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Abstract

We consider the weighted maximum multiflow problem with respect to terminal
weight µ. We show that if the dimension of the tight span associated with µ is
at most 2, then there exists a 1/12-integral optimal multiflow in the µ-weighted
maximum multiflow problem for every Eulerian supply graph. This result solves a
weighted generalization of Karzanov’s conjecture for classifying commodity graphs
H with finite fractionality. Also we prove the existence of an integral or half-integral
optimal multiflow for a larger class of Eulerian multiflow maximization problems
including previously known classes, and give a strongly polynomial time algorithm
to find it.

1 Introduction

Let G be an undirected graph with nonnegative edge capacity c : EG → R+. Let
S ⊆ V G be a set of terminals. Let H be a simple undirected graph on S, called a
commodity graph. A multiflow (multicommodity flow) f is a pair (P, λ) of a set P of
paths connecting the ends of some edge of H and its nonnegative flow-value function
λ : P → R+ satisfying capacity constraint

∑
P∈P:e∈P λ(P ) ≤ c(e) for e ∈ EG. The

total flow-value ∥f∥ is defined to be
∑

P∈P λ(P ). The maximum multiflow problem with
respect to (G, c; H) is formulated as:

(1.1) Maximize ∥f∥ over all multiflows f for (G, c; H).

Suppose that H consists of one edge, i.e., H = K2. Then problem (1.1) is the maximum
flow problem. The max-flow min-cut theorem, due to Ford-Fulkerson [7], says that if
c is integral, then there exists an integral maximum flow. Suppose that H consists of
two vertex-disjoint edges, i.e., H = K2 + K2. Then problem (1.1) is the maximum 2-
commodity flow problem. Hu [14] showed that there exists a half-integral maximum flow
whenever c is integral. However, in 3-commodity flow problem, an analogous theorem
does not hold. It is known that there is no positive integer k such that all integer-
capacitated 3-commodity flow problems have a 1/k-integral maximum flow. On the
other hand, suppose that H is the complete graph Kn (n = #S). Then Lovász [27]
and Cherrkasky [3] independently showed that there exists a half-integer maximum flow
whenever c is integral.

So these integrality or half-integrality phenomena crucially depend on the structure
of commodity graphs. Motivated by these facts, Karzanov [17] defined the fractionality
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frac(H) of a commodity graph H by the least positive integer k with the property that
there exists a 1/k-integral maximum flow in problem (1.1) for every integer-capacitated
graph (G, c) having H as a commodity graph. If such a positive integer k does not exist,
then frac(H) is defined to be +∞. The above-described examples show frac(K2) = 1,
frac(K2 + K2) = frac(Kn) = 2, and frac(K2 + K2 + K2) = +∞.

Karzanov raised the following fundamental problem:

(1.2) Classify the commodity graphs having finite fractionality.

It is rather hard to determine the exact value of the fractionality for more complicated
commodity graphs. The linear programming dual to (1.1) gives a lower bound of the
fractionality. The dual fractionality frac∗(H) is defined to be the least positive integer
k with the property that there exists a 1/k-integral optimum in the LP-dual to (1.1)
for every capacitated graph (G, c) having H as a commodity graph. Then the stan-
dard TDI argument implies frac(H) ≥ frac∗(H) [17]. Therefore the finiteness of the
dual fractionality is a necessary condition for the finiteness of the (primal) fractionality.
Karzanov [17] gave a necessary and sufficient condition for the finiteness of the dual
fractionality, and determined its possible values as follows. A commodity graph H has
property P if it satisfies the following condition:

(P) For any triple A,B, C of pairwise intersecting maximal stable sets of H, we have
A ∩B = B ∩ C = C ∩A.

Theorem 1.1 ([17]). For a commodity graph H, we have the following:

(1) If H has property P, then frac∗(H) ∈ {1, 2, 4}.

(2) If H does not have property P, then frac∗(H) = +∞ and thus frac(H) = +∞.

See also [28, Section 73.3b]. Karzanov conjectured that property P is also sufficient for
the finiteness of primal fractionality, and, more strongly, that the possible values are also
1, 2, 4, +∞, as follows.

Conjecture 1.2 ([18]). Suppose that a commodity graph H has property P. Then the
following holds:

(1) frac(H) < +∞.

(2) frac(H) ∈ {1, 2, 4}.

Recently, Theorem 1.1 and Conjecture 1.2 were extended to a more general setting
of weighted maximum multiflow problems. Instead of a commodity graph, we are given
a nonnegative terminal weight µ :

(
S
2

)
→ R+. Here a multiflow f is a pair (P, λ) of a

set P of paths connecting distinct terminals in S and its nonnegative flow-value function
λ : P → R+ satisfying the capacity constraint. The total flow-value ∥f∥µ is defined to be∑

P∈P µ(sP , tP )λ(P ), where sP and tP denote the ends of P . The µ-weighted maximum
multiflow problem (the µ-problem for short) is formulated as:

(1.3) Maximize ∥f∥µ over all multiflows f for (G, c;S).

If µ is 0-1 valued, then the µ-problem (1.3) coincides with (1.1) for a commodity graph Hµ

specified by st ∈ EH ⇔ µ(s, t) = 1. Similarly, the fractionality frac(µ) of terminal weight
µ is the least positive integer k with the property that the µ-problem (1.3) has a 1/k-
integral optimal multiflow for every integer-capacitated graph, and the dual fractionality
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frac∗(µ) is the least positive integer k with the property that the LP-dual to (1.3) has
a 1/k-integral optimal solution for every capacitated graph. Again frac(µ) ≥ frac∗(µ)
holds for an integral weight µ :

(
S
2

)
→ Z+.

Karzanov [20] extended Theorem 1.1 for integral metric-weights, and our previous
paper [11] further extended it for general integral weights. For a terminal weight µ :(
S
2

)
→ R+, a polyhedron Pµ and its subset Tµ in RS

+ are defined by

Pµ = {p ∈ RS
+ | p(s) + p(t) ≥ µ(s, t) (s, t ∈ S)},

Tµ = the set of minimal elements of Pµ.

This polyhedral set Tµ is called the tight span or the injective envelope, introduced
independently by Isbell [15] and Dress [4]; their motivations were completely irrelevant
to the multiflow theory. The dimension dimTµ is defined to be the largest dimension of
faces of Tµ.

Theorem 1.3 ([20] for metrics and [11] for general). For an integral weight µ :
(
S
2

)
→

Z+, we have the following:

(1) If dim Tµ ≤ 2, then frac∗(µ) ∈ {1, 2, 4}.

(2) If dim Tµ ≥ 3, then frac∗(µ) = frac(µ) = +∞.

In particular, the property P of H is equivalent to the 2-dimensionality of the tight
span of the corresponding 0-1 weight µH , as remarked in [11, Section 7]. So Conjec-
ture 1.2 is naturally generalized into the following:

Conjecture 1.4. Suppose that a terminal weight µ satisfies dim Tµ ≤ 2. Then the
following holds:

(1) frac(µ) < +∞.

(2) frac(µ) ∈ {1, 2, 4}.

The main result of this paper affirmatively solves the weaker statement (1) of this
generalized conjecture and thus (1) of Conjecture 1.2.

Theorem 1.5. For a terminal weight µ on S, if dim Tµ ≤ 2, then the µ-problem (1.3)
has a 1/12-integral optimal multiflow for every Eulerian graph.

This completes the classification of terminal weights and commodity graphs having
finite fractionality.

Corollary 1.6. A terminal weight µ has finite fractionality if and only if dim Tµ ≤ 2,
and a commodity graph H has finite fractionality if and only if H has property P.

The possible values of the fractionality are 1, 2, 3, 4, 6, 8, 12, 24, and +∞. However
we do not know any example of terminal weights having fractionality except 1, 2, 4, +∞.

Organization. The goal is the proof of 1/12-integrality theorem (Theorem 1.5). We
use the duality framework using folder complexes (F-complexes for short), developed by
the previous paper [13]. An F-complex is a CAT(0) polygonal complex obtained by gluing
Euclidean right triangles, introduced and studied by Chepoi [2]. If dimTµ ≤ 2, then µ
is embedded into some F-complex K, and the maximum value of the µ-problem is equal
to the minimum value of a discrete location problem on K. In Section 2, we introduce
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F-complexes and related concepts, and summarize basic properties for F-complexes and
the multiflow duality.

Our proof is based on a fractional version of the splitting-off method combining
the dual update, called SPUP, which is a framework for proving the existence of a
1/k-integral optimal multiflow for a bounded integer k. This framework was originally
devised by the previous paper [12] for a special case. In Section 3, we develop the SPUP
framework for a general setting and give several key lemmas for it. Based on these
arguments, we prove the main theorem in Section 4.

Our framework not only brings a unified understanding to previously known results
but also provides a powerful algorithmic tool for proving the existence of an integral or
half-integral optimal multiflow. We describe them in Sections 5, 6 and 7. In Section 5,
we show that if weight µ is embedded into a sufficiently nice (nonsingular) F-complex,
then Eulerian µ-problem always has an integral optimal multiflow. Furthermore we can
sometimes blow up a singular F-complex into a nonsingular one to prove the integrality
theorem. This idea provides a powerful method for proving the integrality theorem.
We give an illustrative application to multiterminal weighted 2-commodity flows. In
Section 6, we focus on maximum multiflow problem (1.1) for a commodity graph H with
property P. We give a geometric interpretation of the anticlique-bipartite condition for H
in terms of the nonsingularity of an F-complex associated with H (Theorem 6.2). As a
corollary, we obtain Karzanov-Lomonosov integrality theorem [16, 23, 25]. Furthermore
we prove a powerful fractionality relation frac(H) ≤ 2 frac(µs

H) for a smoothed metric µs
H

associated with H (Theorem 6.4). This reduces the fractionality study of (1.1) to that
of a relatively simpler metric-weighted maximum multiflow problem. By using this we
prove the stronger conjecture (Conjecture 1.2 (2)) for a larger class of commodity graphs
beyond previously known such classes [22, 26]; see Theorems 6.6 and 6.8. Our proof is
constructive, and gives, in some cases, a strongly polynomial time algorithm to find a
1/k-integral optimal multiflow for k ≤ 12. The final Section 7 summarizes algorithmic
consequences.

Notation. Let R, R+, Z, and Z+ denote the sets of reals, nonnegative reals, integers,
and nonnegative integers, respectively. For a set V , let RV and RV

+ denote the sets of
functions from V to R and V to R+, respectively. For a subset S of V , let χS denote
the characteristic vector of S defined as χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise.
The characteristic vector χ{x} for a singleton {x} is simply denoted by χx.

By a graph we mean finite (capacitated) undirected graph possibly having multiple
edges and loops. For a graph G, the vertex set and the edge set are denoted by V G and
EG, respectively. An edge joining x and y is denoted by xy. In this paper there are two
types of graphs G and Γ ; G represents a supply graph for multiflows and Γ represents
a space of potentials. To distinguish their roles, we particularly called a vertex of G a
node. A node except terminals is called an inner node. By a path we mean a simple
path. For node sets A1, A2, . . . , Am, a path P is said to be an (A1, A2, . . . , Am)-path if P
connects A1 and Am passing through A1, A2, . . . , Am in order. If some Ai is a singleton
{x}, then we simply denote it by x. An (A,A)-path is particularly called an A-path.

We consider (1.3) only for rational-valued edge-capacity. Then we can always take
an optimal multiflow f = (P, λ) for a rational-valued flow-value function λ. Therefore,
by allowing P to be a multiset, we can represent f = (P, λ) by a pair of a multiset P
of S-paths and a uniform flow-value function λ = 1/κ for some positive integer κ. We
shall adopt this expression, denoted by f = (P; κ). For an edge e, the subset of paths
in P containing e is denoted by Pe. Its total flow-value |Pe|/κ is denoted by fe. For
consecutive two edges e, e′, the subset of paths passing e and e′ is denoted by Pe,e′ , and
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its flow value is denoted by fe,e′ . If a path P in Pxy is an (s, x, y, t)-path, then terminal
s is called the x-end of P (with respect to xy). The total support of multiflow f is defined
to be

∑
e∈EG fe.

A function d on S×S is called a distance if d(s, t) = d(t, s) ≥ d(s, s) = 0 for s, t ∈ S.
A distance d is call a metric if it satisfies the triangle inequalities d(s, t)+d(t, u) ≥ d(s, u)
for s, t, u ∈ S. We shall regard a terminal weight µ as a distance. We often regard a
metric d on vertex set V G of graph G as an edge-length d : EG→ R+ by d(e) := d(x, y)
for e = xy. For a path or cycle P , d(P ) denotes the sum of d(e) along all edges e in P .
For a metric d on S and two subsets A,B ⊆ S, the distance d(A,B) between A and B
is defined as

d(A,B) = min{d(s, t) | (s, t) ∈ A×B}.

We denote d(A, {p}) simply by d(A, p). For a graph Γ with uniform edge-length δ, the
shortest path metric on V Γ is denoted by dΓ,δ.

A piecewise Euclidean cell complex K is a space formed by gluing together Euclidean
convex polyhedra via isometries of their faces, together with the subdivision of K into
cells; see [1, Chapter I.7] for a precise definition. A 1-dimensional cell of segment [p, q]
is also called an edge, denoted by pq. A 0-dimensional cell is called a vertex.

2 Multiflow combinatorial dualities

In this section we introduce a duality framework for µ-weighted maximum multiflow
problems (1.3) by folder complexes. In the following paragraph we introduce the notation
of an F-complex and related concepts, and then we describe a combinatorial duality
relation for (1.3). Section 2.1 summarizes basic properties and operations of F-complexes.
Section 2.2 summarizes basic properties of µ-problem and its dual, including optimality
criteria, the locking property, reductions of degrees, and so on.

Folder complexes. We consider a finite 2-dimensional piecewise Euclidean cell com-
plex K by obtained by gluing squares and isosceles right triangles along edges of the
same isometry type. More precisely, for some positive real δ, each 2-dimensional cell
(2-cell) is isometric to

square {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ δ, 0 ≤ x2 ≤ δ} or
triangle {(x1, x2) ∈ R2 | 0 ≤ x1 ≤ x2 ≤ δ}

in the Euclidean plane. Also we suppose that each maximal 1-dimensional cell is iso-
metric to segment [0, δ]. A longer edge of a triangle is called a hypotenuse, and other
edges are called legs; a maximal 1-cell is a leg. δ is called the leg-length. Therefore if
two 2-cells share a common edge e, then e is either the hypotenuse of both of them or a
leg of both of them. A folder of K is a square, or the union of all triangles sharing one
common hypotenuse; see Figure 1 (a). Then K is called a folder complex (an F-complex
for short) [2, Section 7] if

(0) it is simply-connected,

(1) the intersection of any two folders does not contain incident legs, and

(2) there are no three folders Fi (i = 1, 2, 3) and three distinct legs ei (i = 1, 2, 3)
sharing a common vertex such that ei belongs to Fj exactly when i ̸= j.
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hypotenuse RF1 F2F3

(a) (b) ()
Æ

Figure 1: Basic concepts

See Figure 1 (b) for a violation of (2). This condition says that K is a CAT(0) space [2];
also see [1].

A subset R of K is called normal if it satisfies the following axiom:

(1) R is a connected subcomplex of K with the property that if R contains a leg e,
then every cell containing e belongs to R.

(2) there are no two triangles σ and σ′ sharing a leg and a right angle such that
(σ ∪ σ′) ∩R coincides with the union of the hypotenuses of σ and σ′.

See Figure 1 (c) for the violation of (2).
Although K has the l2-length metric by definition, we are mainly interested in the

l1-length metric. Note that each 2-cell has a natural l1-metric so that the coordinate
axes are parallel to legs. Then the l1-length of a path P in K is the sum, over all cells
σ, of l1-length of σ◦ ∩ P measured by the l1-metric on σ, where σ◦ denotes the relative
interior of σ. The l1-length metric dK(p, q) between p and q is defined to be the infimum
of the lengths of all paths connecting p, q in K.

Let Γ = ΓK be the (simple undirect) graph consisting of all legs of K, called the
leg-graph. Equivalently, Γ is the graph obtained by deleting all hypotenuses from the
1-skeleton graph of K. The edge-length of Γ is given by δ uniformly. For two normal
sets N and M , one can easily see

(2.1) dK(N, M) = dΓ,δ(N ∩ V Γ,M ∩ V Γ ).

An F-complex K is said to be orientable if its leg-graph Γ has an orientation the
property that

(2.2) (i) in each square its diagonal edges have same direction (in the local coordi-
nate), and

(ii) in each folder consisting of triangles, the hypotenuse joins a source and a
sink.

See Figure 4 for a portion of an orientation.

F-complex realization and multiflow duality. For a distance µ on set S, an F-
complex realization of µ is a pair (K; {Rs}s∈S) of an F-complex K and a family {Rs}s∈S

of normal sets satisfying

µ(s, t) = dK(Rs, Rt) (s, t ∈ S).
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Rs1 Rs3
Rs2

Rs4 Rs5
Rs6Rs7� =

s2 s3 s4 s5 s6 s7s1 1 2 3 3 5 2s2 1 4 4 4 1s3 3 3 5 2s4 2 2 3s5 2 3s6 1
Figure 2: F-complex realization

Namely µ is realized by the distances among normal sets Rs. Figure 2 illustrates an
example, where s7 is embedded into a hypotenuse, and others are embedded into vertices.

Theorem 2.1 ([13, Theorem 4.5]). For a rational distance µ on a finite set S, the
following two conditions are equivalent:

(1) dim Tµ ≤ 2.

(2) µ has an F-complex realization.

It is known that a realization of µ is obtained by subdividing 2-dimensional polyhedral
set Tµ into triangles and squares [11, 13].

Suppose that a distance µ on S has an F-complex realization (K; {Rs}s∈S). Consider
the µ-problem (1.3) for (G, c; S) and consider the following discrete location problem on
the leg-graph Γ of K:

Minimize
∑

xy∈EG

c(xy)dΓ,δ(ρ(x), ρ(y))(2.3)

subject to ρ : V G→ V Γ,

ρ(s) ∈ Rs ∩ V Γ (s ∈ S).

Our previous paper established the following duality relation, extending a result in [19].

Theorem 2.2 ([13, Theorem 2.1]). Suppose that K is orientable. Then the maximum
value of the µ-problem (1.3) is equal to the minimum value of the discrete location prob-
lem (2.3).

By multiplying a positive rational to µ, the leg-length δ can be taken to be 1. Also,
as will be seen in Section 2.1.1, we can always replace a nonorientable realization by
orientable one. So, in the sequel,

(1) by an F-complex we mean an orientable one.

(2) the leg-length δ is supposed to be 1.

2.1 Geometry of F-complex

Here we summarize basic facts on an F-complex K. We use the same d for dΓ,δ and dK
(thanks to (2.1)). We note the following bipartite properties:
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(2.4) (1) the leg-graph Γ is bipartite.

(2) for a normal set R and a leg pq, if pq ̸⊆ R, then d(R, p)− d(R, q) ∈ {±1}.

See [13] for proof.

2.1.1 Subdivision

An F-complex K has a natural subdivision operation. For a positive integer m, subdivide
each square into m ×m squares of leg-length δ/m, each triangle into m triangles and
m(m − 1)/2 squares of leg-length δ/m, and each maximal edge into m edges of length
δ/m; see [13, Figure 5]. The resulting complex is denoted byKm, called the m-subdivision
of K. One can easily see the following facts:

(2.5) (1) Km is an F-complex.

