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Introduction

0.1 – In [2], we started our study of the complex analytic function M̃(s; z1, z2) (denoted
there as M̃s(z1, z2)) in three variables s, z1, z2 (ℜ(s) > 1/2), in connection with the value
distribution of {d logL(s, χ)/ds}χ. Here, χ runs over a suitable family of abelian char-
acters of a global field K and L(s, χ) denotes the associated L-function. The connection
is that for each fixed s with ℜ(s) = σ > 1/2, the inverse Fourier transform Mσ(w) of
M̃σ(z) = M̃(σ, z, z̄) is the density function for the distribution of {d logL(s, χ)/ds}χ on
the complex w-plane (generally conjectural, proved in various cases [2, 4, 6]). In the joint
work with K. Matsumoto [5, 6] (cf. also a survey [7]), we continued this study treating also
the corresponding M -and M̃ -functions related to the value distribution of {logL(s, χ)}χ.
We use the same symbols M ,M̃ etc., and distinguish the former d log-case as Case 1, the
latter log case as Case 2. They are different systems of functions having various properties
in common. Each also depends on the pair (K,P∞), where K is a global field (either an
algebraic number field or an algebraic function field of one variable over a finite field) and
P∞ is a given finite set of prime divisors of K including all archimedean primes in the
number field case. When (K,P∞) = (Q, (∞)),

(0.1.1) M̃(s; z1, z2) =
∞∑

n=1

λz1(n)λz2(n)n−2s (ℜ(s) > 1/2),

where each λz(n) (z ∈ C; n = 1, 2, · · · ) is a polynomial of z determined by

∞∑
n=1

λz(n)n−s :=

{
exp( iz

2
d
ds

log ζ(s)) (Case 1)

exp( iz
2

log ζ(s)) (Case 2)

(ℜ(s) > 1, i =
√
−1). For example, M̃(s,−2i,−2ix) = ζ(2s)x (x ∈ C) in Case 2. It

seems to the author that these functions are interesting in themselves.

1RIMS, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan;
ihara@kurims.kyoto-u.ac.jp
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0.2 – We shall pursue further analytic properties of M̃(s; z1, z2) and Mσ(w). In the
present article, we shall first study the variance µσ and the “Plancherel volume”

(0.2.1) νσ =

∫
Mσ(w)2|dw| =

∫
|M̃σ(z)|2|dz|;

especially the limit behaviours limσ→1/2 and limσ→+∞ of the “natural invariant” µσνσ, and

of the variance-normalized measure µσMσ(µ
1/2
σ w) and its Fourier transform M̃σ(µ

−1/2
σ z)

(§1,§2). One of the key points is the limit behaviour of the complex analytic version

(0.2.2) M̃(s;µ(s)−1/2z1, µ(s)−1/2z2)

of M̃σ(µ
−1/2
σ z), which is partly related to the second main subject of this article, namely

the analytic continuation. We shall prove (§3) that M̃(s; z1, z2) extends analytically to
D × C2, where

(0.2.3) D = {ℜ(s) > 0} \ {ρ/2n ; n ∈ N, ζ(ρ) = 0 or ∞},

ζ(s) = ζK,P∞(s) being the zeta function of K without P∞ factors. In fact, M̃(s; z1, z2) is
univalent on D×C2 in Case 1, but multivalent in Case 2 (univalent on Durab ×C2, Durab

being the maximal unramified abelian cover of D). This property is closely related to the
infinite product expansion which, in Case 2, looks like

(0.2.4) M̃(s; z1, z2) =
∞∏

n=1

ζ(2ns)Rn(z1,z2),

where each Rn(z1, z2) is a polynomial of degree degzi
≤ n (i = 1, 2). This means that

for any N ∈ N, (i) the quotient of M̃(s; z1, z2) by the partial product over n ≤ N on
the right hand side extends to a holomorphic function on ℜ(s) > 1/(2N + 2), and (ii) on
some subdomain of {ℜ(s) > 1/2} × C2, the remaining product converges absolutely to a
non-vanishing holomorphic function which gives that quotient. The case N = 1 will be
used to show that (0.2.2) converges to exp(−z1z2/4) as s → 1/2. This, together with an
upper bound for |M̃σ(z)|2 near σ = 1/2, valid for all z ∈ C studied in §4, leads to our

limit formulas for µσνσ and µσMσ(µ
1/2
σ w).

0.3 – In §1.1, we first discuss general continuous density functions M(x)|dx| on Rd

(d = 1, 2, · · · ) with center 0, in particular, the rigorous lower bound for the quantity
µd/2ν (Theorem 1), where µ is the variance and ν is the Plancherel volume. For d = 2,
this gives µν ≥ 8/9. Then in §1.2, we briefly review (from [6]§4) the definition and the
basic properties of our functions M̃(s; z1, z2) and Mσ(w).
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In §2, we study the limits as σ → 1/2, +∞ of µσνσ and µσMσ(µ
1/2
σ w) (Theorems 2,3).

Some of the key lemmas used will be proved later (§3,§4). This logically inverted ordering
of sections is due to the introductory nature of §2 and the “heaviness” of §3,§4.

In §3, we shall prove the analytic continuation of M̃(s; z1, z2) (Theorem 5).
In §4, we shall study the rapid decay property of |M̃σ(z)|2, especially when σ is arbi-

trarily close to 1/2 and |z| not being bounded.

0.4 – Now we mention something about the zero divisor of M̃(s; z1, z2) on which no
information is shown in the product formula (0.2.4). First, as is already shown in the
previous articles (reviewed in §1.2), M̃(s; z1, z2) has an Euler product decomposition

(0.4.1) M̃ = M̃(s; z1, z2) =
∏
p̸∈P∞

M̃p(s; z1, z2) (ℜ(s) > 1/2),

where each local factor M̃p = M̃p(s; z1, z2) is holomorphic on {ℜ(s) > 0} × C2. In Case
2, M̃p can be expressed by the Gauss hypergeometric function F (a, b; c; x), as

(0.4.2) M̃p(s; z1, z2) = F (iz1/2, iz2/2; 1; N(p)−2s).

Each M̃p has a non-trivial zero divisor Zp, {Zp}p is locally finite, and the intersection
with D × C2 of

∑
pZp gives the zero divisor of M̃ .

The local zero divisor Zp seems worth studying fully1. But let us touch here the
main property of its restriction to the hyperplane z1 + z2 = 0, say, in Case 2. Put
t = N(p)−s, x = iz1, and consider the “locally normalized” function

(0.4.3) ft(x) = F (x/(2 arcsin(t)),−x/(2 arcsin(t)); 1; t2).

Then f0(x) = J0(x), the Bessel function of order 0. If ±{γν}∞ν=1 with 0 < γ1 < γ2 < · · ·
denote all the zeros of J0(x), then there exists 0 < t0 < 1 such that each γν extends
uniquely to a zero γν(t) of ft(x) for all |t| < t0 (real if t is so), and we have

(0.4.4) ft(x) =
∞∏

ν=1

(
1 − x2

γν(t)2

)
.

This gives rise to another infinite product decomposition

(0.4.5) M̃(s; z,−z) =
∏
p̸∈P∞

∞∏
ν=1

(
1 +

(
arcsin(N(p)−s)

γν(N(p)−s)

)2

z2

)
=

∞∏
µ=1

(1 + θ2
µz

2)

for ℜ(s) > 1/2, where {θµ} is a reordering according to the absolute values. For s = σ ∈
R, θ2

µ are all positive real, as long as N(p)σ is sufficiently large. The comparison of two
decompositions (0.2.4) and (0.4.5) would be a future subject of study.

1Left to future articles; cf. [3] for some partial results for Case 1.
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1 Preliminaries

1.1 – The Plancherel volume. Let Rd = {x = (x1, ..., xd); xi ∈ R (1 ≤ i ≤ d)}
be the d-dimensional Euclidean space (d = 1, 2, · · · ), and |dx| = (dx1...dxd)/(2π)d/2 be
the self-dual Haar measure with respect to the self-dual pairing ei⟨x,x′⟩ of Rd, where
⟨x, x′⟩ =

∑d
i=1 xix

′
i. Write, as usual, |x| = ⟨x, x⟩1/2. Consider any density measure

M(x)|dx| (M(x): a measurable function) on Rd with center 0, for which the standard
formulas in Fourier analysis hold; namely,

M(x) ≥ 0,

∫
M(x)|dx| = 1;(1.1.1) ∫

M(x)xi|dx| = 0 (1 ≤ i ≤ d);(1.1.2)

M̃(y) :=

∫
M(x)ei⟨x,y⟩|dx|, M(x) =

∫
M̃(y)e−i⟨x,y⟩|dy|;(1.1.3)

ν := νM =

∫
M(x)2|dx| =

∫
|M̃(y)|2|dy| (Plancherel formula).(1.1.4)

We shall compare the two invariants

(1.1.5) µ := µM =

∫
M(x)|x|2|dx| (the variance)

and the above νM which will be called the Plancherel volume of M(x) (or of M(x)|dx|).
Note that νM can also be expressed as

(1.1.6) νM = M(x) ∗M(−x) |x=0

(∗: the convolution product with respect to |dx|). Thus, νM may be regarded as the
density at the origin of the differences of two points in the measure space (Rd,M(x)|dx|).

In general, the two invariants, the average µ of the square of the distance from the
center and the density ν at the origin of x − x′ (x, x′ ∈ Rd), both with respect to the
given density measure M(x)|dx|, are unrelated invariants. But the product

(1.1.7) µd/2ν

seems to be an interesting basic invariant. Note that this is invariant by the scalar
transform

(1.1.8) M(x) 7−→ cdM(cx)

for any c > 0; in fact, µ (resp. ν) is multiplied by c−2 (resp. cd).
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If we denote by M⋆(x) = µd/2M(µ1/2x) the scalar transform (1.1.8) for c = µ1/2, then
M⋆(x) has the Fourier dual M̃(µ−1/2y), the variance = 1, and the Plancherel volume
µd/2ν. This scalar transform M(x) →M⋆(x) will be called the variance-normalization.

Let us pay attention to the following 3 special cases and the theorem to come thereafter.

Example 1 If M(x)|dx| is Gaussian, i.e., M(x) = ce−a|x|2 (a, c > 0), then

(1.1.9) µd/2ν =

(
d

2

)d/2

.

In particular, the 2 dimensional Gaussian distribution satisfies µν = 1.

Indeed, we have c = (2a)d/2 by (1.1.1), and µ = d/(2a), ν = ad/2.

Example 2 If M(x) = c (|x| ≤ R) and = 0 (|x| > R), where c, R > 0, then

(1.1.10) µd/2ν =

(
2d

d+ 2

)d/2

Γ

(
d

2
+ 1

)
.

In particular, when d = 2, we again have µν = 1.

Indeed, c = 2d/2Γ(d
2

+ 1)R−d, µ = d
d+2

R2, ν = 2d/2Γ(d
2

+ 1)R−d.

Thus, when d = 2, µν = 1 holds in these two special cases.

Example 3 Define the function f ∗
d (r) of r ≥ 0 by

f ∗
d (r) =

{
d(d+2)

2
γd · (1 − r2) · · · 0 ≤ r ≤ 1,

0 · · · r ≥ 1,
(1.1.11)

where

(1.1.12) γd = (2π)
d
2 /Vol(Sd−1) = 2

d
2
−1Γ(d/2),

Vol(Sd−1) being the Euclidean volume of the (d−1)-dimensional unit sphere. And for any
fixed c > 0, consider the function M(x) = cd · f ∗

d (c|x|) on Rd. Then M(x) also satisfies
(1.1.1)(1.1.2) and we have

(1.1.13) µd/2ν =

(
2d

d+ 4

)d/2 4Γ(d+4
2

)

d+ 4
.
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Indeed, µ = c−2µ∗
d and ν = cdν∗d , where

(1.1.14) µ∗
d =

d

d+ 4
, ν∗d =

2d(d+ 2)

d+ 4
γd.

Now, intuitively, µ and ν cannot be too small at the same time and hence there must
be some inequality showing this. The following elementary but seemingly basic inequality
was obtained in passing. Since I could not find this in the past literatures (including e.g.
[1]), I take this opportunity to present it with a full proof (a sketch was given in [3]).

Theorem 1 For each d ≥ 1 and each measurable function M(x) on Rd satisfying
(1.1.1)(1.1.2), we have, for µ = µM and ν = νM

1:

(1.1.15) µd/2ν ≥
(

2d

d+ 4

)d/2 4Γ(d+4
2

)

d+ 4
.

Moreover, the equality holds if and only if M(x) is the function given in Example 3.

The minimum-giving Example 3 was found by using small deformations, which led
to a simple differential equation of order 1. And once found, the proof is simple (and
somewhat miraculous).

Proof Let M(x) be as at the beginning of this subsection, with their invariants µ, ν.
We shall prove

(1.1.16) µd/2ν ≥ (µ∗
d)d/2ν∗d ,

where µ∗
d, ν

∗
d are as defined by (1.1.14). We may assume that M(x) is rotation invariant,

because averaging over |x| = r does not change µ, while ν either decreases or remains
the same. Therefore, M(x) = f(|x|) with some non-negative real valued function f(r) of
r ≥ 0, and

(1.1.17)
1

γd

∫ ∞

0

f(r)rd−1dr = 1,
1

γd

∫ ∞

0

f(r)rd+1dr = µ,
1

γd

∫ ∞

0

f(r)2rd−1dr = ν.

