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1 Introduction

In this paper, we would like to introduce a notion of Betti structure for holonomic D-modules in a naive
way, motivated by a question in [9]. For regular holonomic D-modules, it is clearly defined in terms of the
Riemann-Hilbert correspondence. Namely, a Betti structure of a regular holonomic DX -module M is defined
to be a Q-perverse sheaf F with an isomorphism α : F ⊗ C ' DRXM. It has a nice functorial property for
standard functors such as pull back, push-forward, dual etc.. The non-regular version of the Riemann-Hilbert
correspondence has not yet been established as far as the author knows, except for the case that the dimension
of the support is one dimensional. Although it would be a natural and attractive to expect a correspondence
between holonomic D-modules and perverse sheaves equipped with “Stokes structure” in some sense, it seems
to require some more complicated machinery for a precise formulation. Instead, we make an attempt to define
just “Betti structure” of holonomic D-modules with functorial property (at least in the algebraic case), by using
only the classical machinery of holonomic D-modules and perverse sheaves. It still requires a non-trivial task,
and we hope that it would be useful for further study toward Riemann-Hilbert correspondence.

1.1 Betti structure

1.1.1 Pre-Betti structure

To define a Betti structure of a holonomic DX -module M, it is a most naive idea to consider a pair (F , α) as
above, which is called a pre-Betti structure of M in this paper. We should say that pre-Betti structure is too
naive for the following reasons:

• It is not so intimately related with Stokes structure.

• Although pre-Betti structures have nice functoriality with respect to dual and push-forward, they are not
functorial with respect to pull back, nearby cycle and vanishing cycle functors. Recall that the de Rham
functor is not compatible with the latter class of functors.

We would like to introduce a condition for a pre-Betti structure to be a “Betti structure” with an inductive
way on the dimension of the support. In the zero dimensional case, we do not need any additional condition.

In the following, a Q-structure of a C-perverse sheaf FC is a Q-perverse sheaf FQ with an isomorphism
FQ ⊗Q C ' FC.

1.1.2 One dimensional case

Before explaining the condition for Betti structure in the one dimensional case, let us recall “Riemann-Hilbert
correspondence” for holonomic D-module on curves, which are not necessarily regular singular. For simplicity,
we consider holonomic D-modules on X = ∆ = {|z| < 1} which may have a singularity at the origin D = {O}.
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Meromorphic flat bundles Let V be a meromorphic flat bundle on (X,D). Let π : X̃(D) −→ X be the real
blow up along D. Let L be the local system on X̃(D) associated to the flat bundle V|X−D. Let P be any point
of π−1(D). According to the classical asymptotic analysis, we have the Stokes filtration FP of the stalk LP

given by the growth order of flat sections. The meromorphic flat bundle V can be reconstructed from the flat
bundle V|X−D and the system of filtrations

{
FP

∣∣P ∈ π−1(D)
}
, which is a Riemann-Hilbert correspondence

for meromorphic flat bundles on a curve.
Let V ∨ be the dual of V as a meromorphic flat bundle, and let V! := DXV

∨ be the dual of V ∨ as a
DX -module. Let us recall that the de Rham complexes DRX(V ) and DRX(V!) can be described in terms of
Stokes filtrations. Let L≤D and L<D be the constructible subsheaves of L such that L≤D

P = FP
≤0(LP ) and

L<D
P = FP

<0(LP ). Then, we have natural isomorphisms:

DR(V ) ' Rπ∗L≤D, DR(V!) ' Rπ∗L<D. (1)

Gluing Let us very briefly recall a key construction due to A. Beilinson [3] on the gluing of holonomic D-
modules, which we will review in Subsection 2.2 in more details. Let M be a holonomic DX -module such that
V := M(∗D) is a meromorphic flat bundle on (X,D). We have the natural morphisms V!

a0−→ M b0−→ V .
According to [3], we have the D-modules Ξz(V ) and ψz(V ) associated to V , with morphisms

ψz(V ) a1−→ Ξz(V ) b1−→ ψz(V ), V!
a2−→ Ξz(V ) b2−→ V. (2)

It can be shown that b0 ◦ a0 = b2 ◦ a2. We also have b2 ◦ a1 = 0 and b1 ◦ a2 = 0. We obtain the D-module
φz(M) as the cohomology of the natural complex:

V! −→ Ξz(V )⊕M −→ V (3)

We have the naturally induced morphisms ψz(V ) can−→ φz(M) var−→ ψz(V ). Then, M is reconstructed as the
cohomology of the complex:

ψz(V ) −→ Ξz(V )⊕ φz(M) −→ ψz(V ) (4)

Recall that Ξz(V ), ψz(V ), and φz(M) are called the maximal extension, the nearby cycle sheaf, and the
vanishing cycle sheaf of M.

Good Q-structure of a meromorphic flat bundle Let V be a meromorphic flat bundle on (X,D), and
let L denote the associated local system on X̃(D) with the Stokes structure. We say that V has a good Q-
structure, if L has a Q-structure such that the Stokes filtrations FP are defined over Q. By the isomorphisms
(1), we obtain the pre-Betti structures of V and V!. Moreover, it is easy to observe that ψ(V ) and Ξ(V ) are
also naturally equipped with pre-Betti structures such that the morphisms ai and bi (i = 1, 2) are compatible
with pre-Betti structures.

Betti structure of a holonomic D-module Let M be a holonomic D-module on (X,D) such that V :=
M(∗D) is a meromorphic flat bundle. Let (F , α) be a pre-Betti structure of M. It is called a Betti structure,
if the following holds:

• The induced Q-structure on DR(V|X−D) induces a good Q-structure of V . As remarked above, we have
the induced pre-Betti structures on V and V!.

• The natural morphisms a0 and b0 are compatible with the pre-Betti structures.

Note that we obtain a pre-Betti structure on φ(M) from the expression as the cohomology of the complex (3),
and the morphisms var and can are compatible with the pre-Betti structures. The pre-Betti structure of M
can be reconstructed from the pre-Betti structure of φ(M) and the good Q-structure of V .

1.1.3 Higher dimensional case

We would like to generalize it in the higher dimensional case in a naive way.
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Good meromorphic flat bundle and good Q-structure Let X be a complex manifold with a simple
normal crossing hypersurface D. Let (V,∇) be a good meromorphic flat bundle in the sense that it is equipped
with a good lattice as in [32]. (See also [34], [35] and [33].) Asymptotic analysis for meromorphic flat bundles on
curves can be naturally generalized for good meromorphic flat bundles (see [25], [34], [32]). Let π : X̃(D) −→ X
be the real blow up along D, which means in this paper the fiber product of the real blow up at each irreducible
component taken over X. Let L be the local system on X̃(D) associated to V|X−D. For any point P ∈ π−1(D),
we have the Stokes filtration FP of the stalk LP . We can reconstruct V from V|X−D and the system of filtrations{
FP

∣∣P ∈ π−1(D)
}
. We obtain the constructible subsheaf L≤D of L which consists of flat sections with the

growth of polynomial order, i.e., L≤D
P = FP

≤0(LP ). Let L<D be the constructible subsheaf of L, which consists of
flat sections with exponential decay along D. (It is also described in terms of Stokes filtrations. See Subsection
5.1.2.) We have natural generalization of the isomorphisms (1). For a holomorphic function g on X such that
g−1(0) = D, we obtain DX -modules V!, ψg(V ) and Ξg(V ) with morphisms as in (2).

As in the one dimensional case, we say that V has a good Q-structure, if L has a Q-structure such that the
Stokes filtrations are defined over Q. Then, the DX -modules V , V!, Ξg(V ) and ψg(V ) are naturally equipped
with pre-Betti structures, and the natural morphisms are compatible with pre-Betti structures.

Remark 1.1 We have resolution of turning points for any algebraic meromorphic flat bundles [31], [32].
Namely, let (V,∇) be an algebraic meromorphic flat bundle on (X,D), which is not necessarily good. Then,
there exists a projective birational morphism ϕ : (X ′, D′) −→ (X,D) such that ϕ∗(V,∇) has no turning points.
In [20], Kedlaya showed the existence of a resolution of turning points for meromorphic flat bundles on complex
surfaces.

Cell and induced pre-Betti structure Let P be a point of X. For any closed analytic subset W of X, let
dimP W denote the dimension of W at P . LetM be a holonomic D-module on X with dimP SuppM≤ n. An
n-dimensional good cell ofM at P is a tuple (Z,U, ϕ, V ) as follows:

(Cell 1) ϕ : Z −→ X is a morphism of complex manifolds such that P ∈ ϕ(Z) and dimZ = n. There
exists a neighbourhood XP of P in X such that ϕ : Z −→ XP is projective. We permit that Z may be
non-connected or empty.

(Cell 2) U ⊂ Z is the complement of a normal crossing hypersurface DZ . The restriction ϕ|U is an immersion.
Moreover, there exists a hypersurface H of XP such that ϕ−1(H) = DZ .

(Cell 3) V is a good meromorphic flat bundle on (Z,DZ). For a hypersurface H as in (Cell 2), we have
M(∗H) = ϕ†V and M(!H) = ϕ†V!. The restriction of V to some connected components may be 0. We
obtain the natural morphisms ϕ†V! −→M −→ ϕ†V .

(The conditions are stated in a slightly different way from that in Subsection 7.1.1.) A holomorphic function g on
X is called a cell function for C, if U = SuppM\ g−1(0). We set gZ := ϕ−1(g). We have natural isomorphisms
ϕ†ΞgZ

(V ) ' Ξgϕ†(V ) and ϕ†ψgZ
(V ) ' ψgϕ†(V ). The DX -module φg(M) is obtained as the cohomology of the

complex:
ϕ†V! −→ Ξgϕ†(V )⊕M −→ ϕ†V (5)

We also have a description ofM around P as the cohomology of the complex:

ψg(ϕ†V ) −→ Ξg(ϕ†V )⊕ φg(M) −→ ψg(ϕ†V ).

Let F be a pre-Betti structure ofM. Let C = (Z,U, ϕ, V ) be a good n-cell ofM at P . We say that F and
C are compatible, if the following holds:

• The induced Q-structure of V|U is good, i.e., compatible with the Stokes filtrations. It implies that ϕ†V ,
ϕ†V!, Ξgϕ†V and ψgϕ†V are equipped with the induced pre-Betti structures.

• The morphisms ϕ†V! −→M −→ ϕ†V are compatible with pre-Betti structures.

Such a cell C is called a Q-cell of M at P . Since φg(M) is the cohomology of the complex (5), we have the
induced pre-Betti structure on φg(M).
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Inductive definition of Betti structure Let us define the notion of Betti structure ofM at P , inductively
on the dimension of SuppM. In the case dimP SuppM = 0, a Betti structure is defined to be a pre-Betti
structure. Let us consider the case dimP SuppM ≤ n. We say that a pre-Betti structure of M is a Betti
structure at P , if there exists an n-dimensional Q-cell C = (Z,ϕ, U, V ) at P with the following property:

• dimP

((
SuppM∩XP

)
\ ϕ(Z)

)
< n for some neighbourhood XP of P in X.

• For any cell function g for C, the induced pre-Betti structure of φg(M) is a Betti structure at P .

A holonomic D-module with Betti structure is called a Q-holonomic D-module. The category of Q-holonomic
D-modules is abelian.

Remark 1.2 The above definition is slightly different from that given in Subsection 7.2.

1.2 Main purpose

It is our main purpose to show the functoriality of Betti structures.

Theorem 1.3 The category of Q-holonomic D-modules is equipped with the standard functors such as dual,
push-forward, pull-back, tensor product, and inner homomorphism, compatible with those for the category of
holonomic D-modules with respect to the forgetful functor.

It is not so trivial to show that obvious examples are Q-holonomic D-modules.

Theorem 1.4 Let X be a complex projective manifold with a simple normal crossing divisor D. Let V be a
good meromorphic flat bundle on (X,D) with a good Q-structure. Then, the associated pre-Betti structure of V
is a Betti structure.
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discussion. Special thanks goes to K. Vilonen. I am grateful to A. Ishii and Y. Tsuchimoto for their constant
encouragement. I am grateful to M. Hien, G. Morando, M-H. Saito, C. Simpson and Sz. Szabo for stimulating
discussions.

2 Preliminary

2.1 Notation and words

2.1.1 Dual, push-forward and de Rham functor

We prepare some notation. See very useful text books [13] and [18] for more details and precise on D-modules.
Let X be a complex manifold with dimX = dX . Let DX denote the sheaf of holomorphic differential operators
on X. In this paper, DX -module means left DX -module. Let Hol(X) be the category of holonomic DX -
modules, and let Db

hol(DX) be the derived category of cohomologically holonomic DX -complexes. Let Ωj
X

denote the sheaf of holomorphic j-forms. The invertible sheaf ΩdX

X is denoted by ΩX . The dual functor on the
derived category of DX -modules is denoted by DX , i.e., DXM• := RHomDX

(
M•,DX ⊗ Ω⊗−1

X

)
[dX ]. Recall

that DXM is a holonomic DX -module, if M is a holonomic DX -module. For DX -modules Mi (i = 1, 2), the
tensor product M1 ⊗OX

M2 is naturally a DX -module. For a tangent vector field v, we have v(m1 ⊗m2) =
(vm1)⊗m2 +m1⊗ (vm2). The DX -module is denoted byM1⊗DM2. It is also denoted byM1⊗M2, if there
is no risk of confusion.
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Lemma 2.1 Let M be a holonomic DX-module. Let V be a DX-module, coherent and locally free as an OX-
module. Its dual is denoted by V ∨. Then, we have a natural isomorphism

DX

(
M⊗D V

)
' (DXM)⊗D V ∨

Proof We recall Remark 3.4 in [18]. For a left DX -module N , we have the left DX -action on DX ⊗D N . It
is also equipped with a right DX -action given by the multiplication (f ⊗ m) · g = fg ⊗ m for g ∈ DX . The
two-sided (DX ,DX)-module is denoted by N1. Similarly, we have a left action of DX on DX ⊗OX

N (the
OX -module structure of DX is given by a right multiplication) given by the multiplication g · (f ⊗m) = gf ⊗m
for g ∈ DX , and a right DX -action given by (f ⊗ m) · v = fv ⊗ m − f ⊗ vm for a tangent vector v. The
two-sided (DX ,DX)-module is denoted by N2. We have a naturally defined OX -morphism N −→ N1 given
by m 7−→ 1 ⊗ m. It is naturally extended to a morphism of left DX -modules N2 −→ N1. Actually, it is an
isomorphism and compatible with the right DX -action, as remarked in [18].

We have two left DX -actions on DX ⊗Ω⊗−1
X . The first one is the natural one, and the second one is induced

by the right DX -action. They induce two OX -actions. Let (DX ⊗ Ω⊗−1
X ) ⊗i

OX
N denote the tensor product

with respect to the i-th one. Each is equipped with two left DX -actions. From the consideration in the previous
paragraph, we obtain a natural isomorphism ι : N ⊗1

OX
(DX ⊗ Ω⊗−1

X ) −→ N ⊗2
OX

(DX ⊗ Ω⊗−1
X ), compatible

with the DX -actions.
Let us return to Lemma 2.1. We have the following natural isomorphisms of DX -modules:

DX(M⊗D V ) = RHomDX

(
M⊗D V, DX ⊗ Ω⊗−1

X

)
' RHomDX

(
M, V ∨ ⊗1

OX

(
DX ⊗ Ω⊗−1

X

))
' RHomDX

(
M, V ∨ ⊗2

OX

(
DX ⊗ Ω⊗−1

X

))
= (DXM)⊗D V ∨ (6)

Here, the first one is obtained by using Godment type injective resolution, and the second one is induced by ι
above.

For any field R, let RX denote the sheaf on X associated to the constant presheaf valued in R. Let
Db

c(RX) denote the derived category of cohomologically constructible RX -complexes, and let Per(X,R) denote
the category of R-perverse sheaves. Let ωX,R denote the dualizing complex of RX -modules. It will be denoted
by ωX , if there is no risk of confusion. The dual functor on the derived category of RX -modules is also denoted
by DX , i.e., for a RX -complex F•, let DXF• := RHomRX

(
F•, ωX,R

)
.

The de Rham functor is denoted by DRX , i.e., DRXM := ΩX ⊗L
DX
M = Ω•X ⊗OX

M[dX ]. According
to [15], it gives a functor of triangulated categories DRX : Db

hol(DX) −→ Db
c(CX) compatible with the t-

structures, where the t-structure of Db
hol(DX) is the natural one, and the t-structure of Db

c(CX) is given by the
middle perversity. In particular, it induces an exact functor DRX : Hol(X) −→ Per(X,C). We can identify
ωX = DRX OX [dX ]. It is easy to observe that DRXM = 0 implies M = 0 for M ∈ Hol(X). Hence,
DRX : Hol(X) −→ Per(X,C) is faithful, although it is not full in general.

Let F : X −→ Y be a morphism of complex manifolds. The push-forward for CX -complexes in the derived
category is denoted by RF∗. (It is also denoted by F∗, if there is no risk of confusion.) Its i-th perverse
cohomology is denoted by F i

† . Put

DX→Y := OX ⊗F−1OY
F−1DY , DY←X := ΩX ⊗F−1OY

F−1
(
DY ⊗OY

Ω⊗−1
Y

)
.

The push-forward for DX -complexes is denoted by F†, i.e., F†M = RF∗
(
DY←X ⊗L

DX
M

)
. Its i-th cohomology

is denoted by F i
† .

Recall that these functors are compatible on the derived category of cohomologically holonomic D-modules.
Let F : X −→ Y be a proper morphism of complex manifolds. We have natural transformations

DRY ◦F† ' RF∗ ◦DRX , DX ◦DRX ' DRX ◦DX , DY ◦ F† ' F† ◦ DX .

We have the following diagram, which is commutative as shown in [39].

RF∗DX DRX
'−−−−→ RF∗DRX DX

'−−−−→ DRY F†DX

'
y '

y
DY RF∗DRX

'−−−−→ DY DRY F†
'−−−−→ DRY DY F†

(7)

5



2.1.2 Hypersurface

For a hypersurface D ⊂ X, let OX(∗D) denote the sheaf of meromorphic functions whose poles are contained
in D. ForM∈ Hol(X), we have M(∗D),M(!D) ∈ Hol(X) given as follows:

M(∗D) :=M⊗OX
OX(∗D), M(!D) := DX

((
DXM

)
(∗D)

)
.

We have naturally defined morphisms:

M(!D) −→M −→M(∗D)

If D is given as the zero set of a holomorphic function f , they are denoted byM(∗f) andM(!f), respectively.
They are also denoted by j∗j

∗M and j!j
∗M, where j : X − D −→ X. Note that j?j∗ (? = ∗, !) are exact

functors on Hol(X).
We put DX(∗D) := DX ⊗ OX(∗D). A DX(∗D)-module M is called holonomic, if it is holonomic as a DX -

module. Let Hol
(
X(∗D)

)
be the category of holonomic DX(∗D)-modules, which is a full subcategory of Hol(X).

The dual functor on Hol
(
X(∗D)

)
is denoted by DX(∗D), i.e., DX(∗D)(M) = DX(M)(∗D).

2.1.3 Pre-K-holonomic D-modules

Let M be a holonomic DX -module. Let K be a subfield of C. A pre-K-Betti structure of M is defined to
be a K-perverse sheaf F with an isomorphism λ : F ⊗K C ' DRXM. Such a tuple (M,F , λ) is called a
pre-K-holonomic DX -module. We will often omit to denote λ. A morphism of K-holonomic DX -modules
(M1,F1) −→ (M2,F2) is defined to be a pair of a morphism of DX -modules M1 −→M2 and a morphism of
perverse sheaves F1 −→ F2 such that the following induced diagram is commutative:

F1 ⊗K C '−−−−→ DRX(M1)y y
F2 ⊗K C '−−−−→ DRX(M2)

The following lemma is clear.

Lemma 2.2 The category of pre-K-holonomic DX-modules is abelian.

Let F be a pre-K-Betti structure of M. We have induced pre-K-Betti structures DF and F i
†F of DM

and F i
†M, where F : X −→ Y be a proper morphism. We put D(M,F) :=

(
DM,DF

)
and F i

†(M,F) :=(
F i
†M, F i

†F
)
.

Lemma 2.3 The isomorphism DF†M' F†DM is compatible with the induced pre-K-Betti structures.

Proof Because (7) is commutative, we have the commutativity of the following naturally induced diagram:

DR DF†M
'−−−−→ DF†DRM '−−−−→ DF†F ⊗ C

'
y '

y '
y

DRF†DM
'−−−−→ F†D DRM '−−−−→ F†DF ⊗ C

It means the claim of the lemma.
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2.1.4 Formal completion

Let Y be a real analytic manifold. Let C∞Y denote the sheaf of C∞-functions on Y . For a real analytic subset
Z, let C∞<Z

Y denote the subsheaf of C∞Y which consists of the sections f such that the Taylor expansion of
f at each point P ∈ Z are 0. We set C∞bZ := C∞Y /C∞<Z

Y . We have other descriptions. (i) It is the sheaf of
Whitney functions of class C∞ on Z, i.e., sections of ∞-jets along Z satisfying the conditions in Theorem
I.2.2 of [26]. (ii) Let IZ,∞ be the ideal sheaf of C∞Y corresponding to Z. Then, C∞bZ is also isomorphic to
lim←−C

∞
Y

/
Im

Z,∞. (See the proof of Theorem I.4.1 of [26].) For any C∞Y -module F , let F|bZ denote F ⊗C∞Y C
∞bZ .

Let Zi (i = 1, 2) be real analytic subsets in Y . According to Corollary IV.4.4 of [26], the natural sequence
0 −→ C∞

Ẑ1∪Z2
−→ C∞bZ1

⊕ C∞bZ2
−→ C∞

Ẑ1∩Z2
−→ 0 is exact.

Let Zi (i ∈ Λ) be real analytic subsets of Y . For any subset I ⊂ Λ, we put ZI :=
⋂

i∈I Zi. We put Z(I) :=⋃
i∈I Zi. We fix a total order on Λ. For J ⊂ K ⊂ Λ, we have the restriction rJ,K : C∞bZJ

−→ C∞bZK
. If K = J t{i},

we put κ(J,K) := {k ∈ J | k < i} and dJ,K := (−1)κ(J,K)rJ,K . We set Km
(
C∞bZ(I)

)
:=

⊕
|J|=m+1, J⊂I C∞bZJ

. The

above morphisms dJ,K induce dm : Km
(
C∞bZ(I)

)
−→ Km+1

(
C∞bZ(I)

)
. Thus, we obtain the complex K•

(
C∞bZ(I)

)
. By

using the exactness in the previous paragraph, it can be shown that the natural inclusion C∞bZ(I)
−→ K0(C∞bZ(I)

)

induces a quasi-isomorphism C∞bZ(I)
' K•

(
C∞bZ(I)

)
. (See [34], for example.)

Let X be a complex manifold. For a complex analytic subset Z, we set ObZ := lim←−OX/Im
Z , where IZ denote

the ideal sheaf of Z. We set Ω•,•bZ := Ω•,•
X|bZ which is equipped with the differential operators ∂ and ∂. If Z is

smooth, it is easy to see that the natural inclusion ObZ −→ Ω0,•bZ is a quasi-isomorphism.
Let D be a simple normal crossing hypersurface with the irreducible decomposition D =

⋃
i∈ΛDi. By

the above procedures, we obtain the complexes K•
(
O bD(I)

)
. It is known that the natural inclusion O bD(I) −→

K0(O bD(I)) induces a quasi-isomorphism O bD(I) ' K
•(O bD(I)

)
. (See [10] and [34].) We also have Ω0,•bD(I)

'
K•

(
Ω0,•bD(I)

)
. Then, we obtain O bD(I) ' Ω0,•bD(I)

.

2.2 Beilinson’s construction of some functors

Let us recall Beilinson’s beautiful construction of nearby cycle functor, vanishing cycle functor and maximal
functor, which is crucial in this paper. See [3] for more details and precise.

2.2.1 Preliminary

Let k be a field of characteristic 0. Let A := k((s)) and Ai := sik[[s]]. The multiplication of s induces a nilpotent
map NA of Ai,j := Ai

/
Aj . Let I := A⊗OGm

be a meromorphic flat bundle on Gm := Spec k[t, t−1] of infinite
rank, equipped with a connection given by

∇α = α ·
(
s
dt

t

)
, α ∈ A.

We have the flat subbundle Ii := Ai ⊗ OGm
. We formally set I−∞ = I. We set Ia,b := Ia

/
Ib for a ≤ b,

and formally Ia,∞ := Ia. We have a natural morphism Ia,b −→ Ic,d for a ≥ c and b ≥ d. We have a natural
isomorphism Ia,a+1 ' I0,1 = OGm

given by sa ←→ 1.
This construction makes sense also in the analytic situation, in which multi-valued flat sections are formally

given by α · exp
(
−s log t

)
for α ∈ A.

2.2.2 Nearby cycle functor and maximal functor

Let X be a complex manifold with a hypersurface D. Let Y be a hypersurface of X. Let j : X − Y −→ X
denote the inclusion. Functors j∗j∗ and j!j∗ for holonomic DX(∗D)-modules M are given as follows:

j∗j
∗M :=M(∗Y ), j!j

∗M := DX

(
j∗j
∗DXM

)
(∗D) =

(
M(!Y )

)
(∗D).
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We have a naturally defined morphism j!j
∗M−→ j∗j

∗M.
Let f be a meromorphic function on (X,D), i.e., the pole of f is contained in D. We set Ia,b

f := f∗Ia,b(∗D),
which is a meromorphic flat bundle on

(
X, f−1(0) ∪D

)
. Let j : X − f−1(0) −→ X. For a holonomic DX(∗D)-

module M, we obtain the following holonomic DX(∗D)-module:

Ma,b
f :=M⊗ Ia,b

f = j∗j
∗(M⊗ Ia,b

f

)
Put Πa,b

f ! M := j!j
∗Ma,b

f and Πa,b
f∗M := j∗j

∗Ma,b
f . In the case b = ∞, they are denoted by Πa

f !M and Πa
f∗M.

