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Abstract

We consider the weighted maximum multiflow problem with respect to terminal
weight µ. We show that if the dimension of the tight span associated with µ is at
most 2, then this problem has a 1/12-integral optimal multiflow for every Eulerian
supply graph. This result solves a weighted generalization of Karzanov’s conjecture
for classifying commodity graphs with finite fractionality. In addition, our proof
technique proves the existence of an integral or half-integrality optimal multiflow
for a large class of multiflow maximization problems, and gives a polynomial time
algorithm.

1 Introduction

Let G = (V,E) be an undirected graph with integral edge capacity c : E → Z+. Let
S ⊆ V be a set of terminals. Let H be a simple undirected graph on S, called commodity
graph. A multiflow (multicommodity flow) f is a pair (P, λ) of a set P of (simple) paths
connecting the ends of some edge ofH and a nonnegative flow-value function λ : P → R+

satisfying capacity constraint
∑

P∈P:e∈P λ(P ) ≤ c(e) for e ∈ E. The total flow-value ‖f‖
of a multiflow f = (P, λ) is defined as

∑
P∈P λ(P ). The maximum multiflow problem

with respect to (G,H) is formulated as:

MFP: Maximize ‖f‖ over all multiflows f for (G,H).

In the case ofH = K2, consisting of one edge, MFP is the ordinary (single-commodity)
maximum flow problem. The max-flow min-cut theorem, due to Ford-Fulkerson [6], says
that there exists an integral maximum flow. In the case of H = K2 + K2, consisting
of two vertex-disjoint edges, MFP is the maximum 2-commodity flow problem. Hu [13]
showed that there exists a half-integral maximum flow. However, no analogous theorem
holds for the 3-commodity flow problem. It is known that there is no positive integer
k such that all 3-commodity flow problems have a 1/k-integral maximum flow. On the
other hand, for H = K|S|, the complete graph on S, Lovász [26] and Cherkassky [3]
independently showed that there exists a half-integer maximum flow.

In this way, the integrality (or half-integrality) property depends crucially on the
structure of the commodity graph H. Motivated by this fact, Karzanov [16] defined the
fractionality, denoted by frac(H), of a commodity graph H as the least positive integer
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k such that there exists a 1/k-integral maximum flow in MFP for every capacitated
graph G having H as the commodity graph. If no such positive integer k exists, then
frac(H) is defined to be +∞. The above-mentioned examples show that frac(K2) = 1,
frac(K2 + K2) = 2, frac(Kn) = 2, and frac(K2 + K2 + K2) = +∞. Karzanov [16, 17]
posed the following fundamental problem:

Classify the commodity graphs having finite fractionality.

The linear program dual to MFP gives a lower bound of the fractionality frac(H).
The dual fractionality frac∗(H) is defined to be the least positive integer k such that there
exists a 1/k-integral optimum in the LP-dual to MFP for every capacitated graph G
having H as the commodity graph. Then the standard TDI argument implies frac(H) ≥
frac∗(H) [16]. Therefore the finiteness of the dual fractionality is a necessary condition
for the finiteness of the (primal) fractionality.

Karzanov [16] gave a necessary and sufficient condition for the finiteness of the dual
fractionality, and determined its possible values as follows. A commodity graph H is
said to have property P if it satisfies the following condition:

(P) For any triple A,B,C of pairwise intersecting maximal stable sets of H, we have
A ∩B = B ∩ C = C ∩A.

Theorem 1.1 ([16]). For a commodity graph H, we have the following:

(1) If H has property P, then frac∗(H) ∈ {1, 2, 4}.

(2) If H does not have property P, then frac∗(H) = +∞ and hence frac(H) = +∞.

See also [27, Section 73.3b]. Karzanov conjectured that property P is also sufficient for
the finiteness of primal fractionality, and, more strongly, that the possible values are also
1, 2, 4,+∞, as follows.

Conjecture 1.2 ([17]). Suppose that a commodity graph H has property P. Then the
following hold:

(1) frac(H) < +∞,

(2) frac(H) ∈ {1, 2, 4},

where (1) is the weaker form of the conjecture.

Recently, Theorem 1.1 and Conjecture 1.2 have been extended to a more general
setting of the weighted maximum multiflow problem. Instead of a commodity graph H,
we are given a nonnegative integral terminal weight µ :

(
S
2

)
→ Z+, where

(
S
2

)
denotes

the set of unordered pairs of elements in S. Then a multiflow f is a pair (P, λ) of a
set P of paths connecting distinct terminals in S and a nonnegative flow-value function
λ : P → R+ satisfying the capacity constraint. The total flow-value ‖f‖µ is defined as

‖f‖µ :=
∑
P∈P

µ(sP , tP )λ(P ),

where sP and tP denote the ends of P . The µ-weighted maximum multiflow problem is
formulated as:

µ-MFP: Maximize ‖f‖µ over all multiflows f for (G,S).
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If µ is 0-1 valued, then µ-MFP coincides with MFP for the commodity graph H that
has an edge st if and only if µ(s, t) = 1.

The fractionality frac(µ) of a terminal weight µ is defined as the least positive integer
k such that µ-MFP has a 1/k-integral optimal multiflow for every graph, and the dual
fractionality frac∗(µ) is the least positive integer k such that the LP-dual to µ-MFP has
a 1/k-integral optimal solution for every capacitated graph. Again frac(µ) ≥ frac∗(µ)
holds.

Karzanov [19] extended Theorem 1.1 concerning commodity graph H to a similar
statement for metric-weights, and it was extended further in [10] for general weights.
For a terminal weight µ :

(
S
2

)
→ Z+, define a polyhedral set Tµ in RS

+ as

(1.1) Tµ := {p ∈ RS | p(s) = max
t∈S
{µ(s, t)− p(t)}},

where we let µ(s, s) = 0. This polyhedral set Tµ is called the injective envelope or
the tight span, introduced independently by Isbell [14] and Dress [4] for metrics, and
considered by [9] for general weights. The dimension dimTµ is defined to be the largest
dimension of a face of Tµ.

Theorem 1.3 ([19] for metrics and [10] for general weights). For a terminal weight µ
on S, we have the following:

(1) If dimTµ ≤ 2, then frac∗(µ) ∈ {1, 2, 4}.

(2) If dimTµ ≥ 3, then frac∗(µ) = frac(µ) = +∞.

The property P of H is equivalent to the 2-dimensionality of the tight span of the
corresponding 0-1 weight µ, as is observed in [10, Section 7]. Thus Conjecture 1.2 for
primal fractionality is naturally generalized to the following:

Conjecture 1.4. Suppose that a terminal weight µ satisfies dimTµ ≤ 2. Then the
following hold:

(1) frac(µ) < +∞.

(2) frac(µ) ∈ {1, 2, 4}.

The main result of this paper is an affirmative solution of the weaker statement (1)
of this generalized conjecture.

Theorem 1.5. For a terminal weight µ on S, if dimTµ ≤ 2, then µ-MFP has a 1/12-
integral optimal multiflow for every Eulerian graph.

This theorem implies the weaker statement (1) of Conjecture 1.2, and thus completes
the classification of terminal weights and commodity graphs having finite fractionality
as follows.

Corollary 1.6. A terminal weight µ has finite fractionality if and only if dimTµ ≤ 2.
A commodity graph H has finite fractionality if and only if H has property P.

As a consequence of Theorem 1.5, the possible values of the fractionality are restricted
to 1, 2, 3, 4, 6, 8, 12, 24, and +∞. However we know no example of terminal weights having
fractionality other than 1, 2, 4,+∞.

Our proof is constructive, and gives a strongly polynomial time to find a 1/12-integral
optimal multiflow under some assumption.

Theorem 1.7. For a commodity graph H with property P, there exists a strongly poly-
nomial time algorithm to find a 1/12-integral optimal multiflow in every inner Eulerian
graph.
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Organization. The rest of this paper is divided into three parts. In the first part (Sec-
tions 2 and 3), we introduce a duality framework using folder complexes (F-complexes
for short), developed in the previous paper [12], and describe the proof outline of The-
orem 1.5. An F-complex is a 2-dimensional cell complex obtained by gluing folders,
which appeared in Karzanov [18, 19], and was introduced formally by Chepoi [2, Section
7]. If dimTµ ≤ 2, then µ can be embedded into some F-complex K, and the maximum
value of µ-MFP is equal to the minimum value of a discrete location problem on K.
In Section 2, we introduce the concept of F-complex and its relation to the multiflow
duality. Our proof is based on a fractional version of the splitting-off method combined
with the dual update, called SPUP standing for Splitting-off with Potential Update,
which is an effective framework for proving the existence of a 1/k-integral optimal mul-
tiflow for a bounded integer k, devised originally in the previous paper [11] for a special
case. In Section 3, we describe the SPUP framework together with the proof outline of
Theorem 1.5.

The second part (Sections 4 and 5) is the technical part. In Section 4, we analyze
SPUP from the complementary slackness and the geometry of F-complexes. In Section 5,
we complete the proof of Theorem 1.5 by showing that the SPUP framework actually
works. This also gives a polynomial time algorithm to find a 1/12-integral optimal
solution provided the size of F-complex is fixed.

In the third part (Sections 6 and 7), we describe consequences and implications;
these sections can be read without the full knowledge of the second part. Our framework
not only brings a unified understanding to previously known results but also a powerful
algorithmic tool for proving the existence of an integral or half-integral optimal multiflow
for Eulerian graphs. In Section 6, we introduce a powerful geometric criterion to show
that µ-MFP has an integral optimal multiflow for every Eulerian graph. In Section 7,
we concentrate on µH -MFP for a commodity graph H with property P. We explicitly
construct F-complexes for H, and prove the half-integrality theorem for a large class of
commodity graphs, unifying the previous known results [15, 20, 22, 24, 25].

Notation. Let R, R+, Z, and Z+ denote the sets of reals, nonnegative reals, integers,
and nonnegative integers, respectively. For a set X, let RX and RX

+ denote the sets of
functions from X to R and X to R+, respectively.

For a graph G = (V,E) with terminal set S ⊆ V , each nonterminal node x ∈ V \ S
is called an inner node. G is endowed with edge-capacity c. The degree of node x ∈ V
is the sum of c(e) over all edges e incident to x. By a path we mean a simple path, i.e.,
it has no repeated nodes. G is said to be inner Eulerian if c is integer-valued and each
inner node has an even degree. For a positive integer k, kG is the graph (V,E) with
edge-capacity kc

A function d : X × X → R+ on a set X is called a metric if it satisfies d(s, t) =
d(t, s) ≥ d(s, s) = 0 and the triangle inequalities d(s, t) + d(t, u) ≥ d(s, u) for s, t, u ∈ S.
For a metric d on X and two subsets A,B ⊆ X, the distance d(A,B) between A and B
is defined as

d(A,B) = inf{d(s, t) | s ∈ A, t ∈ B}.

We denote d(A, {p}) simply by d(A, p). We often regard a metric d on node set V of
graph G = (V,E) as an edge-length d : E → R+ by d(e) := d(x, y) for e = xy. For a
path or a cycle P , d(P ) denotes the sum of d(e) over all edges e in P .

We use the notion of a cell complex; see [1, Chapter I.7] for a precise definition. For
a cell complex K, a 1-dimensional cell of segment [p, q] is also called an edge, denoted by
pq. A 0-dimensional cell is called a vertex; the set of vertices is denoted by V (K)
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Figure 1: Folder complex

Figure 2: Folders: (a) square-folder and (b) K2,6-folder

2 Basics on multiflow combinatorial dualities

As is well-known in the multiflow theory [24], an LP-dual of µ-MFP is an optimization
problem over metrics:

Minimize
∑

e=xy∈E
c(e)d(x, y)(2.1)

subject to d : metric on V with d(s, t) ≥ µ(s, t) for s, t ∈ S.

In the case of dimTµ ≤ 2, µ can be embedded into some folder complex K, and this em-
bedding gives a combinatorial expression to LP (2.1). A folder complex is a 2-dimensional
cell complex obtained by gluing folders (under some axiom) as depicted in Figure 1.
Folder complex K is endowed with a metric dK. If a terminal weight µ is represented
as the distances dK(Rs, Rt) between certain regions Rs in K indexed by s ∈ S, then a
combinatorial dual problem for µ-MFP takes the form of a discrete location problem on
K.

In Section 2.1, we introduce F-complexes and summarize their basic geometric prop-
erties. In Section 2.2, we explain a combinatorial duality relation for µ-MFP by F-
complexes, and summarize basic facts, including optimality criteria.

2.1 Folder complex

We consider a 2-dimensional cell complex obtained by the following construction. Fix a
positive real δ > 0. A cell having an isometry into an isosceles right triangle {(x1, x2) ∈
R2 | 0 ≤ x1 ≤ x2 ≤ δ} in the Euclidean plane will be called a triangle, whereas a cell
having an isometry to a square {(x1, x2) ∈ R2 | 0 ≤ x1, x2 ≤ δ} is a square.
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Figure 3: A corner of 3-cube

By a folder we mean a square or a cell complex obtained by gluing triangles along
the common longer edge. See Figure 2. A square is particularly called a square-folder. A
folder F is called a K2,m-folder if F consists of m triangles, and also called a K2,∗-folder
if F is a K2,m for some m. A K2,∗-folder has two types of edges: the (unique) longer
edge and shorter edges. Following [2], we call the longer edge the hypotenuse, and a
shorter edge a leg. Any edge of a square-folder is called a leg. A scale parameter δ is
called the leg-length.

Next we consider a cell complexK obtained by gluing folders and edges (1-dimensional
cell) isometric to segment [0, δ], which we also call a leg, in such a way that any two of
the folders are glued along one leg or at one vertex. Then K is called a folder complex
(an F-complex for short) [2, Section 7] if it is simply-connected, and satisfies:

Flag condition: there exist no vertex p and three legs e1, e2, e3 incident to p such that
ei and ej belong to a common folder for 1 ≤ i < j ≤ 3.

This condition means that folders should be glued without a corner of 3-cube as in
Figure 3. A metric on K is defined as follows. Each 2-dimensional cell (a triangle or a
square) has a natural l1-metric by the isometry to R2. Then the l1-length of a path P
in K is the sum, over all cells σ, of the l1-length of σ◦ ∩ P measured by the l1-metric on
σ, where σ◦ denotes the relative interior of σ. The l1-length metric dK(p, q) between p
and q in K is defined to be the infimum of the lengths of all paths connecting p and q in
K.

We next introduce a certain class of regions in a folder complex K; we will represent
µ as the distance between these regions in K. A connected subcomplex R of K is called
normal if it satisfies the following axiom:

Boundary axiom: the boundary of R (relative to K) consists of hypotenuses, i.e., if a
leg e belongs to R, then every cell containing e belongs to R.

Local convexity: there exists no pair of triangles σ, σ′ sharing a leg and a right angle
such that (σ ∪ σ′) ∩R coincides with the union of the hypotenuses of σ and σ′.

Any normal set is a closed connected set. See Figure 4 for the violation of local convexity.
We list several basic concepts of F-complex below.

2.1.1 Admissible orientations and orbits

An F-complex K is said to be orientable if the edge set of K has an orientation with
the property that, for each folder F in K, there is a pair p, q of vertices of F such that
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Figure 4: Violation of local convexity

Figure 5: An admissible orientation (restricted to folders)

each edge (leg or hypotenuse) of F enters p or leaves q; see Figure 5. This orientation is
called an admissible orientation; in fact, an admissible orientation is acyclic. Vertices p
and q are particularly called the source and the sink of F , respectively, with respect to
this orientation.

An orbit is an equivalence class with respect to the equivalence relation obtained as
the transitive closure of the relation ' on all edges (legs and hypotenuses) of K defined
by e ' e′ if e and e′ are nonadjacent legs in some square-folder, or belong to a common
K2,∗-folder. An admissible orientation is obtained by orienting orbits independently.
Such orientation of an orbit is also said to be admissible. See Figure 6. Each orbit has
exactly two admissible orientations; one is the reverse of the other.

For an admissible orientation
−→
K of K and vertices p, q ∈ V (K), we write p �−→

K q if

p = q, −→pq is an oriented leg in
−→K , or (p, q) is the source-sink pair of some folder with

respect to
−→K . Let O be an orbit and let

−→
O be an admissible orientation of O. If O

contains all edges of a folder F , then
−→
O determines the source and the sink of F , as in

Figure 5. Similarly, we write p �−→
O

q if p = q, −→pq is an oriented leg in
−→
O , or (p, q) is the

source-sink pair of some folder with respect to
−→
O . Note that relations �−→K and �−→

O
are

not transitive.

Figure 6: Oriented orbits
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2.1.2 Leg-graph

The leg-graph Γ is the graph on V (K) consisting of all legs (not including hypotenuses).
The leg-graph is precisely a frame in the sense of [18] (although F-complexes and frames
are essentially equivalent, F-complexes are suitable to represent normal regions). We
often use the following elementary properties of Γ , which can easily be verified [12].

(2.2) (1) The leg-graph Γ is bipartite.

(2) For normal sets N,M , we have dK(N,M) = dΓ,δ(N ∩ V (K),M ∩ V (K)),

where dΓ,δ denotes the shortest path metric on the leg-graph with respect to uniform
edge-length δ.

2.1.3 Subdivisions

An F-complex K has a natural subdivision operation. For a positive integerm, subdivide
each leg into m legs of length δ/m. Accordingly, subdivide each square into m × m
squares of leg-length δ/m, each triangle into m triangles and m(m − 1)/2 squares of
leg-length δ/m; see [12, Figure 5]. The resulting complex is denoted by Km, called the
m-subdivision of K. One can easily see the following facts:

(2.3) Km is also an F-complex, and K2 is always orientable.

See Figure 12 (in Section 3) for verifying the orientability of K2.

2.1.4 Star-shaped F-complex and neighborhood

An F-complex K is said to be star-shaped if there exists a vertex p such that every
maximal cell contains p and no triangle has p as its right angled corner. A star-shaped
F-complex will be used in investigating the local structure around vertex p. The neigh-
borhood Kp of p consists of all cells containing p and their faces. Neighborhood Kp is also
an F-complex, and a geodesic subspace of K with diameter at most 4δ. In particular,

(2.4) dK(p, q) = dKp(p, q) ∈ {0, 1, 2, 3, 4}δ (p, q ∈ V (Kp)).

(The geodesic property dK = dKp is implicit in [12]. One can verify this property by
using the properties of the leg-graph: every 4-cycle belongs to a unique folder [12, (3.6)]
and every 6-cycle has a chord; see [12, 18]).

Although Kp may not be star-shaped, (Km)p for m ≥ 2 is always star-shaped. Let
Πp be the graph obtained by deleting p from the leg-graph of (Km)p for some m ≥ 2,
where Πp is independent of m. See Figure 7. Then the flag condition can be rephrased
by the following:

(2.5) Πp has girth at least 8,

where the girth means the shortest length of a (simple) cycle. Πp is a bipartite graph
with bipartition {Lp, Qp}, where Qp denotes the set of vertices incident to p by legs in
(Km)p and Lp denotes the set of the other vertices.

Even if Kp is not star-shaped, the leg-graph of Kp is a subgraph of that of (Km)p.
Therefore we can naturally regard V (Kp) \ {p} as a subset of Lp ∪Qp.
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Figure 7: Neighborhood of p

Figure 8: Summands

2.1.5 Orbits and summands

For a (disjoint) union U of several orbits, we can construct a new complex K/U from K
by contracting each edge not in U ; see [12] for a more precise construction. Again K/U
consists of folders, and indeed is an F-complex by the next proposition. We call K/U a
summand of K. See Figure 8. The contraction naturally induces a map (·)/U : V (K)→
V (K/U) by defining p/U to be the contracted vertex. By extending linearly, we obtain
a map (·)/U : K → K/U . Also define K\U as the summand K/U for the complement U
of U , and define map (·)\U as (·)/U .

Proposition 2.1 ([12, Proposition 3.15]). Let U be the union of several orbits.

(1) K/U is an F-complex.

(2) For a normal set R in K, R/U is also normal in K/U .

(3) For normal sets M,N in K, dK(M,N) = dK/U (M/U,N/U) + dK\U (M\U,N\U).

2.2 F-complex realization and multiflow combinatorial duality

Here we describe a combinatorial duality relation for µ-MFP by an F-complex. For a
weight µ on terminal set S, an F-complex realization (a realization for short) of µ is a
pair (K; {Rs}s∈S) of an F-complex K and a family {Rs}s∈S of normal sets satisfying

µ(s, t) = dK(Rs, Rt) (s, t ∈ S).

Namely µ is realized as the distances among normal sets Rs. Figure 9 illustrates an
example, where s7 and s8 are embedded into regions (Rs8 is the shaded region), and the

9



Figure 9: F-complex realization

others are embedded into vertices. It is known that an existence of a realization of µ is
characterized by the dimension of the tight span Tµ [12].

Theorem 2.2 ([12, Theorem 4.5]). The following two conditions are equivalent:

(1) dimTµ ≤ 2.

(2) µ has an F-complex realization.

In fact, a realization of µ can be obtained by subdividing 2-dimensional polyhedral
complex Tµ into folders with δ = 1/4 [10].

An F-complex realization enables us to define a combinatorial problem dual to µ-
MFP, sharpening LP-dual (2.1). Suppose that a weight µ on S has an F-complex re-
alization (K; {Rs}s∈S). We consider the following discrete location problem associated
with (K; {Rs}s∈S):

DLP(K; {Rs}s∈S): Minimize
∑
xy∈E

c(xy)dK(ρ(x), ρ(y))

subject to ρ : V → V (K), ρ(s) ∈ Rs (s ∈ S).

Here ρ represents an embedding of the node set V of G into that of K. Our previous
paper established the following duality relation, extending a result in [18].

Theorem 2.3 ([12, Theorem 2.1]). Suppose that µ has an orientable F-complex real-
ization (K; {Rs}s∈S). Then the maximum value of µ-MFP for (G,S) is equal to the
minimum value of DLP(K; {Rs}s∈S).

This theorem guarantees the existence of an optimal metric d in (2.1) represented
as d(x, y) = dK(ρ(x), ρ(y)) for a map ρ in DLP(K; {Rs}s∈S); see Section 5.4 for a more
detailed account of the relationship between DLP and LP-dual. The orientability re-
quirement is not restrictive. By the subdivision operation (Section 2.1.3), we can always
make a given F-complex realization orientable. Hence we tacitly assume that an F-
complex is always orientable.