By a suitable scalar transform (1.1.8) we may assume that µ is any given positive real
number, and so we assume µ = µ∗

d. We then have

(1.1.18)
1

γd

∫ 1

0

f(r)(1 − r2)rd−1dr ≥ 1

γd

∫ ∞

0

f(r)(1 − r2)rd−1dr = 1 − µ∗
d =

4

d+ 4
,

1Here we just need the first definition of ν in (1.1.4) involving only M(x).
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because the corresponding integral over (1,∞) is obviously non-positive. Now the Schwarz
inequality gives

(1.1.19)

(∫ 1

0

f ∗
d (r)2rd−1dr

)(∫ 1

0

f(r)2rd−1dr

)
≥
(∫ 1

0

f ∗
d (r)f(r)rd−1dr

)2

.

Here, the first integral on the LHS is nothing but γdν
∗
d , while the RHS is

(1.1.20)

(
d(d+ 2)

2

)2

γ2
d

(∫ 1

0

f(r)(1 − r2)rd−1dr

)2

≥
(
d(d+ 2)

2

)2

γ4
d

(
4

d+ 4

)2

,

by (1.1.11),(1.1.18). Therefore, (1.1.19) gives

(1.1.21)
1

γd

∫ 1

0

f(r)2rd−1dr ≥ γ2
d(ν∗d)−1

(
2d(d+ 2)

d+ 4

)2

= ν∗d

by (1.1.14), and hence the desired inequality ν ≥ ν∗d . The last statement of Theorem 1 is
clear from the above proof. 2.

In particular, for d = 1, 2,

Corollary 1.1.22 We have

µ1/2ν ≥ (18π/125)1/2 (d = 1),(1.1.23)

µν ≥ 8/9 (d = 2).(1.1.24)

On the other hand, there is no upper bound for µd/2ν; indeed, if the support of M(x)
is concentrated to the sphere with center 0 and radius r, then µ is close to r2 while ν can
be as large as possible.

1.2 – The function M̃(s; z1, z2). We shall review, mainly from [6]§4, the definition
and some main properties of the function M̃(s; z1, z2) and its local factors M̃p(s; z1, z2).
Let K be any global field, i.e., either an algebraic number field of finite degree, or an
algebraic function field of one variable over a finite field. Let p be any non-archimedean
prime of K. Define λz(pn) (z ∈ C, n ≥ 0) to be the coefficient of the power series

(1.2.1)
∞∑

n=0

λz(pn)N(p)−ns =

{
exp

(
iz
2

d
ds

log((1 −N(p)−s)−1)
)

(Case 1)

exp
(

iz
2

log((1 −N(p)−s)−1)
)

(Case 2)

of N(p)−s. It is a polynomial

(1.2.2) λz(pn) =

{
Fn(− iz

2
logN(p)) (Case 1),

Fn( iz
2

) (Case 2),
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with

(1.2.3) Fn(x) =

{∑n
k=1

1
k!

(
n−1
k−1

)
xk (Case 1),∑n

k=1
1
k!
δk(n)xk = 1

n!
x(x+ 1)...(x+ n− 1) (Case 2),

(n ≥ 1), F0(x) = 1, where

(1.2.4) δk(n) =
∑

n=n1+...+nk
n1,...,nk≥1

1

n1...nk

≤
∑

n=n1+...+nk
n1,...,nk≥1

1 =

(
n− 1

k − 1

)
.

Now the local p-factor M̃p(s; z1, z2) of M̃(s; z1, z2) is a holomorphic function of (s, z1, z2)
on {ℜ(s) > 0} × C2 defined by the power series of N(p)−2s given by

(1.2.5) M̃p(s; z1, z2) =
∞∑

n=0

λz1(p
n)λz2(p

n)N(p)−2ns.

For a given finite set P∞ of prime divisors of K including all the archimedean primes
in the number field case, the global function M̃(s; z1, z2), which is a holomorphic function
of (s, z1, z2) on {ℜ(s) > 1/2} × C2, is defined by the Euler product

(1.2.6) M̃(s; z1, z2) =
∏
p̸∈P∞

M̃p(s; z1, z2)

which is absolutely convergent on ℜ(s) > 1/2 in the following sense. For any given
σ0 > 1/2, R > 0, let |z1|, |z2| ≤ R and ℜ(s) ≥ σ0. Then for all but finitely many primes
p, we have |M̃p(s; z1, z2) − 1| < 1, and the sum of log M̃p(s; z1, z2) (the principal branch)
over these p converges absolutely and uniformly. It has a Dirichlet series expansion

(1.2.7) M̃(s; z1, z2) =
∑

D:integral

λz1(D)λz2(D)N(D)−2s (ℜ(s) > 1/2),

where D runs over the integral divisors; i.e., divisors of K of the form D =
∏
p̸∈P∞

pnp

(np ≥ 0, np = 0 for almost all p), and λz(D) =
∏
p̸∈P∞

λz(pnp).

(Other expressions) The local function M̃p(s; z1, z2) has an integral expression

(1.2.8) M̃p(s; z1, z2) =

∫
C1

exp

(
i

2
(z1gs,p(t

−1) + z2gs,p(t))

)
d×t,

where gs,p(t) is a continuous function on C1 = {t ∈ C; |t| = 1} defined by

gs,p(t) =

{
−(log N(p))N(p)−st

1−N(p)−st
(Case 1),

− log(1 −N(p)−st) (Case 2),
(1.2.9)
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(the principal branch of the logarithm), and d×t is the normalized Haar measure of C1.
It also has the following power series expansion in z1, z2;

(1.2.10) M̃p(s; z1, z2) = 1 +
∑
a,b≥1

(±i/2)a+bµ
(a,b)
p (s)

za
1z

b
2

a!b!
,

where the sign is minus (resp. plus) for Case 1(resp. Case 2), and

µ
(a,b)
p (s) =

{
(logN(p))a+b

∑
n≥Max(a,b)

(
n−1
a−1

)(
n−1
b−1

)
N(p)−2ns (Case 1),∑

n≥Max(a,b) δa(n)δb(n)N(p)−2ns (Case 2).
(1.2.11)

In particular,

µ
(1,1)
p (s) =

{
(logN(p))2/(N(p)2s − 1) (Case 1),∑

n≥1 n
−2N(p)−2ns (Case 2).

(1.2.12)

The global function M̃(s; z1, z2), for each s with ℜ(s) > 1/2, has an everywhere
absolutely convergent power series expansion in z1, z2;

(1.2.13) M̃(s; z1, z2) = 1 +
∑
a,b≥1

(±i/2)a+bµ(a,b)(s)
za
1z

b
2

a!b!
,

with the same choice of the sign as above. Here, each µ(a,b)(s) denotes the following
Dirichlet series which is absolutely convergent on ℜ(s) > 1/2;

(1.2.14) µ(a,b)(s) =
∑

D:integral

Λa(D)Λb(D)N(D)−2s,

where Λk(D) (≥ 0) for each integral divisor D is defined by

(1.2.15) Λk(D) =
∑

D=D1...Dk

Λ1(D1)...Λ1(Dk),

where

Λ1(D) =

{
logN(p) (Case 1),

1/n (Case 2),
(1.2.16)

if D = pn with some p ̸∈ P∞ and n ≥ 1, and Λ1(D) = 0 otherwise. By comparing the
coefficients of z1z2 for M̃p(s; z1, z2) and M̃(s; z1, z2) in the formula (1.2.6), we obtain the
Euler sum expansion (only for (a, b) = (1, 1)):

(1.2.17) µ(s) := µ(1,1)(s) =
∑
p̸∈P∞

µ
(1,1)
p (s) (ℜ(s) > 1/2).
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Finally, let Mσ(w) (σ > 1/2, w ∈ C) denote the “M -function” defined and studied in
[2](Case 1) and [5](Case 2). (In the latter, it is denoted as Mσ(w).) Then its Fourier dual
is M̃σ(z) := M̃(σ; z, z̄). In fact, if ψz1,z2 (z1, z2 ∈ C) denotes the quasi-character C → C×

defined by

(1.2.18) ψz1,z2(w) = exp

(
i

2
(z1w + z2w)

)
,

and if we put ψz = ψz,z̄ (which is a character C → C1), then we have

M̃(σ; z1, z2) =

∫
C

Mσ(w)ψz1,z2(w)|dw|,(1.2.19)

Mσ(w) =

∫
C

M̃σ(z)ψ−w(z)|dz|,(1.2.20)

where |dw| = dxdy/2π for w = x + yi. Both Mσ(w) and M̃σ(z) are continuous functions
on C belonging to L1; hence the Plancherel formula holds. Recall also ([6] §4.2) that the
center of gravity of Mσ(w)|dw| is 0, and that µ(σ) = µ(1,1)(σ) (σ > 1/2) is equal to the
variance

(1.2.21) µσ := µ(σ) =

∫
Mσ(w)|w|2|dw|.

It is easy to see (cf. §3 below) that limσ→1/2 µσ = +∞ and limσ→+∞ µσ = 0 (Cases 1,2).
Now let νσ denote the Plancherel volume of Mσ(w). In connection with Examples

1,2,3 (§1.1), where µν = 1, 1, 8/9 (the minimal possible value) respectively for d = 2,
we are interested in studying the product µσνσ. First, some numerical evidences suggest
that µσνσ is often quite close to 1. For example, when K = Q (resp. Q(

√
−1)) and P∞

consists of the unique archimedean prime of K, then 1 − µ1ν1 = 0.017... (resp. 0.018...).

In §2, we shall study the limit behaviors of the variance-normalized function µσMσ(µ
1/2
σ w)

and that of µσνσ as σ → 1/2 and σ → ∞ for general cases of (K,P∞). Here, we just add,
without proof (cf. [3] for a sketch of proof) the following

Example 4 Let K = Fq(x) be the rational function field over a finite field Fq and

P∞ = {p∞} the unique prime at which x = ∞. Write µ
(q)
σ (resp. ν

(q)
σ ) for the variance

(resp. the Plancherel volume) of Mσ(w)|dw|. Then for any fixed σ > 1/2, at least in Case
1, we have

(1.2.22) lim
q→∞

(µ(q)
σ ν(q)

σ ) = 1.

Is µσνσ related to some invariant with a different origin? Is there a complex analytic
version of νσ?
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2 Limits at σ = 1/2 and σ = +∞.

Let µσ (resp. νσ) denote the variance (resp. the Plancherel volume; cf.§1.1) of the mea-
sure Mσ(w)|dw| (σ > 1/2). We shall study the limits, first at σ = 1/2, then (briefly) those

at σ = +∞, of the invariant µσνσ and of the variance-normalized function µσMσ(µ
1/2
σ w).

In this section, we shall state the main results, Theorem 2 for σ → 1/2 and Theorem 3
for σ → +∞, and reduce their proofs to Lemmas A,B (for Theorem 2) and to Lemmas
A’,B’ (for Theorem 3). The Lemmas A,A’ are for the limits of

M̃(s;
z1

µ(s)1/2
,

z2

µ(s)1/2
)

as s → 1/2,+∞ respectively, where µ(s) = µ(1,1)(s) is the complex analytic version
of µσ. Lemmas B, B’ are on the rapid decay property of the normalized Fourier dual
M̃σ(z/µ

1/2
σ ). The proofs of these lemmas will be postponed to later sections (except

Lemma A’). Because of its introductory nature, we have set this section right after §1, in
spite of its logical dependence on later sections.

2.1 – The main results for σ → 1/2.

Theorem 2 (i) As σ → 1/2,

µσ ∼

{
(2σ − 1)−2 (Case 1),

log 1
2σ−1

(Case 2),
(2.1.1)

where ∼ means that the ratio of two sides tends to 1.
(ii)

(2.1.2) lim
σ→1/2

(µσνσ) = 1 (Cases 1, 2).

(iii)1

(2.1.3) lim
σ→1/2

(µσMσ(µ1/2
σ w))) = 2e−|w|2 (w ∈ C) (Cases 1, 2).

These answer “the limσ→1/2-version” of the questions raised in [2] Remark 3.11.17.

1The author is grateful to S. Takanobu for helpful discussions which lead to this generalized form of
the result.
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2.2 – The proof of Theorem 2(i). This follows directly from (1.2.12) and (1.2.17).
But we also note that (with the notations of §3.3) the easiest case of Theorem 4 asserts
that the difference µ(s) − ϕ(2κ)(2s) extends to a holomorphic function on ℜ(s) > 1/4.
Hence

(2.2.1) lim
s→1/2

|Arg(2s−1)|<π

µ(s)

ϕ(2κ)(2s)
= 1;

hence

lim
s→1/2

(2s− 1)2µ(s) = 1 (Case 1),(2.2.2)

lim
s→1/2

|Arg(2s−1)|<π

µ(s)

log 1
2s−1

= 1 (Case 2),(2.2.3)

as desired.
For any s with |2s− 1| ≪ 1 and |Arg(2s− 1)| < π, we define µ(s)1/2 to be the square

root taking positive value when s is real and > 1/2.

2.3 – The Key Lemmas A,B. The first key lemma is Corollary 3.4.8 (§3.4) of

Theorem 5 to be proved in the next section.

Lemma A We have

(2.3.1) lim
s→1/2

|Arg(2s−1)|<π

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= exp

(
−z1z2

4

)
,

and the convergence is uniform on |z1|, |z2| ≤ R for any given R > 0.

The second key lemma is related to a rapid decay property of the function M̃σ(z) :=
M̃(σ; z, z̄) of z ∈ C, to be proved in §4.6.