Beilinson defined the functors ψ(a)
f and Ξ(a)

f as follows:

ψ
(a)
f M := Πa

f∗M
/
Πa

f !M, Ξ(a)
f M := Πa

f∗M
/
Πa+1

f ! M.

In the case a = 0, they are denoted by ψfM and ΞfM, respectively. The multiplication of s naturally induces
isomorphisms ψ(a)

f M' ψ
(a+1)
f M and Ξ(a)

f M' Ξ(a+1)
f M. They will be implicitly identified. We have the exact

sequences of holonomic DX(∗D)-modules:

0 −−−−→ Πa,a+1
f ! M

c
(a)
1−−−−→ Ξ(a)

f M
c
(a)
2−−−−→ ψ

(a)
f M −−−−→ 0

0 −−−−→ ψ
(a+1)
f M

d
(a)
1−−−−→ Ξ(a)

f M
d
(a)
2−−−−→ Πa,a+1

f∗ M −−−−→ 0

The multiplication of s and the endomorphism c
(a)
2 ◦ d(a)

1 induce an endomorphism N (a+1) of ψ(a+1)
f M.

Recall the important observation lim
↔

Πa,b
f ! M ' lim

↔
Πa,b

f∗M =: ΠfM due to Beilinson. See [3] for lim
↔

. In

particular, it implies that N (a+1) is nilpotent. We also obtain the following morphism of exact sequences:

0 −−−−→ Πa
f !M −−−−→ ΠfM −−−−→ Π−∞,a

f ! M −−−−→ 0y =

y y
0 −−−−→ Πb

f∗M −−−−→ ΠfM −−−−→ Π−∞,b
f∗ M −−−−→ 0

Hence, we have a natural isomorphism Cok
(
Πa

f !M −→ Πb
f∗M

)
' Ker

(
Π−∞,a

f ! M −→ Π−∞,b
f∗

)
. In particular,

we have the following identifications:

ψ
(a)
f M' Ker

(
Π−∞,a

f ! M−→ Π−∞,a
f∗ M

)
, Ξ(a)

f M' Ker
(
Π−∞,a+1

f ! M−→ Π−∞,a
f∗ M

)
. (8)

Remark 2.4 When we distinguish that we work on the category of DX(∗D)-modules, we will use the symbols
ψ

(a)
f (M, ∗D), Ξ(a)

f (M, ∗D), etc..

2.2.3 Vanishing cycle functor and gluing

Let f be as above. Let MX be a holonomic DX(∗D)-module such that MX(∗f) = M. We have the natural
identifications Πa,b

f?MX = Πa,b
f?M for ? = ∗, ! and the naturally defined morphisms:

Πa,a+1
f ! M

c
(a)
1,X−−−−→ MX

d
(a)
2,X−−−−→ Πa,a+1

f∗ M

Beilinson defined the vanishing cycle functor φ(a)
f MX as the H1-cohomology of the following sequence of holo-

nomic DX(∗D)-modules:

Πa,a+1
f ! M

c
(a)
1 ⊕c

(a)
1,X−−−−−−→ Ξ(a)

f M⊕MX

d
(a)
2 −d

(a)
1,X−−−−−−−→ Πa,a+1

f∗ M

8



The morphisms d(a)
1 and c(a)

2 induce can and var:

ψ
(a+1)
f M can−−−−→ φ

(a)
f M

var−−−−→ ψ
(a)
f M

By construction, we have var ◦ can = c
(a)
2 ◦ d(a)

1 .
Conversely, let MY be a holonomic DX(∗D)-module whose support is contained in Y = f−1(0), with mor-

phisms such as
ψ

(1)
f M

u−→MY
v−→ ψ

(0)
f M, v ◦ u = c

(0)
2 ◦ d

(0)
1 .

Then, we obtain a holonomic DX(∗D)-module Glue(MY , u, v) as the cohomology of the complex:

ψ
(1)
f M

d
(0)
1 ⊕u
−−−−→ Ξf (M)⊕MY

c
(0)
2 −v
−−−−→ ψ

(0)
f M

Beilinson made an excellent observation that the above two operations are mutually inverse. See [3] for more
details.

2.2.4 Comparison with ordinary definitions

Let ψ̃f,−1 and φ̃f be ordinary nearby cycle functor and vanishing cycle functor defined in terms of V -filtrations
[17], i.e., ψ̃f,−1(M) = GrV

−1M and φ̃f (MX) := GrV
0 MX . For simplicity, ψ̃f,−1 is denoted by ψ̃f in the

following.

Lemma 2.5 We have natural isomorphisms ψf ' ψ̃f, and φf ' φ̃f .

Proof Recall that φ̃f (MX) and φ̃f (MX) are naturally equipped with the nilpotent endomorphisms N , which
is the nilpotent part of the multiplication of −∂tt. We have natural identifications:

φ̃f

(
Πa,b

f ! M
)
' φ̃f

(
Πa,b

f∗M
)
' ψ̃fM⊗Aa,b

The natural nilpotent endomorphisms are given by N ⊗ id− id⊗(s•), which is denoted by N − s. Here, s•
denotes the multiplication of s on Aa,b. In the following, we argue on any compact subset of X.

Let us look at the natural morphism Ga,b : Πa,b
f ! M−→ Πa,b

f∗M. The supports of the kernel and the cokernel
are contained in f−1(0). The morphism φ̃f (Ga,b) : φ̃f

(
Πa,b

f ! M
)
−→ φ̃f

(
Πa,b

f∗M
)

is naturally identified with

N − s : ψ̃fM⊗ Aa,b −→ ψ̃fM⊗ Aa,b. Hence, if b is sufficiently larger than a, Cok(Ga,b) is isomorphic to
ψ̃fM⊗Aa,a+1, independently of b. Therefore, we obtain ψ(a)

f M' ψ̃fM⊗Aa,a+1. In particular, we naturally

have ψ(0)
f M = ψ̃fM.

It follows that Cok
(
Πa+1,M

f ! M −→ Πa,M
f∗ M

)
are independent of any sufficiently large M , which should be

isomorphic to Ξ(a)
f M. We obtain φ̃f

(
Ξ(a)

f M
)
' Cok

(
N − s : ψfM⊗ Aa+1,M −→ ψfM⊗ Aa,M

)
for any

sufficiently large M . Because φ(0)
f (MX) is naturally isomorphic to the cohomology of the complex

φ̃f

(
Π0,1

f ! M
)
−→ φ̃f

(
Ξ(0)

f M
)
⊕ φ̃f

(
MX

)
−→ φ̃f

(
Π0,1

f∗M
)
,

it is easy to obtain φ(0)
f (M) ' φ̃f (M) by a direct calculation.

As was observed in the proof, on any compact subset of X, we have the following identifications for any
sufficiently large M :

ψ
(a)
f M = Cok

(
Πa,a+M

f ! M−→ Πa,a+M
f∗ M

)
, Ξ(a)

f M = Cok
(
Πa+1,a+M

f∗ M−→ Πa,a+M
f∗ M

)
(9)

Similarly, on any compact subset of X, we have the following identifications for any sufficiently large M :

ψ
(a)
f M = Ker

(
Πa−M,a

f ! M−→ Πa−M,a
f∗ M

)
, Ξ(a)

f M = Ker
(
Πa−M,a+1

f ! M−→ Πa−M,a
f∗ M

)
(10)
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2.2.5 Compatibility with dual

In [3], the pairing A×A −→ k = A−1/A0 is given by
〈
f(s), g(s)

〉
= Ress=0

(
f(s) g(−s) ds

)
. It induces pairings

Aa,b ⊗A−b,−a −→ A−1/A0. Then, we obtain flat pairings I⊗ I −→ I−1,0 and Ia,b ⊗ I−b,−a −→ I−1,0. We can
identify Ia,b with the dual of I−b,−a by the pairing.

Let D denote the dual functor on the category of holonomic DX(∗D)-modules. By using the DX(∗D)-version
of Lemma 2.1, we obtain identifications:

D
(
Πa,b

f∗M
)
' Π−b,−a

f !

(
D(M)

)
, D

(
Πa,b

f ! M
)
' Π−b,−a

f∗

(
D(M)

)
By (9) and (10), we obtain the following identifications:

Dψf (M) ' ψf

(
DM

)
DΞf (M) ' Ξf

(
DM

)
Dφf (M) ' φf (DM)

2.2.6 Compatibility with push-forward

Let F : X −→ Y be a proper morphism. Assume that D = F−1(DY ), for simplicity. Let g be a holomorphic
function on Y . Let M be a holonomic DX(∗D)-module. We set g̃ := F ∗g. Let jY : Y − g−1(0) −→ Y and
jX : X − g̃−1(0) −→ X. We have natural isomorphisms F i

†
(
M⊗ Ia,beg )

' F i
†(M) ⊗ Ia,b

g of DY (∗DY )-modules.
By a general theory, we have (jY ?j

∗
Y )F i

† = F i
† ◦ (jX?j

∗
X) for ? = ∗, !. Hence, it is easy to obtain the following

identification:
F i
†ψegM = ψgF

i
†M F i

†ΞgM = ΞgF†M F i
†φgM = φgF

i
†M

2.2.7 Choice of a function

Let f and h be meromorphic functions on (X,D). Assume that h is nowhere vanishing. We have natural
isomorphisms of OX -modules Ia,b

f ' Ia,b
hf ' Aa,b ⊗OX(∗D)(∗f). For their flat connections ∇f and ∇hf and for

α ∈ Aa,b, we have the formulas:

∇fα = α · sdf
f

∇hfα = α · s
(
df

f
+
dh

h

)
We have the flat isomorphism Φ : Ia,b

f ' Ia,b
hf given by Φ(α) = exp

(
−s log h

)
α. It induces isomorphisms:

Ξ(a)
f ' Ξ(a)

hf , ψ
(a)
f ' ψ(a)

hf , φ
(a)
f ' φ(a)

hf . (11)

They depend on a choice of the branch of log h.

2.2.8 Q-structure of I

In the analytic case, the Q-structure of Aa,b is given as follows:

C · sj ⊃ Q · (2π
√
−1)jsj

It gives a Q-structure of the fiber of Ia,b over 1 ∈ C∗. We would like to extend it to a flat Q-structure of the
flat bundle I|C∗ . Let u := 2π

√
−1 s. The connection of Ia,b is expressed as

∇(ua, . . . , ub−1) = (ua, . . . , ub−1) ·N 1
2π
√
−1

dt

t

Here, N denotes the constant matrix such that Ni,i+1 = 1 and Ni,j = 0 otherwise. Since the monodromy is
expressed by exp(−N), the Q-structure is well defined. More generally, for any subfield K ⊂ C, we obtain a
K-structure of Ia,b in this way.

Note that the pairing 〈·, ·〉 is not defined over Q. We have the following formula:〈
f(u), g(u)

〉
= Res

u=0

(
f(u) g(−u) du

) 1
2π
√
−1

Namely, the pairing 〈·, ·〉 is valued in the Tate twist Q(−1) = (2π
√
−1)−1Q.
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2.2.9 Comparison with the functors for perverse sheaves

Let Loc(I)Q denote the Q-local system associated to I. The fiber over 1 is Q((u)), and the monodromy along
the loop with the clockwise direction is given by the multiplication of exp(u). Recall another expression of this
local system as in [3].

Let AP := Q((v)). We set t := v + 1. The pairing AP ×AP −→ Q(−1) is given as follows:

〈
f(t), g(t)

〉
= Res

t=1

(
f(t) g(t−1)

dt

t

) 1
2π
√
−1

We have a Q-local system IP on C∗ such that the fiber over 1 is AP , and the monodromy along the loop
with the clockwise direction is given by the multiplication of t = 1 + v. Let us compare IP and Loc(I)Q.
We take an algebra homomorphism Φ : Q((u)) −→ Q((v)) determined by Φ

(
exp(u)

)
= 1 + v. We identify the

fibers of Loc(I)Q and IP by Φ. Because it is compatible with the monodromies, it induces the identification
Loc(I)Q ' IP . Note that Φ

(
f(−u)

)
= Φ(f)(t−1) and Φ(du) = dt/t. Hence the pairing is preserved.

Remark 2.6 Recall that the functors ψ, Ξ and φ for perverse sheaves are given in terms of IP , according to
[3]. Hence, the above comparison gives the compatibility of the de Rham functor DR with φ, ψ and Ξ in the
regular singular case.

2.3 A resolution

This subsection is a preparation for the proof of Theorem 8.1.

2.3.1 Commutativity of push-forward in the non-characteristic case

Let M be a holonomic D-module on a complex algebraic manifold X. We have natural isomorphisms

M(∗D) 'M⊗OX
OX(∗D), DX

(
(DXM)(∗D)

)
'M⊗L OX(!D).

If a hypersurface D ⊂ X is non-characteristic toM, we obtain M(!D) 'M⊗OX(!D).

Lemma 2.7 Let Di (i = 1, 2) be hypersurfaces of X. If Di (i = 1, 2) and D1 ∩ D2 are non-characteristic to
M, we have a natural isomorphism: (

M(∗D1)
)
(!D2) '

(
M(!D2)

)
(∗D1) (12)

Proof Note that Ch
(
M(∗D1)

)
= Ch

(
M

)
∪ Ch

(
i1∗i
∗
1M

)
, where i1 : D1 −→ X. We have a stratification

SuppM =
∐
Zi such that Ch(M) =

∐
T ∗Zi

X. We obtain a stratification SuppM =
∐

(Zi \D1)t
∐

(Zi ∩D1),
for which we have the following:

Ch
(
M(∗D1)

)
=

∐
T ∗Zi\D1

X t
∐

T ∗Zi∩D1
X

Hence, D2 is non-characteristic to M ⊗ O(∗D1). Similarly, we can show that D1 is non-characteristic to
M⊗O(!D2). Then, the both sides of (12) are naturally isomorphic to M⊗O(!D2)⊗O(∗D1).

2.3.2 Transversality

LetM be a holonomic D-module on a complex algebraic manifold X. There exists a stratification Supp(M) =∐
i∈Λ Zi such that (i) each Zi is a smooth locally closed analytic subset of X, (ii) Ch(M) =

∐
i∈Λ T

∗
Zi
X.

Lemma 2.8 An analytic subset W ⊂ X is non-characteristic to M, if and only if W and Zi are transversal
for any i ∈ Λ.

Proof For P ∈W∩Zi, we have subspaces (T ∗Zi
X)|P and (T ∗WX)|P of (T ∗X)|P . Then, W and Zi are transversal

at P if and only if (T ∗WX)|P ∩ (T ∗Z0
X)|P = {0}. Then, the claim of the lemma is clear.

11



2.3.3 Non-characteristic tuple of hyperplane subbundles

Let E be a locally free sheaf on a complex algebraic manifold Y . We put X := P(E) with the projection
G : X −→ Y . The zero set of a section of OP(E)/Y (1) is called a hyperplane subbundle of X.

LetM be a holonomic DX -module. Let H := (H1, . . . ,HN ) be a tuple of hyperplane subbundles of X. We
say that H is non-characteristic to M, if HI :=

⋂
i∈I Hi are non-characteristic to M for any I ⊂ {1, . . . , N}.

We can show the following lemma by a standard argument of genericity.

Lemma 2.9 Let H = (H1, . . . ,HN ) be non-characteristic to M. We can take a hyperplane subbundle HN+1

such that (H1, . . . ,HN ,HN+1) is also non-characteristic to M.

Recall the following general lemma.

Lemma 2.10 Let (H1,H2) be a tuple of hyperplane bundles of X, which is non-characteristic to M. Then,
Gi
†
(
M(∗H1!H2)

)
= 0 for any i 6= 0.

Proof LetMi (i = 1, 2) be holonomic DX -modules, to which Hi is non-characteristic. It is easy to show that
Gi
†M1(∗H1) = 0 for any i > 0. By using the duality, we obtain that Gi

†
(
M2(!H2)

)
= 0 for any i < 0. Then,

the claim follows from Lemma 2.7.

2.3.4 A resolution

Let X, Y and M be as in Subsection 2.3.3. Let H = (Hi) be a tuple of hyperplane subbundles of X, non-
characteristic toM. Let i := {1, . . . , i}, and let ιHi denote the inclusion Hi ⊂ X. We put N0 :=M(∗H1). We
also put Ci := ιHi†ι

∗
Hi
M, and Ni := Ci(∗Hi+1). We have the natural exact sequences:

0 −→M −→ N0 −→ C1 −→ 0, 0 −→ Ci −→ Ni −→ Ci+1 −→ 0

Hence, we obtain the following exact sequence:

0 −→M −→ N0 −→ N1 −→ · · · −→ Nn −→ · · ·

Let H ′ = (H ′j) be a tuple of hyperplane subbundles of X such that H tH ′ is non-characteristic to M. We
set Qi,0 := Ni(!H ′1). We also put Ki,−j := ιH′

j†ι
∗
H′

j
Ni and Qi,−j := Ki,−j(!Hj+1). We have the natural exact

sequences:
0 −→ Ki,−1 −→ Qi,0 −→ Ni −→ 0, 0 −→ Ki,−j−1 −→ Qi,−j −→ Ki,−j −→ 0

Hence, we obtain the following exact sequences:

0←− Ni ←− Qi,0 ←− Qi,−1 ←− Qi,−2 ←− · · ·

By construction, we have the naturally defined morphisms Qi,−j −→ Qi+1,−j and the commutative diagrams:

Qi,−j −−−−→ Qi+1,−jy y
Qi,−j+1 −−−−→ Qi+1,−j+1

Let Tot
(
Q•,•

)
denote the total complex of the double complex Q•,•. We have natural quasi-isomorphisms

Tot
(
Q•,•

) '−→ N·
'←−M.

3 Good holonomic D-modules and their de Rham complexes

3.1 Good holonomic D-modules

3.1.1 I-good meromorphic flat bundle

We put X := ∆n, Di := {zi = 0} and D :=
⋃`

i=1Di. For I ⊂ `, we set D(I) :=
⋃

i∈I Di and DI :=
⋂

i∈I Di.
We put ∂DI := DI ∩D(Ic), where Ic := `− I. Let M(X,D) be the set of meromorphic functions on X whose
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poles are contained in D. Let H(X) be the set of holomorphic functions on X. Let I ⊂ M(X,D)/H(X) be
a good set of irregular values. For I ⊂ `, let I ′(I) be the set of the elements a ∈ I which are regular along zi

(i ∈ I), and we put I(I) :=
{
a|DI

∣∣ a ∈ I ′(I)
}
.

Let X(m) := ∆n =
{
(z1/m

1 , . . . , z
1/m
` , z`+1, . . . , zn)

}
, D(m)

i :=
{
z
(m)
i = 0

}
and D(m) =

⋃`
i=1D

(m)
i , i.e.,

X(m) −→ X is a ramified covering along D. We have the induced ramified covering D(m)
I :=

⋂
i∈I D

(m)
i −→ DI .

Let I ⊂ M(X(m), D(m))/H(X(m)) be a good set of irregular values. Let I ⊂ `. A meromorphic flat bundle
E on (DI , ∂DI) is called I-good, if it is the descent of an unramifiedly good meromorphic flat bundle E(m) on
(D(m)

I , ∂D
(m)
I ) whose set of irregular values is contained in I(I).

In this subsection, we use the following notation for simplicity of the description.

Notation 3.1 The vanishing cycle functor φzi
is denoted by φi. We use the symbols ψi, Ξi and Πa,b

i? in similar
meanings. For a holonomic DX-module M, we set M(∗i) :=M(∗Di) and M(!i) :=M(!Di). If we are given
a subset I ⊂ `, we put M(!I) :=M

(
!D(I)

)
and M(∗I) :=M

(
∗D(I)

)
.

Lemma 3.2 Let E be an I-good meromorphic flat bundle on (X,D). If i 6= j, the natural morphism φi(E) −→
φi(E)(∗j) is an isomorphism.

Proof It follows from a direct computation of the Kashiwara-Malgrange filtration along zi. We give only an
indication. We use an order on C given by the lexicographic order on R× R and the identification C ' R2 via
α ←→ (Reα, Imα). For α = (αk | k ∈ `), we can take a good lattice Eα of E such that any eigen values β of
Resi(∇) satisfy −αi < β ≤ −αi−1. Let iV0D denote the sheaf of subalgebras of D generated by OX , ∂k (k 6= i)
and zi∂i. Put D(ic) :=

⋃
j 6=i,j≤`Dj . For α ∈ C, take an α whose i-th component is α, and let iVα(E) be the

iV0D-submodule of E generated by i
αE := αE

(
∗D(ic)

)
. We can check that iV−α−1(E) is generated by αE, where

the i-th component of α is α, and the other components of α are larger than 1. Hence, we can deduce that
iVα(E) are iV0DX -coherent. We can also check that the induced action of −∂izi − α on iVα/

iV<α is nilpotent.
Hence, iV (E) is the Kashiwara-Malgrange filtration of E along zi. Then, the claim of the lemma is clear.

Lemma 3.3 If i 6= j, the natural morphism E(!i) −→ E(!i)(∗j) is an isomorphism.

Proof Let N denote the nilpotent part of the action of −∂izi on φi(E). We have the following commutative
diagram:

0 −−−−→ KerN −−−−→ E(!i) −−−−→ E −−−−→ CokN −−−−→ 0

a

y b

y =

y c

y
0 −−−−→ KerN(∗j) −−−−→ E(!i)(∗j) −−−−→ E −−−−→ CokN(∗j) −−−−→ 0

By Lemma 3.8, we obtain that a and c are isomorphisms. Hence, b is also an isomorphism.

3.1.2 I-good holonomic D-modules

We continue to use the notation in Subsection 3.1.1.

Definition 3.4 A holonomic DX-module M is called I-good on (X,D), if the following holds:

• M(∗D) is a good meromorphic flat bundle whose good set of irregular values is I.

• For an ordered tuple I = (i1, . . . , im) where 1 ≤ ij ≤ `, we set φI = φi1 ◦ · · · ◦ φim
. Then, φI(M)

(
∗Ic

)
is

the push-forward of a good meromorphic flat bundle on (DI , ∂DI) whose set of irregular values is I(I).

The full subcategory of I-good holonomic D-modules is abelian, and it is closed under extensions. If V is a
good meromorphic flat bundle, it is a good holonomic DX -module in the above sense. When we do not have to
distinguish I, we will omit to denote it. We will implicitly use the following obvious lemma.

Lemma 3.5 Let M be a holonomic DX-module. Assume (i) M(∗D) is an I-good meromorphic flat bundle,
(ii) φi(M) are I-good for any i = 1, . . . , `. Then, M is I-good.
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Lemma 3.6 Let M be a good holonomic D-module on (X,D). Then, DXM is also good.

Proof We use an induction on the dimension of the support of M. It is easy to check that DXM(∗D) is
a good meromorphic flat bundle. By the hypothesis of the induction, φi(DXM) ' DXφi(M) are also good.
Hence, we obtain that M is good.

For a good holonomic D-module M, let ρ(M) ∈ Z≥ 0 × Z>0 denote the pair of dim SuppM and the
number of the irreducible components of SuppM with the maximal dimension. We use the lexicographic order
on Z≥ 0 × Z>0. For a good holonomic D-module M, there exists J ⊂ ` with dim SuppM = n − |J | such
that M

(
∗Jc

)
6= 0. The kernel N1 and the cokernel N2 of the natural morphism M −→ M

(
∗Jc

)
satisfy

ρ
(
Ni

)
< ρ(M) (i = 1, 2).

Lemma 3.7 Let M be good on (X,D). Then, ψi(M) are also good for any i = 1, . . . , `.

Proof We use an induction on ρ(M). Let J and Nj (j = 1, 2) be as above. By the assumption of the induction,
ψi(Nj) (j = 1, 2) are good. It is easy to show that ψi

(
M(∗Jc)

)
is good by using the lattice as in the proof of

Lemma 3.2. Hence, we obtain that ψi(M) is also good.

3.1.3 Commutativity of the functor along the coordinate functions

Let M be good on (X,D).

Lemma 3.8 For i 6= j, we have natural isomorphisms φi

(
M(∗j)

)
' φi(M)(∗j) and φi

(
M(!j)

)
' φi(M)(!j).

Proof The second isomorphism is obtained as the dual of the first one. Let us consider the first isomorphism.
We have the following naturally defined morphisms:

φi

(
M(∗j)

) a−→ φi

(
M(∗j)

)
(∗j) b←− φi

(
M

)
(∗j)

Because the restriction of b to X −Dj is an isomorphism, it is easy to show that b is an isomorphism. Let us
show that a is an isomorphism by using an induction on ρ(M). As in the proof of Lemma 3.7, the issue can be
reduced to the case that M is a good meromorphic flat bundle, which is given in Lemma 3.2.

Lemma 3.9 M(∗j) and M(!j) are also good.

Proof Because φj

(
M(∗j)

)
' ψj(M), we obtain that M(∗j) is good from Lemmas 3.5, 3.7 and 3.8. By using

Lemma 3.6, we obtain thatM(!j) is also good.

We have the following corollary of Lemma 3.9.

Corollary 3.10 Let f be a meromorphic function on (X,D) whose zero and pole are contained in D. Take
D(1) ⊂ D such that the pole of f is contained in D. The holonomic DX-module Πa,b

f? (M, ∗D(1)) is good on
(X,D). Hence, ψf (M, ∗D(1)), Ξf (M, ∗D(1)) and φf (M, ∗D(1)) are also good on (X,D).

We have the following naturally defined morphisms:

M(∗i)(!j) a−→M(∗i)(!j)(∗i) b←−M(!j)(∗i)

It is easy to show that b is an isomorphism.

Lemma 3.11 a is also an isomorphism, by which we can identify M(∗i)(!j) and M(!j)(∗i).

