and (5.3.93) en-

tail

(5.3.110)
∂

∂x

(
J(k0+1)/2K0

)
= 0.

Combining (5.3.109) and (5.3.110), we find

(5.3.111) J(k0+1)/2K0 = 0.

Thus we have shown

(5.3.112) J(k0+1)/2 = 0,
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as K0 = 1. Therefore the induction proceeds, completing the proof of

Proposition 5.3.6.

The zig-zag reasoning between (5.3.94) and (5.3.95), which is the

core part of the induction used in the proof of Proposition 5.3.6, has

proved the following results as a by-product.

Proposition 5.3.9. In the situation discussed in Proposition 5.3.6

we find the following relations:

(5.3.113)
∂s

∂t
=

(
2b

(j0)
(J,m)

(
∂z

∂x

)2
)∣∣∣∣∣

x=λj0

,

(5.3.114)


∂z
∂t

−
3

2
b

(j0)
(J,m)

∂2z

∂x2
−
∂b

(j0)
(J,m)

∂x

∂z

∂x



∣∣∣∣∣
x=λj0

= 0.

Combining (5.2.8), (5.2.9) and (5.3.113) with (Hcan), we obtain

Corollary 5.3.10. In the above situation we have

(5.3.115)





∂σ(j0)

∂t
= −2η

(
b

(j0)
(J,m)

(
∂z

∂x

)2
)∣∣∣∣∣

x=λj0

ρ(j0),

∂ρ(j0)

∂t
= −8η

(
b

(j0)
(J,m)

(
∂z

∂x

)2
)∣∣∣∣∣

x=λj0

σ(j0).

Remark 5.3.2. An important consequence of (5.3.113) is that the series

s(t, η) is uniquely fixed modulo an additive infinite series in η that is

free from t.

5.4 Semi-global equivalence of (DSLJ)m and (DSLI)1

Proposition 5.3.6 enables us to construct a local correspondence be-

tween (DSLJ)m and (DSLI)1 near the double turning point x =
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λj0,0(t) of (SLJ)m by using (DCan) as an intermediator. Here (DSLI)1
is the same as (DSLI) in [KT2] by its definition. The local correspon-

dence thus constructed is an almost unique one, but it is not really

unique; it inherits the arbitrariness contained in s(t, η) that is noted

in Remark 5.3.2. By appropriately getting rid of the arbitrariness we

can analytically extend the local equivalence so that it may be defined

on a neighborhood of a simple turning point x = a(t) of (SLJ)m in

the setting described in Subsection 5.1. As we will show at the end

of this subsection, the semi-global equivalence thus obtained gives us

the transformation (x̃(x, t, η), t̃(t, η)) used in Theorem 5.1.1. As three

systems of differential equations, (DSLJ)m, (DSLI) (= (DSLI)1) and

(DCan) are involved in the construction of the transformation, we use

the following symbols to facilitate the identification of the differential

equation studied at that spot: (x, t) designates (resp., (x̃, t̃) and (z, s))

the independent variable of (DSLJ)m (resp., (DSLI) and (DCan)),

and we normally put the symbol˜(resp., suffix “can”) over (resp., to)

the quantities relevant to (DSLI) (resp., (DCan)), as possible as we

can. For example, the symbol S̃odd(x̃, t̃, η) means the odd part of a so-

lution S̃ of the Riccati equation associated with (SLI), and Sodd(x, t, η)

(resp., Scan,odd(z, s, η)) stands for a similar object which we encounter

in analyzing (DSLJ)m (resp., (DCan)). We believe that the usage

of symbols employed here is systematic and reasonable by itself. In

stating the following Theorem 5.4.1, we use the same symbols as those

introduced in Subsection 5.1. The logical structure of the proof of The-

orem 5.4.1 is essentially the same as that of Theorem 4.1 of [KT2], but

for the sake of completeness we include it here without paring it down.

Theorem 5.4.1. There exist a neighborhood V of σ, a neighbor-

hood U of the Stokes segment γ that connects λj0,0(σ) and a(σ),

holomorphic functions x̃l/2(x, t, η) on U × V and t̃l/2(t, η) on V
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(l = 0, 1, 2, · · · ) for which the following conditions (i) ∼ (vii) are

satisfied:

(i) The function t̃0(t, η) is independent of η, and it satisfies

(5.4.1) φj0(t) = φ̃I(t̃0(t)),

where φ̃I(t̃) designates the phase function that appears in an instanton-

type solution λ̃I of the classical Painlevé-I equation (5.1.8).

(ii) dt̃0/dt never vanishes on V .

(iii) The function x̃0(x, t, η) is also independent of η, and it satisfies

(5.4.2) x̃0(λj0,0(t), t) = λ̃I,0(t̃0(t))

and

(5.4.3) x̃0(a(t), t) = −2λ̃I,0(t̃0(t)).

(iv) ∂x̃0/∂x never vanishes on U × V .

(v) x̃1/2 and t̃1/2 vanish identically.

(vi) The η-dependence of x̃l/2 and t̃l/2 (l ≥ 2) is solely through

instanton terms originating from those in λj0(t, η), and x̃l/2 and

t̃l/2 are polynomials of instantons of degree at most (l − 2).

(vii) For x̃(x, t, η) =
∑

l≥0 x̃l/2(x, t, η)η
−l/2 and t̃(t, η) =

∑
l≥0 t̃l/2(t, η)η

−l/2,

the following relation holds:

Q(J,m)(x, t, η) =

(
∂x̃(x, t, η)

∂x

)2

Q̃I(x̃(x, t, η), t̃(t, η), η)(5.4.4)

−
1

2
η−2{x̃(x, t, η); x},

where Q̃I designates the potential that appears (SLI) and {x̃; x}

stands for the Schwarzian derivative.

Proof. Since x̃0(x, t) and t̃0(t), i.e., the top degree part of the trans-

formation that satisfies (i) ∼ (iv), have already been constructed in
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[KT5, Section 3.2], it suffices to construct higher degree parts of the

transformation. Let us first fix a correspondence among parameters of

(β1(η), β2(η)), (A(η), B(η)) and (α1, α2, . . . , α2m). Using the assump-

tion (5.1.7) and Lemma 5.3.2, we can fix (A(η), B(η)) and (β1(η), β2(η))

so that

(5.4.5) ẼI = Ecan = E(j0)

holds. Then Lemma 5.3.4 enables us to find t(j0)(t, η) and tI(t̃, η) so

that they satisfy the relations (5.4.6) ∼ (5.4.9). Here we note that the

corresponding object is denoted by s(t, η) in Lemma 5.3.4.

(5.4.6) σcan(t
(j0)(t, η), η) = σ(j0)(t, η),

(5.4.7) ρcan(t
(j0)(t, η), η) = ρ(j0)(t, η),

(5.4.8) σcan(tI(t̃, η), η) = σ̃I(t̃, η),

(5.4.9) ρcan(tI(t̃, η), η) = ρ̃I(t̃, η).

Here (σ̃I, ρ̃I) denotes the infinite series corresponding to (σ(j0), ρ(j0)) for

(DSLI), where j0 is uniquely fixed and usually not referred to.

In parallel with the above usage of symbols t(j0)(t, η) and tI(t̃, η) we

let (x(j0)(x, t, η), t(j0)(t, η)) and (xI(x̃, t̃, η), tI(t̃, η)) denote respectively

the transformation with which we find a WKB solution ψ(x, t, η) of

(DSLJ)m from a WKB solution ϕcan(z, s, η) of (DCan) by defining

(5.4.10)

ψ(x, t, η) =

(
∂x(j0)(x, t, η)

∂x

)−1/2

ϕcan

(
x(j0)(x, t, η), t(j0)(t, η), η

)

and the transformation with which we find a WKB solution ψ̃I(x̃, t̃, η)

of (DSLI) from a WKB solution ϕcan(z, s, η) of (DCan) by defining

(5.4.11)

ψ̃I(x̃, t̃, η) =

(
∂xI(x̃, t̃, η)

∂x̃

)−1/2

ϕcan

(
xI(x̃, t̃, η), tI(t̃, η), η

)
.
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We note that both transformations were designated simply by (z(x, t, η),

s(t, η)) in Proposition 5.3.6.