Lemma B Fix any ϵ with 0 < ϵ < 1. If (2σ − 1)−1 ≫ϵ 1, then the inequality

(2.3.2) |M̃σ(z)|2 ≤ exp

(
−1 − ϵ

2
µσ|z|2(1−ϵ)

)
holds for all z ∈ C.
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2.4 – Proof of Theorem 2(ii)(iii) assuming Lemmas A,B.

[Proof of (ii)] Note first that

(2.4.1) µσνσ =

∫
|M̃σ(µ−1/2

σ z)|2|dz|.

For each fixed z, the integrand tends to exp(−|z|2/2) by Lemma A. In order to apply
Lebesgue’s convergence theorem to the effect that limσ→1/2 operation commutes with the
integration, we only need to show that the integrand is uniformly bounded near σ = 1/2
by an integrable function of z. But this follows directly from Lemma B. In fact, Lemma
B for ϵ = 1/2 gives |M̃σ(z)|2 ≤ exp(−µσ|z|/4). Since µσ > 1 if σ is sufficiently close to
1/2, we have for such σ

(2.4.2) |M̃σ(µ−1/2
σ z)|2 ≤ exp(−µ1/2

σ |z|/4) ≤ exp(−|z|/4),

which is integrable. Therefore,
(2.4.3)

lim
σ→1/2

(µσνσ) =

∫
lim

σ→1/2
|M̃σ(µ−1/2

σ z)|2|dz| =

∫
exp(−|z|2/2)|dz| =

∫ ∞

0

e−r2/2rdr = 1,

as desired.

[Proof of (iii)] The Fourier inversion formula (1.2.20) gives

(2.4.4) µσMσ(µ1/2
σ w) =

∫
M̃σ(µ−1/2

σ z)ψ−w(z)|dz|.

By Lemma A and (2.4.2), we can also apply Lebesgue’s convergence theorem and hence
obtain

(2.4.5) lim
σ→1/2

(µσMσ(µ1/2
σ w)) =

∫
exp(−|z|2/4)ψ−w(z)|dz| = 2e−|w|2 ,

as desired. 2

2.5 – The main results for σ → +∞.

The following numerical invariants of the pair (K,P∞),

α := Minp̸∈P∞N(p), m := |{p ̸∈ P∞; N(p) = α}|

(| |: the cardinality), and the Bessel function

(2.5.1) J0(x) =
∞∑

n=0

(−1)n

(n!)2

(x
2

)2n

are involved. Clearly, α ≥ 2 and m ≥ 1. The main results corresponding to Theorem 2
are the following:
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Theorem 3 (i) As σ → +∞,

µσ ∼

{
(logα)2mα−2σ (Case 1),

mα−2σ (Case 2).
(2.5.2)

(ii) In each of Cases 1,2,

(2.5.3) lim
σ→+∞

(µσνσ) = m

∫ ∞

0

J0(x)2mxdx

{
= ∞ (m ≤ 2),

<∞ (m ≥ 3).

(iii) In each of Cases 1,2, (at least) if m ≥ 5, we have

(2.5.4) lim
σ→+∞

(µσMσ(µ1/2
σ w))) =

∫ ∞

0

J0(|w|x)J0(x/
√
m)mxdx.

Moreover, the support of this function is compact, being contained in {w ∈ C; |w| ≤
√
m}.

2.6 – Proof of Theorem 3(i). We shall show a slightly stronger result;

lim
σ=ℜ(s)→+∞

(α2sµ(s)) =

{
(logα)2m (Case 1),

m (Case 2),
(2.6.1)

the convergence being uniform in ℑ(s). First, by (1.2.12) and (1.2.17) we have

(2.6.2) α2sµ(s) = α2s
∑
p̸∈P∞

µ
(1,1)
p (s) =

∑
p̸∈P∞
n≥1

a(pn)(α/N(p)n)2s,

where a(pn) = (logN(p))2 (resp. 1/n2) for Case 1 (resp. Case 2). Now decompose the
sum into three parts; the first sum over those (p, n) satisfying N(p) = α and n = 1 gives
the RHS of (2.6.1); the second, over N(p) > α is ≪ (α/α′)2σ−2, where α′ denotes the
second smallest norm outside P∞; the rest is over N(p) = α, n ≥ 2, which is ≪ α−2σ.
Since the latter two partial sums tend to 0 uniformly w.r.t. ℑ(s), this proves (2.6.1).

In particular, µ(s) ̸= 0 for ℜ(s) sufficiently large. We shall denote by µ(s)1/2 its unique
square root that takes positive values when s = σ > 1.

2.7 – The Key Lemmas A’,B’. The counterparts of Lemmas A,B for the case
limσ→+∞ are the following.

Lemma A’ We have

(2.7.1) lim
σ=ℜ(s)→+∞

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= J0

(√
z1z2

m

)m

,

14



and the convergence is uniform on |z1|, |z2| ≤ R for any given R > 0 and w.r.t. ℑ(s).

The proof will be sketched in §2.9.

Lemma B’ There exists a constant C > 0 depending only on (K,P∞) such that

(2.7.2) |M̃σ(µ−1/2
σ z)| ≤ C|z|−m/2

for all σ ≥ 1 and all z ∈ C.

The proof of this key lemma will be postponed until §4.1.

2.8 – Proof of Theorem 3(ii)(iii) assuming Lemmas A’,B’.

[Proof of (ii)] The limit formula (2.5.3) for m ≥ 3 can be obtained from Lemmas
A’,B’ exactly in the same manner as in the proof of Theorem 2 (ii). For m ≤ 2, the
divergences can be checked easily.

[Proof of (iii)] When m ≥ 5, there is again no problem. (The term J0(|w|x) appears
as the average of ψ−w(z) over the circle |z| = x.) It is likely that the same equality holds
also for smaller m. But it should be noted that the limit function of w need not be
continuous. Especially when m = 1, the limit is not even a function; a hyperfunction
with support on the unit circle |w| = 1. This is because at the limit σ → ∞, only the
contribution of the unique prime p with N(p) = α remains.

As for the statement on the support, we can see this in two ways. Firstly, by con-
struction, the support of Mσ(w) for σ > 1 is contained in |w| ≤ ρσ, where

ρσ =

{
− d

dσ
log ζK,P∞(σ) ∼ mα−σ logα (Case 1),

log ζK,P∞(σ) ∼ mα−σ (Case 2);
(2.8.1)

hence limσ→+∞(ρσ/µ
1/2
σ ) =

√
m. Secondly, on the RHS of (2.5.4), one can also see this by

a result of Nicholson (cf.[9]§13.46), which asserts that if ℜ(ν) > −1, a1, · · · , am > 0, b >
a1 + ...+ am, then

(2.8.2)

∫ ∞

0

xν(1−m)+1Jν(bx)
m∏

i=1

Jν(aix)dx = 0

(our m corresponds to m−1 in [9]). Apply this for ν = 0, a1 = ... = am = 1/
√
m, b = |w|,

to see that the RHS of (2.5.4) vanishes for |w| ≥
√
m.

Remark 2.8.3 As for the value of the RHS of (2.5.3), i.e.,

(2.8.4) a(m) := m

∫ ∞

0

J0(x)2mxdx,

we have a(3) = 1.01 · · · , a(4) = 0.951 · · · , a(5) = 0.953 · · · , etc., and one can prove that
limm→∞ a(m) = 1. Numerical evidences suggest limm→∞m(1 − a(m)) = 1/4.
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2.9 – Sketch of the proof of Lemma A’. The power series expansion (1.2.13) of

M̃(s; z1, z2) gives

(2.9.1) M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= 1 +

∑
a,b≥1

(±i/2)a+bµ
(a,b)(s)

µ(s)
a+b
2

za
1z

b
2

a!b!
.

Here, as in (1.2.13), the sign of i/2 is minus (Case 1), plus (Case 2). On the other hand,
the expansion (2.5.1) for J0(x) gives

(2.9.2) J0

(
(
z1z2

m
)1/2
)m

= 1 +
∑
a,b≥1

(−i/2)a+bµ̃(a,b) z
a
1z

b
2

a!b!
,

where

µ̃(a,b) =


0 (a ̸= b),

m−k
∑

k=k1+...+km
(

k

k1, ..., km

)2 (a = b = k ≥ 1).
(2.9.3)

So, it is enough to prove that there exist constants σ0 > 1 and C > 0, each depending
only on (K,P∞), such that

(2.9.4)
µ(a,b)(s)

µ(s)
a+b
2

− µ̃(a,b) ≪ Ca+b

σ − σ0 − 1
(σ = ℜ(s) > σ0 + 1)

holds. Note that the LHS of (2.9.4) is 0 when a = b = 1.
To prove (2.9.4), note first that (1.2.14) gives

(2.9.5)

α(a+b)sµ(a,b)(s) =
∑

D:integral

Λa(D)Λb(D)(αa+b/N(D)2)s =
∑

D:integral

′Λa(D)Λb(D)(αa+b/N(D)2)s,

where
∑′ denotes the sum over non-vanishing terms.

Proposition 2.9.6 Let {p1, ..., pm} be all the distinct primes ̸∈ P∞ with norm α. Let
k ≥ 1 and D be any integral divisor. If Λk(D) ̸= 0, then N(D) ≥ αk and the equality
holds if and only if D has the form D =

∏m
i=1 pki

i with
∑
ki = k. Moreover, in this case,

(2.9.7) Λk(D) = (
k

k1, ..., km
)(logα)κk,

where κ = 1(Case1), κ = 0(Case2).
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This is almost obvious. By this Proposition, we may rewrite (2.9.5) as I(a,b) + II(a,b)(s),
where

I(a,b) =
∑

N(D)2=αa+b

′Λa(D)Λb(D)

=


0 (a ̸= b)(∑

k=k1+...+km
(

k

k1, ..., km

)2

)
(logα)κ(a+b) (a = b = k),

II(a,b)(s) =
∑

N(D)2>αa+b

′Λa(D)Λb(D)(αa+b/N(D)2)s.

In particular, I(1,1) = m(logα)2κ; hence

(2.9.8) µ̃(a,b) =
I(a,b)

(I(1,1))
a+b
2

.

Therefore,

(2.9.9)
µ(a,b)(s)

µ(s)
a+b
2

− µ̃(a,b) =
I(a,b) + II(a,b)(s)

(I(1,1) + II(1,1)(s))
a+b
2

− I(a,b)

(I(1,1))
a+b
2

.

In order to estimate the quantity II(a,b)(s), we need the following

Proposition 2.9.10 There exists σ0 > 1 depending only on (K,P∞) such that

(2.9.11) Λk(D) < N(D)σ0

holds for any D and any k ≥ 1.

The point is that the present bound is independent of k.

Proof Since limσ→+∞(ζ ′K,P∞/ζK,P∞)(σ) = 0, we have

0 < −
ζ ′K,P∞

ζK,P∞

(σ0) =
∑
D

Λ1(D)

N(D)σ0
< 1

for sufficiently large σ0 > 1. But then its k-th power is also < 1; hence

(2.9.12)
∑
D

Λk(D)

N(D)σ0
< 1.

Since each summand is non-negative, this implies Λk(D) < N(D)σ0 for each D, as desired.
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By using Prop 2.9.10, we can easily derive

(2.9.13) |II(a,b)(s)| ≪ (ασ0+1)a+b

σ − σ0 − 1
(σ = ℜ(s) > σ0 + 1),

and by combining these we obtain (2.9.4) directly. 2

3 Analytic continuations

3.1 – Local formal power series. In connection with the local factors of
M̃(s; z1, z2), we consider, in each of Cases 1,2, the following power series F = F (x1, x2; t)
in 3 variables

(3.1.1) F (x1, x2; t) =
∞∑

n=0

Fn(x1)Fn(x2)t
n = 1 +

∞∑
n=1

Fn(x1)Fn(x2)t
n,

where each Fn(x) is a polynomial of x of degree n defined by (1.2.3), or equivalently, by
the generating functions

exp

(
xt

1 − t

)
=

∞∑
n=0

Fn(x)tn (Case 1),(3.1.2)

exp(−x log(1 − t)) = (1 − t)−x =
∞∑

n=0

Fn(x)tn (Case 2).(3.1.3)

Note that each monomial xa
1x

b
2t

n appearing in F − 1 satisfies 1 ≤ a, b ≤ n, and has a pos-
itive rational coefficient. Define also the formal power series logF , by

∑∞
k=1(−1)k−1(F −

1)k/k, and express it as a power series of x1, x2, t as

logF (x1, x2; t) =
∑

a,b,n≥1

β(a,b)
n

xa
1x

b
2

a!b!
tn (β(a,b)

n ∈ Q)(3.1.4)

=
∑
n≥1

Bn(x1, x2)t
n =

∑
a,b≥1

B(a,b)(t)
xa

1x
b
2

a!b!
.

Note that β
(a,b)
n = 0 if n < Max(a, b); hence

(3.1.5) Bn(x1, x2) =
∑

1≤a,b≤n

β(a,b)
n

xa
1x

b
2

a!b!
,

(3.1.6) B(a,b)(t) =
∑

n≥Max(a,b)

β(a,b)
n tn.
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For example,

B(1,1)(t) =

{
t(1 − t)−1 (Case 1),∑∞

n=1 t
n/n2 (Case 2);

(3.1.7)

hence β
(1,1)
n = 1 (Case 1), = 1/n2 (Case 2).