Proof By using an induction on ρ(M), we can reduce the issue to the case that M is a good meromorphic
flat bundle, which is given in Lemma 3.3.

In the following, we will not distinguish M(∗i)(!j) and M(!j)(∗i) for i 6= j, which will be denoted by
M(∗i!j). For I t J ⊂ `, we have the natural identificationM(!I∗J) 'M(∗J !I), which will be used implicitly.
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Lemma 3.12 We have the commutativity Ξi ◦Ξj = Ξj ◦Ξi, ψi ◦ψj = ψj ◦ψi and φi ◦ φj = φj ◦ φi. Moreover,
the functors Ξi, ψj and φk are mutually commutative, where i, j and k are mutually distinct. In the following,
we will not care about the order of these functors for good holonomic D-modules on (X,D).

Proof We obtain the natural identification Πa,b
i? ◦Πc,d

j?′ = Πc,d
j?′ ◦Πa,b

i? from Lemma 3.11. Then, the claim of the
lemma is clear.

3.1.4 Globalization

Let X be a complex manifold with a normal crossing hypersurface D.

Definition 3.13 A holonomic DX-module M is called good on (X,D), if the following holds:

• Let P be any point of D. Let (U, z1, . . . , zn) be a coordinate neighbourhood around P such that D ∩ U =⋃`
i=1{zi = 0}. Then, M|U is good in the sense of Definition 3.4.

We obtain the following from the results in Subsections 3.1.2–3.1.3.

Lemma 3.14 Let M be good on (X,D).

• The dual DXM is also good on (X,D).

• Let D(1) ⊂ D be a union of some irreducible components. Then, M(∗D(1)) and M(!D(1)) are also good
on (X,D).

• Let D(i) ⊂ D (i = 1, 2) be unions of some irreducible components such that dimD(1) ∩D(2) < dimX − 1.
Then, we have a natural isomorphism M(∗D(1))(!D(2)) 'M(!D(2))(∗D(1)).

• Let f be a meromorphic function on (X,D) whose zero and pole are contained in D. Take D(1) ⊂ D such
that the pole of f is contained in D. Then, ψf (M, ∗D(1)), Ξf (M, ∗D(1)) and φf (M, ∗D(1)) are also good
on (X,D).

3.2 De Rham complexes

3.2.1 De Rham complex with infinite decay

For a complex manifold X, let Ωp,q
X denote the sheaf of C∞-(p, q)-forms on X. For any analytic subset Z ⊂ X,

we set Ωp,qbZ := Ωp,q
X ⊗C∞X C

∞bZ . If we are given a normal crossing hypersurface D ⊂ X, we set Ωp,qbZ (∗D) :=
Ωp,qbZ ⊗OX

ObZ(∗D). We say that D1 ∪D2 = D is a decomposition of D, if Di ⊂ X (i = 1, 2) are hypersurfaces
such that codimX(D1 ∩D2) > 1. In that situation, we say that D2 is the complement of D1 in D. When we
are given a normal crossing hypersurface D ⊂ X with a decomposition D = D1 ∪D2, let Ωp,q

X (∗D2)<D1 denote
the kernel of Ωp,q

X (∗D2) −→ Ωp,qbD1
(∗D2).

Let D0 be a normal crossing hypersurface of X with a decomposition D0 = D1∪D2. LetM be a holonomic
DX -module. We define DR<D1≤D2

X M in the derived category Db(CX) as follows:

DR<D1≤D2
X M := Ωdim X,•<D1

X (∗D2)⊗L
DX
M' Ω•,•<D1

X (∗D2)⊗OX
M[dimX]

It is easy to observe that the natural morphism DR<D1≤D2
X M−→ DR<D1≤D2

X

(
M(∗D0)

)
is an isomorphism in

Db(CX). We also have the following natural isomorphisms:

DR<D1
X

(
DXM(∗D0)

)
' Ωdim X,•

X (∗D2)<D1 ⊗L
DX

DXM(∗D0)

' RHomDX(∗D0)

(
M, Ω0,•

X (∗D2)<D1
)
' RHomDX

(
M, Ω0,•

X (∗D2)<D1
)

(13)
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3.2.2 The identification in the case of good holonomic D-modules

Let X and Di (i = 0, 1, 2) be as above. Let D be a normal crossing hypersurface such that D0 ⊂ D. LetM be
a good holonomic D-module on (X,D).

Proposition 3.15 If M(∗D1) = M, the natural morphism DR<D1≤D2
X DXM −→ DR≤D2

X DXM is a quasi-
isomorphism.

Proof We have only to consider the case X = ∆n and D =
⋃`

i=1{zi = 0}. We have Ia ⊂ ` (a = 1, 2) such that
Da =

⋃
i∈Ia
{zi = 0}. By using an induction on ρ(M) (Subsection 3.1.2), we can reduce the issue to the case

that M is the push-forward of a good meromorphic flat bundle on DJ for some J ⊂ ` \ I1 as in the proof of
Lemma 3.7. Moreover, we have only to consider the case M is a good meromorphic flat bundle V on (X,D).

Note that the induced morphism ∂i : ψ̃zi,−1(DXV ) −→ φ̃zi
(DXV ) is an isomorphism, which can be checked

by using the lattices in the proof of Lemma 3.2. Hence, we have the following vanishing for any I ⊂ I1:

RHomDX

(
V,O bDI

(∗D2)
)

= RHomDX

(
OX ,DXV ⊗O bDI

(∗D2)
)

= 0

Here, DI :=
⋂

i∈I{zi = 0}. (Note D{i} 6= Di for i = 1, 2 in general.) Then, we obtain the vanishing
RHomDX

(
V,O bD1

(∗D2)
)

= 0 by using the standard resolution of O bD1
in terms of O bDI

(I ⊂ I1). (See Subsection
2.1.4.) Because the cone of Ω0,•<D1

X (∗D2) −→ Ω0,•
X (∗D2) is quasi isomorphic to Ω0,•bD1

(∗D2) ' O bD1
(∗D2), we

obtain the claim of the lemma.

LetM be a good holonomic D-module on (X,D). Let D1 ⊂ D. Applying Proposition 3.15 to DXM(∗D1),
we obtain an isomorphism DR<D1M ' DRM(!D1). Note M(!D1) ' DX

(
DXM(∗D1)

)
. In particular, we

obtain the following corollary.

Corollary 3.16 Let D = D1 ∪ D2 be a decomposition. Let V be a good meromorphic flat bundle on (X,D).
We have a natural isomorphism DR<D1

X (V ) ' DRX

(
V (!D)(∗D2)

)
' DRX

(
V (!D1)

)
.

Lemma 3.17 Let D1 and D′1 be hypersurfaces of X such that (i) D1, D
′
1 ⊂ D, (ii) dim(D1 ∩D′1) < dimX − 1.

We have the following commutative diagram:

DRXM
(
!D1!D′1

)
−−−−→ DRXM(!D1)x x

DR<D1
X M(!D′1) −−−−→ DR<D1

X Mx x=

DR<D1∪D′
1

X M −−−−→ DR<D1
X M

Proof It follows from the commutativity of the following:

RHomDX

(
DXM(∗D′′1 ),Ω0,•

X

)
−−−−→ RHomDX

(
DXM(∗D1),Ω

0,•
X

)x x
RHomDX

(
DXM(∗D′′1 ),Ω0,•<D1

X

)
−−−−→ RHomDX

(
DXM(∗D1),Ω

0,•<D1
X

)x x=

RHomDX

(
DXM(∗D′′1 ),Ω0,•<D′′

1
X

)
−−−−→ RHomDX

(
DXM(∗D1),Ω

0,•<D1
X

)
(14)

Here, we put D′′1 := D1 ∪D′1.
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3.2.3 Duality

We continue to use the notation in Subsection 3.2.2. For simplicity, we assume D = D0. Let V be a good
meromorphic flat bundle on (X,D). Let us construct a morphism DR<D1≤D2

X (DXV ) −→ DX DR<D2≤D1
X V . Let

ΘX denote the sheaf of holomorphic tangent vectors on X. We set Θ•X :=
∧•ΘX . Because V and Ω0,•<D1

X (∗D2)
are DX(∗D)-modules, we have a natural isomorphism:

RHomDX

(
V,Ω0,•<D1(∗D2)

)
' HomDX

(
DX ⊗Θ•X ⊗ V, DX ⊗Θ•X ⊗ Ω0,•<D1(∗D2)

)
. (15)

By considering Ωdim X,•<D2
X ⊗DX(∗D), we have the following morphism:

HomDX

(
DX ⊗Θ•X ⊗ V, DX ⊗Θ•X ⊗ Ω0,•<D1(∗D2)

)
−→ HomCX

(
Ω•,•<D2

X ⊗ V, Ω•,•<D
X

)
−→ RHomCX

(
DR<D2≤D1

X (V ), Ω•,•<D
X [dimX]

)
(16)

By using the inclusion Ω•,•<D
X ⊂ Ω•,•X , we obtain the following morphism:

DR<D1≤D2
X

(
DXV

)
−→ DX DR<D2≤D1

X V
|| ||

RHomDX

(
V,Ω0,•

X (∗D2)<D1
)
−→ RHomCX

(
DR<D2≤D1

X V, Ω•,•X [dimX]
) (17)

Note DXV (∗D) = V ∨.

Theorem 3.18 The following diagram is commutative:

DR<D1≤D2(V ∨) G1−−−−→ DX DR<D2≤D1(V )

'
y '

x
DRV ∨(!D1)

G2−−−−→
'

DX DR
(
V (!D2)

) (18)

The vertical isomorphisms are given in Proposition 3.15, and G2 is induced by the natural isomorphism of
D-modules V ∨(!D1) ' DX

(
V (!D2)

)
. (See Subsection 3.1.3.) In particular, G1 is also an isomorphism.

Proof We have only to check the commutativity locally. Recall that we have used the identifications V ∨(!D1) '
(DXV )(∗D2) and V (!D2) ' (DXV

∨)(∗D1) in the construction of the vertical arrows. Since an isomorphism
DX

(
V (!D2)

)
−→ (DXV )(∗D2) is uniquely determined by its restriction to X −D, we can regard that G−1

2 is
induced by “OX(∗D2)⊗OX

” as follows:

RHomDX

(
DXV

∨(∗D1), DX ⊗ Ω⊗−1
X

)
−→ RHomDX

(
V,DX ⊗ Ω⊗−1

X (∗D2)
)

(19)

Applying the de Rham functor to (19), we obtain the upper horizontal arrow in the following diagram:

RHomDX

(
DXV

∨(∗D1), Ω0,•
X

) G3−−−−→
'

RHomDX

(
V,Ω0,•

X (∗D2)
)

'
xb0 '

xb1

RHomDX

(
DXV

∨(∗D1), Ω0,•<D1
X

) a0−−−−→
'

RHomDX

(
V,Ω0,•<D1

X (∗D2)
) (20)

Up to shift of the degree, b1 is the left vertical arrow in (18), and G3 = G−1
2 . We have the following commutative

diagram:

RHomDX

(
DXV

∨(∗D1), Ω0,•<D1
X

)
b0−−−−→
'

RHomDX

(
DXV

∨(∗D1), Ω0,•
X

)
a1

y '
y

RHomCX

(
DR≤D1

X

(
DXV

∨), DRX Ω0,•<D1
X

)
−−−−→ RHomCX

(
DR≤D1

X

(
DXV

∨), DRX Ω0,•
X

)
a2

y' '
y

RHomCX

(
DR<D2≤D1

X

(
DXV

∨), DRX Ω0,•<D1
X

)
a3−−−−→ RHomCX

(
DR<D2≤D1

X (DXV
∨), DRX Ω0,•

X

)
(21)
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Let us consider the following diagram:

RHomDX

(
DXV

∨(∗D1), Ω0,•<D1
X

) a0−−−−→
'

RHomDX

(
V,Ω0,•<D1

X (∗D2)
)

a1

y a4

y
RHomCX

(
DR≤D1

X (DXV
∨), DRX Ω0,•<D1

X

) a2−−−−→
'

RHomCX

(
DR<D2≤D1

X (DXV
∨), DRX Ω0,•<D1

X

) (22)

The morphism a4 is given by (15), (16) and the inclusion Ω•,•<D
X −→ Ω•,•<D1

X .

Lemma 3.19 The diagram (22) is locally commutative, i.e., for any point P ∈ X, there exists a neighbourhood
of U such that (22) considered on U is commutative.

Proof We set D◦X := DX ⊗ Ω⊗−1
X , equipped with the DX -action induced by the right DX -action on DX .

Because Ω0,•<D1
X is an OX(∗D1)-module, we have

RHomDX

(
D◦X(∗D1), Ω0,•<D1

X

)
' HomDX

(
D◦X(∗D1), Ω0,•<D1

X

)
.

Similarly, we have RHomDX

(
D◦X(∗D), Ω0,•<D1

X (∗D2)
)
' HomDX

(
D◦X(∗D), Ω0,•<D1

X (∗D2)
)
. The following

naturally defined diagram is commutative:

HomDX

(
D◦X(∗D1), DX ⊗Θ•X ⊗ Ω0,•<D1

X

)
−−−−→ HomDX

(
D◦X(∗D), DX ⊗Θ•X ⊗ Ω0,•<D1

X (∗D2)
)

y y
HomCX

(
Ω0,•

X (∗D1), DRX Ω0,•<D1
X

)
−−−−→ HomCX

(
Ω0,•<D2

X (∗D1), DRX Ω0,•<D1
X

)
Then, we can check the commutativity of (22) by taking a free resolution of V ∨.

By construction, a3 ◦ a4 is the equal to G1 in (18). Then, the claim of Theorem 3.18 follows from the
commutativity of the diagrams (20), (21) and (22).

3.2.4 Functoriality

Let X be a complex manifold, and let D be a normal crossing hypersurface with a decomposition D = D1∪D2.
Let D3 be a hypersurface of X. Let ϕ : X ′ −→ X be a proper birational morphism such that (i) D′ =
ϕ−1

(
D ∪D3

)
is normal crossing, (ii) X ′ \D′ ' X \

(
D ∪D3

)
. We put D′1 := ϕ−1(D1). We take D′2 such that

D′ = D′1 ∪D′2 is a decomposition.
Let V be a meromorphic flat bundle on (X,D), and we set V ′ := ϕ∗V ⊗OX′(∗D′). We have a natural iso-

morphism
(
V (∗D3)

)
(!D1) ' ϕ†

(
V ′(!D′1)

)
, which induces a morphism of DX -modules V (!D1) −→ ϕ†

(
V ′(!D′1)

)
.

We have a naturally induced morphism ϕ−1
(
Ω•,•<D1

X (∗D2)⊗V
)
−→ Ω•,•<D′

1
X′ (∗D′2)⊗V ′, from which we obtain

the following:
DR<D1≤D2

X (V ) −→ Rϕ∗DR<D′
1≤D′

2
X′ (V ′) (23)

By considering the dual with V ∨ (see Theorem 3.18), we obtain the morphism

Rϕ∗DR<D′
2≤D′

1
X′ (V ′) −→ DR<D2≤D1

X (V ) (24)

Theorem 3.20 We have the following commutative diagram:

DR<D1≤D2
X V −−−−→ Rϕ∗DR<D′

1≤D′
2

X′ V ′

'
y '

y
DRX V (!D1) −−−−→ Rϕ∗DRX′ V ′(!D′1)

(25)
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Here, the vertical isomorphisms are given in Proposition 3.15, the upper horizontal arrow is (23), and the lower
horizontal arrow is induced by the morphism of DX-modules V (!D1) −→ ϕ†

(
V ′(!D′1)

)
.

Similarly, we have the following commutative diagram:

Rϕ∗DR<D′
2≤D′

1
X′ V ′ −−−−→ DR<D2≤D1

X V

'
y '

y
Rϕ∗DRX′ V ′(!D′2) −−−−→ DRX V (!D2)

(26)

Here, the vertical isomorphisms are given in Proposition 3.15, the upper horizontal arrow is (24), and the lower
horizontal arrow is induced by the natural morphism of DX-modules ϕ†

(
V ′(!D′2)

)
−→ V (!D2).

Proof We set D◦X := DX ⊗ Ω⊗−1
X . Put dX := dimX. Let us consider the commutativity of (26). By

construction and the duality in Theorem 3.18, the morphism (24) is expressed as follows:

Rϕ∗RHomCX′

(
DR<D′

1
X′ (V ′ ∨), Db•,•X′

)
[dX ] −→ RHomCX

(
Rϕ∗

(
DR<D′

1
X′ V ′ ∨

)
, ϕ∗Db•,•X′

)
[dX ]

−→ RHomCX

(
DR<D1

X V ∨, ϕ∗Db•,•X′

)
[dX ] −→ RHomCX

(
DR<D1

X V ∨, Db•,•X

)
[dX ] (27)

The morphism DRX ϕ†
(
V ′(!D′2)

)
−→ DRX V (!D2) is represented as follows:

Rϕ∗RHomDX′

(
V ′∨,OX′(∗D′1)

)
−→ RHomDX

(
ϕ†V

′∨, ϕ†OX′(∗D′1)
)

−→ RHomDX

(
V ∨, ϕ†OX′(∗D′1)

)
−→ RHomDX

(
V ∨,OX(∗D1)

)
(28)

We have the following commutative diagram:

Rϕ∗RHomDX′

(
V ′∨,OX′(∗D′1)

)
−−−−→ Rϕ∗RHomCX′

(
DR<D′

1
X′ V ′∨, Db•,•X′

)
[dX ]y y

RHomDX

(
ϕ†V

′∨, ϕ†OX′(∗D′1)
)
−−−−→ RHomCX

(
Rϕ∗

(
DR<D′

1
X′ V ′∨

)
, ϕ∗Db•,•X′

)
[dX ]y y

RHomDX

(
V ∨, ϕ†OX′(∗D′1)

)
−−−−→ RHomCX

(
DR<D1

X V ∨, ϕ∗Db•,•X′

)
[dX ]

(29)

Lemma 3.21 The following diagram is commutative:

RHomDX

(
V ∨, ϕ†OX′(∗D′)

)
−−−−→ RHomCX

(
DR<D1

X V ∨, ϕ∗Db•,•X′

)
[dX ]y y

RHomDX

(
V ∨,OX(∗D1)

)
−−−−→ RHomCX

(
DR<D1

X V ∨, Db•,•X

)
[dX ]

(30)

Proof Note that we have the commutativity of the following diagram:

ϕ∗
(
Db•,•X′ (∗D′1)

)
⊗ Ωdim X,•<D1

X −−−−→ ϕ∗
(
Db•,•X′

)y y
Db•,•X (∗D1)⊗ Ωdim X,•<D1

X −−−−→ Db•,•X

(31)

The vertical arrows are induced by the trace maps, and the horizontal arrows are multiplications. Hence, the
following diagram is commutative:

HomDX

(
DX , ϕ∗

(
Db•,•X′ (∗D′1)

)
⊗D◦X

)
−−−−→ HomCX

(
Ωdim X,•<D1

X , ϕ∗Db•,•X′

)
y y

HomDX

(
DX , Db•,•X (∗D1)⊗D◦X

)
−−−−→ HomCX

(
Ωdim X,•<D1

X , Db•,•X

) (32)
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The vertical arrows are induced by the trace maps, and the horizontal arrows are induced by the tensor product
Ωdim X,•<D1

X ⊗DX
and (31). By considering a free resolution of V , we obtain the commutativity of (30) from

(32).

We obtain the commutativity of (26) from (29) and (30). Let us consider the commutativity of (25). In
general, we have the following commutative diagram for N −→ ϕ†N ′, where N (resp. N ′) is a coherent
DX -module (resp. DX′ -module):

Rϕ∗DR DN ′ ' DRϕ†DN ′ ' DR Dϕ†N ′ −→ DR DN
↓ ↓ ↓

Rϕ∗D DRN ′ ' DRϕ∗DRN ′ ' D DRϕ†N ′ −→ D DRN

The vertical arrows are also isomorphisms. Applying this commutativity to V ∨(!D1) −→ ϕ†V
′∨(!D′1), we obtain

the following commutative diagram:

Rϕ∗DRV ′(!D′3) −−−−→ DRϕ†V
′(!D′3) −−−−→ DR Dϕ†V ′∨(!D′1) −−−−→ DRV (!D2)y y y

Rϕ∗D DRV ′∨(!D′1) −−−−→ DRϕ∗DRV ′∨(!D′1) −−−−→ D DRϕ†V
′∨(!D′1) −−−−→ D DRV ∨(!D1)

It implies the commutativity of the following:

D DR
(
V (!D2)

)
−−−−→ DRϕ∗DR

(
V ′(!D′3)

)
'
y '

y
DR

(
V ∨(!D1)

)
−−−−→ Rϕ∗DR

(
V ′∨(!D′1)

)
Then, (25) is obtained as the dual of (26) with V ∨, and hence it is commutative. Thus, the proof of Theorem
3.20 is finished.

4 Some sheaves on a real blow up

4.1 C∞-functions holomorphic functions

4.1.1 Preliminary

Let X be an n-dimensional complex manifold with a simply normal crossing hypersurface D with the irreducible
decomposition

⋃
i∈ΛDi. In this paper, the real blow up π : X̃(D) −→ X means the fiber product of X̃(Di) over

X. For any subset I ⊂ Λ, we set DI :=
⋂

i∈I Di and D(I) :=
⋃

i∈I Di. Formally, D∅ := X. For J ⊂ Ic := Λ \ I,
we put DI(J) := DI ∩D(J). In particular, ∂DI := DI(Ic). Let D◦ be a (possibly empty) hypersurface of X
such that (i) D∪D◦ is simply normal crossing, (ii) dimD∩D◦ < n− 1. For J ⊂ Λ, we set D(J) := D(J)∪D◦.
For I t J ⊂ Λ, we put DI(J) := DI ∩D(J).

Recall that a holomorphic function on X̃(D) is defined to be a C∞-function f on X̃(D) such that f|X−D

is holomorphic. Let O eX(D) denote the sheaf of holomorphic functions on X. Let Ω0,qeX(D)
denote the sheaf of

C∞-logarithmic (0, q)-forms on X̃(D), i.e., a section of Ω0,qeX(D)
is locally described as a linear combination of

f · dzi1/zi1 · · · dzim/zim · dzj1 · · · dzjk
(1 ≤ i1, . . . , im ≤ `, `+ 1 ≤ j1, . . . , jk ≤ n, f ∈ C∞eX(D)

)

in terms of a local coordinate (z1, . . . , zn) such that D is locally described as
⋃`

i{zi = 0}. We have the naturally
defined operator ∂ : Ω0,qeX(D)

−→ Ω0,q+1eX(D)
. The complex Ω0,•eX(D)

is called the Dolbeault complex of X̃(D). We put

Ω0,•bZ := Ω0,•eX(D)|bZ for any real analytic subset Z ⊂ X̃(D).

Let Z be π−1
(
DI(J)

)
for some I t J ⊂ Λ. Let IZ ⊂ O eX(D) be the ideal sheaf of Z, and put ObZ :=

lim←−OX

/
Im

Z . For a given O eX(D)-module F , we set F|bZ := F ⊗OfX(D)
ObZ . According to a generalized Borel-Ritt
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theorem due to Majima and Sabbah ([25], [34]), the natural morphism O ̂π−1(DI)
−→ O ̂π−1(DI(J))

is surjective.

The kernel is denoted by O<D(J)

̂π−1(DI)
.

For a given C∞-manifold Y and a real analytic subsetW ⊂ X, let C∞<W
̂π−1(DI)×Y

denote the sheaf C∞<π−1(W )×Y

̂π−1(DI)×Y

on X̃(D) × Y , for simplicity of the description. We also put Ω0,•<W
̂π−1(DI)×Y

:= Ω0,•eX(D)
⊗C∞fX(D)

C∞<W
̂π−1(DI)×Y

on

X̃(D)× Y .
Let qI denote the projection π−1(DI) −→ D̃I(∂DI). We have O<D(J)

̂π−1(DI)
= q−1

I O
<DI(J)eDI(∂DI)

[[zi | i ∈ I]]. By a

natural diffeomorphism π−1(DI) ' D̃I(∂DI)× (S1)|I|, we can identify C∞<D(J)

̂π−1(DI)
= C∞<DI(J)eDI(∂DI)×(S1)|I|

[[zi | i ∈ I]].

Put T (m, I, J) :=
{
K ⊂ J

∣∣ I ⊂ K, |K| = |I| + m + 1
}

for m ≥ 0. We set Km
(
O ̂π−1(DI(J))

)
:=⊕

K∈T (m,I,J)O ̂π−1(DK)
. We obtain the complex K•

(
O ̂π−1(DI(J))

)
as in Subsection 2.1.4. Similarly, we ob-

tain complex K•
(
Ω0,•<D◦

̂π−1(DI(J))×Y

)
.

Lemma 4.1 ([34]) Let B be O ̂π−1(DI(J))
or Ω0,•<D◦

̂π−1(DI(J))×Y
. The natural inclusion B −→ K0(B) induces a

quasi-isomorphism B −→ K•(B).

4.1.2 Dolbeault resolution

In this subsection, we do not consider D◦.

Proposition 4.2 ([25], [34]) Ω0,•
̂π−1(DI(J))

and Ω0,•<D(J)

̂π−1(DI)
are resolutions of O ̂π−1(DI(J))

and O<D(J)

̂π−1(DI)
respec-

tively, where J ⊂ Ic.

