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Abstract

We study monoids generated by Zariski-van Kampen generators in the
17 fundamental groups of the complement of logarithmic free divisors in
C3 listed by Sekiguchi (Theorem 1). Five of them are Artin monoids
and eight of them are free abelian monoids. The remaining four monoids
are not Gaußian and, hence, are neither Garside nor Artin (Theorem 2).
However, we introduce, similarly to Artin monoids, fundamental elements
and show their existence (Theorem 3). One of the four non-Gaussian
monoids satisfies the cancellation condition (Theorem 4).

1 Introduction

A hypersurface D in Cl (l ∈ Z≥0) is called a logarithmic free divisor ([S1]), if

the associated module DerCl(−log(D)) of logarithmic vector fields is a free OCl-
module. Classical example of logarithmic free divisors is the discriminant loci of

a finite reflection group ([S1,2,3,4]). The fundamental group of the complement

of the discriminant loci is presented (Brieskorn [B]) by certain positive homoge-

neous relations, called Artin braid relations. The group (resp. monoid) defined

by that presentation is called an Artin group (resp. Artin monoid) of finite

type [B-S], for which the word problem and other problems are solved using a

particular element ∆, the fundamental elements, in the monoids ([B-S],[D],[G]).

∗The present paper is a complete version with proofs of [S-I1].
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In [Se1], Sekiguchi listed up 17 weighted homogeneous polynomials, defining

logarithmic free divisors in C3
, whose weights coincide with those of the discrim-

inant of types A3, B3 or H3. Then, the fundamental groups of the complements

of the divisors are presented by Zariski-van Kampen method by [I] (we recall

the result in §3). It turns out that the defining relations can be reformulated

by a system of positive homogeneous relations in the sense explained in §4 of

the present paper, so that we can introduce monoids defined by them. We show

that, among 17 monoids, 5 are Artin monoids, and 8 are free abelian monoids.

However, four remaining monoids are not Gaussian, and hence are neither Gar-

side nor Artin (§5). Nevertheless, we show that they carry certain particular

elements similar to the fundamental elements in Artin monoids (§6).

Let us explain more details of the contents. The 17 Sekiguchi-polynomials

∆X(x, y, z) are labeled by the typeX ∈ {Ai,Aii,Bi,Bii,Biii,Biv,Bv,Bvi, Bvii,Hi,
Hii,Hiii, Hiv,Hv, Hvi,Hvii,Hviii} (§2). They are monic polynomials of degree

3 in the variable z. We calculate the fundamental group of the complement

of the divisor DX := {∆X(x, y, z) = 0} in C3
by choosing Zariski-pencils l

in z-coordinate direction, which intersect with the divisor DX by 3 points.

Zariski-van Kampen method gives a presentation of the fundamental group

π1(C3 \DX , ∗) with respect to three generators a, b and c presented by a choice

of paths in the pencil turning once around each of three intersection points.

We rewrite the Zariski-van Kampen relations into a system of positive homo-

geneous relations (not unique, §4 Theorem 1), and study the group GX and the

monoid MX defined by the relations as well as the localization homomorphism

MX→GX , where GX is naturally isomorphic to π1(C3 \DX , ∗). We denote by

G+
X the image of MX in GX , that is, the monoid generated by the Zariski-van

Kampen generators {a, b, c} in π1(C3 \DX , ∗). The G+
X depends on the choice

of generators but not on homogeneous relations, whereas the monoid MX does.

It turns out that MX are Artin monoids for the types Ai,Bi,Hi,Aii,Biv, and are

free abelian monoid for the types Bv,Bvii,Hiv,Hv, Hvi,Hvii,Hviii,Biii so that one

has natural isomorphisms: MX ' G+
X . However, for any of the remaining four

types Bii,Bvi,Hii,Hiii, the monoids G+
X does not admit the divisibility theory

(see [B-S, §5], or §5 Theorem 2 of present paper). That is, they are not Gaus-

sian groups [D-P, §2], and, hence, they are neither Artin nor Garside groups

(actually, we have an isomorphism MBvi 'MHiii and hence G+
Bvi
' G+

Hiii
).

On the other hand, as one main result of the present paper, we show that the

monoid MX carries some distinguished elements, which we call fundamental (§6
Theorem 3). Namely, we call an element ∆∈MX fundamental if there exists a

permutation σ∆ of the set {a, b, c}/ ∼ (see §6 ) such that for any d ∈ {a, b, c}/∼,

there exists ∆d∈MX such that the following relation holds:

∆ = d ·∆d = ∆d · σ∆(d).

The set F(MX) of fundamental elements in MX form a submonoid of MX such

that QZ(MX)F(MX ) = F(MX)QZ(MX) = F(MX) (see §6 Fact 3.) where

QZ(MX) is the quasi-center ofMX .
1

For an Artin monoid of finite type, F(MX)

is generated by a single element ∆ and F(MX)=∆
Z≥1 ([B-S]). Since the

1An element ∆∈MX is called quasi-central ([B-S, 7.1]) if d·∆=∆·σ∆(d) for d ∈ {a, b, c}.
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localization morphism induces a map F(MX)→F(G+
X ), the fact F(MX) 6= ∅

for all 17 monoids (§6 Theorem3) implies F(G+
X ) 6=∅. We ask, more generally,

whether the monoid generated by Zariski-van Kampen generators in the local
fundamental group of the complement of a free divisor has always a fundamental
element (see §6 Remark 6.4). In the 4 types Bii,Bvi,Hii,Hiii, we observe that

F(G+
X) is not singly generated. Therefore, we ask, also, whether the set of

fundamental elements F(G+
X) is finitely generated over QZ(G+

X ) or not.
In §7, we discuss about the cancellation condition on the monoid MX . In

fact, this condition together with the existence of fundamental elements (shown

in §6), imply that the localization morphism MX→G+
X is an isomorphism. An

Artin monoid or a free abelian monoid satisfies already this condition ([B-S]). We

show that the monoid MBii satisfies the cancellation condition (Theorem4). For

the remaining three types Bvi,Hii,Hiii, we do not know whether the localization

map is MX→G+
X is injective or not. That is, we don’t know whether we have

sufficiently many defining relations to assert the cancellation condition or not.

Finally in §8, we construct non-abelian representations of the groupsGBii , GBvi ,
GHii and GHiii into GL2(C) (Theorem 5). Actually, this result is independent

of §5, 6 and 7, and is used in the proof of Theorem 2 in §5.

2 Sekiguchi’s Polynomial

J. Sekiguchi [Se1,2] listed the following 17 weighted homogeneous polynomials

∆ in three variables (x, y, z) satisfying freeness criterion by K.Saito [S1].

∆Ai(x, y, z) := −4x3y2 − 27y4
+ 16x4z + 144xy2z − 128x2z2

+ 256z3

∆Aii(x, y, z) := 2x6 − 3x4z + 18x3y2 − 18xy2z + 27y4
+ z3

∆Bi(x, y, z) := z(x2y2 − 4y3 − 4x3z + 18xyz − 27z2
)

∆Bii(x, y, z) := z(−2y3
+ 4x3z + 18xyz + 27z2

)

∆Biii(x, y, z) := z(−2y3
+ 9xyz + 45z2

)

∆Biv(x, y, z) := z(9x2y2 − 4y3
+ 18xyz + 9z2

)

∆Bv(x, y, z) := xy4
+ y3z + z3

∆Bvi(x, y, z) := 9xy4
+ 6x2y2z − 4y3z + x3z2 − 12xyz2

+ 4z3

∆Bvii(x, y, z) := (1/2)xy4 − 2x2y2z − y3z + 2x3z2
+ 2xyz2

+ z3

∆Hi(x, y, z) := −50z3
+ (4x5 − 50x2y)z2

+ (4x7
+ 60x4y2

+ 225xy3
)z

−(135/2)y5 − 115x3y4 − 10x6y3 − 4x9y2

∆Hii(x, y, z) := 100x3y4
+ y5

+ 40x4y2z − 10xy3z + 4x5z2 − 15x2yz2
+ z3

∆Hiii(x, y, z) := 8x3y4
+ 108y5 − 36xy3z − x2yz2

+ 4z3

∆Hiv(x, y, z) := y5 − 2xy3z + x2yz2
+ z3

∆Hv(x, y, z) := x3y4 − y5
+ 3xy3z + z3

∆Hvi(x, y, z) := x3y4
+ y5 − 2x4y2z − 4xy3z + x5z2

+ 3x2yz2
+ z3

∆Hvii(x, y, z) := xy3z + y5
+ z3

∆Hviii(x, y, z) := x3y4
+ y5 − 8x4y2z − 7xy3z + 16x5z2

+ 12x2yz2
+ z3.
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Here, the polynomials are classified into three types A, B and H according

as the numerical data (deg(x), deg(y), deg(z); deg(∆)) is equal to (2, 3, 4; 12),

(2, 4, 6; 18) or (2, 6, 10; 30), respectively. In each type, the polynomials are num-

bered by small Roman numerals i, ii,. . . etc. We remark that, in all cases, the

polynomial is a monic polynomial of degree 3 in the variable z.

3 Zariski-van Kampen method

Let X be one of the 17 types Ai,Aii,Bi,. . . , Bvii, Hi,. . . ,Hviii. In the present

section, we recall from [I] the calculation of the fundamental group π1(SX \
DX , ∗X) of the complement of the free divisor DX in the space SX by Zarisik-

van Kampen method, where we put SX := C3
and

(3.1) DX := {(x, y, z) ∈ C3 | ∆X(x, y, z) = 0}.
The first step is the following reduction from the space SX to a plane HX .