A map ρ feasible to DLP(K; {Rs}s∈S) is called a potential. For a potential ρ, let dρ

denote the metric on V defined by dρ(x, y) := dK(ρ(x), ρ(y)), and let dρ(G) denote the
objective value

∑
e∈E c(e)dρ(e) of DLP(K; {Rs}s∈S). Let opt(µ;G) denote the optimal

value of µ-MFP, which is equal to the optimal value of DLP(K; {Rs}s∈S) by Theorem 2.3.
We list several basic properties of µ-MFP and DLP(K; {Rs}s∈S) below.
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2.2.1 Optimality criterion of primal-dual type

For a multiflow f = (P, λ) and a potential ρ, the duality gap dρ(G)− ‖f‖µ is given as

dρ(G)− ‖f‖µ =
∑
e∈E

c(e)dρ(e)−
∑
P∈P

µ(sP , tP )λ(P )(2.6)

=
∑
e∈E

dρ(e)(c(e)− fe) +
∑
P∈P

λ(P )(dρ(P )− dK(RsP , RtP )).

Here fe denotes the total amount of flows on e, i.e., fe =
∑

P∈P:e∈P λ(P ), and note
that µ(sP , tP ) = dK(RsP , RtP ) by the definition of the F-complex realization. Hence an
optimality criterion of primal-dual type is given as follows.

Lemma 2.4. A multiflow f = (P, λ) and a potential ρ are both optimal if and only if
they satisfy:

Saturation condition: for each e ∈ E, dρ(e) > 0 implies fe = c(e).

Geodesic condition: for each P ∈ P, λ(P ) > 0 implies dρ(P ) = dK(RsP , RtP ).

The geodesic condition says that paths in f are embedded as shortest paths between
terminal regions Rs in K by ρ. This view is most fundamental in every place of this
paper.

2.2.2 Optimality criterion by neighbors

Next we describe an optimal criterion for DLP(K; {Rs}s∈S) to the effect that: local
optimality implies global optimality.

A potential ρ′ is called a neighbor of ρ with respect to an oriented orbit
−→
O if ρ(x) �−→

O
ρ′(x) for all x ∈ V . See Section 2.1.1 for the notation. Namely ρ′ is obtained by moving

part of ρ along the direction
−→
O . The following theorem is a basis for the SPUP framework

in the next section. By a neighbor of ρ we mean a neighbor with respect to some oriented
orbit.

Theorem 2.5 ([12, Theorem 4.1]). A potential ρ is optimal to DLP(K; {Rs}s∈S) if and
only if dρ(G) ≤ dρ

′
(G) holds for every neighbor ρ′ of ρ.

A more relaxed neighbor concept, which will turn out to be useful, can be defined as

follows. For an admissible orientation
−→K of K, a potential ρ′ is called a semi-neighbor of

ρ′ with respect to
−→
K if ρ(x) �−→

K ρ′(x) for all x ∈ V .
−→
K induces an admissible orientation

−→
Oi of each orbit Oi (i = 1, 2, . . . ,m) (by restriction). Thus, by definition, a neighbor

with respect to
−→
Oi is a semi-neighbor with respect to

−→K . It is shown in [12, Section

4.1] that for a semi-neighbor ρ′ of ρ with respect to
−→K , there exist neighbors ρi of ρ

with respect to
−→
Oi such that dρ

′ − dρ =
∑

i{dρi − dρ}. By this property, we can use
semi-neighbors instead of neighbors in many places.

2.2.3 Summands and locking property

For a union U of several orbits, let µ/U be the weight on S defined as µ/U (s, t) :=
dK/U ((Rs)/U, (Rt)/U) for s, t ∈ S. Recall Section 2.1.5 for notations. µ/U is called a
summand of µ with respect to U . By construction and Proposition 2.1, (K/U ; {(Rs)/U}s∈S)
is a realization of µ/U . Similarly, define µ\U as µ\U (s, t) := dK\U ((Rs)\U, (Rt)\U) for
s, t ∈ S. Then (K\U ; {(Rs)\U}s∈S) is a realization of µ\U .

11



Figure 10: Construction of Gτ,α

Proposition 2.6. Let f be an optimal multiflow and ρ an optimal potential. For a
union U of several orbits, we have the following:

(1) f is optimal to µ/U -MFP and µ\U -MFP.

(2) ρ/U and ρ\U are optimal to DLP(K/U ; {(Rs)/U}s∈S) and DLP(K\U ; {(Rs)\U}s∈S),
respectively.

Proof. ρ/U and ρ\U are feasible to DLP(K/U ; {(Rs)\U}s∈S) and DLP(K\U ; {(Rs)\U}s∈S),
respectively. By Proposition 2.1 (3), we have ‖f‖µ = ‖f‖µ/U

+ ‖f‖µ\U and dρ = dρ/U +

dρ\U . Thus we have ‖f‖µ = ‖f‖µ/U
+‖f‖µ\U ≤ dρ/U (G)+dρ\U (G) = dρ(G) = ‖f‖µ.

This explains the locking property of multiflows, which means the existence of a
multiflow simultaneously optimal to several µ-MFPs.

3 Proof outline: SPUP framework

In this section, we explain the proof outline of Theorem 1.5, which is a kind of a primal-
dual algorithm by a fractional version of the splitting-off and the dual update. We call
it SPUP, standing for Splitting-off with Potential UPdate.

3.1 SPUP (Splitting-off with Potential UPdate)

We begin with the splitting-off operation. Let G be a graph. For two consecutive edges
e = xy and e′ = yz of unit capacity incident to node y, a triple τ = (e, y, e′) is called
a fork. The splitting-off operation is to delete edges e, e′ and to add a new edge of unit
capacity connecting x and z if x 6= z. If the splitting-off operation does not decrease
the optimal flow-value opt(µ;G), then a (1/k-)integral optimal multiflow in the original
graph can be recovered from any (1/k-)integral optimal multiflow in the new graph.
Such a fork is called splittable. If a fork τ is not splittable, then τ is called unsplittable.

We next introduce the fractional splitting-off operation. For a fork τ = (e, y, e′) and
α ∈ [0, 2], the graph Gτ,α is obtained by adding a new node yτ , reconnecting e and e′ to
yτ , and joining y and yτ by a new edge eτ = yyτ of capacity c(eτ ) = 2−α; see Figure 10.
The resulting graph is denoted by Gτ,α. In the case of α = 0, the problems on G and on
Gτ,0 are equivalent, and in particular opt(µ;G) = opt(µ;Gτ,0). Any multiflow in G is
naturally extended to a multiflow in Gτ,0 by adding eτ for each path containing either e
or e′. So we regard a multiflow in G as a multiflow in Gτ,0.

12



We consider increasing α from 0 without changing the optimal value. The maximum
possible value is denoted by ατ or ατ (G), i.e.,

ατ := max{α ∈ [0, 2] | opt(µ;G) = opt(µ;Gτ,α)}.

The modification of G to Gτ,ατ is named here a fractional splitting-off operation. By
reversing this operation, i.e., by contracting edge eτ , any 1/k-integral optimal multiflow
in Gτ,ατ becomes a 1/k-integral optimal multiflow in G. The case ατ = 2 is nothing but
the (ordinary) splitting-off operation.

We give here one fundamental relation between ατ for a fork τ = (e, y, e′) and an
optimal multiflow f , where fe (resp., fe,e′) denotes the total amount of flows using e
(resp., e and e′) in f .

Lemma 3.1. ατ ≥ 2− feτ ≥ 2fe,e′.

Proof. Since f is also a multiflow in Gτ,α for α = 2−feτ , we have ‖f‖µ ≤ opt(µ;Gτ,α) ≤
opt(µ;G) = ‖f‖µ, which implies the first inequality ατ ≥ α. The second inequality
follows from 2− feτ = 2− (fe + fe′ − 2fe,e′) = (1− fe) + (1− fe′) + 2fe,e′ ≥ 2fe,e′ .

Suppose that we are given a realization (K; {Rs}s∈S) of µ with unit leg-length δ = 1
and an optimal potential ρ : V → V (K) for DLP(K; {Rs}s∈S). There is another formula
for ατ involving ρ and its neighbors. Any potential ρ for G is extended to a potential
for Gτ,α by defining ρ(yτ ) := ρ(y). An important observation here is:

(3.1) If ρ is optimal to G, then ρ is also optimal to Gτ,α for 0 ≤ α ≤ ατ .

Indeed, by dρ(eτ ) = 0 we have opt(µ;G) = dρ(G) = dρ(Gτ,α) ≥ opt(µ;Gτ,α) = opt(µ;G).
This brings about a formula of ατ in terms of neighbors as follows:

Proposition 3.2. Let ρ be an optimal potential, and τ an unsplittable fork. We have

(3.2) ατ = min
ρ′

dρ
′
(Gτ,0)− dρ(Gτ,0)

dρ′(eτ )
,

where the minimum is taken over all neighbors ρ′ of ρ with dρ
′
(eτ ) > 0.

Proof. We see the equivalence among the conditions (1) to (4) for α below:

(1) 0 ≤ α ≤ ατ .

(2) opt(µ;Gτ,α) = opt(µ;G).

(3) ρ is optimal for Gτ,α.

(4) For every neighbor ρ′ of ρ, we have dρ
′
(Gτ,α) ≥ dρ(Gτ,α).

(1) ⇔ (2) follows from the definition. (2) ⇔ (3) follows from opt(µ;G) = dρ(Gτ,α)
by dρ(eτ ) = 0. (3) ⇔ (4) follows from Theorem 2.5. To obtain the desired formula,
substitute dρ

′
(Gτ,α) = dρ

′
(Gτ,0)− αdρ

′
(eτ ) and dρ(Gτ,α) = dρ(Gτ,0) to (4).

The minimization over neighbors in (3.2) can be replaced by that over semi-neighbors.
A (semi-)neighbor ρ′ attaining the minimum in the formula of ατ is said be critical. Note
that both ρ and ρ′ are optimal to Gτ,ατ .

For an optimal potential ρ, an unsplittable fork τ , and a critical neighbor ρ′ of ρ
respect to τ , we consider the update (G; ρ) ← (Gτ,ατ ; ρ′), which we call SPUP and
specifically α-SPUP when α = ατ (α is a rational in [0, 2)).

Our proof of Theorem 1.5 basically goes along the following procedure starting from
an inner Eulerian graph G (without splittable forks) and an optimal potential ρ.
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SPUP procedure: Let (G0; ρ0) := (G; ρ) and j := 1. We repeat the following:

step 1: Take a fork τj at a node yj ∈ V (Gj−1) \ {y1, y1τ1 , y2, y2τ2 , . . . , yj−1, yj−1
τj−1}

and a critical neighbor ρ′ of ρj−1 with respect to τj in Gj−1.

step 2: Do SPUP: (Gj ; ρj) ← (Gj−1
τj ,ατj ; ρ′), and let Kj be the smallest positive

integer such that KjGj is inner Eulerian.

step 3: If KjGj is guaranteed to have an integral optimal multiflow, then stop. Oth-
erwise let j := j + 1 and go to step 1.

We will prove Theorem 1.5 by showing: By appropriate choices of τj , ρ
′ in step 1,

(a) for some j ≤ |V |, the algorithm terminates in step 3, and

(b) Kj is bounded by a constant, say 12, independent of |V |.

If this is proved, then by reversing the operations (i.e., by contracting eτj ) we can
construct a 1/Kj-integral optimal multiflow in the original graph G.

For (a), we will show that if ρj is an embedding to K with a certain special property,
KjGj is guaranteed to have an integral optimal multiflow and the algorithm stops in
step 3. To realize such an embedding, we will choose (τj , ρ

′) in step 1 appropriately. For
(b), we will bound Kj throughout the procedure. Each step creates edge eτj of (possibly
fractional) capacity 2− αj = 2− {dρ′(Gτj ,0)− dρj (Gτj ,0)}/dρ′(eτj ). Here dρ

′
(eτj ) is one

of {1, 2, 3, 4} since ρ′(y) and ρ′(yτj ) belong to the neighborhood of ρ(y) in K; see (2.4)
in Section 2.1.4. So we will bound the denominator of dρ

′
(Gτj ,0)− dρj (Gτj ,0).

We explain a concrete strategy of achieving this idea in the rest of this section, which
is structured as follows. In Section 3.2, we classify terminals with a view to studying the
parity of dρ

′
(Gτj ,0) − dρj (Gτj ,0). In Section 3.3, we describe reductions of making each

node have small degree, which simplifies our analysis in every place. In Section 3.4, we
describe the whole proof outline of Theorem 1.5.

3.2 Proper/essential terminals and the parity of dρ
′
(Gτ,0)− dρ(Gτ,0)

A terminal s is said to be proper (with respect to realization (K; {Rs}s∈S)) if Rs contains
no legs, i.e., if Rs has no interior. A terminal that is not proper is said to be improper.
In Figure 9, s8 is improper and the other terminals are proper. A terminal s is said to
be essential if every optimal multiflow f = (P, λ) has a path P ∈ P connecting s and
another terminal t with λ(P ) > 0 and µ(s, t) > 0.

Lemma 3.3. For two optimal potentials ρ and ρ′, if terminal s is proper or essential,
then ρ′(s) and ρ(s) belong to the same connected component of the boundary of Rs, and
hence belong to the same color class of the leg-graph.

Proof. It suffices to consider the case where s is improper and essential. Take an optimal
multiflow f = (P, λ), which has a path P connecting s and t with µ(s, t) > 0 and
λ(P ) > 0. Both ρ(s) and ρ′(s) must be on the boundary of Rs. Otherwise, it is
impossible to satisfy the geodesic condition for P . Necessarily Rs and Rt are disjoint
by dK(Rs, Rt) = µ(s, t) > 0. Delete the interior of Rs from K. Let K′ be the resulting
connected component including Rt. Since K is simply-connected and Rs is connected,
Rs ∩ K′ is connected. Both ρ(s) and ρ′(s) belong to Rs ∩ K′ since any shortest path
joining Rs and Rt must belong to K′.

This fact has a consequence on the parity of dρ
′
(Gτ,0)− dρ(Gτ,0) as follows, where ρ

is an optimal potential, τ is an unsplittable fork, and ρ′ is a critical neighbor of ρ with
respect to τ .
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Figure 11: Degree reductions for (a) inner node x and (b) terminal s incident to a unique
neighbor x

Lemma 3.4. Suppose that G is an inner Eulerian graph such that each terminal is
proper, essential, or has an even degree. Then dρ

′
(Gτ,0) − dρ(Gτ,0) is an even integer,

and hence ατ ∈ {0, 1/2, 2/3, 1, 4/3, 3/2}.

Proof. Let T ⊆ S be the set of proper or essential terminals. Then Gτ,0 is inner Eulerian
with respect to T . By edge-multiplication, we may assume that G has unit capacity.
Hence the edge set E(Gτ,0) is a disjoint union of T -paths Pj and (nonsimple) cycles Ci.
Hence we have dρ

′
(Gτ,0) − dρ(Gτ,0) =

∑
i{dρ

′
(Ci) − dρ(Ci)} +

∑
j{dρ

′
(Pj) − dρ(Pj)}.

Since the leg-graph is bipartite (Section 2.1.2), both dρ
′
(Ci) and dρ(Ci) are even. Each

essential terminal remains essential in Gτ,ατ , and both ρ and ρ′ are optimal to Gτ,ατ . By
Lemma 3.3, ρ(s) and ρ′(s) for s ∈ T belong to the same color class. Thus dρ

′
(Pj)−dρ(Pj)

is also even. Consequently dρ
′
(Gτ,0) − dρ(Gτ,0) is even. As was noted, dρ

′
(eτ ) is one of

{1, 2, 3, 4} since both ρ′(y) and ρ′(yτ ) belong to the neighborhood of ρ(y).

How to bound the denominator of dρ
′
(Gτj ,0)−dρj (Gτj ,0). In the SPUP procedure,

each step j creates an edge eτj of (possibly fractional) capacity 2−ατj . Hence the inner
Eulerian condition forGj does not hold even ifG0 is inner Eulerian, and Lemma 3.4 is not
applicable. However, if created edge eτj remains to have the same length, i.e., dρ

′
(eτk) =

dρj−1(eτk) for k = 1, 2, . . . , j−1, then each (fractional) term c(eτk){dρ′(eτk)−dρj−1(eτk)}
in dρ

′
(Gτj ,0) − dρj−1(Gτj ,0) vanishes, and Lemma 3.4 is applicable. In this way, we will

bound Kj by keeping the length dρ(eτk) of the created edge eτk as far as possible.

3.3 Degree reductions

We will mainly work on an inner Eulerian graph such that each inner node has degree 4
and each terminal has degree 1 or 2. A standard reduction is known to make the graph
have degree at most 4; see [7, p. 50]. Let G be an inner Eulerian graph, i.e., capacity
c is integer-valued and each inner node has an even degree. By edge-multiplication, we
can make each edge have unit capacity.

Degree-4 reduction of an inner node. For an inner node x of degree greater than
four, we can reduce the degree by changing the incidence at x as in Figure 11 (a). Then
the problem does not change.

Degree-1 reduction of a terminal. For a terminal s of degree m, we can reduce
its degree to one as follows. Consider the case where s is incident to a unique node
x. Replace s by new terminals s1, s2, . . . , sm, connect x and each si by an edge (of unit
capacity), and define weight µ on si by µ(si, t) = µ(s, t) for t ∈ S \s and by µ(si, sj) = 0.
Obviously the problem does not change. See Figure 11 (b). A realization of (S′, µ′) is
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obtained by setting Rsi := Rs for each i. In the case where s is incident to several nodes
x1, x2, . . . , xl, add a new inner node x, and replace each edge xis by two edges xix and
xs. Then s has a unique neighbor x. Apply the reduction above.

Degree-2 reduction of a terminal with even degree. For a terminal s of even
degree m, we can reduce its degree to two, as in the degree-1 reduction above, by adding
new m/2 terminals s1, s2, . . . , sm/2 and connect si by two parallel edges.

Extending an optimal potential to the new problem. In the reductions above,
if we are given an optimal potential ρ for the original problem, we can extend ρ to an
optimal potential for the new problem by setting ρ(x′) := ρ(x) for each new added node
x′. This is a simple consequence of the optimality criterion (Lemma 2.4).

Keeping a terminal essential. The degree-1 and -2 reductions may create a nonessen-
tial terminal. In the degree-2 reduction, we can split off a unique fork for a nonessential
terminal of degree 2, while keeping the inner Eulerian condition. In the degree-1 re-
duction, to guarantee that each new (improper) terminal is essential, we will use the
following fact, where an optimal potential ρ is assumed to be given.

(3.3) For a terminal s incident to a unique node x with ρ(s) 6= ρ(x), the degree-1
reduction at s keeps each new terminal si essential.

Indeed, by the optimality criterion for (f, ρ), every optimal multiflow f must have paths
connecting s of the flow-value equal to the degree of s, i.e., f sx = c(sx). Obviously this
flow property, stronger than the essentialness, is kept in the degree-1 reduction.

Edge-subdivision. We will also create an inner node of degree 2 by the subdivision
of an edge e = xy, which is to add a new node z and replace xy by two edges xz, zy.
The capacity is defined by c(xz) = c(zy) := c(xy). This operation obviously does not
change the problem. If we are given an optimal potential ρ for the original problem,
we can extend ρ to an optimal potential to the new problem by defining ρ(z) so that
dK(ρ(x), ρ(y)) = dK(ρ(x), p) + dK(p, ρ(y)) for any p ∈ V (K). This fact is also an easy
consequence of the optimality criterion (Lemma 2.4).

3.4 Proof outline

Here we describe the outline of the proof of Theorem 1.5, which we prove under a weaker
condition. Recall Theorem 2.2 that the 2-dimensionality of Tµ of µ is equivalent to the
existence of an F-complex realization (K; {Rs}s∈S). A graph G is said to be properly-
inner Eulerian with respect to a realization (K; {Rs}s∈S) if the capacity is integral and
each node other than proper terminals has an even degree.

Theorem 3.5. Suppose that µ has an F-complex realization (K; {Rs}s∈S). There exists
a 1/12-integral optimal multiflow in every properly-inner Eulerian graph.

The proof is based on the SPUP procedure and three claims (A), (B), and (C) below,
which we will prove in Sections 4 and 5. To state and motivate three claims, we first
introduce an overall framework, and then give the proof of Theorem 3.5.

Suppose that µ has a realization (K; {Rs}s∈S) of leg-length δ = 2 (by scaling). Let
G be a properly-inner Eulerian graph. We may assume the condition:

(3.4) Each terminal is proper or essential.
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Figure 12: (a) K, (b) K2, and (c) the orientation of K2

Indeed, we can make a nonessential (improper) terminal an inner node, while keeping
the inner Eulerian condition. We will maintain this condition throughout the SPUP
procedure.

The 2-subdivision (K2; {Rs}s∈S) is also a realization of µ, with unit leg-length. We
consider DLP(K2; {Rs}s∈S). Note that K2 has the following orbit property:

(3.5) If edge e in K is divided into e1 and e2 in K2, then e1 and e2 belong to
different orbits in K2.

One can easily verify this property from the orientability of K.
For an optimal potential ρ : V → V (K2), we define a partition of V into three sets,

Sρ = {x ∈ V | ρ(x) is the midpoint of a folder in K},(3.6)

Mρ = {x ∈ V | ρ(x) is the midpoint of a leg in K},
Cρ = {x ∈ V | ρ(x) is a vertex of K}.

See Figure 12 (b). The first claim says that inner nodes in Sρ have a particularly nice
property.

(A) Let G be an inner Eulerian graph, and ρ an optimal potential for DLP(K2; {Rs}s∈S).
If an inner node y belongs to Sρ, then y has a splittable fork.

Motivated by this claim, the number of inner nodes in Mρj ∪ Cρj is decreased with
the aid of the SPUP procedure. If Gj has no inner nodes in Mρj ∪ Cρj , then all inner
nodes in KjGj are splittable by (A) in step 2. In addition, if the degree-1 reduction to
KjGj keeps (3.4) and creates no new inner nodes in Mρj ∪ Cρj , then we can apply the
splitting-off to obtain a graph consisting only of terminals of degree one. In this graph,
an integral optimal multiflow obviously exists, and hence in KjGj . Thus the SPUP
procedure terminates in step 3, and a 1/Kj-integral optimal multiflow is obtained in
the original graph. Our goal is this situation.

We will choose a fork τj and a critical neighbor ρ′ in step 1 such that Sρ′ ⊇ Sρj−1

and Mρ′ ∪Cρ′ ⊆Mρj−1 ∪Sρj−1 . Consider an admissible orientation of K2 such that each
vertex of K is a source and the midpoint of each folder in K is a sink; see Figure 12 (c).
This orientation is admissible, and is called the forward orientation. Restricting the
forward orientation to each orbit, we get an admissible orientation of an orbit, which is
also called the forward orientation.