Proof We give only an outline. In each case, it is easy to compute the 0-th cohomology of the Dolbeault
complexes. We have only to show the vanishing of the higher cohomology. We may assume X = ∆n, Di =
{zi = 0} and D =

⋃`
i=1Di. First, let us look at Ω0,•eX(D)

. For 1 ≤ j ≤ n, let P0
≤j be the sheaf of C∞-functions on

X̃(D) which are ∂i-holomorphic for i > j. We set Xj := ∆j = {(z1, . . . , zj)} and Dj,` :=
⋃

i≤min{j,`}{zi = 0}.
Let q≤j be the projection X̃(D) −→ X̃j(Dj,`). Let P1

≤j be the sheaf of C∞-sections of q−1
≤j Ω0,1eXj(Dj,`)

, which

are ∂i-holomorphic for i > j. We set P•≤j :=
∧• P1

≤j over P0
≤j . We have the naturally defined operator

∂ : P•≤j −→ P
•+1
≤j .

Because P•≤0 = O eX(D) and P•≤n = Ω0,•eX(D)
, we have only to show that the natural inclusions P•≤j −→ P•≤j+1

are quasi-isomorphisms for the vanishing of the higher cohomology of Ω0,•eX(D)
. Let Q0

≤j = P0
≤j+1. Let Q1

≤j be

the sheaf of q−1
≤j Ω0,1eXj(Dj,`)

which are ∂i-holomorphic for i > j + 1. We take the exterior product Q•≤j =
∧•Q1

≤j

over Q0
≤j . We have the naturally defined operator ∂j+1 : Q•≤j −→ Q•≤j ∧ dzj+1

/
zj+1. We clearly have

Ker ∂j+1 = P•≤j . Let us show Cok ∂j+1 = 0. In the case j ≥ `, it can be shown by the argument for the
standard Dolbeault’s lemma. Let us consider the case j < `.

Lemma 4.3 The cokernel of the morphism ∂j+1 : Q•
≤j| ̂π−1(Dj+1)

−→ Q•
≤j| ̂π−1(Dj+1)

∧ dzj+1

/
zj+1 is 0.

Proof We use the polar coordinate zj+1 = rj+1 e
√
−1θj+1 . The action of ∂j+1 is expressed as follows:

∂j+1

(∑
n

fn(θj+1) zn
j+1

)
=

∑
n

(√−1
2

∂θj+1

)
fn(θj+1) zn

j+1 · dzj+1

/
zj+1

Then, it is easy to show the claim of Lemma 4.3.

21



Put D′ :=
⋃`

i=1,i 6=j+1{zi = 0}, and let us consider the real blow up π′ : X̃(D′) −→ X. We have a
naturally induced morphism q′≤j : X̃(D′) −→ Xj(Dj,`). Let S1

≤j,X be the sheaf of sections of (q′≤j)
−1Ω0,1

Xj(Dj,`)

on X̃(D′), which are ∂i-holomorphic for i > j + 1. Let S0
≤j,X be the sheaf of C∞-functions on X̃(D′), which

are ∂i-holomorphic for i > j + 1. We set S•≤j :=
∧• S1

≤j . It is easy to show the vanishing of the cokernel of
∂j+1 : S•≤j −→ S•≤j ∧ dzj+1 by using the argument for standard Dolbeault’s lemma.

Let P ∈ π−1(D). Let U be a small neighbourhood around P , which will be shrinked in the following
argument. According to Lemma 4.3, for any section ϕ of Q•≤j ∧ dzj+1/zj+1 on U , we can take a local section
ψ of Q•≤j such that (

ϕ− ∂jψ
)
| ̂π−1(Dj)∩U

= 0.

We put λ := ϕ − ∂jψ. We take a cut function ρ around P , i.e., ρ is constantly 1 around P and constantly 0
near the boundary of U . We can regard ρ λ as a section of S•≤j ∧ dzj+1. Then, we can find a section κ of S•≤j

around πj(P ) such that ∂j+1κ = ρλ, where πj denotes the natural projection X̃(D) −→ X̃(D′). We obtain
ϕ = ∂j(ψ + κ) around P . Thus, we obtain the vanishing of the cokernel of ∂j+1 : Q•≤j −→ Q•≤j ∧ dzj+1

/
zj+1,

and hence the vanishing of the higher cohomology of Ω0,•eX(D)
.

Because π−1(DI) = D̃I(∂DI)× (S1)|I|, we can reduce the vanishing of the higher cohomology of Ω0,•
̂π−1(DI)

to

the vanishing of Ω0,•eDI(∂DI)
by a formal calculation as in Lemma 4.3. By using the resolution in Lemma 4.1, we

obtain the vanishing of the higher cohomology of Ω0,•
̂π−1(D(I))

. We have the following diagram of exact sequences:

0 −−−−→ O<D(I)eX(D)
−−−−→ O eX(D) −−−−→ O ̂π−1(D(I))

−−−−→ 0y y y
0 −−−−→ Ω0,•<D(I)eX(D)

−−−−→ Ω0,•eX(D)
−−−−→ Ω0,•

̂π−1(D(I))
−−−−→ 0

Then, we obtain the vanishing of the higher cohomology of Ω0,•<D(I)eX(D)
. By a formal calculation as in Lemma

4.3, we obtain the vanishing of the higher cohomology of Ω0,•
̂π−1(DI(J))

and Ω0,•<D(J)

̂π−1(DI)
.

4.1.3 Flatness

In this subsection D◦ is not necessarily empty.

Proposition 4.4 Let I t J ⊂ Λ. The sheaves C∞<D(J)

̂π−1(DI)
, C∞<D◦

̂π−1(DI(J))
, O<D(J)

̂π−1(DI)
and O ̂π−1(DI(J))

are flat over

π−1OX .

Proof Let us recall a general result. For a real analytic manifold Y , let OR
Y denote the sheaf of real analytic

functions on Y . If Y is the product of a complex manifold Y1 and a real analytic manifold Y2, let OY1−hol
Y denote

the sheaf of real analytic functions which are holomorphic in the Y1-direction. The extension OY1−hol
Y ⊂ OR

Y is
faithfully flat.

Lemma 4.5 Let W1 ⊂W2 ⊂ Y be real analytic subsets. Then, C∞<Wi

Y and C∞<W1
Y

/
C∞<W2

Y are flat over OR
Y .

Proof The sheaf C∞Y is faithfully flat overOR
Y (Corollary 1.12 of [26]). Theorem VI.1.2 of [26] implies a C∞<W1

Y ∩
C∞<W2

Y = a C∞<W2
Y for any real analytic subsets W1 ⊂W2 ⊂ Y and for any ideal sheaf a of OR

Y . By using the
argument in the proof of Proposition III.4.7 in [26], we can show the following:

• Let A be a ring. Let M be an A-flat module. Let N be an A-submodule of M . If aM ∩N = aN for any
ideal a of A, then N and M/N are also A-flat.
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We immediately obtain the claim of Lemma 4.5 from these results.

Let Z0 be a complex manifold with a normal crossing hypersurface D0. Let Z1 be a real analytic manifold.
We put Z := Z0 × Z1 and D := D0 × Z1. Let G denote the composite of the maps Z −→ Z0 −→ Z0 × Cn,
where the latter is induced by the inclusion {(0, . . . , 0)} ⊂ Rn. Let (t1, . . . , tn) be the coordinate of Cn.

Lemma 4.6 C∞<D
Z [[t1, . . . , tn]] is flat over G−1OZ0×Cn .

Proof Let ι1 denote the inclusion Z −→ Z2 := Z × Rn. We put D2 := D × Rn. We regard that (t1, . . . , tn)
is a real coordinate of Rn ⊂ Cn. We have the natural identification C∞<D

Z [[t1, . . . , tn]] = C∞<D2
Z2

/
C∞<D2∪Z

Z2
.

According to Lemma 4.5, it is flat over ι−1
1 OR

Z2
. Let G1 be the composite of Z −→ Z0 −→ Z0 ×Rn. We have a

natural isomorphism G−1
1 O

Z0−hol
Z0×Rn ' G−1OZ0×Cn . Since the extension G−1

1 O
Z0−hol
Z0×Rn ⊂ OR

Z2
is faithfully flat, we

obtain the claim of Lemma 4.6.

Let us return to the proof of Proposition 4.4. We may assume that X = ∆n, Di = {zi = 0}, D =
⋃`

i=1Di

and D◦ =
⋃m

i=`+1Di. For I ⊂ `, let πI : X̃(D(I)) −→ X be the real blow up. We have the natural
identification π−1

I (DI) = DI × (S1)|I| and π−1
I

(
DI(I

c
)
)

= DI(I
c
) × (S1)|I|. From Lemma 4.6, we obtain that

C∞<D(I
c
)

̂π−1
I (DI)

= C∞<DI(I
c
)

π−1
I (DI)

[[zi | i ∈ I]] is flat over π−1
I OX .

Lemma 4.7 C∞<D(I
c
)

̂π−1(DI)
is flat over π−1OX . (Note that π : X̃(D) −→ X.)

Proof The claim is clear outside of π−1(∂DI). Let P be any point of ∂DI . Let a be a finitely generated ideal of
OX,P . We take a free resolution Q• of a, i.e., · · · → Q1 → Q0 −→ a. We obtain a π−1OX -free resolution π−1Q•
of π−1a. We set Q−1 := a for simplicity of the description. We have only to show that π−1Q• ⊗ C∞<D(I

c
)

̂π−1(DI)
is

exact. Let ρ : X̃(D) −→ X̃(D(I)) be the naturally induced map. Note

ρ∗
(
π−1Q• ⊗ C∞<D(I

c
)

̂π−1(DI)

)
= π−1

I (Q•)⊗ ρ∗
(
C∞<D(I

c
)

̂π−1(DI)

)
= π−1

I

(
Q•

)
⊗ C∞<D(I

c
)

̂π−1
I (DI)

.

Let Q ∈ π−1(P ). Take a cycle ϕ of π−1Qi⊗C∞<D(I
c
)

̂π−1(DI)
at Q. By using a cut function around Q, we can regard it

as a global cycle of π−1Qi ⊗C∞<D(I
c
)

̂π−1(DI)
whose support is a small neighbourhood of Q. Then, it can be regarded

as a cycle of π−1
I (Qi) ⊗ C∞<D(I

c
)

̂π−1
I (DI)

around ρ(Q). Because C∞<D(I
c
)

̂π−1
I (DI)

is flat over π−1
I OX , we obtain that ϕ is a

boundary in the complex π−1
I (Q•)⊗C∞<D(I

c
)

̂π−1
I (DI)

. Then, it is easy to deduce that ϕ is a boundary in the complex

π−1(Q•)⊗ C∞<D(I
c
)

̂π−1(DI)
. Thus, the proof of Lemma 4.7 is finished.

Let us show that C∞<D(J)

̂π−1(DI)
is flat over π−1OX , where I t J ⊂ `. We put

S(I, J,m) :=
{
K ⊂ `− J

∣∣ I ⊂ K, |K| = m
}
.

Put GI,`+1 := C∞<D(J)

̂π−1(DI)
, and descending inductively

GI,m := Ker
(
GI,m+1 −→

⊕
K∈S(I,J,m)

C∞<D(K
c
)

̂π−1(DK)

)
.

We have GI,|I|+1 = C∞<D(I
c
)

̂π−1(DI)
, which is flat over π−1OX . By an induction, we obtain that GI,m are flat over

π−1OX . Hence, we obtain that C∞<D(J)

̂π−1(DI)
is flat over π−1OX . By using the resolution of C∞<D◦

̂π−1(DI(J))
in Lemma

4.1, we obtain that C∞<D◦

̂π−1(DI(J))
is flat over π−1OX . As a result, we obtain that Ω0,•<D(J)

̂π−1(DI)
and Ω0,•<D◦

̂π−1(DI(J))
are
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flat over π−1OX , where J ⊂ Ic. In particular, Ω0,•<D(J)

̂π−1(DI)
and Ω0,•

̂π−1(DI(J))
are flat over π−1OX . Then, we obtain

the π−1OX -flatness of O<D(J)

̂π−1(DI)
and O ̂π−1(DI(J))

by using Proposition 4.2. Thus, the proof of Proposition 4.4

is finished.

4.2 Functions of Nilsson type

4.2.1 Preliminary

We set Nil(z) :=
⊕

α∈C z
αC[log z]. For (α, k) ∈ C × Z≥ 0, we put ϕα,k(z) := zα(log z)k ∈ Nil(z). Let T be a

finite subset T ⊂ C such that the induced map T −→ C/Z is injective. For simplicity, we assume 0 ∈ T . Let N
be a non-negative integer. We set

NilT,N (z) :=
{∑

aα,j,k ϕα+j,k(z)
∣∣∣ aα,j,k ∈ C, j ≥ −N, k ≤ N

}
⊂ Nil(z).

Note that NilT,N (z) is a finitely generated free C[z]-module. For T ⊂ T ′ and N ≤ N ′, we have a natural
inclusion NilT,N (z) ⊂ NilT ′,N ′(z). We have Nil(z) = lim−→NilT,N (z).

Let C̃z(0) be the real blow up of Cz along 0. Let ι be the inclusion ι : C∗z −→ C̃z(0). We regard Nil(z) and
NilT,N (z) as subsheaves of ι∗OC∗ on C̃(0).

We put Nil(z1, . . . , z`) := Nil(z1)⊗C · · · ⊗C Nil(z`) and NilT,N (z1, . . . , z`) := NilT,N (z1)⊗C · · · ⊗C NilT,N (z`).
We naturally regard Nil(z1, . . . , z`) as a subsheaf of ι∗OCn−D on the real blow up C̃(D), whereD =

⋃`
i=1{zi = 0}

and ι : Cn−D −→ C̃n(D). For (α,k) ∈ C`×Z`
≥0, we put ϕα,k(z1, . . . , zn) :=

∏`
i=1 ϕαi,ki

(zi), which are regarded
as multi-valued flat sections of Nil(z1, . . . , z`).

4.2.2 Sheaves of functions of Nilsson type

Let X be a complex manifold with a simply normal crossing hypersurface D. Let D = D(1) ∪ D(2) be a
decomposition. Let D◦ be a hypersurface of X such that (i) D∪D◦ is simply normal crossing, (ii) dimD∩D◦ <
n− 1. We put D(3) := D(1) ∪D◦. We would like to introduce sheaves A<D(1)≤D(2)eX(D)

and C∞<D(3)≤D(2)eX(D)
on X̃(D).

First, let us consider the case X = ∆n, D =
⋃`

i=1{zi = 0} and D◦ =
⋃m

i=`+1{zi = 0}. Let ` = I1 t I2 be

determined by D(j) =
⋃

i∈Ij
{zi = 0} for j = 1, 2. Let j̃ denote the inclusion X−D −→ X̃(D). Let A<D(1)≤D(2)eX(D)

be the image of the naturally defined morphisms:

O<D(1)eX(D)
⊗Nil(zi | i ∈ I2) −→ j̃∗OX−D.

Similarly, let C∞<D(3)≤D(2)eX(D)
be the image of the naturally defined morphisms:

C∞<D(3)eX(D)
⊗Nil(zi | i ∈ I2) −→ j̃∗C∞<D◦

X−D .

We can observe that they are independent of the choice of a coordinate (z1, . . . , zn). Hence, we obtain globally
defined sheaves A<D(1)≤D(2)eX(D)

and C∞<D(3)≤D(2)eX(D)
on X̃(D). They are also denoted by Anil <D(1)eX(D)

and C∞ nil <D(3)eX(D)
.

We put Ω0,•<D(3)≤D(2)eX(D)
:= Ω0,•eX(D)

⊗C∞fX(D)
C∞<D(3)≤D(2)eX(D)

. We will show the following theorem in Subsection 4.2.7.
(Actually, more refined claims will be proved.)

Theorem 4.8

• Ω0,•<D(1)≤D(2)eX(D)
naturally gives a c-soft resolution of A<D(1)≤D(2)eX(D)

. (The case D◦ = ∅.)

• The sheaves A<D(1)≤D(2)eX(D)
and Ω0,•<D(3)≤D(2)eX(D)

are flat over π−1OX .
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Let D(i) =
⋃

j∈Λi
D

(i)
j (i = 1, 2) be the irreducible decomposition. Fix k ∈ Λ1 t Λ2. We put

E(i) :=
⋃

j∈Λi\{k}

D
(i)
j (i = 1, 2).

We put E := E(1) ∪ E(2) and E(3) := D(3). We have the naturally defined projection ρ : X̃(D) −→ X̃(E). We
will prove the following theorem in Subsection 4.2.8.

Theorem 4.9 If k ∈ Λ1, the following naturally defined morphism is an isomorphism:

Ω0,•<E(3)≤E(2)eX(E)
−→ ρ∗Ω

0,•<D(3)≤D(2)eX(D)

If k ∈ Λ2, the following naturally defined morphism is a quasi-isomorphism:

Ω0,•<E(3)≤E(2)eX(E)
(∗D(2)

k ) −→ ρ∗Ω
0,•<D(3)≤D(2)eX(D)

Corollary 4.10 The natural morphism

Ω0,•<D(1)

X (∗D(2)) −→ π∗Ω
0,•<D(1)≤D(2)eX(D)

is a quasi-isomorphism. In particular, Rπ∗AnileX(D)
' OX(∗D).

For the proof of the theorems, we may assume X = ∆n and D =
⋃`

i=1{zi = 0} and D◦ =
⋃m

i=`+1{zi = 0},
where 1 ≤ ` ≤ m ≤ n. We set Di := {zi = 0} for i = 1, . . . ,m. We use the notation in Subsection 4.1. For a
subset J ⊂ `, we set J := J t

(
m \ `

)
.

4.2.3 Sheaves of holomorphic functions of Nilsson type

For any real analytic subset Z ⊂ X̃(D), we implicitly regard ObZ as the sheaf on X̃(D) in a natural way. For
any I t J ⊂ `, let Anil <D(J)

̂π−1(DI)
denote the image of the following naturally defined morphism:

O<D(J)

̂π−1(DI)
⊗C[z1,...,z`] Nil(z1, . . . , z`) −→ O<D(J)

̂π−1(DI\∂DI)
⊗C[zi|i∈I] Nil(zi | i ∈ I)

In the case I = ∅, it is Anil<D(J)eX(D)
. For I t J ⊂ `, let Anil

̂π−1(DI(J))
denote the image of the following naturally

defined morphism:

O ̂π−1(DI(J))
⊗C[z1,...,z`] Nil(z1, . . . , z`) −→

⊕
j∈J

O ̂π−1(DIj\∂DIj)
⊗C[zi|i∈Ij] Nil(zi | i ∈ Ij)

Here, Ij := I t {j}. In particular, Anil
̂π−1(D(J))

is the image of the following morphism:

O ̂π−1(D(J))
⊗C[z1,...,z`] Nil(z1, . . . , z`) −→

⊕
j∈J

O ̂π−1(Dj\∂Dj)
⊗C[zj ] Nil

(
zj

)
Let Anil <D(J)

̂π−1(DI),T,N
and Anil

̂π−1(DI(J)),T,N
be the sheaves obtained from NilT,N (z1, . . . , z`) instead of Nil(z1, . . . , z`).

For T ⊂ T ′ and N ≤ N ′, we have natural inclusions Anil <D(J)

̂π−1(DI),T,N
⊂ Anil <D(J)

̂π−1(DI),T ′,N ′
and Anil

̂π−1(DI(J)),T,N
⊂

Anil
̂π−1(DI(J)),T ′,N ′

. We have the following natural isomorphisms:

Anil <D(J)

̂π−1(DI)
' lim−→A

nil <D(J)

̂π−1(DI),T,N
Anil

̂π−1(DI(J))
' lim−→A

nil
̂π−1(DI(J)),T,N

(33)

Let qI : π−1(DI) −→ D̃I(∂DI) denote the projection. Let πI : D̃I(∂DI) −→ DI be the real blow up. Then,
we have

Anil <D(J)

̂π−1(DI),T,N
= q−1

I A
nil <DI(J)eDI(∂DI),T,N

[[zi | i ∈ I]]⊗C[zi|i∈I] NilT,N (zi | i ∈ I) (34)

Anil
̂π−1(DI(J)),T,N

= q−1
I A

nil
̂π−1

I (DI(J)),T,N
[[zi | i ∈ I]]⊗C[zi|i∈I] NilT,N (zi | i ∈ I) (35)
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4.2.4 Specialization

Let us construct a morphism Anil
̂π−1(DI)

−→ Anil
̂π−1(DI(J))

for any I t J ⊂ `. First, let us construct AnileX(D)
−→

Anil
̂π−1(D)

in the case D = D1. Let Φ denote the natural morphism Φ : O eX(D) ⊗ Nil(z1) −→ j̃∗OX−D, where

j̃ : X −D −→ X̃(D).

Lemma 4.11 Assume that D = D1. Let S ⊂ C be a finite subset such that the induced map S −→ C/Z is
injective. Assume that we are given f =

∑
α∈S

∑M
j=0 fα,j⊗ϕα,j(z1) ∈ O eX(D)⊗Nil(z1) such that Φ(f) ∈ O<DeX(D)

.

Then, we have fα,j ∈ O<DeX(D)
. In particular, we have the well defined map AnileX(D)

−→ Anil
̂π−1(D)

in the case

D = {z1 = 0}.

Proof Let us consider the growth order of fα,j z
α
1 (log z1)j . For the polar coordinate z1 = re

√
−1θ, we have

zα
1 = exp

(
β log r−γθ+

√
−1(γ log r+βθ)

)
, where β = Reα and γ = Imα. Let V be the set of (α, j) ∈ S ×Z≥0

such that fα,j is not contained in O<DeX(D)
. We will derive a contradiction by assuming V 6= ∅. For each (α, j) ∈ V ,

there exists a unique integer m(α, j) such that (i) hα,j := z
−m(α,j)
1 fα,j ∈ O eX(D), (ii) hα,j|π−1(D) is not constantly

0. We set
κ := max

(α,j)∈V

{
Reα+m(α, j)

}
, S :=

{
(α, j) ∈ V

∣∣ Reα+m(α, j) = κ
}

For (α1, j1), (α2, j2) ∈ S, we have Reα1 = Reα2 and m(α1, j1) = m(α2, j2). We also have Imα1 6= Imα2 if
α1 6= α2. We obtain the following estimate for some ε > 0:∑

(α,j)∈V

hα,j|π−1(D) z
α+m(α,j)
1 (log z1)j = rκ

( ∑
(α,j)∈V

hα,j|π−1(D) e
− Im αθ+

√
−1(Im α log r+Re αθ)(log z1)j

)
= O(rκ+ε) (36)

Let us deduce that hα,j|π−1(D) are constantly 0 from (36). Assume the contrary. Let Q ∈ π−1(D) at which
hα,j(Q) 6= 0 for one of (α, j) ∈ V . We may assume θ(Q) = 0. We obtain the following from (36):∑

(α,j)∈V

hα,j(Q) · e
√
−1 Im α log r(log r)j = O(rε) (37)

But, for any δ > 0, we can take 0 < r < δ such that the amplitudes of the complex numbers

(−1)jhα,j(Q) e
√
−1 Im α log r (α, j) ∈ V

are sufficiently close, which contradicts with (37). Hence, hα,j (α, j) ∈ V are constantly 0. Thus, we obtain
Lemma 4.11.

Let us return to the general case. We take S ⊂ C such that the induced map S −→ C/Z is bijective. Let
qi : (S × Z)` −→ S × Z be the projection onto the i-th component, and πi : (S × Z)` −→ (S × Z)`−1 be the
projection forgetting the i-th component. For a given∑

(α,k)∈S`×Z`
≥ 0

Aα,k ⊗ ϕα,k ∈ O eX(D) ⊗Nil(z1, . . . , z`),

we set iFβ,j :=
∑

qi(α,k)=(β,j)Aα,k · ϕπi(α,k)(zj | j 6= i). Put ic := ` − {i}. If
∑
Aα,k · ϕα,k ∈ O<DieX(D)\π−1(D(ic))

,

we obtain iF
β,j| ̂π−1(Di\∂Di)

= 0 by applying Lemma 4.11 to
∑

iFβ,j · ϕβ,j(zi). It implies that the morphism

O eX(D) ⊗Nil(z1, . . . , z`) −→ O ̂π−1(Di)
⊗Nil(z1, . . . , z`) −→ Anil

̂π−1(Di)

factors through AnileX(D)
. Hence, we have a well defined morphism AnileX(D)

−→ Anil
̂π−1(Di)

. By construction, it is

surjective. We also obtain that the following morphism factors through AnileX(D)
:

O eX(D) ⊗Nil(z1, . . . , z`) −→ O ̂π−1(D(I))
⊗Nil(z1, . . . , z`) −→ Anil

̂π−1(D(I))
⊂

⊕
i∈I

Anil
̂π−1(Di)

26



Hence, we obtain the well defined map AnileX(D)
−→ Anil

̂π−1(D(I))
. We also obtain AnileX(D),T,N

−→ Anil
̂π−1(D(I)),T,N

.

They are surjective by construction. By using (33), (34) and (35), we also obtain the surjective morphisms
Anil

̂π−1(DI)
−→ Anil

̂π−1(DI(J))
and Anil

̂π−1(DI),T,N
−→ Anil

̂π−1(DI(J)),T,N
.

Lemma 4.12 We have the following:

Anil<D(J)

̂π−1(DI)
= Ker

(
Anil

̂π−1(DI)
−→ Anil

̂π−1(DI(J))

)
Anil<D(J)

̂π−1(DI),T,N
= Ker

(
Anil

̂π−1(DI),T,N
−→ Anil

̂π−1(DI(J)),T,N

)
Proof The implication ⊂ is clear. Let us show the converse. First, we consider the case I = ∅. Let
f =

∑
Aα,k ϕα,k be a section of Ker

(
AnileX(D)

−→ Anil
̂π−1(D(J))

)
. Let us show the following equality on

̂π−1(DK − ∂DK) for any subset K ⊂ ` such that K ∩ J 6= ∅:∑
qK(α,k)=(β,j)

A
α,k| ̂π−1(DK)

∏
i 6∈K

ϕαi,ki
(zi) = 0 (38)

We use an induction on |K|. In the case |K| = 1, it follows from the assumption. Let K = K ′ t {j}. Assume
that we have already known (38) for K ′. By using Lemma 4.11, we obtain the claim for K. In particular, we
obtain A

α,k| ̂π−1(D`)
= 0.