In order to construct the required series x̃(x, t, η) and t̃(t, η) using

the above transformations, we first note that (5.3.32) together with

(5.4.1) (or, originally, (3.2.6) of [KT5]) entails

(5.4.12) t
(j0)
0 (t) = tI,0(t̃0(t)).

This means that t̃0(σ) is not a P -turning point of (PI); that is,

(5.4.13) t̃0(σ) 6= 0.

On the other hand it follows from (5.3.32) that

(5.4.14)
dtI,0(t̃)

dt̃
=

1

2

dφ̃I(t̃)

dt̃
=

√
3λ̃I,0(t̃) =

(
−

3t̃

2

)1/4

,

and hence it does not vanish at t̃0(σ). Therefore tI(t̃, η) is invertible

near t̃0(σ). Similarly (3.6) guarantees that xI(x̃, t̃, η) is also invertible

near (x̃0(λj0,0(σ), σ), t̃0(σ)) = (λ̃I,0(t̃0(σ)), t̃0(σ)). Thus the transfor-

mation

(5.4.15)

{
z = xI(x̃, t̃, η)

s = tI(t̃, η)

can be inverted as

(5.4.16)

{
x̃ = x−1

I (z, s, η)

t̃ = t−1
I (s, η).

Using this inverse transformation, we now define

(5.4.17)

{
x̃(x, t, η) = x−1

I (x(j0)(x, t, η), t(j0)(t, η), η)

t̃(t, η) = t−1
I (t(j0)(t, η), η)

near (x, t) = (λj0,0(σ), σ). The relation (5.4.17) may be also expressed
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as

(5.4.18)

{
xI(x̃(x, t, η), t̃(t, η), η) = x(j0)(x, t, η)

tI(t̃(t, η), η) = t(j0)(t, η).

Then (5.3.83) entails

Sodd(x, t, η) =

(
∂x(j0)(x, t, η)

∂x

)
Scan,odd

(
x(j0)(x, t, η), t(j0)(t, η), η

)
(5.4.19)

=
∂xI(x̃(x, t, η), t̃(t, η), η)

∂x

× Scan,odd

(
xI(x̃(x, t, η), t̃(t, η), η), tI(t̃(t, η), η), η

)

=

(
∂xI

∂x̃

)(
x̃(x, t, η), t̃(t, η), η

) ∂x̃(x, t, η)

∂x

× Scan,odd

(
xI(x̃(x, t, η), t̃(t, η), η), tI(t̃(t, η), η), η

)

=
∂x̃(x, t, η)

∂x
S̃I,odd

(
x̃(x, t, η), t̃(t, η), η

)
.

This relation means that the series (x̃(x, t, η), t̃(t, η)) enjoys the re-

quired properties near (x, t) = (λj0,0(σ), σ). However, it may be sin-

gular at x = a(σ); our task is to adjust the free parameters that t̃(t, η)

contains so that x̃l/2(x, t) may be holomorphic near (x, t) = (a(σ), σ).

We also note that (5.4.18) enables us to deduce the following relations

(5.4.20) and (5.4.21) from (5.4.6) ∼ (5.4.9):

(5.4.20) σ̃I(t̃(t, η), η) = σ(j0)(t, η),

(5.4.21) ρ̃I(t̃(t, η), η) = ρ(j0)(t, η).
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To find an appropriate way of fixing the free parameters contained

in t̃(t, η) we first construct a transformation

(5.4.22) ỹ(x, t, η) =
∑

l≥0

ỹl/2(x, t, η)η
−l/2

that brings (SLJ)m to (SLI)1 near the simple turning point x = a(σ).

Contrary to the situation near x = λj0,0(σ), Q(J,m) is non-singular near

x = a(σ). Hence the reasoning in [KT4, Section 2] readily applies to

our situation, and we can construct the series ỹ(x, t, η) that satisfies

(5.4.23) S(J,m),odd(x, t, η) =
∂ỹ(x, t, η)

∂x
S̃I,odd(ỹ(x, t, η), t̃(t, η), η)

near (x, t) = (a(σ), σ). In the course of the construction of ỹ, one finds

that ỹl/2 is a polynomial of instantons of degree equal to or at most

l − 2 (cf. Appendix B).

For the computation required for the adjustment of the constants

we prepare following series:

(5.4.24) R(x̃, t̃, η) =
def

∫ x̃

−2λ̃I,0(t̃)

η−1S̃I,odd(w, t̃, η)dw,

(5.4.25) F(x, t, η) =
def
R(x̃(x, t, η), t̃(t, η), η),

(5.4.26) G(x, t, η) =
def
R(ỹ(x, t, η), t̃(t, η), η).

It then follows from (5.4.19) and (5.4.23) that

(5.4.27)
∂F

∂x
= η−1S(J,m),odd(x, t, η)

and

(5.4.28)
∂G

∂x
= η−1S(J,m),odd(x, t, η).
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Hence we find

(5.4.29)
∂

∂x
(F − G) = 0.

Next we try to prove

(5.4.30)
∂

∂t
(F − G) = 0.

In order to prove (5.4.30), we prepare the following

Sublemma 5.4.2. For the functions a(J,m) and ã(I,1) that appear

in the deformation equation, we find

∂x̃(x, t, η)

∂t
(5.4.31)

= a(J,m)(x, t)
∂x̃(x, t, η)

∂x
− ã(I,1)(x̃(x, t, η), t̃(t, η))

∂t̃(t, η)

∂t
.

Proof of Sublemma 5.4.2. Since we have confirmed (5.3.90) in the

course of the proof of Proposition 5.3.6, we have

(5.4.32)

a(J,m)(x, t)
∂x(j0)

∂x
−
∂x(j0)

∂t
−Acan(x

(j0)(x, t, η), t(j0)(t, η))
∂t(j0)

∂t
= 0

and

(5.4.33) ã(I.1)(x̃, t̃)
∂xI

∂x̃
−
∂xI

∂t̃
− Acan(xI(x̃, t̃, η), tI(t̃, η))

∂tI

∂t̃
= 0.

On the other hand, we differentiate the relation (5.4.18) with respect

to x and t to find

(5.4.34)
∂xI

∂x̃

∣∣∣∣∣ x̃=x̃(x,t,η)
t̃=t̃(t,η)

∂x̃

∂x
=
∂x(j0)

∂x
,

(5.4.35)
∂xI

∂x̃

∣∣∣∣∣ x̃=x̃(x,t,η)
t̃=t̃(t,η)

∂x̃

∂t
+
∂xI

∂t̃

∣∣∣∣∣ x̃=x̃(x,t,η)
t̃=t̃(t,η)

∂t̃

∂t
=
∂x(j0)

∂t
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and

(5.4.36)
∂tI

∂t̃

∣∣∣∣∣
t̃=t̃(t,η)

∂t̃

∂t
=
∂t(j0)

∂t
.