(2) K2 is orientable.

See also Figure 14 for verifying (2). Therefore, if µ has a realization by a nonorientable
F-complex K, then we can replace K by orientable one K2.

2.1.2 Star-shaped F-complex

An F-complex K is said to be star-shaped if there is a vertex p, called a center, such that
every maximal cell contains p and no triangle has p as its right angle. A star-shaped
F-complex is obviously orientable; it is oriented so that the center p is a unique source,
and each vertex nonincident to p is a sink.

For a star-shaped F-complex K with center p, its boundary leg-graph Π is the bipartite
graph Γ \ p obtained by deleting p from the leg-graph Γ . Then the axiom (1-2) of F-
complex can be rephrased by the following:

(2.6) Π has girth at least 8.

The bipartition of Π consists of the set Q of vertices incident to p and the set L of
vertices nonincident to p. For u, v ∈ Q∪L, we write u ∼ v if u = v, u is incident to v, or
u and v have a common neighbor. Particularly we write u ∼1 v if u = v or u is incident
to v. We also denote Π by (Q,L;∼).

Remark 2.3. A bipartite graph Π = (Q,L;∼) of girth at least 8 has an analogy of an
incidence geometry of points Q and lines L. In particular, a bipartite graph with girth
8 and diameter 4 is known as a generalized quadrangle; see, e.g., [6, Chapter 5].

2.1.3 Local structure and shortest path

The following problem naturally arises in the local multiflow rearrangement in Sec-
tion 2.2.3:

(2.7) Let p be a vertex in K, and M,N normal sets. Suppose that we are given
two shortest paths P and P ′ such that P connects p and M , and P ′ connects
p and N . Is the concatenation P + P ′ at p shortest between M and N ?

We answer this problem in term of the position of (M, N) relative to a neighborhood
around p.
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Let Kp denote the subcomplex of K consisting of cells containing p and their faces.
Namely Kp is the closed star at p. Clearly Kp is an F-complex. Although Kp may not
be star-shaped, (Km)p for m ≥ 2 is always star-shaped. Let Πp = (Qp, Lp;∼) denote
the boundary leg-graph of (Km)p for m ≥ 2 (well-defined).

Suppose that Kp is star-shaped (by subdivision). We identify the boundary leg-
graph of Kp with Πp = (Qp, Lp;∼). For a normal set R not containing p, the vertex
g ∈ Qp ∪ Lp in Kp with d(g, R) = d(Kp, R) is uniquely determined [13, Lemma 3.8]. We
call this vertex g the gate of R in Kp, denoted by gR. Then the solution of problem (2.7)
depends only on gates of M and N . Namely P +P ′ is shortest between M and N if and
only if g(P + P ′) is shortest between gM and gN , as follows.

Lemma 2.4 ([13, Lemmas 3.6 and 3.9]). Let M and N be two normal sets.

(1) If p ∈M and p ̸∈ N , then the following conditions are equivalent:

(a) d(M,N) = d(p, N).

(b) gN ̸∈M .

(2) If p ̸∈M and p ̸∈ N , then the following conditions are equivalent:

(a) d(M,N) = d(M, p) + d(p,N).

(b) d(gM, gN) = d(gM, p) + d(p, gN).

(c) There is no q ∈ Qp with gM ∼1 q ∼1 gN .

From (2.10) (1), the uniqueness of the gate, and Lemma 2.4, we see

(2.8) d(R, u) = d(R, gR) + d(gR, u) (u ∈ {p} ∪Qp ∪ Lp).

This roughly means that a shortest path from R to u can enter Kp through the gate gR;
our definition of the gate is compatible to that in [5]. The next lemma describes the
gate of R when a shortest path from R to p enters Kp via u ̸= p.

Lemma 2.5. For a normal set R and a vertex u ∈ Qp∪Lp, suppose d(R, p) = d(R, u)+
d(u, p).

(1) If u ∈ Lp, then gR = u.

(2) If u ∈ Qp, then gR ∼1 u.

Proof. By (2.8), we have d(R, p) = d(R, gR)+d(gR, u)+d(u, p), and d(gR, u)+d(u, p) =
d(gR, p) ∈ {1, 2}. Hence d(u, p) = 2 (u ∈ Lp) implies d(gR, u) = 0, and d(u, p) = 1
(u ∈ Qp) implies d(gR, u) = 0 or 1.

2.1.4 Orbits and summands

We recall the notion of orbits [19, 20] with a slight modification by [11]. An orbit is
an equivalence class of the transitive closure of the following relation on edge set EΓ :
e ≃ e′ if e and e′ are nonincident edges in some square, or belong to a common folder
consisting of triangles. For a (disjoint) union U of several orbits, we can construct a new
complex KU from K by identifying the ends of each edge not in U . Again KU consists
of squares and right isosceles triangles. We call KU a summand of K. See Figure 3.
We also denote the leg-graph of KU by ΓU . This identification naturally induces a map
(·)U : V Γ → V ΓU by defining pU to be the contracted vertex. By extending linearly, we
obtain a map (·)U : K → KU .
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K KU
KUU

Figure 3: Summands

Proposition 2.6 ([13, Proposition 3.15]). Let U be the union of any subset of the orbits
and U c its complement.

(1) KU is an F-complex.

(2) For a normal set R in K, RU is also normal in KU .

(3) For normal sets M, N , we have dK(M, N) = dKU (MU , NU ) + dKUc (MUc
, NUc

).

2.1.5 Frame and metric

In the case where µ is a metric, one can handle its F-complex realization in a purely
graph-theoretical way. A graph Γ is called a frame if it is bipartite, has no isometric
cycles of length at least 6, and is orientable in the sense that Γ can be oriented so
that in every 4-cycle, diagonal edges have opposite directions in a cyclic orientation.
Karzanov [19, 20] showed that for a rational metric µ, dim Tµ ≤ 2 if and only if there are
a frame Γ and a positive integer k such that µ is a submetric of dΓ,1/k. For a frame Γ ,
we can naturally associate it with an (orientable) F-complex as follows. Every maximal
complete bipartite subgraph of Γ is necessarily K2,m (for varying m ≥ 2) by orientability.
For each maximal complete subgraph K2,m, fill m triangles as in Figure 1 (a) if m ≥ 3,
and fill a square if m = 2; see [19, Section 4] for a precise construction. Then the
resulting complex is an orientable F-complex; conversely the leg-graph of an orientable
F-complex is always a frame [2]. Therefore we obtain an F-complex realization with
property that each Rs is a single vertex. So, if µ is a metric, then we are sufficient to
retain a frame Γ and an isometric embedding ϕ : S → V Γ . Since the leg-graph loses
the information of folders consisting of at most two triangles, it has a difficulty to treat
nonmetric problems. This is a motivation for introducing a framework by F-complexes.

Let us rephrase several concepts for frames. A frame is said to be star-shaped if the
corresponding F-complex is star-shaped. There is a one-to-one correspondence between
star-shaped frames Γ and bipartite graphs Π = (Q,L;∼) of girth at least 8 and degree at
least 2 in L. Indeed, we have already seen the construction of Π from Γ in Section 2.1.2.
From Π, we can construct a star-shaped frame Γ by adding new vertex p and joining
it to each vertex in Q. An orbit of a frame Γ is an equivalence class of the transitive
closure of the relation: e ≃ e′ if there is a 4-cycle containing e, e′ as nonincident edges.
For the union U of several orbits, the summand ΓU is the graph obtained from Γ by
contracting all edges not in U , identifying parallel edges, and deleting loops. If U is a
single orbit, then ΓU is particularly called the orbit graph with respect to U .
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2.2 Weighted maximum multiflow problem and its dual

The aim of this subsection is to describe basic properties of the µ-problem (1.3) and its
dual (2.3). Let µ be a distance on S, and let (K; {Rs}s∈S) be its (orientable) F-complex
realization of unit leg-length. Let (G, c) be a capacitated graph with terminal set S.
The optimal value of (1.3) is denoted by opt(G, c). A map ρ feasible to the dual (2.3) is
called a potential. For a potential ρ, a metric dρ on V G is defined by

dρ(x, y) := d(ρ(x), ρ(y)) (x, y ∈ V G).

For a potential ρ, the objective value of (2.3) is denoted by c · dρ.

2.2.1 Optimality criteria

Here we give optimality criteria to the µ-problem (1.3) and its dual (2.3). For a multiflow
f = (P; κ) and a potential ρ, the duality gap c · dρ − ∥f∥µ is given by

(2.9)
∑

e∈EG

dρ(e)(c(e)− fe) +
∑
P∈P

(dρ(P )− µ(sP , tP ))/κ.

For a potential ρ, an S-path P in G is called ρ-shortest if dρ(P ) = d(RsP , RtP ) =
µ(sP , tP ). Hence the optimality criterion of primal-dual type is given as follows.

Lemma 2.7. A multiflow f and a potential ρ are both optimal if and only if each path
in f is ρ-shortest, and each edge e with dρ(e) > 0 is saturated by f , i.e., fe = c(e).

This means that paths in f are embedded into K by ρ and embedded paths are
shortest paths connecting terminal regions Rs. This view is very important in every
place of this paper. For example, one can immediately see the following properties of an
optimal multiflow f and an optimal potential ρ:

(2.10) (1) If f has a path passing through nodes x, y, z in order, then dρ(x, z) =
dρ(x, y) + dρ(y, z) holds.

(2) Subdivide an edge xy into xz and zy, and extend ρ by ρ(z) := p for a vertex
p satisfying dρ(x, y) = d(ρ(x), p) + d(p, ρ(y)). Then ρ is optimal to the new
graph.

(3) If f has a path of end s passing through node y, then there is no point
p ∈ Rs with p ̸= ρ(s) and d(Rs, ρ(y)) = d(Rs, p) + d(p, ρ(y)).

Next we describe an optimal criterion involving potential only. We use an orientation
of Γ . An orientation of Γ with property (2.2) is said to be admissible. An admissible
orientation is obtained by orienting orbits independently. Such an orientation of an
orbit is also said to be admissible. See Figure 4. Each orbit has exactly two admissible
orientations; one is the reverse to the other one. Let ρ be a potential. Let

−→
O be an

oriented orbit by an admissible orientation. A potential ρ′ is called a neighbor of ρ with
respect to

−→
O if for each x ∈ V G with ρ′(x) ̸= ρ(x)

(2.11) (i) there is an oriented edge −→pq ∈ −→O such that (ρ(x), ρ′(x)) = (p, q), or

(ii) there are two oriented edges −→pq,−→qr ∈
−→
O belonging to a common folder such

that (ρ(x), ρ′(x)) = (p, r).

Namely ρ′ is obtained by moving ρ along direction
−→
O . The following theorem is a basis

for the SPUP framework.
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Figure 4: An orbit with an admissible orientation

Theorem 2.8 ([13, Theorem 4.1]). If a potential ρ is not optimal, then there exists a
neighbor ρ′ of ρ having smaller objective value.

2.2.2 Orbits and the locking property

In Section 2.1.4 we saw that orbits decompose an F-complex into several smaller F-
complexes. Furthermore orbits also decomposes the corresponding µ-problem into sev-
eral smaller problems. This gives a natural explanation to the locking phenomenon, that
is, the existence of a multiflow simultaneously optimal to both µ- and µ′-problems for
distinct terminal weights µ, µ′; see [19, Section 5] for metric cases.

Let U be the union of any subsets of the orbits in K. Let µU be the distance on S
defined by

µU (s, t) = dKU ((Rs)U , (Rt)U ) (s, t ∈ S).

µU is also called a summand of µ with respect to U . By construction and Proposition 2.6,
(KU ; {(Rs)U}s∈S) is an F-complex realization of µU .

Proposition 2.9. Let f be an optimal multiflow and ρ an optimal potential. For the
union U of any subset of the orbits, we have the following:

(1) f is optimal to the µU -problem.

(2) ρU is optimal to the dual (2.3) with respect to realization (KU ; {(Rs)U}s∈S).

Proof. Let U c be the complement of U . By Proposition 2.6, we have ∥f∥µ = ∥f∥µU +

∥f∥µUc and dρ = dρU
+dρUc

. Moreover, ρU and ρUc
are feasible to (2.3) for (KU ; {(Rs)U}s∈S)

and for (KUc
; {(Rs)Uc}s∈S), respectively. Thus we have ∥f∥µ = ∥f∥µU + ∥f∥µUc ≤

c · dρU
+ c · dρUc

= c · dρ = ∥f∥µ.

2.2.3 Local multiflow rearrangements

In the analysis of the splitting-off, the local multiflow rearrangement plays crucial roles.
Suppose that we are given an optimal multiflow f = (P; κ). Let y be a node. We will
face the following rearrangement problem:

Split some of paths in P at y, and reconnect them with keeping optimality.

Suppose further that we are given an optimal potential ρ. Let p = ρ(y). Such a
rearrangement can be carried out, according to the local structure of K at p. Recall
the notions in Section 2.1.3. By subdivision, we assume that Kp is star-shaped, and we
identify Πp = (Qp, Lp;∼) with the boundary leg-graph of Kp.

Split some of paths in P at y. Then the resulting paths induce shortest paths between
p and terminal regions Rs since f and ρ are optimal. As a consequence of Lemma 2.4,
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Figure 5: Local multiflow rearrangement to keep optimality

to keep optimality, it suffices to avoid to reconnect a (y, s)-path and a (y, t)-path of the
following types:

(1) p ∈ Rs, p ̸∈ Rt, and gRt ∈ Rs.

(2) p ̸∈ Rs, p ̸∈ Rt, and gRs ∼1 q ∼1 gRt for some q ∈ Qp.

Motivated by this fact, for u ∈ Qp ∪ Lp, we define terminal subset su ⊆ S by

(2.12) su = {s ∈ S | p ̸∈ Rs, u = gRs}.

In the local multiflow rearrangements at ρ−1(p), we can regard su as a single terminal.
Figure 5 illustrates an intuition of local multiflow rearrangement to keep optimality.

Exchange operation and homogeneity. We will often use the following simple
flow rearrangement through an edge e = xy. Take two paths P1 and P2 from Pe. The
exchange operation of P1 and P2 at e is the following: For i = 1, 2, split Pi at x into two
paths P 1

i and P 2
i so that P 2

i contains y. Reconnect P 1
1 and P 2

2 at x, and reconnect P 1
2

ant P 2
1 at x. If the resulting multiflow has nonsimple paths (resp. cycles), then simplify

(resp. delete) them. A subset P ′ ⊆ Pe is said to be homogeneous if the exchange
operation of every pair of paths in P ′ at e does not decrease the optimal value ∥f∥µ. If
Pe itself is homogeneous, then we also say “f is homogeneous at e.”

From the position (ρ(x), ρ(y)) in Kp, we can check the homogeneity of Pe. The next
lemma simply rephrases Lemma 2.5.

Lemma 2.10. Suppose d(ρ(x), ρ(y)) = d(ρ(x), p) + d(p, ρ(y)) and ρ(x) = u ∈ Qp ∪ Lp.

(1) If u ∈ Lp, then Pxy consists of paths with x-end belonging to su, and thus Pxy is
homogeneous.

(2) If u ∈ Qp, then Pxy consists of paths with x-end belonging to
∪

v∼1u sv.

By taking p as the center of a folder and considering the 2-subdivision, we obtain a
useful lemma.

Lemma 2.11. If (ρ(x), ρ(y)) is a nonadjacent pair of vertices in a folder, then Pxy is
homogeneous.
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Anti-exchange operation. There is a reverse way of exchanging two paths P1 and
P2 at edge e = xy. For each i = 1, 2, split Pi at x into two paths P 1

i and P 2
i so that P 2

i

contains y, as above. Reconnect P 1
1 and P 1

2 at x, and reconnect P 2
2 ant P 2

1 at x. Then
the resulting multiflow contains nonsimple paths. So simplify them. This operation is
called an anti-exchange operation at e. The anti-exchange operation decreases the total
support of f . Therefore, if we take an optimal multiflow of the minimum total support,
then the anti-exchange operation never keeps optimality. We often use this logic in
Section 4.

2.2.4 Degree conditions and reductions

A capacitated graph (G, c) with terminal set S is said to be inner Eulerian if c is integral
and each inner node has even degree. A terminal s is said to be proper (with respect
to realization (K; {Rs}s∈S)) if Rs contains no legs. In other words, Rs ∩ V Γ belongs to
one color class of bipartite graph Γ . Other terminal is called improper. We consider the
following degree condition (terminal condition I) for terminals:

(I) each improper terminal has even degree.

Lemma 2.12. Suppose that (G, c) is an inner Eulerian graph with terminal condition
I. For two potentials ρ, ρ′, we have c · dρ′ − c · dρ ∈ 2Z.

Proof. Let T ⊆ S be the set of proper terminals. Since each node except proper terminal
has even degree, c can be decomposed into the sum of the characteristic vectors of
(nonsimple) cycles Ci and T -paths Pj . Hence we have c · dρ′ − c · dρ =

∑
i{dρ′(Ci) −

dρ(Ci)}+
∑

j{dρ′(Pj)− dρ(Pj)}. Since Γ is bipartite, both dρ′(Ci) and dρ(Ci) are even.
For each proper terminal s ∈ T , ρ(s) and ρ′(s) belong to the same color class, and thus
dρ′(Pj)− dρ(Pj) is even.

Next we describe a method to transform the problem so that each node has degree
at most 4. Suppose that (G, c) is inner Eulerian. By multiplying edges, we can make
each edge have unit capacity. For an inner node x of degree greater than four, we can
transform (G, c) into (G′, c′) by changing the incidence at x as in [8, p. 50] (or [12,
Figure 3]). Then the problem is unchanged.

Consider a terminal s. Let m be the degree of s. There are two ways of reducing the
degree. The first way is reducing the degree to one. Add new terminals s1, s2, . . . , sm,
connect s and each si by an edge with unit capacity, make s being an inner node, and
define the distance µ′ on S \ s ∪ {s1, s2, . . . , sm} as µ′(si, t) = µ(s, t) for t ∈ S \ s and
other distances are same as µ. Then any multiflow for the resulting graph (G′, c′; S′, µ′)
can be transformed into a multiflow for (G, c; S, µ) having the same objective value. The
reverse way is also possible. Moreover, an F-complex realization of (S′, µ′) is obtained
by setting Rsi := Rs for each i. The second way is reducing the degree to two when m
is even. Add new terminals s1, s2, . . . , sm/2, connect s and each si by two parallel edges
(with unit capacity). The rest is the same as above.

In particular, if (G, c) is inner Eulerian with terminal condition I, then we can convert
(G, c) so that it is inner Eulerian with terminal condition I, each inner node has degree
four, each proper terminal has degree one, and each improper terminal has degree two.

In addition, if we are given an optimal potential ρ for (G, c), then we can extend ρ to
an optimum for the new problem by setting ρ(x′) := ρ(x) for each new node x′ replacing
original node x.
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2.2.5 Terminal modifications and creations

Suppose that we are given an optimal potential ρ. Sometimes we can simplify Rs, and
can create new terminals to decompose the problem.