Then two types of neighbors can be distinguished. A neighbor is said to be forward if
it is a neighbor with respect to the forward orientation, and backward if it is a neighbor
of the opposite orientation. We use this terminology also for semi-neighbors. In the
following argument, we can replace forward neighbors by forward semi-neighbors. An
SPUP is said to be forward if the critical neighbor ρ′ is forward, and backward if ρ′ is
backward.
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Figure 13: Orbit structure around the midpoint of (a) a folder and (b) a leg, where the
black and white arrows indicate distinct orbits.

In step 1, we choose fork τj at an inner node in Mρj−1 ∪ Cρj−1 and do SPUP only
when ρ′ is forward. Then the image of potentials {ρj(x)} moves toward the midpoint of
folders in K. Equivalently, the number of inner nodes in Mρj ∪Cρj decreases. By forward
SPUP, we will sweep out inner nodes first from Cρ and then from Mρ. To implement
this scheme, the following properties are essential; the numerator and the denominator
of formula (3.2) of ατ crucially depend on the position ρ(y) in K2.

Lemma 3.6. For an optimal potential ρ, an unsplittable fork τ on a node y, and a
critical neighbor ρ′ of ρ with respect to τ , we have the following:

(1) If y ∈ Cρ, then ρ′ is forward, and if y ∈ Sρ, then ρ′ is backward.

(2) If ρ′ is forward, then dρ
′
(Gτ,0)− dρ(Gτ,0) is equal to∑

{c(e){dρ′(e)− dρ(e)} | e is incident to Mρ ∪ Cρ}.

(3) dρ
′
(eτ ) is given as

dρ
′
(eτ ) ∈


{1, 2, 3, 4} if y ∈ Cρ,
{1, 2} if y ∈Mρ, ρ′ : forward,
{1} if y ∈Mρ, ρ′ : backward,
{1, 2} if y ∈ Sρ.

See Figure 13 for the orbit structure around the midpoint p of a K2,∗-folder and of
a leg (in K), where the black and white arrows indicate distinct orbits (by (3.5)).

Proof. (1). If y ∈ Cρ, then ρ(y) is a source of the orientation, and hence there is no
backward neighbor ρ′ with dρ

′
(eτ ) > 0. The case of y ∈ Sρ is similar.

(2). Use the following fact: for an edge e = xy, if both ends belong to Sρ, then
(ρ(x), ρ(y)) = (ρ′(x), ρ′(y)) implies dρ(e) = dρ

′
(e); see the paragraph after Lemma 3.4.

(3). Both ρ′(y) and ρ′(yτ ) belong to neighborhood (K2)p for p = ρ(y) (Section 2.1.4).
This implies dρ

′
(eτ ) ∈ {1, 2, 3, 4}. Suppose y ∈ Sρ; p = ρ(y) is the midpoint of a

folder in K, as in Figure 13 (a). By (3.5), p touches (at least) two distinct orbits as in
Figure 13 (a). Then {ρ′(y), ρ′(yτ )} belongs to one of F and F ′ in Figure 13 (a), implying
dρ

′
(eτ ) ∈ {1, 2}. Suppose y ∈ Mρ; p = ρ(y) is the midpoint of an edge qq′ of K as in

Figure 13 (b). If ρ′ is backward, then {ρ′(y), ρ′(yτ )} ⊆ {p, q, q′}. By (3.5), legs pq and
pq′ belong to different orbits. So {ρ′(y), ρ′(yτ )} = {p, q} or {q, p′}, implying dρ

′
(eτ ) = 1.

If ρ′ is forward, then ρ′(y) is q or a vertex adjacent to q by leg, and so is ρ′(yτ ), implying
dρ

′
(eτ ) ∈ {1, 2}.
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Figure 14: SPUP at Mρ

Figure 15: SPUP at Cρ

See Figures 14 and 15 for the behavior of critical neighbors. In particular, Lemma 3.6
(2) implies: As far as we apply forward SPUP, the (possibly fractional) capacities of
edges within Sρ does not affect dρ

′
(Gτ,0)− dρ(Gτ,0). This is a key to bound Kj ; see the

paragraph after Lemma 3.4. We will keep the numerator in the formula (3.2) of ατ even
as much as possible. In this case, the possible values of ατ for a fork τ at node y are
given by

(3.7) ατ =

 0,
1

2
,
2

3
, 1,

4

3
,
3

2
, 2 if y ∈ Cρ,

0, 1, 2 if y ∈Mρ.

In the forward SPUP procedure, it suffices to maintain this evenness between ρ and
its forward neighbor ρ′. Motivated by this, (G; ρ) is said to be restricted Eulerian if
every edge of G has an integer capacity and every inner node in Mρ ∪ Cρ has an even
degree; inner nodes in Sρ may have an odd degree. In this case, by Lemma 3.4 with
the paragraph after the lemma, dρ

′
(Gτ,0)− dρ(Gτ,0) is an even integer as long as ρ′ is a

forward neighbor of ρ.
As mentioned already, we will sweep out inner nodes first from Cρ and then from

Mρ. The forward SPUP at Mρ works well under the restricted Eulerian condition. By
the degree-4 reduction, we may assume that each inner node in Mρ∪Cρ has degree four.

Take a fork τ at y ∈ Mρ, and a critical neighbor ρ′ of ρ. Then, by Lemma 3.6 (3),
we have ατ ∈ {0, 1} (even if ρ′ is backward). Suppose that ρ′ is forward. If ατ = 1, then
necessarily dρ

′
(eτ ) = 2. Although both y and yτ have degree 3 in Gτ,ατ , they fall into

Sρ′ (Figure 14). Therefore (G
τ,ατ ; ρ′) is restricted Eulerian. If ατ = 0, then one of y and

yτ , say y, falls into Sρ′ . Contract e
τ to y (in Gτ,0). Then ρ′ is optimal for the resulting

graph, i.e., the original graph G; see (4.3). So ρ′ is an optimal forward neighbor of ρ
for G. In the both cases, we can update (G; ρ) to sweep out y from Mρ into Sρ while
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keeping the restricted Eulerian condition. However, if ρ′ were backward, then this would
crash our program. Fortunately we can avoid such a backward SPUP by examining all
the three forks τ1, τ2, τ3 at y, where a degree-four node has three forks up to symmetry.

(B) Suppose that (G; ρ) is restricted Eulerian. Let y be an inner node in Mρ and let ρi
be a critical neighbor of ρ with respect to τi at y (i = 1, 2, 3). Then at least one of
ρ1, ρ2, ρ3 is forward. Hence, by SPUP operations at Mρ, we can modify (G; ρ) so
that (G; ρ) is restricted Eulerian and Mρ have no inner nodes.

Our final goal ensures to make Cρ have no inner node. SPUP at Cρ is always forward by
Lemma 3.6 (1). Therefore successive SPUP at Cρ does not increase the number of the
nodes in Cρ; see Figure 15. However ατ can take fractional values 2/3, 4/3, 1/2, 3/2. To
bound the denominator of the capacity of created edges, we will carefully choose forks
and critical neighbors.

(C) Suppose that G is a properly inner-Eulerian graph and ρ is an optimal potential.
By the degree-reductions keeping (3.4), the splitting-off, and SPUP operations at
Cρ, we can modify (G; ρ) so that (6G; ρ) is restricted Eulerian, Cρ has no inner
nodes, and each terminal in Cρ is incident to (at most) one node.

The proof of Theorem 3.5 assuming (A),(B), and (C). Our remaining task is
to maintain (3.4) in the degree-1 reduction. We may assume that the condition (3.4)
holds. We also note that Mρ cannot have terminals under (3.4). Otherwise, for such a
terminal s, Rs includes the midpoint ρ(s) of a leg pq. This means that Rs includes leg
pq by normality of Rs in K, and that ρ(s) is in the interior of Rs. Therefore s is neither
proper nor essential.

Take an optimal potential ρ; obviously (G; ρ) is restricted Eulerian. By claim (C),
we can make (G; ρ) so that (6G; ρ) is restricted Eulerian, Cρ has no inner nodes, and
each terminal in Cρ is incident to a unique node.

Let (G; ρ) ← (6G; ρ). Here Cρ may have terminals. Such a terminal s is incident
to a unique node x. If x ∈ Cρ, then x is also a terminal with unique neighbor s, and
therefore we can fix (integral) flow between x and s and delete them. Suppose x 6∈ Cρ; in
particular ρ(x) 6= ρ(s). Apply the degree-1 reduction to s; this creates no inner nodes in
Cρ. The added new terminals remain to be essential by (3.3). In this way, apply degree-1
reduction (or deletion) to all terminals in Cρ. Next apply the degree-4 reduction to inner
nodes in Mρ. By claim (B), we can repeat SPUP at inner nodes in Mρ to make (G; ρ)
so that (G; ρ) is restricted Eulerian and Mρ ∪ Cρ has no inner nodes.

Let (G; ρ) ← (2G; ρ). Still Cρ may have terminals. Apply, again, the degree-1
reduction to all terminals in Cρ; new terminals are all essential by (3.3). Apply the
degree-1 reduction to proper terminals in Sρ, and the degree-2 reduction to improper
terminals in Sρ. Some new improper terminal s (of degree two) may fail to be essential.
In this case, the unique fork τ at s is splittable; split off τ and delete s. In this way, we
can make all improper terminals essential.

Here, in fact, the degree-1 reduction keeps each improper terminal essential. To
verify this, take an improper terminal s and consider the unique fork τ = (e, s, e′) at
s. Then ατ = 0 holds; the proof is given at the end. By Lemma 3.1, every optimal
multiflow f in G = Gτ,0 satisfies feτ = 2 = c(eτ ) at eτ . Hence the degree-2 terminal
s always has paths connecting s of flow-value 2. Thus the degree-1 reduction keeps s
essential (see the argument after (3.3)). Apply the degree-1 reduction to all improper
terminals s in Sρ.

Now G is an inner Eulerian graph such that Mρ ∪ Cρ has no inner nodes, and each
terminal, of degree one, is proper or essential. This is our goal. As mentioned already,
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by claim (A), there exists an integral optimal multiflow. Reversing these operations, we
get an 1/12-integral optimal multiflow in the original graph. The proof is done.

Proof of ατ = 0. By Lemma 3.6 (3), we have ατ = 0 or 1. Take a critical neighbor ρ′ of
ρ with respect to τ , which is backward. Suppose (to the contrary) that ατ = 1. Then
dρ

′
(eτ ) = 2, and {ρ′(s), ρ′(sτ )} = {p, l} or {p, l′} in Figure 13 (a) with p = ρ(s) since

ρ′(s) and ρ(s) must be in the same color class on the boundary of Rs by Lemma 3.3.
Furthermore ρ′(sτ ) is not in Rs (otherwise the induced path connecting Rs through
ρ′(sτ ) is never shortest). This is impossible since Rs must include hypotenuses pl and
pl′ by the normality in K.

4 Analysis of SPUP by multiflows

To prove the existence of forks or critical neighbors with required properties (claims
(A),(B),and (C)), we analyze the behavior of optimal multiflows under an optimal po-
tential. In Section 4.1, we study optimality-keeping rearrangements of an optimal mul-
tiflow, and introduce the local geodesic condition as a criterion of such rearrangements.
The goal of this section is Theorem 4.3 in Section 4.2, which states interrelations among
an optimal multiflow, an optimal potential, critical neighbors, and the shape of Kp. The
claims (A) and (B) are its immediate consequences. Also Theorem 4.3 brings a powerful
splittablity criterion in Section 6. The main proof tool is a combination of the first
optimal criterion (Lemma 2.4), the second optimality criterion (Theorem 2.5), and the
local geodesic condition.

Throughout this section, G is a graph with terminal set S and rational edge-capacity
c, and µ is a terminal weight having a realization (K; {Rs}s∈S) with unit leg-length. By
rationality, we can always take an optimal multiflow f = (P, λ) with a rational-valued
flow-value function λ. Therefore, by allowing P to be a multiset, we can represent
f = (P, λ) by a pair of a multiset P of S-paths and a uniform flow-value function λ = 1/κ
for some positive integer κ (called the fractionality of f). We use this expression, and
denote it by f = (P;κ). For an edge e, the subset of paths in P containing e is denoted
by P(e). Its total flow-value |P(e)|/κ is denoted by fe. For consecutive two edges e, e′,
the subset of paths passing e and e′ is denoted by P(e, e′), and its flow value is denoted by
fe,e′ . A path P is called an (A, y1y2 . . . ym, B)-path if P connects terminal subsets A and
B by passing through nodes y1, y2, . . . , ym in the order of A→ y1 → y2 → · · · → ym → B.
A set P ′ of paths is called an (A, y1y2 . . . ym, B)-set if P ′ consists of all (A, y1y2 . . . ym, B)-
paths. When B (resp., A) is not specified, B (resp., A) is replaced by ∗ (e.g.: P is an
(A, xy, ∗)-path).

4.1 Local multiflow rearrangement

The local multiflow rearrangement plays a central role in our analysis. Let f = (P;κ)
be an optimal multiflow and let y be a node. Consider the following problem:

Split some of the paths in P at y, and reconnect them while keeping optimality.

Suppose that we are given an optimal potential ρ with p := ρ(y). Then the split paths
induce shortest paths connecting p and normal regions. Therefore, to keep the optimality,
it suffices to reconnect these paths so that the resulting induced paths are all shortest
(by the geodesic condition in Lemma 2.4). See Figure 16.

This motivates us to consider the following geometric problem on K: For normal sets
M and N , suppose that we are given two shortest paths P and P ′ such that P connects
p and M , and P ′ connects p and N .
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Figure 16: Local multiflow rearrangement to keep optimality

Is the concatenation P + P ′ at p shortest between M and N ?

The shortestness is determined by the position of (M,N) relative to the neighborhood
Kp; recall the notions in Section 2.1.4. Suppose that Kp is star-shaped (consider the
2-subdivision if necessary). Then the leg-graph of the boundary of Kp is identified with
Πp, which is a bipartite graph of bipartition {Lp, Qp}. For u, v ∈ Qp ∪ Lp, we write
u ∼ v if u = v, u is incident to v, or u and v have a common neighbor in Πp, i.e.,
if dKp(u, v) ≤ 2. Also we write u ∼1 v if u = v or u is incident to v in Πp, i.e., if
dKp(u, v) ≤ 1.

For a normal set R not containing p, the vertex g of (the boundary of) Kp with
dK(g,R) = dK(Kp, R) is uniquely determined [12, Lemma 3.8]. We call this vertex g the
gate of R in Kp, denoted by Rp; this concept comes from [5]. We can regard Rp as a
member of Lp ∪ Qp. For a normal set R containing p, define Rp to be the intersection
R∩Kp, which is normal in Kp. Hence we get a map R 7→ Rp from the set of normal sets
in K to that in Kp. Then P +P ′ forms a shortest path between M and N if and only if
P + P ′ induces a shortest path between Mp and Np in Kp (Figure 16).

Lemma 4.1 ([12, Lemmas 3.6 and 3.9]). For two normal sets M and N , the following
conditions are equivalent:

(1) dK(M,N) = dK(M,p) + dK(p,N).

(2) dKp(M
p, Np) = dKp(M

p, p) + dKp(p,N
p).

(3) If p 6∈ M and p 6∈ N , then there exists no q ∈ Qp with Mp ∼1 q ∼1 Np. If p 6∈ M
and p ∈ N , then Mp 6∈ Np.

Although a shortest path from R to p enters Kp via u ∈ Qp ∪ Lp, the vertex u may
not be the gate Rp. But the vertex u is at least adjacent to Rp by leg, as follows.

Lemma 4.2. For a normal set R and a vertex u ∈ Qp ∪ Lp, suppose dK(R, p) =
dK(R, u) + dKp(u, p). Then Rp = u if u ∈ Lp, and Rp ∼1 u if u ∈ Qp.

Note that this lemma is valid even if Kp is not star-shaped.

Proof. By condition, dK(R, u) < dK(R, p) + dKp(p, u) holds. Apply the previous lemma
for (M,N) = (R, u). Then there exists q ∈ Qp with Rp ∼1 q ∼1 u. If u ∈ Qp,
then necessarily u = q ∼1 Rp (by bipartiteness of Πp). Otherwise u ∈ Lp, implying
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Figure 17: Exchange operation between P(e, ej) and P(ei, ek) at eτi

dKp(u, p) = 2 ≥ dKp(R
p, p) ∈ {1, 2}. By dKp(p,R

p)+dK(R
p, R) ≥ dK(p,R) = dKp(p, u)+

dK(u,R), we have dK(R
p, R) ≥ dK(u,R). By the definition and the uniqueness of the

gate, we have u = Rp.

We note the basic property of the gate, which is included in the proof above:

(4.1) dK(p,R) = dKp(p,R
p) + dK(R

p, R).

Let us return to the multiflow rearrangement. For u ∈ Qp ∪ Lp, let [u] denote the
set of terminals s ∈ S such that gate (Rs)

p is u, i.e.,

[u] := {s ∈ S | p 6∈ Rs, u = (Rs)
p}.

For q ∈ Qp, let [q]1 denote the set of terminals s with (Rs)
p ∼1 q, i.e.,

[q]1 :=
⋃
u∼1q

[u].

By Lemma 4.1 (3), under an optimal potential ρ, the following local geodesic condition
is sufficient to keep the optimality in the multiflow rearrangement at a node y with
ρ(y) = p.

Local geodesic condition: A multiflow f has no ([q]1, y, [q]1)-paths for any q ∈ Qp,
and has no (s, y, [u])-paths for any u ∈ Qp ∪ Lp and s ∈ S with {p, u} ⊆ Rs.

In particular, we can rearrange f at y as if [u] is a single terminal. The local geodesic
condition is also a necessary condition for f to be optimal.

Two basic flow-operations for an optimal multiflow f = (P;κ) are given.

Exchange/anti-exchange operations. For an edge e = xy, take two paths P1 and
P2 from P(e). The exchange operation of P1 and P2 at e is the following: For i = 1, 2,
split Pi at x into two paths P 1

i and P 2
i so that P 2

i contains y. Reconnect P 1
1 and P 2

2 at
x, and reconnect P 1

2 ant P 2
1 at x. If the resulting paths are not simple, then simplify

them.
If the exchange operation of P1 and P2 keeps the optimal value ‖f‖µ, then P1 and

P2 are said to be exchangeable at e. A subset P ′ ⊆ P(e) is said to be exchangeable if
the exchange operation of every pair of paths in P ′ at e keeps the value of ‖f‖µ. If
P(e) itself is exchangeable, then f is exchangeable at e. We will often use the exchange
operation at eτ as in Figure 17.

The anti-exchange operation is the reverse way of exchanging P1 and P2. Namely,
for each i = 1, 2, by deleting xy, split Pi into two paths P 1

i and P 2
i so that P 2

i contains
y. Reconnect P 1

1 and P 1
2 at x, reconnect P 2

2 ant P 2
1 at y, and simplify them if necessary.
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Figure 18: An inner node y of degree four mapped to p by ρ

4.2 Analysis

Here we analyze SPUP at an inner node with degree 4. Suppose that an inner node y is
incident to four edges e = xy, e1 = x1y, e2 = x2y, and e3 = x3y with unit capacity.

(4.2) If y has multiple edges e, e1 (x = x1), then fork (e, y, e2) is splittable.

Indeed, let G′ be the graph obtained from G by contracting edges e and e1. Then
opt(µ;G′) ≥ opt(µ;G). Let G′′ be the graph obtained from G by splitting off forks
(e, y, e2) and (e1, y, e3). Then opt(µ;G′′) ≤ opt(µ;G). Here G′ = G′′. This means that
(e, y, e2) is splittable.

Our interest lies in the case where there is no splittable fork. By symmetry, it suffices
to consider three forks (e, y, e1), (e, y, e2), (e, y, e3). Fork (e, y, ei) is particularly denoted
by τi, and ατi is simply denoted by αi.

Let ρ be an optimal potential, and let p := ρ(y); see Figure 18. Let ρi be a critical
neighbor of ρ with respect to τi for i = 1, 2, 3. We note an extremal case:

(4.3) If αi = 0, then the restriction of ρi to V is optimal for G,

where V = V (Gτi,0) \ {yτi}. Indeed, ρi is optimal for Gτi,0. Replace eτi by two multiple
edges e′, e′′ of unit capacity. Then (e, y, e′) is splittable by (4.2). Split it off. The
resulting graph is the same as the original G. This means that ρi is optimal to G.

The positions (ρi(y), ρi(y
τi)) (i = 1, 2, 3) are interrelated, which often determine the

local multiflow configuration at y, or give the information of the local structure Kp. The
main statement in this section is the following:

Theorem 4.3. Suppose that each terminal is proper or essential, and αi ≤ 1 for i =
1, 2, 3.

(1) If ρi(y) and ρi(y
τi) are not adjacent by a leg, and belong to a common folder in Kp

for i = 1, 2, 3, then there exist distinct l1, l2, l3 ∈ Lp such that, by an appropriate
relabeling of e, e1, e2, e3,

(i) (ρi(y), ρi(y
τi)) = (p, li) (i = 1, 2, 3), and

(ii) for every optimal multiflow f = (P;κ), P(ei, ej) is an ([li], xiyxj , [lj ])-set with
fei,ej = 1/2 (1 ≤ i < j ≤ 3).

(2) For some legs pq and pq′, if {ρi(y), ρi(yτi)} = {p, q} or {p, q′} (i = 1, 2, 3), then
q 6= q′ and there exists a common folder containing pq and pq′.

Figure 19 illustrates the situation of (1); necessarily li 6∼ lj for the local geodesic
condition. The rest of this subsection is devoted to proving Theorem 4.3. The proof
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Figure 19: Flow-potential configuration in Theorem 4.3 (1)

technique is also used by proving claim (C) in the next section. As was noted, multiflows
in G are identified with multiflows in Gτi,0. In particular P(eτi) is the disjoint union
of P(e, ej), P(e, ek), P(ei, ej), and P(ei, ek). We will often use the following obvious
relations:

feτi = fe,eτi + fei,e
τi = fej ,e

τi + fek,e
τi ,(4.4)

fe′,eτi =

{
fe′,ej + fe′,ek if e′ ∈ {e, ei},
fe′,e + fe′,ei if e′ ∈ {ej , ek},

(distinct i, j, k ∈ {1, 2, 3}).

Lemma 4.4. (1) α1 + α2 + α3 ≥ 2.

(2) αj ≥ 2− α1 (j = 2, 3) if there exists an optimal multiflow f exchangeable at eτ1.

Proof. Take an optimal multiflow f in G. By Lemma 3.1, symmetry, and (4.4), we have
α2+α3 ≥ max{2fe,e2 , 2fe1,e3}+max{2fe,e3 , 2fe1,e2} ≥ (fe,e2 +fe1,e3)+(fe,e3 +fe1,e2) =
feτ1 ≥ 2− α1. Thus we have (1).