Note that the expression of f is not unique. We would like to replace Aα,k such that the following holds:

P(m): A
α,k| ̂π−1(DK)

= 0 if |K| ≥ m and K ∩ J 6= ∅.

We use a descending induction on m. In the case m = `, it holds as was already shown. Assume that P (m+ 1)
holds. Take K ⊂ ` such that |K| = m and K ∩ J 6= ∅. We have

A
α,k| ̂π−1(DK)

∏
i 6∈K

ϕαi,ki
(zi) ∈ O<D(Kc)

̂π−1(DK)
.

By a generalized Borel-Ritt theorem due to Majima and Sabbah, we can take Gα,k ∈ O<D(Kc)eX(D)
satisfying

G
α,k| ̂π−1(DK)

= A
α,k| ̂π−1(DK)

∏
i 6∈K ϕαi,ki

(zi). By (38), the following holds:∑
qK(α,k)=(β,j)

G
α,k| ̂π−1(DK)

= 0

We have the following equality:

f =
∑
α,k

(
Aα,k −

Gα,k∏
i 6∈K ϕαi,ki

(zi)

)
· ϕα,k(z1, . . . , z`) +

∑
β,j

( ∑
qK(α,k)=(β,j)

Gα,k

)
· ϕβ,j(zi|i ∈ K)

Note that
∑

qK(α,k)=(β,j)Gα,k is 0 on ̂π−1(DK) ∪ ̂π−1(D(Kc)). In particular, it is 0 on
⋃
|K1|=m

̂π−1(DK1).

By construction, Aα,k −Gα,k

∏
i 6∈K ϕαi,ki(zi)−1 vanishes on ̂π−1(DK). Moreover, if A

α,k| ̂π−1(DL)
= 0 for some

|L| = m with L ∩ J 6= ∅, Aα,k − Gα,k

∏
i 6∈K ϕαi,ki

(zi)−1 also vanishes on ̂π−1(DL). Hence, by applying the
above procedure to each K satisfying |K| = m and K ∩ J 6= ∅, we can arrive at P (m). The status P (0) means
f =

∑
Aα,k ϕα,k with Aα,k ∈ O<D(J)eX(D)

, which implies that f ∈ Anil <D(J)eX(D)
. Thus, we are done in the case I = ∅.

We can reduce the general case to the case I = ∅ by using (33), (34) and (35).
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4.2.5 A resolution

Put T (m, I, J) :=
{
K ⊂ J

∣∣ I ⊂ K, |K| = |I|+m+ 1
}

for m ≥ 0. We set

Km
(
Anil

̂π−1(DI(J))

)
:=

⊕
K∈T (m,I,J)

Anil
̂π−1(DK)

.

We obtain the complex K•
(
Anil

̂π−1(DI(J))

)
as in Subsection 2.1.4.

Lemma 4.13 The 0-th cohomology of K•
(
Anil

̂π−1(DI(J))

)
is Anil

̂π−1(DI(J))
, and the higher cohomology sheaves

are 0. Similarly, The 0-th cohomology of K•
(
Anil

̂π−1(DI(J)),T,N

)
is Anil

̂π−1(DI(J)),T,N
, and the higher cohomology

sheaves are 0.

Proof We have only to consider the issue for K•
(
Anil

̂π−1(DI(J)),T,N

)
. First, let us consider the case I = ∅. We

use an induction on |J | and the dimension of X. The cases |J | = 1 or dimX = 1 are clear. Let J = J0 t {j}.
Assume that the claim holds for J0. We set Lm

T,N :=
⊕
|K|=m+1,j∈K⊂J Anil

̂π−1(DK),T,N
. We have the exact

sequence:
0 −→ L•T,N −→ K•

(
Anil

̂π−1(D(J)),T,N

)
−→ K•

(
Anil

̂π−1(D(J0)),T,N

)
−→ 0

Let qj : π−1(Dj) −→ D̃j(∂Dj) and πj : D̃j(∂Dj) −→ Dj be the projections. We have a natural isomorphism:

L•T,N ' q−1
j K

•
(
Anil

̂π−1
j (Dj∩D(J0)),T,N

)
[[zj ]]⊗C[zj ] NilT,N (zj)

By the hypothesis of the induction, we obtain the vanishing of the higher cohomology sheaves of L•T,N and

K•
(
Anil

̂π−1(D(J0)),T,N

)
. Hence, we obtain the vanishing of the higher cohomology of K•

(
Anil

̂π−1(D(J)),T,N

)
. The

calculation of the 0-th cohomology is easy. The general case can be easily reduced to the case I = ∅ by (33),
(34) and (35).

4.2.6 The C∞-version

Let Y be a C∞-manifold. For I t J ⊂ `, let C∞ nil <D(J)

̂π−1(DI)×Y
denote the image of the following morphism:

C∞<D(J)

̂π−1(DI)×Y
⊗C[zi|i∈Jc] Nil(zi | i ∈ Jc) −→ C∞<D◦

̂π−1(DI\∂DI)×Y
⊗C[zi|i∈I] Nil(zi | i ∈ I)

Let C∞ nil <D◦

̂π−1(DI(J))×Y
be the image of the following morphism:

C∞<D◦

̂π−1(DI(J))×Y
⊗C[z1,...,z`] Nil(z1, . . . , z`) −→

⊕
j∈J

C∞<D◦

̂π−1(DIj−∂DIj)×Y
⊗C[zi|i∈Ij] Nil

(
zi

∣∣ i ∈ Ij)
In particular, C∞ nil <D◦

̂π−1(D(J))×Y
is the image of the following morphism:

C∞<D◦

̂π−1(D(J))×Y
⊗C[z1,...,z`] Nil(z1, . . . , z`) −→

⊕
j∈J

C∞<D◦

̂π−1(Dj−∂Dj)×Y
⊗C[zj ] Nil

(
zj

)
Similarly, let C∞ nil <D(J)

̂π−1(DI)×Y,T,N
and C∞ nil <D◦

̂π−1(DI(J))×Y,T,N
denote the sheaves obtained from NilT,N (z1, . . . , z`) instead

of Nil(z1, . . . , z`). We have

C∞ nil <D(J)

̂π−1(DI)×Y,T,N
= C∞ nil <DI(J)eDI(∂DI)×(S1)|I|×Y,T,N

[[zi|i ∈ I]]⊗C[zi|i∈I] NilT,N (zi|i ∈ I) (39)
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C∞ nil <D◦

̂π−1(DI(J))×Y,T,N
= C∞ nil <D◦∩DI

̂π−1
I (DI(J))×(S1)|I|×Y,T,N

[[zi|i ∈ I]]⊗C[zi|i∈I] NilT,N (zi|i ∈ I) (40)

By the argument in Subsection 4.2.4, we obtain the well defined surjective morphisms:

C∞ nil <D◦

̂π−1(DI)×Y
−→ C∞ nil <D◦

̂π−1(DI(J))×Y
, C∞ nil <D◦

̂π−1(DI)×Y,T,N
−→ C∞ nil <D◦

̂π−1(DI(J))×Y,T,N
(41)

By the argument in the proof of Lemma 4.12, we can show that the kernels of the morphisms in (41) are
C∞ nil <D(J)

̂π−1(DI)×Y
and C∞ nil <D(J)

̂π−1(DI)×Y,T,N
, respectively.

We set Km
(
C∞ nil <D◦

̂π−1(DI(J))×Y

)
:=

⊕
K∈T (m,I,J) C

∞ nil <D◦

̂π−1(DK)×Y
. We obtain the complex K•

(
C∞ nil <D◦

̂π−1(DI(J))×Y

)
. It is

easy to see that the 0-th cohomology is C∞ nil <D◦

̂π−1(DI(J))×Y
. By using an argument in the proof of Lemma 4.13, we

can show the vanishing of the higher cohomology. Similar claims hold for K•
(
C∞ nil <D◦

̂π−1(DI(J))×Y,T,N

)
.

4.2.7 Proof of Theorem 4.8

In this subsection, we do not consider D◦. We put Ω0,• nil <D(J)

̂π−1(DI)
:= Ω0,•eX(D)

⊗C∞fX(D)
C∞ nil<D(J)

̂π−1(DI)
and Ω0,• nil

̂π−1(DI(J))
:=

Ω0,•eX(D)
⊗C∞fX(D)

C∞ nil
̂π−1(DI(J))

. We use the symbols Ω0,• nil <D(J)

̂π−1(DI),T,N
and Ω0,• nil

̂π−1(DI(J)),T,N
in similar meanings. The

following proposition implies the first claim of Theorem 4.8.

Proposition 4.14 Ω0,• nil <D(J)

̂π−1(DI)
and Ω0,• nil

̂π−1(DI(J))
give c-soft resolutions of Anil <D(J)

̂π−1(DI)
and Anil

̂π−1(DI(J))
, respec-

tively. Similarly, Ω0,• nil <D(J)

̂π−1(DI),T,N
and Ω0,• nil

̂π−1(DI(J)),T,N
give c-soft resolutions of Anil <D(J)

̂π−1(DI),T,N
and Anil

̂π−1(DI(J)),T,N
,

respectively.

Proof We use an induction on dimX. In the case dimX = 0, the claim is trivial. Let us show the claim
for ̂π−1(DI). For I 6= ∅, let qI : π−1(DI) −→ D̃I(∂DI) denote the naturally induced morphism. We put
N̂ilT,N (I) := C[[zi|i ∈ I]] ⊗C[zi|i∈I] NilT,N (zi|i ∈ I). By using the hypothesis of the induction and a formal
calculation as in Lemma 4.3, we can show that the following morphisms are quasi-isomorphisms:

q−1
I A

nil <DI(J)eDI(∂DI),T,N
⊗ N̂ilT,N (I) −→ q−1

I Ω0,• nil <DI(J)eDI(∂DI),T,N
⊗ N̂ilT,N (I) −→ Ω0,• nil <D(J)

̂π−1(DI),T,N

It implies the claim for Anil <D(J)

̂π−1(DI),T,N
. We obtain the claim for Anil <D(J)

̂π−1(DI)
from (33). For any subset I ⊂ ` (I can

be ∅), by using the resolutions K•
(
Anil

̂π−1(DI(J))

)
and K•

(
Ω0,• nil

̂π−1(DI(J))

)
, we can reduce the claim for Anil

̂π−1(DI(J))

to the claims for Anil
̂π−1(DK)

(I ( K). The claim for Anil
̂π−1(DI(J)),T,N

can be obtained in a similar way. By using

the exact sequences

0 −→ Ω0,•<DeX(D)
−→ Ω0,• nileX(D)

−→ Ω0,• nil
̂π−1(D)

−→ 0, 0 −→ O<DeX(D)
−→ AnileX(D)

−→ Anil
̂π−1(D)

−→ 0, (42)

we obtain the claim for AnileX(D)
. By using the exact sequences

0 −→ Ω0,•<D(J)eX(D)
−→ Ω0,• nileX(D)

−→ Ω0,• nil
̂π−1(D(J))

−→ 0, 0 −→ Anil <D(J)eX(D)
−→ AnileX(D)

−→ Anil
̂π−1(D(J))

−→ 0,

we obtain the claim for Anil <D(J)eX(D)
. The claims for AnileX(D),T,N

and Anil <D(J)eX(D),T,N
can be obtained similarly.

The following proposition implies the second claim of Theorem 4.8.

Proposition 4.15 The sheaves C∞ nil <D(J)

̂π−1(DI)
, C∞ nil <D◦

̂π−1(DI(J))
, Anil <D(J)

̂π−1(DI)
and Anil

̂π−1(DI(J))
are flat over π−1OX . The

sheaves C∞ nil <D(J)

̂π−1(DI),T,N
, C∞ nil <D◦

̂π−1(DI(J)),T,N
, Anil <D(J)

̂π−1(DI),T,N
and Anil

̂π−1(DI(J)),T,N
are also flat over π−1OX .

Proof We have C∞ nil <D(Ic)

̂π−1(DI)
= C∞<D(Ic)

̂π−1(DI)
⊗C[zi|i∈I]Nil(zi| i ∈ I), which is flat over π−1OX , according to Lemma

4.7. Then, we can show Proposition 4.15 by the arguments in the last part of the proof of Proposition 4.4.
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4.2.8 Proof of Theorem 4.9

The first claim of Theorem 4.9 is obvious. We give a preliminary for the second claim. Put X ′ := C × X,
X ′0 := {0} ×X and D′ := (C ×D) ∪ ({0} ×X). Let J ⊂ `. Put D′(J) := C ×D(J). Let π0 : X̃ ′(D′) −→ X ′

and π1 : C× X̃(D) −→ C×X be the real blow up. We have a natural diffeomorphism π−1
0 (X ′0) ' S1 × X̃(D).

Let ρ0 : X̃ ′(D′) −→ C × X̃(D) be the naturally induced map. We use the coordinate z = r e
√
−1θ of C. We

have a natural inclusion:
C∞ nil <D′(J)

̂π−1
1 (X′

0)
(∗X ′0) −→ ρ0∗

(
C∞ nil <D′(J)

̂π−1
0 (X′

0)

)
(43)

The differential operator z∂z induces the endomorphisms of C∞ nil <D′(J)

̂π−1
1 (X′

0)
(∗X ′0) and ρ0∗

(
C∞ nil <D′(J)

̂π−1
0 (X′

0)

)
, which

are denoted by F1 and F2, respectively.

Lemma 4.16 The cokernel of Fi (i = 1, 2) are 0, and (43) induces the isomorphism KerF1 ' KerF2.

Proof It is easy to obtain the vanishing of CokF1 by a formal calculation. Let us show the other claims. We
take S ⊂ C such that (i) the induced map S −→ C/Z is bijective, (ii) 0 ∈ S. Corresponding to the decomposition
Nil(z) =

⊕
α∈S z

αC[z, z−1] [log z], we have the decomposition C∞ nil <D′(J)

̂π−1
0 (X′

0)
=

⊕
α∈S C

∞ nil <D′(J)

̂π−1
0 (X′

0),α
. Let U ⊂

X̃(D) be an open subset. Let f be a section of C∞ nil <D′(J)

̂π−1
0 (X′

0),α
on S1 × U ⊂ π−1

0 (X ′0) expressed as follows:

f =
∑
β,k

∑
n,j

fβ,k,n,j ϕβ,k e
−
√
−1θαzα+n

(
log |z|2

)j (
fβ,k,n,j ∈ C∞<D(J)

S1× eX(D)

)
We have the following equality:

z∂zf =
∑
β,k

∑
n,j

(√−1
2

∂θ +
α

2

)
fβ,k,n,j ϕβ,k e

−
√
−1θαzα+n(log |z|2)j

+
∑
β,k

∑
n,j

fβ,k,n,jϕβ,k e
−
√
−1θαzα+nj(log |z|2)j−1 (44)

For any section g of C∞<D(J)

S1× eX(D)
on S1 × U , we can solve the equation

∂θG−
√
−1αG = g (α 6= 0)

in C∞ nil <D(J)

S1× eX(D)
. We remark

∫ 2π

0
e−
√
−1αθg(θ) dθ = 0. Then, it is easy to obtain Cok(z∂z) = 0 and Ker(z∂z) = 0

in the part α 6= 0 by using (44). Let us consider the part α = 0. We use the filtration with respect to the order
of log |z|2. If we take Gr with respect to this filtration, the second term in (44) with α = 0 disappears. We
obtain H0 Grj = H1 Grj for each j, and they are represented by constants with respect to θ. Then, the second
term in (44) induces H0 Grj ' H1 Grj−1 for j ≥ 1. Hence, we obtain the vanishing of the cokernel of z∂z, and
the kernel is H0 Gr0. Then, the claim of Lemma 4.16 are clear.

We have the following morphism of exact sequences:

0 −−−−→ Ω0,•<D′(J)∪X′
0

C× eX(D)
−−−−→ Ω0,•<D′(J)

C× eX(D)
(∗X ′0) −−−−→ Ω0,•<D′(J)

̂π−1
1 (X′

0)
−−−−→ 0

=

y y '
y

0 −−−−→ ρ0∗Ω
0,•<D′(J)∪X′

0eX′(D′)
−−−−→ ρ0∗Ω

0,•<D′(J)eX(D′)
−−−−→ ρ0∗Ω

0,•<D′(J)

̂π−1
0 (X′

0)
−−−−→ 0

The left vertical arrow is an isomorphism. According to Lemma 4.16, the right vertical arrow is a quasi-
isomorphism. Thus, the central vertical arrow is also a quasi-isomorphism, which is the second claim of Theorem
4.9.
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5 Some complexes associated to meromorphic flat bundles

5.1 De Rham complex on the real blow up

5.1.1 De Rham complex and a description by dual

Let X be a complex manifold and D be a normal crossing hypersurface with a decomposition D = D1 ∪ D2.
(Note that Di are not necessarily irreducible. See Subsection 3.2.1.) Let π : X̃(D) −→ X be the real blow up.
We set A<D1≤D2eX(D)

:= Anil<D1eX(D)
and Ω0,•<D1≤D2eX(D)

:= Ωnil <D1eX(D)
. We put

Ω•<D1≤D2eX(D)
:= A<D1≤D2eX(D)

⊗π−1OX
π−1Ω•X , Ω•,•<D1≤D2eX(D)

:= Ω0,•<D1≤D2eX(D)
⊗π−1OX

π−1Ω•X .

For a holonomic D-module M on X, we define DR<D1≤D2eX(D)
(M) := A<D1≤D2eX(D)

⊗π−1OX
π−1 DRX(M), i.e.,

DR<D1≤D2eX(D)

(
M

)
:= Ω•<D1≤D2eX(D)

⊗π−1OX
π−1M[dX ] ' Ω•,•<D1≤D2eX(D)

⊗π−1OX
π−1M[dX ].

Note that DR<D1≤D2eX(D)

(
M

)
' DR<D1≤D2eX(D)

(
M(∗D)

)
because Ω•<D1≤D2eX(D)

(∗D) = Ω•<D1≤D2eX(D)
.

By Theorem 4.8, we have an isomorphism Rπ∗DR<D1≤D2eX(D)

(
M

)
' DR<D1≤D2

X M induced as follows:

Rπ∗

(
Ω•,•<D1≤D2eX(D)

⊗π−1OX
π−1M

)
' Rπ∗Ω•,•<D1≤D2eX(D)

⊗OX
M' Ω•,•<D1

X (∗D2)⊗OX
M (45)

Lemma 5.1 We have a natural isomorphism RHomπ−1DX

(
π−1M,A<D1≤D2eX(D)

)
' DR<D1≤D2eX(D)

(
DM

)
.

Proof We have the following isomorphisms:

RHomπ−1DX

(
π−1M, A<D1≤D2eX(D)

)
' RHomπ−1DX

(
π−1M, π−1DX

)
⊗L

π−1DX
A<D1≤D2eX(D)

= π−1
(
ΩX ⊗OX

DM
)
⊗L

π−1DX
A<D1≤D2eX(D)

[−dX ] '
(
π−1ΩX ⊗π−1OX

A<D1≤D2eX(D)

)
⊗L

π−1DX
π−1DM[−dX ] (46)

Because A<D1≤D2eX(D)
is flat over π−1OX (Theorem 4.8), π−1DX ⊗π−1OX

A<D1≤D2eX(D)
is flat over π−1DX . Therefore,

A<D1≤D2eX(D)
' π−1

(
DX ⊗OX

Θ•X
)
⊗π−1OX

A<D1≤D2eX(D)

is a π−1DX -flat resolution. Hence, (46) is quasi-isomorphic to the following:(
π−1

(
Ω•X ⊗DX

)
⊗π−1OX

A<D1≤D2eX(D)

)
⊗π−1DX

π−1DM' Ω•<D1≤D2eX(D)
⊗π−1OX

π−1DM

Thus, we obtain the desired isomorphism.

According to Lemma 5.1, we have a natural isomorphism

DR<D1≤D2eX(D)

(
M

)
' RHomπ−1DX

(
π−1DM, A<D1≤D2eX(D)

)
' RHomπ−1DX

(
π−1DM(∗D), A<D1≤D2eX(D)

)
(47)

We will implicitly identify them in the following argument.

5.1.2 A combinatorial description in the case of good meromorphic flat bundles

Let X be a complex manifold with a normal crossing hypersurface D. Let π : X̃(D) −→ X be the real blow
up. Let V be a good meromorphic flat bundle on (X,D). We have the local system on X − D associated to
V|X−D. Its prolongment over X̃(D) is denoted by L. For any P ∈ π−1(D), we have the Stokes filtration FP of
the stalk LP indexed by the set of irregular values Irr(V, P ) ⊂ OX(∗D)P

/
OX,P with the order ≤P . The system

of filtrations
{
FP

∣∣P ∈ π−1(D)
}

satisfies some compatibility condition. See [32] or [33] for more details.
Let D = D1 ∪D2 be a decomposition. Let us describe DR<D1≤D2eX(D)

(V ) in terms of the Stokes filtrations. For

P ∈ X̃(D), let L<D1≤D2
P be the union of the subspaces FP

a (LP ) ⊂ LP such that (i) a ≤P 0, (ii) the poles of a
contains the germ of D1 at P .
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Lemma 5.2 The family
{
L<D1≤D2

P

}
gives a constructible sheaf L<D1≤D2 on X̃(D).

Proof We have only to consider the case X = ∆n and D =
⋃`

i=1{zi = 0}. By a decomposition around P as
in Section 7.7.4 of [32], we have only to consider the case V = OX(∗D) with the flat connection ∇e = e da,
where a =

∏m
i=1 z

−mi
i (mi > 0). We have a decomposition ` = I1 t I2 such that Dj =

⋃
i∈Ij
{zi = 0}. For

P ∈ X̃(D), we set Ij(P ) :=
{
i ∈ Ij

∣∣ zi

(
π(P )

)
= 0

}
. We set Fa := −|a|−1 Re a. We put R0 :=

⋃m
i=1{zi = 0}

and R1 :=
⋃`

i=m+1{zi = 0} \R0.

• For P ∈ X −D, we have L<D1≤D2
P 6= 0.

• For P ∈ π−1(R1), we have L<D1≤D2
P 6= 0 if and only if I1(P ) = ∅.

• For P ∈ π−1(R0), we have L<D1≤D2
P 6= 0 if and only if (i) Fa(P ) < 0, (ii) I1(P ) ⊂ m.

Then, the claim of the lemma is clear.

We recall the following proposition. (See [25] and [34]. See also [12].)

Proposition 5.3 The natural inclusion L<D1≤D2 −→ DR<D1≤D2eX(D)
(V ) is a quasi-isomorphism.

Proof We give a preparation from elementary analysis on multi-sectors. We set Y := ∆z × ∆n
w and DY =

{z = 0} ∪
⋃`

i=1{wi = 0}. Let π : Ỹ (DY ) −→ Y be the real blow up. For m > 0 and m = (m1, . . . ,mk) ∈ Zk
>0

(0 ≤ k ≤ `), we put a = z−m
∏k

i=1 w
−mi
i . We put Fa = −|a−1|Re(a), which naturally gives a C∞-function on

Ỹ (DY ). Take a point P ∈ π−1(O) ⊂ Ỹ (DY ). Let S = Sz × Sw be a small multi-sector in Y −DY such that P
is contained in the interior part of the closure of S in Ỹ (DY ).

• If Fa(P ) < 0 (resp. Fa(P ) > 0), we assume that Fa < 0 (resp. Fa > 0) on S.

• If Fa(P ) = 0, we assume that Fa is monotonous with respect to θ, where z = re
√
−1θ is the polar coordinate.

Let θi (i = 1, 2) be the arguments of the edges of Sz, i.e., Sz =
{
(r, θ)

∣∣ θ1 ≤ θ ≤ θ2, 0 < r ≤ r0
}
. Let θ+

be one of θi such that Fa > 0 on {re
√
−1θ+} × Sw.

Let f be a holomorphic function on S of polynomial order with respect to z and w. We set

Φ(f)(z,w) :=
∫

γ(z,w)

exp
(
−a(z,w) + a(ζ,w)

)
f(ζ,w) dζ. (48)

Here, γ(z,w) is a path contained in Sz × {w} taken as follows.

Case Fa(P ) < 0: We fix a point z0 ∈ Sz, and γ(z,w) is a path from z0 to z.

Case Fa(P ) > 0: Let γ(z,w) be the segment from 0 to z.

Case Fa(P ) = 0: Let θ− be as above. For the polar coordinate z = re
√
−1θ, let γ(z,w) be the union of the ray

{ρe
√
−1θ+ | 0 ≤ ρ ≤ r} and the arc connecting r e

√
−1θ+ and z.

Lemma 5.4 For each N > 0, there exists a constant CN such that
∣∣Φ(f)(z,w)

∣∣ ≤ CN · C |z|N
∏`

i=1 |wi|Ni , if
|f(z,w)| ≤ C |z|N

∏`
i=1 |wi|Ni .

Proof We give only an outline. Let us consider the case Fa(P ) < 0. Let z0 = r0e
√
−1θ0 and z = re

√
−1θ. We

may assume that the path γ is the union of (i) the arc γ1 connecting z0 and z1 = r0e
√
−1θ, (ii) the segment

γ2 connecting z1 and z0. The segment γ2 is divided into γ2,1 = γ1 ∩
{
|ζ| > 3|z|/2

}
and γ2,2 = γ1 ∩

{
|ζ| ≤

3|z|/2
}
. The contributions of γ1 and γ2,1 are dominated by

∣∣exp
(
−a(z,w)

)∣∣ ∏`
i=k+1 |wi|Ni . The function

Re a is monotone on γ2,2. We also have |f(ζ,w)| ≤ C ′ |zN |
∏`

i=1 |wi|Ni on γ2,2. Hence, the contribution
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of γ2,2 is dominated by |z|N
∏`

i=1 |wi|Ni . Let us consider the case Fa(P ) ≥ 0. On γ, we have
∣∣f(ζ,w)

∣∣ ≤
C ′ |zN |

∏`
i=1 |wi|Ni , and Re(a) is monotone. Hence, it is easy to obtain the desired estimate.