In connection with the local factors of higher logarithmic derivatives of the zeta func-
tion, we also consider the power series

(3.1.8) ℓ(t) = ℓ0(t) = − log(1 − t),

and for each k ≥ 0,

(3.1.9) ℓk(t) =

(
t
d

dt

)k

ℓ(t) =
∞∑

n=1

nk−1tn = t+ · · · .

They have the generating function

(3.1.10) ℓ(teu) =
∞∑

k=0

ℓk(t)

k!
uk.

Put

κ =

{
1 (Case 1),

0 (Case 2).

For each fixed a, b ≥ 1, {ℓκ(a+b)(t
n)}n=1,2,... forms a Q-linear topological basis of the power

series algebra Q[[t]] equipped with the t-adic topology. Hence there exists a unique system

{γ(a,b)
n }n,a,b≥1 of rational numbers such that

(3.1.11) B(a,b)(t) =
∑
n≥1

γ(a,b)
n ℓκ(a+b)(t

n)

holds for any a, b ≥ 1. It is clear from the definition that γ
(a,b)
n = 0 if n < Max(a, b), and

that

(3.1.12) β(a,b)
m =

∑
n|m

γ(a,b)
n (m/n)κ(a+b)−1

(m = 1, 2, · · · ); hence the Möbius inversion formula gives

(3.1.13) γ(a,b)
n =

∑
d|n

µ(n/d)(n/d)κ(a+b)−1β
(a,b)
d .
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For example, γ
(1,1)
1 = 1, and for n > 1, γ

(1,1)
n =

∏
ℓ|n(1 − ℓ) (Case 1), and n−2-times this

quantity in Case 2, where ℓ runs over all prime factors of n. By (3.1.4) and (3.1.11), we
have the formal equality

(3.1.14) logF (x1, x2; t) =
∑

n,a,b≥1
n≥Max(a,b)

γ(a,b)
n ℓκ(a+b)(t

n)
xa

1x
b
2

a!b!
.

3.2 – Local analytic functions. We start with the following

Proposition 3.2.1 (i) F (x1, x2; t) defines a holomorphic function of x1, x2, t ∈ C on
|t| < 1. (ii) Let R > 0, 0 < r < 1; |x1|, |x2| ≤ R, |t| ≤ r, and suppose that one of r,R is
fixed and the other is sufficiently small. Then |F (x1, x2; t) − 1| < 1; hence the principal
logarithm logF (x1, x2; t) is holomorphic on this domain.

Proof Note first that in each of Cases 1,2, the equality (3.1.2) resp. (3.1.3) is valid
also as a formula for analytic functions of x, t on |t| < 1. Recall also that the coefficients
of Fn(x) are non-negative. Thus, for any N ≥ 1,

N∑
n=1

|Fn(x1)Fn(x2)t
n| ≤

N∑
n=1

Fn(R)2rn ≤

(
N∑

n=1

Fn(R)rn/2

)2

(3.2.2)

<

(
∞∑

n=1

Fn(R)rn/2

)2

=


(

exp( Rr1/2

1−r1/2 ) − 1
)2

(Case 1),(
(1 − r1/2)−R − 1

)2
(Case 2).

The rest is obvious.

Corollary 3.2.3 (i) For each a, b ≥ 1, the series (3.1.6) converges absolutely on |t| < 1
and hence defines a holomorphic function B(a,b)(t) on |t| < 1. (ii) The assumptions being
as in that of (ii) of Proposition 3.2.1, the three series in (3.1.4) are absolutely convergent,
and the three equalities there are valid as those for analytic functions.

Now let p be any non-archimedean prime divisor of the base field K, and put

(3.2.4) λp = (− logN(p))κ =

{
− logN(p) (Case 1),

1 (Case 2).

Then it follows directly from the definitions (§1.2) that

(3.2.5) M̃p(s; z1, z2) = F ((iλp/2)z1, (iλp/2)z2;N(p)−2s)
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(s, z1, z2 ∈ C,ℜ(s) > 0). For each a, b ≥ 1, define the holomorphic function B
(a,b)
p (s) on

ℜ(s) > 0 by

(3.2.6) B
(a,b)
p (s) = λa+b

p B(a,b)(N(p)−2s).

In the special case a = b = 1, we have by (1.2.12) and (3.1.7),

B
(1,1)
p (s) = µ

(1,1)
p (s) =

{
(logN(p))2(N(p)2s − 1)−1 (Case 1),∑∞

n=1
1
n2N(p)−2ns (Case 2).

(3.2.7)

Corollary 3.2.8 Let R > 0, α ≥ 2, σ0 > 0, and |z1|, |z2| ≤ R, N(p) ≥ α, ℜ(s) ≥ σ0.
Suppose that two of R,α, σ0 are fixed and the remaining one, if R, is sufficiently small
while if α or σ0, is sufficiently large. Then |M̃p(s; z1, z2) − 1| < 1, and

(3.2.9) log M̃p(s; z1, z2) =
∑
a,b≥1

B
(a,b)
p (s)(i/2)a+b z

a
1z

b
2

a!b!
.

Proof In Case 2, this is obvious by (3.2.5) and Cor 3.2.3(ii). In Case 1, the difference
between |zν | and |xν | (ν = 1, 2) involves logN(p). But since (logN(p))N(p)−σ0 is bounded
and it tends to 0 when one of α, σ0 tends to ∞, the same proof works. 2

Now put

(3.2.10) ϕp(s) = ℓ(N(p)−s) = − log(1 −N(p)−s) (ℜ(s) > 0),

and for k = 0, 1, 2, ...,

(3.2.11) ϕ
(k)
p (s) =

dkϕp
dsk

(s) = (− logN(p))kℓk(N(p)−s) (ℜ(s) > 0).

In particular, for k = κ(a+ b) and n = 1, 2, ...,

(3.2.12) ϕ
(κ(a+b))
p (2ns) = λa+b

p ℓκ(a+b)(N(p)−2ns).

The formal equalities (3.1.11)(3.1.14) suggest that the corresponding analytic equali-
ties

(3.2.13) B
(a,b)
p (s) =

∑
n≥Max(a,b)

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)

(3.2.14) log M̃p(s; z1, z2) =
∑

a,b,n≥1

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z

b
2

a!b!

would hold on some suitable domain where M̃p(s; z1, z2) does not vanish. Note that

the coefficients γ
(a,b)
n are independent of p, so that under some further conditions the

globalization would be possible. Our aim is to establish these results (Theorems 4,5).
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3.3 – The global analytic functions of s. First, we define the functions B(a,b)(s)
(a, b ≥ 1) of s.

Proposition 3.3.1 Let a, b ≥ 1. Then

(3.3.2) B(a,b)(s) :=
∑
p ̸∈P∞

B
(a,b)
p (s)

converges absolutely and uniformly on σ = ℜ(s) ≥ 1+ϵ
2Max(a,b)

for any ϵ > 0, thereby defining

a holomorphic function on σ > 1
2Max(a,b)

Proof Since N(p)−2σ ≤ 2−1/Max(a,b), and since B(a,b)(t)/tMax(a,b) is holomorphic on |t| < 1
and hence is bounded on |t| ≤ 2−1/Max(a,b), we have by (3.2.6),

|B(a,b)
p (s)| ≪a,b (logN(p))a+bN(p)−2σMax(a,b) ≤ (logN(p))a+bN(p)−1−ϵ,

whose sum over p ̸∈ P∞ converges. 2

In the special case a = b = 1, we have, by (1.2.17) and (3.2.7),

(3.3.3) B(1,1)(s) = µ(1,1)(s).

Now we shall define the functions ϕ(k)(s). Let ζ(s) = ζK,P∞(s) be the zeta function of
K without P∞ factors, defined by the Euler product expansion

(3.3.4)
∏
p̸∈P∞

(1 −N(p)−s)−1 (ℜ(s) > 1)

and by analytic continuation to the whole complex plane. Let

(3.3.5) ϕ(s) = log ζ(s),

where the branch of the logarithm is the one that tends to 0 as ℜ(s) tends to +∞. It is
holomorphic on ℜ(s) > 1 and is a multivalued analytic function on C where ζ(s) ̸= ∞, 0.
For each k ≥ 0, ϕ(k)(s) will denote its k-th derivative with respect to s. Thus, ϕ(0)(s) =
log ζ(s), and for each k ≥ 1,

(3.3.6) ϕ(k)(s) =
dk−1

dsk−1
(ζ ′(s)/ζ(s))

is a meromorphic function on C. By these definitions we have, for each k ≥ 0,

(3.3.7) ϕ(k)(s) =
∑
p̸∈P∞

ϕ
(k)
p (s) (ℜ(s) > 1);
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hence for each n ≥ 1,

(3.3.8) ϕ(k)(2ns) =
∑
p ̸∈P∞

ϕ
(k)
p (2ns) (ℜ(s) > 1/2n).

In particular, if n ≥ Max(a, b), then ϕ(κ(a+b))(2ns) is holomorphic on ℜ(s) > 1/(2Max(a, b)).

Theorem 4 Let a, b ≥ 1. Then the equality

(3.3.9) B(a,b)(s) =
∑

n≥Max(a,b)

γ(a,b)
n ϕ(κ(a+b))(2ns)

holds in the following sense. (i) For any N ≥ Max(a, b) − 1 and ϵ > 0, the sum over
n ≥ N + 1 on the RHS converges absolutely and uniformly on σ = ℜ(s) ≥ 1+ϵ

2(N+1)
, and

(ii) the equality (3.3.9) holds on σ > 1/(2Max(a, b)).
In other words, the holomorphic function

(3.3.10) B(a,b)(s) −
∑
n≤N

γ(a,b)
n ϕ(κ(a+b))(2ns)

on σ > 1/(2Max(a, b)) extends to a holomorphic function

(3.3.11)
∑

n≥N+1

γ(a,b)
n ϕ(κ(a+b))(2ns)

on σ > 1/(2(N+1)). In particular, µ(1,1)(s)−ϕ(2κ)(2s) extends to a holomorphic function
on σ > 1/4.

The proof will be given in §3.7 after the preliminaries §3.5-3.6.

3.4 – The analytic continuation of M̃(s; z1, z2).

Theorem 5 (i) For any N ≥ 0, the holomorphic function

(3.4.1) M̃(s; z1, z2) exp

(
−

∑
1≤a,b≤n≤N

γ(a,b)
n ϕ(κ(a+b))(2ns)(i/2)a+b z

a
1z

b
2

a!b!

)

of (s, z1, z2) on ℜ(s) > 1/2 extends to that on ℜ(s) > 1/(2(N+1)). In particular (N = 1),

(3.4.2) M̃(s; z1, z2) exp(
1

4
ϕ(2κ)(2s)z1z2)
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extends to a holomorphic function of s, z1, z2 on the domain defined by σ > 1/4.
(ii) Let σ0 > 1/2, R > 0, and ℜ(s) ≥ σ0, |z1|, |z2| ≤ R. Suppose that either σ0 is fixed and
R is sufficiently small, or R is fixed and σ0 is sufficiently large. Then the two series

(3.4.3)
∑
a,b≥1

B(a,b)(s)(i/2)a+b z
a
1z

b
2

a!b!

(3.4.4)
∑
a,b,n

n≥Max(a,b)

γ(a,b)
n ϕ(κ(a+b))(2ns)(i/2)a+b z

a
1z

b
2

a!b!

both converge absolutely and uniformly to log M̃(s; z1, z2). In Case 2, this means that
M̃(s; z1, z2) has an absolutely convergent infinite product expansion

(3.4.5) M̃(s; z1, z2) =
∞∏

n=1

ζ(2ns)Rn(z1,z2) (ℜ(s) ≥ σ0, |z1|, |z2| ≤ R)

(σ0, R as above), where

(3.4.6) Rn(z1, z2) =
n∑

a,b=1

γ(a,b)
n (i/2)a+b z

a
1z

b
2

a!b!
.

The proof will be given in §3.8 after the preliminary subsections.

For example, letK,P∞ be as in Example 4 (§1.2). Then ζ(s) = ζK,P∞(s) = (1−q1−s)−1;
hence

(3.4.7) M̃(s; z1, z2) =
∞∏

n=1

(1 − q1−2ns)−Rn(z1,z2).

Corollary 3.4.8 (Lemma A §2.3) We have

(3.4.9) lim
s→1/2

|Arg(2s−1)|<π

M̃

(
s;

z1

µ(s)1/2
,

z2

µ(s)1/2

)
= exp

(
−z1z2

4

)
,

and the convergence is uniform on |z1|, |z2| ≤ R for any given R > 0.

Proof The above theorem shows in particular that

(3.4.10) f(s; z1, z2) := M̃(s; z1, z2) exp

(
ϕ(2κ)(2s)

4
z1z2

)
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extends to a holomorphic function of (s, z1, z2) on ℜ(s) > 1/4. Clearly, f(s, 0, 0) = 1,
f(s, z1, z2) is continuous at (1/2, 0, 0), and limσ→1/2 µ(s)−1/2 = 0. Therefore,
(3.4.11)

f(s; z1/µ(s)1/2, z2/µ(s)1/2) = M̃
(
s; z1/µ(s)1/2, z2/µ(s)1/2

)
exp

(
ϕ(2κ)(2s)

4µ(s)
z1z2

)
tends uniformly to 1 as s→ 1/2 (on |z1|, |z2| ≤ R). But by (2.2.1), the exponential factor
tends uniformly to exp(z1z2/4). These together prove the Corollary.