Suppose that f is exchangeable at eτ1 . By the exchange operations between P(e, e3)
and P(e1, e2) at eτ1 , as in Figure 17, we can make f satisfy fe,e3 = 0 or fe1,e2 = 0. If
fe,e3 = 0, then feτ2 = (fe,e1+fe1,e2)+fe2,e3 ≤ (1−fe1,e3)+(1−fe1,e2−fe,e2) = 2−feτ1 ≤
α1, and hence α2 ≥ 2− feτ2 ≥ 2−α1. If f

e1,e2 = 0, then feτ2 = (fe,e1 + fe,e3)+ fe2,e3 ≤
(1−fe,e2)+(1−fe,e3−fe1,e3) = 2−feτ1 ≤ α1, and hence α2 ≥ 2−α1. The case of j = 3
is similar; apply the exchange operations between P(e, e2) and P(e1, e3) above.

Take an optimal multiflow f ′ in Gτi,αi . By contracting edge eτi and simplifying
created nonsimple paths (if exist), we obtain an optimal multiflow f in G. In this case,
we say that f is derived from f ′ or f is an optimal multiflow in G derived from Gτi,αi .
Note that P(eτi) may increase, which is caused by a path in f ′ passing through y and yτi

not using eτi . The position (ρi(y), ρi(y
τi)) in Kp gives information of P(eτi) as follows.

See Figure 20 for an intuition of the lemma.

Lemma 4.5. Suppose dρi(eτi) = dKp(ρi(y), p)+dKp(p, ρi(y
τi)) with ρi(y

τi) 6= p. Let f =
(P;κ) be an optimal multiflow in G derived from Gτi,αi, and let u := ρi(y

τi) ∈ Lp ∪Qp.

(1) P(eτi) is a (∗, yyτi , [u])-set if u ∈ Lp, and a (∗, yyτi , [u]1)-set if u ∈ Qp.

(2) If P in P(e, ei) is exchangeable with a path P ′ in P(eτi) at ei, then P is a
(∗, xyxi, [u])-path if u ∈ Lp and a (∗, xyxi, [u]1)-path if u ∈ Qp.
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Figure 20: Perturbing ρ to a critical neighbor ρ1

Proof. (1). Suppose that f is derived from an optimal multiflow f ′ in Gτi,αi . Take an
(s, yyτi , t)-path P ∈ P(eτi), which is contracted from an (s, yyτi , t)-path P̄ . Therefore,
by geodesic condition for (ρi, f

′), we have

(4.5) dK(Rs, Rt) = dK(Rs, ρi(y)) + dK(ρi(y), ρi(y
τi)) + dK(ρi(y

τi), Rt).

Hence, by the assumption with the triangle inequality, Rt satisfies dK(p,Rt) = dKp(p, u)+
dK(u,Rt). Therefore, by Lemma 4.2, if u ∈ Lp, then (Rt)

p = u, implying t ∈ [u], and if
u ∈ Qp, then (Rt)

p ∼1 u, implying t ∈ [u]1.
(2). Suppose that P and P ′ are obtained by contracting eτi from an (s, yyτixi, ∗)-

path P̄ and a (∗, xyτixi, t)-path P̄ ′. Obviously, P̄ is exchangeable with P̄ ′ at ei. Do the
exchange operation. If a simplification occurs, then fe decreases on a created cycle, and
hence the vertices in this cycle have the same potential (by the saturation condition).
Thus the image of the resulting (s, t)-path passes through Rs → ρi(y) → ρi(y

τi) → Rt,
i.e., (4.5) holds. Therefore, by the same argument, we have t ∈ [u] if u ∈ Lp and t ∈ [u]1
if u ∈ Qp.

Next we analyze P(eτi) for an arbitrary optimal multiflow f = (P;κ) in G. Let
P(eτi ; ρi) be the set of (s, yyτi , t)-paths P in P(eτi) satisfying

(4.6) dK(Rs, Rt) = dK(Rs, ρi(y)) + dKp(ρi(y), ρi(y
τi)) + dK(ρi(y

τi), Rt).

Its flow-value is denoted by feτi ;ρi . Then Lemma 4.5 (1) also holds with replaced by
P(eτi) by P(eτi ; ρi). We can estimate feτi ;ρi(≤ feτi ) by the following lemma.

Lemma 4.6. Suppose that each terminal is proper or essential.

(1) dρi(eτi)feτi ;ρi + (dρi(eτi)− 2)(feτi − feτi ;ρi) ≥ dρi(eτi)(2− αi).

(2) If dρi(eτi) ≥ 2, then feτi ;ρi ≥ 2 + (dρi(eτi)− 2)fe,ei − dρi(eτi)αi

2
.

Proof. We use the formula (2.6) of the duality gap. By definition, we have

opt(µ;G) = opt(µ;Gτi,αi) = dρi(Gτi,αi).
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Let f ′ be the multiflow for Gτi,αi obtained by deleting all paths in P(eτi) from f . Then
the duality gap for (f ′, ρi) in Gτi,αi is

(4.7) dρi(Gτi,αi)− ‖f ′‖µ =
∑

P∈P(eτi )

µ(sP , tP )/κ.

We next estimate the first term δ1 :=
∑

e∈E(Gτi,αi ) d
ρi(e)(c(e) − (f ′)e) in (2.6), which

means the unsaturation of edges. Since eτi has no flow in Gτi,αi , this contributes
dρi(eτi)(2− αi) for δ1.

For s ∈ S, let R̄s denote the connected component of the boundary of Rs con-
taining ρ(s). By the essentialness assumption and Lemma 3.3, R̄s also contains ρi(s).
Therefore, the deletion of an (sP , yy

τi , tP )-path P contributes at least {dK(R̄sP , ρi(y))+
dK(ρi(y

τi), R̄tP )}/κ for the unsaturation of edges except eτi . Thus we have

δ1 ≥ dρi(eτi)(2− αi) +
∑

P∈P(eτi )

{dK(R̄sP , ρi(y)) + dK(ρi(y
τi), R̄tP )}/κ.

Since the duality gap (4.7) is at least δ1, we have∑
P∈P(eτi )

{dρi(eτi)−∆P }/κ ≥ dρi(eτi)(2− αi),(4.8)

where ∆P := dK(R̄sP , ρi(y)) + dρi(eτi) + dK(ρi(y
τi), R̄tP )− dK(RsP , RtP ).

We show:

(4.9) ∆P is a nonnegative even integer, and is zero if and only if P ∈ P(eτi ; ρi).

Suppose that this is true. Then the LHS of (4.8) is at most dρi(eτi)feτi ;ρi + (dρi(eτi) −
2)(feτi − feτi ;ρi). Then we obtain (1). (2) follows from substituting feτi = fe + fe′ −
2fe,e′ ≤ 2− 2fe,ei to (1).

We show now (4.9). Since ρ(P ) connects R̄sP and R̄tP with length dK(RsP , RtP ),
we have dK(RsP , RtP ) = dK(R̄sP , R̄tP ). Moreover the vertices in R̄s belong to the same
color class of the leg-graph. Thus we get the first statement. For the second statement,
the if part follows from dK(·, R̄s) ≥ dK(·, Rs) and the first statement. For the only-if
part, we show d(RsP , ρi(y)) = d(R̄sP , ρi(y)) for P ∈ P(eτi ; ρi). This follows from the
facts that RsP cannot contain ρi(y) in the interior, and that ρi(y) and ρ(y) belong to
the same connected component obtained by deleting the interior of RsP from K (see the
proof of Lemma 3.3).

For i ∈ 1, 2, 3, {ρi(y), ρi(yτi)} belongs to Kp. We classify the position {ρi(y), ρi(yτi)}
into eight cases (1a), (1b), (2a), (2b), (2c), (2d), (3), (4) in Figure 21. For the six
cases, Lemma 4.5 (1) is applicable, which determines a type of P(eτi ; ρi) (and P(eτi)
if f is an optimal multiflow derived from Gτi,αi) as summarized in Table 1. The third
column indicates the exchangeability of P(eτi ; ρi) at eτi . By the local geodesic condition,
a ([u], yyτi , ∗)-set is always exchangeable. To see the exchangeability of (2b), consider
the 2-subdivision K2 and consider (K2)p′ for the midpoint p′ of a folder in Kp containing
p, q, q′, l; then (q, q′) is in case (4) in (K2)p′ .

For distinct i, j, k, P(eτi) is a disjoint union of P(e, eτi), P(ei, ej), and P(ei, ek). We
denote P(eτi ; ρi)∩P(e, eτi), P(eτi ; ρi)∩P(ei, ej), and P(eτi ; ρi)∩P(ei, ek) by P(e, eτi ; ρi),
P(ei, ej ; ρi), and P(ei, ek; ρi), respectively. The corresponding flow-values are denoted
by fe,eτi ;ρi , fei,ej ;ρi , and fei,ek;ρi , respectively. Obviously,

(4.10) feτi ;ρi = fe,eτi ;ρi + fei,ej ;ρi + fei,ek;ρi .

We will use this notation and decomposition.
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Figure 21: Possible patterns of {ρi(y), ρi(yτi)}, where q, q′ ∈ Qp and l, l′ ∈ Lp

Table 1: Type of P(eτi ; ρi) (and P(eτi) if f is an optimal multiflow derived from Gτi,αi)

case (ρi(y), ρi(y
τi)) P(eτi ; ρi) exchangeability

(1b) (q, p) ([q]1, yy
τi , ∗)

(2a) (l, p) ([l], yyτi , ∗) ©
(2b) (q, q′), q ∼1 l ∼1 q

′ ([q]1 \ [l], yyτi , [q′]1 \ [l]) ©
(2c) (q, q′), q 6∼ q′ ([q]1, yy

τi , [q′]1)
(3) (l, q), l 6∼ q ([l], yyτi , [q]1) ©
(4) (l, l′), l 6∼ l′ ([l], yyτi , [l′]) ©

Proof of Theorem 4.3 (1). We first show that for every optimal multiflow f , there
is e′ ∈ {e, e1, e2, e3} with fe′ = 0. Suppose that this is true. Then e′ is independent of
f , say, e′ = e (after relabeling). Hence P(eτi) = P(ei), and 1 ≥ fei = feτi ≥ 2− αi ≥ 1.
Necessarily αi = 1, feτi = fei = 1 and fei,ej = 1/2.

By Lemma 4.6 (2) with αi ≤ 1 and dρi(eτi) = 2, we have feτi ;ρi ≥ 1. Here ρi is in
case (2a) or (2b) in Figure 21. In particular, P(eτi ; ρi) is exchangeable at eτi (Table 1).
By the exchange operations between P(e, ej) and P(ei, ek), and between P(e, ek) and
P(ei, ej) (as in Figure 17), we can make f satisfy fe′,e′′ ≥ 1/2 for some distinct e′, e′′ ∈
{e, e1, e2, e3}. Note that any optimality-keeping exchange operation keeps feτi ;ρi ≥ 1.
We may assume (e′, e′′) = (e2, e3) (by relabeling). Then the equality holds in 1 ≥ α1 ≥
2 − feτ1 ≥ 2fe2,e3 ≥ 1. Hence, fe2,e3 = 1/2, feτ1 = 1, f is optimal for Gτ1,α1 (and is
derived from an optimal multiflow in Gτ1,α1). We may assume fe,eτ1 ≤ 1/2 ≤ fe1,eτ1 .
Since P(eτ1) is exchangeable, by the exchange operation between P(e, e3) and P(e1, e2)
at eτ1 , we can make f satisfy fe,e3 = 0, fe1,e3 = 1/2, and fe,e2+fe1,e2 = 1/2. If fe,e2 = 0,
then fe = 0, and this necessarily holds from the beginning and the exchange operations
have not been applied above (in the exchange operations above the simplification of
paths could not occur since such a nonsimple path uses two edges incident to y).

Suppose (indirectly) fe,e2 > 0 (and hence fe1,e2 < 1/2). By fe1,e3 = 1/2, we have
α2 = 1 and feτ2 = fe2,e3 + fe1,e2 + fe,e1 = 1. By fe2,e3 = 1/2 and fe1,e2 < 1/2, we have
fe,e1 > 0. Since P(eτ1) is exchangeable, by the exchange operation between P(e, e2) and
P(e1, e3) at eτ1 , we can make f satisfy fe1,e2 = 1/2. Since P(eτ2) is also exchangeable,
the exchange operation at eτ2 for two paths, one from P(e2, e3) and the other one from
P(e, e1) 6= ∅, keeps the optimality and results in fe1,e2 > 1/2. A contradiction to
1 ≥ α2 ≥ 2fe1,e2 . Therefore feτi = fei = 1, fe = 0, fei,ej = 1/2, and αi = 1. In
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particular, P(ei)(= P(eτi)) is exchangeable at ei.
Next consider the position (ρ1(y), ρ1(y

τ1)) in Kp; (2a) or (2b). Then dρ1(eτ1) =
dKp(ρ1(y), p) + dKp(p, ρ1(y

τ1)) holds. Since P(ei) is exchangeable at ei, any path in
P(e2, e3) is exchangeable with any path in P(eτ1) at e2 and at e3. By Lemma 4.5 (2),
if ρ1(y) 6= p, then P(e2, e3) is a ([q]1, x2yx3, [q]1)-set for some q ∈ Qp; a contradiction to
the local geodesic condition. Thus ρ1(y) = p must hold. Consequently (ρ1(y), ρ1(y

τ1)) =
(p, l1) for l1 ∈ Lp. By the same argument, we have (ρ2(y), ρ2(y

τ2)) = (p, l2) and
(ρ3(y), ρ3(y

τ3)) = (p, l3) for l2, l3 ∈ Lp. By Lemma 4.5 (1), P(ei, ej) is an ([li], xiyxj , [lj ])-
set; the vertices l1, l2, l3 are distinct by the local geodesic condition. �

Proof of Theorem 4.3 (2). Suppose to the contrary that q = q′, or q 6= q′ and there
is no common folder containing pq and pq′. By relabeling and symmetry, we may assume

(4.11) (ρi(y
τi), ρi(y)) =

{
(p, q) if q = q′,
(q′, p) or (p, q) if q 6= q′,

(i = 1, 2, 3).

They are in case (1b) in Figure 21. Let f̄eτi := feτi − feτi ;ρi . By Lemma 4.6 (1) for
dρi(eτi) = 1, we have

(4.12) feτi ;ρi − f̄eτi ≥ 2− αi (i = 1, 2, 3).

Claim 4.7. P(ei, ej ; ρi) ∩ P(ei, ej ; ρj) = ∅ for 1 ≤ i < j ≤ 3.

Proof. Take P from P(ei, ej ; ρi) ∩ P(ei, ej ; ρj). Suppose (say) that (ρi(y
τi), ρi(y)) =

(p, q). According to Table 1, P is a ([q]1, yy
τi , ∗)-path, and hence is a ([q]1, xjyxi, ∗)-

path. If (ρj(y
τj ), ρj(y)) = (p, q), then P is a (∗, xjyxi, [q]1)-path, and hence P is a

([q]1, xjyxi, [q]1)-path; a contradiction to the local geodesic condition. If (ρj(y
τj ), ρj(y)) =

(q′, p), then P is a ([q′]1, xjyxi, ∗)-path, and hence P is a ([q′]1 ∩ [q]1, xjyxi, ∗)-path, im-
plying [q′]1∩[q]1 6= ∅, and the existence of u in Πp with q′ ∼1 u ∼1 q. This in turn implies
the existence of a folder containing pq and pq′; a contradiction to the assumption.

Hence f̄eτi ≥ fei,ej ;ρj + fei,ek;ρk . By substituting this and (4.10) to (4.12), we get

fe,eτi ;ρi+fei,ej ;ρi+fei,ek;ρi−(fei,ej ;ρj +fei,ek;ρk) ≥ 2−αi (for distinct i, j, k ∈ {1, 2, 3}).

Addition of these three inequalities yields

fe,eτ1 ;ρ1 + fe,eτ2 ;ρ2 + fe,eτ3 ;ρ3 ≥ 6− α1 − α2 − α3.

Since fe,eτi ;ρi ≤ fe,ej +fe,ek , we have 2fe = 2(fe,e1 +fe,e2 +fe,e3) ≥ fe,eτ1 ;ρi +fe,eτ2 ;ρ2 +
fe,eτ3 ;ρ3 . From fe ≤ c(e) = 1, we have α1+α2+α3 ≥ 4. However this contradicts αi ≤ 1
for i = 1, 2, 3. �

5 Proof of (A), (B), and (C) and algorithmic implication

In this section, we complete the proof of Theorem 1.5 by proving three claims (A), (B),
and (C) in Section 3, which are given in Sections 5.1 and 5.2.

In a key step of the proof of claim (C), we will make use of the following lemma, called
the uncrossing lemma. Recall the notions of the forward orientation of K2, partition
Sρ,Mρ, Cρ, and forward semi-neighbors. The proof of Lemma 5.1 is given in Section 5.3.

Lemma 5.1. For two optimal potentials ρ, ρ′, there exists a forward semi-neighbor ρ∗

of ρ that is optimal with Cρ∗ = {x ∈ Cρ | ρ(x) = ρ′(x)}.

In Section 5.4, we show that our proof indeed gives a polynomial time algorithm to
find a 1/12-integral optimal multiflow provided the size of a realization of µ is fixed.
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Table 2: Classification of {ρ′(y), ρ′(yτ )}, where q, q′ ∈ Qp and l, l′ ∈ Lp

case {ρ′(y), ρ′(yτ )} dρ
′
(eτ ) ατ , G admissible ατ , 3G admissible

(1a) {q, l}, q ∼ l 1 0 0, 2/3, 4/3
(1b) {p, q} 1 0 0, 2/3, 4/3
(2a)∗ {p, l} 2 0, 1 0, 1/3, 2/3, 1, 4/3, 5/3
(2b)∗ {q, q′}, q ∼ q′ 2 0, 1 0, 1/3, 2/3, 1, 4/3, 5/3
(2c) {q, q′}, q 6∼ q′ 2 0, 1 0, 1/3, 2/3, 1, 4/3, 5/3
(2d) {l, l′}, l ∼ l′ 2 0, 1 0, 1/3, 2/3, 1, 4/3, 5/3
(3)∗ {q, l}, q 6∼ l 3 0, 2/3, 4/3 2m/9 (0 ≤ m ≤ 8)
(4)∗ {l, l′}, l 6∼ l′ 4 0, 1/2, 1, 3/2 m/6 (0 ≤ m ≤ 11)

(∗ means that every optimal multiflow derived from Gτ,α is exchangeable at eτ )

5.1 Proof of (A) and (B)

Claims (A) and (B) are easy consequences of Theorem 4.3.

(A). We may assume that y has degree four. Suppose (to the contrary) that all three
forks at y are unsplittable. Consider critical neighbors ρ1, ρ2, ρ3 of ρ for three forks
τ1, τ2, τ3. As was seen in the proof of Lemma 3.6, for i = 1, 2, 3, αi ∈ {0, 1} and
{ρi(y), ρi(yτi)} belongs to folder F or F ′ in Figure 13 (a). By Lemma 4.4 (1), αj = 1 for
some j, and then dρj (eτj ) = 2 (since the numerator of (3.2) is even). This means that
ρj(y) and ρj(y

τj ) are not adjacent by a leg ((2a) or (2b) in Table 1). Then any optimal
multiflow derived from Gτj ,αj is exchangeable at eτj . By Lemma 4.4 (2), we have αi = 1
for all i ∈ {1, 2, 3}. Hence ρi(y) and ρi(y

τi) are not adjacent by a leg, and belong to a
common folder (F or F ′) for i ∈ {1, 2, 3}. So Theorem 4.3 (1) is applicable. However,
the configuration of (i) (Figure 19) is impossible. Therefore y must have a splittable
fork. �

(B). Suppose that ρ(y) is the midpoint p of a leg qq′ in K, and all ρi are backward.
Then {ρi(y), ρi(yτi)} = {p, q} or {p, q′} for all i (see Figure 13 (b)). Since G has an
integer capacity and dρi(eτi) = 1, we have αi ∈ {0, 1}; the numerator of (3.2) is integral.
By Theorem 4.3 (2), there is a folder containing pq and pq′. However, such a folder does
not exist. A contradiction. This means that at least one of ρi is forward. �

5.2 Proof of (C)

We will repeat SPUP at inner nodes in Cρ, which is always forward (Lemma 3.6 (1)).
Then the number of inner nodes in Cρ is nonincreasing. To bound the denominator
of created fractional edges, we introduce a sharper degree condition than the restricted
Eulerian condition. (G; ρ) is called admissible if the deletion of edges between Sρ makes
(G; ρ) restricted Eulerian. Namely, we allow edges between Sρ to have a fractional
capacity. In view of the paragraph after Lemma 3.4, if (G; ρ) is admissible and τ is
a fork at Cρ, then the numerator of formula (3.2) of ατ is even. Thus, for a critical
neighbor ρ′ of ρ, the possible cases of {ρ′(y), ρ′(yτ )} with (dρ

′
(eτ ), ατ ) are summarized

as in Table 2; see also Figure 21. Here, for p ∈ V (K), (K2)p is star-shaped, and the
leg-graph of the boundary of (K2)p is identified with Πp.

Our goal is to sweep out inner nodes from Cρ. We will use the following fact for this
purpose.
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(5.1) For an edge e = xy with x, y ∈ Cρ and ρ(x) = ρ(y), if c(e) = fe for every
optimal multiflow f , then there exists a forward neighbor ρ′ of ρ such that
ρ′(x) 6= ρ′(y) and ρ′ is optimal.

Proof. Decrease c(e) by β ≥ 0. The resulting graph is denoted by Ge,β. Obviously
opt(µ;Ge,β) ≤ opt(µ;G). By the same argument as in the proof of Proposition 3.2, the
maximum possible β ≥ 0 with opt(µ;Ge,β) = opt(µ;G) is the minimum of {dρ′(G) −
dρ(G)}/dρ′(e) over all neighbors ρ′ of ρ with dρ

′
(e) > 0. By c(e) = fe, this must be

zero. Any neighbor ρ′ attaining the maximum β is an optimal forward neighbor as
required.

In successive SPUP, the value of ατ is monotone nonincreasing.

(5.2) For two forks τ and τ ′ on distinct nodes, we have ατ ′(G
τ,ατ ) ≤ ατ ′(G).

Proof. For ατ := ατ (G) and α′ := ατ ′(G
τ,ατ ), (Gτ,ατ )τ

′,α′
is well-defined, and opt(µ;G) =

opt(µ; (Gτ,ατ )τ
′,α′

) by definition. Since opt(µ;G) ≥ opt(µ;Gτ ′,α′
) ≥ opt(µ; (Gτ,ατ )τ

′,α′
),

we have opt(µ;Gτ ′,α′
) = opt(µ;G). This means ατ ′(G) ≥ α′.