Substituting (5.4.32) and (5.4.33) into (5.4.35), we obtain

∂xI

∂x̃

∣∣∣∣∣ x̃=x̃(x,t,η)
t̃=t̃(t,η)

∂x̃

∂t
+

[
ã(I.1)(x̃, t̃)

∂xI(x̃, t̃, η)

∂x̃

(5.4.37)

−Acan(xI(x̃, t̃, η), tI(t̃, η))
∂tI(t̃, η)

∂t̃

]∣∣∣∣∣ x̃=x̃(x,t,η)
t̃=t̃(t,η)

∂t̃(t, η)

∂t

= a(J,m)(x, t)
∂x(j0)

∂x
−Acan(x

(j0)(x, t, η), t(j0)(t, η))
∂t(j0)(t, η)

∂t
.

Since (5.4.18) entails

Acan(xI(x̃(x, t, η), t̃(t, η), η), tI(t̃(t, η), η))
∂tI(t̃(t, η), η)

∂t̃

∂t̃(t, η)

∂t

(5.4.38)

= Acan(x
(j0)(x, t, η), t(j0)(t, η))

∂t(j0)(t, η)

∂t
,

(5.4.36) and (5.4.37) imply

(5.4.39)
∂xI

∂x̃

(
∂x̃

∂t
+ ã(I.1)(x̃, t̃)

∂t̃

∂t

) ∣∣∣∣∣ x̃=x̃(x,t,η)
t̃=t̃(t,η)

= a(J,m)(x, t)
∂x(j0)

∂x
.
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It then follows from (5.4.34) that

(5.4.40)
∂x̃

∂t
+ ã(I,1)(x̃(x, t, η), t̃(t, η))

∂t̃(t, η)

∂t
= a(J,m)(x, t)

∂x̃(x, t, η)

∂x
.

Thus we have obtained (5.4.31). �

Remark 5.4.1. An important point in Sublemma 5.4.2 is that we can

confirm (5.4.31) despite the fact that x̃(x, t, η) may be singular at

the simple turning point x = a(t). As [KT1, Proposition 2.2] shows,

(5.4.31) rather straightforwardly follows from (5.3.3), the deformation

equation for the odd part of a solution of the Riccati equation, if the

transformation series involved is defined near a simple turning point.

We now resume the proof of Theorem 5.4.1. Using Sublemma 5.4.2,

we find
∂F

∂t
=
∂R

∂x̃

∂x̃

∂t
+
∂R

∂t̃

∂t̃

∂t
(5.4.41)

= η−1S̃I,odd

(
a(J,m)

∂x̃

∂x
− ã(I,1)

∂t̃

∂t

)
−
∂R

∂t̃

∂t̃

∂t
.

On the other hand, the deformation equation (5.3.3) applied to S̃I,odd

implies

(5.4.42)
∂R

∂t̃
= η−1

ã(I,1)(x̃, t̃)S̃I,odd(x̃, t̃, η).

Hence it follows from (5.4.19) that

(5.4.43)
∂F

∂t
= η−1

a(J,m)S(J,m),odd.

As we noted in Remark 5.4.1, (5.4.31) is valid if we replace x(x̃, t̃, η)

by ỹ(x, t, η). This means that the above computation of ∂F/∂t is

equally applicable to the computation of ∂G/∂t, that is, we find

(5.4.44)
∂G

∂t
= η−1

a(J,m)S(J,m),odd.
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Therefore we obtain (5.4.30).

It then follows from (5.4.29) and (5.4.30) that

(5.4.45) F − G =
∑

l≥0

Cl/2η
−l/2

holds with a genuine constant Cl/2.

Let us now prove the following assertion (C)l for any l by the induc-

tion on l.

(C)l An appropriate choice of tl/2 guarantees the vanishing of Cl/2

and the coincidence of xl/2 and yl/2.

It follows from the definition of x0 and t0 that (C)0 holds. Since

x1/2 = y1/2 = 0 and t1/2 = 0, (C)1 is trivially valid. Let us now

suppose (C)k holds for every k < l and that l is even. Let H(l/2)

denote the part of (Fl/2 − Gl/2) which is irrelevant to S̃I,−1; that is,

H(l/2) = Fl/2 − Gl/2 −

[∫ x̃(x,t,η)

−2λ̃I,0(t̃0(t))

S̃I,−1(w, t̃(t, η))dw(5.4.46)

−

∫ ỹ(x,t,η)

−2λ̃I,0(t̃0(t))

S̃I,−1(w, t̃(t, η))dw

]

l/2

.

Thus H(l/2) consists of terms originating from S̃I,j (j ≥ 0). On the

other hand each term in H(l/2) is of degree (−l/2) in η by its definition.

Hence only x̃l′/2 and ỹl′′/2 (l′, l′′ ≤ l− 1) are relevant to H(l/2). Then

the induction hypothesis implies that H(l/2) should vanish. Thus we

concentrate our attention to the terms relevant to S̃I,−1. Then by using

the Taylor expansion we find
∫ x̃(x,t,η)

−2λ̃I,0(t̃)

S̃I,−1(w, t̃)dw −

∫ ỹ(x,t,η)

−2λ̃I,0(t̃)

S̃I,−1(w, t̃)dw(5.4.47)

70



= S̃I,−1(x̃0, t̃)
{
(η−1x̃1 + · · · + η−l/2x̃l/2 + · · · )

− (η−1ỹ1 + · · · + η−l/2ỹl/2 + · · · )
}

+
1

2!

∂S̃I,−1

∂x̃
(x̃0, t̃)

{
(η−1x̃1 + · · · )2 − (η−1ỹ1 + · · · )2

}

+ · · · .

Hence terms that contain x̃l/2 or ỹl/2 and that contributed to Fl/2−Gl/2
are

(5.4.48) S̃I,−1(x̃0, t̃0)(x̃l/2 − ỹl/2)η
−l/2.

Recalling the concrete form of S̃I,−1, we obtain

Cl/2

(5.4.49)

= 2

√
x̃0 + 2λ̃I,0(t̃0(t))

(
x̃0 − λ̃I,0(t̃0(t))

)(
x̃l/2(x, t, η) − ỹl/2(x, t, η)

)
.

We now apply the same reasoning to (5.4.19). The degree −(l − 2)/2

in η part in the last term in (5.4.19) is then seen to be of the following

form:

S̃I,−1(x̃0, t̃0)
∂x̃l/2
∂x

(5.4.50)

+
∂x̃0

∂x

∂S̃I,−1

∂x̃
(x̃0(x, t), t̃0(t))x̃l/2

+
∂x̃0

∂x

∂S̃I,−1

∂t̃
(x̃0(x, t), t̃0(t))t̃l/2

+Rl/2

(
x̃0, · · · , x̃(l−1)/2, t̃0, · · · , t̃(l−1)/2

)
,
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where Rl/2 is determined by x̃l′/2 and t̃l′′/2 with l′, l′′ ≤ l−1. Then the

top degree part of the deformation equation (5.3.3) applied to S̃I,odd

entails

(5.4.51)
∂S̃I,−1

∂t̃
=

∂

∂x̃

(√
x̃ + 2λ̃I,0(t̃)

)
.

Thus it follows from (5.4.19) that we find the following:

∂

∂x

(
2

√
x̃0(x, t) + 2λ̃I,0(t̃0(t))(x̃0(x, t) − λ̃I,0(t̃0(t)))x̃l/2

)
(5.4.52)

+

(
∂

∂x

(√
x̃0(x, t) + 2λ̃I,0(t̃0(t))

)
t̃l/2

)
+ Rl/2

= S(J,m),(l−2)/2(x, t, η).

Exactly the same reasoning applied to (5.4.23) entails the following:

∂

∂x

(
2

√
ỹ0(x, t) + 2λ̃I,0(t̃0(t))(ỹ0(x, t) − λ̃I,0(t̃0(t)))ỹl/2

)
(5.4.53)

+

(
∂

∂x

(√
ỹ0(x, t) + 2λ̃I,0(t̃0(t))

)
t̃l/2

)

+Rl/2(ỹ0, · · · , ỹ(l−1)/2, t̃0, · · · , t̃(l−1)/2)

= S(J,m),(l−2)/2(x, t, η).