Let us return to the proof of Proposition 5.3. We have only to consider the case X = ∆n and D =
⋃`

i=1{zi =
0}. Let P ∈ π−1(0, . . . , 0). By using the local decomposition around P as in Section 7.7.4 of [32], we can reduce
the issue to the case V =

⊕M
i=1OX(∗D) ei with the flat connection

∇e = e
(
da +

∑̀
i=1

(
αi IM +Ni

)dzi

zi

)
,

where IM denotes the identity matrix, Ni (i = 1, . . . , `) are mutually commuting nilpotent matrices, αi are
complex numbers, and we put e := (e1, . . . , en) and a :=

∏m
i=1 z

−mi
i . Then, it is easy to show that L<D1≤D2 is

naturally isomorphic to the 0-th cohomology of DR<D1≤D2eX(D)
(V ). Hence, we have only to show the vanishing of

the higher cohomology of DR<D1≤D2eX(D)
(V ). We have only to consider the case rankV = 1, and we put v = e1.

First, let us consider the case D1 = D. For a subset J ⊂ {1, . . . , n}, we set dzJ = dzj1 ∧ · · · ∧ dzjk
. For a

section ω of Ω•<DeX(D)
, we have the unique decomposition ω =

∑
ωJ dzJ , where ωJ ∈ A<DeX(D)

. Let Si (i = 1, . . . , `)

be a small sector in ∆∗zi
, and let U be a small neighbourhood of (0, . . . , 0) in

∏n
i=`+1 ∆zi

, such that the closure
S of S :=

∏
Si ×U in X̃(D) is a neighbourhood of P . In the following, S will be shrinked without mention. It

is easy to observe that we have only to consider the case αi = 0 (i = 1, . . . , `).
Take h = 1, . . . , n. Assume ∇(ω v) = 0 for some section ω of Ω•<DeX(D)

on S such that ωJ = 0 unless

J ⊂ {1, . . . , h}. We have d
(
exp(a)ω

)
= 0. For the expression exp(a)ω =

∑
h6∈J fJ dzh dzJ +

∑
h6∈J fJ dzJ , we

set τ(z) =
∑

h6∈J exp(−a)
(∫

γ(z)
fJ dzh

)
dzJ , where γ(z) is a path taken as follows:

• If h ≤ m, the condition is similar to that for the path in (48).

• If m < h, γ is a path connecting (z1, . . . , zh−1, 0, zh+1, . . . , zn) and (z1, . . . , zn).

By using Lemma 5.4, we obtain that τ ∈ Ω•<DeX(D)
⊗ V . By a formal computation, we can show that ω v−∇(τ v)

does not contain dzj for j ≥ h. Hence, we can show the vanishing of the higher cohomology of Ω•<DeX(D)
⊗ V by

an induction.
We have the decomposition I1 t I2 = ` such that Dj =

⋃
i∈Ij
{zi = 0}. Let us consider Ω•<D(Jc)≤D(J)

̂π−1(DJ )
⊗ V

for any subset J ⊂ I2, where Jc := ` \ J . If m ∩ J 6= ∅, it is easy to show that Ω•<D(Jc)≤D(J)

̂π−1(DJ )
⊗ V is acyclic

by a formal computation. Assume m ∩ J = ∅. Let VJ = ODJ
(∗∂DJ) vJ be equipped with the flat connection

∇vJ = vJ · da|DJ
on DJ . Let qJ be the projection π−1(DJ) −→ D̃J(∂DJ). Then, it is easy to obtain a natural

quasi-isomorphism q−1
J

(
Ω•<∂DJeDJ (∂DJ )

⊗ VJ

)
' Ω•<D(Jc)≤D(J)

̂π−1(DJ )
⊗ V by a formal computation. Hence, we obtain the

vanishing of the higher cohomology of Ω•<D(Jc)≤D(J)

̂π−1(DJ )
⊗ V .

We put h := |I2|. Let G•h denote the kernel of the surjection Ω•<D1≤D2eX(D)
⊗V −→ Ω•<D1≤D2

̂π−1(DI2 )
⊗V . Inductively,

let G•k be the kernel of the following surjection:

G•k −→
⊕
J⊂I2
|J|=k

Ω•<D(Jc)≤D(J)

̂π−1(DJ )
⊗ V

Because G•1 = Ω<DeX(D)
⊗ V , we obtain the vanishing of the higher cohomology by an induction on k. Thus, the

proof of Proposition 5.3 is finished.
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5.2 Duality

5.2.1 Duality morphism

Let X, D andM be as in Subsection 5.1.1. We have the following naturally defined morphism:

DR<D1≤D2eX(D)

(
DM

)
−→ D DR<D2≤D1eX(D)

(M)
|| ||

RHomπ−1DX

(
π−1M,Ω0,•<D1≤D2eX(D)

)
−→ RHomCfX(D)

(
Ω•,•<D2≤D1eX(D)

⊗ π−1M, Ω•,•<DeX(D)

) (49)

Proposition 5.5 The following diagram is commutative:

Rπ∗DR<D1≤D2eX(D)

(
DM

)
−−−−→ Rπ∗D DR<D2≤D1eX(D)

(M)

'
y '

y
DR<D1≤D2

X (DM) −−−−→ D DR<D2≤D1
X (M)

(50)

Here, the upper horizontal arrow is induced by (49), the lower horizontal arrow is given as in (17), the left vertical
arrow is given as in (45), and the right vertical arrow is given by Rπ∗D DR<D2≤D1eX(D)

M' DRπ∗DR<D2≤D1eX(D)
M'

D DR<D2≤D1
X (M).

Proof By Lemma 5.1, we have a morphism Rπ∗DR<D1≤D2eX(D)
(DM) −→ DR<D1≤D2

X (DM) given as follows:

Rπ∗RHomπ−1DX

(
π−1M, Ω0,•<D1≤D2eX(D)

)
' RHomDX

(
M, Rπ∗Ω

0,•<D1≤D2eX(D)

)
' RHomDX

(
M, Ω0,•

X (∗D2)<D1
)

(51)

It is easy to check that it is equal to the morphism obtained as in (45). The right vertical arrow in (50) is given
as follows:

Rπ∗RHomCfX(D)

(
Ω•,•<D2≤D1eX(D)

⊗ π−1M, Ω•,•<DeX(D)

)
−→ RHomCX

(
Rπ∗Ω

•,•<D2≤D1eX(D)
⊗M, Rπ∗Ω

•,•<DeX(D)

)
' RHomCX

(
Ω•,•<D2≤D1

X ⊗M, Ω•,•<D
X

)
−→ RHomCX

(
Ω•,•<D2≤D1

X ⊗M, Ω•,•X

)
(52)

Then, it is easy to check the commutativity of (50).

5.2.2 The case of good meromorphic flat bundle

Let us consider the case M is a good meromorphic flat bundle V on (X,D).

Theorem 5.6 The duality morphism DR<D1≤D2eX(D)
DV −→ D DR<D2≤D1eX(D)

V is an isomorphism.

Proof We begin with elementary preparations. Let R2 = S0 ∪ S1 ∪ S2 be a decomposition given as follows:

S0 :=
{
(x, y)

∣∣ y ≥ 0
}

S1 :=
{
(x, y)

∣∣ y ≤ 0, x ≤ 0
}

S2 :=
{
(x, y)

∣∣ y ≤ 0, x ≥ 0}

We put X1 := (R× S1) ∪ (R≥0 × S0) and X2 := (R× S2) ∪ (R≤0 × S0). The following lemma is easy to see.

Lemma 5.7 Xi ⊂ R3 (i = 1, 2) are closed C0-submanifolds with boundaries. We have X1 ∪ X2 = R3 and
X1 ∩X2 = ∂Xi.

We put J :=] − 1, 1[, J+ := [0, 1[, J− :=] − 1, 0], and Ii := [0, 1[ (i = 1, 2, 3). We have a homeomorphism
∂(I1 × I2 × I3) ' R2, and we can identify the decomposition

∂(I1 × I2 × I3) =
(
∂I1 × I2 × I3

)
∪

(
I1 × ∂I2 × I3

)
∪

(
I1 × I2 × ∂I3

)
with R2 = S0 ∪ S1 ∪ S2. We put

X ′1 :=
(
J × I1 × ∂I2 × I3

)
∪

(
J+ × ∂I1 × I2 × I3

)
, X ′2 :=

(
J × I1 × I2 × ∂I3

)
∪

(
J− × ∂I1 × I2 × I3

)
They are closed subsets of J × ∂(I1 × I2 × I3). We obtain the following lemma from Lemma 5.7.
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Lemma 5.8 X ′i ⊂ J × ∂(I1 ×I2 ×I3) are C0-submanifolds with boundaries. We have X ′1 ∪X ′2 = J × ∂
(
I1 ×

I2 × I3
)

and X ′1 ∩X ′2 = ∂X ′i.

We recall some elementary facts on constructible sheaves. Let Y be an `-dimensional C0-manifold with the
boundary ∂Y . For a closed C0-submanifold W ⊂ ∂Y with boundary such that dimW = `, let jW denote the
inclusion Y −W −→ Y . We have the following natural isomorphisms:

RHomCY

(
jW !CY−W ,K

)
' RjW∗RHomCY−W

(CY−W , Rj!WK) ' RjW∗j∗WK

The dualizing complex of Y is given by j∂Y !CY−∂Y [`].

Lemma 5.9 Let Yi ⊂ ∂Y be closed C0-submanifolds with boundaries such that Y1 ∪Y2 = Y and Y1 ∩Y2 = ∂Yi.
Then, we have DjY1!CY−Y1 ' jY2!CY−Y2 .

Proof The left hand side is naturally isomorphic to jY1∗j
∗
Y1
ωY ' jY1∗j0!CY−∂Y [`], where j0 denotes the

inclusion Y − ∂Y −→ Y − Y1. Then, we can check the claim directly.

Let us return to the proof of Theorem 5.6. We have only to consider the case X = ∆n and D =
⋃`

i=1{zi =
0}. As in the proof of Proposition 5.3, we can reduce the issue to the case that V = OX(∗D) v with the
meromorphic flat connection ∇v = v da, where a =

∏m
i=1 z

−mi
i (mi > 0). We put Fa := −|a|−1 Re a. We have

the decomposition I1 t I2 = ` such that Dj =
⋃

i∈Ij
{zi = 0} (j = 1, 2). We set Ij(> m) :=

{
i ∈ Ij

∣∣ i > m
}
.

We also put D(> m) :=
⋃`

i=m+1{zi = 0} and D(≤ m) :=
⋃m

i=1{zi = 0}. The closed subsets Wi ⊂ π−1(D)
(i = 1, 2) are given as follows:

W1 := π−1
(
D1 ∩D(> m)

)
∪

[
π−1

(
D(≤ m)

)
∩ {Fa ≥ 0}

]
W2 := π−1

(
D2 ∩D(> m)

)
∪

[
π−1

(
D(≤ m)

)
∩ {Fa ≤ 0}

]
Lemma 5.10 Wi ⊂ π−1(D) are closed C0-submanifolds with boundaries, and we have W1 ∪W2 = π−1(D) and
W1 ∩W2 = ∂Wi.

Proof It is easy to observe that we have only to consider the case n = `. We have the natural identification
X̃(D) ' (S1)` × R`

≥ 0. By the decomposition ` = m t I1(> m) t I2(> m), we identify R`
≥0 = Rm

≥0 × RI1(>m)
≥0 ×

RI2(>m)
≥0 . We fix homeomorphisms

Rm
≥0 ' I1 × Rm−1, RI1(>m)

≥0 ' I2 × R|I1(>m)|−1, RI2(>m)
≥0 ' I3 × R|I2(>m)|−1.

We put N := m+ |I1(> m)|+ |I2(> m)| − 3. Let H± be the subsets of (S1)` given as follows:

H+ :=
{

cos
(∑

miθi

)
≥ 0

}
H− :=

{
cos

(∑
miθi

)
≤ 0

}
Then, π−1(D) is identified with (S1)` × ∂(I1 × I2 × I3)× RN , under which we have

W1 '
((

(S1)` × I1 × ∂I2 × I3
)
∪

(
H− × ∂I1 × I2 × I3

))
× RN

W2 =
((

(S1)` × I1 × I2 × ∂I3
)
∪

(
H+ × ∂I1 × I2 × I3

))
× RN

For a point Q ∈ H+ ∩H−, we can take a neighbourhood UQ such that U ' J ×R`−1 under which H± ∩UQ =
J± × R`−1. Then, we obtain Lemma 5.10 from Lemma 5.8.

Let jWi
be the inclusion X̃(D)\Wi −→ X̃(D). Let L and L∨ be the local systems on X̃(D) associated to V

and V ∨, respectively. According to the description of L<D1≤D2 and L∨<D2≤D1 , we have the following natural
isomorphisms:

L<D1≤D2 ' jW1!

(
L eX(D)\W1

)
L∨<D2≤D1 ' jW2!

(
L∨eX(D)\W2

)
By applying Lemma 5.9, we obtain an isomorphism DL<D1≤D2 ' L∨<D2≤D1 . It is uniquely determined by its
restriction to X −D. Then, we can deduce that DR<D1≤D2eX(D)

DV −→ D DR<D2≤D1eX(D)
V is an isomorphism. Thus,

the proof of Theorem 5.6 is finished.
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Corollary 5.11 For a good meromorphic flat bundle V on (X,D), we have the following commutative diagram:

Rπ∗DR<D1≤D2eX(D)
DV '−−−−→ Rπ∗D DR<D2≤D1eX(D)

V

'
y '

y
DRX V ∨(!D1)

'−−−−→ D DRX V (!D2)

Proof It follows from Theorem 3.18, Proposition 5.5 and Theorem 5.6.

5.3 Functoriality

Let X be a complex manifold, and let D be a normal crossing hypersurface with a decomposition D = D1∪D2.
Let D3 be a hypersurface of X. Let ϕ : X ′ −→ X be a proper birational morphism such that (i) D′ :=
ϕ−1(D ∪ D3) is normal crossing, (ii) X ′ \ D′ ' X \ (D ∪ D3). Let X̃(D) −→ X and X̃ ′(D′) −→ X ′ be the
real blow up. Both the projections are denoted by π. Let ϕ̃ : X̃ ′(D′) −→ X̃(D) be the induced map. We put
D′1 := ϕ−1(D1). We have D′2 ⊂ D′ such that D′ = D′1 ∪D′2 is a decomposition. Let V be a meromorphic flat
bundle on (X,D). We set (V ′,∇′) := ϕ∗(V,∇)⊗OX(∗D′).

Theorem 5.12 We have a morphism DR<D1≤D2eX(D)
(V ) −→ Rϕ̃∗DR<D′

1≤D′
2eX′(D′)
(V ′) in the derived category of coho-

mologically constructible sheaves, such that the following diagram of perverse sheaves is commutative:

Rπ∗DR<D1≤D2eX(D)
(V ) −−−−→ Rπ∗Rϕ̃∗DR<D′

1≤D′
2eX(D′)
(V ′)

'
y '

y
DRX

(
V (!D1)

)
−−−−→ Rϕ∗DRX′

(
V ′(!D′1)

) (53)

Here, the vertical isomorphisms are given by (45) and Corollary 3.16, and the lower horizontal arrow is induced
by the morphism of D-modules V (!D1) −→ ϕ†V

′(!D′1).
Similarly, we have a morphism Rϕ̃∗DR<D′

2≤D′
1eX′(D′)
(V ′) −→ DR<D2≤D1eX(D)

(V ) such that the following diagram of
perverse sheaves is commutative:

Rπ∗Rϕ̃∗DR<D′
2≤D′

1eX′(D′)
(V ′) −−−−→ Rπ∗DR<D2≤D1eX(D)

(V )

'
y '

y
Rϕ∗DRX(V ′(!D′2)) −−−−→ DRX

(
V (!D2)

) (54)

Proof We have a naturally induced morphism:

ϕ̃−1
(
Ω•,•<D1≤D2eX(D)

⊗ π−1V
)
−→ Ω•,•<D′

1≤D′
2eX′(D′)
⊗ π−1V ′. (55)

It induces a morphism of cohomologically constructible complexes:

DR<D1≤D2eX(D)
(V ) −→ ϕ̃∗DR<D′

1≤D′
2eX′(D′)
(V ′) (56)

We can directly check the commutativity of the following diagram:

Ω•,•<D1≤D2
X ⊗ V −−−−→ ϕ∗

(
Ω•,•<D′

1≤D′
2

X′ ⊗ V ′
)

y y
π∗

(
Ω•,•<D1≤D2eX(D)

⊗ π−1V
)
−−−−→ π∗

(
ϕ̃∗Ω

•,•<D′
1≤D′

2eX′(D′)
⊗ π−1V ′

)
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It implies the commutativity of the following diagram:

Rπ∗DR<D1≤D2eX(D)
(V ) −−−−→ Rπ∗Rϕ̃∗DR<D′

1≤D′
2eX′(D′)
(V ′)

'
y '

y
DR<D1≤D2

X (V ) −−−−→ Rϕ∗DR<D′
1≤D′

2
X′ (V ′)

(57)

Then, we obtain the commutativity of (53) from Theorem 3.20.
Considering the dual of (56) with V ∨ (see Theorem 5.6), we obtain the following morphism:

Rϕ̃∗DR≤D′
1<D′

3eX′(D′)
(V ′) −→ DR≤D1<D2eX(D)

(V ) (58)

Let us show the commutativity of the diagram (54). From (57) for V ∨, we obtain the following commutative
diagram:

DRπ∗Rϕ̃∗DR<D′
1≤D′

2eX′(D′)
(V ′∨) −−−−→ DRπ∗DR<D1≤D2eX(D)

(V ∨)

'
y '

y
DRϕ∗DR<D′

1≤D′
2

X′ (V ′∨) −−−−→ D DR<D1≤D2
X (V ∨)

By Proposition 5.5 and Theorem 5.6, we have the following commutative diagram:

DRπ∗DR<D1≤D2eX(D)
(V ∨) '−−−−→ Rπ∗DR≤D1<D2eX(D)

(V )

'
y '

y
D DR<D1≤D2(V ∨) '−−−−→ DR<D2≤D1

X (V )

We have a similar diagram for V ′. Then, we obtain the commutativity of (54) from the constructions of (58)
and (24).

5.4 A relation between de Rham complexes on real blow up

5.4.1 Sheaves of functions of Nilsson types

Let X be a complex manifold with a normal crossing hypersurface D. Let g be a holomorphic function on
X such that g−1(0) = D. The image of id×g : X −→ X × C is denoted by Γg. Let π1 : X̃(D) −→ X and
π2 : X × C̃ −→ X × C be the real blow up. We set X̃ := Γg ×(X×C) (X × C̃). We obtain the following
commutative diagram:

X̃(D)
eρ−−−−→ X̃

eιg−−−−→ X × C̃

π1

y π3

y π2

y
X

ρ−−−−→
'

Γg
ιg−−−−→ X × C

We set AnileX := Anil
X×eC⊗OX×C OΓg

on X̃. Let t be the coordinate of C. Because t is invertible in Anil
X×eC, we have

AnileX = Anil
X×eC(∗g)⊗OX×C OΓg .

Proposition 5.13 A naturally defined morphism AnileX −→ ρ̃∗AnileX(D)
induces an isomorphism AnileX ' Rρ̃∗AnileX(D)

.

Proof Let ν1 : X̃(D)× C̃ −→ X̃(D)× C and ν2 : X̃(D)× C̃ −→ X × C̃ be the naturally induced morphisms.
According to Theorem 4.9, we have

Rν1∗AnileX(D)×eC = AnileX(D)×C(∗t), Rν2∗AnileX(D)×eC = Anil
X×eC(∗g) (59)
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We put X̃1 := Γg ×(X×C)

(
X̃(D)× C

)
and X̃2 := Γg ×(X×C)

(
X̃(D)× C̃

)
. We set

AnileX1
:= AnileX(D)×C(∗t)⊗OX×C OΓg

, AnileX2
:= AnileX(D)×eC ⊗OX×C OΓg

.

We have the following naturally given commutative diagram:

X̃2
κ1−−−−→ X̃1

κ2

y y
X̃ −−−−→ Γg

From (59), we obtain Rκ1∗AnileX2
= AnileX1

and Rκ2∗AnileX2
= AnileX . We have a natural identification X̃1 ' X̃(D) and

AnileX1
' AnileX(D)

. We also have ρ̃ ◦ κ1 = κ2, and hence Rρ̃∗AnileX(D)
' Rκ2∗AnileX2

' AnileX . Thus, we are done.

5.4.2 De Rham complexes for good meromorphic flat bundles

Let X be a complex manifold with a normal crossing hypersurface D. Let π1 : X̃(D) −→ X be the real blow
up. Let C̃ denote the real blow up of C along 0. Let g be a holomorphic function on X such that g−1(0) = D.
The induced inclusion id×g : X −→ X × C is denoted by ιg, and the image is denoted by Γg.

X̃(D)
eιg−−−−→ X × C̃

π1

y π2

y
X

ιg−−−−→ X × C

Proposition 5.14 We have a natural quasi-isomorphism DRnil
X×eC(

ιg†M
)
' Rι̃g∗DRnileX(D)

(
M

)
on X × C̃.

Proof Note that ιg†M = ig∗M[∂t]. By using Proposition 5.13, we obtain

π−1
2 ιg†M⊗Anil

X×eC ' Rι̃g∗
(
π−1

1 M[∂t]⊗AnileX(D)

)
Here, a tangent vector v of X and ∂t acts onM[∂t] by v(∂n

t ⊗m) = ∂n
t ⊗(vm)−∂n+1

t ⊗(vg)m and ∂t(∂n
t ⊗m) =

∂n+1
t ⊗m. Then, we obtain the following natural quasi-isomorphisms:

π−1
2 Ω•,0X×C ⊗π−1

2 OX×C
Rι̃g∗

(
π−1

1 M[∂t]⊗AnileX(D)

)
'−→

Rι̃g∗

(
π−1

1

(
Ω0,•

X ⊗M[∂t]
)
⊗AnileX(D)

dt ∂t−→ π−1
1

(
Ω0,•

X ⊗M[∂t]
)
⊗AnileX(D)

dt
)

'←− Rι̃g∗
(
0 −→ π−1

1

(
Ω•,0X ⊗M

)
⊗AnileX(D)

dt
)

(60)

Thus, Proposition 5.14 is proved.

5.4.3 Complement

Let F0 : X0 −→ Y0 be a proper morphism of complex manifolds. Let C̃ denote the real blow up of C along 0.
We set X := X0×C and X̃ := X0× C̃. We use the symbols Y and Ỹ in similar meanings. Let F : X −→ Y and
F̃ : X̃ −→ Ỹ be induced by F0. Put DX := X0×{0} and DY := Y0×{0}. Let πX : X̃ −→ X and πY : Ỹ −→ Y
be the projections.

Let M be a holonomic D-module on X such thatM(∗DX) =M. We set

F̃†
(
π−1

X M⊗π−1
X OX

AnileX )
:= RF̃∗

(
π−1

X

(
DY←X ⊗L

DX
M

)
⊗π−1

X OX
AnileX

)
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By using AnileX = F̃−1AnileY ⊗(F◦πX)−1OY
π−1

X OX , we obtain a natural isomorphism:

F̃†
(
π−1

X M⊗π−1
X OX

AnileX )
' π−1

Y

(
F†M

)
⊗π−1

Y OY
AnileY

We set DRnileX (M) := π−1
X

(
ΩX ⊗L

DX
M

)
⊗π−1

X OX
AnileX . By a formal argument for the compatibility between the

de Rham functor and the push-forward, we obtain a natural isomorphism:

RF̃∗ ◦DRnileX ' DRnileY ◦F† (61)

5.5 Some rigidity

5.5.1 Statement

We set X := ∆n and D :=
⋃`

i=1{zi = 0}. We put D[m] :=
⋃

I⊂`
|I|=m

DI . Let (V,∇) be a good meromorphic flat

bundle on (X,D). Let L be the associated local system on X̃(D). Let g be a holomorphic function on X such
that g−1(0) = D. Let Γg ⊂ X × C be the image of the graph of g. We put X̃ := Γg ×(X×C) (X × C̃). We have
the naturally defined morphisms:

X̃(D) π1−−−−→ X̃
π0−−−−→ X

We put π2 := π0 ◦ π1. We set K := Rπ1∗L≤D. In this subsection, we will work on the derived category of
cohomologically constructible sheaves.

Theorem 5.15 Let n ≥ 2. The restriction Hom(K,K) −→ Hom
(
K|π−1

0 (X−D[2]), K|π−1
0 (X−D[2])

)
is injective.

We will give a consequence in Subsection 5.5.6.

5.5.2 Reduction

We have only to show the injectivity of the following morphisms for m ≥ 2:

Hom
(
K|π−1

0 (X−D[m+1]), K|π−1
0 (X−D[m+1])

)
−→ Hom

(
K|π−1

0 (X−D[m]), K|π−1
0 (X−D[m])

)
Then, it is easy to observe that we have only to consider the case ` = n and the following morphism:

Hom(K,K) −→ Hom
(
K|π−1

0 (X−O), K|π−1
0 (X−O)

)
By the adjunction Hom

(
π∗1K,L≤D

)
' Hom(K,K), we have only to show the injectivity of the following mor-

phism:
Hom

(
π∗1K, L≤D

)
−→ Hom

(
π∗1K|π−1

2 (X−O), L
≤D

|π−1
2 (X−O)

)
We have Riπ1∗L≤D = 0 unless 0 ≤ i ≤ n− 1, because the real dimension of the fiber is less than n− 1. We set

Ki := π∗1R
iπ1∗L≤D.