Terminal modification. Suppose that a terminal s is incident to exactly one node x
with ρ(x) ̸= ρ(s) = p. Suppose further that Kp is star-shaped. Replace Rs by

R′
s = {q ∈ Kp ∩Rs | d(q, gρ(x)) = d(p, gρ(x))}.

Then R′
s is a single vertex or union of hypotenuses, and thus normal. Modify µ by

setting µ(s, t) := d(R′
s, Rt) for t ∈ S. Note that s becomes proper in the new problem.

By Lemma 2.4 (1), any optimal multiflow for the original problem fulfills the optimality
criterion (Lemma 2.7) to the new problem with ρ. In particular ρ is also optimal to the
new problem. To see the converse, take an arbitrary optimal multiflow f for the new
problem. Suppose that f is not optimal to the original problem. Then there is an (s, t)-
path in Psx such that it is not ρ-shortest for original Rs. Lemma 2.4 (1) implies p ̸∈ Rt,
and gRt ∈ Rs. However this implies gRt ∈ R′

s by definition of R′
s and Lemma 2.5;

a contradiction to optimality in the new problem. Therefore f is also optimal to the
original problem.

Terminal creation I. Suppose that there are an edge e = xy and a nonadjacent pair
(p, p′) of vertices of a folder F such that d(ρ(x), ρ(y)) = d(ρ(x), p)+d(p, p′)+d(p′, ρ(y)).
Then delete edge xy, add new terminals sx, sy, add new edges xsy, ysx with capacity
c(xsy) = c(ysx) = c(xy). Set Rsx := {p} and Rsy := {p′}, and extend µ to S ∪ {sx, sy}
by µ(sx, t) := d(Rsx , Rt) and µ(sy, t) := d(Rsy , Rt). Extend ρ by (ρ(sx), ρ(sy)) := (p, p′).
Take an optimal multiflow f = (P; κ) for the original problem. For each path in Pxy,
delete xy to split it into two paths, add edge xsy to one of the two paths having x, and
add edge ysx to the other path. Then we obtain a multiflow and a potential for the
new problem. Both are optimal by Lemmas 2.4 and 2.7; consider (K2)p∗ for the center
p∗ of folder F . Conversely, take an arbitrary optimal multiflow f = (P; κ) to the new
problem. For any pair (P ′, P ′′) ∈ Pxsy × Pysx , delete edges xsy, ysx and join them by
adding edge xy. The the resulting path P is ρ-shortest by Lemma 2.4. Apply it to all
pairs in any matching between Pxsy and Pysx . Then we obtain an optimal multiflow for
the original graph.

Terminal creation II. Let p be a vertex in K such that Πp is an 8-cycle. Namely K
is flat at p. So p is incident to four vertices q1, q2, r1, r2 by legs. We suppose that pqi

and prj belong to a common folder for i, j ∈ {1, 2}, and suppose that Πp is an 8-cycle
(q̄1, l11, r̄1, l21, q̄2, l22, r̄2, l12), where q̄i and r̄j denote the members of Qp lying on legs pqi

and prj , respectively.
Suppose that there is an edge e = xy ∈ EG with (ρ(x), ρ(y)) = (q1, q2). In this

case, we can apply the following terminal creation. Subdivide e into two edges xz
and zy with capacity c(xz) = c(zy) = c(xy), add new terminals s∗, t∗, and join them
to z with capacity c(s∗z) = c(t∗z) = c(xy). Set Rs∗ := {r1} and Rt∗ := {r2}, and
extend µ to S ∪ {s∗, t∗}. Also extend ρ by (ρ(s∗), ρ(z), ρ(t∗)) := (r1, p, r2). Take an
optimal multiflow f = (P; κ) for the original problem. We can extend f for new graph
by subdividing each path in Pe at z. Add paths (s∗, s∗z, z, zt∗, t∗) of flow-value c(xy)
to P. Then the resulting ρ and f are both optimal. Conversely, take an arbitrary
optimal multiflow f = (P; κ). From this, we can construct an optimal multiflow for the
original problem by the following way. Since four edges incident to z are all saturated,
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by a simple calculation we have (fxz,zs∗ , fxz,zy, fxz,zt∗) = (f t∗z,zy, f t∗z,zs∗ , fs∗z,zy). If
fxz,zs∗ = f t∗z,zy = fxz,zt∗ = fs∗z,zy = 0, then the deletion of Ps∗z,zt∗ gives an optimal
multiflow for the original problem. Suppose fxz,zs∗ = f t∗z,zy > 0. Split each path in
Pxz,zs∗ and in Pt∗z,zy at z. Reconnect paths from s∗ and paths from t∗, and reconnect
paths from x and paths from y. Then the resulting multiflow is also optimal. Indeed,
Pxz,zs∗ consists of (sr̄1, z, sq̄1 ∪ sl12)-paths, and Pxz,zs∗ consists of (sr̄2, z, sq̄2 ∪ sl21)-
paths; draw a picture such as Figure 5 for 8-cycle Πp. So the rearrangement criterion
keeps, and thus we can make f fulfill fxz,zs∗ = f t∗z,zy = fxz,zt∗ = f s∗z,zy = 0.

2.2.6 Irrational distances

An irrational distance µ may have no F-complex realizations even if dimTµ ≤ 2. In
this case, we can perturb µ into rational one µ′ with the problem unchanged. By
Dress’ dimension criterion [4, Theorem 9] (also see [10, 11]), the set D of distances
µ′ with dim Tµ′ ≤ dim Tµ is the union of rational polyhedral cones. For a multiflow

f = (P, λ), the boundary ∂f is the vector in R(S
2) defined as (∂f)(s, t) =

∑
{λ(P ) |

(s, t)-path P in P} for s, t ∈ S. Let BG,c;S = {∂f | multiflow f} be the set of all
multiflow boundaries. Then BG,c;S is a convex polytope, and the µ-problem can be
regarded as a linear optimization over BG,c;S with linear objective function µ. Suppose
that c is rational. Then BG,c;S is also rational. Consider the normal cone N of BG,c;S

containing µ as its relative interior N ◦. N is also rational. We can take a rational
distance µ′ from N ◦ ∩ D. By µ′ ∈ D, we have dim Tµ′ ≤ 2. By µ′ ∈ N ◦, every
optimal multiflow for µ′-problem is also optimal to the µ-problem. Therefore, for proving
Theorem 1.5, we may assume that µ is rational.

3 Splitting-off fractionally

Our proof of the main theorem is based on a fractional version of splitting-off operation.
Recall the splitting-off operation; see, e.g., [8, 16, 27]. For two edges e = xy and e′ = yz
incident to y, a triple (e, y, e′) is called a fork. When both e = xy and e′ = yz have no
multiple edges, fork (e, y, e′) is simply denoted by a triple xyz. For a fork τ = (e, y, e′),
the splitting-off operation at τ is to decrease the capacity of edges e and e′ by one, and
add a new edge e∗ joining y, z with unit capacity. A fork τ is said to splittable if the
splitting-off operation at τ does not decrease the optimal value opt(G, c). Otherwise τ
is said to be unsplittable.

Suppose that τ is splittable. Apply the splitting-off operation at τ . Then, (i) from
an optimal multiflow for the new graph, we obtain an optimal multiflow for the original
graph, (ii) if the original graph is Eulerian, then the new graph is also Eulerian, and
(iii) the total sum of edge-capacities decreases. From (i-iii) we can apply the inductive
argument to prove the existence of an integral optimal multiflow.

However we will face the situation that there is no splittable fork. Our previous
paper [12] devised a framework to overcome this difficulty by a fractional splitting-off
operation combining potential update, called SPUP. The aim of this section is to describe
the SPUP framework. Throughout this section, we are given an instance (G, c;S, µ) of
the µ-problem, and given an F-complex realization (K; {Rs}s∈S) of µ with unit leg-
length. In graph operations, we delete isolated nodes, loops, and edges of zero capacity
whenever appeared. Deceasing the capacity of an edge e = xy by 2 is also regarded as
splitting-off for a degenerate fork (e, y, e). A node y is said to be splittable if we can
repeat splitting-off operations by splittable forks at y to make y isolated. Otherwise y
is said to be unsplittable.
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3.1 SPUP: Splitting-off with Potential UPdate

According to [12], we begin with introducing a fractional version of the splitting-off
operation. For a fork τ = (e, y, e′), consider the graph (Gτ , c) obtained from (G, c) by
adding a new inner node yτ and a new edge eτ = yyτ and reconnecting e and e′ to
yτ . The capacity of eτ is defined by c(e) + c(e′). Then we can identify a multiflow for
(G, c) with a multiflow for (Gτ , c). So this does not change the problem. We use this
identification in the sequel. In particular, Peτ

= (Pe \Pe,e′)∪(Pe′ \Pe,e′) for a multiflow
f = (P; κ).

The fractional splitting-off operation at τ is to decrease c(eτ ) as much as possible
keeping the optimal value invariant. The maximum possible value, denoted by α(τ) =
αG,c(τ), is called the splitting capacity, i.e.,

α(τ) := max{0 ≤ α ≤ c(eτ ) | opt(Gτ , c− αχeτ ) = opt(G, c)}.

Let cτ = c − α(τ)χeτ . Clearly if (Gτ , cτ ) has a 1/k-integral optimal multiflow, then so
does (G, c). However a naive inductive argument does not work since (Gτ , cτ ) violates the
Eulerian condition. So we need another principle to prove the existence of a 1/k-integral
optimal solution for a bounded integer k.

By the max-min relation (Theorem 2.2), α(τ) can also be represented as

α(τ) = min

{
c · dρ′ − opt(G, c)

dρ′(eτ )

∣∣∣ ρ′: potential with dρ′(eτ ) > 0

}
.

A potential ρ′ attaining the minimum in RHS is called critical. Note that ρ′ is optimal
to the new graph (Gτ , cτ ).

Suppose that we are given an optimal potential ρ for (G, c). Then ρ can also be
extended to an optimum for (Gτ , c) by setting ρ(yτ ) := ρ(y). By Theorem 2.8, we can
take a critical potential that is a neighbor of ρ.

Proposition 3.1. Let τ be a fork and ρ an optimal potential. Then we have the follow-
ing.

(3.1) α(τ) = min

{
c · dρ′ − c · dρ

dρ′(eτ )

∣∣∣ ρ′: neighbor of ρ with dρ′(eτ ) > 0

}
.

In particular, if (G, c) is inner Eulerian with terminal condition I, then we have

α(τ) ∈
{

0,
1
2
,
2
3
, 1,

4
3
,
3
2
, 2, . . .

}
=

1
2
Z+ ∪

2
3
Z+.

The latter part follows from: (i) the numerator c · dρ′ − c · dρ is even by Lemma 2.12,
and (ii) the denominator dρ′(eτ ) is one of 1, 2, 3, 4 since both ρ′(y) and ρ′(yτ ) belong to
Kp for p = ρ(y).

SPUP framework. Now we are ready to describe the SPUP framework. After
splitting-off operations, we assume that there is no splittable fork. We keep graph
(G, c) together with an optimal potential ρ, denoted by (G, c; ρ). The SPUP operation
for an unsplittable fork τ is to replace (G, c; ρ) by (Gτ , cτ ; ρ′) for a critical neighbor ρ′

of ρ with respect to τ . We also call it γ-SPUP if γ = α(τ).
As will be seen in Section 3.3, there are many vertices p in K (or Km) with the

following nice property:
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(3.2) Under an appropriate Eulerian condition, if inner node y has potential
ρ(y) = p, then y has a splittable fork.

Let V s be a set of vertices with this property (3.2). Suppose further that Γ has an
admissible orientation

−→
Γ so that the set of sinks coincides with V s. This orientation

is called forward. An orientation of an orbit induced by the forward orientation is also
called forward. The opposite orientation is called backward. A neighbor of ρ with respect
to an orbit of the forward (resp. backward) orientation is called a forward neighbor (resp.
backward neighbor). An SPUP operation is said to be forward (resp. backward) if the
corresponding critical neighbor is forward (resp. backward). Let Sρ = {y ∈ V G |
ρ(y) ∈ V s}. To prove the existence of a 1/k-integral optimal solution, we conduct SPUP
operations only for the forward direction as follows:

(1) Take a fork τ at an inner node y in V G \ Sρ.

(2) Take a critical neighbor ρ′ of ρ with respect to τ .

(3) If ρ′ is forward, then apply SPUP (G, c; ρ)← (Gτ , cτ ; ρ′).

(4) Repeat (1-3) until all inner nodes belong to Sρ.

In the procedure, potentials of nodes are moving toward sinks V s, or equivalently, nodes
are moving toward Sρ. Once a node y falls into Sρ, it never moves in the subsequent
process. So, in the numerator c · dρ′ − c · dρ of (3.1), the terms by edges joining Sρ cancel
out. Therefore the even degree condition at Sρ is unnecessary to keep the numerator
even. Let us formalize this observation. (G, c; ρ) is called restricted Eulerian (with
respect to V s) if each edge has an integral capacity and each node in V G \ Sρ except
proper terminals has even degree. Then one can easily see the following.

Lemma 3.2. Suppose that (G, c; ρ) is restricted Eulerian. For a fork τ , if its critical
neighbor ρ′ of ρ is forward, then c · dρ′ − c · dρ is even, and thus α(τ) is a half- or
2/3-integer.

We try to repeat forward SPUP operations keeping (G, kc; ρ) restricted Eulerian for
a bounded integer k. After the procedure, suppose that all inner nodes belong to Sρ.
Multiply 2k to the edge-capacity to make (G, c) fulfill an Eulerian condition. Then we
can apply the splitting-off to each inner node according to (3.2), and thus can apply
the ordinary inductive argument to prove the existence of an integral optimal solution.
By reversing operations we can conclude that the original graph has a 1/(2k)-integral
optimal solution. This is our proof scheme.

We end this subsection with listing basic properties of the fractional splitting-off.
The proof is not difficult and completely same as in [12, Section 3.2].

Lemma 3.3. Let τ = (e, y, e′) be a fork, f an optimal multiflow, and ρ an optimal
potential.

(1) τ is splittable if and only if α(τ) ≥ 2.

(2) If τ is splittable, then ρ is optimal after the splitting-off at τ .

(3) α(τ) ≥ c(eτ )− feτ ≥ 2fe,e′ .

(4) If τ and τ ′ are two forks at distinct nodes, then αGτ ,cτ
(τ ′) ≤ αG,c(τ ′).

(5) If edge e satisfies dρ(e) = 0 and is saturated by every optimal multiflow, then there
is a neighbor ρ′ of ρ such that dρ′(e) > 0 and ρ′ is optimal.

18



Note that (5) is obtained by considering a critical neighbor for a fractional splitting-
off at a degenerate fork (e, y, e). Here a fractional splitting-off at a degenerate fork
(e, y, e) is to decrease capacity c(e) as much as possible.

3.2 Perturbation methods

By perturbing an optimal potential to its critical neighbors, we can obtain valuable
information for the local multiflow configurations. The aim of this subsection is to
describe them. Let f = (P; κ) be an optimal multiflow and ρ an optimal potential. Let
y be a node with ρ(y) = p, and τ = (e, y, e′) a fork at y. Let ρ′ be a critical neighbor
with respect to τ .

Suppose that α(τ) = c(eτ )−feτ
(or 2fe,e′) holds (see Lemma 3.3 (3)). Then f can also

be regarded as an optimal multiflow for (Gτ , cτ ). By optimality criterion (Lemma 2.7)
for (f, ρ′), each path P in Peτ

fulfills

(3.3) d(Rs, Rt) = d(Rs, ρ
′(y)) + d(ρ′(y), ρ′(yτ )) + d(ρ′(yτ ), Rt),

where P is supposed to be an (s, y, yτ , t)-path. From the position (ρ′(y), ρ′(yτ )) in Kp

with a help of Lemma 2.10, we can determine the gate of Rs or Rt in Kp and the
homogeneity of Peτ

. This is a lucky case.
We need to analyze Peτ

for general case α(τ) ≥ c(eτ ) − feτ ≥ 2fe,e′ with possibly
strict inequality. Let Peτ ;ρ′ be the set of paths P in Peτ

satisfying (3.3). Its flow-value
is denoted by feτ ;ρ′ . We can estimate feτ ;ρ′ by the following lemma, which is the basis
for our perturbation arguments.

Lemma 3.4. Under the notation above, suppose that d(ρ′(y), ρ′(yτ )) = d(ρ′(y), p) +
d(p, ρ′(yτ )), and there is no improper terminal s with ρ(s) = ρ(y) = p. Then the
following holds:

(1) dρ′(eτ )feτ ;ρ′ + (dρ′(eτ )− 2)(feτ − feτ ;ρ′) ≥ dρ′(eτ )(c(eτ )− α(τ)).

(2) If dρ′(eτ ) ≥ 2, then feτ ;ρ′ ≥ c(eτ ) + (dρ′(eτ )− 2)fe,e′ − dρ′(eτ )α(τ)
2

.

Proof. We use the formula (2.9) of the duality gap. By definition of α, we have

opt(G, c) = opt(Gτ , cτ ) = cτ · dρ′ .

Let f ′ be the multiflow for (Gτ , cτ ) obtained by deleting all paths in Peτ
from f . Then

the duality gap between f ′ and ρ′ in (Gτ , cτ ) is

cτ · dρ′ − ∥f ′∥µ =
∑

P∈Peτ

µ(sP , tP )/κ.

We next estimate the first term δ1 :=
∑

e∈EG dρ′(e)(c(e) − (f ′)e) in (2.9), which means
the unsaturation of edges. Since there is no path passing eτ in (Gτ , cτ ), this contributes
dρ′(eτ )(c(eτ )−α(τ)) for δ1. The deletion of an (sP , y, yτ , tP )-path P contributes at least
{d(RsP , ρ′(y))+ d(ρ′(yτ ), RtP )}/κ for the unsaturation of edges except eτ . Therefore we
have

δ1 ≥ dρ′(eτ )(c(eτ )− α(τ)) +
∑

P∈Peτ

{d(RsP , ρ′(y)) + d(ρ′(yτ ), RtP )}/κ.

Since the duality gap is at least δ1, we have

1
κ

∑
P∈Peτ

[
dρ′(eτ )− {d(RsP , ρ′(y)) + d(ρ′(y), ρ′(yτ )) + d(ρ′(yτ ), RtP )− d(RsP , RtP )}

]
≥ dρ′(eτ )(c(eτ )− α(τ)).
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By the assumption and d(RsP , RtP ) = d(RsP , p) + d(p,RtP ) for P ∈ P passing through
y, we have

d(RsP , ρ′(y)) + d(ρ′(y), ρ′(yτ )) + d(ρ′(yτ ), RtP )− d(RsP , RtP )(3.4)
= {d(RsP , ρ′(y)) + d(ρ′(y), p)− d(RsP , p)}

+{d(p, ρ′(yτ )) + d(ρ′(yτ ), RtP )− d(p,RtP )}.