Lemma 3.1 (Lefschetz Theorem [H-L]). Let HX⊂SX be a hyperplane defined by
x=ε for a general ε∈C×. Then, the natural inclusion induces an isomorphism:

(3.2) π1(HX \ (HX ∩DX), ∗X)
∼→ π1(SX \DX , ∗X)

for any choice of a base point ∗X ∈ HX \ (HX ∩DX).

The second step is to apply Zariski-van Kampen method, using pencils.

To define pencils, we consider the projection map π from SX to the space

TX := C2
of coordinates x, y by forgetting the coordinate z. The fibers of the

projection π shall be called the Zariski-pencils. The π|DX is a triple covering

map, whose branching loci (or, bifurcation set) BX is defined by

(3.3) BX := {(x, y) ∈ TX = C2 | ωX(x, y) = 0},

where ωX(x, y) := δ
(

∆X ,
∂∆X

∂z

)
is the resultant of ∆X and

∂∆X

∂z with respect

to the variable z. In fact, ωX is a weighted homogeneous polynomial which is

monic in the variable y. As we can see explicitly from Table of the equations

below, the restriction of ωX to the line LX :={(x, y)∈TX | x=ε}, where ε=−1

for the type A and ε= 1 for the types B and H, is totally real, i.e. all roots of

the equation ωX(ε, y) = 0 in y are real numbers, except for Bvii and Hvi.

ωAi(−1, y) = −cy2
(27y2 − 8)

3, ωAii(−1, y) = cy6
(27y2 − 4),

ωBi(1, y) = cy4
(1− 4y)

2
(1− 3y)

3, ωBii(1, y) = cy6
(2 + 3y)

2
(1 + 3y),

ωBiii(1, y) = cy8
(9 + 40y), ωBiv(1, y) = cy7

(9− 4y)
2,

ωBv(1, y) = cy8
(27 + 4y), ωBvi(1, y) = cy5

(3− 64y)
2
(2− y)

3,
ωBvii(1, y) = cy7

(16y2
+ 13y + 8), ωHi(1, y) = cy2

(2− 5y)
5
(2 + 27y)

3,
ωHii(1, y) = cy5

(4− 27y)
5
(12− y)

4, ωHiii(1, y) = cy7
(1− 54y)

3,
ωHiv(1, y) = −cy9

(4 + 27y), ωHv(1, y) = −cy8
(1 + y)

2,
ωHvi(1, y) = −cy8

(27y2
+ 14y + 3), ωHvii(1, y) = cy9

(4 + 27y),
ωHviii(1, y) = −cy7

(3 + y)
2
(32 + 27y).
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LAi :={x=ε}

∗1

Figure 1: bifurcation set BAi in TAi

Remember that HX = π−1
(LX). We apply, now, Zariski-van Kampen

method (see [Ch],[T-S] for instance) to calculate the fundamental group π1(HX \
CX , ∗X) of the complement of the plane curve CX := HX ∩DX in the yz-plane.

Let us explain the step wisely the process more in details.

1. Choose a base point ∗X in LX \ (LX ∩BX) and call the associated pencil

l∗1 := π−1
(∗1) the basic pencil.

2. Choose and fix (i) the base point ∗X ∈ l∗1\(l∗1∩DX) and (ii) three mutually

disjoint (except at ∗X) path connecting ∗X with the three points l∗1∩DX in the

basic pencil. Accordingly, fix three the generators, say a, b and c, of the free

group F3 :=π1(l∗1 \(l∗1∩DX), ∗X) (they are presented by the movements from

∗X to close to the points on DX along paths, then turn once around the end

points of the paths counterclockwise, and then return to ∗X along the paths).

3. Move the pencils lt := π−1
(t) by moving t along a closed path γ in

LX \ (LX ∩BX) turning around a bifurcation point in LX ∩ BX . This induces

a (braid) action γ∗ : F3 → F3, and we define the relations: γ∗(a) = a, γ∗(b) =

b, γ∗(c) = c. Running γ over all generators of π1(Lx \ (LX \ (LX ∩BX), ∗1), we

obtain all list of defining relations of the group π1(HX \ CX , ∗X).

Actually, in most of the cases except for the cases X ∈ {Bvii,Hii,Hvi,Hviii},
we can find totally real region in LX in the sense that, if ∗1 ∈ {totally real

region}, three roots l∗1 ∩ DX of the equation ∆X(ε, ∗1, z) = 0 with respect to

the coordinate z of the pencil are real numbers. In such case, we choose the

base point ∗X and then the paths a, b, c in the basic pencil l∗1 as in Figure 2.

along three intervals connecting ∗X with the points in l∗1 ∩DX .

∗X

l∗1,Rt3 t2 t1

c b a

z-plane
= the complex pencil l∗1,C

Figure 2. The generators a, b and c (see also Figures 3.1-3.11).
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The following Figure 3. briefly describes the real plane curve CX,R = HX,R∩
DX and the real basic pencil l∗1,R inside the real plane HX,R for all X except

for the cases X ∈ {Bvii,Hii,Hvi,Hviii}.
a

b

c

l∗1,R

Ai.

a

b

c

l∗1,R

Aii.

b
c

a

l∗1,R

Bi.

c
b
a

l∗1,R

Bii.

b

l∗1,R

c

a

Biii.

l∗1,R

a

b

c

Biv.

a

b
c

l∗1,R

Bv.
a

b

c

l∗1,R

Bvi. a

b

c

l∗1,R

Hi.

a
b

c

l∗1,R

Hiii.

l∗1,R

a
b

c

Hiv.

l∗1,R

a

c

b

Hvii.

Figure 3. Real plane curve CX,R and the pencil l∗1,R in the real plane HX,R.

For the remaining cases X ∈ {Bvii,Hii,Hvi,Hviii}, some more careful consid-

erations are necessary. We briefly indicate the choices of ∗1 in the (complex)

line LX , the base point ∗X and then the paths a, b, c in the basic (complex)

pencil l∗1 along the intervals connecting ∗X and the three points l∗1 ∩DX as in

Figure 4.1-4.5. We indicate also the bifurcation points LX ∩BX and the paths

γi which shall be used in the step 3. of Zariski-van Kampen method.
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γ2

γ3

0Bvii

∗1 Re

Bvii.

LBvii,C∗Bvii

l∗1,C

γ3 γ2

4
27

Re
0

c
b a

Im

∗1
γ112

Hii.
∗Hii

l∗1,C

LHii,C

c
a

b
0

γ2 γ1

∗Hv

l∗1,C

LHv,C

Im

∗1

Re

Hv.
Im

γ1

γ3

∗Hvi

l∗1,C

Re∗1

LHvi,C

γ2 0

b
a

c

Hvi.

Im

-3 γ3 γ1

∗1

∗Hviii

l∗1,CLHviii,C

c

Re
0

b a

γ2− 32
27

Hviii.

Figure 4. Complex line BX,C and complex pencil l∗1,C.

For each type X of 17 polynomials, applying Zariski-van Kampen method to

the generators a, b and c explained above, we obtain the following presentations

of the fundamental group π1(SX \DX , ∗X) ∼= π1(HX \ CX , ∗X).
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Table 1.

π1(SAi \DAi , ∗Ai)
∼= π1(HAi \ CAi , ∗Ai)

∼=
〈
a, b, c

∣∣∣∣
ab = ba,
bcb = cbc,
aca = cac

〉
.

π1(SAii \DAii , ∗Aii)
∼= π1(HAii \ CAii , ∗Aii)

∼=
〈
a, b, c

∣∣∣∣∣
ababab = bababa,

aba = bab,
b = c

〉
.

π1(SBi \DBi , ∗Bi)
∼= π1(HBi \ CBi , ∗Bi)

∼=
〈
a, b, c

∣∣∣∣∣

abab = baba,
bc = cb,
aca = cac,
cbac = baca

〉
.

π1(SBii \DBii , ∗Bii)
∼= π1(HBii \ CBii , ∗Bii)

∼=
〈
a, b, c

∣∣∣∣∣
ababab = bababa,

bc = ab,
ac = ca

〉
.

π1(SBiii\DBiii , ∗Biii)
∼= π1(HBiii \CBiii , ∗Biii)

∼=
〈
a, b, c

∣∣∣∣∣

a = b,
a = cbab−1c−1,

b = cbacbc−1a−1b−1c−1,
c=cbacbcb−1c−1a−1b−1c−1

〉
.

π1(SBiv \DBiv , ∗Biv) ∼= π1(HBiv \CBiv , ∗Biv) ∼=
〈
a, b, c

∣∣∣∣∣

acb = cba,
bcba = cbac,
cbac = bacb,
ab = ba

〉
.

π1(SBv \DBv , ∗Bv) ∼= π1(HBv \ CBv , ∗Bv) ∼=
〈
a, b, c

∣∣∣∣ a = b = c

〉
.

π1(SBvi \DBvi , ∗Bvi)
∼= π1(HBvi \ CBvi , ∗Bvi)

∼=
〈
a, b, c

∣∣∣∣∣
aba = bab,
aca = bac,

acaca = cacac

〉
.

π1(SBvii \DBvii , ∗Bvii)
∼= π1(HBvii \ CBvii , ∗Bvii)

∼=
〈
a, b, c

∣∣∣∣∣

a = b−1cbab−1cbab−1cbab−1cba−1b−1c−1ba−1b−1c−1ba−1b−1c−1b,
c = bab−1cbab−1cbab−1cbab−1c−1ba−1b−1c−1ba−1b−1c−1ba−1b−1,

a = ba−1b−1c−1bab−1cbab−1,
cba = bab, cba = bcb, cba = bab−1c−1b−1cbcb

〉
.