Since xl/2 is non-singular at x = λj0,0(t), comparison of (5.4.52) and

(5.4.53) with the help of the induction hypothesis entails that ỹl/2 has

an at most simple pole near x = λj0,0(t). That is,

ỹl/2 =
dl/2(t, η) − t̃l/2(t, η)

2(x̃0(x.t) − λ̃I,0(t̃0(t)))
(5.4.54)

+ (non-singular function near x = λj0,0(t)),
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where dl/2 is determined by x̃l′/2 and t̃l′′/2 with l′, l′′ ≤ (l − 1). Sub-

stituting (5.4.54) into (5.4.49) and evaluating the resulting function at

x = λj0,0(t), we find

(5.4.55)

√
3λ̃I,0(t̃0(t))(t̃l/2(t, η) − dl/2(t, η)) = Cl/2.

Since t̃l/2(t, η) contains a free parameter originating from the arbitrary

parameter (Al/2, Bl/2) contained in (ρcan, σcan), we can choose some

point t∗ at which Cl/2 in (5.4.55) vanishes. Then it follows from (5.4.49)

that x̃l/2 = ỹl/2 holds. Since l is even by the assumption, l + 1 is odd.

This means C(l+1)/2 is a sum of monomials of instantons of odd degree.

But then it should vanish to become a constant. Therefore we find

x̃(l+1)/2 = ỹ(l+1)/2. Thus the induction proceeds, completing the proof

of Theorem 5.4.1.

The semi-global transformation (x̃(x, t, η), t̃(t, η)) found in Theo-

rem 5.4.1 is the required one in Theorem 5.1.1. Actually Sublemma 5.4.2

entails

2(x̃(x, t, η) − λ̃I(t̃(t, η), η))
∂x̃(x, t, η)

∂t
+
∂t̃(t, η)

∂t
(5.4.56)

= 2b
(j0)
(J,m)(x, t)

(
x̃(x, t, η) − λ̃I(t̃(t, η), η)

x− λj0(t, η)

)
∂x̃(x, t, η)

∂x
,

as

(5.4.57) ã(I,1) =
1

2(x̃− λ̃I(t̃, η))
.

Since the left-hand side of (5.4.56) is non-singular at x = λj0(t, η), we

find

(5.4.58) x̃(λj0(t, η), t, η) = λ̃I(t̃(t, η), η).

This is the required relation (5.1.9). Thus Theorem 5.4.1 together with

Sublemma 5.4.2 proves Theorem 5.1.1.
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Appendix A: Basic properties of the (PJ)-hierarchy

(J = I, 34, II-2 or IV) with a large parameter η

For the convenience of the reader we list up the symbols and equa-

tions we use in this paper. We basically follow the notations used in

[Ko2], and as its consequence the symbols used here sometimes dif-

fer slightly from those used in [KKoNT]. For example, the differen-

tial polynomial Fj(c) of u given by (A.1.2) below corresponds to Gj
in [KKoNT], the constant 2γ in (A.1.1) below is designated by g in

[KKoNT], and so on. In this appendix we confine our attention to the

notational aspect of the problem, and we refer the reader to [Ko2] con-

cerning the theoretical issues such as the equivalence of two expressions

etc.

A.1 Definition of (PI)m and (P̃I)m

As is discussed in [KKoNT, Appendix B], PI-hierarchy can be ex-

pressed in two different but equivalent ways. Here, and in what follows,

we use the symbol (PI)m to denote the following equation:

(A.1.1) Fm+1(c) + 2γt = 0,

where Fj(c) is, by definition,

(A.1.2) Fj(c) =
m∑

k=0

ckFj−k (with c0 = 1).

Here Fl’s denote appropriately normalized Gel’fand-Dickey polynomi-

als with a large parameter η; they are polynomials of the (unknown)

function u and its derivatives, and they satisfy

dFl+1

dt
=η−2d

3Fl
dt3

+ 4u
dFl
dt

+ 2
du

dt
Fl(A.1.3)

with

F0 =1/2.(A.1.4)
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We note that they are normalized as follows:

F1 =u,(A.1.5)

F2 =3u2 + η−2d
2u

dt2
,(A.1.6)

F3 =10u3 + η−2

(
10u

d2u

dt2
+ 5

(
du

dt

)2
)

+ η−4d
4u

dt4
,(A.1.7)

and so on. In the equation (A.1.1) we normally assume

(A.1.8) c1 = cm+1 = 0

by adding appropriate constants to u and t respectively. In practice,

we usually abbreviate Fm+1(c) to Fm.

Another expression of PI-hierarchy given below is denoted by (P̃I)m,

which is denoted by (PI)m in [KKoNT].

(A.1.9)

(P̃I)m :





η−1duj
dt

= 2vj (j = 1, 2, . . . ,m)

η−1dvj
dt

= 2(uj+1 + u1uj + wj) (j = 1, 2, . . . ,m),

where

(A.1.10) um+1 = γ̃t

and

wj =
1

2

j∑

k=1

ukuj−k+1 +

j−1∑

k=1

ukwj−k(A.1.11)

−
1

2

j−1∑

k=1

vkvj−k + c̃0(2uj −

j−1∑

k=1

ukuj−k) + c̃j.
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A.2 Correspondence between (PI)m and (P̃I)m

For a solution u of (PI)m, the equation (P̃I)m is satisfied by (uj, vj)1≤j≤m
defined by (A.2.1) through Fj given in (A.1.2) if constants γ̃ and

c̃j (0 ≤ j ≤ m) are chosen to satisfy (A.2.2) below.

uj = −2−2j+1Fj, vj = −2−2jη−1dFj

dt
(1 ≤ j ≤ m),(A.2.1)

γ̃ = 4−mγ, c̃j = 2−2j−3

j+1∑

k=0

cj−k+1ck (0 ≤ j ≤ m).(A.2.2)

Conversely if (uj, vj)1≤j≤m is a solution of (P̃I)m,

(A.2.3) u = −2(u1 + c̃0)

is a solution of (PI)m on the condition that the relation (A.2.2) is

satisfied.

A.3 Lax pairs (LI)m for (PI)m and (L̃I)m for (P̃I)m

The m-th member of (PI)-hierarchy is the compatibility condition

of the following system (LI)m of linear differential equations, which we

call the Lax pair underlying (PI)m.

(LI)m :





2η−1γ
∂
→

ψ

∂x
= A

→

ψ (A.3.1.a)

η−1∂
→

ψ

∂t
= B

→

ψ (A.3.1.b)

(A.3.1)

with

A =




−η−1∂F

∂t
2F

−η−2∂
2F

∂t2
+ 2(x− u)F η−1∂F

∂t


 +N(A.3.2)
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B =

(
0 1

x− u 0

)
,(A.3.3)

where

(A.3.4) F =

m∑

j=0

(4x)m−jFj

and

(A.3.5) N =

(
0 0

−(Fm+1 + 2γt) 0

)
.

Remark A.3.1. The Lax pair (A.3.1) is slightly different from that

given in [GP]. (See [KKoNT, Appendix B] also.) We add a matrix N

to A of [GP] in such a way that the compatibility condition of (A.3.1)

exactly becomes Fm+1 + 2γt = 0 instead of (d/dt)(Fm+1 + 2γt) = 0.

For the role of the matrix N see also Remark A.7.1 below.