We show that (3.4) is a nonnegative even integer, and is at least 2 if P ̸∈ Peτ ;ρ′ . Suppose
d(ρ′(y), p) = 2. Then ρ′(y) and p belong to a common folder F and are nonadjacent. If
F consists of triangles, then ρ′(y) and p are joined by a hypotenuse. By the normality,
if RsP meets a leg of F , then RsP contains both p, ρ′(y). By (2.4) (2) and this fact, we
have d(RsP , ρ′(y))− d(RsP , p) ∈ {0,±2}, and the first term is even; this argument does
not use the assumption of improper terminals. Suppose d(ρ′(y), p) = 1; p and ρ′(y) are
joined by a leg e. Then RsP does not contain e, which implies that the first term is
even by (2.4) (2). Indeed, suppose e ⊆ RsP . Then sP is improper. By the assumption,
ρ(sP ) ̸= p = ρ(y) ∈ RsP . However this contradicts to (2.10) (3) with (f, ρ).

Consequently (3.4) is even, and we obtain the first inequality. The second follows
from the first by substituting feτ ≤ c(eτ )− 2fe,e′ .

SPUP at inner node of degree four. Motivated by the reductions in Section 2.2.4.
we describe some properties for SPUP at inner nodes of degree four. Let y be an inner
node incident to four edges with unit capacity. Then we easily see:

Lemma 3.5. If y has multiple edges, then y is splittable.

So we are interested in the case where y has distinct four neighbors and is unsplittable.
Suppose that y is incident to four nodes x0, x1, x2, x3 by edges e0 = x0y, e1 = x1y,
e2 = x2y, e3 = x3y. By symmetry, for distinct i, j, k ∈ {1, 2, 3}, two forks (e0, y, ei)
and (ej , y, ek) have the same property, e.g., α(e0, y, ei) = α(ej , y, ek). Fork (e0, y, ei) is
particularly denoted by τi, and α(τi) is simply denoted by αi.

Remark 3.6. In SPUP procedure, sometimes α(τ) = 0 occurs in a fork τ at an inner
node y of degree four. In this case, we can replace ρ by an optimal neighbor ρ′ with
ρ′(y) ̸= ρ(y). Indeed, take a critical neighbor ρ′ of ρ with respect to τ . Then ρ′(y) ̸= ρ(y)
or ρ′(yτ ) ̸= ρ(y). We may assume the former ρ′(y) ̸= ρ(y) by symmetry. Then yτ has
degree four and has three neighbors in (Gτ , cτ ), and thus is splittable by Lemma 3.5.
Split yτ off in (Gτ , cτ ), the resulting graph coincides with the original one (G, c).

Let f be an optimal multiflow, ρ an optimal potential, and ρi a critical neighbor of
ρ with respect to τi for i = 1, 2, 3. Behaviors of ρ1, ρ2, and ρ3 are interrelated, and
often determine the local flow configuration at y. To explain and prove them, we use
the following simplified notation:

Pi = Pei , Pij = Pei,ej ,(3.5)
Pτi = Peτi , Pτi

j = Pτi ∩ Pj , Pτi
jk = Pτi ∩ Pjk,

P∗τi = Peτi ;ρi , P∗τi
j = P∗τi ∩ Pj , P∗τi

jk = P∗τi ∩ Pjk.

The corresponding flow-values are denoted by fi, fij , f
τi , f τi

j , f τi
jk, f

∗τi , f∗τi
j , f∗τi

jk , respec-
tively. We note an obvious relation Pτi = P0j∪P0k∪Pij∪Pik for distinct i, j, k ∈ {1, 2, 3}.
The following property will be used in many places.

Lemma 3.7. Under the notation above, we have the following:
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(1) α1 + α2 + α3 ≥ 2.

(2) 2α1+α2+α3 ≥ 4 if there is an optimal multiflow f for (Gτ1 , cτ1) being homogeneous
at eτ1.

Proof. Take an optimal multiflow f for (Gτ1 , cτ1), and regard it as an optimum for
(G, c). By Lemma 2.7, edge eτ1 is saturated by f in (Gτ1 , cτ1), and thus f τ1 = 2 − α1.
By Lemma 3.3 (3) and symmetry, α2 + α3 ≥ f02 + f03 + f12 + f13 = f τ1 = 2− α1. Thus
we have (1). Suppose that f is homogeneous at eτ1 . By symmetry and relabeling we
may assume f τ1

2 ≥ f τ1
0 ≥ 1−α1/2 ≥ f τ1

1 ≥ f τ1
3 ; recall f τ1 = f τ1

0 + f τ1
1 = f τ1

3 + f τ1
4 . Since

f τ1
2 ≥ f τ1

0 ≥ f τ1
1 , by exchange operations at eτ1 , we can make f fulfill f02 = f τ1

0 , and we
can also make f fulfill f12 = f τ1

1 . Thus α1 + α2 ≥ 2(f τ1
0 + f τ1

1 ) = 2(2− α1).

A typical obstruction to proceed SPUP is an occurrence of backward SPUP. Let
p = ρ(y). In our framework, if all critical neighbors ρ1, ρ2, ρ3 are backward, then the
following case occurs:

(3.6) (i) there is a leg pq such that {ρi(y), ρi(yτi)} = {p, q} for i = 1, 2, 3, or

(ii) there are two consecutive legs qp and pq′ not belonging to a common folder
such that {ρi(y), ρi(yτi)} = {q, p} or {p, q′} for i = 1, 2, 3.

The following lemma will be used to avoid such an obstruction.

Lemma 3.8. Suppose that c is integral and there is no improper terminal s with ρ(s) =
ρ(y) = p. Then (3.6) never occurs.

Proof. Suppose that (3.6) (ii) occurs; (i) can be regarded as a special case of (ii) in our
argument. By the assumption and Lemma 2.5, we have the following:

(3.7) There is no terminal s with d(Rs, p) = d(Rs, q
′) + 1 = d(Rs, q) + 1.

Indeed, suppose that such a terminal s exists. Consider the gate of Rs in (K2)p. Then
gRs is the center point of a folder of K containing both qp and pq′; a contradiction.

By relabeling and symmetry we may assume

(3.8) (ρi(yτi), ρi(y)) = (q′, p) or (p, q) (i = 1, 2, 3).

Let f̄∗τi = f τi − f∗τi . By Lemma 3.4 (1) for c(eτi) = 2 and dρi(eτi) = 1, we have

(3.9) f∗τi − f̄∗τi ≥ 2− αi (i = 1, 2, 3).

We claim

(3.10) P∗τi
ij ∩ P

∗τj

ij = ∅ (1 ≤ i < j ≤ 3).

Take P ∈ P∗τi
ij ∩ P

∗τj

ij . Suppose that P is an (s, xi, y, xj , t)-path. Since P can be
regarded as an (s, yτi , y, t)-path and as an (s, y, yτj , t)-path, we have d(Rs, ρi(y)) =
1 + d(Rs, ρi(yτi)), d(Rs, ρj(yτj )) = 1 + d(Rs, ρj(y)), d(Rt, ρi(yτi)) = 1 + d(Rt, ρi(y)),
and d(Rt, ρj(y)) = 1 + d(Rt, ρj(yτj )). By (3.7) and (3.8), any case yields a contra-
diction. For example, say (ρi(yτi), ρi(y)) = (q′, p). Then (∗) d(Rs, p) = 1 + d(Rs, q

′).
If (ρj(yτj ), ρj(y)) = (q′, p), then d(Rs, q

′) = 1 + d(Rs, p), that contradicts to (∗). If
(ρj(yτj ), ρj(y)) = (p, q), then d(Rs, p) = 1 + d(Rs, q), that contradicts to (3.7) with (∗).
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By (3.10), we have f̄∗τi ≥ f
∗τj

ij +f∗τk
ik . Substitute it and f∗τi = f∗τi

0 +f∗τi
ij +f∗τi

ik to (3.9).
Then we have

f∗τi
0 + f∗τi

ij + f∗τi
ik − f

∗τj

ij − f∗τk
ik ≥ 2− αi (distinct i, j, k ∈ {1, 2, 3}).

Summing up these three inequalities yields f∗τ1
0 + f∗τ2

0 + f∗τ3
0 ≥ 6 − α1 − α2 − α3.

Since f∗τi
0 ≤ f0j + f0k, we have 2f0 = 2(f01 + f02 + f03) ≥ f∗τ1

0 + f∗τ2
0 + f∗τ3

0 . From
f0 ≤ c(e0) = 1, we have α1 + α2 + α3 ≥ 4. However, since c is integral and dρi(eτi) = 1,
we have αi ∈ {0, 1} by Proposition 3.1. This is a contradiction.

The next lemma describes a case where positions (ρi(y), ρi(yτi)) in Kp (i = 1, 2, 3)
completely determine the local flow configuration at y, which motivates the concepts
of the sparsity in Section 3.3 and tri-fixed nodes in Section 4. We use the notation in
Section 2.1.3. Suppose that Kp is star-shaped for ρ(y) = p, and we identify the boundary
leg-graph of Kp with Πp = (Qp, Lp;∼).

Lemma 3.9. Suppose that αi = 1 and (ρi(y), ρi(yτi)) is a nonadjacent pair of vertices
of some folder for i = 1, 2, 3. Then there exists a triple of l1, l2, l3 ∈ Lp such that, by an
appropriate relabeling of e0, e1, e2, e3,

(1) (ρi(y), ρi(yτi)) = (p, li) for i = 1, 2, 3, and

(2) Pij consists of (sli, xi, y, xj , slj)-paths with flow-value fij = 1/2 for 1 ≤ i < j ≤ 3
in every optimal multiflow f = (P; κ).

Proof. Take an optimal multiflow f = (P; κ) for (Gτ1 , cτ1), and regard it as an optimum
for (G, c). By Lemma 2.7 we have f τ1 = 1. Then f is homogeneous at eτ1 by the
assumption and Lemma 2.11. By relabeling and exchange operation at eτ1 we may
assume f12 + f13 ≥ f13 ≥ 1/2 ≥ f02 + f12 ≥ f02 and f03 = 0. Then f13 > 1/2 is
impossible by 2f13 ≤ α2 = 1 (Lemma 3.3 (3)). So f13 = 1/2. Then f can be regarded
as an optimal multiflow for (Gτ2 , cτ2). Therefore f τ2 = f01 + f23 + f12 = 1, f23 = 1/2,
and Pτ2 is also homogeneous. Then f01 > 0 is impossible. Indeed we can exchange f
at eτ2 for two paths, one from P23 and one from P01, and exchange f at eτ1 so that
f12 > f τ1

12 = 1/2 = α3/2 ≥ f12; a contradiction. Therefore f12 = f23 = f13 = 1/2 and
f0 = 0. Then f is optimal to (Gτi , cτi) for each i = 1, 2, 3. In particular, P1, P2, and P3

are homogeneous.
Next consider the position (ρ1(y), ρ1(yτ1)) in Kp. There are three cases: (i) (p, l)

for l ∈ Lp, (ii) (l, p) for l ∈ Lp, and (iii) (q, q′) for q, q′ ∈ Qp with q ∼ q′. Both
(ii) and (iii) are impossible. Indeed, suppose ρ1(y) = u ̸= p. Lemma 2.10 implies
that Peτ1 (= Pyx2 ∪ Pyx3) consists of paths with y-end belonging to su if u ∈ Lp and∪

v∼1u sv if u ∈ Qp. Since we can exchange f at e2 and at e3, P23 necessarily has an
(su, x2, y, x3, su)-path if u ∈ Lp and an (sv, x2, y, x3, sv

′)-path for v ∼1 u ∼1 v′ if u ∈ Qp.
Such a path is never ρ-shortest by Lemma 2.4 (2). A contradiction to optimality. By
the same argument, we have (ρ2(y), ρ2(yτ2)) = (p, l2) and (ρ3(y), ρ3(yτ3)) = (p, l3) for
l2, l3 ∈ Lp. Hence we have (1).

Take an arbitrary optimal multiflow f = (P;κ), and consider P∗τi . Since d(ρi(yτi), p) =
2, (3.4) in the proof of Lemma 3.4 is even. Therefore the inequalities in Lemma 3.4 hold
in this case (without assumption of improper terminals). So f∗τi ≥ 1 and P∗τi consists
of paths with yτi-ends in sli. By applying the same argument for P∗τi instead of Pτi ,
we have (2).
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3.3 Sparse vertices

Here we introduce the concept of sparse vertices. A vertex p in K is said to be sparse if
the following condition is fulfilled:

(3.11) For any two consecutive legs uv and vw in Kp, if they belong to a common
orbit, then they belong to a common folder.

See Section 5 for the origin of the name sparse. A sparse vertex has a desired property
(3.2) for our SPUP framework.

Theorem 3.10. Suppose that (G, c) is an inner Eulerian graph with terminal condi-
tion I. Let ρ be an optimal potential. Suppose that an inner node y has potential ρ(y) = p
that is sparse. Then y has a splittable fork if there is no terminal s such that

(3.12) (1) ρ(s) = ρ(y) = p,

(2) s has odd degree, and

(3) Rs has three hypotenuses meeting at p.

Proof. By applying the operations in Section 2.2.4 at ρ−1(p), we may assume that ρ−1(p)
consists of inner nodes of degree four, improper terminals of degree two, proper terminals
of degree one without property (3), and proper terminals of degree two with property
(3). If p is sparse in K, then p is also sparse in K2. So we work on K2 by regarding ρ as
V G→ V Γ 2.

It suffices to show that there exists a splittable inner node in ρ−1(p); if true, then
all inner nodes are splittable (thanks to Lemma 3.3 (2)). Let y be an inner node with
ρ(y) = p. Suppose that y is unsplittable, and y is incident to four nodes x0, x1, x2, x3.
We use the notation in Section 3.2. Consider a critical neighbor ρi with respect to τi

for i = 1, 2, 3. By the sparsity condition, ρi(y) and ρi(yτi) belong to a common folder
in Kp. Therefore by degree condition α(τi) > 0 implies α(τi) = 1 and dρi(eτi) = 2;
(ρi(y), ρi(yτi)) is a nonadjacent pair of vertices of a folder. We may assume α(τ1) = 1
(by Lemma 3.7 (1)). Since any optimal multiflow for (Gτ1 , cτ1) is homogeneous at eτ1

(Lemma 2.11), we have α(τ2) = α(τ3) = 1 (Lemma 3.7 (2)). So Lemma 3.9 is applicable.
There is a triple l1, l2, l3 ∈ Lp with properties (1-2) in Lemma 3.9. Take an optimal
multiflow f . Then Pei,ej consists of (sli, y, slj)-paths with flow-value 1/2 for 1 ≤ i <
j ≤ 3. Edge x0y is unsaturated, and thus ρ(x0) = ρ(y) = p.

Consider the splitting property at x0. Suppose first that x0 is an inner node of
degree four, incident to y, y1, y2, y3. Edge yix is denoted by ẽi for i = 1, 2, 3. Fork
(e0, x0, ẽi) is denoted by τ̃i for i = 1, 2, 3. If x0 has a splittable fork, this is a desired
node. Suppose not. Again, by Lemma 3.9, there is a triple l′1, l

′
2, l

′
3 ∈ Lp such that

P ẽi,ẽj consists of (sl′i, yi, x0, yj , sl
′
j)-paths with flow-value 1/2 for 1 ≤ i < j ≤ 3. Suppose

l1 ̸∼ l′1. Then we can rearrange f as in Figure 6 (a). The resulting multiflow f is also
optimal, and fe2,e3 > 1/2, that contradicts to α(τ1) = 1. Therefore li ∼ l′j for any i, j.
Then Πp contains the subdivision of K3,3, and all edges incident to li, l

′
j in Πp belong to

a common orbit. Therefore p is not sparse; a contradiction.
Suppose that x0 is a terminal (of degree one or two). Since edge e0 is unsaturated,

we have ρ(x0) = ρ(y) and ρi(x0) = ρi(y) (i = 1, 2, 3). Hence we have p, l1, l2, l3 ∈ Rx0 .
Recall that we work on the 2-subdivision, and li is the center point of a folder in K. So
if x0 is a (proper) terminal of degree one, then p and li are joined by a hypotenuse in
Rx. This is a contradiction to (2-3). Therefore x0 is necessarily a terminal of degree
two, incident to y and z. If unique fork τ ′ = yx0z is splittable, then split it off, and
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Figure 6: Flow rearrangements

consider node z, which is now incident to x0 and also has potential ρ(z) = p. So we
may assume that τ ′ is not splittable. By fe0 = 0, we have α(τ ′) = 1 and fe′ = 1
(Lemma 3.3 (3)). Consider a critical neighbor ρ′ of ρ with respect to τ ′, and consider
the position (ρ′(x0), ρ′(xτ ′

0 )). By sparsity, the possible positions are (i) (p, l) for l ∈ Lp,
(ii) (l, p) for l ∈ Lp, and (iii) (q, q′) for q, q′ ∈ Qp with q ∼ q′. Then both (ii) and (iii)
are impossible. Suppose (ii). Then p, l ∈ Rx0 , and this contradicts to (2.10) (3) with
(f, ρ′). Suppose (iii). Then q ∈ Rx0 , and hence leg pq belongs to Rx0 . Since q is the
midpoint of a leg in K, it is in the interior of Rx0 by normality. Again this contradicts to
(2.10) (3). Since f can be regarded as an optimal multiflow for (Gτ ′

, cτ ′
), Pzx0 consists

of paths with z-end in sl. If l ̸∼ l1, then by a rearrangement as in Figure 6 (b), we have
fe2,e3 > 1/2; a contradiction. So suppose l ∼ li for i = 1, 2, 3. Then p and li are joined
by a hypotenuse since p, l1, l2, l3 ∈ Rx0 and l ̸∈ Rx0 . Again all edges incident to l and li
in Πp belong to the same orbit; Kp has a subcomplex around pD in Figure 11. So p is
never sparse. A contradiction.

The goal of the SPUP procedure is the following.

Lemma 3.11. Suppose that (G, c) is an inner Eulerian graph with terminal condition I.
If we are given an optimal potential ρ such that

(1) each inner node has sparse potential,

(2) there is no terminal s having sparse potential p with properties (2-3) in (3.12), and

(3) for each terminal s having nonsparse potential, each edge incident to s is saturated
by paths of end s in every optimal multiflow,

then there exists an integral optimal multiflow.

A typical situation satisfying (3) is: (3’) each terminal s having nonsparse potential
is incident to only one node x with ρ(x) ̸= ρ(s).

Proof. After the degree reduction and splitting-off (Theorem 3.10) at nodes having sparse
potential, we may assume that there is no inner node, and each terminal s has degree
at most 2 whenever ρ(s) is sparse. We may assume that such degree 2 terminals are
unsplittable. We show that

(3.13) for each edge st with ρ(s) ̸= ρ(t), we have d(ρ(s), ρ(t)) = d(Rs, Rt).