π1(SHi \DHi , ∗Hi)
∼= π1(HHi \ CHi , ∗Hi)

∼=
〈
a, b, c

∣∣∣∣∣
ababa = babab,

bc = cb,
aca = cac

〉
.

π1(SHii \DHii , ∗Hii)
∼= π1(HHii \ CHii , ∗Hii)

∼=
〈
a, b, c

∣∣∣∣∣
abab = baba,
aca = bac,

acaca = cacac

〉
.

π1(SHiii \DHiii , ∗Hiii)
∼= π1(HHiii \ CHiii , ∗Hiii)

∼=
〈
a, b, c

∣∣∣∣∣
aba = bab,
bcba = cbac,
cba = acb

〉
.

π1(SHiv \DHiv , ∗Hiv) ∼= π1(HHiv \ CHiv , ∗Hiv) ∼=
〈
a, b, c

∣∣∣∣ a = b = c

〉
.

π1(SHv \DHv , ∗Hv) ∼= π1(HHv \ CHv , ∗Hv) ∼=
〈
a, b, c

∣∣∣∣∣

acba = cbac,
bcbac = cbacb,
bacb = cbac,
bc = cb

〉
.
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π1(SHvi \DHvi , ∗Hvi)
∼= π1(HHvi \ CHvi , ∗Hvi)

∼=
〈
a, b, c

∣∣∣∣∣
abababab = babababa,

ba = cb,
ac = ba

〉
.

π1(SHvii\DHvii, ∗Hvii)
∼=π1(HHvii\CHvii , ∗Hvii)

∼=
〈
a, b, c

∣∣∣∣∣

a = cbaca−1b−1c−1,
b = cbacbc−1a−1b−1c−1,
c=cbacbab−1c−1a−1b−1c−1,

b = c

〉
.

π1(SHviii\DHviii, ∗Hviii)
∼=π1(HHviii\CHviii, ∗Hviii)

∼=
〈
a, b, c

∣∣∣∣∣
abababa = bababab,

ab = bc,
ac = ca

〉
.

4 Positive Homogeneous Presentation

In the present section, we rewrite the presentations of the fundamental groups in

section 3 to a positive homogeneous form. We, first, prepare some terminology.

Definition. 1. Let G = 〈L | R〉 be a presentation of a group G, where L is the

set of generators (called alphabets) and R is the set of relations. We call that

the presentation is positive homogeneous, if R consists of relations of the form

Ri=Si where Ri and Si are positive words in the letters L (i.e. words consisting

of only non-negative powers of the letters in L) of the same length.

2. If a positive homogeneous presentation 〈L | R〉 of a group G is given, then

we associate a monoid M defined as the quotient of free monoid L∗ generated

by L by the equivalence relation ' defined as follows:

1) two words U and V in L∗ are called elementarily equivalent if either U = V
or V is obtained from U by substituting a substring Ri of U by Si where Ri=Si
is a relation of R (Si = Ri is also a relation if Ri = Si is a relation),

2) two words U and V in L∗ are called equivalent, denoted by U ' V , if

there exists a sequence U=W0,W1, · · · ,Wn=V of words in L∗ for n∈Z≥0 such

that Wi is elementarily equivalent to Wi−1 for i = 1, · · · , n.

3. The natural homomorphism M → G will be called the localization mor-
phism. The image of the localization homomorphism is denoted by G+

.

Note. 1. The monoid G+
depends on the choice of the generators for the group

G. Even if we choose the same generators for the same group G, the monoid M
depends on the choice of the relations R.

2. Due to the homogeneity of the relations, one defines a homomorphism:

l : G −→ Z
by associating 1 to each letter in L. The restriction of the homomorphism on

G+
and its pull-back to M by the localization homomorphism are called length

functions. Length functions have the additivity: l(UV ) = l(U) + l(V ) and the

conicity: l(U) = 1 implies U = 1. The existence of such length functions implies

that the monoids M and G+
are atomic ([D-P, §2]).

Theorem 1. The fundamental group in Table 1. of type X is naturally isomor-
phic to the following positive homogeneously presented group GX by identifying
the generators {a, b, c} in the both groups.
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Ai : GAi :=

〈
a, b, c

∣∣∣∣
ab = ba,
bcb = cbc,
aca = cac

〉
.

Aii : GAii :=

〈
a, b, c

∣∣∣∣
aba = bab,
b = c

〉
.

Bi : GBi :=

〈
a, b, c

∣∣∣∣
abab = baba,
bc = cb,
aca = cac

〉
.

Bii : GBii :=

〈
a, b, c

∣∣∣∣
cbb = bba,
bc = ab,
ac = ca

〉
.

Biii : GBiii :=

〈
a, b, c

∣∣∣∣
a = b,
ac = ca

〉
.

Biv : GBiv :=

〈
a, b, c

∣∣∣∣
ab = ba,
bcb = cbc,
ac = ca

〉
.

Bv : GBv :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.

Bvi : GBvi:=

〈
a, b, c

∣∣∣∣

aba=bab, bcb=cbc, aca=bac, cab=bca, acb=cac,
abb = bbc, bcca = ccac, bbac = caab, cbbb = bbba,
acbcb=bccca, accbb=bccba, accaa=ccaac, caacc=aacca,
acccc = bcccb, bbaac = cbaab, caaab = abaac,
a5

= b5 = c5, ccbaac = accbaa

〉
.

Bvii : GBvii :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.

Hi : GHi :=

〈
a, b, c

∣∣∣∣
ababa = babab,

bc = cb,
aca = cac

〉
.

Hii : GHii :=

〈
a, b, c

∣∣∣∣ RHii

〉
(RHii is given at the end of present Table).

Hiii : GHiii:=

〈
a, b, c

∣∣∣∣

aba=bab, aca=cac, bcb=abc, cba=acb, bca=cbc,
baa = aac, accb = ccbc, aabc = cbba, caaa = aaab,
bcaca=acccb, bccaa=accab, bccbb=ccbbc, cbbcc=bbccb,
bcccc = accca, aabbc = cabba, cbbba = babbc,
a5

= b5 = c5, ccabbc = bccabb

〉
.

Hiv : GHiv :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.

Hv : GHv :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.

Hvi : GHvi :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.

Hvii : GHvii :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.

Hviii : GHviii :=

〈
a, b, c

∣∣∣∣ a = b = c

〉
.
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RHii :=

{

abab = baba, aca = bac, bcbc = cbcb, acb = cac, bbcaba = abccac,
abbbca = baaaac, bbbabb = abbaaa, baaaaba = abbbbab,
baabbb = aaabaa, abccc = cccab, bbcbab = cccaac,
cccbcaa = bbbccab, bccbbb= cccbcc, bbccab = caaccc,
ccaac = bccaa, ccaab = accaa, ccabaac = accbcaa,
caaccab = bcaacca, aabaaa = bbbaab, bbbaaa = aaabbb,
abaaaab = babbbba, aaabba = bbabbb, baabbaa = aabbaab,
baabaabaa = abbabbabb, aabbaac= babbcaa, aaabc = bcaaa,
abbaabaac = babbabbca, cccaaa = aaaccc, cccbbb = bbbccc,
caacaac = aabccba, bbbcbb = cbbccc, abacbc = cbcaba,
cbbbbcb = bccccbc, cabbbc = accccb, bcccccaa = cbbbcaac,
ccbccc = bbbccb, cbcaaab = bcccaba, caabcb = baccca,
bcbaab = aaccba, baaccbbc = caccabcb, bccabb = accaaa,
babcbab = cabcaca, caabbbbcb= bacccccca, cbaacc = bccbab,
abcbaa = ccbabb, bcbbaa = ccbbab, caacac = babcca,
cbbaaaacc = acacbbcba, caaaacc = aabccca, bcabbcc = aabbcbb,
bbcaabc = cccaabb, cbbcaab = bccabba, bbaabba = abbaabb,
abaabcc = bbabbcb, bacbcab = cabcaba, cbcabca = bcaacab,
caaccbba = bcabcaab, babbcbb= aabccbc, bbcbbb = cccbbc,
bcbbbbc = cbccccb, bccbbabbc = abcabccba, bbabcbbab= cbbabbccc,
cabaaccc = abbcbbab, bacabc = cbcabb, bcabaab = abcabaa,
aaccbcab = bcabaacc, cbaabcc = baccbca, cccbaabc = baaccaba,
bccbaabc = cabacbca, abaabcaba = bbaabcabb, ccbbaaa = aaaccbb,
ccbbaabca = abcabbaac, baabcabba= abacabaab, bcaabb= aaacca,
accbbcc = ccabbcb, bbcabbccc = abbabbccb, bcaaccbc= abcabcca,
cabaabcc = babccbca, babccba = cbbabcb

}

Proof. Except for the types Bii,Bvi,Hii,Hiii,Hviii, the relations are obtained by

elementary reductions of the Zariski-van Kampen relations, and we omit details.

Some new relations for the cases of types Bii,Bvi,Hii,Hiii are obtained by

cancelling common factors from the left or from the right of equivalent expres-

sions of the same fundamental elements (introduced in §6 6.1. See §7 Definition

7.1), where these equivalent expressions of a fundamental element are obtained

by the help of Hayashi’s computer program (see http://www.kurims.kyoto-

u.ac.jp/ saito/SI/). In the following, we sketch how some of them are obtained

by hand calculations. In the proof, “the first relation, the second relation, . . . ”,

mean “the relation which is at the first place, the second place, . . . in Table 1.

of Zariski-van Kampen relations in §3”.