Now let

(3.4.12) D = {s ∈ C; ℜ(s) > 0, ζ(2ns) ̸= 0,∞ (n = 1, 2, ...)},

where ζ(s) = ζK,P∞(s). (In the number field case, the condition ζ(2ns) ̸= ∞ is of course
equivalent to s ̸= 1/(2n).) Then Theorem 5 gives directly:

Corollary 3.4.13 M̃(s; z1, z2) extends to a single-valued (Case 1) or multi-valued (Case
2) analytic function of (s, z1, z2) on D × C2.

As regards Case 2, if s0 is a point with ℜ(s0) > 0, s0 ̸∈ D, and s encircles s0 in a small
neighborhood in the positive direction (z1, z2 being fixed), then M̃(s; z1, z2) is multiplied
by

(3.4.14) exp(2πi
r∑

ν=1

kνRnν (z1, z2)).

Here, (nν)r
ν=1 are the distinct positive integers such that ζ(2nνs0) = 0 or ∞, and kν is

the order of ζ(s) at s = 2nνs0. Thus, M̃(s; z1, z2) can be regarded as a univalent analytic
function on Durab ×C2, where Durab denotes the maximal unramified abelian covering of
D. Moreover, although M̃(s; z1, z2) is multi-valued, its divisor on D×C2 is well-defined.
Note also that for y1, y2 ∈ R, |M̃(s, iy1, iy2)| is a univalent function on D × R2 (because
Rn(iy1, iy2) ∈ R).

Now each local factor M̃p(s; z1, z2) is a holomorphic function on {ℜ(s) > 0} × C2,
having a non-trivial zero divisor. It is clear from the Euler product expansion

(3.4.15) M̃(s; z1, z2) =
∏
p̸∈P∞

M̃p(s; z1, z2) (ℜ(s) > 1/2)

(cf. §1.2) that the zero divisor of M̃(s; z1, z2) on {ℜ(s) > 1/2} ×C2 is simply the sum of
zero divisors of local factors. But moreover, we have

Corollary 3.4.16 The zero divisor of M̃(s; z1, z2) on D×C2 is the sum of zero divisors
of M̃p(s; z1, z2) (restricted to D × C2) for all p ̸∈ P∞.

This will be proved in the course of the proof of Theorem 5 (i)(in §3.8).
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3.5 – Preliminaries for the proofs of Theorems 4,5; Some estimates.

A main point in their proofs is the exchangeability of the order of (various) summa-
tions, over p, n, (a, b). To justify this we need the absolute convergence of various sums
over all p, n, (a, b), and for this, some estimations of each summand will be needed. In

this §3.5, we shall give some estimates of |B(a,b)(t)|, |β(a,b)
n |, |γ(a,b)

n |.

Proposition 3.5.1 Let |t| < 1. Then

(3.5.2) |B(a,b)(t)| ≤ (2Min(a, b))a+b|t|Max(a,b)(1 − |t|1/2)−2(a+b).

Proposition 3.5.3 1 We have

(i) |β(a,b)
n | < (4en)a+b−1 (Cases 1, 2),

(ii)
∑
a,b,n

(
β

(a,b)
n

3a+ba!b!

)2

<
1

2
(Case 2).

Proposition 3.5.4 We have

(i) |γ(a,b)
n | < (4en)a+b (Case 1),

(ii) |γ(a,b)
n | < 3a+ba!b! (Case 2).

First, some preparatory materials for these proofs. First, by (1.2.3), the coefficient of
xa

1x
b
2t

n in F (x1, x2; t) =
∑

n≥0 Fn(x1)Fn(x2)t
n for n ≥ Max(a, b) is given by

(
n−1
a−1

)(
n−1
b−1

)
/a!b!

in Case 1 and by δa(n)δb(n)/a!b! in Case 2, and is = 0 otherwise; hence F (x1, x2; t) may
be rewritten as

(3.5.5) F (x1, x2; t) = 1 +
∑
a,b≥1

f (a,b)(t)
xa

1x
b
2

a!b!
,

where

(3.5.6) f (a,b)(t) =

{∑
n≥Max(a,b)

(
n−1
a−1

)(
n−1
b−1

)
tn (Case 1),∑

n≥Max(a,b) δn(a)δn(b)tn (Case 2).

1Since so many positive absolute constants appear, instead of denoting them C1, C2, etc., we shall
simply give an explicit choice for each (e.g., 4e in (i) below). Later arguments will not depend on these
specific choices.
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Therefore,

(3.5.7) logF (x1, x2; t) =
∞∑

k=1

(−1)k−1

k

(∑
a,b≥1

f (a,b)(t)
xa

1x
b
2

a!b!

)k

;

hence the coefficient B(a,b)(t) of
xa
1xb

2

a!b!
in (3.5.7) is given by

(3.5.8)

B(a,b)(t) =

Min(a,b)∑
k=1

(−1)k−1

k

∑
a=a1+...+ak
a1,...,ak≥1

∑
b=b1+...+bk
b1,...,bk≥1

(
a

a1, ..., ak

)(
b

b1, ..., bk

) k∏
ν=1

f (aν ,bν)(t).

(A priori, the outer sum is over all k ≥ 1, but the inner sum is 0 unless k ≤ Min(a, b). )
For any formal power series f and g with non-negative real coefficients, f ≤cf g will

denote the coefficientwise inequality ≤. Note that this inequality is preserved by additions
and multiplications. By (3.1.6)(3.5.8), we have
(3.5.9)∑
n≥Max(a,b)

|β(a,b)
n |tn ≤cf

Min(a,b)∑
k=1

1

k

∑
a=a1+...+ak
a1,...,ak≥1

∑
b=b1+...+bk
b1,...,bk≥1

(
a

a1, ..., ak

)(
b

b1, ..., bk

) k∏
ν=1

f (aν ,bν)(t).

We shall need the following two ≤cf inequalities;

(3.5.10) f (a,b)(u2) ≤cf

{
(u(1 − u)−1)a+b,(
Max(a,b)−1
Min(a,b)−1

)
(u(1 − u)−1)2Max(a,b).

To verify these we may assume a ≥ b. By (1.2.4)(3.5.6),
(3.5.11)

f (a,b)(u2) ≤cf

∑
n≥a

(
n− 1

a− 1

)(
n− 1

b− 1

)
u2n ≤cf

(∑
n≥a

(
n− 1

a− 1

)
un

)(∑
n≥a

(
n− 1

b− 1

)
un

)
.

But

(3.5.12)
∑
n≥a

(
n− 1

a− 1

)
un = (u(1 − u)−1)a,

and hence

(3.5.13)
∑
n≥a

(
n− 1

b− 1

)
un ≤cf

{
(u(1 − u)−1)b(

a−1
b−1

)
(u(1 − u)−1)a.
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(The first is obvious by (3.5.12) and b ≤ a; the second is by (3.5.12) and
(

n−1
b−1

)
≤(

n−b
a−b

)(
n−1
b−1

)
=
(

a−1
b−1

)(
n−1
a−1

)
). Therefore, (3.5.10) follows directly from (3.5.11)∼(3.5.13).

[Proof of Prop 3.5.3(i)]. By (3.5.9) and the first inequality of (3.5.10), we obtain
(3.5.14)∑

n≥Max(a,b)

|β(a,b)
n |u2n ≤cf

Min(a,b)∑
k=1

ka+b−1(u(1 − u)−1)a+b ≤cf Min(a, b)a+b(u(1 − u)−1)a+b.

Therefore, by (3.5.12),

|β(a,b)
n | ≤ Min(a, b)a+b

(
2n− 1

a+ b− 1

)
≤ (a+ b− 1)a+b (2n− 1)a+b−1

(a+ b− 1)!
.

By using n! > e−nnn and a+ b− 1 ≤ 2a+b−1, we obtain

|β(a,b)
n | < (a+ b− 1)ea+b−1(2n− 1)a+b−1 < (4en)a+b−1,

as desired.

[Proof of Prop 3.5.1] We use the second inequality of (3.5.10), and proceed similarly.
The only difference is that we finally turn to “real inequalities” by using |t| < 1 and
a+ b ≥

∑
ν Max(aν , bν) ≥ Max(a, b).

[Proof of Prop 3.5.3(ii)] This is more delicate. In Case 2, by (3.1.1) and (1.2.3),
our F (x1, x2; t) is nothing but the Gauss hypergeometric series

(3.5.15) F (a, b; c; t) = 1 +
a.b

1.c
t+

a(a+ 1)b(b+ 1)

1.2.c(c+ 1)
t2 + · · · ,

for a = x1, b = x2, c = 1;

(3.5.16) F (x1, x2; t) = F (x1, x2; 1; t).

When ℜ(c) > 0 and ℜ(c− a− b) > 0, the series (3.5.15) converges also for t = 1, and the
Gauss formula

(3.5.17) F (a, b; c; 1) =
Γ(c)Γ(c− a− b)

Γ(c− a)Γ(c− b)

holds. In particular, F (1/3, 1/3; 1) = Γ(1/3)Γ(2/3)−2 = 1.461 · · · < 3/2. Therefore, when
|x1|, |x2| ≤ 1/3, |t| < 1, we have

(3.5.18) |F (x1, x2; t) − 1| ≤
∑
n≥1

Fn(1/3)2 = F (1/3, 1/3; 1) − 1 < 1/2.
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Note now the following. For any α1, α2, ... ∈ C, if we define the formal power series

(3.5.19)
∑
n≥1

βnt
n = log(1 +

∑
n≥1

αnt
n)

then for any {an}n≥1 with |αn| ≤ an, the coefficientwise inequality

(3.5.20)
∑
n≥1

|βn|tn ≤cf − log(1 −
∑
n≥1

ant
n)

holds. Apply this for αn = Fn(x1)Fn(x2) (for |x1|, |x2| ≤ 1/3), an = Fn(1/3)2 and
βn = Bn(x1, x2), to obtain

(3.5.21)
∑
n≥1

|Bn(x1, x2)|tn ≤cf − log(1 −
∑
n≥1

Fn(1/3)2tn).

This of course carries over to an actual inequality for any t with 0 ≤ t < 1. Therefore, by
letting t→ 1 and using (3.5.18) (and Abel’s theorem), we obtain

(3.5.22)
∑
n≥1

|Bn(x1, x2)| ≤ log 2 (|x1|, |x2| ≤ 1/3);

hence

(3.5.23)
∑
n≥1

|Bn(x1, x2)|2 ≤ (log 2)2 < 1/2 (|x1|, |x2| ≤ 1/3).

Now by (3.1.5) and the orthogonality relation we obtain

(3.5.24)

∫
|x1|=|x2|=1/3

|Bn(x1, x2)|2d×x1d
×x2 =

n∑
a,b=1

(
β

(a,b)
n

a!b!
(
1

3
)a+b

)2

;

where d×xν (ν = 1, 2) denotes the normalized Haar measure of the circle |xν | = 1/3 (note

that β
(a,b)
n are rational and hence real). Hence

(3.5.25)
∑
n,a,b

(
β

(a,b)
n

a!b!
(
1

3
)a+b

)2

=

∫
|x1|=|x2|=1/3

∞∑
n=1

|Bn(x1, x2)|2d×x1d
×x2 < 1/2,

as desired. This settles the proof of Prop 3.5.3(ii).

[Proof of Prop 3.5.4] (Case 1) By (3.1.13), we have

γ(a,b)
n = na+b−1

∑
d|n

µ(n/d)d1−a−bβ
(a,b)
d ,
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and by Prop 3.5.3(i), we have d1−a−b|β(a,b)
d | < (4e)a+b−1; hence

|γ(a,b)
n | < (4en)a+b−1

∑
d|n

1 ≤ (4e)a+b−1na+b.

(Case 2) In this case,

γ(a,b)
n =

1

n

∑
d|n

µ(n/d)dβ
(a,b)
d ;

hence

(3.5.26) |γ(a,b)
n | ≤ 1

n

∑
d|n

d|β(a,b)
n | ≤ 1

n

(
∑
d|n

d2)(
∑
d|n

|β(a,b)
d |2)

1/2

.

By Prop 3.5.3(ii) we have

(3.5.27)
∑
d|n

|β(a,b)
d |2 < (3a+ba!b!)2/2

for each a, b ≥ 1, and on the other hand, n−2
∑

d|n d
2 <

∑
m≥1m

−2 = π2/6; hence

(3.5.28) |γ(a,b)
n | < π√

12
3a+ba!b! < 3a+ba!b!,

as desired. 2

Remark 3.5.29 From (3.5.16)(3.5.17) and the power series expansion

(3.5.30) log Γ(1 − x) = γx+
∞∑

n=2

ζQ(n)

n
xn (|x| < 1)

(γ: the Euler constant, ζQ(s): the Riemann zeta function), we obtain, in Case 2 for
|x1|, |x2| < 1/2,

logF (x1, x2; 1) = log Γ(1 − x1 − x2) − log Γ(1 − x1) − log Γ(1 − x2)(3.5.31)

=
∞∑

n=2

ζQ(n)

n
((x1 + x2)

n − xn
1 − xn

2 ) =
∑
a,b≥1

(a+ b− 1)!ζQ(a+ b)
xa

1x
b
2

a!b!
,

and hence also

(3.5.32) B(a,b)(1) = (a+ b− 1)!ζQ(a+ b) (a, b ≥ 1)(Case 2).
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3.6 – Further estimations and convergences.