If true, then the set of one-edge paths {(s, st, t) | s, t ∈ V G, ρ(s) ̸= ρ(t)} with unit
flow-value is an integral optimal multiflow by optimality criterion. Take an edge st with
ρ(s) ̸= ρ(t). By (3), we may assume that s is an unsplittable terminal of degree two
having sparse potential ρ(s) = p. Take an optimal multiflow f = (P; κ). Then Pst
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Figure 7: 2-subdivision with forward orientation

contains a path of end s and a path of end t. Otherwise s or t is splittable. Therefore
d(ρ(s), ρ(t)) = d(p, ρ(t)) = d(p,Rt). We may assume that Kp is star-shaped (by subdi-
vision). By Lemma 2.4 (1), it suffices to show gRt ̸∈ Rs. Consider the gate u of ρ(t) in
Kp. Necessarily u ∼1 gRt by Lemma 2.5. Since Pst contains a path of end s, we have
u ̸∈ Rs. If u ∈ Lp, then u = gRt (Lemma 2.5), and thus gRt ̸∈ Rs. So suppose u ∈ Qp.
Consider a critical neighbor ρ′ with respect to a unique fork τ at s. By sparsity we have
(ρ′(s), ρ′(sτ )) = (p, l) for l ∈ Lp. Note that both (q, q′) and (l, p) are impossible; see the
proof of Theorem 3.10. Also l ̸∈ Rs. Necessarily l ∼1 u. Indeed, consider an optimal
multiflow f for (Gτ , cτ ), and regard it as an optimum for (G, c). Then Pst contains a
path of end sl; apply Lemma 2.5. In particular pu and ul belong to a common orbit. By
sparsity and normality, other folder containing pu is necessarily a square meeting Rs at
only p. Therefore gRt ̸∈ Rs.

Although there may be no sparse vertices in K, there are many sparse vertices in the
subdivision Km. A point p ∈ K is rational if p is a vertex of Km for some m. Then we
can extend the sparsity concept for any rational point in K by subdivision. If a leg e in
K is subdivided into m edges e1, e2, . . . , em in Km, then they belong to distinct orbits in
Km. From this, one can see the following:

Lemma 3.12. Any rational point in the interior of a folder is sparse.

4 Proof of bounded fractionality

This section is devoted to proving the main result of this paper:

Theorem 4.1. Suppose that distance µ is realized by an F-complex K. Then the µ-
problem has a 1/12-integral optimal multiflow for every inner Eulerian graph with ter-
minal condition I in K.

Our argument basically follows the line of [12] with some care for algorithmic conse-
quences in Section 7.

4.1 Setting up

We work on the 2-subdivision K2 instead of K. The SPUP scheme is constructed as
follows. Let V s be the set of vertices lying on the center of a folder in K. They are
sparse by Lemma 3.12. The forward orientation is a unique orientation so that vertices
in V s are sinks and vertices in K are sources. See Figure 7. Let ρ be an optimal potential.
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Partition V G into three sets:

Sρ = {x ∈ V G | ρ(x) ∈ V s},
Mρ = {x ∈ V G | ρ(x) is the midpoint of a leg in K},
Cρ = {x ∈ V G | ρ(x) ∈ V Γ}.

In the initial step, Cρ = V G and Sρ = Mρ = ∅ by taking an optimal potential for K. Our
goal is to repeat forward SPUP until there is no inner node in Mρ∪Cρ. By reductions in
Section 2.2.4, we may assume that each inner node has degree four, each proper terminal
has degree one, and each improper terminal has degree two. Also we may assume that
there is no splittable fork. For each p ∈ V Γ , we identify the boundary leg-graph of Kp

and Πp = (Qp, Lp;∼). We remark Lp ⊆ V s.

4.1.1 Eliminating improper terminals at Cρ

To make use of Lemma 3.4 we need to eliminate improper terminals at Cρ. Let s ∈ Cρ

be an improper terminal incident to nodes x, z, and let τ = xsz be a unique fork at s.
Take a critical neighbor ρ′ at τ . Let p = ρ(s). Recall (2.10) (3). By ρ(s), ρ′(s) ∈ Rs,
it is impossible to satisfy both ρ′(s) ̸= p and d(ρ′(s), ρ′(sτ )) = d(ρ′(s), p) + d(p, ρ′(sτ )).
Also ρ′(s) = q ∈ Qp is impossible since q must be in the interior of Rs. Then the
position (ρ′(s), ρ′(sτ )) is given as (i) ρ′(s) = p ̸= ρ′(sτ ), (ii) (ρ′(s), ρ′(sτ )) ∈ Lp × Lp

with ρ′(s) ∼ ρ′(sτ ), or (iii) (ρ′(s), ρ′(sτ )) ∈ Lp × Qp with ρ′(s) ∼1 ρ′(sτ ). In any case,
dρ′(eτ ) ∈ {1, 2} and thus α(τ) = {0, 1}. Apply SPUP (G, c; ρ) ← (Gτ , cτ ; ρ′). If case
(ii) or (iii) occurs, then the SPUP keeps (G, c; ρ) restricted Eulerian, and s falls into Sρ.
Suppose case (i). Then s is incident to only one node sτ with ρ′(s) ̸= ρ′(sτ ). Apply
the terminal modification in Section 2.2.5 to s. Then s becomes proper, and (G, c; ρ)
is restricted Eulerian. Apply this procedure for the remaining improper terminals in
Cρ. Now that Cρ has no improper terminal. Also Mρ has no terminal. Indeed, such a
terminal s is necessarily an improper terminal of degree two since ρ(s) is the midpoint
of a leg in K. By normality ρ(s) is in the interior of Rs, and thus there is no optimal
multiflow flowing into s by (2.10) (3). So the unique fork at s is splittable, and has
already been split off.

4.1.2 Keeping α(τ) half- or 2/3-integral

In analysis on SPUP at Cρ, we need a more precise condition to keep α(τ) half- or
2/3-integral.

An inner node y ∈ Cρ is called tri-fixed if there is a triple of l1, l2, l3 ∈ Lp for p = ρ(y)
such that every optimal multiflow contains (sli, y, slj)-paths for 1 ≤ i < j ≤ 3; recall the
situation in Lemma 3.9.

For p ∈ V Γ , consider an edge e = xy having potential (ρ(x), ρ(y)) = (q, q′) ∈ Qp×Qp

with q ̸∼ q′. Such an edge e is called unmixed if there are l ∈ Lp and an optimal multiflow
f such that e is saturated by paths with end in sl. Otherwise e is called mixed.

(G, c; ρ) is called admissible if it satisfies:

(1) each edge incident to Mρ ∪ Cρ has an integer capacity,

(2) for a set Ẽ of mixed edges, each inner node in Mρ has even degree in the graph
obtained by deleting Ẽ from G, and

(3) each inner node in Cρ except tri-fixed nodes has even degree.
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{ρ′(y), ρ′(yτ )} dρ′(eτ ) α(τ), c admissible α(τ), 3c admissible eτ

(1a) {q, l}, q ∼ l 1 0, 2 0, 2/3, 4/3, 2
(1b) {p, q} 1 0, 2 0, 2/3, 4/3, 2
(2a) {p, l} 2 0, 1, 2 0, 1/3, 2/3, 1, 4/3, 5/3, 2 homog.
(2b) {q, q′}, q ∼ q′ 2 0, 1, 2 0, 1/3, 2/3, 1, 4/3, 5/3, 2 homog.
(2c) {q, q′}, q ̸∼ q′ 2 0, 1, 2 0, 1/3, 2/3, 1, 4/3, 5/3, 2
(2d) {l, l′}, l ∼ l′ 2 0, 1, 2 0, 1/3, 2/3, 1, 4/3, 5/3, 2
(3) {q, l}, q ̸∼ l 3 0, 2/3, 4/3, 2 2m/9 (0 ≤ m ≤ 9) homog.
(4) {l, l′}, l ̸∼ l′ 4 0, 1/2, 1, 3/2, 2 m/6 (0 ≤ m ≤ 12) homog.

Table 1: Classification of {ρ′(y), ρ′(yτ )}, where q, q′ ∈ Qp and l, l′ ∈ Lp

It will turn out that one can conduct SPUP keeping the admissibility without examining
all optimal multiflows. Clearly, if (G, c; ρ) is restricted Eulerian, then it is also admissible
since Ẽ can be taken to be empty.

Lemma 4.2. Suppose that (G, c; ρ) is admissible. Let τ be a fork at an inner node
y ∈ Cρ of even degree, and let ρ′ be a critical neighbor of ρ with respect to τ . Then
c · dρ′ − c · dρ is even, and thus α(τ) is half- or 2/3-integral.

Proof. Note that ρ′ is necessarily forward. As in the proof of [12, Lemma 3.12], the
assertion immediately follows from:

(1) for a mixed edge e, we have dρ′(e) = dρ(e) = 2.

(2) for a tri-fixed node x(̸= y), ρ(x) and ρ′(x) belong to the same color class of Γ 2.

Take a mixed edge e = xy. Suppose (ρ(x), ρ(y)) ∈ Qp×Qp with ρ(x) ̸∼ ρ(y) for p ∈ V Γ .
Then dρ′(e) ∈ {2, 3, 4}. Suppose dρ′(e) ∈ {3, 4}. For one of ends x, y, say x, we have
ρ′(x) = l ∈ Lp with ρ′(y) ̸∼ l ∼1 ρ(x), and e is saturated by paths of ends sl in every
optimal multiflow f for (Gτ , cτ ). A contradiction. Thus we have (1).

For a tri-fixed node x (̸= y), ρ′(x) necessarily satisfies d(li, lj) = d(li, ρ′(x)) +
d(ρ′(x), lj) for 1 ≤ i < j ≤ 3 by (2.10) (1) and (2.8). Since li ̸∼ lj , we have d(li, lj) = 4,
d(ρ′(x), li) = 2, and (2).

4.2 SPUP at Cρ

In the initial step (G, c; ρ) is trivially restricted Eulerian and admissible. For an arbitrary
inner node y ∈ Cρ with ρ(y) = p and a fork τ at y, consider a critical neighbor ρ′ of
ρ with respect to τ , which is always forward. Then {ρ′(y), ρ′(yτ )} belongs to Kp and
therefore Qp ∪ Lp ∪ {p}. Table 1 summarizes the possible cases of {ρ′(y), ρ′(yτ )} with
dρ(eτ ) and α(τ), where the last column indicates whether every optimal multiflow f for
(Gτ , cτ ) is homogenous at eτ , according to Lemmas 2.10 and 2.11.

We apply SPUP at a fork having maximum α at first three stages. Then by
Lemma 3.3 (4) the maximum value of α(τ) over forks τ at Cρ decreases. When α(τ)
becomes close to 1, the estimation by Lemmas 3.4 and 3.7 becomes more effective.

4.2.1 3/2-SPUP

By searching all forks at Cρ, take a fork τ at inner node y ∈ Cρ with α(τ) = 3/2. Let
p = ρ(y). Take a critical neighbor ρ′ of ρ with respect to τ . Then dρ′(eτ ) = 4, and thus
{ρ′(y), ρ′(yτ )} is of case (4) in Table 1. Apply 3/2-SPUP (G, c; ρ) ← (Gτ , cτ ; ρ′). Then
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(G, c; ρ) is admissible and (G, 2c; ρ) is restricted Eulerian. Repeat this process until there
is no fork τ at Cρ with α(τ) = 3/2. After that, the possible values of α of forks at Cρ

are 0, 2/3, 1, 4/3. Note that 1/2 never occurs since α(τ) = 1/2 implies the existence of
another fork τ ′ with α(τ ′) = 3/2 by Lemma 3.7 (2); see also the last column of Table 1.

4.2.2 4/3-SPUP and 7/6-SPUP

By searching all forks at Cρ, take a fork τ at an inner node y in Cρ with α(τ) = 4/3
(case (3) in Table 1). Apply 4/3-SPUP (G, c; ρ)← (Gτ , cτ ; ρ′). Then

(4.1) (G, 3c; ρ) is admissible and (G, 6c; ρ) is restricted Eulerian.

From now on we keep this condition (4.1). In the next SPUP, α(τ) belongs to 1/3(2Z+/3∪
Z+/2); see the fifth column in Table 1. Note that α(τ) > 4/3 is impossible by Lemma 3.3 (4).
By this fact together with Lemma 3.7 (2), α(τ) ∈ {1/6, 2/9, 4/9} is also impossible. So
the possible values of α(τ) are 0, 1/3, 2/3, 5/6, 8/9, 1, 10/9, 7/6, 4/3.

Apply SPUP for a fork τ at inner node of degree four in Cρ with α(τ) = 4/3. If
α(τ) = 3/4 in (1b, 2a) occurs, then one of ρ′(y), ρ′(yτ ) does not move, and Cρ does not
decrease. However the following hidden property holds:

(4.2) Suppose that {ρ′(y), ρ′(yτ )} is of case (1b) or (2a) with α(τ) = 4/3. Then
there exists an optimal potential ρ′′ for (Gτ , cτ ) such that {ρ′′(y), ρ′′(yτ )}
is of case (3). In particular every optimal multiflow f for (Gτ , cτ ) is homo-
geneous at eτ .

Proof. After 3/2-SPUP in the previous subsection, α(τ) = 4/3 holds by Lemma 3.3 (4).
Therefore we could choose this fork τ in the first 4/3-SPUP. Consider a critical neighbor
ρ′′ with respect to τ at the first 4/3-SPUP. ρ′′ is necessarily of case (3), and can be
regarded as an optimal potential for the current graph by setting ρ′′(ỹτ̃ ) := ρ′′(ỹ) for
forks τ̃ at ỹ processed after 3/2-SPUP.

After the procedure, the possible values of α are 0, 1/3, 2/3, 5/6, 8/9, 1, 10/9, 7/6.
Next apply SPUP for any fork τ at inner node y ∈ Cρ of degree four with α(τ) = 7/6.
In this case, its critical neighbor ρ′ is of case (4). Thus 7/6-SPUP keeps (4.1). After
the procedure, the possible values of α are 0, 1/3, 2/3, 8/9, 1, 10/9; Lemma 3.7 (2) and
α < 7/6 exclude 5/6.

4.2.3 1-SPUP

Take any inner node y ∈ Cρ of degree four, and take a critical neighbor ρ′. Let p = ρ(y).
The possible cases of (α(τ), ρ′) are α(τ) = 1/3 in (2c, 2d), α(τ) = 2/3 in (1a, 1b, 2c,
2d), α(τ) = 8/9 in (3), α(τ) = 1 in (2a, 2b, 2c, 2d, 4), and α(τ) = 10/9 in (3). Note
that Lemma 3.7 (2) and α < 4/3 exclude α(τ) ∈ {1/3, 2/3} in (2a, 2b, 3, 4).

The obstruction to keep (4.1) is the occurrence of α(τ) = 10/9, or α(τ) = 1 in (2c)
with eτ unmixed in (Gτ , cτ ; ρ′). We can avoid such an SPUP by examining all three
forks τ1, τ2, τ3 at y and their critical neighbors ρ1, ρ2, ρ3. Here we use the notation (3.5)
in Section 3.2. The main claim here is the following:
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Figure 8: Configurations of (ρ1, ρ2, ρ3)

(4.3) Suppose that none of ρ2 and ρ3 is of case (2d).

(1) If α1 = 10/9, then ρ2 or ρ3 is of case (2c).

(2) If ρ1 is of case (2c) with eτ1 unmixed in (Gτ1 , cτ1 ; ρ1), then both ρ2

and ρ3 are of case (2c), and by a relabeling fixing {{e0, e1}, {e2, e3}}
one of the following holds:

(2-1) ρ3(y) ∼ ρ2(y) ∼ ρ3(yτ3) ∼ ρ2(yτ2) ∼ ρ3(y).

(2-2) ρ3(y) ∼ ρ2(y) ∼ ρ1(yτ1) ∼ ρ3(yτ3) ∼ ρ2(yτ2) ∼ ρ1(y) ∼ ρ3(y)
and ρ2(yτ2) ∼ ρ3(y).

(2-3) ρ3(y) ∼ ρ2(y) ∼ ρ1(yτ1) ∼ ρ3(yτ3) ∼ ρ2(yτ2) ∼ ρ1(y) ∼ ρ3(y)
and ρ3(yτ3) ∼ ρ2(y).

See Figure 8 for the configurations of (ρ1, ρ2, ρ3) in (4.3) (2). The proof of this claim is
complicated, and we give it in the end. Let us proceed, assuming (4.3). If some ρi is
of case (2d) or (4), then apply SPUP for τi, which keeps (4.1). So suppose that neither
(2d) nor (4) occurs. Suppose αi = 10/9. By (4.3), for j ̸= i, ρj is of case (2c), and eτj

is guaranteed to be mixed in (Gτj , cτj ; ρj). Apply 1-SPUP for τj with adding eτj to Ẽ.
If αi = 8/9, then αj = αk = 10/9 by Lemma 3.7 (2). However this is impossible by
(4.3) (1).

So suppose further max(α1, α2, α3) ≤ 1. Suppose αi = 1 with (2c). If (ρi, ρj , ρk)
violates the configuration (4.3) (2), then eτi is guaranteed to be mixed in (Gτi , cτi ; ρi),
and apply 1-SPUP for τi with adding eτi to Ẽ. Suppose that (ρi, ρj , ρk) fulfills the
configuration (4.3) (2) by a relabeling fixing τi. Then at least one of ρj and ρk, say
ρj , violates the configuration (4.3) (2), and apply 1-SPUP for τj with adding eτj to Ẽ.
Indeed, it is impossible that all ρ1, ρ2, ρ3 fulfill (4.3) (2). To verify it, suppose that all ρi

fulfill (4.3) (2). Then all ρ1(y), ρ1(yτ1), ρ2(y), ρ2(yτ2), ρ3(y), ρ3(yτ3) are distinct. Suppose
that ρ1 fulfills (2-2) in Figure 8. Then by (4.3) (2) for ρ2, we have ρ1(y) ∼ ρ3(yτ3) or
ρ(yτ1) ∼ ρ3(y). The first case finds a 6-cycle in Πp. So suppose the second case. Then
necessarily ρ1(yτ1) ∼ ū. By (4.3) (2) for ρ3, we have ρ1(y) ∼ ρ2(y) or ρ(yτ1) ∼ ρ2(yτ2).
Similarly we have ρ1(yτ1) ∼ u. Then Πp has a 6-cycle (u, ρ2(yτ2), l, ρ3(y), ū, ρ1(yτ1)). A
contradiction to (2.6). The case (2-3) is similar. If all ρ1, ρ2, ρ3 fulfill (2-1), then again
one can find a 6-cycle in Πp.

Suppose that αi = 1 in case (2a) or (2b) occurs. Then necessarily αj = αk = 1 (by
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Figure 9: Flow configuration at y

Lemma 3.7 (2)). We may assume that both ρj and ρk are of case (2a) or (2b); other cases
reduce to the above. By Lemma 3.9, all ρi are of case (2a), and y is tri-fixed. Apply
SPUP for any τi. Then one of y and yτi , say y, remains in Cρ, and is a tri-fixed node
of degree three, and thus (4.1) keeps. All three neighbors of y are saturated by every
optimal multiflow. If one x of the neighbors is not in Cρ, then replace ρ by its forward
optimal neighbor ρ′ with ρ′(x) ̸= ρ′(y) according to Lemma 3.3 (5). The remaining
possible values of αi are 1/3, 2/3. By Lemma 3.7 (1), we have α1 = α2 = α3 = 2/3.
Then every optimal multiflow f satisfies

(4.4) f01 = f02 = f03 = f12 = f13 = f23 = 1/3.

Namely all edges incident to y are saturated by every optimal multiflow. According to
Lemma 3.3 (5), if ρ(y) = ρ(xi) for a neighbor xi of y, then replace ρ by an optimal
forward neighbor ρ′ with ρ′(y) ̸= ρ′(xi). Apply it for all inner nodes in Cρ of degree four.