The case for the type Hviii needs to be treated separately because its calcu-

lations are non-trivial. Detailed verifications are left to the reader.

Bii: Using ab = bc, rewrite the LHS ababab (resp. RHS bababa) of the first

relation to bcabbc (resp. babbca). Then, using the commutativity of a and c, we

cancel ba from left and c from right so that we obtain a new relation cbb = bba.

Bvi: Using aca = bac, rewrite the LHS acaca of the third relation to acbac
so that the relation turns to acbac = cacac. We cancel ac from right and obtain

11



a new relation acb = cac. Using this, one has bcbac = bcaca = bacba = acaba =

cacab = cbacb = cbcac. We cancel ac from right and obtain bcb = cbc. Using

this, one has acabc = bacbc = babcb = abacb = abcac. Cancelling a and c for

left and right, we obtain a new relation cab = bca. Using this, one has cabba =

bcaba = bcbab = cbcab = cbbca. Cancelling c and a for left and right, we obtain

a new relation abb = bbc. The last relation of length 4 is obtained by cancelling

a from left of the equality: abbac = abbac = bbcac = bbacb = bacab = acaab.

Hii: Using aca = bac, rewrite the LHS acaca of the third relation to acbac
so that the relation turns to acbac = cacac. We cancel ac from right so that we

obtain a new relation acb = cac.

Hiii: Multiply b to the second relation from the right, and rewire the LHS

to bcaba (by a use of bab = aba and rewrite the RHS to cbcba (by a use of

acb = cba). Cancelling by ba from right, we obtain a new relation bca = cbc.
Using the length 3 relations, on has acabc = acbcb = cbacb = cbcba =

cabca = cacbc. Cancelling by bc from right, we obtain a new relation aca = cac.
Using the length 3 relations, on has bcaac = cbcac = cbaca = acbca =

abcaa = bcbaa. Cancelling by bc from left, we obtain a new relation aac = baa.

In the above sequence, the middle term acbca is also equivalent to accbc.
Thus, cancelling c from right, we obtain a new relation accb=cbca(=bcaa).

Hviii: From the defining relations, we have abababa = bcbcbca, bababab =

bbcbcbc, and, hence, bcbcbca = bbcbcbc. Dividing by b from the left, we get

cbcbca = bcbcbc. The left hand side of this equality is equivalent to cabbca =

acbbca, and the right hand side of the equality is equivalent to abbcbc so that

acbbca ' abbcbc. dividing by a from the left, we get bbcbc ' cbbca ' cbbac.
Dividing by c from the light, we get cbba ' bbcb(' babb) (1). Multiplying cbcb
from the right, we get cbbacbcb ' bbcbcbcb. The right hand side is equivalent

to bbcbcbcb ' bcbcbcbc ' cbcbcbcc ' cbcbcabc ' cbcbacbc. The left hand side is

equivalent to cbbacbcb ' cbbcabcb ' cbababcb, and hence cbababcb ' cbcbacbc.
dividing by cb from the left, we get cbacbc ' ababcb. The left hand side is

equivalent to cbacab ' cbaacb. Dividing by cb from the right, we get abab ' cbaa
(2). Mutiplying b from the right, the left hand side is equivalent to acbba '
cabba ' cbcba so that cbcba ' cbaab. Dividing by cb from the left, we get

cba ' aab (3). Applying (3) to the equality (2), we get abab ' cbaa ' aaba.

Dividing by a from the left, we get bab ' aba ' bca. Dividing by b from the

left, we get ab ' ca = ac, and hence b = c.

Notation. For each type X ∈ {Ai,Aii,Bi,Bii,Biii,Biv,Bv,Bvi, Bvii,Hi,Hii,Hiii,
Hiv,Hv, Hvi,Hvii,Hviii}, we denote by GX , MX and G+

X the group, the monoid
and the image of localization: MX →GX , respectively, associated with the
positive homogeneous relations of type X given in Theorem. 1.

From the presentations, we immediately observe the followings.

Corollary. i) For the type X ∈ {Ai,Aii,Bi,Biv,Hi}, the monoid MX and the
group GX is an Artin monoid and an Artin group of type A3, A2, B3, A3, A1×
A2 and H3, respectively. We have the natural isomorphisms: MX ' G+

X .
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ii) For the type X ∈ {Bv,Bvii,Hiv,Hv,Hvi,Hvii,Hviii}, the monoid MX and
the group GX is the infinite cyclic monoid Z≥0 and group Z, respectively. The
monoid MBiii and the group GBiii is a free abelian monoid (Z≥0)

2 and group Z2

of rank 2. We have the natural isomorphisms: MX ' G+
X .

iii) The correspondence: {a 7→ b, b 7→ a, c 7→ c} induces an isomorphism:

MBvi ' MHiii

and, hence, also the isomorphisms: GBvi ' GHiii and G+
Bvi
' G+

Hiii
.

(Proof. We can show that the Zariski-van Kampen relations of one of the two

types can be deduced, up to the transposition of a and b, from that of the other

type. 2) Note that the isomophism does not identify the Coxeter elements.

As the consequence of Corollary, in the rest of the present paper, we shall

focus our attention to the remaining 4 types Bii,Bvi,Hii and Hiii together with

the “constraint Bvi ' Hiii”.

Remark 4.1. The group GX is naturally isomorphic to the fundamental group,

which does not depend on the choice of Zariski-van Kampen generators {a, b, c},
but the monoid G+

X depends on that choice (see next Remark 4.2).

Further more, the monoid MX , a priori, depends on the choice of relations

in Theorem 1. The isomorphism MX ' G+
X in the above corollary follows from

cancellation conditions on MX (see [B-S]). We shall show that, also for MBii

in §7, the cancellation condition holds, implying MBii'G+
Bii

. Thus, for these

cases as a consequence of the cancellation condition, MX does not depend on

the choice of relations in Theorem 1. However, for the remaining types Bvi, Hii

and Hiii, it may be still possible that we need more relations in order to obtain

the isomorphism MX'G+
X .

Remark 4.2. Recall that, in the present paper, the generators a, b, c are pre-

sented by the paths, which start from the base point ∗X and move along the

intervals connecting ∗X and the three points DX ∩ l∗1 in the pencil l∗1,C and

turn once counterclockwise the points DX ∩ l∗1 and then return to ∗X along

the interval (see Fig. 2). Then, the set of the tuples generator system a, b, c
explained in §3.3 admits the action of the braid group B(3) of three strings,

which changes associated relations. Here is a remarkable observation.

Assertion. Recall the projection π : SBii ' C3 → TBii ' C2. Then, for any
choice of Zariski-van Kampen generator system {a, b, c} (up to a permutation)
in a pencil with respect to π (i.e. a fiber of π) admit only one of the following
two presentations I. and II.

I :

〈
a, b, c

∣∣∣∣
cbb = bba,
bc = ab,
ac = ca

〉
.

II :

〈
a, b, c

∣∣∣∣
ababab = bababa,

b = c,
aabab = baaba

〉
.
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Corollary. The groups GBvi and GHiii do not admit Artin group presentation
with respect to any Zariski-van Kampen type generator system.

Proof. Due to Theorem 1., both groups have the relations: a5
= b5 = c5, which

are invariant by the change of generator system by the braid group B(3).

5 Non-division property of the monoid G+

X

In the present section, we show that none of the monoids G+
X of the four types

Bii,Bvi,Hii and Hiii does admit the divisibility theory ([B-S, §4]), and therefore

the monoid is neither Gaussian, Garside nor Artin.

We first recall some terminology and concepts on the monoid G+
.

An element U ∈G+
is said to divide V ∈G+

from the left (resp. right), denoted

by U |lV (resp. U |rV ), if there exists W ∈G+
such that V =UW (resp. V =WU).

We also say V is left-divisible by U , or V is a left-multiple of U .

We say that G+ admits the left (resp. right) divisibility theory, if for any two

elements U, V of G+
X , there always exists their left (resp. right) least common

multiple, i.e. a left (resp. right) common multiple which divides any other left

(resp. right) common multiple, denoted by lcml(U, V ) (resp. lcmr(U, V )).

Theorem 2. The monoids G+
Bii
, G+

Bvi
, G+

Hii
, G+

Hiii
admits neither the left-divisibility

theory nor the right divisibility theory.

Proof. We claim a fact, which shall be proven in §8 Theorem 5 ii) independent

of the results of §5, 6 and 7.

Fact. None of the groups GBii , GBvi , GHii and GHiii is abelian.

Assuming that the monoid G+
X admits the left division theory, we show that

GX becomes an abelian group: a contradiction! to Fact. The case for the

right-division theory can be shown similarly.

1) G+
Bii

: It is immediate to see l(lcml(b, c)) > 2 from the defining relations

in Theorem 1. Then, bba = cbb is a common multiple of b and c of the shortest

length 3, and, hence, should be equal to lcml(b, c). On the other hand, we have

the following sequence of elementary equivalent words: bcba, bbba, acbb, cabb.
That is, bcba = cabb in G+

Bii
is another common left-multiple of b and c. If

bba = cbb divides bcba = cabb from the left, there exists d ∈ {a, b, c} such that

bcba = bbad. So, in G+
Bii

, we have cba = bad which is again a common left-

multiple of b and c. Thus, we have the equality: cba = cbb in G+
Bii

. That is,

a = b in G+
Bii

. By adding this relation a = b to the set of the defining relations

of the group GBii , we get GBii'Z. A contradiction!