Let j : π−1
2 (X −O) −→ X̃(D) and i : π−1

2 (O) −→ X̃(D).

Lemma 5.16 To show Theorem 5.15, we have only to show

Extj(i∗i∗Ki,L≤D) = 0 i, j ≤ n− 1 (62)

Proof From the distinguished triangle Ki[−i] −→ τ≥iπ
∗
1K −→ τ≥i+1π

∗
1K

+1−→, we obtain the long exact
sequence:

Exti−1(Ki,L≤D) −→ Hom
(
τ≥i+1π

∗
1K,L≤D

)
−→ Hom

(
τ≥iπ

∗
1K,L≤D

)
−→ Exti

(
Ki,L≤D

)
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We have the corresponding long exact sequences for the restrictions to π−1
2 (X − O). The injectivity of

Hom
(
τ≥ iπ

∗
1K, L≤D

)
−→ Hom

(
τ≥iπ

∗
1K|π−1

2 (X−O),L
≤D

|π−1
2 (X−O)

)
can follow from the injectivity of

Exti
(
Ki,L≤D

)
−→ Exti

(
Ki
|π−1

2 (X−O)
, L≤D

|π−1
2 (X−O)

)
, (63)

Hom
(
τ≥ i+1π

∗
1K, L≤D

)
−→ Hom

(
τ≥i+1π

∗
1K|π−1

2 (X−O),L
≤D

|π−1
2 (X−O)

)
, (64)

and the surjectivity of
Exti−1(Ki,L≤D) −→ Exti−1(Ki

|π−1
2 (X−O)

,L≤D

|π−1
2 (X−O)

). (65)

By an easy inductive argument, we can reduce Theorem 5.15 to the injectivity of (63) and the surjectivity of
(65) for any i ≤ n− 1.

From the exact sequence 0 −→ j!j
∗Ki −→ Ki −→ i∗i

∗Ki −→ 0 and the adjunction Exti
(
j!j
∗Ki,L≤D

)
'

Exti
(
j∗Ki, j∗L≤D

)
, we obtain the following exact sequence:

Exti−1
(
Ki, L≤D

)
−→ Exti−1

(
j∗Ki, j∗L≤D

)
−→ Exti

(
i∗i
∗Ki, L≤D

)
−→ Exti

(
Ki,L≤D

)
−→ Exti

(
j∗Ki, j∗L≤D

)
(66)

Hence, the proof of Theorem 5.15 is reduced to the vanishing Exti
(
i∗i
∗Ki, L≤D

)
= 0 for any 0 ≤ i ≤ n− 1. For

that purpose, we have only to show (62). Thus, the proof of Lemma 5.16 is finished.

In the following, we will show Exti
(
π−1

1 (I),L≤D
)

= 0 (i = 0, . . . , n − 1) for any constructible sheaf I on
π−1

0 (O) ' S1.

5.5.3 Local form of π−1
1 (I)

Let (z1, . . . , zn) be a coordinate with z−1
i (0) = Di. It induces a coordinate (θ1, . . . , θn) of π−1

2 (O), which is
independent of the choice of (z1, . . . , zn) up to parallel transport. We take a coordinate t of C, which induces
a coordinate θ of π−1

0 (O). The induced map π−1
2 (O) −→ π−1

0 (O) is affine with respect to the coordinates
(θ1, . . . , θn) and θ.

Let us consider the behaviour of π−1
1 (I) around P ∈ π−1

2 (O), where I is a constructible sheaf on π−1
0 (O).

We may assume P = (0, . . . , 0). The map π−1
2 (O) −→ π−1

0 (O) is of the form (θ1, . . . , θn) 7−→
∑
αi θi +β, where

β = π1(P ). The sheaf I is the direct sum of sheaves of the following forms:

• The constant sheaf around β.

• j!CJ or j∗CJ , where J is an open interval such that one of the end points is β, and j denotes the inclusion
J −→ π−1(O).

Hence, π−1
1 (I) around P is described as the direct sum of sheaves of the following forms:

• The constant sheaf Cπ−1
0 (O).

• j∗CH or j!CH , where H is an open half space such that ∂H 3 P , and j : H −→ π−1
0 (O). They are denoted

by CH∗ and CH!.

5.5.4 Local form of L≤D and L/L≤D

Let P ∈ π−1
0 (O). We have a decomposition around P :

L =
⊕

a∈Irr(∇)

La L≤D =
⊕

a∈Irr(∇)

L≤D
a
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Let us describe La and L/L≤D
a around P . For an appropriate coordinate, a = z−m1

1 · · · z−mn
n for some

mi ≥ 0. Let qa : ∆n −→ ∆ be given by (z1, . . . , zn) 7−→
∏
zmi
i . Let π∆ : ∆̃(0) −→ ∆ be the real blow up. We

have the induced map:

qa : X̃(D) −→ ∆̃(0), (ri, θi) 7−→
( n∏

i=1

rmi
i ,

∑
miθi

)
Let Q be the local system on ∆̃(0) with Stokes structure, corresponding to

(
O∆(∗0), d + d(1/z)

)
. Note that

Q/Q≤0 is the constructible sheaf j∗CJ on π−1
∆ (0), where j : J = (−π, π) −→ π−1

∆ (0). Let r(a) be the rank of
La. We have isomorphisms:

La ' q∗aQ⊕ r(a) L≤D
a ' q∗a

(
Q≤0

)⊕ r(a) La/L≤D
a ' q∗a

(
Q/Q≤0

)⊕ r(a)

Around P , we have an isomorphism q∗a
(
Q/Q≤0

)
' ι∗C, where Z := q−1

a (J) and ι : Z −→ (S1)n × Rn
≥0. Note

that Z is of the form Z0×∂Rn
≥0, where Z0 is the inverse image of J via the induced map (S1)n×{0} −→ S1×{0}.

Hence, q∗a
(
Q/Q≤0

)
is isomorphic to one of the following, around P :

• The constant sheaf C(S1)n×∂Rn
≥ 0

.

• jK∗CK×∂Rn
≥0

, where K is an open half space such that ∂K 3 P , and jK : K × ∂Rn
≥0 −→ (S1)n ×Rn

≥ 0. It
is denoted by CK×∂Rn

≥0∗.

5.5.5 Proof of Theorem 5.15

We reduce the proof of the theorem to the computation of Exti
(
π−1

1 I, q−1
a (Q/Q≤0)

)
for i ≤ n− 2.

Lemma 5.17 We have Exti(π−1
1 I, q−1

a Q) = 0 for any i. In particular, we have isomorphisms:

Exti
(
π−1

1 I, q−1
a Q≤0

)
' Exti−1

(
π−1

1 I, q−1
a (Q/Q≤0)

)
.

Proof Let ι : (S1)n × {0} −→ (S1)n × ∂Rn
≥0 denote the inclusion. There exists a constructible sheaf F on

(S1)n such that π−1
1 I ' ι∗F . We have the adjunction Exti

(
ι∗F , q−1

a Q
)

= ι∗Exti(F , i!q−1
a Q). Note ι!q−1

a Q =
Dι−1D

(
q−1
a Q

)
= 0, because Dq−1

a Q is 0-extension of a constant sheaf on (S1)n × Rn
>0 by (S1)n × Rn

>0 −→
(S1)n × Rn

≥0. Hence, we obtain Exti
(
ι∗F , q−1

a Q
)

= 0, and the proof of Lemma 5.17 is finished.

Now, let us show the following vanishing of the stalks at P :

Extj
(
π−1

1 I, q−1
a (Q/Q≤0)

)
P

= 0, (j ≤ n− 2) (67)

It can be computed on (S1)n × ∂Rn
≥0. We have the following cases, divided by the local forms of π−1

1 (I) and
q−1
a (Q/Q≤0) around P :

(I) π−1
1 I ' C(S1)n and q−1

a

(
Q

/
Q≤0

)
' C(S1)n×∂Rn

≥0
.

(II) π−1
1 I ' C(S1)n and q−1

a

(
Q

/
Q≤0

)
' CK×∂Rn

≥0 ∗.

(III) π−1
1 I = CH? and q−1

a

(
Q

/
Q≤0

)
' C(S1)n×∂Rn

≥ 0
, where ? = ∗, !.

(IV) π−1
1 I ' CH? and q−1

a

(
Q

/
Q≤0

)
' CK×∂Rn

≥ 0∗, where ? = ∗, !. Moreover, this is divided into three cases
(IV-1) ∂H and ∂K are transversal, (IV-2) H = K, (IV-3) H = −K.

In the following, for a given i : Y1 ⊂ Y2 and ? = ∗, !, let CY1? := i?CY1 on Y2. It is also denoted just by CY1 , if
there is no risk of confusion.
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The case (I) Instead of (S1)n × {0} −→ (S1)n × ∂Rn
≥0, we have only to consider the inclusion {0} −→

∂Rn
≥0 ' Rn−1. We obtain (67) from the following standard result:

Extj
(
C0,CRn−1

)
0
'

{
0 (j ≤ n− 2)
C (j = n− 1)

The case (II) We have the exact sequence 0 −→ C(S1)n\K! −→ C(S1)n −→ CK∗ −→ 0. Let ι denote the
inclusion

(
(S1)n \K

)
× ∂Rn

≥ 0 −→ (S1)n × ∂Rn
≥ 0. Note ι∗ = ι!, and hence ι!CK×∂Rn

≥ 0∗ = 0. We have

Extj
(
C(

(S1)n\K
)
×{0} !

, CK×∂Rn
≥ 0 ∗

)
P
' ι∗Extj

(
C(

(S1)n\K
)
×{0}

, ι!CK×∂Rn
≥ 0∗

)
P

= 0

Hence, we obtain

Extj
(
C(S1)n ,CK×∂Rn

≥ 0 ∗

)
P
' Extj

(
CK∗,CK×∂Rn

≥ 0∗

)
P

=
{

0 (j ≤ n− 2)
C (j = n− 1)

The case (III) Let us consider the case ? = ∗. We have the exact sequence:

0 −→ C(S1)n×∂Rn
≥ 0\H×{0} ! −→ C(S1)n×∂Rn

≥ 0
−→ CH∗ −→ 0

Let k1 denote the inclusion H×{0} −→ (S1)n×∂Rn
≥ 0, and let k2 denote the open embedding of the complement.

Because k∗1C(S1)n×∂Rn
≥ 0\H×{0} ! = 0, we have the following isomorphisms:

RHom
(
C(S1)n×∂Rn

≥ 0\H×{0} !, C(S1)n×∂Rn
≥ 0

)
P
' RHom

(
C(S1)n×∂Rn

≥ 0\H×{0}!, C(S1)n×∂Rn
≥ 0\H×{0}!

)
P

' k2∗
(
C(S1)n×∂Rn

≥ 0\H×{0}
)
P
'

(
C(S1)n×∂Rn

≥ 0

)
P

(68)

Hence, we obtain RHom
(
CH∗, C(S1)n×∂Rn

≥ 0

)
P

= 0. In particular, Extj(CH∗,C(S1)n×∂Rn
≥ 0

)P = 0 for any j.
Let us consider the case ? =!. We have the exact sequence 0 −→ CH! −→ C(S1)n −→ C(S1)n\H ∗ −→ 0.

Hence, we obtain the following isomorphisms:

Extj
(
CH!,C(S1)n×∂Rn

≥ 0

)
P

= Extj
(
C(S1)n , C(S1)n×∂Rn

≥ 0

)
P

=
{

0 (j ≤ n− 2)
C (j = n− 1)

The case (IV-1) Let us consider the case ? = ∗. Let N be the kernel of CH∗ −→ CH∩K∗.

Lemma 5.18 We have RHom
(
N , CK×∂Rn

≥0∗
)
P

= 0.

Proof Let ι be the inclusion
(
(S1)n \K

)
× ∂Rn

≥ 0 −→ (S1)n × ∂Rn
≥ 0. Then, N is of the form ι!N1. Then, the

claim follows from ι!CK×∂Rn
≥ 0∗.

We have the exact sequence: 0 −→ CK×∂Rn
≥0\(H∩K)×{0}! −→ CK×∂Rn

≥0
−→ C(H∩K)×{0}∗ −→ 0. Let k

denote the inclusion K × ∂Rn
≥ 0 \ (H ∩K)× {0} −→ K × ∂Rn

≥0. We have the following isomorphisms:

RHom
(
CK×∂Rn

≥0\(H∩K)×{0}!, CK×∂Rn
≥ 0

)
P
' Rk∗RHom

(
CK×∂Rn

≥ 0\(H∩K)×{0}, CK×∂Rn
≥ 0\(H∩K)×{0}

)
P

' CK×∂Rn
≥ 0,P (69)

Hence, we obtain RHom
(
C(H∩K)×{0} ∗, CK×∂Rn

≥ 0 ∗
)
P

= 0, and Extj
(
CH∗, CK×∂Rn

≥ 0 ∗
)
P

= 0 for any j.
Let us consider the case ? =!. We have an exact sequence 0 −→ CH! −→ C(S1)n −→ C(S1)n\H∗ −→ 0 on

(S1)n. By using the previous results, we obtain

Extj
(
CH!, CK×∂Rn

≥0∗
)
P

=
{

0 (j ≤ n− 2)
C (j = n− 1)
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The case (IV-2) Let us consider the case ? = ∗. By considering 0 −→ ∂Rn
≥0, we obtain

Extj
(
CH∗,CH×∂Rn

≥0∗
)
P
'

{
0 (j ≤ n− 2)
C (j = n− 1)

Let us consider the case ? =!. We have an exact sequence 0 −→ CH! −→ CH∗ −→ C∂H∗ −→ 0. Let us look at
Extj

(
C∂H∗, CH×∂Rn

≥ 0

)
. For 0 −→ [0, 1[×Rn−1, we have Extj

(
C0,C[0,1[×Rn−1

)
= 0 for any j. Hence, we obtain

Extj
(
CH!, CH×∂Rn

≥0

)
=

{
0 (j ≤ n− 2)
C (j = n− 1)

The case (IV-3) It is easy to show Extj
(
CH!,CK×∂Rn

≥0

)
= 0 for any j. By using the argument in (IV-2), we

can show Extj
(
CH∗,CK×∂Rn

)
= 0 for any j. Thus, the proof of Theorem 5.15 is finished.

5.5.6 Some uniqueness of K-structure

We use the notation in Subsection 5.5.1. Let V be a good meromorphic flat bundle on (X,D). Let g be
a holomorphic function on X such that g−1(0) = D, and let ig be the graph X −→ X × C. We regard
DRnil

X×eC(ig†V ) as a cohomologically constructible sheaf on X̃.
Let K be a subfield of C. A K-structure of DRnil

X×eC(
ig†V

)
is defined to be a K-cohomologically constructible

complex F on X̃ with an isomorphism α : F ⊗ C ' DRnil
X×eC(ig†V ) in the derived category. Two K-structures

(Fi, αi) (i = 1, 2) are called equivalent, if there exists an isomorphism β : F1 −→ F2 for which the following
diagram is commutative:

F1 ⊗ C β⊗C−−−−→ F2 ⊗ C

α1

y α2

y
DRnil

X×eC(ig†V ) =−−−−→ DRnil
X×eC(ig†V )

Lemma 5.19 Let (Fi, αi) (i = 1, 2) be K-structures of DRnil
X×eC(

ig†V
)
. If their restriction to π−1

1 (X − D[2])

are equivalent, then they are equivalent on X̃.

Proof We put FC
i := Fi ⊗ C. We have the following commutative diagram:

Hom(F1,F2)⊗ C −−−−→ Hom
(
F1|π−1

1 (X−D[2]),F2|π−1
1 (X−D[2])

)
⊗ Cy' y'

Hom
(
FC

1 ,FC
2

)
−−−−→ Hom

(
FC

1|π−1
1 (X−D[2])

,FC
2|π−1

1 (X−D[2])

)
According to Theorem 5.15, the horizontal arrows are injective. Hence, Hom(F1,F2) is the intersection of
Hom

(
F1|π−1

1 (X−D[2]),F2|π−1
1 (X−D[2])

)
and Hom

(
FC

1 ,FC
2

)
in Hom

(
FC

1|π−1
1 (X−D[2])

,FC
2|π−1

1 (X−D[2])

)
. Then, the el-

ement of Hom(FC
1 ,FC

2 ) corresponding to the identity of DRnil
X×eC(ig†V ) comes from Hom(F1,F2).

6 Good pre-K-holonomic D-modules

6.1 Good K-structure and the associated pre-K-Betti structure

6.1.1 Good meromorphic flat bundle with good K-structure

Let K ⊂ C be a subfield. Let X be a complex manifold with a normal crossing hypersurface D. Let V be a
good meromorphic flat bundle on (X,D).

Definition 6.1 We say that V has a good K-structure, if the flat bundle V|X−D has a pre-K-Betti structure
such that any Stokes filtrations are defined over K.
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Let D = D1 ∪D2 be a decomposition. Recall that the complex DR<D1≤D2eX(D)

(
M

)
is quasi-isomorphic to its

0-th cohomology sheaf L<D1≤D2 . (See Subsection 5.1.2.) It is naturally equipped with a K-structure L<D1≤D2
K ,

if V has a good K-structure. By Corollary 3.16 and (45), we obtain a pre-K-Betti structure

F<D1≤D2
V := Rπ∗L<D1≤D2

K

of the holonomic D-module V
(
!D1

)
. These pre-K-Betti structures are called canonical. Let D′1 ∪D′2 = D be

another decomposition such that D1 ⊂ D′1. The natural morphism V
(
!D′1

)
−→ V

(
!D1

)
is compatible with the

pre-K-Betti structures. We also use the symbols FV ∗ and FV ! to denote F≤D
V and F<D

V , respectively. We also
use the symbol FV to denote FV ∗ for simplicity.

More generally, let ι : Z ⊂ X be a complex submanifold with a normal crossing hypersurface DZ . Let VZ

be a meromorphic flat bundle on (Z,DZ). We say ι†VZ has a good K-structure if VZ has a good K-structure
in the above sense. The canonical pre-K-Betti structures for ι†VZ(!DZ,1) are also defined in a similar way for
a decomposition DZ = DZ,1 ∪DZ,2.

6.1.2 Induced pre K-Betti structures on the nearby cycle functor and the maximal functor

We set X := ∆n and D :=
⋃`

i=1{zi = 0}. Let V be a good meromorphic flat bundle on (X,D) with a good
K-structure. For each I ⊂ `, we set I!i := I ∪ {i} and I∗i := I \ {i}. The D-module

Πa,b
i?

(
V (!D(I))

)
=

(
V ⊗ Ia,b

zi

)
(!D(I?i))

has the canonical pre-K-Betti structure, where ? = ∗, !. Hence, ψi

(
V (!D(I))

)
and Ξi

(
V (!D(I))

)
have the

induced pre-K-Betti structures.

Lemma 6.2 The induced pre-K-Betti structure of ψi(V )|Di\∂Di
is good, i.e., it is compatible with the Stokes

filtrations. Moreover, the induced pre-K-Betti structure of ψi

(
V (!D(I))

)
is canonical for each I ⊂ `.

Proof We have only to consider the case i = 1. We give a preparation. By Lemma 3.17, we have the following
commutative diagram:

DRX

(
Π−∞,0

1!

(
V (!D(I))

))
−−−−→ DRX

(
Π−∞,0

1∗
(
V (!D(I))

))
'
x '

x
DR<D(I∗1)

X

(
Π−∞,0

1! V
)
−−−−→ DR<D(I∗1)

X

(
Π−∞,0

1∗ V
)

'
x '

x
DR<D(I!1)

X

(
V ⊗ I−∞,0

z1

)
−−−−→ DR<D(I∗1)

X

(
V ⊗ I−∞,0

z1

)
(70)

By the upper square, the induced K-structure of DRX ψ1

(
V (!D(I))

)
can be identified with the K-structure of

the following:

DR<D(I∗1)
X ψ1(V ) ' Cone

(
DR<D(I∗1)

X

(
Π−∞,0

1! V
)
−→ DR<D(I∗1)

X

(
Π−∞,0

1∗ V
))

(71)

We set D′ :=
⋃`

i=2Di. Let π1 : X̃(D′) −→ X be the real blow up. We obtain (71) as the push-forward of the
following on X̃(D′):

DR<D(I∗1)≤D(`−I!1)eX(D′)
ψ1(V ) ' Cone

(
DR<D(I∗1)≤D(`−I!1)eX(D′)

(
Π−∞,0

1! V
)
−→ DR<D(I∗1)≤D(`−I!1)eX(D′)

(
Π−∞,0

1∗ V
))

(72)

We prepare some commutative diagram in a general setting. For a holonomic DX -module M, we put

DR<D(I!1)≤D(`−I!1)eX(D′)
M := Ω<D(I!1)≤D(`−I!1)eX(D′)

⊗π−1
1 OX

π−1
1 M[dimX]
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DR<D(I∗1)≤D(`−I∗1)eX(D′)
M := Ω<D(I∗1)≤D(`−I!1)eX(D′)

(∗D1)⊗π−1
1 OX

π−1
1 M[dimX]

We have the following commutative diagram obtained from a commutative diagram similar to (14):

DR<D(I∗1)≤D(`−I!1)eX(D′)
M(!D1) −−−−→ DR<D(I∗1)≤D(`−I!1)eX(D′)

M(∗D1)x =

x
DR<D(I!1)≤D(`−I!1)eX(D′)

M −−−−→ DR<D(I∗1)≤D(`−I∗1)eX(D′)
M

IfM is a good meromorphic flat bundle, the left vertical arrow is also quasi-isomorphism, which can be shown
by the argument in the proof of Proposition 3.15.

Let ρ : X̃(D) −→ X̃(D′) be the induced map. We have the following natural commutative diagram, where
the vertical arrows are quasi-isomorphisms by Theorem 4.9:

DR<D(I!1)≤D(`−I!1)eX(D′)
M −−−−→ DR<D(I∗1)≤D(`−I∗1)eX(D′)

M

'
y '

y
ρ∗DR<D(I!1)≤D(`−I!1)eX(D)

M −−−−→ ρ∗DR<D(I∗1)≤D(`−I∗1)eX(D)
M

Thus, we obtain the following commutative diagram, in which the vertical arrows are quasi-isomorphisms:

DR<D(I∗1)≤D(`−I!1)eX(D′)

(
Π−∞,0

1! V
)
−−−−→ DR<D(I∗1)≤D(`−I!1)eX(D′)

(
Π−∞,0

1∗ V
)

'
x '

x
ρ∗DR<D(I!1)≤D(`−I!1)eX(D)

(
V ⊗ I−∞,0

z1

)
−−−−→ ρ∗DR<D(I∗1)≤D(`−I∗1)eX(D)

(
V ⊗ I−∞,0

z1

) (73)

Because DR<D(I!1)≤D(`−I!1)eX(D)

(
V ⊗ I−∞,0

z1

)
and DR<D(I∗1)≤D(`−I∗1)eX(D)

(
V ⊗ I−∞,0

z1

)
are equipped with K-structures

compatible with the morphism, we obtain a K-structure of DR<D(I∗1)≤D(`−I!1)eX(D′)
ψ1(V ) from (72) and (73).

Moreover, the lower square in (70) is obtained as the push-forward of (73). Hence, the K-structure of
DRX ψ1

(
V (!D(I))

)
is obtained as the push-forward of the K-structure of DR<D(I∗1)≤D(`−I!1)eX(D′)

ψ1(V ).

Let us consider the case I = ∅. By the above consideration, we obtain that FP
≤0 is compatible with the

K-structure, where FP denotes the Stokes filtration of ψ1(V ) at each point P ∈ π−1
1 (∂D1). By considering

the tensor product with meromorphic flat bundles with rank one, we can deduce that FP is defined over K.
Since the pre-K-Betti structure of ψ1

(
V (!D(I))

)
comes from the K-structure of DR<D(I∗1)≤D(`−I!1)eX(D′)

ψ1(V ), it

is canonical.

6.1.3 Good holonomic D-module with good K-structure

Let M be a good holonomic D-module on (X,D).

Definition 6.3 We say that M has a good K-structure, if (i) φI(M)
(
∗D(Ic)

)
has a good K-structure, (put

φ∅(M) :=M), (ii) the induced morphisms

ψiφI(M)(∗D(Ic)) −→ φiφI(M)(∗D(Ic)) −→ ψiφI(M)(∗D(Ic)) (i 6∈ I)

are compatible with the K-structures.

A morphism of good holonomic D-module with good K-structures f :M1 −→M2 is defined to be a morphism
of D-modules such that φI(f) are compatible with K-structures for any I ⊂ `. Let Holgood(X,D,K) denote
the category of good holonomic D-modules with good K-structures on (X,D). It is an abelian category.

Let V be a good meromorphic flat bundle on X with a good K-structure. Then, we naturally have
φJ

(
V

(
!D(I)

))(
∗D(Jc)

)
' ψJ(V ) for any I, J ⊂ `, which are equipped with good K-structures. Via these

K-structures, we regard V (!D(I)) ∈ Holgood(X,D,K).
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Lemma 6.4 LetM∈ Holgood(X,D,K) such thatM
(
∗D(J)

)
=M. Let I ⊂ ` such that |I| = n−dim SuppM

and VI = φI(M)
(
∗D(Ic)

)
6= 0. Then, the morphisms i†VI

(
!D(Ic) ∗D(J)

)
−→M −→ i†VI are compatible with

good K-structures.

Proof We set M1 := i†VI

(
!D(Ic) ∗D(J)

)
and M2 := i†VI . Let us show that φL(M1)

(
∗D(Lc)

)
−→

φL(M)
(
∗D(Lc)

)
−→ φL(M2)

(
∗D(Lc)

)
are compatible with K-structures for any L ⊂ `. We have only to

consider the case L ⊃ I. In the case L = I, it is clear. Assume that we have already known the compatibility
for L. We set Lj := L t {j} ⊂ `. We obtain the following morphisms compatible with K-structures:

ψj

(
φL

(
M1

)
(∗D(Lc))

)
−→ ψj

(
φL(M)(∗D(Lc))

)
−→ φjφL(M)

(
∗D(Lc

j)
)

−→ ψj

(
φL(M)

(
∗D(Lc)

))
−→ ψj

(
φL(M2)

(
∗D(Lc)

))
(74)

It implies the compatibility for Lj .