The proof of (4.3). Suppose α1 = 10/9 in case (3) or α1 = 1 in case (2c) with eτ1

unmixed in (Gτ1 , cτ1 ; ρ1). In both cases, we can take an optimal multiflow f = (P; κ)
for (Gτ1 , cτ1) such that

(4.5) (i) Pτ1 consists of paths with y-end in sl for some l ∈ Lp, or

(ii) Pτ1 consists of paths with yτ1-end in sl̄ for some l̄ ∈ Lp.

Take such an optimal multiflow f with minimum total support. Then f is homogeneous
at eτ1 , and f τ1 = 2− α1. Since f τ1

0 + f τ2
1 = f τ1

2 + f τ1
3 = f τ1 , by relabeling (fixing τ1) we

may assume f τ1
2 ≥ f τ1

0 ≥ 1 − α1/2 ≥ f τ1
1 ≥ f τ1

3 . Let f τ1
0 = 1 − α1/2 + ϵ for ϵ ≥ 0. See

the left of Figure 9.
We try to estimate P01 and P23. Consider τ2 and τ3, and their critical neighbors ρ2

and ρ3. Since Pτ1 is homogeneous, we can make f fulfill f02 = f τ1
0 = 1−α1/2+ϵ ≥ 4/9+ϵ;

see the upper central in Figure 9. So α2 ∈ {8/9, 1, 10/9} (Lemma 3.3 (3)) and ρ2 is of
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case (2a), (2b), (2c), (3), or (4). By Lemma 3.4 (2) we have

(4.6) f∗τ2 ≥ 2 + (dρ2(eτ2)− 2)f τ1
0 −

dρ2(eτ2)α2

2
=


7/9 + ϵ if α1 = α2 = 10/9,
5/6 + ϵ if α1 = 1, α2 = 10/9,
1 if α2 = 1,
10/9 if α1 = 10/9, α2 = 8/9.

Next consider τ3. We can make f fulfill f12 = f τ1
1 = 1 − α1/2 − ϵ ≥ 4/9 − ϵ; see the

lower central in Figure 9. Then α3 ∈ {8/9, 1, 10/9} also holds. Indeed, α3 = 2/3 implies
α1 = 10/9, f τ1

0 = 5/9, and f τ1
1 = 1/3. So we can rearrange f so that f02 = 5/9. Thus

α2 = 10/9, and f can be regarded as an optimal multiflow for (Gτ2 , cτ2). Then both Pτ2
01

and Pτ2
23 are nonempty, and we can rearrange f so that f12 > 1/3 (Pτ2 is homogeneous);

a contradiction to α3 = 2/3. Therefore ρ3 is also of case (2a), (2b), (2c), (3) or (4).
Again by Lemma 3.4 (2) we have

(4.7) f∗τ3 ≥ 2 + (dρ3(eτ3)− 2)f τ1
1 −

dρ3(eτ3)α3

2
=


7/9− ϵ if α1 = α3 = 10/9,
5/6− ϵ if α1 = 1, α3 = 10/9,
1 if α3 = 1,
10/9 if α1 = 10/9, α3 = 8/9.

Our analysis is based on (4.6), (4.7), and the following three inequalities:

f∗τ2
01 + f∗τ3

01 ≤
{

α1/2− ϵ if P∗τ2
01 ∩ P

∗τ3
01 = ∅,

α1 − 2ϵ otherwise,
(4.8)

f∗τ2
23 + f∗τ3

23 ≤
{

α1 − 1 + f τ1
3 if P∗τ2

23 ∩ P
∗τ3
23 = ∅,

2(α1 − 1 + f τ1
3 ) otherwise,

f∗τ2
01 + f∗τ3

01 + f∗τ2
23 + f∗τ3

23 ≥ f∗τ2 + f∗τ3 − 2 + α1 + 2f τ1
3 .

The first and second follow from f∗τi
01 ≤ f01 ≤ 1 − f τ1

0 and f∗τi
23 ≤ f23 ≤ 1 − f τ1

2 ,
respectively. The third follows from summing f∗τ2 ≤ f∗τ2

01 + (f τ1
1 − f τ1

3 ) + f∗τ2
23 and

f∗τ3 ≤ f∗τ3
01 + (f τ1

0 − f τ1
3 ) + f∗τ3

23 .
We begin with showing:

(4.9) ρ2 or ρ3 is of case (2c).

Suppose not. In each case P∗τi is homogeneous. We have

(4.10) P∗τ2 ∩ Pτ1
1 ̸= ∅.

Indeed, P∗τ2 ∩ Pτ1
1 = ∅ implies that f∗τ2

01 + f∗τ2
23 = f∗τ2 . By max(f∗τ2

01 , f∗τ2
23 ) ≤ 1 − f τ1

0 ,
both P∗τ2

01 and P∗τ2
23 have flow-value at least 2/9+2ϵ in each case. Then we can rearrange

f so that f12 ≥ 4/9− ϵ+2/9+2ϵ > 5/9; see the lower right in Figure 9. A contradiction
to α3 ≤ 10/9. Similarly,

(4.11) P∗τ3 ∩ Pτ1
0 ̸= ∅.

Otherwise, both P∗τ3
01 and P∗τ3

23 have flow-value at least 2/9, and we can rearrange f so
that f02 ≥ 4/9 + ϵ + 2/9 > 5/9; see the upper right in Figure 9.

The next claim is:

(4.12) the case (4.5) (i) holds, and thus l ̸∼ q = ρ1(yτ1) ∈ Qp.

Suppose that (4.5) (ii) holds. P∗τ2
01 is nonempty; otherwise 7/9 ≤ f∗τ2 = f∗τ2

2 ≤ 1−f τ1
0 ≤
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5/9. Since the exchange operation for P∗τ2 at e1 works, by (4.10) P∗τ2
01 necessarily has a

path with x1-end in sl̄. Consequently P0 necessarily has a path with y-end in sl̄ and a
path with x0-end in sl̄. Then the anti-exchange operation for the two paths at e0 works;
a contradiction to the minimality. Next we claim

(4.13) P∗τ2
01 ∩ P

∗τ3
01 = ∅.

Suppose not. By (4.12) and Lemma 2.10, Pτ1 consists of paths with yτ1-end belonging
to

∪
u∼1q su. Since both P∗τ2 ∩ Pτ1

1 and P∗τ3 ∩ Pτ1
0 are nonempty and homogeneous, by

exchange operations at e1 and at e0 we can conclude that P∗τ2
01 ∩ P

∗τ3
01 necessarily has

an (su, x, y, x1, sv)-path for u ∼1 q ∼1 v. However such a path is never ρ-shortest by
Lemma 2.4; a contradiction to optimality.

By (4.8) and (4.13) we have

(4.14) 2(α1 − 1 + f τ1
3 ) + α1/2− ϵ ≥ f∗τ2 + f∗τ3 − 2 + α1 + 2f τ1

3

Then only the case α1 = α2 = α3 = 10/9 is possible; other cases yield LHS < RHS. So
suppose α1 = α2 = α3 = 10/9. In particular (ρ1(y), ρ1(yτ1)) = (l, q) holds by (4.12).
Consider (ρ2(y), ρ2(yτ2)). Then ρ2(yτ2) = l ∈ Lp or ρ2(y) = l̄1 ∈ Lp with l̄1 ∼1 q;
otherwise P∗τ2 ∩ Pτ1

1 = ∅. If the former case occurs, then Pτ2
01 has a path connecting

sl, x0, y in order, and the anti-exchange operation at e0 works; a contradiction. So the
latter case holds. Similarly ρ3(yτ3) = l̄2 ∈ Lp with l̄2 ∼1 q. Then l̄1 ̸= l̄2 necessarily
holds. Otherwise the anti-exchange operation at e0 works. Consequently P∗τ2

23 ∩P
∗τ3
23 = ∅

also holds. By (4.8), the flow configuration at y is completely determined as ϵ = 0,
f τ1
3 = 0, f τ1

0 = f τ1
1 = f02 = f12 = f∗τ3

02 = f∗τ2
12 = 4/9, and f∗τ2 = f∗τ3 = 7/9. Since

f∗τ2
01 + f∗τ3

01 + f∗τ2
23 + f∗τ3

23 = 6/9 and f01 ≤ 5/9, we may assume that both P∗τ3
01 and P∗τ3

23

are nonempty. By exchange operation at eτ3 we can make f fulfill f02 > 4/9. Again, by
applying Lemma 3.4 (2) to τ2, we have f∗τ2 > 7/9. A contradiction. Thus we have (4.9)
and (4.3) (1).

Suppose that ρ1 is of case (2c) with eτ1 unmixed in (Gτ1 , cτ1 ; ρ1). Suppose that ρ2 is
not of case (2c). Then ρ3 is necessarily of case (2c) by (4.9). Then f∗τ2 ≥ 5/6 + ϵ, and
(4.10) and (4.12) hold by the same argument. Then P∗τ3 ∩ Pτ1

0 or P∗τ3
01 ∩ P

∗τ2
01 must be

empty. Suppose not. Any path in P∗τ3 ∩ Pτ1
0 connects y, x2, sl in order. This implies

ρ3(y) ∼1 l (by Lemma 2.10). Since the exchange at P∗τ2
1 works, P∗τ3

01 ∩ P
∗τ2
01 has a path

with x1-end belonging to sq or sl′ for l′ ∈ Lp with q ∼1 l′ ̸∼ l. Thus ρ3(y) = q or
ρ3(y) ∼1 l′. This is a contradiction to d(l, q) = 3 or d(l, l′) = 4. If P∗τ3 ∩ Pτ1

0 is empty,
then by f01 ≤ 1/2 − ϵ and f23 < 1/2 − ϵ (by P∗τ2 ∩ Pτ1

1 ̸= ∅) it is impossible to fulfill
f∗τ3
01 +f∗τ3

23 = f∗τ3 ≥ 1. If P∗τ3
01 ∩P

∗τ2
01 is empty, then we obtain a contradiction 5/2 ≥ 25/9

in (4.14).
Thus ρ2 is also of case (2c), and necessarily f τ1

0 = f τ1
1 = 1/2. Then ρ3 is also of case

(2c); we can interchange roles of x0 and x1. Thus α1 = α2 = α3 = 1. Now f can be
regarded as an optimal multiflow for (Gτ2 , cτ2) by exchanging f as f τ1

0 = f02 = 1 and for
(Gτ3 , cτ3) by exchanging f as f τ1

1 = f12 = 1.
From this with help of Lemma 2.10 we immediately obtain the potential configuration

in (4.3) (2). Indeed, take a path P from P01, and suppose that P is an (su, x0, y, x1, sū)-
path for u, ū ∈ Qp ∪Lp. Regard f as an optimum for (Gτ2 , cτ2) and for (Gτ3 , cτ3). Then
P is regarded as an (su, yτ2 , y, sū)-path and as an (su, yτ3 , y, sū)-path. By Lemma 2.10,
ρ2(yτ2) ∼1 u ∼1 ρ3(yτ3), and consequently ρ2(yτ2) ∼ ρ3(yτ3). Also we have ρ2(y) ∼
ρ3(y). If f23 ̸= 0, then similarly we have ρ2(yτ2) ∼ ρ3(y) and ρ3(yτ3) ∼ ρ2(y), and thus
the configuration (2-1). Suppose f23 = 0. Then f01 = f02 = f12 = 1/2. Apply the same
argument for a path in P02 and a path in P12. If (4.5) (i) holds, then we obtain the
configuration (2-2), and if (4.5) (ii) holds, then we obtain (2-3). We are done.
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4.3 SPUP on rings

Now that any inner node in Cρ is one of the following three types:

(1) an end of eτ produced in 4/3-SPUP (of cases (1b, 2a)).

(2) a tri-fixed node in produced 1-SPUP.

(3) a node each of whose fork τ satisfies α(τ) = 2/3.

Any terminal in Cρ is incident to only one node, and is one of the following two types:

(0) s is incident to a terminal t with ρ(s) = ρ(t).

(1) s is incident to an inner node y of type (1) with ρ(s) = ρ(y).

(2) s is incident to a node x with ρ(s) ̸= ρ(x).

We can delete terminals of type 0 since µ(s, t) = 0. By subdividing edges and extend ρ
as in (2.10) (2), we may assume that

(4.15) there is no edge xy joining nodes x, y ∈ Cρ with ρ(x) ̸= ρ(y).

Note that all neighbors of an inner node of type (2-3) are in the outside of Cρ. Set
(G, c)← (G, 3c). Then (G, c; ρ) is admissible, and (G, 2c; ρ) is restricted Eulerian. Inner
nodes in Cρ of type (3) are splittable by (4.4). So split them off. Keep nodes in Cρ of
type (2). Let C∗

ρ consist of inner nodes in Cρ of type (1) and terminals of type (1), and
let D∗

ρ be the set of inner nodes joined to C∗
ρ by eτ for a fork τ at the past 4/3-SPUP.

Then we clearly have the following (thanks to (4.15)).

(4.16) Each node y in C∗
ρ is incident to at most two nodes not in D∗

ρ, and each
terminal s in C∗

ρ is incident to at most one node not in D∗
ρ.

Therefore the subgraph induced by C∗
ρ consists of cycles, paths, and isolated nodes. We

try to apply splitting-off and SPUP, keeping the condition (4.16). First we examine
splitting-off at forks τ = xyz for (x, y) ∈ D∗

ρ × C∗
ρ . If such a fork τ is splittable, then

split it off (and simplify multiple edges appeared). By (4.15) this splitting-off keeps the
condition (4.16). Repeat it. So suppose that there is no such a splittable fork.

Next consider SPUP at a fork τ = xyz for (x, y, z) ∈ D∗
ρ × C∗

ρ ×D∗
ρ. Let p = ρ(y).

Suppose α(τ) > 0. Let f = (P; κ) be an optimal multiflow for (Gτ , cτ ). Since both xy
and yz are saturated, we have fxyτ ,yτ y > 0, fzyτ ,yτ y > 0, and fxyτ ,yτ z = α(τ)/2 > 0.
By (4.2), for some l ∈ Lp, Pxy consists of paths with x-end in sl or consists of paths
with y-end in sl. Suppose the latter case. Since Pyz is also homogeneous by (4.2),
we can exchange f at yz so that Peτ

has a path with yτ -end in sl. However Pxyτ ,yτ y

consists of paths with y-end in sl. By the anti-exchange operation at Peτ
, we have

feτ
< c(eτ ) − α(τ). A contradiction. Therefore Pxy consists of paths with x-end in

sl. Similarly Pyz consists of paths with z-end in sl′ for l′ ∈ Lp. Necessarily l ̸∼ l′, i.e.,
d(l, l′) = 4. Consider a critical neighbor ρ′ with respect to τ . By fxyτ ,yτ y > 0, fzyτ ,yτ y >
0, and fxyτ ,yτ z > 0, we have d(l, ρ′(yτ )) + d(ρ′(yτ ), l′) = d(l, l′) = 4, d(l, ρ′(yτ )) +
d(ρ′(yτ ), ρ′(y)) = d(l, ρ′(y)) ≤ 4, and d(l′, ρ′(yτ )) + d(ρ′(yτ ), ρ′(y)) = d(l′, ρ′(y)) ≤ 4;
recall (2.10) (1) and (2.8). Then dρ′(eτ ) ∈ {3, 4} is impossible. dρ′(eτ ) = 1 implies
α(τ) ≥ 2, i.e., τ is splittable. So dρ′(eτ ) = 2. Then d(l, ρ′(yτ )) = d(l′, ρ′(yτ )) = 2
necessarily holds. So (i) ρ′(yτ ) = ρ(y) = p or (ii) ρ′(yτ ) = l̃ ∈ Lp with l ∼ l̃ ∼ l′. Further
we have ρ′(y) = l′′ ∈ Lp with l ̸∼ l′′ ̸∼ l′. Therefore Peτ

consists of paths with y-end in
sl′′. So we can apply 1-SPUP (G, c; ρ)← (Gτ , cτ ; ρ′) for both cases; if (i) occurs, then yτ
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is a tri-fixed node of odd degree. Apply 1-SPUP to all such forks, which keeps (G, c; ρ)
admissible and (G, 2c; ρ) restricted Eulerian. Then we have:

(4.17) There is no fork τ = xyz with (x, y, z) ∈ D∗
ρ × C∗

ρ ×D∗
ρ and α(τ) > 0.

Also we have the following:

(4.18) There is no edge xs joining x ∈ D∗
ρ and a terminal s ∈ C∗

ρ .

Suppose not. s has at most one neighbor z not in D∗
ρ. Since Pxs has no path of end s

by (4.2), a fork xsz is splittable or there is a fork τ = xsz′ for (x, s, z′) ∈ D∗
ρ ×C∗

ρ ×D∗
ρ

with α(τ) > 0; a contradiction. One more immediate consequence of (4.17) is:

(4.19) For an edge xy with (x, y) ∈ D∗
ρ×C∗

ρ , there are two neighbors u, v ̸∈ D∗
ρ of

y such that fyu > 0, fyv > 0, and fxy = fyu + fyv.

From this, we have:

(4.20) For an edge xy with (x, y) ∈ D∗
ρ × C∗

ρ , we have c(xy) = 1, and, by even
degree condition, y is connected to another node z′ in D∗

ρ.

Otherwise y has a splittable fork to keep (4.16).

(4.21) For a fork τ = xyz with (x, y) ∈ D∗
ρ × C∗

ρ , z ̸∈ D∗
ρ, we have α(τ) = 1.

Suppose α(τ) ̸= 1. Take a critical neighbor ρ′ and an optimal multiflow f for (Gτ , cτ ).
Then dρ′(eτ ) = 3 or 4. In both cases, f is homogeneous at eτ . By (4.20), y is connected
to z′ ∈ D∗

ρ. By (4.19), fz′y,eτ
> 0. Also fzy,eτ

> 0. We can exchange paths at eτ so that
fzy,yz′ > 0. This contradicts to (4.17). Therefore,

(4.22) for an edge xy with (x, y) ∈ D∗
ρ × C∗

ρ , there are two neighbors u, v ̸∈ D∗
ρ

of y such that fxy,yu = fxy,yv = 1/2 and fxy = 1 = c(xy) for any optimal
multiflow f .

Furthermore, both yu and yv are necessarily saturated. According to Lemma 3.3 (5),
replace ρ to its forward neighbor ρ′ with ρ′(y) ̸= ρ′(u) or ρ′(y) ̸= ρ′(v). Apply this
procedure for all (inner) nodes y ∈ C∗

ρ joined to D∗
ρ.

Now the subgraph induced by Cρ consists of isolated nodes and paths having no
nodes connected to D∗

ρ. Set (G, c) ← (G, 2c). Then (G, c; ρ) is restricted Eulerian, and
each inner node y in Cρ is splittable since y is a tri-fixed node having three neighbors,
had flow configuration in (4.22), or has at most two neighbors. Split them off. For
terminals in Cρ, the following holds:

(4.23) Any terminal s in Cρ is incident to at most one node y. If y is an inner
node, then ρ(s) ̸= ρ(y).

So we can delete edge joining terminals s, t ∈ C∗
ρ with ρ(s) = ρ(t) since µ(s, t) = 0.