2) G+
Bvi

: Due to the first defining relation in Theorem 1., we have l(lcml(a, b))
≤ 3. Let us consider 3 cases:

i) l(lcml(a, b)) = 1. This means l(lcml(a, b)) = a = b. By adding this relation

to the defining relation of the group GBvi , we get GBvi ' Z. A contradiction!
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ii) l(lcml(a, b)) = 2. This means that there exists u, v ∈ {a, b, c} such that

l(lcml(a, b)) = au = bv. Depending on each choice of u and v, one can show

that this assumption leads to a contradictory conclusion GBvi ' Z. Details are

left to the reader.

iii) l(lcml(a, b)) = 3. In view of the first two defining relations in Theorem

1., one has aba = bab = aca = bac. By adding this relation to the set of the

defining relations of the group GBvi , we get GBvi'Z. A contradiction!.

3)G+
Hii

: Due to the second defining relation in Theorem 1., we have l(lcml(a, b))
≤ 3. Let us consider 3 cases:

i) l(lcml(a, b)) = 1. This means l(lcml(a, b)) = a = b. By adding this relation

to the defining relation of the group GHii , we get a contradiction GHii ' Z.

ii) l(lcml(a, b)) = 2. This means that there exists u, v ∈ {a, b, c} such that

l(lcml(a, b)) = au = bv. Depending on each choice of u and v, one can show

that this assumption leads to a contradictory conclusion GHii ' Z. Details are

left to the reader.

iii) l(lcml(a, b)) = 3. In view of the first two defining relations, one has

lcml(a, b) = aca= bac, and it divides abab= baba (from left). This means that

there exist d ∈ {a, b, c} such that cd = ba in GHii . For each case d = a, b or c
separately, one can show that GHii'Z. A contradiction!.

4)G+
Hiii

: Due to the first defining relation in Theorem 1., we have l(lcmr(a, b))≤
3. Let us consider 3 cases:

i) l(lcmr(a, b)) = 1. This means l(lcmr(a, b)) = a = b. By adding this

relation to the defining relation of the groupGHiii , we get a contradictionGHiii '
Z.

ii )l(lcmr(a, b)) = 2. This means that there exists u, v ∈ {a, b, c} such that

l(lcmr(a, b)) = ua = vb. Depending on each choice of u and v, one can show

that this assumption leads to a contradictory conclusion GHiii ' Z. Details are

left to the reader.

iii) l(lcmr(a, b)) = 3. In view of the first two defining relations, one has

lcmr(a, b)=aba= bab= cba=acb. This leads to a conclusion GHiii'Z, which is

a contradiction!. These complete the proof of Theorem 2.

Corollary 5.1. The monoids G+
Bii
, G+

Bvi
, G+

Hii
, G+

Hiii
are not Gaussian, where a

monoid is Gaussian if it is atomic, cancellative and admits divisibility theory
([D-P, §2]). Hence, they are neither Artin groups nor Garside groups.

6 Fundamental elements of the monoid MX

Artin monoid of finite type has a particular element, denoted by ∆ and called

the fundamental element ([B-S] §6). We want to generalize the concept for our

new setting. However, in view of Theorem 2, we cannot employ the original

definition: the left and right least common multiple of the generators. Analyz-

ing equivalent defining properties of the fundamental element for Artin monoid

case, we consider two classes of elements in the monoid M : quasi-central ele-

ments and fundamental elements, forming submonoids QZ(M) and F(M) in
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M , respectively, with F(M) ⊂ QZ(M). The goal of the present section is to

show F(MX) 6= ∅ for all types X , implying also F(G+
X) 6= ∅ for all types X .

Let M be a monoid given in §4, i.e. defined by a positive homogeneous

relations on a generator set L. Let us denote by L/ ∼ the quotient set of L
divided by the equivalence relation generated by the equalities between two

alphabets (in the relation set R). An element ∆ ∈ M is called quasi-central
([B-S] 7.1), if there exists a permutation σ∆ of L/∼ such that

a ·∆ = ∆ · σ∆(a)

holds for all generators a ∈ L/∼. The set of all quasi-central elements is denoted

by QZ(M). The following is an immediate consequence of the definition.

Fact 2. The QZ(M) is closed under the product. For two elements ∆1,∆2 ∈
QZ(M), we have σ∆1·∆2 = σ∆2 · σ∆1 .

According to Fact 2., we introduce an anti-homomorphism:

σ : QZ(M) −→ S(L/∼), ∆ 7→ σ∆.

The kernel of σ is the center Z(M) of the monoid M .

Next, we introduce the concept of a fundamental element.

Definition 6.1. An element ∆ ∈ M is called fundamental if there exists a

permutation σ∆ of L/∼ such that, for any a ∈ L/∼, there exists ∆a ∈ G+
X

satisfying the following relation:

∆ = a ·∆a = ∆a · σ∆(a).

We denote by F(M) the set of all fundamental elements of M . Note that

1 ∈ QZ(M) but 1 6∈ F(M)

Fact 3. The F(M) is an idealistic submonoid of QZ(M). That is, the following
two properties hold.

i) A fundamental element is a quasi-central element: F(M) ⊂ QZ(M). The
associated permutation of L/∼ as a fundamental element coincides with that as
a quasi-central element.

ii Products ∆ ·∆′ and ∆
′ ·∆ of a fundamental element ∆ and a quasi-central

element ∆
′ are again fundamental elements whose permutation of L/∼ is given

in Fact 2. We have (∆∆
′
)a = ∆a∆

′, and (∆
′
∆)a = ∆

′
∆σ∆′ (a).

F(M)QZ(M) = QZ(M)F(M) = F(M).

Proof. i) We have a ·∆ = a·∆a ·σ∆(a)=∆·σ∆(a) for all a∈L/∼.

ii) We prove only the case ∆ ·∆′.
On one side, one has:

∆ ·∆′ ' (a ·∆a) ·∆′ ' a · (∆a ·∆′).
On the other side, one has:

∆ ·∆′ ' (∆a · σ∆(a)) ·∆′ ' ∆a · (σ∆(a) ·∆′) ' ∆a · (∆′ · σ∆′(σ∆(a)))

' (∆a ·∆′) · σ∆′(σ∆(a)) ' (∆a ·∆′) · σ∆∆′(a)).
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One basic property of a fundamental element is that it can be a universal

denominator for the localization morphism (c.f. §7 Lemma7.2 2.).

Fact 4. Let ∆ be a fundamental element of M . Then, for any U ∈ M , U
divides ∆

l(U) from the left and from the right.

Proof. We prove only for the left division. Right division can be shown similarly.

We show the statement by induction on l(U), where the case l(U) = 1 follows

from the definition of a fundamental element. Let l(U) > 1 and U ' U ′ · a. By

induction hypothesis, we have ∆
l(U)−1 ' U ′ · V for some V . Then, multiplying

∆ from the right, we have ∆
l(U) ' U ′ ·V ·∆ ' U ′ ·∆ ·σ(V ) ' U ′ · a ·∆a ·σ(V ).

Here, if V is a word v1 · · · vn then σ(V ) is a word σ(v1) · · ·σ(vn)

Remark 6.2. If M is an indecomposable Artin monoid (of finite type), then

any non-trivial quasi-central element is fundamental ([B-S] 5.2 and 7.1). That

is, one has the “opposite” inclusion: (QZ(M)\ {1}) ⊂ F(M).

Remark 6.3. By the definition, any fundamental element is divisible from

both left and right by all generators in L. However, (non-trivial) quasi-central

element in general may not have this property.

(i) b3 ∈ QZ(MBii) is central. However, it is not divisible by a and c from

the left and right.

(ii) ababa ∈ MBii is divisible by all generators from both sides, but it does

not belong to QZ(MBii).

We state the second main result of the present paper.

Theorem 3. The following elements ∆X belong to F(MX) for any type X.

Ai : ∆Ai := (cba)
2 σ :

(a, b, c
c, b, a

)

Aii : ∆Aii := aba σ :
(a, b=c
b=c, a

)

Bi : ∆Bi := (cba)
3 σ :

(a, b, c
a, b, c

)

Bii : ∆Bii1 := (ab)3 σ :
(a, b, c
a, b, c

)

∆Bii2 := (bcc)3 ' (cba)
3 σ :

(a, b, c
a, b, c

)

Biii : ∆Biii := ac σ :
(a=b, c

a=b, c

)

Biv : ∆Biv := abcb σ :
(a, b, c
a, c, b

)

Bv : ∆Bv := a σ :
(a=b=c

a=b=c

)

Bvi : ∆Bvi1 := a5 ' b5 ' c5 σ :
(a, b, c
a, b, c

)

∆Bvi2 := (aba)
2 σ :

(a, b, c
a, b, c

)

∆Bvi3 := bccabcb σ :
(a, b, c
a, b, c

)

∆Bvi4 := (bbac)2 σ :
(a, b, c
a, b, c

)

∆Bvi5 := (acaca)
2 σ :

(a, b, c
a, b, c

)

∆Bvi6 := (cba)
3 σ :

(a, b, c
a, b, c

)

∆Bvi7 := (cab)5 σ :
(a, b, c
a, b, c

)
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Bvii : ∆Bvii := a σ :
(a=b=c

a=b=c

)

Hi : ∆Hi := (cba)
5 σ :

(a, b, c
a, b, c

)

Hii : ∆Hii1 := (acaca)
2 ' (ac)5 σ :

(a, b, c
a, b, c

)

∆Hii2 := (babac)3 ' (cba)
5 σ :

(a, b, c
a, b, c

)

Hiii : ∆Hiii1 := a5 ' b5 ' c5 σ :
(a, b, c
a, b, c

)

∆Hiii2 := (aba)
2 σ :

(a, b, c
a, b, c

)

∆Hiii3 := accbaca σ :
(a, b, c
a, b, c

)

∆Hiii4 := (bcba)
2 σ :

(a, b, c
a, b, c

)

∆Hiii5 := (bcbcb)2 ' (bc)5 σ :
(a, b, c
a, b, c

)

∆Hiii6 := (abc)3 σ :
(a, b, c
a, b, c

)

∆Hiii7 := (cba)
5 σ :

(a, b, c
a, b, c

)

Hiv : ∆Hiv := a σ :
(a=b=c

a=b=c

)

Hv : ∆Hv := a σ :
(a=b=c

a=b=c

)

Hvi : ∆Hvi := a σ :
(a=b=c

a=b=c

)

Hvii : ∆Hvii := a σ :
(a=b=c

a=b=c

)

Hviii : ∆Hviii := a σ :
(a=b=c

a=b=c

)

Proof. Since the cases for an Artin monoid or a free abelian monoid are classical,

we show only the 4 exceptional cases.

