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The purpose of this report is to present the core results of [KKKoT]

and [KoT] with emphasis on their background. The object studied in

these papers is, in somewhat rough description, a Schrödinger equation

(1)

(

d2

dx2
− η2Q(x, η)

)

ψ(x, η) = 0 (η : a large parameter)

with one simple turning point and with a simple pole in the potential

Q. Now that satisfactory results have been obtained by [AKT2] con-

cerning the WKB theoretic structure of a Schrödinger equation with

two simple turning points, it is high time for us to study the above

equation in view of the fact that a simple pole in the potential gives

the Borel transformed WKB solutions of (1) essentially the same effect

as a simple turning point does ([Ko1], [Ko2]).

In studying this problem we have to analyse two (or more) singular-

ities of the Borel transformed WKB solutions whose relative location

is fixed (the so-called “fixed singularities” (cf. [DP]; see also [V]). This

means that the usual technique (cf. [AKT1], [KT]) of relating Borel

transformed WKB solutions through integral operators determined by

some microdifferential operators (cf. [SKK], [K3], [A]) requires the do-

main of definition of the relevant operators to be sufficiently large. To

circumvent this problem, following the idea in [AKT2], we introduce

an auxiliary parameter a to the potential Q so that the turning point

and the pole in question merge as the parameter a tends to 0. In-

terestingly enough, we then naturally encounter the so-called ghost

equation (cf. [Ko3], [KKKoT]) at a = 0, the top degree part Q0(x)

of whose potential contains neither zeros nor poles. The transforma-

tion of a ghost equation to its canonical form is known ([Ko3]; see

also [KKKoT; Section 1]), and by perturbing the transformation with

respect to the parameter a we can find the WKB-theoretic canoni-

cal operator of an appropriately defined (Definition 1 below) class of

2



Schrödinger operators with a simple turning point and a simple pole

(Theorem 1 below).

A mathematical formulation of the intuitive picture of such an “ap-

propriate” class is given by the following

Definition 1. The Schrödinger equation (1) is called an equation

with a merging pair of a simple pole and a simple turning point,

or, for short, an MPPT equation if its potential Q depends also

on an auxiliary complex parameter a and has the following form:

(2) Q =
Q0(x, a)

x
+ η−1 Q1(x, a)

x
+ η−2 Q2(x, a)

x2
,

where Qj(x, a) (j = 0, 1, 2) are holomorphic near (x, a) = (0, 0) and

Q0(x, a) satisfies the following conditions (3) and (4):

(3)

(

∂Q0

∂a

)

(0, 0) 6= 0,

(4) Q0(x, 0) = c
(0)
0 x + O(x2) holds with c

(0)
0 being a constant

different from 0.

Remark 1. In [KKKoT] a slightly weaker condition

(3′) Q0(0, a) 6= 0 if a 6= 0

is imposed instead of (3).

It follows from the above definition that there exists a unique holo-

morphic function x(a) near a = 0 that satisfies

(5) Q0(x(a), a) = 0,

(6) x(a) 6= 0 if a 6= 0.

Then the assumption (4) guarantees that x = x(a) (a 6= 0, |a| � 1)

is a simple turning point. Thus the above assumptions visualize our

3



intuitive picture of the equation. The following Theorem 1 guarantees

the appropriateness of the above definition. For the clarity of descrip-

tion we put ˜ to quantities relevanto to a general MPPT equation to

distinguish them from those of the canonical equation (16).