On the other hand, the Lax pair (L̃I)m that underlies (P̃I)m is given

as follows:

(A.3.6) (L̃I)m :





η−1γ̃
∂
→

ψ

∂x
= Ã

→

ψ (A.3.6.a)

η−1∂
→

ψ

∂t
= B̃

→

ψ (A.3.6.b),

where

Ã =

(
V (x)/2 U(x)(

2xm+1 − (x− 2c̃0)U(x) + 2W (x) + 2γ̃t
)
/4 −V (x)/2

)
,

(A.3.7)

B̃ =

(
0 2

u1 + x/2 + c̃0 0

)(A.3.8)
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with

U(x) = xm −
m∑

j=1

ujx
m−j,(A.3.9)

V (x) =

m∑

j=1

vjx
m−j,(A.3.10)

W (x) =
m∑

j=1

wjx
m−j.(A.3.11)

Note that the relation (A.2.1) entails that the (1, 2)-component of the

matrix A is the same as 4m multiple of that of Ã.

To avoid some numerical complexity in the description of the associ-

ated Hamiltonian (to be given in Subsection A.4 below) we assume in

this paper that γ̃ = 1/2; this means that we can choose the constant Θ

in [Ko2] to be 1. This choice of the constant γ̃ causes, however, a tiny

difference between the Lax pair used here and that used in [KKoNT].

A.4 The Hamiltonian structure of (P̃I)m ([Ko2, Theorem

1.10])

Let us choose (λ1, . . . , λm, µ1, . . . , µm) so that they satisfy

U(x) =
m∏

j=1

(x− λj)(A.4.1)

and

µj = V (λj) (1 ≤ j ≤ m)(A.4.2)

for U(x) and V (x) defined respectively by (A.3.9) and (A.3.10). By

letting Nj (1 ≤ j ≤ m) denote
∏

k=1,2,...,m
k 6=j

(λj − λk)
−1,(A.4.3)
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we define

H1 =
m∑

j=1

Nj(µ
2
j − (λ2m+1

j +
m∑

k=1

tkλ
m+k−1
j ))(A.4.4)

for complex numbers {tk}
m
k=1. It is known ([Ko2]) that H1 is a Hamil-

tonian for the degenerate Garnier system G(m + 5/2;m).

Set

(A.4.5) t1 = t + 2c̃m

and

(A.4.6) tj = 2c̃m−j+1 (2 ≤ j ≤ m)

inH1, and letK denote the resulting function of (t;λ1, . . . , λm, µ1, . . . , µm).

Then the system (P̃I)m is equivalent to the following Hamiltonian sys-

tem (GI)m:

(A.4.7) (GI)m :





dλj
dt

= η
∂K

∂µj
(j = 1, 2, . . . ,m)

dµj
dt

= −η
∂K

∂λj
(j = 1, 2, . . . ,m).

A.5 Definition of (P34)m and (P̃34)m

In view of the results in [CJP] we study (P34)-hierarchy as an equiv-

alent substitute of (PII-1)-hierarchy in [KKoNT]. One advantage in

studying (P34)-hierarchy is its intimate connection with (PI)-hierarchy;

a similar connection is also observed between (PIV)-hierarchy and (PII-2)-

hierarchy discussed in the subsequent subsections. We note that the

awkward naming (P34)-hierarchy is due to its relevance to the equation

numbered XXXIV that appears in the classical study of the Painlevé

property ([I, p.340]).
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The m-th member of (P34)-hierarchy is, by definition,

(P34)m : 2η−2(Fm + 2γt)
d2Fm

dt2
− η−2

(
dFm

dt
+ 2γ

)2

(A.5.1)

+ 4u(Fm + 2γt)2 + κ2 = 0,

where η is a large parameter, γ (6= 0) and κ are constants and Fm =

Fm(c) is a sum of Gel’fand-Dickey polynomials given in (A.1.2). In

what follows we use the symbol Im to denote the left-hand side of

(A.5.1), i.e.,

Im =2η−2(Fm + 2γt)
d2Fm

dt2
− η−2

(
dFm

dt
+ 2γ

)2

(A.5.2)

+ 4u(Fm + 2γt)2 + κ2.

Another expression of (P34)-hierarchy is given by (P̃34)m below ([Ko2,

Theorem 2.3]).

(A.5.3)

(P̃34)m :





η−1duj
dt

= 2vj (1 ≤ j ≤ m)

η−1dvj
dt

= 2(u1uj + uj+1 + wj) (1 ≤ j ≤ m)

um+1 = −wm + c̃0um − γ̃t(u1 + c̃0) +
(vm − η−1γ̃/2)2 − κ̃2

2(um − γ̃t)
,

where wj is a polynomial of (ul, vl′)1≤l,l′≤j which is recursively deter-

mined through (A.1.11) containing constants c̃j, and c̃0, γ̃ and κ̃ are

also constants.

A.6 Correspondence between (P34)m and (P̃34)m ([Ko2,

Theorem 2.3])

For a solution u of (P34)m, the equation (P̃34)m is satisfied by (uj, vj)1≤j≤m
defined by (A.2.1) with the help of Fj if constants γ̃, κ̃ and c̃j (0 ≤
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j ≤ m) satisfy

(A.6.1) γ̃ = 4−m+1γ, κ̃ = 4−mκ, c̃j = 2−2j−3

j+1∑

k=0

cj−k+1ck.

Conversely, if (uj, vj)1≤j≤m satisfies (P̃34)m, u = −2(u1 + c̃0) is a

solution of (P34)m. (Note that [Ko2, (2.3)] contains some typogrphical

errors; γ̃ = 4m−1γ, κ̃ = 2−mκ in [Ko2, (2.3)] should be replaced by the

first two relations in (A.6.1). In what follows we correct such errors

without mentioning when citing formulas in [Ko2]. We refer the reader

to [Ko3] for a list of corrections of typogrphical errors in [Ko2].)

A.7 Lax pairs (L34)m and (L̃34)m ([GP], [Ko2])

The Lax pair (L34)m (resp., (L̃34)m) that underlies (P34)m (resp.,

(P̃34)m) is as follows:

(A.7.1) (L34)m :





4η−1γx
∂
→

ψ

∂x
= A

→

ψ (A.7.1.a)

η−1∂
→

ψ

∂t
= B

→

ψ (A.7.1.b)

A =
1

2




−η−1(
∂F

∂t
+ 2γ) 2(F + 2γt)

−η−2∂
2F

∂t2
+ 2(x− u)(F + 2γt) η−1(

∂F

∂t
+ 2γ)


 +N

(A.7.2)

and

(A.7.3) B =

(
0 1

x− u 0

)
,

81



where

(A.7.4) F =
m∑

j=0

(4x)m−jFj

and

(A.7.5) N =

(
0 0

Im/(4(Fm + 2γt)) 0

)
.

Remark A.7.1. The purpose of adding the matrix N to the original

Lax pair used in [GP] is two-fold: first it fixes the expression of the

Lax pair by eliminating the 2m-th derivative of u in A, and secondly it

makes the compatibility condition of (A.7.1.a) and (A.7.1.b) coincides

with (P34)m with the parameter κ2 fixed. The first fact enabled Koike

([Ko2]) to smoothly find the corresponding Lax pair (L̃34)m of (P̃34)m,

and the second fact is effectively used in his reasoning to relate (P̃34)m,

and hence (P34)m, with a Garnier system. Note that the original for-

mulation of [GP] gives a family of (P34)m (parameterized by κ2 in the

notation of [Ko2]) as the compatibility condition of their Lax pair. In

practice we always substitute a solution of (P34)m into the coefficients

of (L34)m in this paper and hence we may ignore N in analyzing the

Lax pair.