Bii :

∆Bii1 := ababab.
∆Bii1 = a(babab),
∆Bii1 ' bcabab ' bacbab ' bacbbc ' babbac ' babbca ' (babab)a.

∆Bii1 ' b(ababa),

∆Bii1 = (ababa)b.

∆Bii1 ' bababa ' bbcaba ' bbacba ' c(bbcba),

∆Bii1 ' bcbcbc ' bcabbc ' bacbbc ' babbac ' (bbcba)c.

∆Bii2 := (bcc)3.

∆Bii2 = b(ccbccbcc) ' abcbccbcc ' aabbccbcc ' aabbccabc
' aabbaccbc ' aacbbccbc ' caabbccbc ' caabbccab
' caabbaccb ' caacbbccb ' ccaabbccb ' ccabcbccb
' ccbccbccb = (ccbccbcc)b.

∆Bii2 ' a(bcbccbcc) ' bccbccbcc ' bccabcbcc ' bccaabbcc
' bcaacbbcc ' bcaabbacc ' bcabcbacc ' bcbccbacc
' bcbccbcca = (bcbccbcc)a.

∆Bii2 ' c(aacbbccb) ' aaccbbccb ' aacbbaccb ' aacbbcacb
' aacbbccab ' aacbbccbc = (aacbbccb)c.
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Bvi : Due to Remark. after Theorem 1. in §4, we may reduce the proof to

the case Hiii.

Hii : First, let us show a relation: acaca = cacac (acaca ' acbac ' cacac),
which shall be used in the sequel.

∆Hii1 := acacaacaca.
∆Hii1 = a(cacaacaca) ' cacacacaca ' (cacaacaca)a.

∆Hii1 ' c(acacacaca) ' acacaacaca ' (acacacaca)c.

∆Hii1 ' acacaacaca ' b(accaacaca) ' acacaacaca ' acacacacac
' accacaccac ' accaacbcac ' accaacbacb ' (accaacaca)b,

∆Hii2 := babacbabacbabac ' ababcbabacbabac.
∆Hii2 = a(babcbabacbabac) ' bababcbabacbabac ' babcacabacbabac
' babcbacbacbabac ' babcbacacababac ' babcbaacbababac
' babcbaacababbac ' babcbabacbabbac' (babcbabacbabac)a.

∆Hii2 = b(abacbabacbabac) ' ababcbabacbabac ' ababcababcbabac
' ababcababcbaaca ' ababcbabacbaaca ' ababacbaacabaaca
' ababcbaacababac ' ababcbaacbabaac ' ababcbacacabaac
' ababcacaacabaac ' ababacbaacabaac ' abaacabaacabaac
' abaacababacbaac ' abaacbabaacbaac ' abacacabaacbaac
' abacbacbaacbaac ' abacbacbacacaac ' abacbacacaacaac
' abacbaacbaacac ' abacbaacbabacac ' abacbaacababcac
' abacbabacbabcac ' (abacbabacbabac)b.

∆Hii2 = abacbabacbabacb ' aacababacbabacb ' aacbabaacbabacb
' acacabaacbabacb ' acbacbaacbabacb ' c(acacbaacbabacb)
' acbacbaacbabacb ' acacabaacababcb ' acacababacbabcb
' acacbabaacbabcb ' acacbabacacabcb ' acacbaacaacabcb
' acacbaacabacbcb ' acacbaacababcbc ' (acacbaacbabacb)c.

Hiii :

∆Hiii2 := (aba)
2.

∆Hiii2 = a(baaba) ' bababa ' (baaba)a.
∆Hiii2 = b(ababa) ' abaaba ' (ababa)b.
∆Hiii2 = abaaba ' aaacba ' aacbaa ' aacaac
∆Hiii3 := accbaca.
∆Hiii3 = a(ccbaca) ' cbcaaca ' ccbcaca ' (ccbaca)a.
∆Hiii3 = accbaca ' cbcaaca ' b(caaaca).
∆Hiii3 = accbaca ' cbcaaca ' ccbcaca ' caccbca ' cacbcaa
' caaccba ' caacacb ' (caaaca)b.

∆Hiii3 = accbaca ' c(bcaaca).
∆Hiii3 = accbaca ' cbcaaca ' bcaaaca '= (bcaaca)c.

∆Hiii4 := bcbabcba.
∆Hiii4 ' a(bcabcba) ' bcabacba ' (bcabcba)a.

∆Hiii4 = b(cbabcba) ' bcabacba ' cbcbacba ' cbacbcba
' cbabcaba ' (cbabcba)b.

∆Hiii4 ' bcabacba ' c(bcbacba) ' bcbaabca ' bcbaacbc ' bcbacbac.
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∆Hiii5 := bcbcbbcbcb.
∆Hiii5 ' abccbbcbcb ' abccbcbcbc ' a(bcbcbcbbc),
∆Hiii5 ' bcbcbcbcbc ' (bcbcbcbbc)a.

∆Hiii5 = b(cbcbbcbcb) ' cbcbcbcbcb ' (cbcbbcbcb)b.

∆Hiii5 ' c(bcbcbcbcb) ' (bcbcbcbcb)c.

∆Hiii6 := (abc)3

∆Hiii6 = a(bcabcabc) ' bcbabcab ' bcabacabc ' bcabcacbc ' (bcabcabc)a
∆Hiii6 ' (abcabcab)c ' abcabcbcb ' abcabbcab ' acbcbbcab

' acabcbcab ' cacbcbcab ' c(abcabcab).
∆Hiii7 := (cba)

5

∆Hiii7 = (cba)
5 ' (acb)5 ' (bac)5

.

As a consequence of Theorem 3, we have the folloing fact.

Fact 5. There exists a positive integer k ∈ Z>0 such that the k-th power of the
Coxeter element C := cba (= a homotopy class which turns once around all the
three points CX ∩ l∗1,C counterclockwise) is a fundamental element.

Finally, we ask a few questions related to the fundamental elements.

Let M be a monoid defined by positive homogeneous relations. Recall

(§4 Definition) that G+
is the image of M in the group G by the localiza-

tion homomorphism. We define quasi-central elements and fundamental ele-

ments of G+
exactly by the same defining relations for M+

. Let us denote by

QZ(G+
) and F(G+

) the set of quasi-central elements and fundamental elements

in G+
, respectively. Then, the localization morphism induces homomorphisms:

QZ(M) → QZ(G+
) and F(M) → F(G+

), which may be neither injective nor

surjective. However, Theorem 3 implies the following fact.

Fact 6. For any type X, the set of fundamental elements F(G+
X ) is non-empty.

We observe that F(G+
X ) may not be singly generated. On the other hand,

the list in Theorem 3 may not be sufficient to generate whole F(MX) or F(G+
X ).

Question 1. Is F(M) (resp. F(G+
)) finitely generated over QZ(M) (resp.

QZ(G+
))? That is, are there finitely many elements ∆1, · · · ,∆k ∈ F(M) (resp.

F(G+
)) such that following holds?

F(M) = QZ(M)∆1 ∪ · · · ∪ QZ(M)∆k.
F(G+

) = QZ(G+
)∆1 ∪ · · · ∪ QZ(G+

)∆k.

Question 2. The following five cases 1, 2, 3, 4, and 5. give or may give example

of an indecomposable logarithmic free divisor such that the local fundamental
group of its compliment admits positive homogeneous presentation by a suitable
choice of Zariski-van Kampen generators and a power of the Coxeter element
gives a fundamental element of the monoid generated by them. We ask whether

this property holds for any indecomposable logarithmic free divisor or not (for

a more precise formulation of the question, see [S-I2]).

1. The discriminant of a finite irreducible reflection group ([B-S, S2, S3]).
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2. The discriminant of a finite irreducible complex refrection group (except

for type G31) ([B-M-R, Be]).

3. The Sekiguchi polynomials (Theorems 1. and 3. of the present paper).

4. A plane curve is locally logarithmic free (see [S1]). The local fundamental

group of the complement of a plane curve seems to be presented by positive

homogeneous relations in [K]. It seems likely that a power of the Coxeter element

is a fundamental element of the associated monoid (to be confirmed yet).

5. The discriminant of elliptic Weyl group is a free divisor ([S4]II). A Zariski-

van Kampen presentation of the fundamental group of the complement of the

divisor is not yet given. However, the hyperbolic Coxeter element in the elliptic

Weyl group ([S4]I,III) may (conjecturally) be lifted to the fundamental group,

whose power of order mΓ, gives a fundamental element.