4.4 SPUP at Mρ

Now that there is no inner node in Cρ, and any terminal in Cρ is incident to only one
node y with ρ(s) ̸∈ Cρ. Make all inner nodes in Mρ have degree four. Note that there
is no terminal s in Mρ; see the end of Section 4.1.1. Apply the splitting-off at nodes in
Mρ if possible. Suppose that there is no splittable fork at Mρ. Take arbitrary an inner
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node y ∈ Mρ (of degree four), and take a fork τ at y. Let p = ρ(y) be the midpoint
of a leg qq′ of K. Then qp and pq′ belong to distinct orbits, and belong to no common
folder. Consider a critical neighbor ρ′ of ρ with respect to τ . If ρ′ is backward, then
{ρ′(y), ρ′(yτ )} = {q, p} or {p, q′}. By Lemma 3.8 there exists a fork τ at y such that
its critical neighbor ρ′ is forward. Then α(τ) ∈ {0, 1}. If α(τ) = 1, then both ρ′(y)
and ρ′(yτ ) belong to Sρ, and thus forward 1-SPUP (G, c; ρ)← (Gτ , cτ ; ρ′) keeps (G, c; ρ)
restricted Eulerian. If α(τ) = 0, then we can replace ρ by an optimal forward neighbor
ρ′ with ρ′(y) ̸= ρ(y) (Remark 3.6). Then Mρ decreases. Repeat it until Mρ = ∅. Note
that any terminal s in Cρ never moves into Mρ since s is proper. In the process, each
edge incident to a terminal s in Cρ is always saturated by paths of end s in every optimal
multiflow. Replace (G, c; ρ) by (G, 2c; ρ). Now that all inner nodes belong to Sρ. Now
that Lemma 3.11 is applicable; any terminal region Rs meet at most two hypotenuses
at p ∈ V s. The current problem has an integral optimal multiflow, and thus the original
problem has a 1/12-integral optimal multiflow; we multiplied 3×2×2 to the edge-capacity
so far.

5 Integrality, sparsity, and blow-up

Theorem 3.10 provides a powerful method for proving the existence of an integral optimal
multiflow for Eulerian µ-problems. An F-complex K is said to be locally sparse if each
vertex is sparse. Motivated by (3.12) in Theorem 3.10, we consider the following terminal
condition:

(II) each terminal s whose Rs is neither a path of hypotenuses nor a single vertex has
even degree.

Then by Theorem 3.10 and Lemma 3.11 we have the following.

Theorem 5.1. Suppose that µ has a realization by a locally sparse F-complex K. Then
the µ-problem has an integral optimal multiflow for every inner Eulerian graph with
terminal condition II in K.

An F-complex K without triangles is locally sparse. For each orbit O, the summand
KO is one leg, and thus µO is a cut distance for some disjoint subsets A,B ⊆ S. By Propo-
sition 2.9, any optimal multiflow for the µ-problem is a maximum (A,B)-flow. From this,
one can derive (a slight extension of) the multiflow locking theorem due to Karzanov-
Lomonosov [23]; see [19, Section 5]. A folder itself is locally sparse. The leg-graph
is a complete bipartite graph K2,r. So Theorem 5.1 includes Karzanov-Mannoussakis
integrality theorem for K2,r-metric weighted maximum multiflow problem [24].

The class of distances admitting a realization by a locally sparse F-complex seems be
narrow. Interestingly, although K is not locally sparse, sometimes we can represent K
as a summand of locally sparse one; see KUc

in Figure 3. By combining Proposition 2.9
we can prove the integrality theorem for K.

Theorem 5.2. Suppose that µ has a realization by a summand of a locally sparse F-
complex K∗. Then the µ-problem has an integral optimal multiflow for every inner
Eulerian graph with terminal condition II in K∗.

A sparse (resp. nonsparse) vertex is an analogue of a nonsingular (resp. singular)
point in an algebraic variety. We call the process constructing an F-complex K∗ having
K as a summand a blow-up. Actually a blow-up subdivides the normal fan of the feasible
polyhedron in the LP-dual (7.1), and therefore is compatible to the blow-up in the theory
of toric varieties. We give an illustrative application of Theorem 5.2 below.
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Figure 10: Blowing up 2-commodity F-complex

Multiterminal weighted 2-commodity flows. Suppose that terminal set S is par-
titioned into four sets {T, T ′, U, U ′}. For relatively prime positive integers a and b, let µ
be a distance on S defined as (µ(t, u), µ(t′, u′)) = (a, b) for (t, t′, u, u′) ∈ T ×T ′×U ×U ′,
and other distances are zero. Then the corresponding µ-problem is a weighted version
of the multiterminal 2-commodity flow maximization. An F-complex realization for µ
is constructed as follows. Consider a rectangle in the l1-plane R2 with edge parallel
to (1, 1) or (1,−1), and edge-length given by a and b. Subdivide this rectangle into
squares and right triangles along lines parallel to coordinate axes as in Figure 10. Set
the leg-length to be 1/2. The resulting complex K is clearly an (orientable) F-complex.
Set (Rt, Ru) and (Rt′ , Ru′) to be diagonal pairs of edges of length b and a, respectively.
Then we obtain an F-complex realization of µ. Although K is not locally sparse, we can
blow up K into a locally sparse one as follows. Delete all legs from K, and insert squares
and triangles along deleted legs as in Figure 10. The resulting F-complex K∗ is locally
sparse, and has K as a summand. Each Rs is naturally extended to series of hypotenuses
R∗

s. Thus we have:

Theorem 5.3. The multiterminal weighted 2-commodity flow problem has an integral
optimal flow for every inner Eulerian graph.

Sparse frames and locally sparse frames. Recall the definition of a frame and
related concepts in Section 2.1.5. A frame is called locally sparse if the corresponding
F-complex K is locally sparse. The concept of sparsity was originally introduced by
Karzanov [21] for frames. A frame Γ is called sparse if every orbit graph of Γ is K2

or K2,r for r ≥ 3. Clearly, if a frame Γ is sparse, then it is also locally sparse, and
therefore the integrality theorem holds for a metric represented by as a submetric of a
sparse frame.

The blow-up for a frame is intriguing from both multiflow- and graph-theoretical
points of the view. However we do not know any characterization for a frame represented
by a summand of a locally sparse frame, even for a star-shaped frame.

For star-shaped frames, the sparsity and the local sparsity are same, and can be
easily characterized. Recall that a star-shaped frame Γ with center p is obtained by the
bipartite graph Γ \ p = (Q,L;∼) of girth at least 8.

Lemma 5.4. Let Γ be a star-shaped frame with the center p and let Γ \ p = (Q,L;∼).
Then Γ is locally sparse if and only if there is no pair l, l′ ∈ L such that l ∼ l′ and both
l and l′ have degree at least 3.
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6 0-1 problems

In this section, we investigate the maximum multiflow problem (1.1) in more detail. Let
H be a commodity graph with the property P, and let µH be the corresponding 0-1
distance defined by µH(s, t) = 1 ⇔ st ∈ EH. Although the 1/12-integrality theorem
holds for the µH -problem by Theorem 1.5, there is an interesting hierarchy of classes
admitting the integrality or half-integrality theorem. The aim of this section is to reveal
it. In Section 6.1 we associate H with three F-complexes KH , Ks

H , and Ke
H such that

(1) KH realizes µH ,

(2) Ks
H is star-shaped, and

(3) Ke
H has both KH and Ks

H as summands.

From Ks
H we define a metric µs

H , and from Ke
H we define a distance µe

H having both
µH and µs

H as summands. By Proposition 2.9, any optimal multiflow for µe
H -problem

is also optimal to both µH - and µs
H -problems. In Section 6.2 we observe that Ke

H is
locally sparse if and only if H is anticlique-bipartite. As a corollary of Theorem 5.2 we
obtain Karzanov-Lomonosov integrality theorem [16, 23, 25]. In Section 6.3 we prove
a powerful fractionality relation frac(H) ≤ 2 frac(µs

H). This reduces the fractionality
study of the µH -problem to that of the µs

H -problem. By the sparsity and the blow-up
of Ks

H , we prove the half-integrality theorem (Conjecture 1.2 (2)) for a larger class of
commodity graphs.

In this section we assume that commodity graph H has no isolated nodes, i.e., the
corresponding distance matrix µH has no zero columns. H is said to be reduced if
distance matrix µH has no same columns. A maximal stable set of H is simply called
an anticlique.

6.1 F-complexes for a commodity graph with the property P

Let A be the set of all anticliques of H, and let D be the set of nonempty subsets
D ⊆ S represented by the intersection of two distinct anticliques. By property P, we
have D =

∩
{A ∈ A | D ⊆ A}. Let D0 ⊆ D be the set of subsets belonging to exactly

two anticliques. Let A0 ⊆ A be the set of anticliques A with property A ∩ A′ = ∅ for
each A′ ∈ A \ {A}. Then A0 ∪ D is a subpartition of S. Let ΠH be the bipartite graph
with bipartition (D,A) and edge set {DA | D ⊆ A}. ΠH has girth at least 8. Indeed, a
6-cycle corresponds to an intersecting triple of anticliques with distinct intersections; it
is impossible by property P.

The first F-complex KH . Let us construct the first F-complex KH . To construct an
F-complex, we are sufficient to designate the set of vertices and the set of maximal cells
with their vertices and edges. The set of vertices of KH consists of

pO, pD (D ∈ D), pA, qA (A ∈ A).

The set of maximal cells consists of

triangles: pDqApA ((D, A) ∈ D ×A : D ⊆ A),
triangles: pOqApD ((D, A) ∈ D \ D0 ×A : D ⊆ A),
squares: pOqApDqA′

(D ∈ D0 : D = A ∩A′ (A,A′ ∈ A)),
maximal 1-cells: pOqA, qApA (A ∈ A0).
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Figure 11: Constructions of (a) KH and (b) Ke
H

Here a triangle of vertices p, q, r with right angle q is denoted by pqr, and a square of
four edges op, pq, qr, ro is denoted by opqr. The leg-length is defined to be 1/4. See
Figure 11 (a) for a portion of KH . This is an F-complex. Indeed, KH is contractible and
thus simply-connected. It suffices to verify the axiom (1-2) of F-complex for the center
pO. This immediately follows from ΠpO = ΠH , which has girth at least 8. Furthermore,
we can orient KH so that each pD is a source, and pO and each pA are sinks. For s ∈ S,
we define set Rs ⊆ KH by

Rs =
{ ∪

{pDpA | A ∈ A : D ⊆ A} if s belongs to D ∈ D,
pA if s belongs to a unique anticlique A ∈ A.

Then each Rs is clearly normal; Rs is a star of hypotenuses or a single vertex. One can
easily verify µH(s, t) = dKH

(Rs, Rt). Indeed, Rs∩Rt ̸= ∅ ⇔ s and t belong to a common
anticlique ⇔ µH(s, t) = 0. Conversely, Rs ∩Rt = ∅ implies dKH

(Rs, Rt) = 1. Therefore
(KH ; {Rs}s∈S) is an F-complex realization of µH . Note that the combinatorial duality
relation from (2.3) coincides with that given in [17].

The second F-complex Ks
H . The second F-complex Ks

H is the subcomplex of KH

consisting of cells having pO and their faces, i.e., Ks
H = (KH)pO . Let Γ s

H be the leg-graph
of Ks

H , which is a star-shaped frame. In particular Γ s
H \ pO = ΠH . For a terminal s, the

vertex ps is defined by

ps =
{

pD if s belongs to D ∈ D,
qA if s belongs to a unique anticlique A ∈ A.

Then a metric µs
H is defined by

µs
H(s, t) = dKs

H
(ps, pt) (s, t ∈ S).

By construction, (Ks
H ; {ps}s∈S) is an F-complex realization of µs

H .

The third F-complex Ke
H . Next we construct the third F-complex Ke

H . The set of
vertices of Ke

H consists of

pO, pD, pO
D (D ∈ D),

rA, qA, pA (A ∈ A),
qA
D, pA

D ((D, A) ∈ D ×A : D ⊆ A).
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The set of maximal cells consists of

triangles: pDqA
DpA

D ((D, A) ∈ D ×A : D ⊆ A),

squares: pO
DrAqAqA

D, qA
DqApApA

D ((D, A) ∈ D ×A : D ⊆ A),

triangles: pOrApO
D, pO

DqA
DpD ((D, A) ∈ D \ D0 ×A : D ⊆ A),

squares: pO
DqA

DpDqA′
D , pOrApO

DrA′
(D ∈ D0 : D = A ∩A′ (A,A′ ∈ A)),

maximal 1-cells: pOrA, rAqA, qApA (A ∈ A0).

Obviously Ke
H is an orientable F-complex; see Figure 11 (b). For a terminal s ∈ S,

normal set Re
s is defined by

Re
s =

{ ∪
{pDpA

D | A ∈ A : D ⊆ A} if s belongs to D ∈ D,
pA if s belongs to a unique anticlique A ∈ A.

Then distance µe
H is defined by

µe
H(s, t) = dKe

H
(Re

s, R
e
t ) (s, t ∈ S).

Any edge in (Ke
H)pO and any edge in (Ke

H)pD belong to distinct orbits. Let U be the union
of orbits containing an edge in (Ke

H)pO , and U c the complement. Then (Ke
H)U = Ks

H

and (Ke
H)Uc

= KH . Also (Re
s)

U = {ps} and (Re
s)

Uc
= Rs. Then Proposition 2.9 implies

the following.

Theorem 6.1. Both µH and µs
H are summands of µe

H , and thus any optimal multiflow
for µe

H-problem is also optimal to both µH- and µs
H-problems.

This locking property was proved by Lomonosov [25] for special commodity graphs.

Complement-triangle-free commodity graphs. A commodity graph H is called
complement-triangle-free if the complement H has no triangle K3 (girth at least 4). A
complement-triangle-free commodity graph H has property P since every anticlique has
cardinality at most 2. In addition, if H is reduced, then the construction of Ks

H is very
simple; ΠH(= Γ s

H \ pO) is the subdivision of the complement H. Figure 12 illustrates
three F-complexes KH , Ks

H , and Ke
H for a reduced complement-triangle-free commodity

graph H.

6.2 Anticlique-bipartite commodity graphs

A commodity graph H is called anticlique-bipartite if

(1) for every triple A,B, C ∈ A, at least one of A ∩B, B ∩ C, C ∩A is empty, and

(2) the intersection graph of A is bipartite.

By (1) an anticlique-bipartite commodity graph has property P. In this case, by (1),
(Ke

H)pO(= Ks
H) has no triangle, and pO is sparse in Ke

H . Moreover each pD is also sparse
since qA

DpA
D and qA

DpO
D belong to distinct orbits by (1) and (2). One can verify it by

tracing the orbit started from qA
DpA

D. By bipartiteness (2) this orbit never meets qA
DpO

D.
Consequently qA

D and qA are also sparse.

Theorem 6.2. H is anticlique-bipartite if and only if Ke
H is locally sparse.

Each Rs is a path of hypotenuses or a single vertex. As a corollary of Theorem 5.1,
we have the following fundamental result in the literature.
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KH KsH KeHH
Figure 12: Three F-complexes

Theorem 6.3 ([16, 23, 25]). If H is anticlique-bipartite, then the µH-problem has an
integral optimal multiflow for every inner Eulerian graph.

Frank, Karzanov, and Sebö [9] gave a polymatroidal proof of this result. Relation
between their approach and our approach is not clear.

A commodity graph H is called anticlique-nonbipartite if it satisfies (1) and violates
(2). Also in this case, pO is sparse in Ke

H . However there is D ∈ D such that pD is not
sparse. In fact, it is known that the integrality theorem fails for anticlique-nonbipartite
commodity graphs. So one might interpret it as: this failure of the integrality theorem
comes from the singularity at pD.

6.3 Fractionality relation and its consequences

If H is not anticlique-bipartite, then Ke
H has a nonsparse vertex pD that cannot not be

blown up. Sometimes the center vertex pO is sparse, or equivalently, star-shaped frame
Γ s

H is sparse, and hence the µs
H -problem has an integral optimal multiflow. In this case,

the µH -problem is guaranteed to have a half-integral optimal multiflow by the following
fractionality relation between µH and µs

H . This means that the singularity at pD is
relatively tame.

Theorem 6.4. Let H be a commodity graph with property P. Suppose that the µs
H-

problem has a 1/k-integral optimal multiflow for every inner Eulerian graph.

(1) If k is even, then the µH-problem has a 1/k-integral optimal multiflow for every
inner Eulerian graph.

(2) If k is odd, then the µH-problem has a 1/(2k)-integral optimal multiflow for every
inner Eulerian graph.

In particular frac(H) ≤ 2 frac(µs
H) holds.

Before the proof, we describe several consequences. Consider H = K2 + Kr, i.e.,
the vertex-disjoint union of one edge and complete graph Kr (r ≥ 3), which is reduced
complement-triangle-free. Then ΠH is the subdivision of K2,r, and µs

H is the graph met-
ric of K2,r. From Karzanov-Mannoussakis integrality theorem for K2,r-metric weighted
maximum multiflow problem [24], we obtain the following.
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H � sH
Figure 13: A sparsible commodity graph H, star-shaped frame Γ s

H , and a blow-up

Theorem 6.5 ([21] for r = 3 and [26] for r > 3). If H = K2 +Kr, then the µH-problem
has a half-integral optimal multiflow for every inner Eulerian graph.

We can extend it for a more general commodity graph. A commodity graph H with
property P is called sparse if star-shaped frame Γ s

H is (locally) sparse. By Theorems 5.1
and 6.4, we have the following.

Theorem 6.6. If H is sparse, the µH-problem has a half-integral optimal multiflow for
every inner Eulerian graph.

The half-integrality theorem for anticlique-nonbipartite commodity graphs by Karzanov-
Lomonosov [16, 23, 25] also follows from this theorem. A sparse commodity graph can
be easily characterized according to Lemma 5.4.

Proposition 6.7. A commodity graph H with property P is sparse if and only if H has
no five anticliques A1, A2, B,C1, C2 with ∅ ̸= A1 ∩ A2 = A2 ∩B = A3 ∩B ̸= C1 ∩ C2 =
C2 ∩B = C3 ∩B ̸= ∅.

Again Theorem 5.2 widens the class admitting the half-integrality theorem. A com-
modity graph H with property P is called sparsible if Γ s

H is a summand of locally sparse
frame.

Theorem 6.8. If H is sparsible, then the µH-problem has a half-integral optimal mul-
tiflow for every inner Eulerian graph.

However we do not know any nice characterization of a sparsible commodity graph,
or equivalently, a star-shaped frame represented by a summand of a locally sparse frame.
We give one example together with a blow-up in Figure 13.

A commodity graph H with property P is called integral if µs
H -problem has an integral

optimal multiflow for every inner Eulerian graph. Then the following inclusion holds:

sparse ⊂ sparsible ⊆ integral ⊂ property P.

The vertex-disjoint union of two triangles H3,3 := K3 + K3 is a typical nonintegral
example (the fractionality is unknown). So H3,3 is not sparsible. One can directly see it
from ΠH3,3 , which is the subdivision of K3,3. A natural question is:

sparsible = integral ?

For example, consider commodity graph H+
3,3 := H3,3 plus one edge. Its complement is

K−
3,3 := K3,3 minus one edge, and ΠH+

3,3
is the subdivision of K−

3,3. One can verify that

H+
3,3 is not sparsible. However we do not know whether H+

3,3 is integral.

41



pD pADqADpODpO
pAqArA

Figure 14: Forward orientation

Finally, we shall rephrase these results by using notion of the fractionality frac(H).
The commodity graphs of fractionality 1 or 2 have already been classified as follows:

(1) frac(H) = 1 if and only if H is a complete bipartite graph.