Let us start the proof of claim (C). In the initial step, G is properly-inner Eulerian.
For any optimal potential ρ (for DLP(K2; {Rs}s∈S)), (G; ρ) is restricted Eulerian and
admissible. By the degree-reductions (Section 3.3), we can make G so that each inner
node in Cρ has degree four, each proper terminal in Cρ has degree one, and each improper
terminal in Cρ has degree two. We may assume that there is no splittable fork at Cρ and
all improper terminals are essential (see (3.4)). By edge-subdivisions, we can further
assume:

(5.3) For every edge xy with y ∈ Cρ, we have ρ(x) ∈ V ((K2)ρ(y)).

After the preprocessing (Section 5.2.1), at first three stages, we apply SPUP at a fork
having maximum ατ so that split nodes go out Cρ (Sections 5.2.2 and 5.2.3). Then the
number of inner nodes in Cρ decreases, and also the maximum ατ decreases by (5.2).
When the maximum ατ becomes close to 1, the estimate by Lemmas 4.4 and 4.6 becomes
effective, and finally we can apply 1-SPUP to reach the goal (Section 5.2.4).

5.2.1 Preprocessing

We first modify (G; ρ) so that (G; ρ) is restricted Eulerian and each terminal in Cρ is
incident to a unique node (while keeping (3.4)). Take an improper terminal s in Cρ of
degree two, incident to two nodes x, y. For a fork τ := (xs, s, sy) we have ατ < 2 (since
s is essential). If ατ = 0, then every optimal multiflow f has paths connecting s with
the flow-value 2 (by Lemma 3.1), and hence we can apply the degree-1 reduction to s;
the new terminals remain essential; see (3.3). So consider the case where 0 < ατ < 2.
Take a critical neighbor ρ′ of ρ. By 0 < ατ < 2, we have dρ

′
(eτ ) > 1 (the numerator

of (3.2) is even). Also, every optimal multiflow in Gτ,ατ must have paths connecting s
passing through eτ . This means that ρ′(s) must lie in the boundary of Rs, and ρ′(sτ )
is not in Rs with dK(Rs, ρ

′(sτ )) = dK(ρ
′(s), ρ′(sτ )). By Lemma 3.3, ρ′(s) and ρ(s) must

lie in the same connected component of the boundary of Rs. So the possible positions
of {ρ′(s), ρ′(sτ )} are ρ′(s) = p and ρ′(sτ ) ∈ Lp (case (2a)) or (ρ′(s), ρ′(sτ )) ∈ Lp × Lp

with ρ′(s) ∼ ρ′(sτ ) (case (2d)), where p := ρ(s); see Figure 21. In both cases, we have
dρ

′
(eτ ) = 2 and hence ατ = 1. Apply the corresponding 1-SPUP. Then sτ falls into Sρ,

and hence (G; ρ) keeps the restricted Eulerian condition. Furthermore s has degree one
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and is essential (by (3.3)). Repeat this process to improper terminals until each terminal
in Cρ has degree one and a unique neighbor.

5.2.2 3/2-SPUP

From here, we consider SPUP at inner nodes in Cρ. By searching all forks at Cρ, take
a fork τ at inner node y ∈ Cρ with (maximum) ατ = 3/2. Let p := ρ(y). Take a critical
neighbor ρ′ of ρ with respect to τ . Then dρ

′
(eτ ) = 4, and thus {ρ′(y), ρ′(yτ )} is in case

(4) in Table 2; both y and yτ fall into Sρ′ . Apply 3/2-SPUP: (G; ρ)← (Gτ,ατ ; ρ′).
Then (G; ρ) is admissible and (2G; ρ) is restricted Eulerian. Repeat this process until

there is no fork τ at Cρ with ατ = 3/2. After that, the possible values of ατ of forks τ
at Cρ are 0, 2/3, 1, 4/3. Here ατ = 1/2 (case (4)) never occurs since this implies the
existence of another fork τ ′ with ατ ′ = 3/2 by Lemma 4.4 (2) and the exchangeability
in case (4).

5.2.3 4/3-SPUP and 7/6-SPUP

By searching all forks at Cρ, take a fork τ at an inner node y in Cρ with (maximum)
ατ = 4/3. Then a critical neighbor ρ′ is in case (3) in Table 2. Apply 4/3-SPUP:
(G; ρ)← (Gτ,ατ ; ρ′). Then one of y and yτ falls into Sρ, and the other falls into Mρ and
has degree 8/3. Therefore

(5.4) (3G; ρ) is admissible and (6G; ρ) is restricted Eulerian.

From now on, we keep this condition (5.4). In the next SPUP, ατ belongs to 1/3(2Z+/3∪
Z+/2); see the fifth column in Table 2. Note that ατ > 4/3 is impossible by (5.2). By
this fact together with Lemma 4.4 (2), ατ ∈ {1/6, 2/9, 4/9} is also impossible. So the
possible values of ατ are 0, 1/3, 2/3, 5/6, 8/9, 1, 10/9, 7/6, 4/3.

Apply SPUP for a fork τ at an inner node in Cρ with ατ = 4/3. Here, if ατ = 4/3
in (1b, 2a) occurs, then ρ′(y) or ρ′(yτ ) does not move, and the number of inner nodes
in Cρ does not decrease. However, by the uncrossing lemma (Lemma 5.1), we can take
a forward critical semi-neighbor ρ∗ of ρ with y, yτ 6∈ Cρ∗ as follows.

Let (G̃; ρ̃) be the graph with the optimal potential at just after the final 3/2-SPUP.
By (5.2), necessarily ατ (G̃) = 4/3 holds. This means that we could have chosen this fork
τ in the first 4/3-SPUP. Consider a critical neighbor ρ′′ of ρ̃ with respect to τ in G̃. ρ′′

is necessarily in case (3), and can be regarded as an optimal potential for the current
graph Gτ,ατ by ρ′′(ỹτ̃ ) := ρ′′(ỹ) for processed forks τ̃ at ỹ. By the uncrossing lemma for
(ρ′, ρ′′), there is another optimal forward semi-neighbor ρ∗ of ρ′ with Cρ∗ = {y ∈ Cρ′ |
ρ′(y) = ρ′′(y)}. Both ρ′′(y) and ρ′′(yτ ) are in V ((K2)p) \ {p}. Hence y, yτ 6∈ Cρ∗ . Let
(G; ρ) ← (Gτ,ατ ; ρ∗); the number of inner nodes in Cρ strictly decreases. In this way,
repeat 4/3-SPUP. After the procedure, the possible values of ατ are 0, 1/3, 2/3, 5/6,
8/9, 1, 10/9, 7/6.

Next apply SPUP for a fork τ at inner node y ∈ Cρ with ατ = 7/6. In this case,
its critical neighbor ρ′ is in case (4). Thus 7/6-SPUP keeps (5.4), and the number
of inner nodes in Cρ decreases. After the procedure, the possible values of ατ are
0, 1/3, 2/3, 8/9, 1, 10/9; note that ατ < 7/6 excludes 5/6 (case (4)) by Lemma 4.4 (2).

5.2.4 1-SPUP

Take any inner node y ∈ Cρ, a fork τ , and a critical neighbor ρ′ of ρ with respect to τ .
Let p := ρ(y). The possible cases of (ατ , ρ

′) are ατ = 1/3 in (2c, 2d), ατ = 2/3 in (1a,
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1b, 2c, 2d), ατ = 8/9 in (3), ατ = 1 in (2a, 2b, 2c, 2d, 4), and ατ = 10/9 in (3). Note
that α < 4/3 excludes ατ ∈ {1/3, 2/3} in (2a, 2b, 3, 4) by Lemma 4.4 (2).

The main obstructions to keeping (5.4) are the occurrences of ατ = 10/9 in (3) and
ατ = 1 in (2c). Sometimes we can proceed SPUP when the latter case occurs. Suppose
ατ = 1 in (2c) with (ρ′(y), ρ′(yτ )) = (q, q′). Then, for every optimal multiflow f = (P;κ)
in G derived from Gτ,ατ , P(eτ ) is a ([q]1, yy

τ , [q′]1)-set (see Lemma 4.5 (1) with Table 1).
Here consider the following condition:

(5.5) There is no optimal multiflow f = (P;κ) derived from Gτ,ατ such that

(i) P(eτ ) is an ([l], yyτ , [q′]1)-set for some l ∈ Lp with l ∼1 q, or

(ii) P(eτ ) is a ([q]1, yy
τ , [l′])-set for some l′ ∈ Lp with l′ ∼1 q

′.

Suppose that this condition is met. Apply SPUP: (G; ρ)← (Gτ,ατ ; ρ′). Continue SPUP
at Cρ. Then dρ(eτ ) keeps 2, and hence ατ remains in 1/3(2Z+/3 ∪ Z+/2) (see the
paragraph after Lemma 3.4).

Indeed, suppose that one of ρ(y) and ρ(yτ ), say ρ(y), moves at some SPUP. Then
ρ(y) = l ∈ Lp with l ∼1 q (since SPUP is forward). Consider an optimal multiflow f in
the current graph. Then any (s, yyτ , t)-path in f induces by ρ a path passing through
Rs → l→ ρ(yτ )→ Rt. As in Lemma 4.5, the type of (s, t) is determined by the position
of (l, ρ(yτ )). Also ρ(yτ ) is q′ or l′ ∈ Lp with l′ ∼1 q′. If ρ(yτ ) = q′ or l′ ∈ Lp with
l′ 6∼ l, then any (s, yyτ , t)-path is an ([l], yyτ , [q′]1)-path (see Table 1). By contracting
edges eτ

′
for processed τ ′ (after τ), we get an optimal multiflow f in Gτ,ατ so that any

(s, yyτ , t)-path is an ([l], yyτ , [q′]1)-path. Then the optimal multiflow in G derived from
f violates (5.5); a contradiction. Hence ρ(yτ ) = l′ with l ∼ l′; in particular both y and yτ

fall into Sρ. In this way, we can continue SPUP without an increase in the denominator
of ατ .

1-SPUP with (2c) is called mixed if it satisfies (5.5), and called unmixed otherwise.
We can avoid 10/9-SPUP and unmixed 1-SPUP by examining all three forks τ1, τ2, τ3
at y and their critical neighbors ρ1, ρ2, ρ3. The main technical statement here is the
following.

Proposition 5.2. Suppose that ρj is in case neither (2d) nor (4) for j = 2, 3.

(1) If α1 = 10/9, then, for j = 2 or 3, ρj is in case (2c) with αj = 1.

(2) If ρ1 is in case (2c) with α1 = 1 such that the corresponding 1-SPUP is unmixed,
then both ρ2 and ρ3 are in case (2c) with α2 = α3 = 1, and by a relabeling fixing
{{e, e1}, {e2, e3}}, one of the following holds:

(2-0) ρ3(y) ∼ ρ2(y) ∼ ρ3(y
τ3) ∼ ρ2(y

τ2) ∼ ρ3(y).

(2-1) ρ3(y) ∼ ρ2(y) ∼ ρ1(y
τ1) ∼ ρ3(y

τ3) ∼ ρ2(y
τ2) ∼ ρ1(y) ∼ ρ3(y) and ρ2(y

τ2) ∼
ρ3(y).

(2-2) ρ3(y) ∼ ρ2(y) ∼ ρ1(y
τ1) ∼ ρ3(y

τ3) ∼ ρ2(y
τ2) ∼ ρ1(y) ∼ ρ3(y) and ρ3(y

τ3) ∼
ρ2(y).

See Figure 22 for the positions of {ρi(y), ρi(yτi)} in (2). The proof of Proposition 5.2
is rather technical. Before the proof, let us proceed, assuming Proposition 5.2. Take an
inner node y ∈ Cρ having a fork τ with maximum ατ ≤ 10/9. Consider three critical
neighbors ρi for τi (i = 1, 2, 3). If some ρi is in case (2d) or (4), then both y and yτi

fall into Sρi , and apply 1-SPUP for (τi, ρi), which keeps (5.4). So suppose that neither
(2d) nor (4) occurs. Suppose αi = 10/9. By Proposition 5.2 (1), for j 6= i, ρj is in case
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Figure 22: Positions of {ρi(y), ρi(yτi)}

(2c), and, by Proposition 5.2 (2) for ρj , the corresponding 1-SPUP is guaranteed to be
mixed. Let (G; ρ)← (Gτj ,αj ; ρj).

Suppose max(α1, α2, α3) ≤ 1; then αi = 8/9 is impossible by Lemma 4.4 (2). Suppose
αi = 1 with (2c). If (ρi, ρj , ρk) violates the configuration of Proposition 5.2 (2), then
(G; ρ)← (Gτi,αi ; ρi) is guaranteed to be mixed 1-SPUP.

Here, it is impossible that all ρi satisfy Proposition 5.2 (2). To verify this fact,
suppose (to contrary) that all ρi satisfy (2). Then all ρi(y), ρi(y

τi) (i = 1, 2, 3) are
distinct. To derive a contradiction, we utilize the girth condition (2.5) for Πp. Suppose
(first) that ρ1 satisfies (2-1) as in Figure 22. By (2) for ρ2, we have ρ1(y) ∼ ρ3(y

τ3) or
ρ1(y

τ1) ∼ ρ3(y). The first case finds a 6-cycle (using ρ3(y
τ3), u, ρ2(y

τ2), l, ρ1(y)) in Πp; a
contradiction to (2.5). Consider the second case. Then ρ1(y

τ1) must be incident to ū;
otherwise, by ρ1(y

τ1) ∼ ρ2(y), we find a 6-cycle (using ρ1(y
τ1), ρ3(y), ū, ρ2(y)). Again,

by (2) for ρ3, we have ρ1(y) ∼ ρ2(y) or ρ(y
τ1) ∼ ρ2(y

τ2). Similarly we have ρ1(y
τ1) ∼ u.

Then Πp has a 6-cycle (u, ρ2(y
τ2), l, ρ3(y), ū, ρ1(y

τ1)). The case (2-2) is similar. Also, if
all ρi satisfy (2-0), we can find a 6-cycle, as above, more easily.

Apply such mixed 1-SPUP as far as possible. Suppose that αi = 1 with (2a) or (2b)
occurs. Then necessarily αj = αk = 1 (by Lemma 4.4 (2)). Then both ρj and ρk are
also in case (2a) or (2b). By Theorem 4.3 (1), all ρi are necessarily in case (2a). So
every multiflow configuration around y is given as in Figure 19 (after relabeling):

(5.6) fe1,e2 = fe2,e3 = fe1,e3 = 1/2, fe = 0.

In particular, fe1 = fe2 = fe3 = 1. If ρ(y) = ρ(x′) for x′ ∈ {x1, x2, x3}, then replace ρ by
an optimal forward neighbor ρ′ with ρ′(y) 6= ρ′(x′), according to (5.1). Here ρ(x) = ρ(y)
by fe = 0 and the saturation condition. If x is a terminal, then x has degree one and
has no flow. If x is an inner node, then x has the same configuration (5.6) as y.

The remaining case is αi = 1/3 or 2/3. By Lemma 4.4 (1), we have α1 = α2 = α3 =
2/3. By Lemma 3.1, every optimal multiflow f satisfies

(5.7) fe,e1 = fe,e2 = fe,e3 = fe1,e2 = fe1,e3 = fe2,e3 = 1/3.

Also fe = fe1 = fe2 = fe3 = 1. If ρ(y) = ρ(x′) for x′ ∈ {x, x1, x2, x3}, then replace ρ
by an optimal forward neighbor ρ′ with ρ′(y) 6= ρ′(x′) as above. By (5.3), each x′ above
belongs to Mρ ∪ Sρ. By (5.6) and (5.7), we can split off all inner nodes in Cρ in 6G.
Split them off. Then (6G; ρ) is restricted Eulerian, there is no inner node in Cρ, and
each terminal in Cρ has a unique neighbor (Section 5.2.1). Then the proof of claim (C)
is done. �
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Figure 23: A-configuration and B-configuration

Proof of Proposition 5.2. Consider the case where α1 = 10/9 in case (3) or α1 = 1
in case (2c) such that the corresponding 1-SPUP for (τ1, ρ1) is unmixed. In either cases,
we can take an optimal multiflow f = (P;κ) in G derived from Gτ1,α1 such that

(5.8) (i) P(eτ1) is an ([l], yyτ1 , [q′]1)-set for some (l, q′) ∈ Lp ×Qp, or

(ii) P(eτ1) is a ([q]1, yy
τ1 , [l′])-set for some (q, l′) ∈ Qp × Lp.

(Necessarily l 6∼ q′ for (i), q 6∼ l′ for (ii) by the local geodesic condition). Take such an
optimal multiflow f of fractionality κ with minimum total support

∑
e∈E fe. Then every

exchange operation keeping the optimality and (5.8) does not decrease the support; note
that any optimality-keeping (anti-)exchange operation at edges except eτ2 , eτ3 keeps the
property that f is derived from Gτ1,α1 .

0. By (4.4), we may assume fe2,eτ1 ≥ fe,eτ1 ≥ feτ1/2 ≥ fe1,eτ1 ≥ fe3,eτ1 (after a
relabeling fixing τ1). Now feτ1 ≥ 2 − α1 (Lemma 3.1). Let fe,eτ1 = 1 − α1/2 + ε and
fe1,eτ1 = 1 − α1/2 − ε′ for ε ≥ ε′ ≥ 0. Since P(eτ1) is exchangeable, by the exchange
operations (as in Figure 17) at eτ1 , we can make f satisfy fe,e2 = feτ1 ,e = 1−α1/2+ ε ≥
4/9 + ε, and also make f satisfy fe1,e2 = fe1,eτ1 = 1− α1/2− ε′ ≥ 4/9− ε′. The former
is called A-configuration, and the latter is called B-configuration. See Figure 23.

By Lemma 4.4 (2), for j = 2 and 3, αj ∈ {8/9, 1, 10/9} and ρj is in case (2a),
(2b), (2c), (3), or (4). Also ε ≤ 1/9 (otherwise α2 ≥ 2fe,e2 > 10/9), By applying
Lemma 4.6 (2) to τ2 in A-configuration and to τ3 in B-configuration, we get

(5.9)

feτ2 ;ρ2 ≥ 2 + (dρ2(eτ2)− 2)fe,eτ1 − dρ2(eτ2)α2

2
=


7/9 + ε if α1 = α2 = 10/9,
5/6 + ε if α1 = 1, α2 = 10/9,
1 if α2 = 1,
10/9 if α1 = 10/9, α2 = 8/9,

feτ3 ;ρ3 ≥ 2 + (dρ3(eτ3)− 2)fe1,eτ1 − dρ3(eτ3)α3

2
=


7/9− ε′ if α1 = α3 = 10/9,
5/6− ε′ if α1 = 1, α3 = 10/9,
1 if α3 = 1,
10/9 if α1 = 10/9, α3 = 8/9.

Furthermore feτ2 ;ρ2 + feτ3 ;ρ3 has the following upper bounds.

Claim 5.3. If P(e, e1; ρ2) ∩ P(e, e1; ρ3) = ∅, then

feτ2 ;ρ2 + feτ3 ;ρ3 ≤ 3

2
α1,

35



and, if, in addition, P(e2, e3; ρ2) ∩ P(e2, e3; ρ3) = ∅, then

feτ2 ;ρ2 + feτ3 ;ρ3 ≤ 1 +
α1

2
− ε− fe3,eτ1 .

Proof. This follows from substituting

fe,e1;ρ2 + fe,e1;ρ3 ≤
{

α1/2− ε if P(e, e1; ρ2) ∩ P(e, e1; ρ3) = ∅,
α1 − 2ε otherwise,

fe2,e3;ρ2 + fe2,e3;ρ3 ≤
{

1− feτ1 + fe3,eτ1 if P(e2, e3; ρ2) ∩ P(e2, e3; ρ2) = ∅,
2(1− feτ1 + fe3,eτ1 ) otherwise,

into fe,e1;ρ2 + fe,e1;ρ3 + fe2,e3;ρ2 + fe2,e3;ρ3 ≥ feτ2 ;ρ2 + feτ3 ;ρ3 − feτ1 + 2fe3,eτ1 . Then use
feτ1 = 2− α1 + ε− ε′ for ε ≥ ε′.

The first and second inequalities follow from fe,e1;ρi ≤ fe,e1 ≤ 1− fe,eτ1 = α1/2− ε
and fe2,e3;ρi ≤ fe2,e3 ≤ 1−fe2,eτ1 = 1−feτ1 +fe3,eτ1 , respectively. The third follows from
adding feτ2 ;ρ2 ≤ fe,e1;ρ2 + (fe1,eτ1 − fe3,eτ1 ) + fe2,e3;ρ2 and feτ3 ;ρ3 ≤ fe,e1;ρ3 + (fe,eτ1 −
fe3,eτ1 ) + fe2,e3;ρ3 , and using fe1,eτ1 + fe,eτ1 = feτ1 .

1. We first show the following, which includes Proposition 5.2 (1):

(5.10) For j = 2 or 3, ρj is in case (2c) with αj = 1.

To prove this, suppose not. For all cases (2a, 2b, 3, 4) and j = 2, 3, P(eτj ; ρj) is
exchangeable at eτj .

(5.11) In A-configuration, P(e1, e2; ρ2) 6= ∅.

Otherwise, P(e1, e2; ρ2) = ∅ would imply fe,e1;ρ2 + fe2,e3;ρ2 = feτ2 ;ρ2 ≥ 7/9 + ε. Since
max{fe,e1;ρ2 , f e2,e3;ρ2} ≤ 1 − fe,eτ1 = 1 − α1/2 − ε ≤ 5/9 − ε, both P(e, e1; ρ2) and
P(e2, e3; ρ2) have the flow-value at least 2/9 + 2ε (in each case). In B-configuration, by
the exchange operation (without simplification) between P(e, e1; ρ2) and P(e2, e3; ρ2) at
eτ2 we can make f satisfy fe1,e2 ≥ 4/9− ε′+(2/9+2ε) > 5/9 (while keeping optimality).
Since feτ3 ≤ 2 − 2fe1,e2 , we have feτ3 < 8/9 (this holds after the simplification). Then
α3 ≥ 2− feτ3 > 10/9; a contradiction to α3 ≤ 10/9.

Similarly,

(5.12) In B-configuration, P(e, e2; ρ3) 6= ∅.