7 Cancellation conditions on MX

In the present section, we study the cancellation condition on a monoid M . In

the first half, we show some general consequences on the monoid M under the

cancellation condition, or under its weaker version: a weak cancellation condi-
tion. In the latter half, we prove that the monoid MBii satisfies the cancellation

condition, however, we do not know whether the monoids MBvi , MHii and MHiii

satisfy it or not.

Definition 7.1. A monoid M is said to satisfy the cancellation condition, if an

equality AXB=AY B for A,B,X, Y ∈M implies X=Y .

It is well-known that an Artin monoid satisfies the cancellation condition

[B-S, Prop.2.3]. Let us state some important consequences of the cancellation

condition on a monoid defined by positive homogeneous relations.

Lemma 7.2. Let M be a monoid defined by positive homogeneous relations. Sup-
pose it satisfies the cancellation condition. Then, we have the followings.

1. For any ∆ ∈ QZ(M), the associated permutation σ∆ of L/∼ extends to
an isomorphism, denoted by the same σ∆, of M . The correspondence: ∆ 7→ σ∆

induces an anti-homomorphism:

QZ(M) −→ Aut(M).

2. If F(M) 6= ∅, then the localization homomorphism is injective and, hence,
one has an isomorphism:

M ' G+.

3. For any element A∈G and any ∆∈F(M), there exists B∈G+ and n∈Z≥0

such that, in G, one has equalities:

A = B · (∆)
−n

= (∆
−n

) · σn∆(B).
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Proof. 1. First, we note that the permutation σ∆ induces an isomorphism of

the free monoid (L/∼)
∗
, denote by the same σ∆. Let U and V be words in

(L/∼)
∗

which are equivalent by the relations R (i.e. give the same element in

M). Then, by definition, U∆ ' ∆σ∆(U) and V∆ ' ∆σ∆(V ) are equivalent.

That is, ∆σ∆(U) and ∆σ∆(V ) give the same element in M . Then, cancelling ∆

from the left, we see that σ∆(U) and σ∆(V ) give the same element in M . Thus

σ∆ induces a homomorphism from M to M . The homomorphism is invertible,

since a finite power of it is an identity. By the definition, for any U ∈ M and

∆1,∆2 ∈ QZ(M), one has:

U ·∆1∆2 ' ∆1 · σ∆1(U) ·∆2 ' ∆1∆2 · σ∆2(σ∆1(U)).

2. For a localization morphism to be injective, it is sufficient to show that

the monoid satisfies the cancellation condition and that any two elements of the

monoid have (at least) one (left and right) common multiple (Öre’s condition,

see [C-P]). In view of Fact 4. in §6, for any two elements U, V ∈ M and

∆ ∈ F(M), ∆
max{l(U),l(V )}

is a common multiple of U and V from both sides.

3. Owing to the previous 2., it is sufficient to show that, for any element

A ∈ G and any ∆ ∈F(M), there exists k ∈ Z≥0 such that ∆
k · A ∈ G+

. This

can be easily shown by an induction on k(A) ∈ Z≥0 where k(A) is the (minimal)

number of letters of negative power in a word expression of A in (L ∪ L−1
)
∗
.

Details are left to the reader.

Next, we formulate a weak cancellation condition and its consequences.

Definition 7.3. An element ∆ ∈M is called left (resp. right) weakly cancella-
tive, if an equality ∆ = U · V = U ·W (resp. ∆ = V · U = W · U) holds in M
for some U, V,W ∈M , then V = W holds in M .

Notation. For an element ∆ ∈M , we put

Divl(∆) := {U ∈M : U |l ∆} and Divr(∆) := {U ∈M : U |r ∆}.
Fact 7. Let a fundamental element ∆ ∈ F(M) be left weakly cancellative.
Then the following i), ii), iii) and iv) hold.

i) For any element U ∈ Divl(∆), let Ũ ∈ (L/∼)
∗ be a lifting to a word.

Then, the class of σ∆(Ũ) in M depends only on the class U but not
on the lifting Ũ . Let us denote the class in M by σ∆(U).

ii) The divisor set Divl(∆) is invariant under the action of σ∆. In particular,
the unique longest element ∆ is fixed by σ∆.

iii) The fundamental element ∆ is right weakly cancellative.
iv) We have the equality: Divl(∆) = Divr(∆).

Proof. i) Suppose one has a decomposition ∆ ' U · V for U, V ∈M , and let Ũ
be a lifting of U into a word in L/∼. Then, σ∆(Ũ) is well-defined as a word

and hence induce an element in M , which we denote by the same σ∆(Ũ). We

claim that ∆ is equivalent to V ·σ∆(Ũ). This is shown by induction on l(U). If

l(U) = 1, this is the definition of quasi-centrality. Let l(U) > 1, Ũ = Ũ ′ · a and

∆ ' Ũ ′ · a · V . By induction hypothesis, we have ∆ ' a · V · σ∆(Ũ ′). Due to

22



the weak cancellativity, V · σ∆(Ũ ′) is equivalent to ∆a. Then, by definition of

quasi-centrality, ∆ is equivalent to V · σ∆(Ũ ′) · σ∆(a) ' V · σ∆(Ũ).

Let Ũ1 and Ũ2 be liftings of U . Then, applying the above result, we see that

∆ is equal to V ·σ∆(Ũ1) and V ·σ∆(Ũ2). Then, applying the weak cancellativity

of ∆, we see that σ∆(Ũ1) and σ∆(Ũ2) define the same element in M , which we

shall denote by σ∆(U).

ii) In the proof of i), taking U = ∆ and V = 1, we obtain ∆ = σ∆(∆). Then,

σ∆(Divl(∆)) = Divl(σ∆(∆)) = Divl(∆).

iii) Suppose ∆ = V · U = W · U . then according to i), we have ∆ =

U · σ∆(V ) = U · σ∆(W ). Then the left cancellation condition implies σ∆(V ) =

σ∆(W ). On the other hand, according to ii), σ∆(V ) = σ∆(W ) are again ele-

ments of Divl(∆) so that we can apply σ∆ to the equality. Since σ∆ is of finite

order, after repeating this several times, we obtain the equality V = W .

iv) If ∆ is left divisible by U , ∆ is right divisible by σ∆(U). That is, the set

Divr(∆) of the right divisors of ∆ is equal to σ∆(Divl(∆)) = Divl(∆).

Conjecture. Let Ck of the element in §6 Fact 5. If Ck·ord(σ
Ck

)
is weakly

cancellative, then M satisfies the cancellation condition.

The following Theorem shows that we have already enough relations for type Bii.

Theorem 4. The monoid MBii satisfies the cancellation condition.

Proof. We, first, remark the following.

Fact 8. The left cancellation condition on MBii implies the right cancell. con-
dition.

Proof. Consider a map ϕ : MBii → MBii , W 7→ ϕ(W ) := σ(rev(W )), where σ

is a permutation
(a b c
c b a

)
and rev(W ) is the reverse of the word W = x1x2 · · ·xt

(xi is a letter or an inverse of a letter) given by the word xt · · ·x2x1. In view

of the defining relation of MBii in Theorem 1., ϕ is well defined and is an anti-

isomorphism. If βα ' γα, then ϕ(βα) ' ϕ(γα), i.e., ϕ(α)ϕ(β) ' ϕ(α)ϕ(γ).

Using left cancellation condition, we obtain ϕ(β) = ϕ(γ) and, hence, β ' γ.

The following is sufficient to show the left cancellation condition on MBii .

Proposition. Let X and Y be positive words in MBii of word-length r ∈ Z≥0.

(i) If uX ' uY for some u ∈ {a, b, c}, then X ' Y .
(ii) If aX ' bY , then X ' bZ, Y ' cZ for some positive word Z.
(iii) If aX ' cY , then X ' cZ, Y ' aZ for some positive word Z.
(iv) If bX ' cY , then there exists an integer k (0≤k<r−1) and a word Z

such that X ' ckbaZ and Y ' akbbZ.

Proof. Let us denote by H(r, t) the statement in Theorem for all pairs of words

X and Y such that their word-lengths are r and for all u, v ∈ {a, b, c} such that

uX ' vY and the number of elementary transformasions to bring uX to vY is

less or equal than t. It is easy to see that H(r, t) is true if r ≤ 1 or t ≤ 1.
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For r, t ∈ Z>1, we prove H(r, t) under the induction hypotheis that H(s, u)

holds for (s, u) such that either s < r and arbitrary u or s = r and u < t.
Let X,Y be of word-length r, and let u1X ' u2W2 ' · · · ' utWt ' ut+1Y

be a sequence of elementary transformations of t steps, where u1, · · · , ut+1 ∈
{a, b, c} and W2, · · · ,Wt are positive words of length r. By assumption t > 1,

there exists an index i∈{2, ..., t} so that we decompose the sequence into two

steps u1X ' uiWi ' ut+1Y , where each step satsifies the induction hypothesis.

If there exists i such that ui is equal either to u1 or ut+1, then by induction

hypothesis, Wi is equivalent either to X or to Y . Then, again, applying the

induction hypothesis to the remaining step, we obtain the statement for the

u1X ' ut+1Y . Thus, we assume from now on ui 6= u1, ut+1 for 1 < i ≤ t.
Suppose u1 =ut+1. If there exists i such that {u1 =ut+1, ui} 6= {b, c}, then

each of the equvalence says the existence of α, β∈{a, b, c} and words Z1, Z2 such

that X 'αZ1, Wi'βZ1'βZ2 and Y 'αZ2. Applying the induction hypothesis

for r to βZ1 ' βZ2, we get Z1 ' Z2 and, hence, we obtained the statement

X ' αZ1 ' αZ2 ' Y . Thus, we exclude these cases from our considerations.