With the help of Remark A.7.1, Koike ([Ko2]) gives the Lax pair

(L̃34)m of (P̃34)m as follows:

(A.7.6) (L̃34)m :





η−1γ̃x
∂
→

ψ

∂x
= Ã

→

ψ (A.7.6.a)

η−1∂
→

ψ

∂t
= B̃

→

ψ (A.7.6.b)
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where

(A.7.7)

Ã =




1

2
V (x) −

1

4
η−1γ̃ U + γ̃t

1

4
(2xm+1 − (x− 2c̃0)U + 2W

+γ̃t(x + 2u1 + 2c̃0) + 2um+1)
−(

1

2
V (x) −

1

4
η−1γ̃)




and

(A.7.8) B̃ =

(
0 2

1
2
x + u1 + c̃0 0

)
.

Here U, V and W are the polynomials given respectively by (A.3.9),

(A.3.10) and (A.3.11). In view of (A.2.1) the (1, 2)-component of A is

again found to be the same as 22m−1 multiple of that of Ã.

In parallel with the study of (P̃I)m, we choose γ̃ to be 1/2 in what

follows. This choice of γ̃ enables us to assume the constant Θ in [Ko2]

to be 1.

A.8 The Hamiltonian structure of (P̃34)m ([Ko2, Theorem

2.19])

Let us choose (λ1, . . . , λm, µ1, . . . , µm) so that they satisfy

(A.8.1) U(x) +
1

2
t =

m∏

j=1

(x− λj)

and

(A.8.2) µj =
1

λj
(V (λj) − κ̃−

1

4
η−1) (1 ≤ j ≤ m).

By letting Nj (1 ≤ j ≤ m) denote

(A.8.3)
∏

k=1,2,...,m
k 6=j

(λj − λk)
−1
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we define

(A.8.4) H1 =
m∑

j=1

Nj

(
λjµ

2
j − 2κ̃µj − (λ2m

j +
m∑

k=1

tkλ
m+k−1
j )

)

for complex numbers {tk}
m
k=1. It is known ([Ko2]) that H1 is a Hamil-

tonian for the degenerate Garnier system G(1,m + 3/2;m). Set

(A.8.5) t1 = 4t + 2c̃m−1

and

(A.8.6) tj = 2c̃m−j (2 ≤ j ≤ m)

in H1, and let

(A.8.7)

K(t;λ1, . . . , λm, µ1, . . . , µm) = 4H1

∣∣∣
t1=4t+2c̃m−1,t2=2c̃m−2,··· ,tm=2c̃0

.

Then the system (P̃34)m is equivalent to the following Hamiltonian

system (G34)m :

(A.8.8) (G34)m :





dλj
dt

= η
∂K

∂µj
(j = 1, 2, . . . ,m)

dµj
dt

= −η
∂K

∂λj
(j = 1, 2, . . . ,m).

A.9 Definition of (PII-2)m and (P̃II-2)m

The (PII-2)-hierarchy and the (PIV)-hierarchy are defined in [GJP1,

GJP2] with the help of differential polynomials (Kn, Ln)n≥0 of a pair of

functions (u, v) and their derivatives, which are recursively determined
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by the following relation:

(A.9.1)



Kn+1 =
1

2
(uKn + 2Ln − η−1dKn

dt
) (A.9.1.a)

Ln+1 =
1

4

n∑

j=0

(vKn−jKj − Ln−jLj + η−1Kn−j
dLj
dt

) (A.9.1.b)

with

(A.9.2) K0 = 2, L0 = 0.

(See [N] for the background of the formula (A.9.1).) For the conve-

nience of the notation we introduce

(A.9.3)

(
Kn

Ln

)
= c0

(
Kn

Ln

)
+ c1

(
Kn−1

Ln−1

)
+ · · · + cn

(
K0

L0

)
,

where cj ’s are constants. Unless otherwise stated explicitly, we choose

c0 to be 1. For example,

(
K3

L3

)
=

1

4

[(
u3 + 6uv

3u2v + 3v2

)
+ 3uη−1 d

dt

(
−u

v

)
+ η−2 d

2

dt2

(
u

v

)](A.9.4)

+
c1
2

[(
u2 + 2v

2uv

)
+ η−1 d

dt

(
−u

v

)]
+ c2

(
u

v

)
+ c3

(
2

0

)
.

(Cf. [KKoNT, Remark 1.3.1].) The m-th member of (PII-2)-hierarchy

is, by definition, the following equation (A.9.5). ([KKoNT, Defini-

tion 1.3.1]; note, however, that we have reversed the order of labelling

the constants cj ’s so that our notation may become consistent with

those used in [Ko2].)

(A.9.5) (PII-2)m :

{
Km+1 + 2γt = 0 (A.9.5.a)

Lm+1 = 2κ (A.9.5.b)
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with γ( 6= 0) and κ being constants. Unless otherwise stated, we sup-

pose cm+1 = 0 for simplicity.

Another expression (A.9.6) of (PII-2)m is given by Koike ([Ko1]),

which is denoted by (P̃II-2)m in [Ko2].

(A.9.6)

(P̃II-2)m :





η−1duj
dt

= −2(u1uj + vj + uj+1) + 2cju1 (1 ≤ j ≤ m)

(A.9.6.a)

η−1dvj
dt

= 2(v1uj + vj+1 + wj) − 2cjv1 (1 ≤ j ≤ m)

(A.9.6.b)

with

um+1 = γt, vm+1 = κ. (A.9.6.c)

Here γ( 6= 0), κ and cj ’s are constants used in the definition of (PII-2)m,

and wj is a polynomial of (uk, vk)k≤j that is recursively determined by

the following relation:

(A.9.7) wj =

j−1∑

k=1

uj−kwk+

j∑

k=1

uj−k+1vk+
1

2

j−1∑

k=1

vj−kvk−

j−1∑

k=1

cj−kwk.

A.10 Correspondence between (PII-2)m and (P̃II-2)m ([Ko2,

Theorem 3.5])

For a solution (u, v) of (PII-2)m, the equation (P̃II-2)m is satisfied by

(uj, vj)1≤j≤m defined by (A.10.1) through (Kj,Lj)1≤j≤m.

(A.10.1)






uj = −
1

2
Kj + cj (1 ≤ j ≤ m)

vj =
1

2
Lj (1 ≤ j ≤ m).

Conversely, if (uj, vj)1≤j≤m is a solution of (P̃II-2)m, then

(A.10.2) u = −2u1, v = 2v1
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is a solution of (PII-2)m.

A.11 Lax pairs (LII-2)m and (L̃II-2)m ([Ko2, §3])

The Lax pair (LII-2)m (resp., (L̃II-2)m) that underlies (PII-2)m (resp.,

(PII-2)m) is as follows:

(A.11.1) (LII-2)m :





γη−1∂
~ψ

∂x
= A~ψ (A.11.1.a)

η−1∂
~ψ

∂t
= B~ψ (A.11.1.b)

with

(A.11.2)

A =
1

4




−(2x− u)K − η−1dK

dt
2K

−2η−1dL

dt
− 2vK (2x− u)K + η−1dK

dt


 +N

and

(A.11.3) B =

(
−x + u/2 1

v x− u/2

)
,

where

(A.11.4) K =

m∑

j=0

xm−jKj, L =

m∑

j=0

xm−jLj

and

(A.11.5) N =
1

2

(
−Km+1 − 2γt 0

2(Lm+1 − 2κ) Km+1 + 2γt

)
.