Otherwise, both P(e, e1; ρ3) and P(e2, e3; ρ3) would have the flow-value at least 2/9 +
(ε−ε′), and in A-configuration we can make f satisfy fe,e2 ≥ 4/9+ε+2/9+ε−ε′ > 5/9,
implying α2 > 10/9; a contradiction, as above. Then we have the following:

(5.13) P(e, e1; ρ2) ∩ P(e, e1; ρ3) is empty.

Indeed, take P from P(e, e1; ρ2)∩P(e, e1; ρ3) if exists. Then, by (5.11) and the fact that
P(eτ2 ; ρ2) is exchangeable, P is exchangeable with a path in P(eτ1) at e1. Also, by (5.12)
and the fact that P(eτ3 ; ρ3) is exchangeable, P is exchangeable with a path in P(eτ1) at
e. By Lemma 4.5 (2), P is a ([q]1, xyx1, [q]1)-path for some q ∈ Q; a contradiction to
the local geodesic condition.

Therefore the first inequality in Claim 5.3 holds. Then the case α1 = α2 = α3 = 10/9
(case (3)) is the only possibility; the other cases yield LHS < RHS. In particular,
(ρ1(y), ρ1(y

τ1)) = (l, q′) or (q, l′) holds. Suppose that the latter case holds. Here P(e1, e2)

36



is an ([l′], x1yx2, ∗)-set, and P(e, e2) is an ([l′], xyx2, ∗)-set (by Table 1). P(e, e1; ρ2) is
also nonempty; otherwise 7/9 ≤ feτ2 ;ρ2 = fe2,eτ2 ;ρ2 ≤ 1 − fe,eτ1 ≤ 5/9. Then a path
P ∈ P(e, e1; ρ2) is exchangeable with a path P ′ ∈ P(e1, e2; ρ2) ( 6= ∅ by (5.11)) at e,
since P(eτ2 ; ρ2) is exchangeable at eτ2 . Therefore P is an ([l′], x1yx, ∗)-path. Then f
includes an ([l′], yx, ∗)-path and a (∗, yx, [l′])-path at e. Then the anti-exchange opera-
tion for these two paths at e decreases the total support, while keeping optimality. A
contradiction to the minimality of the support. Therefore (ρ1(y), ρ1(y

τ1)) = (l, q′) holds.
Consider (ρ2(y), ρ2(y

τ2)), which is also in case (3): ρ2(y
τ2) = l̄′1 ∈ Lp or ρ2(y) =

l̄1 ∈ Lp. Take a path P from P(e1, e2; ρ2) (by (5.11)) in A-configuration, which is a
(∗, x1yx2, [l̄′1])-path or an ([l̄1], x1yx2, ∗)-path. Since P ∈ P(eτ1), P is also a ([q′]1, x1yx2, [l])-
path. Therefore ρ2(y

τ2) = l̄′1 = l or ρ2(y) = l̄1 with l̄1 ∼1 q
′. Suppose that the former case

occurs. Then P(e, e1; ρ2) is a ([l], xyx1, ∗)-set. Also P(e, e2) is a (∗, xyx2, [l])-set. Then
the anti-exchange operation at e = xy works, as above; a contradiction to the minimality
of the support. Hence the latter case (ρ2(y) = l̄1) holds. Similarly ρ3(y

τ3) = l̄2 ∈ Lp

with l̄2 ∼1 q′. Then l̄1 6= l̄2 necessarily holds; this means [l̄1] ∩ [l̄2] = ∅. Otherwise the
anti-exchange operation at e, which has both an ([l̄2], xy, ∗)-path and a (∗, xy, [l̄1])-path,
works. In particular, P(e2, e3; ρ2) ∩ P(e2, e3; ρ3) has no path; otherwise such a path is
an ([l̄1] ∩ [l̄2], x2yx3, ∗)-path.

Hence the second inequality in Claim 5.3 also holds. Then this completely determines
the multiflow configuration at y as ε = ε′ = 0, fe3,eτ1 = 0, fe,eτ1 = fe1,eτ1 = fe,e2 =
fe1,e2 = fe,e2;ρ3 = fe1,e2;ρ2 = 4/9, and feτ2 ;ρ2 = feτ3 ;ρ3 = 7/9. In particular, both
equalities hold in (5.9). Since fe,e1;ρ2+fe,e1;ρ3+fe2,e3;ρ2+fe2,e3;ρ3 = 6/9 and fe,e1 ≤ 5/9,
we may assume that both P(e, e1; ρ3) and P(e2, e3; ρ3) are nonempty. By the exchange
operation at eτ3 for two paths, one from P(e, e1; ρ3) and another from P(e2, e3; ρ3), we
can make f satisfy fe,e2 = fe1,eτ1 > 4/9, while keeping the optimality and feτ2 ;ρ2 = 7/9.
This means that the inequality in Lemma 4.6 (2) fails; a contradiction. Thus we have
(5.10), and hence Proposition 5.2 (1).

2. Next we show: if the condition of Proposition 5.2 (2) holds, i.e., α1 = 1 with
unmixed (2c), then ρ2 is in case (2c) with α2 = 1. If this is true, then necessarily
fe,eτ1 = fe1,eτ1 = 1/2 (ε = ε′ = 0), and ρ3 is also in case (2c) with α3 = 1 since we can
interchange the roles of x and x1.

Suppose (indirectly) that ρ2 is not in case (2c). Then feτ2 ;ρ2 ≥ 5/6 + ε, (5.11) holds
by the same argument, and (5.13) does not hold. By (5.10), ρ3 is necessarily in case
(2c) with α3 = 1 and (ρ3(y), ρ3(y

τ3)) = (q̄, q̄′). Consider f in B-configuration. Then
feτ3 = fe,e1 + (fe,e2 + fe2,e3) ≤ (1 − fe,eτ1 ) + (1 − fe1,e2) = 2 − feτ1 ≤ α1 = 1, and
1 = 2 − α3 ≤ feτ3 ≤ 1. Therefore feτ3 = 1, and f is an optimum for Gτ3,α3 . We may
assume fe,e2 > 0. Otherwise fe,eτ1 = fe1,eτ1 = 1; we can change the role of x and x1.
Take a path P in P(e1, e2; ρ2) 6= ∅. Since P(eτ1) is exchangeable at eτ1 , P is exchangeable
with a path in P(e, e2) 6= ∅. Since P(eτ2 ; ρ2) is exchangeable at eτ2 , P is exchangeable
with a path in P(e, e1; ρ2) ⊆ P(e, e1). By Lemma 4.5 (2), P is a ([q̄], y, [q̄])-path; a
contradiction to the local geodesic condition.

3. Finally we show that {ρi(y), ρi(yτi)} (i = 1, 2, 3) satisfy (2-0), (2-1), or (2-2). Now
fe,eτ1 = fe,eτ2 = 1/2, and f is an optimum for Gτ2,α2 in A-configuration (feτ2 = 1),
and is an optimum for Gτ3,α3 in B-configuration (feτ3 = 1). In particular, fe,e1 = 1/2.
Take a path P from P(e, e1), and suppose that P is a ([u], xyx1, [ū])-path. Here P is a
([u], yτ2y, [ū])-path and a ([u], yτ3y, [ū])-path. By Lemma 4.5 (1), ρ2(y

τ2) ∼1 u ∼1 ρ3(y
τ3)

and ρ2(y) ∼1 ū ∼1 ρ3(y). If fe2,e3 > 0, then we can apply the same argument for
P(e2, e3) and we get ρ2(y

τ2) ∼ ρ3(y) and ρ2(y) ∼ ρ3(y
τ3), i.e., (2-0) holds. Suppose
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that fe2,e3 = 0; necessarily fe,e2 = fe,e1 = fe1,e2 = 1/2. Suppose that (5.8) (i) holds.
Take a path P ′ from P(e1, e2), which is a ([q′]1, x1yx2, [l])-path for q′ = ρ1(y

τ1) and
l ∼1 ρ1(y). Here P ′ is an ([l], yτ2y, [q′]1)-path. By Lemma 4.5 (1), we get ρ2(y

τ2) ∼1 l
and q′ ∼ ρ2(y). By the same argument for P(e, e2), we get ρ3(y) ∼1 l and q′ ∼ ρ3(y

τ3).
Hence (2-1) holds; see Figure 22 (2-1). Similarly, for the case of (5.8) (ii), (2-2) holds;
see Figure 22 (2-2). We are done. �

5.3 Proof of the uncrossing lemma

Here we prove Lemma 5.1; the proof technique is due to [11]. We use the relation between
DLP and LP-dual, which is revealed in [12] and is summarized by Section 5.3.1. Our
argument is algorithmic, and will be used in the next Section 5.4. For an F-complex K
with unit leg-length δ = 1, let diamK denote the diameter of K.

5.3.1 Relation between LP-dual and DLP

Consider the following continuous relaxation of DLP:

CLP(K; {Rs}s∈S): Minimize
∑
xy∈E

c(xy)dK(ρ(x), ρ(y))

subject to ρ : V → K, ρ(s) ∈ Rs (s ∈ S).

We also call a feasible map ρ in CLP a potential. For a potential ρ to CLP, metric dρ

is feasible to LP-dual (2.1) with the same objective value. Conversely, for any metric d
feasible to LP-dual (2.1), we can greedily construct a potential ρ in CLP with dρ ≤ d as
follows.

Let V = {x1, x2, . . . , xn}(⊇ S). For k = 1, 2, . . . , n, define ρ(xk) to be an arbitrary
point in

(5.14)
⋂
s∈S

B(Rs, d(s, xk)) ∩
k−1⋂
i=1

B(ρ(xi), d(xi, xk)) (k = 1, 2, . . . , n),

where B(R, r) is the set of points p with dK(R, p) ≤ r. This construction is well-defined,
since (5.14) is nonempty for every k [12]. Then, by construction, ρ is a potential in CLP
with dρ ≤ d (since ρ(xi) ∈ B(ρ(xi), d(xi, xk)). Hence, if d is optimal to LP-dual, then
ρ is optimal to CLP. Therefore, from an optimal metric d, we can construct an optimal
potential ρ in CLP in polynomial time.

Next we round a potential in CLP to a potential in DLP. Fix an admissible orientation−→
K of K. This orientation determines an orientation of the local coordinate of every cell.

A leg uv oriented as −→uv is identified with a segment in R with ends u = 0, v = 1. A
triangle σ with oriented legs −→uv,−→vw and hypotenuse −→uw is identified with a triangle in R2

with vertices (u, v, w) = ((0, 0), (1, 0), (1, 1)). For simplicity, we regard a square-folder F
as a K2,2-folder with the hypotenuse joining the sink and the source in F .

For a ∈ [0, 1), we can define a rounding map φa : K → V (K) as follows. For a
point p ∈ K, we can take a cell σ containing p. In the case where σ is a triangle with
vertices u, v, w oriented as above, p is locally represented as a point (x, y) ∈ R2 with
0 ≤ y ≤ x ≤ 1. Define φa by

φa(p) :=


u if y ≤ x ≤ a,
v if y ≤ a < x,
w if a < x ≤ y.
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Figure 24: Rounding map φa

In the case where σ is a leg −→uv, p is locally represented as a point x with 0 ≤ x ≤ 1.
Define φa(p) := u if x ≤ a and φa(p) := v if a < x. See Figure 24. This map φa is
well-defined. This rounding is due to [18], and it is known in [12, 18] that

(5.15) If ρ is optimal to CLP, so is φa ◦ ρ.

Consequently an optimal potential can be obtained from any optimal metric in polyno-
mial time.

5.3.2 Constructing a semi-neighbor from two potentials

We can consider an analogue of a convex combination of two distinct potentials ρ and
ρ′. Here we assume the following condition:

(5.16) For every p ∈ V (K), there is a terminal s ∈ S with Rs = {p}.

This is achieved by adding at most |V (K)| dummy terminals. Take σ ∈ [0, 1]. Let
dσ = (1 − σ)dρ + σdρ

′
. Then dσ is feasible to LP-dual (2.1). According to (5.14), we

can construct a potential ρσ in CLP with dρσ ≤ d. In particular, if both ρ and ρ′ are
optimal to CLP, then ρσ is also optimal to CLP.

(5.17) Under assumption (5.16), we have dK(ρ(x), ρσ(x)) = σdK(ρ(x), ρ
′(x)) and

dK(ρσ(x), ρ
′(x)) = (1− σ)dK(ρ(x), ρ

′(x)) for x ∈ V .

Indeed, for each x ∈ V there are terminals s, t with Rs = {ρ(x)} and Rt = {ρ′(x)}; so
ρ(x) = ρ(s) = ρ′(s) and ρ′(x) = ρ(t) = ρ′(t). Thus, by construction (5.14), we have

ρσ(x) ∈ B(Rs, dσ(s, x)) ∩B(Rt, dσ(t, x))

= B(ρ(x), σdK(ρ(x), ρ
′(x))) ∩B(ρ′(x), (1− σ)dK(ρ(x), ρ

′(x))).

Hence dK(ρ(x), ρσ(x)) ≤ σdK(ρ(x), ρ
′(x)) and dK(ρσ(x), ρ

′(x)) ≤ (1− σ)dK(ρ(x), ρ
′(x)).

By the triangle inequality dK(ρ(x), ρ
′(x)) ≤ dK(ρ(x), ρσ(x))+dK(ρσ(x), ρ

′(x)), we obtain
the equalities in (5.17).

Let ρ be a potential in DLP. If we are given a potential ρ′ in CLP close to ρ, we
can construct a semi-neighbor of ρ from ρ′. A semi-neighbor is called forward if it is

a semi-neighbor with respect to
−→
K and is called backward if it is a semi-neighbor with

respect to the opposite orientation of
−→K .

(5.18) For a potential ρ to DLP and a potential ρ′ to CLP, if dK(ρ(x), ρ
′(x)) < 1/2

for x ∈ V , then φa ◦ ρ′ is a forward (resp., backward) semi-neighbor of ρ
for a ∈ [0, 1/2) (resp., a ∈ [1/2, 1)).

This property can be easily seen from the right of Figure 24, where shaded regions depict
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disjoint balls around vertices in K with radius less than 1/2; if p = ρ(x), then ρ′(x) is
contained by the ball around p, and is rounded to φa ◦ ρ′(x) along the arrows. The
uncrossing lemma is now immediate.

Proof of the uncrossing lemma. Take positive σ ≤ 1/(2 diamK2 + 1). Consider
dσ := (1 − σ)dρ + σdρ

′
. Then dσ is optimal. Next, according to (5.14), we construct a

potential ρσ to CLP with dρσ ≤ dσ, which is also optimal. By (5.17), dK2(ρ(x), ρσ(x)) <
1/2, and ρ(x) 6= ρ′(x) implies ρ(x) 6= ρσ(x). In the forward orientation, round ρσ to
ρ∗ := φa ◦ ρσ. Here take a = 0. By (5.18), ρ∗ is a forward semi-neighbor and is a desired
one. �

5.4 Algorithmic implication

The proof of Theorem 1.5, we have shown above, is constructive. Each step searches all
forks for one having required properties, and applies SPUP or splitting-off to decrease
the number of nodes in question. Once the problem becomes trivial to have an integral
optimum, we obtain a 1/k-integral optimum for the original problem by reversing the
operations.

Here we verify that our proof indeed yields a (strongly) polynomial time algorithm
under the assumption that the size (the number of cells) of a realization is fixed.

Theorem 5.4. Suppose that a realization of µ is given and its size is fixed. Then there
exists a strongly polynomial time algorithm to find a 1/12-integral optimal multiflow in
µ-MFP for every property-inner Eulerian graph.

The size of a realization is not polynomially bounded by the bit size of µ in general;
see the 2-commodity F-complex in Section 6. In the case of 0-1 weight, there is a
realization of O(|S|2) size; see (7.2) in Section 7.1.

In the case where the edge capacity is not so large, our proof gives a strongly polyno-
mial time algorithm, assuming the oracles of finding an optimal potential, the splitting
capacity ατ , a critical neighbor, and a forward semi-neighbor in the uncrossing lemma.
We note that our proof goes on without any explicit multiflow calculation; the mixed
1-SPUP (in Section 5.2.4) can be done without checking all optimal multiflows by Propo-
sition 5.2. Also a critical neighbor can be relaxed to a critical semi-neighbor.

These computations can be done (in a combinatorial way) if we get an optimal
metric in LP-dual (2.1). Since LP (2.1) is given by a {−1, 0, 1} coefficient matrix of
polynomial size, we can evaluate the optimal value and find an optimal metric in strongly
polynomial time by the method of Tardos [28]. In Section 5.3 we mentioned polynomial
time constructions of an optimal potential from an optimal metric and of a forward
semi-neighbor in the uncrossing lemma. Hence, in the rest of this subsection, we explain
how to compute ατ and a critical semi-neighbor, and how to reduce edge-capacities.

5.4.1 Computing ατ and a critical semi-neighbor

The computation of ατ is a fractional programming. Let ρ be an optimal potential to G
and let τ be a fork. Let h(α) := opt(µ;G) − opt(µ;Gτ,α). Then ατ = max{α | h(α) =
0}. The gradient of h at α is given by dρ(eτ ) for some optimal potential ρ of Gτ,α.
So the possible values of the gradients are 0, 1, 2, . . . ,diamK. Here h is a monotone
nondecreasing piecewise linear convex function. Hence, by the discrete Newton method,
we can determine ατ by solving (2.1) at most diamK time.

Next suppose ατ ≤ 2, and consider a critical semi-neighbor. A semi-neighbor ρ′ of
ρ is critical with respect to τ if and only if it satisfies dρ

′
(eτ ) > 0 and it is optimal
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to Gτ,ατ . We can construct a critical neighbor from any feasible metric d such that it
satisfies d(eτ ) > 0 and it is optimal for Gτ,ατ . Such a metric, also called critical, can be
naturally obtained at the computation of ατ above.

Consider dσ = (1 − σ)dρ + σd for positive σ(≤ 1/(2 diamK + 1)); obviously dσ is
also critical. Next take a potential ρ̃ to CLP with dρ̃ ≤ dσ, according to (5.14). Again
ρ̃ is optimal to Gτ,ατ . Also dρ̃(eτ ) > 0. Indeed, if dρ̃(eτ ) = 0, then for small positive
ε > 0 we have dρ̃(Gτ,ατ ) = dρ̃(Gτ,ατ+ε) ≤ dσ(G

τ,ατ+ε) < dσ(G
τ,ατ ) = dρ̃(Gτ,ατ ). A

contradiction. Thus dρ̃ is also critical. Fix an admissible orientation. Take a and round
ρ̃ to φa ◦ ρ̃, which is a semi-neighbor of ρ. Since ρ̃(y) 6= ρ̃(yτ ) we can choose a so that
φa ◦ ρ̃(y) 6= φa ◦ ρ̃(yτ ). Then φa ◦ ρ̃ is a critical semi-neighbor of ρ as required. This
construction can be done in strongly polynomial time.

5.4.2 Reducing edge-capacities

Finally, we explain a preprocess to reduce the edge-capacities. This can be done in
splitting-off. We may assume that G = (V,E) is a complete graph. Let n = |V |. We use
a capacitated version of the splitting-off. For a fork τ = (xy, y, yz) and a nonnegative
integer β ≤ min{c(xy), c(yz)}, decrease c(xy) and c(yz) by β and increase c(xz) by
β. The splitting-off operation is to decrease the maximum possible value βτ keeping
the optimal value. We also consider the degenerate fork (xy, y, yx). In this case the
splitting-off operation is to decrease c(xy) by the maximum possible even integer βτ
keeping the optimal value. We can recover an optimal multiflow in the original graph
from any optimal multiflow in the graph obtained by a splitting-off. Again βτ is also
computed in the same manner as in the previous section.

By repeating the splitting-off O(n3) times, we can make (G, c) so that βτ = 0 for
every fork τ . Indeed, take a node x, and apply the splitting-off for all forks at x in an
arbitrary order. Then βτ = 0 for every fork τ at x. If we apply the splitting-off to a
fork at another node x′, then this does not increase the degree of x, and also does not
produce a new splittable fork at x. Apply this procedure to all nodes. Then βτ = 0 for
all forks in G. At this moment,

(5.19) each inner node y has O(n2) degree.

Indeed, consider an optimal multiflow f . Then (5.19) follows from:∑
x∈V \{y}

c(xy) =
∑

x∈V \{y}

(c(xy)− fxy) + 2
∑

x,z∈V \{y}

fxy,yz.

Then fxy,yz ≤ 1; otherwise the fork (xy, y, yz) is splittable (Lemma 3.1). Also c(xy) −
fxy ≤ 2; otherwise the degenerate fork (xy, y, yx) is splittable. Thus the degree of y is
at most 2(n− 1) + 2

(
n−1
2

)
= O(n2).

Terminals may have a large degree. Next compute an optimal multiflow f = (P, λ)
by solving LP; we can use a compact representation for multiflows. For each pair (s, t)
of terminals, check the flow-value λ(P ) of the path P of a single edge st, and decrease
the edge capacity c(st) by the maximum even integer lst not exceeding λ(P ). Again we
can recover an optimum in the original problem from any optimum in the new problem
by adding the path of a single edge st of flow-value lst. Then

(5.20) each terminal s has O(n2) degree.
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Indeed we have∑
x∈V \{s}

c(sx) =
∑

x∈V \{s}

(c(sx)− f sx) +
∑

x,y∈V \{s}

2fxs,sy +
∑

x,y∈V \{s}

f sx,xy
0 +

∑
t∈S\{s}

fst
0 ,

≤ 2(n− 1) + 2

(
n− 1

2

)
+ (n− 1)(n− 2) + 2(|S| − 1),

where f sx,xy
0 denotes the total amount of (s, sxy, ∗)-flow, and fst

0 denotes the total
amount of (s, st, t)-flow.

At this moment, if the existence of an integral optimal solution is guaranteed, then
the degree of every inner node is zero, and the multiflow of one-edge paths is optimal.

By edge multiplication, make each edge have unit capacity, and apply the degree
reduction in Section 3.3. Then we obtain a graph G∗ with degree at most four, O(n5)
vertices, and unit capacity. Consequently, our proof of Theorem 1.5 to G∗ finds a 1/12-
integral optimal multiflow for G∗ in strongly polynomial time. By reversing the process
above, we get a 1/12-integral optimal multiflow for the original graph G in strongly
polynomial time.

6 Sparsity and integrality

In this section, we give a powerful geometric criterion of the splittabiliy/integrality. We
introduce the concept of a sparse vertex in an orientable F-complex, and show that if
an inner node y is mapped to a sparse vertex by some optimal potential ρ, then y has a
splittable fork (under Eulerian condition). This generalizes claim (A), and enables us to
prove the integrality theorem for a large class of µ-MFP.