Next, we consider the case {u1 =ut+1, ui}= {b, c}. However, due to the above

consideration, we have only the case u2 = u3 = · · · = ut. Then, by induction

hypothesis, we have W2' · · ·'Wt. On the other hand, since the equivalences

u1X 'u2W2 and ut+1Y 'utWt are the elementary trasformations at the tops

of the words, there exists again α, β∈{a, b, c} and words Z1, Z2 with the similar

descriptions as above hold, implying again X'Y .

To complete the proof, we have to examine three more cases (u1, u2, u3) =

(a, b, c), (a, c, b) and (b, a, c) for t = 2, where we shall put W := W2.

(I) Case (a, b, c). We have aX ' bW ' cY .

Since the equivalences are single elementary transformations, there exists words

Z1 and Z2 such that X ' bZ1, W ' cZ1 ' baZ2 and Y ' bbZ2. Applying the

induction hypothesis for r to the two equivalent expressions of W , we see that

there exists k and a word Z3 such that 0 ≤ k < r − 2 such that Z1 ' akbbZ3

and aZ2 ' ckbaZ3. We can apply k-times the induction hypothesis to the

last two equivalent expressions and we see that there exists a word Z4 such that

Z2 ' ckZ4 and baZ3 ' aZ4. Applying again the induction hypothesis to the last

equivalence relation, there exists a word Z5 such that Z4 ' bZ5 and aZ3 ' cZ5.

Once again applying the induction hypothesis to the last equivalence relation, we

finally obtain Z3 ' cZ6 and Z5 ' aZ6 for a word Z6. Reversing the procedure,

obtain the descriptions:

X ' bZ1 ' bakbbZ3 ' bakbbcZ6,
Y ' bbZ2 ' bbckZ4 ' bbckbZ5 ' bbckbaZ6.

By using the relations of MBii , we can show bakbbc ' cbbckb and bbckba '
abbckb. So, we conclude that X ' cZ, Y ' aZ for Z ' bbckbZ6.

(II) Case (a, c, b). We have aX ' cW ' bY .

Since the equivalences are single elementary transformations, there exists words

Z1 and Z2 such that X ' cZ1, W ' aZ1 ' bbZ2 and Y ' baZ2. Applying the

induction hypothesis for r to the two equivalent expressions of W , we see that
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there exists a word Z3 such that Z1 ' bZ3 and bZ2 ' cZ3. Again applying the

induction hypothesis to the last two equivalent expressions, we see that there

exists an integer k with 0 ≤ k < r − 3 and a word Z4 such that Z2 ' ckbaZ4

and Z3 ' akbbZ4. Reversing the procedure, obtain the descriptions:

X ' cZ1 ' cbZ3 ' cbakbbZ4 and Y ' baZ2 ' backbaZ4.

It is not hard to show the equivalences cbakbb ' bbackb and backba ' cbackb.
Thus, we obtain X ' bZ, Y ' cZ for Z := backbZ4.

(III) Case (b, a, c). We have bX ' aW ' cY .

By induction hypothesis, there exists words Z1 and Z2 such that X ' cZ1,

W ' bZ1 ' cZ2 and Y ' aZ2. Applying the induction hypothesis for r to the

two equivalent expressions of W , we see that here exists k and a word Z3 such

that 0 ≤ k < r − 2 such that Z1 ' ckbaZ3 and Z2 ' akbbZ3. Thus, we obtain

the descriptions:

X ' cZ1 ' cckbaZ3 and Y ' aZ2 ' aakbbZ3.

This is the conclusion in Proposition (iv) with 0≤k+1<r−1, which we looked for.

This completes the proof of Proposition.

This completes the proof of Theorem 4.

8 2× 2-matrix representation of the group GX

We construct non-abelian representations of the groups GBii , GBvi , GHii , GHiii .

Theorem 5. For each type X ∈ {Bii,Bvi,Hii,Hiii}, consider matrices A,B,C
∈ GL(2,C) listed below. Then we have the following i) and ii).

i) The correspondence a 7→ A, b 7→ B, c 7→ C induces representations
ρ : GX −→ GL(2,C).

ii) The image ρ(GX ) is not an abelian group if l2 6= 1.

1. Type Bii: A = u

„
1 l2

0 1

«
, B = v

„
l 0
0 l−1

«
, C = u

„
1 1
0 1

«
,

where l6 = 1 and u, v ∈ C×.

2. Type Bvi: A = u

„
l 0
0 l−1

«
, B = u

„
a b
c d

«
, C = u

„
p q
r s

«
,

where l10
= 1 (l2 6= 1) and u ∈ C×

a = − 1

l(l2 − 1)
, bc =

−l4 + l2 − 1

(1− l2)2
, d =

l3

l2 − 1

p = −l4a, q = − b

l4
, r = −l4c, s = − d

l4

3. Type Hii: A = u

„
l 0
0 l−1

«
, B = u

„
a b
c d

«
, C = u

„
p q
r s

«
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where u ∈ C× and one of the following two cases holds.
i) l2 + l+ 1 = 0 and 3p2

+ 3p+ 2 = 0

a =
l − 1

3
, d =

−l − 2

3
, bc = −2

3
, q =

−b(l + 2)

3p
, r =

p(1− l)
3b

, s =
2

3p
.

ii) l2 − l + 1 = 0 and 3p2 − 3p+ 2 = 0.

a =
l + 1

3
, d =

−l + 2

3
, bc = −2

3
, q =

b(−l + 2)

3p
, r =

−p(l+ 1)

3b
, s =

2

3p
.

4. Type Hiii: A = u

„
l 0
0 l−1

«
, B = u

„
a b
c d

«
, C = u

„
p q
r s

«
,

where l10
= 1 (l2 6= 1) and u ∈ C×

a = − 1

l(l2 − 1)
, bc =

−l4 + l2 − 1

(l2 − 1)2
, d =

l3

l2 − 1

p = a, q =
b

l4
, r = l4c, s = d

Proof. It is sufficient to prove only for the case u = v = 1.

We present the matrices A,B and C by the indeterminates a, b, c, d, p, q, r, s
and l as in Theorem, and then solve the polynomial equation on them defined by

the relations listed in Theorem 1. It is unnecessary to check all relations, since

some relations are included in the list because of the cancellation condition,

whereas GL(2,C) is a group where the cancellation condition is automatically

satisfied. However, as we shall see, it is sometimes convenient to take these

“superfluous” relations in account. Detailed calculations are left to the reader.

1.Type Bii: We need to show CBB = BBA,BC = AB,AC = CA, whose

verifications are left to the reader. We have det(A) = det(C) =u2 6= 0, det(B) =

v2 6=0. Since ABA−1B−1 =

„
1 l2(1 − l2)
0 1

«
and BCB−1C−1 =

„
1 l2 − 1
0 1

«

, ρ(GBii) is abelian if and only if l2 = 1.

2. Type Bvi: We need to show ABA = BAB,ACA = BAC,ACB = CAC.

Actually, solving the (1,1) entry of the equation ABA = BAB, tr(A) = tr(B)

and det(B) = 1, w obtain the expressions for a, b, c, d. Then, using the relation

C = ABA−2B, we obtain the expressions for p, q, r, s. Further more, comparing

the (1, 1)-entry of A5
= B5

, we get l8 + l6 + l4 + l2 + 1 = 0.

3. Type Hii: We need to show ABAB=BABA,ACA=BAC,ACB=CAC.

ABAB =

„
bc+ a2l2 bd+ abl2

ac+ cd/l2 bc+ d2/l2

«
, BABA =

„
bc+ a2l2 ab+ bd/l2

cd+ acl2 bc + d2/l2

«

By these calculations, we have d + al2 = 0. By TrA = TrB = TrC and

detA = detB = detC, we have a+ d = l + l−1
= p+ s, ad− bc = ps− qr = 1.

a =
l2 + 1

l(1− l2)
, d =

l(l2 + 1)

l2 − 1
, bc =

−2(l4 + 1)

(l2 − 1)2
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ACA =

„
l2p q
r s/l2

«
, BAC =

„
alp+ br/l alq + bs/l
clp+ dr/l clq + ds/l

«

q =
b

lp(1− l2)
, r =

l(l4 + 1)p

b(l2 − 1)
, s =

−2l2

(1 − l2)2p

ACB = CAC ⇔ (1− l+ l2) = 0 and 3p2−3p+2 = 0, or , (1+ l+ l2) = 0 and 3p2 +3p+2 = 0

We calculate each cases separately and obtain the result.

4. Type Hiii: We need to show ABA=BAB,CBA=ACB,BCA=CBC.

As in case of Bvi, already the first relation ABA = BAB (in particular tr(A) =

tr(B) and det(B) = 1) implies the expressions for a, b, c, d. Using further the

relation ACA = CAC, we obtain a = p, d = s and bc = qr. Then applying the

relation A2C = BA2
, we get q = l4b and r = l−4c. Further, using the relation

CA3
= A3B, we obtain l10

= 1.

Corollary. For X∈{Bii, Bvi, Hii,Hiii}, σ(QZ(G+
X )) consists only of the identity.

Sketch of Proof. For σ ∈ S(L), we consider a matrix X ∈ Mat(2,C) satisfying

the equations: AX = Xσ(A), BX = Xσ(B), CX = Xσ(C). If σ = 1, then

the solutions are constant× id. If σ 6= 1, then X = 0.

Acknowledgement. We thankto David Bessis for pointing out that the groupGHvi

is an infinite cyclic group, and to Masaki Kashiwara for interesting discussions.
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pen sur le groupe fondamental du complémentaire d’une courbe projective

plane, Compositio Math. 27 (1973) 141-158.
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