Proposition 3.6.1 Fix a, b ≥ 1, 0 < r < 1 and let |t| ≤ r. Then the series

(3.6.2)
∑

n≥Max(a,b)

γ(a,b)
n ℓκ(a+b)(t

n)

is absolutely and uniformly convergent, and has B(a,b)(t) as its limit. Moreover,

(3.6.3)

∣∣∣∣B(a,b)(t) −
N∑

n=Max(a,b)

γ(a,b)
n ℓκ(a+b)(t

n)

∣∣∣∣≪a,b,r (N + 1)κ(a+b)+1|t|N+1

holds for any N ≥ Max(a, b) − 1.

The second inequality will be needed for globalization.

Proof Since (a, b) is fixed, |γ(a,b)
n | ≪ nκ(a+b) by Prop 3.5.4. And clearly, |ℓk(t)| ≪k,r |t|

for |t| ≤ r. Therefore,

(3.6.4) |γ(a,b)
n ℓκ(a+b)(t

n)| ≪a,b,r n
κ(a+b)rn.

Therefore, (3.6.2) is absolutely and uniformly convergent. Now, by definitions,
(3.6.5)

Coeff

B(a,b)(t) −
N∑

n=Max(a,b)

γ(a,b)
n ℓκ(a+b)(t

n), tm

 = β(a,b)
m −

∑
n≤N
n|m

γ(a,b)
n (m/n)κ(a+b)−1

holds for the coefficient of tm. This is = 0 when m ≤ N , and is ≪a,b m
κ(a+b)+1 for

m ≥ N + 1, by Prop 3.5.3, Prop 3.5.4. Therefore, the LHS of (3.6.3) is

≪a,b

∑
m≥N+1

mκ(a+b)+1|t|m ≪a,b,r (N + 1)κ(a+b)+1|t|N+1,

as desired.

By (3.2.6) and (3.2.12), this gives:

Corollary 3.6.6 The holomorphic function B
(a,b)
p (s) on ℜ(s) > 0 can be expressed as an

absolutely (and uniformly on ℜ(s) ≥ ϵ > 0) convergent series

(3.6.7) B
(a,b)
p (s) =

∑
n≥Max(a,b)

γ(a,b)
n ϕ

(κ(a+b))
p (2ns).
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Proposition 3.6.8 Let |x1|, |x2| ≤ R, |t| ≤ r < 1, and consider the triple series

(3.6.9)
∑

n,a,b≥1

γ(a,b)
n

xa
1x

b
2

a!b!
ℓκ(a+b)(t

n).

If one of R, r is fixed and the other is sufficiently small, then (3.6.9) converges absolutely
and uniformly to logF (x1, x2; t). Moreover, for each N ≥ 0 and 0 < c < 1, we have

(3.6.10)
∑
a,b,n

n≥N+1

|γ(a,b)
n

xa
1x

b
2

a!b!
ℓκ(a+b)(t

n)| ≪c (N + 1)2(re8eR)N+1 if re8eR ≤ c.

Proof We shall first prove (3.6.10).
(Case 1) By Prop 3.5.4 and (3.1.10)(which holds analytically for |t|, |teu| < 1), the

LHS of (3.6.10) is

≤
∑

n≥N+1

∑
k≥2

∑
a+b=k

1≤a,b≤n

(4enR)k

a!b!
ℓk(rn) ≤

∑
n≥N+1

(∑
k≥0

1

k!
(8enR)kℓk(rn)

)

=
∑

n≥N+1

ℓ((re8eR)n) ≪c

∑
n≥N+1

(re8eR)n ≪c (re8eR)N+1,

provided that re8eR ≤ c < 1.
(Case 2) Since ℓ(rn) = − log(1−rn) ≤ rn(1−rn)−1 ≤ rn(1−r)−1, Prop 3.5.4 (ii) gives

(3.6.11)
n∑

a,b=1

|γ(a,b)
n

xa
1x

b
2

a!b!
ℓ(tn)| ≤

n∑
a,b=1

(3R)a+brn(1− r)−1 ≪r

{
(3R)2n2rn (3R < 1),

(3R)2nn2rn (3R ≥ 1).

But since (aR)2/2 < eaR (a > 0) and hence (3R)2 ≤ e3
√

2R < e8eR, this gives (3R)2 <
e8eRn and also (3R)2n < e8eRn (n ≥ 1); hence the LHS of (3.6.10) in this case is ≪c

(N + 1)2(re8eR)N+1 if re8eR ≤ c, as desired. This settles the proof of (3.6.10) for both
cases.

By (3.6.10), the series (3.6.9) converges absolutely and uniformly, as long as re8eR ≤ c.
Therefore, we may change the order of summation. Since we already know by Prop 3.6.1
that

(3.6.12)
∑
n≥1

γ(a,b)
n ℓκ(a+b)(t

n) = B(a,b)(t) (|t| < 1),

and by Cor 3.2.3 that

(3.6.13)
∑
a,b≥1

B(a,b)(t)
xa

1x
b
2

a!b!
= logF (x1, x2; t),
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when one of r, R is fixed and the other is sufficiently small, we conclude that (3.6.9) tends
to logF (x1, x2; t) for such r, R. 2

Corollary 3.6.14 Let R, σ0 > 0, σ ≥ σ0, |z1|, |z2| ≤ R. Suppose that either σ0 is fixed
and R is sufficiently small, or R is fixed and σ0 is sufficiently large. Then for any non-
archimedean prime p, log M̃p(s; z1, z2) (cf. Cor 3.2.8) can be expressed as an absolutely
convergent series

(3.6.15) log M̃p(s; z1, z2) =
∑

n,a,b≥1
n≥Max(a,b)

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z

b
2

a!b!
.

Proof Again, in Case 2, this follows immediately from the above Proposition. In
Case 1, we may take r = N(p)−2σ0 , but R is replaced by (logN(p))R/2; hence re8eR will
be replaced by N(p)4eR−2σ0 . The exponent 4eR − 2σ0 is ≤ −σ0 if and only if 4eR ≤ σ0;
which is satisfied under our assumptions on σ0 and R. Hence this case is also settled. 2

3.7 – Proof of Theorem 4. Write σ = ℜ(s). Fix N ≥ Max(a, b) − 1 and ϵ > 0.
We shall prove first that the double sum

(3.7.1)
∑

n≥N+1
p̸∈P∞

|γ(a,b)
n ϕ

(κ(a+b))
p (2ns)|

is finite and bounded on σ ≥ (1+ϵ)/(2(N+1)). By (3.2.12), ϕ
(κ(a+b))
p (2ns) = λa+b

p ℓκ(a+b)(N(p)−2ns).

But we have |γ(a,b)
n | ≪a,b n

κ(a+b) ≤ na+b (by Prop 3.5.4), |λp| ≤ logN(p), ℓκ(a+b)(t) ≪a,b,r

|t| for |t| ≤ r < 1, and N(p)−2σn ≤ 2−2σ(N+1) ≤ 2−1−ϵ < 1/2; hence (3.7.1) is

(3.7.2) ≪a,b

∑
n≥N+1

na+b(
∑
p̸∈P∞

(logN(p))a+bN(p)−2nσ).

Put α = Minp̸∈P∞N(p). Then since 2nσ ≥ 1+ϵ and αN(p)−1 ≤ 1, we have (αN(p)−1)2nσ ≤
(αN(p)−1)1+ϵ; hence

(3.7.3) α2nσ(
∑
p̸∈P∞

(logN(p))a+bN(p)−2nσ) ≤ α1+ϵ(
∑
p̸∈P∞

(logN(p))a+bN(p)−1−ϵ) ≪a,b,ϵ 1;

hence (3.7.2) is

(3.7.4) ≪a,b,ϵ

∑
n≥N+1

na+bα−2nσ ≤
∑

n≥N+1

na+b(α−(1+ϵ)/(N+1))n ≪a,b,ϵ,N 1,

as desired.
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Since the sum

(3.7.5) ϕ(k)(2ns) =
∑
p̸∈P∞

ϕ
(k)
p (2ns)

is absolutely convergent, because 2nσ ≥ 2(N + 1)σ ≥ 1 + ϵ, the convergence of (3.7.1)
implies that the global sum

(3.7.6)
∑

n≥N+1

γ(a,b)
n ϕ(κ(a+b))(2ns)

is also absolutely and uniformly convergent on σ ≥ (1 + ϵ)/(2(N + 1)); whence (i).
To prove (ii), let σ > 1/(2Max(a, b)). By Prop 3.3.1 and Cor 3.6.6,

(3.7.7) B(a,b)(s) =
∑
p̸∈P∞

B
(a,b)
p (s) =

∑
p̸∈P∞

(
∑

n≥Max(a,b)

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)),

which, by the absolute convergence (3.7.1)(for N = 0) can be reordered as

(3.7.8)
∑

n≥Max(a,b)

γ(a,b)
n (

∑
p̸∈P∞

(ϕ
(κ(a+b))
p (2ns)) =

∑
n≥Max(a,b)

γ(a,b)
n ϕ(κ(a+b))(2ns)

(cf. (3.3.8)), as desired. This completes the proof of Theorem 4.

3.8 – Proof of Theorem 5.
Proof of (i) Fix N ≥ 0. We may also fix any R ≥ 1 and assume |z1|, |z2| ≤ R.

Depending on R we may remove a finite set of prime components p from both M̃(s; z1, z2)
and ϕ(κ(a+b))(2ns), so that the following conditions are satisfied for any remaining primes
p; (i)N(p)−1/(2(N+1)) ≤ 1/2, and more strongly, 4eR(logN(p))N(p)−1/(2(N+1)) ≤ 1/2; (ii)
α = Min(N(p)) is so large that the assumption of Cor 3.2.8 for σ0 = 1/(2(N + 1)) (and
for the above given R) is satisfied. Thus, we have |M̃p(s; z1, z2) − 1| < 1, and

(3.8.1) log M̃p(s; z1, z2) =
∑
a,b≥1

B
(a,b)
p (s)(i/2)a+b z

a
1z

b
2

a!b!
(absolutely convergent)

holds for all the remaining primes. Write

(3.8.2) log M̃p(s; z1, z2) −
∑

1≤a,b≤n≤N

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z

b
2

a!b!
= Ip + IIp,

with

Ip =
N∑

a,b=1

B
(a,b)
p (s) −

N∑
n=Max(a,b)

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)

 (i/2)a+b z
a
1z

b
2

a!b!
,(3.8.3)

IIp =
∑

Max(a,b)≥N+1

B
(a,b)
p (s)(i/2)a+b z

a
1z

b
2

a!b!
.(3.8.4)
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Note that Ip is a finite sum. Let I⋆
p (resp. II⋆

p ) denote the sums (3.8.3)(resp.(3.8.4)) where
each outer summand is replaced by its absolute value.

First, when ℜ(s) > 1/2, we have

(3.8.5)
∑
p

log M̃p(s; z1, z2) = log M̃(s; z1, z2) (absolutely convergent),

by the argument of [6] §4, applied to the present situation, and also

(3.8.6)
∑
p

ϕ
(κ(a+b))
p (2ns) = ϕ(κ(a+b))(2ns) (absolutely convergent).

Hence the sum over p of the LHS of (3.8.2) for ℜ(s) > 1/2 converges to

(3.8.7) log M̃(s; z1, z2) −
∑
a,b,n

1≤a,b≤n≤N

γ(a,b)
n ϕ(κ(a+b))(2ns)(i/2)a+b z

a
1z

b
2

a!b!
.

So, in order to prove Theorem 5 (i)and Corollary 3.4.16, it suffices to show that (3.8.7)
extends to a holomorphic function on σ > 1/(2(N + 1)), and for this it suffices to prove
that

∑
p I

⋆
p and

∑
p II

⋆
p are finite and uniformly bounded on σ ≥ (1 + ϵ)/(2(N + 1)).

As for I⋆
p , by Prop 3.6.1,

I⋆
p ≤

N∑
a,b=1

∣∣∣∣B(a,b)
p (s) −

∑
Max(a,b)≤n≤N

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)

∣∣∣∣(R/2)a+b

a!b!

≪N,ϵ

N∑
a,b=1

(N + 1)κ(a+b)+1(logN(p))a+bN(p)−2σ(N+1) (R/2)a+b

a!b!

≪N,ϵ,R (logN(p))2NN(p)−1−ϵ;

Hence
∑
p I

⋆
p ≪

∑
p(logN(p))2NN(p)−1−ϵ ≪ 1.

As for II⋆
p , we first estimate this by using Prop 3.5.1, which, together with (3.2.6)

gives

(3.8.8) |B(a,b)
p (s)| ≤ (logN(p))a+b(2Min(a, b))a+bN(p)−2σMax(a,b)(1 −N(p)−σ)−2(a+b).

But sinceN(p)−σ < N(p)−1/(2(N+1)) ≤ 1/2 (by the assumption (i) above) and Min(a, b)a+b ≤
aabb ≤ ea+ba!b!, we obtain

(3.8.9)
1

a!b!
|B(a,b)
p (s)| ≤ (8e logN(p))a+bN(p)−2σMax(a,b).
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Since a+b ≤ 2Max(a, b) and R ≥ 1, we obtain by reordering the sum using ν = Max(a, b),
(3.8.10)

II⋆
p ≤

∑
Max(a,b)≥N+1

(4eR logN(p))2Max(a,b)N(p)−2σMax(a,b) ≤ 2
∑

ν≥N+1

ν

(
4eR logN(p)

N(p)σ

)2ν

.