6.1 Sparsity

A vertex p in an orientable F-complex K is said to be sparse if, for every oriented orbit−→
O , every pair of vertices q, q′ with p �−→

O
q and p �−→

O
q′ belongs to a common folder in

Kp. This concept generalizes and localizes the one due to Karzanov [20, Definition 1.3],
who introduced the sparseness concept for a different purpose. The main result in this
section connects the geometric notion of the sparseness and the splittability/integrality
in µ-MFP.

Let G be a graph with terminal set S, and let µ be a terminal weight having a
realization (K; {Rs}s∈S). We consider µ-MFP and DLP(K; {Rs}s∈S). A terminal s is
said to be strong if Rs is a path of hypotenuses or a single vertex. Note that any strong
terminal is proper. G is said to be strongly-inner Eulerian (with respect to (K; {Rs}s∈S))
if each node other than strong terminals has an even degree.

Theorem 6.1. Suppose that G is strongly-inner Eulerian. If there exists an optimal
potential ρ such that ρ(x) is sparse for every node x, then there exists an integral optimal
multiflow.

The large part of this theorem follows from the following splittability criterion. Recall
that G is said to be properly-inner Eulerian (with respect to (K; {Rs}s∈S)) if each node
other than proper terminals has an even degree (see Section 3.2 for the definition of
proper terminals).

Theorem 6.2. Suppose that G is properly-inner Eulerian. For an optimal potential ρ,
an inner node y has a splittable fork if
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(i) ρ(y) is sparse, and

(ii) there exists no odd-degree terminal s such that ρ(s) = ρ(y) and Rs has three hy-
potenuses incident to ρ(y).

The proofs of Theorems 6.1 and 6.2 are given in Section 6.3. We first describe
consequences of Theorem 6.1.

6.2 Locally sparse F-complex and blow-up

The integrality of µ-MFP is closely related to the embeddability of µ into a nice F-
complex. An orientable F-complex K is said to be locally sparse if each vertex is sparse.
An immediate, but powerful, consequence of Theorem 6.1 is the following.

Theorem 6.3. Suppose that µ has a realization (K; {Rs}s∈S) with a locally sparse F-
complex K. Then µ-MFP has an integral optimal multiflow for every strongly-inner
Eulerian graph with respect to (K; {Rs}s∈S).

The local sparsity is an easily checkable property. The following F-complexes are all
locally sparse:

• a folder itself.

• a subdivision of a locally sparse F-complex.

• an F-complex without K2,∗-folders.

• a star-shaped F-complex without a pair of K2,∗-folders having a common leg.

• an F-complex each of whose summands is a single leg or a single folder.

By Theorem 6.3, for any weight µ realized by these F-complexes, µ-MFP admits an
integral optimal multiflow for every Eulerian graph. For example, take µ as the graph
metric dK2,r ofK2,r. Then µ is realized by a single folder. Hence we obtain the integrality
theorem due to Karzanov-Manoussakis [23]: There exists an integral optimal multiflow
in dK2,r -MFP for every inner Eulerian graph. Consider an F-complex K without K2,∗-
folders, i.e., K is a cubical complex. The corresponding integrality theorem is nothing
but the multiflow locking theorem due to Karzanov-Lomonosov [22]; see for [19, Section
5] for the detail of this relation. Theorem 6.3 includes many other integrality instances.
For example, consider µ in Figure 9. Then the F-complex in the right is locally sparse,
and hence the integrality theorem holds for this weight.

Interestingly, even if K is not locally sparse, sometimes we can represent K as a
summand of a locally sparse one; see K/U in Figure 8. By combining Theorem 6.1
with the locking property (Proposition 2.6 in Section 2.2.3), we can prove the integrality
theorem for such µ that is a summand of another weight µ∗ having a locally sparse
realization.

Theorem 6.4. Suppose that µ is a summand of µ∗ having a realization (K∗; {R∗
s}s∈S)

with a locally sparse F-complex K∗. Then µ-MFP has an integral optimal multiflow for
every strongly-inner Eulerian graph with respect to (K∗; {R∗

s}s∈S).

A sparse (resp., nonsparse) vertex is an analogue of a nonsingular (resp., singular)
point in an algebraic variety. We call the process of constructing an F-complex K∗ having
K as a summand a blow-up.

An illustrative application of Theorem 6.4 is shown.
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Figure 25: Blowing up 2-commodity F-complex

Multiterminal weighted 2-commodity flows. Suppose that S is partitioned into
four sets {T, T ′, U, U ′}. For relatively prime positive integers a and b, let µ be the weight
on S such that µ(t, u) = a for (t, u) ∈ T × U , µ(t′, u′) = b for (t′, u′) ∈ T ′ × U ′, and
µ vanishes for other pairs. Then the corresponding µ-MFP is a weighted version of the
multiterminal 2-commodity flow maximization problem; note that the standard super-
terminal technique does not work to reduce this problem to a single-terminal problem.

Theorem 6.5. The multiterminal weighted 2-commodity flow problem has an integral
optimal flow for every inner Eulerian graph.

We prove this from Theorem 6.4. We first construct a realization of µ. Consider a
rectangle in the l1-plane R

2 such that the edge-directions are (1, 1) and (1,−1), and the
edge-lengths are a and b; see Figure 25. Subdivide this rectangle into squares and right
isosceles triangles along lines parallel to coordinate axes as in the left of Figure 25. Set
the leg-length to be 1/2. The resulting complex K is clearly an (orientable) F-complex.
Let (Rt, Ru) and (Rt′ , Ru′) be opposite pairs of edges of length b and a, respectively.
Then we obtain a realization of µ. Although K is not locally sparse (with all edges
belonging to a common orbit), we can blow up K to a locally sparse F-complex as
follows. Delete all legs from K, and insert squares and triangles along deleted legs as in
the middle of Figure 25. The inserted edges form two orbits, different from the orbit to
which the original edges belong. From this, one can see that the resulting F-complex K∗

is locally sparse, and has K as a summand. Each Rs is naturally extended to series of
hypotenuses R∗

s; each terminal is strong. Thus by Theorem 6.4 we get Theorem 6.5.

6.3 Proof

We first prove Theorem 6.2 and then Theorem 6.1. Theorem 6.2 is a consequence of
Theorem 4.3 (1).

Proof of Theorem 6.2. Let p := ρ(y) and Xp := ρ−1(p). By applying the degree
reductions (Section 3.3) at Xp, we may assume that each inner node in Xp has degree
four, each proper terminal having no three hypotenuses at p has degree one, and the other
terminals have degree two. We may assume that all improper terminals are essential.
We consider K2; the sparsity of p is kept. We regard ρ as V → V (K2).

It suffices to show that some inner node in Xp has a splittable fork; then so does
each inner node in Xp. Let y be an inner node in Xp, incident to four edges e = xy,
ei = xiy (i = 1, 2, 3). Suppose to the contrary that all three forks τi = (xy, y, yxi) are
unsplittable. Consider a critical neighbor ρi with respect to τi for i = 1, 2, 3. We have
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Figure 26: Flow rearrangement

Figure 27: Forbidden folder structures around p

p �−→
Oi

ρi(y) and p �−→
Oi

ρi(y
τi) for some oriented orbit

−→
Oi. By the sparsity condition, ρi(y)

and ρi(y
τi) belong to a common folder in Kp, i.e., d

ρi(eτi) ∈ {1, 2}. By the properly-
inner Eulerian condition and Lemma 3.4, the numerator of formula (3.2) of ατ is even.
Therefore αi > 0 implies αi = 1 and dρi(eτi) = 2, i.e., ρi(y) and ρi(y

τi) are not adjacent
by a leg; (2a, 2b) in Figure 21. Thus Theorem 4.3 (1) is applicable. There is a triple
l1, l2, l3 ∈ Lp with properties (i) and (ii) (in Theorem 4.3 (1)). Take an optimal multiflow
f . Then P(ei, ej) is an ([li], xiyxj , [lj ])-set with fei,ej = 1/2 for 1 ≤ i < j ≤ 3. Edge xy
has no flow, and thus ρ(x) = ρ(y) = p (by the saturation condition in Lemma 2.4).

Consider next the splittability property at x ∈ Xp, which is an inner node or a
terminal. Suppose first that x is an inner node incident to y, y1, y2, y3. The edge yix is
denoted by ẽi for i = 1, 2, 3. The fork (e, x, ẽi) is denoted by τ̃i for i = 1, 2, 3. If x has
a splittable fork, this is a desired node. Suppose not. Again, by Theorem 4.3 (1), there
is a triple l′1, l

′
2, l

′
3 ∈ Lp such that P(ẽi, ẽj) is an ([l′i], yixyj , [l

′
j ])-set with f ẽi,ẽj = 1/2 for

1 ≤ i < j ≤ 3. See the left of Figure 26. Suppose l1 6∼ l′1. Then we can rearrange f as
in Figure 26. By the local geodesic condition, the resulting multiflow f is also optimal,
and fe2,e3 > 1/2, which contradicts α1 = 1. Therefore li 6∼ lj , l

′
i 6∼ l′j , and li ∼ l′j for

any i, j. Then Πp contains the subdivision of K3,3, and all edges incident to li, l
′
j in Πp

belong to a common orbit. See the left of Figure 27. Therefore p cannot be sparse; a
contradiction.

Suppose that x is a terminal (of degree one or two). Since feτi = 1, f is optimal
for Gτi,αi , and fe = 0, we have ρ(x) = ρ(y) and ρi(x) = ρi(y) (i = 1, 2, 3). Hence
we have p, l1, l2, l3 ∈ Rx. Here li is the midpoint of a folder in K. By the normality
of Rx in K, for i = 1, 2, 3, Rx has a hypotenuse pli or a square-folder including p and
li. By the properly-inner-Eulerian condition and the condition (ii), x must have degree
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two, incident to y and z. Since s is essential, τ ′ := (zx, x, xy) is unsplittable. By

fe = 0, we have ατ ′ = 1 and fzx = 1 (Lemma 3.1). In particular, feτ
′
= 1, and f

is also optimal for Gτ ′,ατ ′ . Consider a critical neighbor ρ′ of ρ with respect to τ ′, and
consider the position (ρ′(x), ρ′(xτ

′
)). Necessarily ρ′(x) is on the boundary of Rx, and

ρ′(xτ
′
) is not in Rx. By the sparsity, ρ′(x) and ρ′(xτ

′
) belong to a common folder. So

(ρ′(x), ρ′(xτ
′
)) = (p, l) for some l ∈ Lp (case (2a) in Figure 21) is the only possibility.

Since f is also optimal forGτ ′,ατ ′ , P(zx)(= P(eτ ′)) is an ([l], zx, ∗)-set (Table 1). If l 6∼ l1,
then by a rearrangement similar to Figure 26, we have fe2,e3 > 1/2; a contradiction to
1 = α1 ≥ 2fe2,e3 . So suppose l ∼ li for i = 1, 2, 3, i.e., l and li have a common neighbor
qi as in the right of Figure 27. Necessarily qip and qil belong to a common orbit Oi

(otherwise (ρ′(y), ρ′(yτi)) = (p, li) does not occur). Since there is a K2,∗-folder including
p, l, q1, q2, q3, we have O1 = O2 = O3. So p cannot be sparse. A contradiction. �

Proof of Theorem 6.1. By the degree reduction (Section 3.3), we can assume that
each inner node has degree four, each strong terminal has degree one, and the other
terminals have degree two. All inner nodes are splittable by Theorem 6.2. So we may
assume that there is no inner node. We may assume that each terminal of degree
two is unsplittable; otherwise we can split it off. We show that the multiflow consist-
ing of one-edge paths is optimal. By the optimality criterion, it suffices to show that
dK(ρ(s), ρ(t)) = dK(Rs, Rt) for each edge st. Again we consider K2 and regard ρ as
V → V (K2).

Take an edge st with ρ(s) 6= ρ(t). Let p := ρ(s). Take an optimal multiflow
f = (P;κ); necessarily fst = 1. Since P(st) contains a (∗, st, t)-path (otherwise t is
splittable), we have dK(ρ(s), Rt) = dK(ρ(s), ρ(t)). Consider the gate g of Rt at p. If
g 6∈ Rs, then, by Lemma 4.1, we have dK(Rs, Rt) = dK(ρ(s), Rt) = dK(ρ(s), ρ(t)) as
required.

Suppose (to the contrary) that g ∈ Rs, i.e., dK(ρ(s), Rt) > dK(Rs, Rt). Take u ∈ Qp

with dK(p, ρ(t)) = dKp(p, u) + dK(u, ρ(t)). Then dK(p,Rt) = dKp(p, u) + dK(u,Rt). By
Lemma 4.2, we have u ∼1 g. Since P(st) also contains an (s, st, ∗)-path (otherwise
s is splittable), we have dK(ρ(s), ρ(t)) = dK(Rs, ρ(t)) = dK(Rs, u) + dK(u, ρ(t)). In
particular, dK(Rs, u) = dKp(p, u)(> 0), and u 6∈ Rs. So p, g ∈ Rs 63 u, and g is incident
to u. In particular, g belongs to Lp and is the midpoint of a folder in K; recall that we
are working on K2. By the normality, p, g, and u form a triangle σ in some K2,∗-folder
F with hypotenuse pg = σ ∩ Rs. Consequently, F belongs to a common orbit O. See
Figure 28.

The terminal s must have degree two and a unique (unsplittable) fork τ with ατ > 0;
otherwise f has a path connecting s and t in st, implying dK(ρ(s), ρ(t)) = dK(Rs, Rt).
Consider a critical neighbor ρ′ of ρ with respect to τ . Since the numerator of formula
(3.2) of ατ is even (Lemma 3.4), we have dρ

′
(eτ ) ≥ 2. Moreover ρ′(s) belongs to the

boundary of Rs, and ρ′(sτ ) is not in Rs. By the sparsity, ρ′(s) and ρ′(sτ ) belong to
a common folder. Therefore (ρ′(s), ρ′(sτ )) = (p, l) for l ∈ Lp (case (2a) in Figure 21)
and ατ = 1. Necessarily g 6= l( 6∈ Rs). Consider an optimal multiflow f = (P;κ)
for Gτ,ατ and take a path P ∈ P(eτ , sτ t)( 6= ∅), which connects s and some terminal t′

through eτ . By the geodesic condition for (f, ρ′), dK(p,Rt′) = dKp(p, l)+dK(l, Rt′) holds,
and hence the gate of Rt′ is l by Lemma 4.2. Since (f, ρ) is also optimal for G(= Gτ,0),
dK(p,Rt′) = dKp(p, u)+dK(u,Rt′) holds. By Lemma 4.2, u and l are adjacent, and hence
pu and ul belong to a common folder F ′( 6= F ) and a common orbit O′. Consequently
F and F ′ belong to common orbit O = O′. This is impossible by the sparsity. �
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Figure 28: p, q, u, l in the proof of Theorem 6.1

7 0-1 problems

Here we focus on µH -MFP for a commodity graph H with property P, where µH is the
0-1 weight corresponding to H by the relation: µH(s, t) = 1⇔ st ∈ E(H). Application
of our results in the previous sections reveals an interesting hierarchy of problem classes
admitting integrality or half-integrality theorems. This gives a unified understanding to
previously known results, as well as to new half-integrality results.

In Section 7.1 we introduce three F-complexes KH , Ks
H , and Ke

H with the properties
that KH realizes µH , Ks

H is star-shaped, and Ke
H has both KH and Ks

H as summands.
From Ks

H and Ke
H , we define weights µs

H and µe
H such that µs

H is a metric and µe
H has

both µs
H and µe

H as summands. Recall Sections 2.1.5 and 2.2.3 for summands.
In Section 7.2, we show that the local sparsity of Ke

H is equivalent to the anticlique-
bipartite condition on H. This fact and Theorem 6.4 immediately imply the classical
Karzanov-Lomonosov integrality theorem [22].

In Section 7.3, the fractionality relation frac(H) ≤ 2 frac(µs
H) is stated. This relation

reduces the fractionality study for µH -MFP to that for µs
H -MFP. SinceKs

H is star-shaped,
µs
H -MFP has a much simpler structure than µH -MFP has. Applying the result to Ks

H in
the previous section, we prove the half-integrality theorem for a large class of commodity
graphs including the previously known. In Section 7.4, we prove, algorithmically, the
fractionality relation.

In this section we assume that commodity graphH has no isolated nodes. A maximal
stable set of H is called an anticlique. In constructions of F-complexes, a square-folder
with legs pp′, p′q′, q′q, qp is denoted by pp′q′q, and a triangle with hypotenuse pp′ and
legs pq and qp′ is denoted by pqp′.

7.1 F-complexes for a commodity graph with the property P

Let A be the set of anticliques of H, and D be the set of nonempty subsets D ⊆ S
represented as the intersection of (at least) two distinct anticliques. By property P, we
have D =

⋂
{A ∈ A | D ⊆ A} for any D ∈ D. Let A0 ⊆ A be the set of anticliques A

with A′ ∩A = ∅ for every A′ ∈ A \ {A}.
Let ΠH be the bipartite graph with bipartition {D,A} and edge set {DA | D ⊆ A}.

By property P, we easily see:

(7.1) ΠH has girth at least 8.

Indeed, a 6-cycle corresponds to an intersecting triple of anticliques with distinct inter-
sections.
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Figure 29: (a) KH , (b) Ke
H , and (c) the orientation of Ke

H

The first F-complex KH . The first F-complex KH is constructed as follows. The
vertices of KH are pO, pD (D ∈ D), pA, qA(A ∈ A). For D ∈ D, consider K2,∗-folder
FD consisting of triangles pDqApO over all anticliques A including D. If FD is a K2,2-
folder, then replace FD by a square-folder (on the same vertices). Such a K2,2-folder
corresponds to a member of D which is the intersection of exactly two anticliques. Next,
for each anticlique A including D, attach triangles pDqApA to FD. Let KD be the
resulting complex. Glue KD over all D ∈ D. Finally, for each A ∈ A0, attach series of
two legs pOqA, qApA to pO. Let KH be the resulting complex. The leg-length is defined
to be 1/4. See Figure 29 (a).
KH is an F-complex. Indeed, it is contractible, and hence simply-connected. It

suffices to verify the flag condition at pO. Observe ΠpO = ΠH . Thus ΠpO has girth at

least 8. Furthermore, KH is orientable; we can orient KH so that pO and pA are sources.
To realize µH , normal sets Rs (s ∈ S) are defined as follows. By property P, each

s ∈ S belongs to either a unique D ∈ D or a unique A ∈ A. In the former case, define
Rs as the union of hypotenuses pDpA over all anticliques A including D. In the latter
case, define Rs as the single vertex pA. Then each Rs is clearly normal; Rs is a star of
hypotenuses or a single vertex. Then µH(s, t) = dKH

(Rs, Rt). Indeed, Rs ∩Rt 6= ∅ ⇔ s
and t belong to a common anticlique ⇔ µH(s, t) = 0. Conversely, Rs ∩ Rt = ∅ implies
dKH

(Rs, Rt) = 1. Therefore (KH ; {Rs}s∈S) is a realization of µH . The corresponding
combinatorial duality relation (Theorem 2.3) coincides with that given in [16].

The second F-complex Ks
H . The second F-complex Ks

H is the neighborhood of pO in
KH , i.e., Ks

H := (KH)pO . For each terminal s, let ps := pD if s belongs to a uniqueD ∈ D,
and let ps := qA if s belongs to a unique A ∈ A. Define µs

H by µs
H(s, t) := dKs

H
(ps, pt)

for s, t ∈ S. Then (Ks
H ; {ps}s∈S) is a realization of µs

H .

The third F-complex Ke
H . In the construction ofKD inKH above, relabel (pA, qA, pO)

by (pAD, q
A
D, p

O
D). For each anticlique A including D, attach squares pADq

A
Dq

ApA and
pODq

A
Dq

ArA to KD. Also attach to KD the K2,∗-folder, denoted by F ′
D, consisting of tri-

angles pOrApOD over all anticliques A including D. Replace F ′
D by a square-folder if F ′

D

is a K2,2-folder. Glue KD over all D ∈ D. For each A ∈ A0, attach series of three legs
pAqA, qArA, rApO to pO. Let Ke

H be the resulting complex. See Figure 29 (b). Clearly
Ke

H is also an orientable F-complex; see Figure 29 (c) for an admissible orientation.
Let Re

s be the union of hypotenuses pDpAD if s belongs to a unique D ∈ D and
let Re

s be the vertex pA if s belongs to a unique A ∈ A. Then define µe
H on S as

µe
H(s, t) := dKe

H
(Re

s, R
e
t ) for s, t ∈ S. Again (Ke

H ; {Re
s}s∈S) is a realization of µe

H .
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Figure 30: Three F-complexes

Example. We consider complement-triangle-free commodity graphs as a class of com-
modity graphs having a simpler construction. A commodity graphH is called complement-
triangle-free if the complement H has no triangle K3. Such a commodity graph has prop-
erty P since every anticlique has cardinality at most 2. In this case, the construction of
Ks

H is quite simple; ΠH is the subdivision of H. Figure 30 illustrates three F-complexes
KH , Ks

H , and Ke
H for a complement-triangle-free commodity graph H.

Summand relation between KH , Ks
H and Ke

H . These F-complexes and the corre-
sponding weights are in a relation of summands (Sections 2.1.5 and 2.2.3). Observe that
(Ke

H)pO and (Ke
H)pD belong to distinct orbits; see Figure 29, where the black and the

white arrows indicate different orbits. Let U be the union of the orbits meeting (Ke
H)pO .

Then (Ke
H)/U = Ks

H and (Ke
H)\U = KH . Also (Re

s)/U = {ps} and (Re
s)\U = Rs. Thus

Proposition 2.6 implies the following.

Theorem 7.1. Both µH and µs
H are summands of µe

H , and thus any optimal multiflow
to µe

H-MFP is also optimal to both µH-MFP and µs
H-MFP.

This locking property is known in Lomonosov [24] for special commodity graphs.

Algorithmic implication: Proof of Theorem 1.7. The sizes of these F-complexes
are bounded:

(7.2) KH , Ks
H and Ke

H have O(|S|2) cells.

Indeed, A0 ∪ D is a subpartition of S. This implies |A0|+ |D| = O(|S|). Also {A \D |
D ⊆ A ∈ A} for D ∈ D is a disjoint family. This implies that there exist at most
O(|S|) anticliques containing D ∈ D. Thus the number of cells in KD is O(|S|), and
consequently we have (7.2).

By the general theorem, Theorem 5.4, there exists a strongly polynomial time to
find a 1/12-integral optimal multiflow in every inner Eulerian graph for µH -, µe

H -, and
µs
H -MFP. Note that there is no improper terminal in this case. This implies Theorem 1.7

in Introduction.