Theorem 1. Let

(7) L̃ψ̃ =

(

d2

dx̃2
− η2Q̃(x̃, a, η)

)

ψ̃(x̃, a, η) = 0

be an MPPT equation in the sense of Definition 1, that is, the

potential Q̃(x̃, a, η) is of the form (2) and the conditions (3) and

(4) are satisfied. Then there exist an open neighborhood U of x̃ =

0, holomorphic functions x
(j)
k (x̃) defined on U and constants α

(j)
k

(j, k ≥ 0) for which the following conditions (8) ∼ (12) are satisfied:

(8)
dx

(0)
0

dx̃
(0) 6= 0,

(9) x
(j)
k (0) = 0 for every j and k,

(10) α
(0)
0 = 0,

(11) sup
x̃∈U

|x(j)
k (x̃)|, |α(j)

k | ≤ ACj
1C

k
2k!

with some positive constants A, C1 and C2,

Q̃(x̃, a, η)

(12)

=

(

∂x(x̃, a, η)

∂x̃

)2
(

1

4
+

α(a, η)

x(x̃, a, η)
+ η−2 Q̃2(0, a)

x(x̃, a, η)2

)

− 1

2
η−2{x; x̃},

where

(13) x(x̃, a, η) =
∑

k≥0

∑

j≥0

x
(j)
k (x̃)ajη−k,

4



(14) α(a, η) =
∑

k≥0

∑

j≥0

α
(j)
k a

jη−k

and {x; x̃} denotes the Schwarzian derivative

(15)
d3x/dx̃3

dx/dx̃
− 3

2

(

d2x/dx̃2

dx/dx̃

)2

.

This theorem combined with the general WKB theory (cf. [KT])

asserts that the WKB theoretically canonical equation of an MPPT

equation L̃ψ̃ = 0 is given by the following

(16) Mψ =

(

d2

dx2
− η2

(1

4
+
α(a, η)

x
+ η−2 Q̃2(0, a)

x2

)

)

ψ = 0.

In parallel with the usage of the name “∞-Weber equation” in [AKT2],

we call the equation Mψ = 0 an ∞-Whittaker equation.

An important point is that in the double series x(x̃, a, η) and α(a, η)

in Theorem 1 the growth order property of |x(j)
k | and |α(j)

k | as j tends

to ∞ and that as k tends to ∞ are substantially different despite the

fact that their construction is done in a symmetric way with respect to

indexes j and k (cf. [KKKoT; Remark 2.1]). In particular,

(17) xk(x̃, a) =
∑

j≥0

x
(j)
k (x̃)aj

and

(18) αk(a) =
∑

j≥0

α
(j)
k a

j

are holomorphic respectively on U ×V and on V for some open neigh-

borhood V of a = 0, while x(x̃, a, η) and α(a, η) are only Borel

transformable series in the sense of [KT]. Although the problem is

of singular perturbative character, it seems that it is of regular per-

turbative character in the variable a. Actually our reasoning indi-

cates that the singular perturbative character originates from the part
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η−2(d3x
(j)
k /dx̃

3)
/

(dx
(j)
k /dx̃) in the defining equation of x

(j)
k , which does

not affect much the behavior of x
(j)
k as j tends to infinity. (See [KKKoT;

(B.64)].)

It is readily imagined, and we can really confirm, that the canon-

ical equation Mψ = 0 is further reduced to the following Whittaker

equation with a large parameter:

(19) M0χ =

(

d2

dx2
− η2

(1

4
+
α0

x
+ η−2 γ(γ + 1)

x2

)

)

χ = 0,

where α0 and γ are complex numbers. Concerning the Whittaker

equation with a large parameter for α0 6= 0 we know ([KoT]) the

following Theorem 2: Let χ±(x, η) be WKB solutions of the Whittaker

equation normalized as

(20) χ±(x, η) =
1√
Sodd

exp

(

±
∫ x

−4α0

Sodddx

)

,

where Sodd is the odd part of the formal power series solution S =

ηS−1(x) + S0(x) + η−1S1(x) + · · · of the associated Riccati equation

(cf. [KKKoT]). Then the following holds.