Remark A.11.1. Concerning the role of the additional matrix N , the

situation is essentially the same as that for the case of (L34)m.
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(A.11.6) (L̃II-2)m :






γη−1∂
~ψ

∂x
= Ã~ψ (A.11.6.a)

η−1∂
~ψ

∂t
= B̃ ~ψ (A.11.6.b)

with

(A.11.7)

Ã =

(
−(xm+1 + V + xC(x) + γt) U + C(x)

−2(xV +W + κ) xm+1 + V + xC(x) + γt

)

and

(A.11.8) B̃ =

(
−(x + u1) 1

−2v1 x + u1

)
,

where

(A.11.9) C(x) =
m∑

j=1

cjx
m−j

and U , V and W are polynomials of x given respectively by (A.3.9),

(A.3.10) and (A.3.11). Note that the (1, 2)-component of A exactly

coincides with that of Ã thanks to (A.10.1).

A.12 The Hamiltonian structure of (P̃II-2)m ([Ko1, Theo-

rem 1.3])

Let us choose (λ1, . . . , λm, µ1, . . . , µm) so that they satisfy

(A.12.1) U(x) + C(x) =
m∏

j=1

(x− λj) (j = 1, 2, . . . ,m)

and

(A.12.2) µj = −V (λj) (j = 1, 2, . . . ,m).
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By letting Nj (1 ≤ j ≤ m) denote

(A.12.3)
∏

k=1,2,...,m
k 6=j

(λj − λk)
−1

and letting Am(z, t) denote

(A.12.4) 2zm+1 +
m∑

j=1

jtjz
j−1,

we define

(A.12.5) H1 =
1

2

m∑

j=1

Nj

(
µ2
j −Am(λj, t)µj − (2α + 1)λmj

)

for a constant α. Then H1 (for α 6= −1/2) is a Hamiltonian of a de-

generate Garnier system called Am-system ([L]). (The HamiltonianH1

used in [Ko2] is the same as that of [L], which contains some additional

terms depending only on t. As such terms independent of (λj, µj) are

irrelevant in defining the Hamiltonian system, we eliminate these terms

here.) Set

(A.12.6) t1 = 2t

and

(A.12.7) tj = 2cm−j/j (2 ≤ j ≤ m)

and let K denote the resulting function of (t;λ1, · · · , λm, µ1, · · · , µm).

Then (P̃II-2)m is equivalent to the following Hamiltonian system (GII-2)m.

(A.12.8) (GII-2)m :





dλj
dt

= η
∂K

∂µj
(1 ≤ j ≤ m)

dµj
dt

= −η
∂K

∂λj
(1 ≤ j ≤ m),
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if we choose

(A.12.9) κ = −(α + 1/2).

We note κ may vanish in (A.12.8).

A.13 Definition of (PIV)m and (P̃IV)m

With the help of differential polynomials Km and Lm them-th mem-

ber of (PIV)-hierarchy is given by the following:

(A.13.1)

(PIV)m :





η−1dKm

dt
= 2Lm + uKm + 2γtu− 4θ1 − 2η−1γ

(A.13.1.a)

η−1(Km + 2γt)
dLm

dt
=−v(Km+ 2γt)2+(Lm−2θ1)

2− 4θ2
2

(A.13.1.b)

with γ, θ1, θ2 and cj ’s (1 ≤ j ≤ m) being constants.

Another expression (A.13.2) of (PIV)m is found by Koike ([Ko1]),

which is denoted by (P̃IV)m in [Ko2].

(A.13.2)

(P̃IV)m :






η−1duj
dt

= −2(u1uj + vj + uj+1) + 2cju1 (1 ≤ j ≤ m)

(A.13.2.a)

η−1dvj
dt

= 2(v1uj + vj+1 + wj) − 2cjv1 (1 ≤ j ≤ m)

(A.13.2.b)

vm+1 = −(γtu1 + θ1 + 1
2
η−1γ) (A.13.2.c)

vm+1 = −wm − γtv1 −
(vm − θ1)

2 − θ2
2

2(um − γt− cm)
, (A.13.2.d)

where the constants are the same as those in (PIV)m and wj is the

polynomial determined by (A.9.7).
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A.14 Correspondence between (PIV)m and (P̃IV)m ([Ko2,

Theorem 3.6])

For a solution (u, v) of (PIV)m the equation (P̃IV)m is satisfied by

(uj, vj)1≤j≤m defined by (A.10.1), and for a solution (uj, vj)1≤j≤m of

(P̃IV)m the functions (u, v) given by (A.10.2) provide a solution of

(PIV)m; the situation is exactly in parallel with the situation of the

pair (PII-2)m and (P̃II-2)m.

A.15 Lax pairs (LIV)m and (L̃IV)m ([Ko2, Theorem 3.8 and

3.9])

The Lax pair (LIV)m (resp., (L̃IV)m) that underlies (PIV)m (resp.,

(P̃IV)m) is as follows:

(A.15.1) (LIV)m :





γxη−1∂
→

ψ

∂x
= A

→

ψ (A.15.1.a)

η−1∂
→

ψ

∂t
= B

→

ψ (A.15.1.b)

with

(A.15.2) A =

1

4



−(2x−u)(K+2γt)−η−1dK

dt
−2η−1γ 2(K + 2γt)

−2η−1dL

dt
− 2v(K + 2γt) (2x−u)(K+2γt)+η−1dK

dt
−2η−1γ




+N

and

(A.15.3) B =

(
−x + u/2 1

v x− u/2

)
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Here K and L are the polynomials given in (A.11.4) and

(A.15.4) N =
1

4

(
Im 0

2Jm/(Km + 2γt) −Im

)
,

where

(A.15.5) Im = η−1dKm

dt
− u(Km + 2γt) − 2Lm + 4θ1 + 2η−1γ

and

(A.15.6) Jm = η−1(Km+2γt)
dLm

dt
+v(Km+2γt)2−(Lm−2θ1)

2+4θ2
2.

Remark A.15.1. Concerning the role of the additional matrix N , the

situation is essentially the same as that for the case of (L34)m.

(A.15.7) (L̃IV)m :





γxη−1∂
→

ψ

∂x
= Ã

→

ψ (A.15.7.a)

η−1∂
→

ψ

∂t
= B̃

→

ψ (A.15.7.b)

with

(A.15.8)

Ã =

(
−(xm+1 + V + xC(x) + γxt− θ1) U + C(x) + γt

−2(xV +W + vm+1 + γtv1) xm+1 + V + xC(x) + γxt− θ1

)

and

(A.15.9) B̃ =

(
−(x + u1) 1

−2v1 x + u1

)
,

where C(x), U, V and W are polynomials of x respectively given by

(A.11.9), (A.3.9), (A.3.10) and (A.3.11). The (1, 2)-component of A

again coincides with that of Ã.
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A.16 The Hamiltonian structure of (PIV)m ([Ko1, Theo-

rem 1.4])

Let us fix the constant γ to be 2 and choose (λ1, · · · , λm, µ1, · · · , µm)

so that they satisfy

(A.16.1) U(x) + C(x) + 2t =
m∏

j=1

(x− λj)

and

(A.16.2) µj = −
1

2λj
(V (λj) − θ1 − θ2) (j = 1, 2, · · · ,m).

Set

(A.16.3) κ0 = θ2

and

(A.16.4) κ∞ = (θ1 + θ2)/2.

In parallel with the case of (P̃II-2)m, we let Nj (1 ≤ j ≤ m) denote

(A.16.5)
∏

k=1,2,··· ,m
k 6=j

(λj − λk)
−1

and define

(A.16.6) H1 =
m∑

j=1

Nj

(
λjµ

2
j − (

m∑

k=1

tkλ
k
j + λm+1

j + κ0)µj + κ∞λ
m
j

)
,

where tk’s are complex parameters. Then H1 is a Hamiltonian of a

degenerate Garnier system called Kawamuko system ([Kwm]). Set

(A.16.7) t1 = 2t + cm

and

(A.16.8) tk = cm−k+1 (2 ≤ k ≤ m),
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and let K denote the resulting function of (t;λ1, · · · , λm, µ1, · · · , µm).