7.2 Local sparsity of Ke
H and anticlique-bipartite commodity graphs

We show that the local sparsity of Ke
H is equivalent to the classical anticlique-bipartite

condition [22]. We first note that the following sparse/nonsparse properties of Ke
H :
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(7.3) (0) rA, qA, and rA are sparse if A ∈ A0.

(1) pOD and pAD are sparse.

(2) pD is not sparse if D is the intersection of at least three anticliques.

(0) is obvious. (1) can be seen from Figure 29 (c), where the black and the white arrows
indicate distinct orbits. (2) follows from the fact that all edges incident to pD belong to
a common orbit (by K2,∗-folders around pD).

A commodity graph H is said to be loose if it satisfies:

(7.4) for every triple A,B,C ∈ A, at least one of A∩B, B ∩C, C ∩A is empty.

This condition, due to [22], is stronger than property P. So a loose commodity graph has
property P. This condition is equivalent to that each D ∈ D is the intersection of two
anticliques. Geometrically, this condition says that there is no K2,m-folder for m ≥ 2
in the three F-complexes. In particular, (Ke

H)pO(= Ks
H) consists of square-folders, each

of which meets two distinct orbits. Hence pO is sparse in Ke
H , and consequently Ks

H is
locally sparse.

A loose commodity graph H is called anticlique-bipartite if the intersection graph of
A is bipartite, and otherwise it is called anticlique-nonbipartite. The complement Cn

of n-cycle Cn (n ≥ 4) is loose, and Cn is anticlique-bipartite if and only if n is even.
Figure 31 illustrates Ke

Cn
for the case n = 5, 6.

Each pD may be sparse or nonsparse. Trace the orbit starting from pAqA, as in
Figure 31. If H is anticlique-bipartite, then this orbit never meets qArA (by the bipar-
titeness), and hence pD, qAD, and qA are sparse; all vertices are sparse. On the other
hand, if H is anticlique-nonbipartite, then for some D the orbit returns to qArA, and
hence pD, qAD, and qA are not sparse.

Theorem 7.2. H is anticlique-bipartite if and only if Ke
H is locally sparse.

By virtue of this characterization, we can derive, as a corollary of Theorem 6.4, the
following fundamental result; see also [8]. Here each Rs is a path of hypotenuses or a
single vertex; each terminal is strong in the sense of the previous section.

Theorem 7.3 ([15, 22, 24]). If H is anticlique-bipartite, then µH-MFP has an integral
optimal multiflow for every inner Eulerian graph.

It is known that the integrality theorem fails for anticlique-nonbipartite commodity
graphs. Nevertheless Karzanov-Lomonosov [22] proved that the half-integrality theorem
still holds.

Theorem 7.4 ([15, 22, 24]). If H is anticlique-nonbipartite, then µH-MFP has a half-
integral optimal multiflow for every inner Eulerian graph.

We will prove this theorem as an immediate consequence of the fractionality relation
between µs

H and µH in the next section.

7.3 Fractionality relation and its consequences

The fractionality relation, which is the main result in this section, says that 1/k-integrality
of µs

H -MFP guarantees 1/(2k)-integrality of µH -MFP.

Theorem 7.5. Let H be a commodity graph with property P. Suppose that µs
H-MFP has

a 1/k-integral optimal multiflow for every inner Eulerian graph.
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Figure 31: Ke
H for H = C5 and C6

(1) If k is even, then µH-MFP has a 1/k-integral optimal multiflow for every inner
Eulerian graph.

(2) If k is odd, then µH-MFP has a 1/(2k)-integral optimal multiflow for every inner
Eulerian graph.

In particular, frac(H) ≤ 2 frac(µs
H) holds.

The proof is given in Section 7.4. Here we describe consequences. Theorem 7.4
immediately follows from this theorem and the integrality of µs

H -MFP. The integrality
of µs

H -MFP follows from the multiflow locking theorem [22] or, in our framework, by
Theorem 6.4 and the local sparsity of Ks

H , which consists of square-folders.
Consider H = K2 +Kr, i.e., the vertex-disjoint union of a single edge and complete

graph Kr (r ≥ 3), which is complement-triangle-free. Then ΠH is the subdivision of
K2,r and, µs

H is the graph metric dK2,r of K2,r. Thus µs
H admits an integral optimal

multiflow by Karzanov-Manoussakis integrality theorem [23] or, in our framework, by
Theorem 6.4 and the local sparsity of Ks

H , which is the subdivision of a single folder.
Hence Theorem 7.5 implies the following.

Theorem 7.6 ([20] for r = 3 and [25] for r > 3). If H = K2 +Kr, then µH-MFP has
a half-integral optimal multiflow for every inner Eulerian graph.

A commodity graph H with property P is called sparse if Ks
H is locally sparse. By

Theorems 6.3 and 7.5, we have the following, which includes the two theorems above.

Theorem 7.7. If H is sparse, then µH-MFP has a half-integral optimal multiflow for
every inner Eulerian graph.

The commodity graph H in Figure 30 is sparse, and hence the half-integrality result
holds for this H. A sparse commodity graph can be easily characterized by the following
observation: Ks

H is locally sparse if and only if it has no adjacent pair of K2,∗-folders.
This characterization can be rephrased in terms of A as follows.

Proposition 7.8. A commodity graph H with property P is sparse if and only if H has
no five anticliques A1, A2, B,C1, C2 with ∅ 6= A1 ∩ A2 = A2 ∩B = A3 ∩B 6= C1 ∩ C2 =
C2 ∩B = C3 ∩B 6= ∅.

Again Theorem 6.4 enlarges the class of commodity graphs admitting the half-
integrality property. A commodity graph H with property P is called sparsible if Ks

H is
a summand of a locally sparse F-complex.
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Figure 32: A sparsible commodity graph H, Ks
H , and a blow-up

Theorem 7.9. If H is sparsible, then µH-MFP has a half-integral optimal multiflow for
every inner Eulerian graph.

We give an example of sparsible commodity graph H together with a blow-up of Ks
H

in Figure 32; the half-integrality theorem holds for this commodity graph. However, we
do not know any nice characterization of a sparsible commodity graph.

A commodity graph H with property P is called weakly-integral if µs
H -MFP has an

integral optimal multiflow for every inner Eulerian graph. Obviously, by Theorem 7.5,
the half-integral theorem holds for weakly-integral commodity graphs. Thus we have
the following hierarchy:

loose ⊂ sparse ⊂ sparsible ⊆ weakly-integral ⊂ property P.

The vertex-disjoint union of two triangles H3,3 := K3 + K3 is a typical nonintegral
example. This implies that H3,3 is not sparsible. One can directly see the nonsparsibility
from ΠH3,3 , which is the subdivision of K3,3 (Figure 27). We do not know whether
sparsible = weakly-integral holds or not.

Let us rephrase these results by using the notion of the fractionality frac(H). The
commodity graphs of fractionality 1 or 2 have already been classified by Karzanov [16, 21]
as follows:

(1) frac(H) = 1 if and only if H is a complete bipartite graph.

(2) frac(H) = 2 if and only if H is K2 + K3 or anticlique-bipartite (not complete
bipartite).

Other commodity graphs have fractionality at least 4. Combining this classification with
our results, we get the following.

Corollary 7.10. A sparse/sparsible/weakly-integral commodity graph that is neither
anticlique-bipartite nor K2 +K3 has fractionality 4.

Our proof of Theorem 7.5 is based on SPUP framework, and constructs algorith-
mically a half-integral optimum in µe

H -MFP from an integral optimum in µs
H -MFP. An

integral optimum of µs
H -MFP is obtained by splitting-off if its existence is guaranteed

(Section 5.4.2). As a by-product we obtain the following.

Theorem 7.11. Suppose that H is sparse/sparsible/weakly-integral. Then there exists a
strongly polynomial time algorithm to find a half-integral optimal multiflow in µH-MFP
for every inner Eulerian graph.
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Figure 33: Terminal creation I

7.4 Proof of the fractionality relation

Here we give an algorithmic proof of the fractionality relation (Theorem 7.5) according
to the SPUP framework (Section 3).

7.4.1 Preliminary: terminal creations

As a preliminary, we introduce terminal creation techniques under an optimal potential
ρ. This technique works for general DLP(K; {Rs}s∈S). We assume that G has unit
capacity.

Terminal creation I. Suppose that there are an edge e = xy and a folder F such
that ρ(x) and ρ(y) are distinct vertices in F , nonadjacent by a leg; see Figure 33. In
this case, we can make the following change on µ, S,G, ρ.

Delete edge xy, add new terminals sx, sy, and add new edges xsy, ysx. Set Rsx := {p}
and Rsy := {p′}, and extend µ to S ∪ {sx, sy} by µ(sx, t) := d(Rsx , Rt) and µ(sy, t) :=
d(Rsy , Rt). Extend ρ by (ρ(sx), ρ(sy)) := (p, p′).

Take an optimal multiflow f = (P;κ) for the original problem. For each path in
P(xy), delete xy to split it into two paths, add edge xsy to one of the two paths having
x, and add edge ysx to the other path. Then we obtain a multiflow and a potential for
the new problem. Both are optimal. Indeed, the saturation condition holds, and the
new paths are all geodesic by Lemmas 4.1 and 4.2; consider (K2)p∗ for the center p∗ of
folder F .

Conversely, take an arbitrary optimal multiflow f = (P;κ) to the new problem. Take
a pair (P ′, P ′′) ∈ P(xsy) × P(ysx), and concatenate P ′ and P ′′ by deleting edges xsy
and ysx and by adding edge xy to get a path in P(xy). Repeating this concatenation,
we obtain a multiflow f ′ in the original graph of fractionality κ. Again all the new paths
satisfy the geodesic condition by Lemmas 4.1 and 4.2. Hence f ′ is optimal.

Terminal creation II. Let p be a vertex in K such that p is incident to four vertices
q1, q2, r1, r2 by legs and Πp is an 8-cycle (q1, l11, r1, l21, q2, l22, r2, l12), as in Figure 34.
Suppose that there is an edge e = xy ∈ E with (ρ(x), ρ(y)) = (q1, q2). In this case, we
can make the following change on µ, S,G, ρ.

Subdivide e into two edges xz and zy, add new terminals s and t, and join them
to z. Set Rs := {r1} and Rt := {r2}, and extend µ to S ∪ {s, t}. Also extend ρ by
(ρ(s), ρ(z), ρ(t)) := (r1, p, r2).
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Figure 34: Terminal creation II

Take an optimal multiflow f = (P;κ) for the original problem. We can extend f
for the new graph by subdividing each path in P(e) at z and adding (s, t)-paths of two
edges sz and zt so that fsz,zt = 1. Then the resulting ρ and f are both optimal.

Conversely, take an arbitrary optimal multiflow f = (P;κ) in the new problem. We
can construct an optimal multiflow for the original problem by the following way. Since
four edges incident to z are all saturated, we have (fxz,zs, fxz,zy, fxz,zt) = (f tz,zy, f tz,zs, fsz,zy).
If fxz,zs = f tz,zy = fxz,zt = f sz,zy = 0, then the deletion of P(sz, zt) gives an optimal
multiflow (of fractionality κ) in the original problem. Suppose that fxz,zs = f tz,zy > 0.
Then P(xz, zs) is a ([q1]∪ [l12], xzs, [r1])-set, and P(xz, zs) is an ([r2], xzs, [q2]∪ [l21])-set.
Reconnect paths from s and paths from t, and reconnect paths from x and paths from
y. Then the local geodesic condition (Section 4.1) is kept, and thus we can make f
satisfy fxz,zs = f tz,zy = fxz,zt = fsz,zy = 0 (while keeping the optimality), and we get
an optimal multiflow of fractionality κ in the original graph.

7.4.2 Proof of Theorems 7.5 and 7.11

We reduce µe
H -MFP and DLP(Ke

H ; {Re
s}s∈S) to µs

H -MFP and DLP(Ks
H ; {ps}s∈S) (thanks

to Theorem 7.1). Let G be an inner Eulerian graph with terminal set S. There is no
improper terminal. We may assume that G has unit capacity, also in the algorithmic
sense explained in Section 5.4.2.

0. Let us construct the SPUP scheme for Ke
H , as in Section 3.4. The forward orientation

is a unique orientation such that pO, pD, and qA are sources; see Figure 29 (c). Then
pAD and pOD are sinks, and are sparse by (7.3) (1). For an optimal potential ρ, partition
V into three subsets Sρ, Mρ, and Cρ:

Sρ := {x ∈ V | ρ(x) = pAD, or p
O
D},

Mρ := {x ∈ V | ρ(x) = rA, qAD, or p
A},

Cρ := {x ∈ V | ρ(x) = pD, qA, or pO}.

Recall the restricted Eulerian condition; each inner node not in Sρ has an even degree.
Then all properties for Sρ,Mρ, Cρ in Section 3.4 hold. For example, by Theorem 6.2,
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claim (A) holds. Also claim (B) holds since rD, qAD, and pA have the same local orbit
structure as the midpoint of K2 (Theorem 4.3 (2) is applicable).

Let CD
ρ := ρ−1(pD), CA

ρ := ρ−1(qA), and CO
ρ := ρ−1(pO). Then Cρ is the union of

CO
ρ , CA

ρ , and CD
ρ over all D,A. Since the folder structures around pD and qA are rather

special, we do not need claim (C) to make both CD
ρ and CA

ρ empty while keeping the
restricted Eulerian condition, which we will show below.

By the degree reduction (Section 3.3), we modify G so that each inner node has
degree four and each terminal has degree one. We may assume that there exists no
splittable fork. Then there is no inner node x with ρ(x) = pA, qA or rA for A ∈ A0 by
the sparsity (7.3) (2) and Theorem 6.2.

1. First we repeat applying the forward 1-SPUP until CD
ρ is empty for all D ∈ D.

Take D ∈ D with CD
ρ 6= ∅. We may assume that there is an edge xy with y ∈ CD

ρ and

x 6∈ CD
ρ . Consider the gate of ρ(x) at (Ke

H)pD , which is (i) pAD, (ii) q
A
D, or (iii) p

O
D.

First consider case (ii). Suppose that ρ(x) = qAD, i.e., x ∈ Mρ. According to claim
(B) there is a fork τ at x such that its critical neighbor ρ′ is forward. If ατ = 1, then
{ρ′(yτ ), ρ′(y)} = {pAD, pOD}, and thus 1-SPUP for (τ, ρ′) succeeds. If ατ = 0, then we
can replace ρ by its optimal forward neighbor ρ′ with ρ′(x) = pOD or pAD (by (4.3)).
Therefore we can decrease the number of edges in case (ii). So suppose ρ(x) 6= qAD.
By the edge-subdivision (Section 2.2.1), we may assume that ρ(x) = qA. Here we use
the terminal creation II. Subdivide xy into xz and zy. Add two new terminals s and t
joined to z. Set Rs := {pAD} and Rt := {pOD}. Extend potential ρ for the new problem
by (ρ(s), ρ(z), ρ(t)) := (pAD, q

A
D, p

O
D). For a fork τ := (yz, z, zs), consider ατ . If ατ = 2,

then split off τ . Consider the case of ατ < 2. Take a critical neighbor ρ′ of ρ with
respect τ . We show that ρ′ is forward. Consider an optimal multiflow f for Gτ,ατ .
Since f sz = fzt = 1 (by the saturation condition), P(eτ ) contains paths Ps and Pt such
that Ps connects s and Pt connects t. If ρ

′ is backward, then {ρ′(y), ρ′(yτ )} = {pD, qAD}
or {qAD, qA}. Since (ρ′(s), ρ′(t)) = (pAD, p

O
D), for u ∈ {pD, qA}, ρ′(Ps) passes through

qAD → u → pAD and ρ′(P ′
t) passes through qAD → u→ pOD. Then one of ρ′(Ps) and ρ′(P ′

t)
is not geodesic. A contradiction to the optimality. Thus ρ′ is necessarily forward. As
in claim (B), if ατ = 1, then {ρ′(z), ρ(zτ )} = {pAD, pOD}, and apply 1-SPUP for (τ, ρ′). If
ατ = 0, then we can replace ρ by a forward neighbor ρ′ with ρ′(z) ∈ {pAD, pOD}. In this
way, we can decrease the number of edges in case (ii).

Consider case (iii). We may assume ρ(x) = pOD. Otherwise, subdivide xy and extend
ρ by defining the potential of the new node as pOD; see (4.1). If y is a terminal (of degree
one), then replace ρ(y) by pAD; this keeps the feasibility and the optimality. So suppose
that y is an inner node. Take a fork τ at y with 0 < ατ < 2 (by Lemma 4.4 (1)), and
consider a critical neighbor ρ′ of ρ with respect to τ . Then ρ′ is necessarily forward.
So ρ′(x) = pOD. Consider an optimal multiflow f = (P;κ) for Gτ,ατ and take a path P
from P(xyτ , yτy)( 6= ∅). Then ρ′(P ) passes through pOD → ρ′(yτ )→ ρ′(y), which must be
geodesic. Also dρ

′
(eτ ) > 1 is necessary (otherwise ατ = 2). Thus the possible configu-

rations of ρ′ are (2a) (ρ′(yτ ), ρ′(y)) = (pOD, p
D) and (2d) (ρ′(yτ ), ρ′(y)) = (pOD, p

A
D). If all

three forks at y have a critical neighbor in case (2a), this contradicts Theorem 4.3 (1).
Thus there exists a fork τ having a critical neighbor in case (2d). Then ατ = 1, and both
ρ′(yτ ) and ρ′(y) fall into Sρ. Apply 1-SPUP. In this way, we can decrease the number of
edges in (iii).

So suppose that all edges entering CD
ρ from the outside are in case (i). Then there

is no flow connecting a terminal s in CD
ρ . Indeed, take an arbitrary edge xy with

y ∈ CD
ρ 63 x. By edge-subdivision with (4.1), we may assume that ρ(x) = pAD for some
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Figure 35: Construction of (Ke
H)′

A ∈ A. Since pAD ∈ Rs for each terminal s in CD
ρ , the flow on xy cannot connect s (by

the geodesic condition), and goes out CD
ρ through another edge x′y′ with y′ ∈ CD

ρ 63 x′

and ρ(x) = pA
′

D .
Delete all terminals in CD

ρ and edges connecting them; at this moment, inner nodes

in CD
ρ may have an odd degree. Next replace ρ(x) by pOD for all x ∈ CD

ρ . This change
keeps the saturation condition and the geodesic condition (for any optimal multiflow in
the original graph). Thus the resulting ρ is also optimal, (G; ρ) is restricted Eulerian,
and CD

ρ is empty. Apply this procedure until CD
ρ = ∅ for all D ∈ D. Next, according to

claim (B), apply the forward SPUP to make Mρ empty.

2. Second, by using terminal creation I, we decompose the current primal-dual pair
of MFP and DLP into two primal-dual pairs; one admitting a half-integral optimal
multiflow, and the other realized by a subcomplex (Ke

H)′ of Ke
H ; see Figure 35.

Consider an edge e = xy connecting y ∈ Cρ and an inner node x 6∈ Cρ. Then
ρ(y) = pO or qA for some A ∈ A. Consider the gate g of ρ(y) at (Ke

H)ρ(y), and, by edge-
subdivision with (4.1), we may assume that ρ(x) = g. Since Mρ is empty, (ρ(x), ρ(y))
is a nonadjacent (by leg) pair of some folder. Hence we can apply the terminal creation
I at (ρ(x), ρ(y)). Apply this procedure for all such edges. Then G is separated into
two disjoint graphs G0 and G1, with terminal sets S0 and S1, respectively. Here G1

consists of edges joining an inner node in CO
ρ or in CA

ρ for some A ∈ A. G0 consists
of the other edges. Recall that each terminal has degree one. So we can consider the
multiflow problem for G0 and for G1 separately. All inner nodes of G0 belong to Sρ.
Each (new) terminal s in Cρ is incident to a single node x with ρ(x) 6= ρ(s). Consider
2G0 and apply the degree-1 reduction (Section 3.3) to terminals; this does not produce
inner nodes in Cρ. All inner nodes are splittable by claim (A), and 2G0 has an integral
optimal multiflow. Hence G0 has a half-integral optimal multiflow. Therefore if G1

has a 1/k-integral optimal multiflow, then the original graph has a 1/k-integral optimal
multiflow if k is even and a 1/(2k)-integral optimal multiflow if k is odd.

Here terminal region Rs for s ∈ S1 is pOD, p
A
D, or p

A. Therefore, as in Figure 35, we
can delete all cells containing pD from Ke

H for all D ∈ D. Then the resulting F-complex
(Ke

H)′ together with {Rs}s∈S1 is still a realization of µ restricted to S1. Therefore we
may consider DLP on (Ke

H)′. In (Ke
H)′, legs pAqA and qArA belong to distinct orbits,

and hence qAD is now sparse. So include ρ−1(qAD) in Sρ; claim (A) holds. Moreover qA

has the same local orbit structure as that of the midpoint of legs in K2. We can apply
claim (B) to sweep out inner nodes from CA

ρ to Sρ, while keeping restricted Eulerian
condition (for new Sρ).
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3. Finally, we decompose the current MFP for G1 into two MFPs, one admitting a half-
integral optimal multiflow, and the other being µs

H -MFP. This completes the reduction
from µe

H -MFP to µs
H -MFP.

Take an edge e = xy with x 6∈ CO
ρ and y ∈ CO

ρ . Then ρ(x) is pOD, q
A
D, p

A
D, or p

A for
some A,D. For the first three cases, we can apply the terminal creation I as above. If
ρ(x) = pA, then x is necessarily a terminal s with Rs = {pA}. Replace Rs by {rA} and
ρ(s) by rA, and, accordingly modify µ; this does not change the problem. Again the
graph G1 is separated into two disjoint graphs G′

1 and G′′
1. Here G′

1 consists of edges
joining an inner node having a potential pO, and G′′

1 consists of the other edges. By
the same argument as above, G′′

1 has a half-integral optimal multiflow. As above, we
can consider MFP/DLP for G′

1 by deleting all cells except (Ke
H)pO from (Ke

H)′. Then
the MFP for G′

1 is nothing but µs
H -MFP, and has a 1/k-integral optimal multiflow by

the assumption. Thus we obtain an optimal multiflow in the original graph, which is
1/k-integral if k is even and 1/2k-integral if k is odd. The proof of Theorem 7.5 is
completed. �

It is worth noting that this reduction can be done in strongly polynomial time. If
µs
H -MFP has an integral optimal multiflow f (for G′

1), then f is obtained in strongly
polynomial time (see Section 5.4). Thus the half-integral optimal multiflow in the original
problem can also be found in strongly polynomial time. This implies Theorem 7.11.
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(B. Korte, L. Lovász, H. J. Prömel, A. Schrijver, eds.), Springer, Berlin, 1990, pp. 47–100.
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