Theorem 2. Suppose α0 6= 0. Then the Borel transform χ+,B(x, y)

of χ+ has fixed singularities at y = −y+(x)+2mπiα0 (m = ±1,±2, · · · ),
where

(21) y+(x) =

∫ x

−4α0

S−1dx =

∫ x

−4α0

√

x + 4α0

4x
dx

and its alien derivative is explicitly given by
(

∆y=−y+(x)+2mπiα0
χ+

)

B
(x, y)(22)

=
exp(2mπiγ) + exp(−2mπiγ)

2m
χ+,B(x, y − 2mπiα0).
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Note that the relative location between two singular points −y+(x)+

2mπiα0 and −y+(x) + 2m′πiα0 does not vary, that is, their difference

2(m−m′)πiα0 is a constant independent of x. The proof of Theorem

2 can be done by using the following expression of the Borel transform

of the Voros coefficient φ:

φB(α0, γ; y)(23)

=
1

2y

(

exp(y/α0) + 1

exp(y/α0) − 1

)

cosh
(γy

α0

)

− α0

y2
+

1

2y
sinh

(γy

α0

)

,

where the Voros coefficient of the Whittaker equation (19) is defined

by

(24) φ(α0, γ; η) =

∫ ∞

−4α0

(Sodd − ηS−1)dx.

See [KoT] for the details. Since the concrete computation in alien cal-

culus is normally performed on the Borel plane (cf. [P], [DP]), we have

to study the Borel transformed version of Theorem 1. To employ The-

orem 2, we assume a 6= 0 in what follows. Thanks to the estimate (11),

we have the following Theorem 3 and Theorem 4. To state them we

make the following notational preparations: Let g(x, a) be the inverse

function of x0(x̃, a), i.e., a holomorphic function that satisfies

(25) x = x0

(

g(x, a), a
)

, x̃ = g
(

x0(x̃, a), a
)

on a neighborhood of (x, a) = (0, 0). Then we consider the Borel

transform of L̃ in (x, y, a)-variable:

L def
=

(

∂g

∂x

)2

×
(

Borel transform of L̃
)∣

∣

x̃=g(x,a)
(26)

=
∂2

∂x2
−
(

∂2g/∂x2

∂g/∂x

)

∂

∂x
−
(

∂g

∂x

)2

Q̃(g(x, a), a,
∂

∂y
).
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Similarly let M (resp. M0) be the Borel transform of M (resp. M0):

M =
∂2

∂x2
−
(

1

4
+
α(a, ∂/∂y)

x

)

∂2

∂y2
− Q̃2(0, a)

x2
,(27)

M0 =
∂2

∂x2
−
(

1

4
+
α0

x

)

∂2

∂y2
− γ(γ + 1)

x2
.(28)

Theorem 3. Suppose a 6= 0. Let ω0 be a sufficiently small open

neighborhood of x = 0, and set

Ω0 = {(x, y; ξ, η) ∈ T ∗
C

2
(x,y); x ∈ ω0, η 6= 0}.(29)

Then there exist microdifferential operators X and Y defined on

Ω0 that satisfy

(30) LX = YM
for x 6= 0. The concrete form of operators X and Y is as follows:

X = :
(∂g

∂x

)1/2(

1 +
∂r

∂x

)−1/2

exp
(

r(x, a, η)ξ
)

: ,(31)

Y = :
(∂g

∂x

)1/2(

1 +
∂r

∂x

)3/2

exp
(

r(x, a, η)ξ
)

: ,(32)

where

(33) r(x, a, η) =
∑

k≥1

xk
(

g(x, a), a
)

η−k

and : : designates the normal ordered product (cf. [A]).

Theorem 3 implies that the operators L and M are microlocally

equivalent. This fact indicates that the singularities of ψ̃B(g(x, a), y)

that satisfies Lψ̃B = 0 and those of ψB(x, y) that satisfies MψB = 0

are the same. This is really visualized by the following Theorem 4:

Theorem 4. The action of the microdifferential operator X upon

the Borel transformed WKB solution ψ+,B of the ∞-Whittaker
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equation is expressed as an integro-differential operator of the fol-

lowing form:

(34) Xψ+,B =

∫ y

y0

K(x, a, y − y′, ∂/∂x)ψ+,B(x, a, y′)dy′,

where K(x, a, y, ∂/∂x) is a differential operator of infinite order

that is defined on {(x, a, y) ∈ C
3; (x, a) ∈ ω for an open neighbor-

hood ω of the origin and |y| < C for some positive constant C},
and y0 is a constant that fixes the action of (∂/∂y)−1 as an integral

operator.