By the assumption (i) for N(p), we have 4eR(logN(p))N(p)−σ ≤ 1/2; hence

(3.8.11) II⋆
p ≪N

(
4eR logN(p)

N(p)σ

)2(N+1)

≤ (4eR logN(p))2(N+1)

N(p)1+ϵ
,

because 2(N + 1)σ ≥ 1 + ϵ. Therefore,
∑
p II

⋆
p ≪N,R,ϵ 1.

This settles the proof of (i) and Corollary 3.4.16.

Proof of (ii) First, we shall prove the statement related to (3.4.3). By Cor 3.2.8,
|M̃p(s; z1, z2) − 1| < 1 and

(3.8.12) log M̃p(s; z1, z2) =
∑
a,b≥1

B
(a,b)
p (s)(i/2)a+b z

a
1z

b
2

a!b!
.

Moreover, by the finiteness of
∑
p II

⋆
p for N = 0 shown above, the double sum

(3.8.13)
∑
p

∑
a,b

B
(a,b)
p (s)(i/2)a+b z

a
1z

b
2

a!b!

is absolutely convergent. Therefore, we may interchange the summation order , and since
σ0 > 1/2, we have

log M̃(s; z1, z2) =
∑
p

log M̃p(s; z1, z2) =
∑
p

∑
a,b

B
(a,b)
p (s)(i/2)a+b z

a
1z

b
2

a!b!
(3.8.14)

=
∑
a,b

(
∑
p

B
(a,b)
p (s))(i/2)a+b z

a
1z

b
2

a!b!
=
∑
a,b

B(a,b)(s)(i/2)a+b z
a
1z

b
2

a!b!
,

as desired.
As for (3.4.4), by Cor 3.6.14,

(3.8.15) log M̃p(s; z1, z2) =
∑
n,a,b

γ(a,b)
n ϕ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z

b
2

a!b!

holds for all p. Put

(3.8.16) IIIp =
∑
n,a,b

∣∣∣∣γ(a,b)
n ϕ

(κ(a+b))
p (2ns)(i/2)a+b z

a
1z

b
2

a!b!

∣∣∣∣.
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We shall show, by using Prop 3.6.8 that
∑
p IIIp < ∞. In Case 1, r = N(p)−2σ0 , and R

should be replaced by (R/2) logN(p). Hence re8eR in Prop 3.6.8 is N(p)−2σ0+4eR. Hence
if either σ0 ≫R 1 or R ≪σ0 1, then −2σ0 + 4eR < −1 − ϵ; hence by (3.6.10) for N = 0,
IIIp ≪ N(p)−1−ϵ; hence

∑
p IIIp < ∞. In Case 2, the same conclusion follows more

directly. Therefore, we may interchange
∑
p with

∑
n,a,b, and use (3.3.8) to conclude

the convergence of (3.4.4) to log M̃(s; z1, z2). This settles the proof of (ii), and hence
completes that of Theorem 5.

4 Rapid decay of |M̃σ(z)|

The main purpose of §4 is to give some reasonably strong estimations of |M̃σ(z)|2, for
M̃σ(z) = M̃(σ; z, z̄) (σ > 1/2, z ∈ C). The main results are Theorem 6 (§4.3) and
Theorem 7C (§4.6). The proofs of Lemmas B, B’ of §2 will also be supplied (cf. §4.6 resp.
§4.1).

4.1 – Local estimations; large |z|. For any non-archimedean prime p of K and a
positive real number σ > 0, write as before

(4.1.1) µσ,p := µ
(1,1)
p (σ) =

{
(logN(p))2/(N(p)2σ − 1) (Case 1),∑

n≥1 n
−2N(p)−2nσ (Case2),

cf, (1.2.12), and put

(4.1.2) M̃σ,p(z) = M̃p(σ; z, z̄) =

∫
C1

exp(iℜ(zgσ,p(t
−1)))d×t

cf. (1.2.8). Note that

(4.1.3) |M̃σ,p(z)| ≤ 1.

A basic universal estimate of |M̃σ,p(z)| is the following:

Lemma C Fix any σ0 > 0. Then

(4.1.4) |M̃σ,p(z)|2 ≪σ0 (µ
1/2
σ,p |z|)−1 (σ ≥ σ0),

where ≪σ0 depends only on σ0.

Proof Roughly speaking, this follows from the integral expression (4.1.2) and clas-
sical analysis: if f(θ) (θ ∈ R/2π) is a real-valued C2-function such that f ′(θ), f”(θ) are
“sufficiently close” to trigonometric functions sin θ, cos θ respectively, then∫ 2π

0

ei|z|f(θ)dθ ≪ |z|−1/2.
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But to save space, we shall simply reduce its proof of each Case to an established result.
In Case 1 this is proved in [2] §3.3 (By (3.3.12), |M̃σ,p(z)|2 = |Hσ,p(z)|2 ≪σ0 (rσ,p|z|)−1,

but r−1
σ,p = (N(p)σ −N(p)−σ)/ logN(p) < µ

−1/2
σ,p .) In Case 2, this follows directly from [8]

§7 Theorem 13, for F (z) = − log(1 − z) in which case we can take ρ0 = 1 (cf. the first
paragraph of [8] §10). This asserts that for any ρ1 < 1,

(4.1.5)
1

2π

∫ 2π

0

exp{−iℜ(z̄ log(1 − reiθ))}dθ ≪ρ1 r
−1/2|z|−1/2 (0 < r ≤ ρ1).

Since the LHS of (4.1.5) for r = N(p)−σ gives M̃σ,p(z), and since µσ,pN(p)2σ ≪σ0 1

(σ ≥ σ0), (4.1.5) gives M̃σ,p(z) ≪σ0 µ
−1/4
σ,p |z|−1/2, and hence the desired result. 2

Corollary 4.1.6 (Lemma B’ of §2.7) There exists a constant C > 0 depending only on
(K,P∞) such that

(4.1.7) |M̃σ(µ−1/2
σ z)| ≤ C|z|−m/2

holds for all σ ≥ 1 and all z ∈ C, where m is as in §2.5.

Proof By (4.1.1) we have µσ,p ≫ N(p)−2σ; hence

(4.1.8) µ
−1/2
σ,p ≪ N(p)σ,

and Theorem 3 (i) (§2) gives α2σµσ ≪K 1 for σ ≥ 1; hence by Lemma C,

|M̃σ(µ−1/2
σ z)|2 ≤

∏
p̸∈P∞

N(p)=α

|M̃σ,p(µ
−1/2
σ z)|2 ≪

∏
p̸∈P∞

N(p)=α

(
µ

1/2
σ,p |µ−1/2

σ z|
)−1

(4.1.9)

≪
(
ασ|µ−1/2

σ z|−1
)m

= (α2σµσ)m/2|z|−m ≪ |z|−m,

as desired.

4.2 – Local estimations; small |z|. Since we always have (4.1.3), the bound

(4.1.4) is effective only when µ
1/2
σ,p |z| ≫ 1. If we fix both z ∈ C and σ > 0, then µ

1/2
σ,p z

tends to 0 as N(p) → ∞. For small µ
1/2
σ,p |z|, the following estimate will be useful.

Lemma D There exists an absolute constant q0 > 1 such that

(4.2.1) |M̃σ,p(z)|2 ≤ exp(−µσ,p

2
|z|2)

holds whenever N(p)σ ≥ q0 and µ
1/2
σ,p |z| ≤ 2.
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Proof Put t = N(p)−σ. Then (4.1.1) gives a power series expansion of µσ,p in t2

starting with λ2
pt

2, where λp = logN(p) (resp. = 1) for Case 1 (resp. Case 2). Note that
this power series is nowhere vanishing on |t| < 1 (in Case 1 this is obvious; in Case 2 note

only that
∑

n≥2 n
−2 = π2/6 − 1 < 1). Thus, µ

1/2
σ,p = λpt + · · · extends to a holomorphic

and nowhere vanishing function of t on |t| < 1. We shall first show that for any ϑ ∈ R/2π,

(4.2.1)

∣∣∣∣M̃σ,p

(
reiϑ

µ
1/2
σ,p

)∣∣∣∣2 − J0(r)
2

extends to a holomorphic function of (r, t) on |t| < 1 whose Taylor series at (0, 0) is
divisible by t2r4. By (1.2.10),

(4.2.2) M̃σ,p

(
reiϑ

µ
1/2
σ,p

)
= 1 +

∑
a,b≥1

(±i/2)a+b µ
(a,b)
σ,p

(µ
1/2
σ,p )a+b

ra+b

a!b!
cos((a− b)ϑ),

where µ
(a,b)
σ,p = µ

(a,b)
p (σ). Note that no sin((a − b)ϑ) term appears, due to cancellations

caused by adding (a, b) and (b, a) terms. On the other hand, by (1.2.11) we see easily that

(4.2.3)
µ

(a,b)
σ,p

(µ
1/2
σ,p )a+b

≡

{
0 mod t|b−a| (a ̸= b),

1 mod t2 (a = b).

Note also that this quotient is a power series of t depending only on Cases and (a, b) (the
(a + b)-th power of logN(p) appearing in Case 1 in the numerator and the denominator
cancels with each other). Therefore, the real (resp. imaginary) part f1(r, t) (resp. f2(r, t))
of (4.2.2) (for r > 0, ϑ ∈ R/2π) are

f1(r, t) = 1 +
∑
a≥1

(−1)aµ
(a,a)
σ,p

µa
σ,p

(r/2)2a

a!2
(4.2.4)

+ 2
∑

b>a≥1
b≡a mod 2

(−1/4)(a+b)/2 µ
(a,b)
σ,p

(µ
1/2
σ,p )a+b

ra+b

a!b!
cos((a− b)ϑ)

≡ J0(r) mod t2r4,

f2(r, t) = ±
∑

b>a≥1
b≡a+1 mod 2

(−1/4)(a+b−1)/2 µ
(a,b)
σ,p

(µ
1/2
σ,p )a+b

ra+b

a!b!
cos((a− b)ϑ)(4.2.5)

≡ 0 mod tr3.

Hence f 2
1 + f2

2 − J0(r)
2 ≡ 0 mod t2r4, as desired. Therefore, the quotient

(4.2.6) (f2
1 + f 2

2 − J0(r)
2)/t2r4
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is bounded on |t| ≤ 1/
√

2 and |r| ≤ 2 (say), independent of the continuous parameter
ϑ ∈ R/2π. Call c1 an upper bound, so that

(4.2.7) |M̃σ,p(µ
−1/2
σ,p w)|2 − J0(|w|)2 ≤ c1N(p)−2σ|w|4 (N(p)σ ≥

√
2, |w| ≤ 2).

Now we shall verify another inequality

(4.2.8) exp(−|w|2/2) − J0(|w|)2 ≥ c2|w|4 (|w| ≤ 2),

where c2 is another positive absolute constant. These two combined will give Lemma D;
indeed, if q0 ≥

√
2 and q2

0 > c1/c2, then c1N(p)−2σ ≤ c1q
−2
0 < c2; hence by (4.2.7)(4.2.8),

(4.2.9) |M̃σ,p(µ
−1/2
σ,p w)|2 ≤ J0(|w|)2 + c2|w|4 ≤ exp(−|w|2/2).

[Verification of (4.2.8)] First, the power series expansion at r = 0 gives

(4.2.10) exp(−r2/2) − J0(r)
2 ≡ (1 − r2

2
+
r4

8
) − (1 − r2

4
+
r4

64
)2 ≡ r4

32
mod r6;

hence

(4.2.11)
1

r4
(exp(−r2/2) − J0(r)

2) > 0 (0 ≤ r ≤ r0)

with some r0 > 0. That we may take r0 = 2.72 can be checked by computor. That we
may take r0 = 2 can also be shown as follows. Put f(r) = exp(r2/4)J0(r). Then f(0) = 1,
and

f ′(r) = (
r

2
J0(r) − J1(r)) exp(r2/4) = −r

2
J2(r) exp(r2/4).

But J0(r) > 0 for r < 2.4, and J2(r) > 0 for r < 5.1; hence for 0 < r < 2.4, we have
f(r) > 0 and f ′(r) < 0; hence f(r) < f(0) = 1; hence f(r)2 < 1, i.e., J0(r)

2 < exp(−r2/2)
on this region. Therefore, (4.2.11) takes a positive minimal value c2 on 0 ≤ r ≤ 2. This
settles the proof of (4.2.8) and hence that of Lemma D.

4.3 – Global estimations; large |z| and general σ > 1/2. Here and in the
following, all primes p considered are those outside P∞; in particular,

∑
p̸∈P∞

will be
abbreviated as

∑
p. As an easy consequence of Lemma C and the prime number theorems,

we obtain

Theorem 6 For any fixed σ1 > 1/2, δ > 0, a > 0, there exists R = Rσ1,δ,a > 0 such that

(4.3.1) |M̃σ(z)|2 < exp
(
−a|z|

1
σ+δ

)
(1/2 < σ ≤ σ1, |z| ≥ R).
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Remark 4.3.2 This exponent 1/(σ + δ)(< 2) of |z| cannot be replaced by 2. This is
because for each fixed σ > 1/2 the Fourier dual Mσ(w) satisfies Mσ(w) ≪ e−λ|w|2 for any
λ > 0 cf. [2]§5.2. By Hardy’s theorem 1, this implies that M̃σ(z) ≪ e−c|z|2 does not hold
for any c > 0.