(2) frac(H) = 2 if and only if H is K2 + K3 or anticlique-bipartite (not complete
bipartite).

See [17, 22]. Other commodity graphs are known to have fractionality at least 4.

Corollary 6.9. A sparsible commodity graph being neither anticlique-bipartite nor K2 +
K3 has fractionality 4.

Proof of Theorem 6.4. We begin with µe
H -problem and reduce it to µs

H -problem;
recall the locking property (Theorem 6.1). Let (G, c) be an inner Eulerian graph with
terminal set S. Since there is no improper terminal, the terminal condition I is fulfilled.
Let us construct the SPUP scheme for Ke

H . One can easily see that pA
D and pO

D are sparse.
So we let V s consist of pO

D and pA
D for all D ∈ D and (D, A) ∈ D ×A with D ⊆ A. The

forward orientation is a unique orientation so that pO is a source and each pD is a source;
see Figure 14. Let ρ be an optimal potential, and let Sρ = {x ∈ V G | ρ(x) ∈ V s}. Recall
the restricted Eulerian condition. We keep it during the proof. By the degree reduction,
we make (G, c) so that each inner node has degree four and each terminal has degree
one. We may assume that there exists no splittable fork. Note that by sparsity there is
no inner node in ρ−1({pA, qA, rA}) for A ∈ A0.

First we try to repeat the forward 1-SPUP until ρ−1(pD) is empty for all D ∈ D.
Take D ∈ D with ρ−1(pD) ̸= ∅. We may assume that there is an edge xy with exactly
one end y having potential pD = ρ(y). Consider the gate gρ(x) of ρ(x) in (Ke

H)pD . Then
there are three cases below:

(0) gρ(x) = pA
D for A ∈ A with D ⊆ A.

(1) gρ(x) = qA
D for A ∈ A with D ⊆ A.

(2) gρ(x) = pO
D.

Consider case (1). Suppose ρ(x) = qA
D. Then x is an inner node of degree four. Moreover

pDqA
D and qA

DqA belong to distinct orbits, and belong to no common folder. So a critical
backward neighbor ρ′ for a fork τ at x satisfies {ρ′(yτ ), ρ′(y)} = {qA

D, pA
D} or {qA

D, pO
D}.

Therefore Lemma 3.8 is applicable. Then there is a fork τ at x such that its critical
neighbor ρ′ is forward. If α(τ) = 1, then {ρ′(yτ ), ρ′(y)} = {pA

D, pO
D}, and thus 1-SPUP at

τ succeeds. If α(τ) = 0, then we can replace ρ by its optimal forward neighbor ρ′ with
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ρ′(x) ̸= qA
D (Remark 3.6). Therefore we can decrease the edges of type (1). So suppose

ρ(x) ̸= qA
D. By subdividing xy according to (2.10) (2), we may assume that ρ(x) = qA.

Here we use the terminal creation II in Section 2.2.5; qA
D is flat. Subdivide xy into

xz and zy. Add two new terminals s, t joined to z. Set Rs = {pA
D} and Rt = {pO

D}.
Extend potential ρ for the new problem by defining (ρ(s), ρ(z), ρ(t)) = (pA

D, qA
D, pO

D).
Next consider splitting-off at fork τ = yzs or yzt. We may assume α(τ) > 0 for τ = yzs
or yzt; by reversing the argument in Section 2.2.5 we can make any optimal multiflow
f fulfill fyz,zs > 0 or fyz,zt > 0. Here we suppose τ = yzs; the argument for yzt
is similar. Then α(τ) ∈ {1, 2} by the orbit structure around qA

D. Suppose α(τ) =
2. Then split it off. Thus edges of type (1) decrease. Suppose α(τ) = 1. Take a
critical neighbor ρ′ of ρ with respect to τ . Then ρ′ is forward. Otherwise we have
(ρ′(zτ ), ρ′(z)) ∈ {(pD, qA

D), (qA
D, pD), (qA

D, qA), (qA, qA
D)}. Consider an optimal multiflow

f for (Gτ , cτ ). All four edges incident to z are saturated, and thus fszτ ,zτ z > 0 and
f tz,zzτ

> 0. Recall (2.10) (1). Since (ρ′(s), ρ′(t)) = (pA
D, pO

D), it is impossible to satisfy
dρ′(s, z) = dρ′(s, zτ )+dρ′(zτ , z) and dρ′(t, zτ ) = dρ′(t, z)+dρ′(z, zτ ). Thus ρ′ is necessarily
forward, and 1-SPUP at τ succeeds. Then we can decrease edges of type (1).

Suppose case (2). By subdividing xy, we may assume ρ(x) = pO
D. If y is a terminal

(of degree one), then replace ρ(y) by pA
D, that keeps optimality. So suppose that y is an

inner node. Take a fork τ at y with α(τ) > 0, and consider a critical neighbor ρ′ of ρ with
respect to τ . Then ρ′ is necessarily forward. So ρ′(x) = pO

D. For every optimal multiflow
f , we have fxyτ ,yτ y > 0 by c(xy) = fxy. By (2.10) (1), we have dρ′(x, y) = dρ′(x, yτ ) +
dρ′(yτ , y). Therefore the possible configurations are (i) (ρ′(yτ ), ρ′(y)) = (pO

D, pD) and (ii)
(ρ′(yτ ), ρ′(y)) = (pO

D, pA
D) for some A ∈ A with D ⊆ A. By Lemma 3.9, we can take a

fork τ at y with case (ii). Then α(τ) = 1, and both ρ′(yτ ) and ρ′(y) fall into Sρ. Thus
1-SPUP is successful, and update (G, c; ρ)← (Gτ , cτ ; ρ′).

Repeat this procedure. Then there are no edges of types (1-2), and thus there is no
flow connecting terminal s ∈ ρ−1(pD) (Lemma 2.4 (1)). Delete all terminals in ρ−1(pD)
and edges connecting them, and replace ρ(x) for all x ∈ ρ−1(pD) by pO

D. Then the
resulting ρ is also optimal, (G, c; ρ) is restricted Eulerian, and ρ−1(pD) is empty. Apply
this procedure for each D ∈ D with ρ−1(pD) ̸= ∅. Then ρ−1(pD) = ∅ for each D ∈ D.

Apply forward SPUP at each inner node y with ρ(y) = rA, pA, or qA
D, according to

Lemma 3.8. Then there is no such an inner node.
Consider an edge e = xy connecting x ∈ Sρ and inner node y ∈ V G \ Sρ. Then

ρ(x) = pO
D or pA

D, and ρ(y) = pO or qA′
. Then there are a folder F and a nonadjacent

pair p, p′ of its vertices such that d(ρ(x), ρ(y)) = d(ρ(x), p) + d(p, p′) + d(p′, ρ(y)). Here
we apply terminal creation I at (p, p′). We can take such a pair (p, p′) as (pA

D, qA),
(pO

D, qA), or (pO, pO
D). Apply this procedure for all such edges. Then the supply graph G

is separated into two disjoint graphs G0 and G1. Here G1 consists of edges joined to an
inner node having potential pO or qA for some A ∈ A, and G0 consists of other edges.
So we may consider the problems for G0 and for G1 separately. All inner nodes of G0

have sparse vertices, and each terminal s with ρ(s) = pA, pO, or qA is incident to one
node x with ρ(x) ̸= ρ(s). By Lemma 3.11, (G0, c) has a half-integral optimal multiflow.
Therefore if (G1, c) has a 1/k-integral optimal multiflow, then the original graph has
a 1/k-integral multiflow if k is even and a 1/(2k)-integral multiflow if k is odd. Now
terminal region Rs for s ∈ S ∩ V G1 is pO

D, pA
D, or pA. Therefore we can delete all cells

containing pD from Ke
H for all D ∈ D. The the resulting F-complex (Ke

H)′ together with
{Rs}s∈S∩V G0 is also a realization of µ restricted to S ∩V G1. Therefore we may consider
the problem on (Ke

H)′. Then pAqA and qArA belong to distinct orbits in (Ke
H)′. Now

that qA
D is also sparse. So add each qA

D to V s. Apply forward SPUP at each inner node
having potential qA or rA according to Lemma 3.8, until there is no such an inner node.
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Take an edge e = xy whose exactly one end x is an inner node having potential pO.
Then potential of the other end x is pO

D, qA
D, pA

D, or pA. For the first three cases, again
apply the terminal creation I for (pO, pO

D). If ρ(x) = pA, then x is necessarily a terminal
s with Rs = {pA}, and replace Rs by {rA} and ρ(s) by rA; this does not change the
problem. Again the graph G1 is separated into two disjoint graphs G′

1 and G′′
1. Here G′

1

consists of edge joined to an inner node having a potential pO, and G′′
1 consists of other

edges. By the same argument as above, G′′
1 has a half-integral optimal multiflow. For

the problem for G′
1, again we can delete from (Ke

H)′ all cells not belonging to (Ke
H)pO .

Then the problem for G′
1 is (essentially) the µs

H -problem for H, and has a 1/k-integral
optimal multiflow by the assumption. We are done.

7 Algorithmic consequences

Our proof is constructive. Each step searches all nodes and forks of required properties,
and applies splitting-off or SPUP to decrease the number of nodes in question. Once the
problem becomes trivial to have an integral optimum, we obtain a 1/k-integral optimum
for the original problem by reversing the operations. The aim of this section is to show
that our proof indeed yields a (strongly) polynomial time algorithm under a certain
assumption.

We begin to study the complexity of an F-complex realization for integral weight
µ. The size of realization K (the number of maximal cells) is already not polynomially
bounded by {⌈log2(µ(st) + 1)⌉}s,t∈S ; see the 2-commodity F-complex in Figure 10. For
0-1 cases, we gave explicit constructions for KH , Ks

H , and Ke
H in Section 6. Their sizes

are O(|S|2). Indeed, D ∪ A0 is disjoint, and {A \ D | D ⊆ A ∈ A} is also disjoint
(by property P). Thus |D| + |A0| = O(|S|) and each D ∈ D is incident to at most |S|
anticliques. However we do not know whether a general distance µ of dim Tµ ≤ 2 has a
realization of pseudo polynomial size. Also there is a possibility to handle (or solve) the
dual problem (2.3) without an explicit realization. We leave these problems as future
research topics. So our analysis here mainly assumes that an F-complex realization K of
µ is given and its size is fixed.

Let us consider the complexity of computing an optimal potential, the splitting ca-
pacity, and a critical neighbor. The µ-problem (1.3) is a linear program, and its LP-dual
is given by

Minimize
∑

e∈EG

c(e)d(e)(7.1)

subject to d: metric on V G,
d(s, t) ≥ µ(s, t) (s, t ∈ S).

A feasible solution d is said to be minimal if there is no other feasible solution d′ with
d′ ≤ d. By adding dummy terminals we can make {Rs}s∈S include all singletons {p} (p ∈
V Γ ). Then, for a potential ρ, metric dρ is a minimal extreme solution, and conversely
every minimal extreme solution d is uniquely represented by d = dρ for a potential ρ [13,
p. 21]. Since the constraint matrix of LP (7.1) consists of 0-1 entries, we can find
a minimal extreme optimal solution d∗ in strongly polynomial time by the method of
Tardos [29] (that uses a polynomial time linear programming algorithm, the ellipsoid or
the interior point method, as a subroutine). From d∗, an optimal potential ρ∗ is given by
ρ∗(x) = p with d∗(x, s) = 0 and Rs = {p}. The splitting capacity α can be computed by
the bisection method (without realization K) in weakly polynomial time; solving (7.1) in
⌈log2 c(eτ )⌉ times. There is another way. Let h(α) := opt(Gτ , c−αχeτ )−opt(G, c). Then
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h(α) is a monotone nonincreasing piecewise linear concave function. The gradient of h at
α is given by dρ(eτ ) for an optimal potential ρ of (Gτ , c−αχeτ ). So the possible values of
the gradients are 0, 1, 2, . . . ,diamΓ , where diam Γ denotes the diameter of Γ . Therefore
we can determine α by solving (7.1) at most diamΓ time. Next consider a critical
neighbor. Suppose that we are given an optimal potential ρ. Then dρ is an optimal
minimal extreme solution. By Theorem 2.8, every minimal extreme solution d′ adjacent
to dρ is necessarily represented by d′ = dρ′ for a neighbor ρ′ of ρ. Therefore it suffices
to consider minimal extreme points adjacent to d∗. For the purpose, we cut d∗ from the
feasible region by the following way. Define capacity c∗ (in the complete graph on V G) by
c∗(xy) = 1 if d∗(x, y) = 0 and c∗(xy) = 0 otherwise. Then d∗ is a unique minimal optimal
solution with respect to c∗. Then opt(G, c∗) =

∑
c∗(xy)d∗(x, y) = 0. Add constraint∑

c∗(xy)d(x, y) ≤ 1/2 to LP (7.1), and solve this modified LP for (Gτ , c− (α(τ)+ ϵ)χeτ )
for small ϵ > 0. The resulting minimal optimal solution d̃ lies on the edge between d∗

and its adjacent minimal extreme point d′. From d′(xy) − d∗(xy) ∈ {0, 1, 2, 3, 4}, we
can determine d′ and a critical neighbor ρ′. An optimal neighbor in Lemma 3.3 (5) is
also computed by the same manner. Thus we can find a critical neighbor in strongly
polynomial time, provided the size of K is fixed. Consequently, a naive adaptation of our
proof gives a pseudo polynomial time algorithm to find a 1/12-integral optimal multiflow,
provided the size of K is fixed.

To get a polynomial time algorithm, we need to reduce the sum of capacities before
making the input supply graph have degree at most four. This is naturally achieved by
conducting the splitting-off before the degree reduction. We work on the complete graph
G. Let n = |V G|. Here, by the splitting-off at a fork τ = xyz with x ̸= z we mean
updating c by c(xy) := c(xy)−β(τ), c(yz) := c(yz)−β(τ), and c(xz) := c(xz)+β(τ) for
β(τ) := min{c(xy), c(yz), ⌊α(τ)/2⌋}. We also consider the splitting-off for degenerate
fork xyx, which decreases edge-capacity c(xy) by an even integer as much as possible.
The maximum possible value is also determined by the same manner. By repeating
splitting-off appropriately we can make (G, c) fulfill β(τ) = 0 for every fork τ , in strongly
polynomial time. This is not so obvious. We sketch to prove this fact based on [16,
Section 4]. We examine the splitting-off for all forks in some ordering. Fix an arbitrary
ordering of nodes. According to this node ordering, choose a node one-by-one, and
apply splitting-off to all forks at the chosen node in any order. After the procedure (of
O(n3) steps), β(τ) = 0 holds for every fork. We prove it by induction. Suppose now
that fork xyz is processed. Obviously each fork τ at y processed before xyz satisfies
β(τ) = 0. Suppose β(x′y′z′) ≥ 1 for a fork x′y′z′ at a previously processed node y′. By
the same argument in [16, p. 98] we may assume that x′ = x and y′ = z. Apply (again)
the splitting-off at x′y′z′, and consider an optimal multiflow for the resulting graph. By
reversing splitting-off operations at x′y′z′ and at xyz we can make this optimal multiflow
have paths (with unsaturation) of flow-value at least 1 passing through x, y, y′, z′ in order,
which implies β(yy′z′) ≥ 1 before xyz is processed. However, by induction, β(yy′z′) = 0
holds at that time. This is a contradiction.

At this moment, if the existence of an integral optimal solution is guaranteed, then
the set of all one-edge paths (s, st, t) with flow-value c(st) is obviously optimal. Thus
Theorem 5.2 implies the following.

Theorem 7.1. Let µ be a distance realized by a summand of a locally sparse F-complex
K∗. Suppose that an F-complex realization of µ is given and its size is fixed. There
exists a strongly polynomial time algorithm to find an integral optimal multiflow in the
µ-problem for every inner Eulerian graph with terminal condition II in K∗.

If we adopt the bisection method for computing α, then this algorithm is weakly
polynomial without realization.
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Let us return back to the analysis. After the splitting-off procedure above,

(7.2) each inner node has degree O(n2).

Indeed, consider an optimal multiflow f . For each inner node y, the following obvious
equation holds: ∑

x∈V G\y

c(xy) =
∑

x∈V G\y

(c(xy)− fxy) + 2
∑

x,z∈V G\y:x ̸=z

fxy,yz.

Then fxy,yz ≤ 1; otherwise a fork xyz is splittable (Lemma 3.3 (1,3)). Also c(xy) −
fxy ≤ 2; otherwise degenerate fork xyx is splittable. Thus the degree of y is at most
2(n − 1) + 2

(
n−1

2

)
= O(n2). A terminal may have a large degree. We can reduce it by

the following way. Compute an optimal multiflow f = (P, λ) by solving LP; we use a
compact representation for multiflows. Here we assume that P has no duplication. For
each terminal pair (s, t), check the flow-value λ(P ) of the one-edge path P = (s, st, t),
and decrease the edge capacity c(st) by the maximum even integer lst not exceeding
λ(P ). For any optimal multiflow of the resulting problem, we recover an optimum for
the original problem by adding the path P = (s, st, t) of flow-value lst. Apply this
procedure for all terminal pairs. Then

(7.3) each terminal s has degree O(n2).

Indeed, consider the optimal multiflow f̃ = (P̃;κ) obtained by deleting each one-edge
path (s, st, t) of flow-value lst from the above-computed optimal multiflow. Then we
have ∑

x∈V G\s

c(sx) =
∑

x∈V G\s

(c(sx)− f̃sx) + 2
∑

x,y∈V G\s:x ̸=y

f̃xs,sy

+
∑

x,y∈V G\s:x ̸=y

|{P ∈ P̃sx,xy | P connects s}|/κ +
∑

t∈S\s

|{P ∈ P̃st | P = (s, st, t)}|/κ

≤ 2(n− 1) + 2
(

n− 1
2

)
+ (n− 1)(n− 2) + 2(|S| − 1).

Apply the degree reduction in Section 2.2.4. Then we obtain a supply graph of degree
at most four and O(n5) vertices, and we can directly apply the proof in Section 4.

Theorem 7.2. Let µ be a distance with dim Tµ ≤ 2. Suppose that an F-complex real-
ization of µ is given and its size is fixed. Then there exists a strongly polynomial time
algorithm to find a 1/12-integral optimal multiflow in the µ-problem for every inner
Eulerian graph with terminal condition I.

Corollary 7.3. Let H be a commodity graph with property P. Then there exists a strongly
polynomial time algorithm to find a 1/12-integral optimal multiflow in the µH-problem
for every inner Eulerian graph.

Our reduction in Theorem 6.4 can also be applied in the straightforward manner.

Theorem 7.4. Suppose that a commodity graph H is sparse, sparsible, or integral. Then
there exists a strongly polynomial time algorithm to find a half-integral optimal multiflow
in the µH-problem for every inner Eulerian graph.

There remain many algorithmic problems. Although we can easily check whether H
is sparse by Proposition 6.7, we do not know how to check whether H is sparsible (or
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integral). More generally we do not know how to check whether an F-complex or a frame
is a summand of a locally sparse one. Also it is a challenge to design a combinatorial
polynomial time algorithm finding a 1/k-integral optimal multiflow k ≤ 12.
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