Since a differential operator of infinite order acts on the sheaf of

holomorphic functions as a sheaf homomorphism, we can immediately

locate the singularities of Xψ+,B through the integral representation

(34). Another important point in the integral representation (34) is

that its domain of definition enjoys the uniformity with respect to the

parameter a, that is, the open neighborhood ω is taken to be of the

form

(35) {x ∈ C; |x| < δ1} × {a ∈ C; |a| < δ2}
for some positive constants δ1 and δ2. Note that since α0(a) tends

to 0 as a tends to 0 by (10), (δ1, δ2) can be chosen so that {|x| <
δ1} contains x = −4α0(a) for every a in {|a| < δ2}. This is the

precise meaning of saying “To circumvent the problem (of the existence

of a large domain of definition of relevant integral operators)” at the

beginning of this report.

In parallel with Theorem 3, we can show that M and M0 are also

microlocally equivalent. For simplicity we employ α0(a) as an inde-

pendent variable in substitution for a (this substitution of variable is

guaranteed by (3)). Thanks to the estimate (11) we obtain the follow-

ing
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Theorem 5. Let A be a microdifferential operator on

(36) {(α0, y; θ, η) ∈ T ∗
C

2; |α0| < δ0, η 6= 0}
for some positive constant δ0 defined by

(37) A = : exp
((

α1(α0)η
−1 + α2(α0)η

−2 + · · ·
)

θ
)

: .

Here θ and η are respectively identified with the symbol σ(∂/∂α0)

and the symbol σ(∂/∂y). Then the following holds:

(38) MA =
(

AM0

)∣

∣

γ(γ+1)=Q̃2(0,a)

for x 6= 0.

Although the target variable is α0, not x, as is the case for the

microdifferential operator X , the operator A also has a concrete ex-

pression as an integro-differential operator stated in Theorem 4. On

the other hand, as is indicated in Theorem 2, a fixed singular point

of ψ+,B(x, y) (“fixed” with respect to y = −y+(x)) is located at

y = −y+(x) + 2mπiα. Thus, by the same reasoning for the case of X ,

each individual fixed singular point of ψ̃+,B(x, y) is contained, for suf-

ficiently small a, in the domain of definition of the integro-differential

operator A.

Summing up all these results, we finally obtain

Theorem 6. Suppose a 6= 0 and let ψ̃+(x̃, a, η) be a WKB solution

of an MPPT equation normalized at its turning point x̃0(a) as

follows:

(39) ψ̃+(x, a, η) =
1

√

S̃odd

exp
(

∫ x

x̃0(a)

S̃odddx
)

where S̃odd is the odd part of the formal power series solution S̃ of

the associated Riccati equation. Then for each positive integer m
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the following relation (40) holds for sufficiently small a:

(

∆y=−y+(x̃,a)+2mπiα0(a)ψ̃+

)

B
(x̃, a, y)

(40)

=
exp(2mπiγ(a)) + exp(−2mπiγ(a))

2m
×

: exp
(

−2mπi(α1(a)+ α2(a)η
−1+ · · · )

)

: ψ̃+,B

(

x̃, a, y − 2mπiα0(a)
)

,

where

(41) y+(x̃, a) =

∫ x̃

x̃0(a)

√

Q̃0(x̃, a)

x̃
dx̃,

(42) γ(a)2 + γ(a) = Q̃2(0, a)

and

(43) αj(a) =
1

2πi

∮

Γ̃(a)

S̃odd,j−1(x̃, a)dx̃

with Γ̃(a) being a closed curve encircling x̃0(a) and the origin as

in Figure 1 and with S̃odd,k designating the degree k part of S̃odd.

Figure 1.
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