Proof We may assume |z| > 1. For each y > 1, write

(4.3.3) Py = {p;N(p) ≤ y}, M̃σ,Py(z) =
∏
p∈Py

M̃σ,p(z),

so that |M̃σ(z)| ≤ |M̃σ,Py(z)|. By Lemma C and (4.1.8), |M̃σ,p(z)|2 ≤ CN(p)σ|z|−1 holds
with some C > 1; hence

(4.3.4) |M̃σ,Py(z)|2 ≤ C |Py |(
∏
p∈Py

N(p))σ|z|−|Py |.

Choose

(4.3.5) y = |z|1/(σ+δ/2).

Since σ ≤ σ1, |z| ≫ 1 implies y ≫ 1. We shall give a proof in the number field case; the
function field case can be treated with minor modifications. For any ϵ > 0, we have

(4.3.6) (1 − ϵ)y/ log y ≤ |Py| ≤ (1 + ϵ)y/ log y,

(4.3.7)
∑
p∈Py

logN(p) ≤ (1 + ϵ)y

for y ≫ϵ 1. Hence by (4.3.4) (including log 0 = −∞ in the inequality)

log(|M̃σ,Py(z)|2) ≤ y ((1 + ϵ) logC/ log y + (1 + ϵ)σ − (1 − ϵ) log |z|/ log y)(4.3.8)

= |z|1/(σ+δ/2)(I + II),

with

I ≤ (1 + ϵ)(σ1 + δ/2)(logC)/ log |z|,(4.3.9)

II = (1 + ϵ)σ − (1 − ϵ)(σ + δ/2) ≤ −δ/2 + ϵ(2σ1 + δ/2).(4.3.10)

But I < δ/8 for |z| ≫ 1, and if we take such ϵ that satisfies ϵ(2σ1 + δ/2) = δ/8, then
I + II < −δ/4 holds. Therefore,

(4.3.11) log(|M̃σ,Py(z)|2) < −δ
4
|z|1/(σ+δ/2) ≤ −a|z|1/(σ+δ)

for |z| ≫a,δ,σ1 1, as desired. 2

1Recall that in the 1 dimensional case, it asserts that f(x) ≪ e−a|x|2/2, f∧(ξ) ≪ e−b|ξ|2/2 (a, b > 0)
with ab > 1 implies f ≡ 0. Apply this to f(x) = (1/

√
2π)

∫∞
−∞ Mσ(x + yi)dy, f∧(ξ) = M̃σ(ξ).
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4.4 – Small |z|, large (2σ − 1)−1. An easy consequence of Lemma D is:

Theorem 7A Fix any ϵ, R, with 0 < ϵ < 1, R > 0. If |z| ≤ R and (2σ − 1)−1 ≫ϵ,R 1,
then

(4.4.1) |M̃σ(z)|2 ≤ exp{−1 − ϵ

2
µσ|z|2}.

Proof We may remove a finite set P = P (R) of primes p and assume that µ
1/2
1/2,pR ≤ 2

holds for p ̸∈ P ; hence that µ
1/2
σ,p |z| ≤ 2 holds whenever p ̸∈ P, |z| ≤ R, σ > 1/2. We may

also assume N(p)1/2 ≥ q0 for the constant q0 in Lemma D. Thus, Lemma D gives

(4.4.2) |M̃σ(z)|2 ≤ exp{−|z|2

2

∑
p̸∈P

µσ,p} ≤ exp{|z|
2

2
(
∑
p∈P

µ1/2,p − µσ)}.

Since limσ→+∞ µσ = ∞, this gives

(4.4.3) |M̃σ(z)|2 ≤ exp{−1 − ϵ

2
µσ|z|2},

for |z| ≤ R and (2σ − 1)−1 ≫ϵ,R 1. 2

4.5 – Large |z|, large (2σ − 1)−1.

Theorem 7B Fix any ϵ with 0 < ϵ < 1. If |z| ≫ϵ 1 and (2σ − 1)−1 ≫ϵ 1, then

(4.5.1) |M̃σ(z)|2 ≤ exp{−µσ

2
|z|2(1−ϵ)}.

The proof requires some global estimations, Lemma E below in §4.7.

4.6 – Large (2σ−1)−1, all |z|. Now, Theorems 7A, 7B combined give immediately:

Theorem 7C (Lemma B,§2.3) Fix any ϵ with 0 < ϵ < 1. If (2σ − 1)−1 ≫ϵ 1, then the
inequality

(4.6.1) |M̃σ(z)|2 ≤ exp{−1 − ϵ

2
µσ|z|2(1−ϵ)}

holds for all z ∈ C.

In fact, Theorem 7B shows that (4.5.1) and hence also (4.6.1) holds for |z| ≥ Rϵ with
some Rϵ. Now take R = Rϵ in Theorem 7A and let (2σ − 1)−1 ≫ϵ,Rϵ 1. Then (4.4.1) and
hence also (4.6.1) holds for |z| ≤ Rϵ, too. Thus, Theorem 7C is reduced to Theorem 7B.
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4.7 – Key Lemma E. The key points for the proof of Theorem 7B are Lemma D
(local) and the following global estimation from below of the error term for sums over
primes.

Lemma E Fix any ϵ with 0 < ϵ < 1/2. If (2σ − 1)−1 ≫ϵ 1 and T ≫ϵ 1, then

∑
N(p)≥T

µσ,p >

{
(1 − ϵ)µσT

1−2σ (Case 1),

(1 − ϵ)µσ
T 1−2σ

log T
(Case 2).

Proof We shall give a proof for the number field case. The function field case can be
treated with minor modifications.

(Case 1) By (4.1.1), we have µσ,p > (logN(p))2/N(p)2σ. As usual, set

(4.7.1) π(T ) =
∑

N(p)≤T

1 ∼ T/ log T, ψ(T ) =
∑

N(p)≤T

logN(p) ∼ T,

and also set

(4.7.2) ψ2(T ) =
∑

N(p)≤T

(logN(p))2 ∼ T log T.

The last estimation follows from the first two by using only the trivial inequalities ψ2(T ) ≤
(log T )ψ(T ) and ψ2(T )/π(T ) ≥ (ψ(T )/π(T ))2 (the Schwartz inequality). By partial sum-
mation and by (4.7.2), we easily obtain, for T ≫ϵ 1,

(4.7.3)
∑

N(p)≥T

µσ,p > −(1 + ϵ)T 1−2σ log T + (1 − ϵ)

∫ ∞

T

log t

t2σ
dt

for any σ > 1/2. But since the last integral can be explicitly given by

(4.7.4)

(
1

(2σ − 1)2
+

log T

2σ − 1

)
T 1−2σ,

we obtain ∑
N(p)≥T

µσ,p > (1 − ϵ)

(
T 1−2σ

(2σ − 1)2
+

(
1

2σ − 1
− 1 + ϵ

1 − ϵ

)
T 1−2σ log T

)
(4.7.5)

> (1 − ϵ)
T 1−2σ

(2σ − 1)2
> (1 − 2ϵ)µσT

1−2σ

for σ sufficiently close to 1/2, by §2.1 Theorem 2 (i). This settles Case 1.
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(Case 2) In this case, where µσ,p > N(p)−2σ, we first obtain easily

(4.7.6)
∑

N(p)≥T

µσ,p > −(1 + ϵ)
T 1−2σ

log T
+ (1 − ϵ)

∫ ∞

T

dt

t2σ log t
.

But a more delicate treatment of the integral

(4.7.7)

∫ ∞

T

dt

t2σ log t
=

∫ ∞

(2σ−1) log T

e−uu−1du

is required.

Sublemma 4.7.8 We have, for any b > 0,∫ ∞

b

e−uu−1du = −γ + log(1/b) +

∫ b

0

1 − e−t

t
dt(4.7.9)

≥

{
c0(log(1/b) + 1) (0 < b ≤ 2),

(b+ 1)−1e−b−1 (all b > 0),
(4.7.10)

where γ is the Euler constant γ = 0.5772 · · · , and c0 is an absolute positive constant.

Proof As for the first equality, the derivative d/db of the two sides are equal, and
the formula for b = 1 can be found, e.g., in [10] §12.2 Ex 4. When 0 < b ≤ 2, so that
log(1/b) + 1 > 1/4, the quotient

(4.7.11)

(∫ ∞

b

e−uu−1du

)
/(log(1/b) + 1)

is a continuous positive-valued function, which, by the equality (4.7.9) tends to 1 as b→ 0.
Therefore, (4.7.11) attains a positive minimal value c0 > 0 on 0 < b ≤ 2. The second
inequality is obvious, because∫ ∞

b

e−uu−1du >

∫ b+1

b

e−uu−1du > e−b−1(b+ 1)−1.

2

Corollary 4.7.12

(4.7.13) ey/x

∫ ∞

y/x

e−uu−1du > (1 + log x)/y (x, y ≫ 1).
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Proof Put b = y/x. Call LHS (resp. RHS) the left (resp. right) hand side of
(4.7.13). First, let 0 < b ≤ 2. Then 1 + log(1/b) > 1/4, and by Sublemma 4.7.8,

LHS > ebc0(log(1/b) + 1) > c0(log(1/b) + 1).

If y is so large that 1/y < c0/2 and (log y)/y < c0/8, then

RHS = (1 + log(1/b) + log y)/y <
c0
2

(1 + log(1/b)) +
c0
8
.

But since 1/4 < 1 + log(1/b), this is < LHS.
Now let b ≥ 2. Then (b+ 1)−1 ≥ (2/3)b−1; hence by Sublemma 4.7.8,

LHS > eb(b+ 1)−1e−b−1 ≥ 2/(3eb).

On the other hand, if x is so large that (1 + log x)/x < 2/(3e), then

RHS = (1 + log x)/(bx) < 2/(3eb) < LHS.

2

Now by (4.7.6) (4.7.7) and Cor 4.7.12 applied to x = (2σ− 1)−1 and y = log T (hence
ey/x = T 2σ−1), we obtain∑

N(p)≥T

µσ,p > −(1 + ϵ)
T 1−2σ

log T
+ (1 − ϵ)

T 1−2σ

log T

(
1 + log

1

2σ − 1

)
(4.7.14)

=
T 1−2σ

log T

(
(1 − ϵ) log

1

2σ − 1
− 2ϵ

)
>
T 1−2σ

log T

(
(1 − 2ϵ) log

1

2σ − 1

)
,

since we may assume log(1/(2σ − 1)) > 2. Since µσ − log(1/(2σ − 1)) is bounded near
σ = 1/2 (say, by Theorem 4 §3.3), this is

>
T 1−2σ

log T
((1 − 3ϵ)µσ) .

This settles the proof of Lemma E.

4.8 – Proof of Theorem 7B. Let z ∈ C with |z| > 1 and put

T = Tz =

{
(2|z| log |z|)2 (Case 1),

|z|2 (Case 2).

We claim that there exists a constant C > 0 depending only on (K,P∞) such that if
|z| ≥ C and N(p) ≥ Tz, then the assumptions of Lemma D are satisfied for any σ > 1/2
and hence

(4.8.1) |M̃σ,p(z)|2 ≤ exp{−µσ,p

2
|z|2}.
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Proof (Case 1) First, note that if x ≥ 2y log y and y ≫ 1 then (x − 1)/ log x > y.
Now let N(p) ≥ Tz. Then N(p)1/2 ≥ 2|z| log |z|; hence (N(p)1/2 − 1)/ log(N(p)1/2) > |z|
for |z| ≫ 1; hence

(4.8.2) µ
1/2
σ,p |z| =

logN(p)

(N(p)2σ − 1)1/2
|z| < logN(p)

N(p)1/2 − 1
|z| < 2,

as desired.
(Case 2) In this case, N(p) ≥ Tz = |z|2 implies

(4.8.3) µ
1/2
σ,p |z| ≤

(
N(p)

∑
n≥1

1

n2N(p)2nσ

)1/2

≤

(∑
n≥1

1

N(p)n−1

)1/2

≤
√

2 < 2,

as desired. 2

Now we can finish the proof of Theorem 7B.
(Case 1) Let 0 < ϵ < 1, and |z| ≫ϵ 1, (2σ − 1)−1 ≫ϵ 1. Then by the above claim and

Lemmas D, E, we have, for T = Tz as above,

(4.8.4)
∏

N(p)≥T

|M̃σ,p(z)|2 ≤
∏

N(p)≥T

exp{−µσ,p

2
|z|2} ≤ exp{−1 − ϵ

2
µσT

1−2σ|z|2}.

But if 2σ − 1 < ϵ/2 and |z| ≫ϵ 1, then T 1−2σ > T−ϵ/2 = (2|z| log |z|)−ϵ > (1 − ϵ)−1|z|−2ϵ;
hence

(4.8.5) |M̃σ(z)|2 ≤
∏

N(p)≥T

|M̃σ,p(z)|2 ≤ exp{−µσ

2
|z|2(1−ϵ)},

as desired.

(Case 2) In this case, T = |z|2, and we obtain, similarly,

(4.8.6)
∏

N(p)≥T

|M̃σ,p(z)|2 ≤ exp{−1 − ϵ

2
µσ
T 1−2σ

log T
|z|2}.

But

T 1−2σ/ log T =
1

2
|z|2(1−2σ)/ log |z| > 1

2
|z|−ϵ/ log |z| > (1 − ϵ)−1|z|−2ϵ

for 2σ − 1 < ϵ/2 and |z| ≫ϵ 1; hence (4.8.6) is

≤ exp{−µσ

2
|z|2(1−ϵ)},

also in this case. This completes the proof of Theorem 7B.
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