Then (P̃IV)m is equivalent to the following Hamiltonian system (GIV)m.

(A.16.9) (GIV)m :





dλj
dt

= η
∂K

∂µj
(1 ≤ j ≤ m)

dµj
dt

= −η
∂K

∂λj
(1 ≤ j ≤ m).

Appendix B: Parity structure of instanton-type

solutions

To prove Lemma 5.3.2 and Lemma 5.3.4 we have used the “alter-

nating parity” structure of instanton-type solutions in Section 5. In

Appendix B we explain this parity structure of instanton-type solu-

tions of (PJ)m (J = I, 34, II-2 or IV, m = 1, 2, . . .).

Let us start with a brief review of the core part of [T2] for the

construction of instanton-type solutions. Each member (PJ)m of the

(PJ)-hierarchy can be expressed in the form of the Hamiltonian system

(B.1)





dqj
dt

= η
∂H

∂pj
(j = 1, . . . ,m)

dpj
dt

= −η
∂H

∂qj
(j = 1, . . . ,m)

with the Hamiltonian H = H(t, q, p; η−1) by introducing an appro-

priate canonical variable (q, p) = (qj, pj)1≤j≤m through a canonical

transform

(B.2) uj = uj(t, q, p; η
−1), vj = vj(t, q, p; η

−1).

For example, the variable (λj, µj) discussed in Appendix A (cf. Sub-

sections A.4, A.8, A.12 and A.16) is one of such canonical variables.

(See [T2] for another choice of canonical variables in the case of (PI)-

hierarchy.) To construct instanton-type solutions of (PJ)m we use the
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Hamiltonian form (B.1). We first note that the system (B.1) admits a

formal power series solution (with respect to η−1) of the form

(B.3) q̂j = q̂
(0)
j (t)+η−1q̂

(1)
j (t)+· · · , p̂j = p̂

(0)
j (t)+η−1p̂

(1)
j (t)+· · · ,

which is called a 0-parameter solution. We then introduce a new canon-

ical variable (ψj, ϕj) defined by

(B.4) qj = q̂j + η−1/2ψj, pj = p̂j + η−1/2ϕj.

In the new variable (ψj, ϕj) (B.1) is expressed again in the Hamiltonian

form as

(B.5)





dψj
dt

= η
∂K

∂ϕj
(j = 1, . . . ,m)

dϕj
dt

= −η
∂K

∂ψj
(j = 1, . . . ,m)

where the Hamiltonian K = K(t, ψ, ϕ; η−1/2) is given by

(B.6) K =
∑

|µ+ν|≥2

1

µ!ν!
η−(|µ+ν|−2)/2∂

|µ+ν|H

∂qµ∂pν
(t, q̂, p̂)ψµϕν

(cf. [T2, (21),(22)]). Note that, if

(B.7) K =
∞∑

k=0

η−k/2K(k)(t, ψ, ϕ)

denotes the formal power series expansion ofK in η−1/2, each coefficient

K(k) is a polynomial of (ψ, ϕ) of degree at most k + 2 and has the

following parity structure:

(B.8) When k is an odd (resp., even) integer, K (k) is a sum of

monomials of odd (resp., even) degree.

As is shown in [T2, Theorem 2], if we assume (2.1.2) and (2.1.3), in

a neighborhood of an arbitrarily given point t = t0 we can find a
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canonical transform

(B.9)

ψj =
∞∑

k=0

η−k/2ψ
(k)
j (t, ψ̃, ϕ̃; η−1/2), ϕj =

∞∑

k=0

η−k/2ϕ
(k)
j (t, ψ̃, ϕ̃; η−1/2),

where ψ
(k)
j and ϕ

(k)
j are homogeneous polynomials of degree (k + 1) in

(ψ̃, ϕ̃), that transforms (B.5) into its Birkhoff normal form

(B.10)





dψ̃j
dt

= η
∂K̃

∂ϕ̃j
(j = 1, . . . ,m)

dϕ̃j
dt

= −η
∂K̃

∂ψ̃j
(j = 1, . . . ,m)

with the Hamiltonian K̃ of the form

(B.11) K̃ = K̃(t, σ1, . . . , σm; η−1/2)

(where σj = ψ̃jϕ̃j). Since we can readily confirm that

(B.12)





Ψ̃j = αj exp


η
∫ t ∂K̃

∂σj

∣∣∣∣∣
σ1=α1αm+1,··· ,σm=αmα2m

dt




Φ̃j = αj+m exp


−η

∫ t ∂K̃

∂σj

∣∣∣∣∣
σ1=α1αm+1,··· ,σm=αmα2m

dt


 ,

(j = 1, . . . ,m) provides a solution of (B.10), we thus obtain a formal

solution (2.1.4)-(2.1.5) of the original (PJ)m by substituting (B.12)

successively into (B.9), (B.4) and (B.2). This is an outline of the

construction of instanton-type solutions discussed in [T2].

96



In the course of the proof of [T2, Theorem 2] (cf. [T2, Section 4]) we

see that

(B.13) the coefficients ψ
(k)
j and ϕ

(k)
j in (B.9) are formal power series

of η−1 (not of η−1/2), that is, ψ
(k)
j and ϕ

(k)
j contain no odd

degree terms of η−1/2.

Furthermore

(B.14) K̃ also contains no odd degree terms of η−1/2.

Otherwise stated, writing K̃ as

(B.15) K̃ =

∞∑

k=0

η−k
∑

|ν|=k+1

gν(t, η)σ
ν

in accordance with the expressions (2.1.6) and (2.1.7) of instantons,

we find that gν(t, η) is a formal power series of η−1, that is, there

are no odd degree terms of η−1/2 in the expansion (2.1.8). Hence

every instanton contains terms of integral powers of η−1 only. It then

follows from this fact and (B.13) that the coefficients uj,l/2(t,Ψ,Φ) and

vj,l/2(t,Ψ,Φ) of instanton-type solutions (2.1.4) and (2.1.5) have the

following “alternating parity” structure:

(B.16) When l is an odd (resp., even) integer, uj,l/2 and vj,l/2 are

sums of monomials of (Ψ,Φ) of odd (resp., even) degree (at

most l).

Finally, combining this parity structure (B.16) of instanton-type so-

lutions with the definitions (3.11) and (3.13) of ρ(j0)(t, η) =
∑

l≥0 η
−l/2ρ

(j0)
l/2

and σ(j0)(t, η) =
∑

l≥0 η
−l/2σ

(j0)
l/2 , respectively, we can confirm the fol-

lowing:

(B.17) When l is an odd (resp., even) integer, ρ
(j0)
l/2 and σ

(j0)
l/2 are

sums of monomials of (Ψ,Φ) of even (resp., odd) degree (at

most l + 1).
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As a consequence of (B.17) and the definition (3.12) we also find the

following parity structure for E(j0) =
∑

l≥0 η
−l/2E

(j0)
l/2 :

(B.18) E
(j0)
l/2 is a sum of monomials of instantons of odd (resp., even)

degree for an odd (resp., even) integer l.
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transcendents with a large parameter, II. — Multiple-scale
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Miwa linear problems, J. Math. Phys., 47(2006), 073504

(16 pp).

[GP] P.R. Gordoa and A. Pickering: Nonisospectral scattering

problems: a key to integrable hierarchies, J. Math. Phys.,

40(1999), 5749–5786.

[I] E.L. Ince: Ordinary Differential Equations, Dover, New

York, 1956.

[KKoNT] T. Kawai, T. Koike, Y. Nishikawa, Y. Takei: On the Stokes

geometry of higher order Painlevé equations, Astérisque,
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Bessatsu, B2(2007), 247–260.

[T2] : Instanton-type formal solutions for the first
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