6.1.4 Pre-K-Betti structures for ΞIψJ(ι†VI)

Let K t J t I = L ⊂ `. Let VI be a good meromorphic flat bundle on (DI , ∂DI). Let ι : DI −→ X. For a map
f : K t J −→ {0, 1}, we set K0(f) := f−1(0) ∩K. We put

Cf (J,K, ι†VI) :=
(
ι†VI ⊗

⊗
k∈K0(f)

I−∞,1
zk

⊗
⊗

k 6∈K0(f)

I−∞,0
zk

)(
!D(f−1(0))

)
.

Let 0 denote the constant map valued in {0}. Let δi denote the map such that δi(j) = 0 (j 6= i) and δi(i) = 1.
We can identify ΞKψJ

(
ι†VI

)
as the kernel of the following morphism:

C0
(
J,K, ι†VI

)
−→

⊕
i∈KtJ

Cδi

(
J,K, ι†VI

)
(75)

If VI has a good K-structure, we obtain a pre-K-Betti structure of ΞKψJ(ι†VI) by (75).

Lemma 6.5 For i 6∈ L, we set Ki := K ∪ {i} and Ji := J ∪ {i}. The following morphisms are compatible with
the pre-K-Betti structures:

ΞKψJi

(
ι†VI

)
−→ ΞKiψJ

(
ι†VI

)
−→ ΞKψJi

(
ι†VI

)
Proof It is clear by construction.

Recall that we have the naturally induced good K-structure on ψi

(
ι†VI

)
for i 6∈ I (Lemma 6.2).

Lemma 6.6 For i 6∈ L, the natural isomorphism ΞKψJi

(
ι†VI

)
' ΞKψJ

(
ψi

(
ι†VI

))
is compatible with the

induced K-structures.

Proof Both the K-structures are obtained as the kernel of the morphism (75) for (Ji,K).

6.1.5 Functoriality

Let D1 ∪D2 be a decomposition of D. Let D3 be a hypersurface of X. Let ϕ : X ′ −→ X be a proper birational
morphism such that (i) D′ := ϕ−1(D3 ∪ D) is normal crossing, (ii) X ′ − D′ ' X − (D3 ∪ D). Let V be a
good meromorphic flat bundle on (X,D) with a good K-structure. We put V ′ := ϕ∗V ⊗ OX′(∗D′). We set
D′1 := ϕ−1(D1). We take D′2 ⊂ D′ such that D′1 ∪D′2 is a decomposition.

Proposition 6.7 V ′ is equipped with an induced K-good structure. Moreover, the natural morphisms

V (!D1) −→ ϕ†V
′(!D′1), ϕ†V

′(!D′2) −→ V (!D2)

are compatible with the canonical pre-K-Betti structures.
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Proof The first claim is easy to see. Let us show the second claim. We use the notation in Subsection
5.3. Let ϕ̃ : X̃ ′(D′) −→ X̃(D) be the induced map. By construction, it is easy to see that the morphisms
DR<D1≤D2eX(D)

(V ) −→ Rϕ̃∗DR<D′
1≤D′

2eX′(D′)
(V ′) and Rϕ̃∗DR<D′

2≤D′
1eX′(D′)
(V ′) −→ DR<D2≤D1eX(D)

(V ) are compatible with the

induced K-structures. Then, the second claim follows from Theorem 5.12.

6.2 The associated pre-K-Betti structure

6.2.1 `-squares of complexes

For small categories Ai (i = 1, . . . , `), let
∏`

i=1Ai denote their product, i.e., the category whose objects and

morphisms are given by ob
(∏`

i=1Ai

)
=

∏`
i=1 ob(Ai) and Mor(a, b) =

∏
Mor(ai, bi). Let Γ be a small category

given by the following commutative diagram:

(0, 0) a−−−−→ (0, 1)

b

y c

y
(1, 0) d−−−−→ (1, 1)

c ◦ a = d ◦ b

Let A be an abelian category. Let C(A) be the category of complexes in A. A square in C(A) is a functor
F : Γ −→ C(A). For a given square F , let H(F ) be the total complex of the following double complex:

F (0, 0)[1]
F (a)+F (b)−−−−−−−→ F (0, 1)⊕ F (1, 0)

F (c)−F (d)−−−−−−−→ F (1, 1)[−1]

An `-square in C(A) is a functor F : Γ` −→ C(A). Let πi : Γ` −→ Γ`−1 be the projection forgetting the i-th
component. For a given `-square F , we obtain an (`− 1)-square πi∗F by πi∗F (a) = H

(
F|π−1

i (a)

)
.

Lemma 6.8 For i < j, we have an isomorphism πi∗πj∗F ' πj−1∗πi∗F .

Proof We have only to consider the case ` = 2, (i, j) = (1, 2). The i-th terms of the both complexes are given
by ⊕

a1+a2+b1+b2=i−2

F (a1, a2, b1, b2).

The multiplication of −1 on F (0, 0, 0, 0)⊕ F (1, 1, 0, 0)⊕ F (0, 0, 1, 1)⊕ F (1, 1, 1, 1) interpolates the differentials
for πi∗πj∗F and πj−1∗πi∗F .

For any subset I ⊂ `, let πI : Γ` −→ ΓI be the naturally defined projection. We take I = I0 ⊂ I1 ⊂ · · · ⊂
Im = `, which induces the factorization πI = π(1) ◦ π(2) ◦ · · · ◦ π(m), where π(i) : ΓIi −→ ΓIi−1 . Then, we set
πI∗F := π

(1)
∗ ◦ · · · ◦ π(m)

∗ F . It is well defined up to isomorphisms as above.

6.2.2 The associated pre-K-Betti structure

Let M be a good holonomic D-module on (X,D). Let H ⊂ `. Let us construct an H-cube in the category of
good holonomic D-modules on (X,D). For (i, j) =

(
(ik, jk)

∣∣ k ∈ H)
∈ obΓH , we have the following subsets of

H:

I(i, j) =
{
k

∣∣ (ik, jk) = (0, 1)
}
, J(i, j) =

{
k

∣∣ (ik, jk) = (0, 0), or (1, 1)
}
, K(i, j) =

{
k

∣∣ (ik, jk) = (1, 0)
}

Then, we put QH(M, i, j) := ΞI(i,j)ψJ(i,j)φK(i,j)M. For k0 6∈ H, we have the following naturally induced
diagram:

ψk0ΞIψJφKM −−−−→ Ξk0ΞIψJφKMy y
φk0ΞIψJφKM −−−−→ ψk0ΞIψJφKM

(76)
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For each decomposition H = {h}∪(H−{h}), we have a similar diagram. Thus, we obtain an H-cube QH(M) of
good holonomic D-modules. The cohomology associated to (76) is naturally isomorphic to ΞIψJφKM. Hence,
we have a natural quasi-isomorphism πH∗Q`(M) ' QH(M). In particular, we have a quasi-isomorphism
π`∗Q`(M) 'M.

If M has a good K-structure, each Q`(M, i, j) is equipped with the pre-K-Betti structure F`
M(i, j), given

as in Subsection 6.1.4.

Lemma 6.9 The morphisms are compatible with the pre-K-Betti structures.

Proof Let us consider the morphisms in the diagram (76). The morphisms

ψk0ΞIψJφKM−→ Ξk0ΞIψJφKM−→ ψk0ΞIψJφKM

are compatible with the pre-K-Betti structures by construction, as remarked in Lemma 6.5. Let K ′ := `− (K t
k0). By definition, the morphisms

ψk0φKM(∗D(K ′)) −→ φk0φKM(∗D(K ′)) −→ ψk0φKM(∗D(K ′))

are compatible with the K-structures. We remark Lemma 6.6, and then it follows that

ψk0ΞIψJφKM−→ φk0ΞIψJφKM−→ ψk0ΞIψJφKM

are compatible with the pre-K-Betti structures.

Thus, we obtain a pre-K-Betti structure of π`∗Q`(M) ' DRM, which is independent of the choice of a
factorization of π`. It is called the pre-K-Betti structure ofM associated to a good K-structure.

More generally, ifM
(
∗D(Hc)

)
=M, any QH(M, i, j) are equipped with the pre-K-Betti structures, which

induce a pre-K-Betti structure of M. The naturally defined morphisms ΞHcΞKψJφI(M) −→ ΞKψJφI(M)
induce the quasi-isomorphism π`∗Q`(M) −→ πH∗QH(M), which is compatible with the pre-K-Betti structures.
Namely, the associated pre-K-Betti structures ofM are the same.

Lemma 6.10 The canonical pre-K-Betti structures of V
(
!D(H)

)
is equal to the pre-K-Betti structure associ-

ated to the good K-structure.

Proof By the above consideration, the following isomorphisms are compatible with the pre-K-Betti structures:

V
(
!D(H)

) '−→ QH(V (!D(H))) '←− Q`(V (!D(L)))

Then, the claim of the lemma follows.

6.2.3 The induced pre-K-Betti structures on the functors along a monomial function

Let g be a meromorphic function on (X,D) such that g−1(0) ⊂ D. Let D = D1 ∪D2 be a decomposition such
that D1 ⊃ g−1(∞) and D2 ⊂ g−1(0). (Note that Di are not necessarily irreducible.) We have the pre-K-Betti
structure of Ξg(V, ∗D1) and ψg(V, ∗D1) as the kernel of V ⊗ I−∞,a

g (!D2∗D1) −→ V ⊗ I−∞,0
g (∗D) for a = 1, 0.

Since the canonical pre-K-Betti structures of V ⊗ I−∞,a
g (!D2∗D1) and V ⊗ I−∞,0

g (∗D) are associated to the
good K-structures, the induced pre-K-Betti structure of Ξg(V, ∗D1) and ψg(V, ∗D1) are also associated to the
good K-structures.

Let M ∈ Holgood(X,D,K) be such that M = M(∗D1) and M(∗D) = V . By Lemma 6.4, we obtain the
following complex in Holgood(X,D,K):

M(!D2 ∗D1) −→M⊕ Ξg

(
V, ∗D1

)
−→M(∗D) (77)

Hence, we obtain that φg

(
M, ∗D1

)
∈ Holgood(X,D,K). The pre-K-Betti structure induced by (77) is the

same as the one associated to the good K-structures of φg

(
M, ∗D1

)
. Similarly, we have the description of

pre-K(∗D1)-holonomic D(∗D1)-module M as the cohomology of

ψg(M, ∗D1) −→ Ξg(M, ∗D1)⊕ φg(M, ∗D1) −→ ψg(M, ∗D1).
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6.2.4 Globalization

Let Mi (i = 1, 2) be good on (X,D) with a good K-structure. Let Fi be the associated pre-K-Betti structure
of DRMi.

Lemma 6.11 Let ϕ :M1 −→M2 be a morphism of D-modules. If it is compatible with the associated pre-K-
Betti structures Fi, then it preserves good K-structure of Mi, i.e., φI(M1)

(
∗D(Ic)

)
−→ φI(M2)

(
∗D(Ic)

)
are

compatible with K-structures for any I.

Proof We use an induction on ρ(M1 ⊕M2). (See Subsection 3.1.2 for ρ.) We take a subset J ⊂ ` such that
|J | = n − dim Supp(M1 ⊕M2) and (M1 ⊕M2)

(
∗D(Jc)

)
6= 0. Let g be a holomorphic function such that

g−1(0) = D(Jc). We have the induced good K-structures of Ξg

(
Mi(∗D(Jc))

)
and Mi(?g) for i = 1, 2 and

? = ∗, !. By the assumption, the morphism M1|X−D(Jc) −→M2|X−D(Jc) is compatible with the K-structures.
Hence,M1(?g) −→M2(?g) and Ξg

(
M1(∗g)

)
−→ Ξg

(
M2(∗g)

)
are morphisms in Holgood(X,D,K). Moreover,

we obtain the following diagram of the pre-K-holonomic D-modules:

M1(!g) −−−−→ Ξg(M1(∗g))⊕M1 −−−−→ M1(∗g)y y y
M2(!g) −−−−→ Ξg(M2(∗g))⊕M2 −−−−→ M2(∗g)

Hence, the induced morphism φg(M1) −→ φg(M2) is also compatible with the pre-K-Betti structures. By
using the hypothesis of the induction, we obtain that φg(M1) −→ φg(M2) is a morphism in Holgood(X,D,K).
Therefore, we obtain thatM1 −→M2 is also a morphism in Holgood(X,D,K).

Lemma 6.11 means that a good K-structure can be recovered from the associated pre-K-Betti structure.

Definition 6.12 A pre-K-Betti structure F of M is called good, if it is the pre-K-Betti structures associated
to a good K-structure of M.

Let (w1, . . . , wn) be another holomorphic coordinate such that w−1
i (0) = z−1

i (0).

Lemma 6.13 If M has a good K-structure with respect to the coordinate (z1, . . . , zn), it has an induced good
K-structure with respect to (w1, . . . , wn) such that the associated pre-K-Betti structures are the same. In this
sense, Definition 6.12 is independent of the choice of a coordinate.

Proof We use symbols φz,I and φw,I to distinguish the dependence on the coordinates. As remarked in
Subsection 2.2.7, we have the natural isomorphisms (11). They induce isomorphisms φz,I(M) ' φw,I(M) and
ψiφz,I(M) ' ψiφz,I(M). Hence, we obtain good K-structure of M with respect to (w1, . . . , wn). Let Q`

z(M)
and Q`

w(M) denote the `-cube associated to M with respect to the coordinates (z1, . . . , zn) and (w1, . . . , wn),
respectively. It is easy to observe that isomorphisms (11) induce π`∗Q`

z(M) ' π`∗Q`
w(M) compatible with

pre-K-Betti structures, and they induce the identity on M. Hence, the associated pre-K-Betti structures on
M are the same.

In particular, the notion makes sense in a global situation.

Definition 6.14 Let Y be a complex manifold with a normal crossing hypersurface DY . Let M be a good
holonomic D-module on (Y,DY ). A pre-K-Betti structure F of M is called good, if it is the pre-K-Betti
structure associated to a good K-structure on any coordinate neighbourhood.

6.3 Preliminary for functoriality via push-forward

6.3.1 Statement

We put X := ∆n and D :=
⋃`

i=1{zi = 0}. Let G : Y −→ X be a proper morphism of complex manifolds.
Let DY be a simply normal crossing hypersurface of Y with a decomposition DY = DY 1 ∪ DY 2 such that
G−1(D) ⊂ DY 2.

Let V be a good meromorphic flat bundle on (Y,DY ) with a good K-structure. Put M := V (!DY 1). Let
FM be the canonical pre-K-Betti structure. Assume the following:
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• Gi
†M = 0 for any i 6= 0, and G0

†M is a good meromorphic flat bundle on (X,D).

We put G := RG∗(FM)|X−D, which gives a pre-K-Betti structure of G0
†(M)|X−D. The following proposition

will be used in the proof of Theorem 8.1. (See Subsection 8.4.1.)

Proposition 6.15 G is good, i.e., it is compatible with the Stokes filtrations. Moreover, RG∗FM is the canon-
ical K-Betti structure of G0

†(M).

Corollary 6.16 Under the assumption, the induced pre-K-Betti structure of RG∗DFM is the canonical K-Betti
structure of G0

†DM' DG0
†M.

Remark 6.17 The special case dimX = 1 of Proposition 6.15 essentially appeared in [29] and [35].

6.3.2 A characterization of compatibility with Stokes filtrations

Let g be a holomorphic function on X such that g−1(0) = D. Let ig : X −→ X × C be the graph, and Γg be
the image. We put X̃ := Γg ×X×C (X × C̃). The induced map X̃(D) −→ X̃ is denoted by ρ.

Let V1 be an unramifiedly good meromorphic flat bundle on (X,D). Its good set of irregular values is denoted
by Irr(V1). For each a ∈ Irr(V1), put L(−a) = OX(∗D) e with the meromorphic flat connection ∇e = e d(−a).
We fix a K-structure of L(−a) by the trivialization exp(a) e. We put V1(−a) := V1 ⊗ L(−a). We regard
DRnil

X×eC(
ig†V1(−a)

)
as a constructible sheaf on X̃.

Lemma 6.18 Assume that V1|X−D has a K-structure with the following property:

• For each a ∈ Irr(V1), DRnil
X×eC(

ig†V1(−a)
)

has a K-structure whose restriction to X − D is equal to the
one induced by the K-structure of V1 and L(−a).

Then, the K-structure of V1|X−D is good. Moreover, the K-structure of DRnil
X×eC(ig†V1) is equivalent to Rρ∗L≤D

K .

Proof As for the first claim, the general case can be reduced to the case that D is smooth, which is easy to
see. The second claim follows from Lemma 5.19

6.3.3 Proof of Proposition 6.15

Let πX : X̃ −→ X be the induced map.

Lemma 6.19 DRnil
X×eC(

ig†G
0
†M

)
has a K-structure K whose restriction to X −D is equal to G. Moreover, we

have RπX∗K = RG∗FM.

Proof We put gY := G−1(g). Let igY
: Y −→ Y × C denote the graph of gY , and ΓgY

be the image. We put
Ỹ := ΓgY

×Y×C (Y ×C̃). Let πY and ρY denote the induced maps Ỹ −→ Y and Ỹ (DY ) −→ Ỹ . Let G̃ : Ỹ −→ X̃
be the induced map.

We have the K-structure L≤DY

K of DRnileY (DY )
(M). According to Proposition 5.14, it induces a K-structure

RρY ∗L≤DY

K of DRnil
Y×eC(igY †M). By a general compatibility, we have RG̃∗DRnil

Y×eC(igY †M) ' DRnil
X×eC(ig†G0

†M)

as remarked in Subsection 5.4.3. Hence, K := RG̃∗RρY ∗L≤DY

K gives a K-structure of DRnil
X×eC(

ig†G
0
†M

)
with

the desired property.

Let κ : X ′ −→ X be a ramified covering such that κ−1G0
†M is unramified with the good set of irregular

values I. We put D′ := κ−1(D). We take a projective birational map µ : Y ′ −→ Y ×X X ′ such that (i) Y ′ is
smooth, (ii) Y ′ − µ−1

(
Y ×X D′

)
' Y − (Y ×X D′), (iii) D′Y := µ−1(DY ×X X ′) is simply normal crossing. Let

µ1 : Y ′ −→ Y be the induced map. Let G′ : Y ′ −→ X ′ be the induced morphism. For each a ∈ I, we have
the induced meromorphic flat bundle V ′(−a) := µ∗1V ⊗ G′∗L(−a) on (Y ′, D′Y ). We have the decomposition
D′Y = D′Y 1 ∪ D′Y 2 such that D′Y 2 := µ−1

1 (DY 2). We put M′(−a) :=
(
V ′(−a)

)
(!D′Y 1). We have a natural

isomorphism G′ 0† (M′(−a)) ' κ∗G0
†(M)(−a). By applying Lemma 6.18 and Lemma 6.19, we obtain that the

first claim of Proposition 6.15. By using Lemma 5.19 and Lemma 6.19, we obtain the second claim of Proposition
6.15.
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7 K-holonomic D-modules

7.1 Preliminary

7.1.1 Cell and cell function

Let X be a complex manifold or a smooth complex algebraic variety. In the complex analytic case, we use
ordinary topology. In the algebraic case, we consider Zariski topology. In the algebraic setting, D-modules are
assumed to be algebraic. An open subset U is called principal, if it is the complement of a hypersurface. Let P
be a point of X. For any closed subvariety W of X, let dimP W denote the dimension of W at P . LetM be a
holonomic D-module on X with dimP SuppM≤ n. If X is algebraic, we assume thatM is also algebraic. An
n-dimensional cell ofM at P is a tuple (Z,U, ϕ, V ) as follows:

(Cell 1) ϕ : Z −→ X is a morphism of complex manifolds or smooth complex algebraic varieties, such that
P ∈ ϕ(Z) and dimZ = n. We assume that there exists a neighbourhood of XP of P in X such that
ϕ : ϕ−1(XP ) −→ XP is projective. We permit that Z may be non-connected or empty.

(Cell 2) U ⊂ Z is the complement of a simply normal crossing hypersurface DZ . The restriction ϕ|U is an
immersion. Moreover, there exists a hypersurface H of XP such that ϕ−1(H) = DZ ∩ ϕ−1(XP ).

(Cell 3) V is a meromorphic flat bundle on (Z,DZ). We have a morphism ϕ†(V!)P −→ MP −→ ϕ†(V )P

such that MP (∗H) ' ϕ†(V )P and MP (!H) ' ϕ†(V!)P for a hypersurface H in (Cell 2), where we put
V! := V (!DZ) and subscript “P” means the restriction to XP . The restriction of V to some connected
components may be 0.

If V is good on (Z,DZ), C is called good. For a given holonomic DX -moduleM and P ∈ SuppM, there always
exists a cell for M at P . If dimP M = 1, any cell is good. If dimP M = 2, there always exists a good cell for
M at P , due to Kedlaya [20]. (See also [31] for the algebraic case.) In the algebraic case, there always exists a
good cell forM at P ([31] and [32]).

Remark 7.1 Let (Z,U, ϕ) be a tuple satisfying (Cell 1) and (Cell 2). If we are given a meromorphic flat bundle
V on (Z,DZ), the tuple (Z,U, ϕ, V ) is called a cell at P .

Let g be a holomorphic or algebraic function onXP . It is called a cell function for C, if U = SuppMP \g−1(0).
For such g, we obtain a description of MP as the cohomology of the complex in the category of analytic or
algebraic holonomic DXP

-modules:

ψg

(
ϕ†(V )P

)
−→ Ξg

(
ϕ†(V )P

)
⊕ φg(MP ) −→ ψg

(
ϕ†(V )P

)
For a given cell, a cell function always exists after XP and Z are shrinked.

Remark 7.2 Let C be a cell of M at P . If we have a neighbourhood XP of P satisfying (Cell 1–3), any
neighbourhood X ′P ⊂ XP also satisfies (Cell 1–3). Hence, we do not have to be careful with a choice of XP .

7.1.2 Refinement and enhancement

Let C′ = (Z ′, ϕ′, U ′, V ′) and C = (Z,ϕ, U, V ) be n-cells of M at P . We say that C′ is a refinement of C, and
denote C′ ≺ C, if the following holds:

• ϕ′ factors through ϕ in the sense that there exists ϕ1 : Z ′ −→ Z such that (i) ϕ′ = ϕ◦ϕ1, (ii) ϕ1(U ′) ⊂ U .

• V ′ = ϕ∗1V ⊗OZ′(∗DZ′), where DZ′ := Z ′ − U ′.

In that situation, there exist naturally induced morphisms:

ϕ′†(V
′
! )P −→ ϕ†(V!)P −→MP −→ ϕ†(V )P −→ ϕ′†(V

′)P (78)

We say that C′ is a dominant refinement of C, if U ′ is dense in U .
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Let C = (Z,U, ϕ, V ) be an n-cell of M at P . We take an n-dimensional closed subvariety Z ′ ⊂ X such
that dim

(
ϕ(Z) ∩ Z ′

)
< n. We take a refinement of C such that U ∩ Z ′ = ∅. Let Z1 be a complex manifold

with a projective birational morphism ϕ1 : Z1 −→ Z ′ and a smooth open subset U1 ⊂ Z1 such that (i) ϕ1|U1

is an immersion, (ii) Z1 − U1 is normal crossing and the pull back of a hypersurface in X around P . We set
Z̃ := Z t Z1 and Ũ := U t U1. We have the induced map ϕ̃ : Z̃ −→ X. Let Ṽ be a meromorphic flat bundle
on Z̃ such that Ṽ0|Z = V and Ṽ0|Z1 = 0. Then, it is easy to observe that C̃ := (Z̃, Ũ , ϕ̃, Ṽ ) is an n-cell of M,
which is called an enhancement of C.

In the following, for a cell C = (Z,U, ϕ, V ), we implicitly assume ϕ−1(XP ) = Z by taking a refinement of C.
So we omit the subscript “P” in ϕ†(V!)P and ϕ†(V )P .

7.1.3 K-cell and the induced pre-K-Betti structure on the nearby cycle

Let F be a pre-K-Betti structure of M. Let C = (Z,U, ϕ, V ) be a good n-cell of M at P . We say that F and
C are compatible, if the following holds:

• The induced K-structure of V|U is good, i.e., compatible with the Stokes filtrations along DZ .

• The induced morphisms ϕ†(V!) −→MP −→ ϕ†(V ) are compatible with the pre-K-Betti structures. (See
Subsection 6.1.1 for the canonical pre-K-Betti structures of V! and V .)

Such a cell C is called a good K-cell of (M,F). It is not difficult to construct an example of a pre-K-holonomic
D-module, for which there does not exist a good K-cell at some point.

Lemma 7.3 Let C = (Z,U, ϕ, V ) be a good K-cell of (M,F) at P . Let C′ = (Z ′, U ′, ϕ′, V ′) be a refinement of
C. Then, C′ is also a good K-cell. Moreover, the induced morphisms in (78) are compatible with pre-K-Betti
structures.

Proof It follows from Proposition 6.7.

Let g be a cell function for a good K-cell C. Let us observe that pre-K-Betti structures of Ξg

(
ϕ†(V )

)
,

ψg

(
ϕ†(V )

)
and φg(MP ) are induced. We set V a,b

g? := Πa,b
ϕ−1(g)?V for ? = ∗, !. Note that ϕ†

(
V a,b

g?

)
have the

canonical pre-K-Betti structures. Since Ξg

(
ϕ†V

)
and ψg

(
ϕ†V

)
are of the form Ker

(
ϕ†

(
V a,b

g!

)
−→ ϕ†

(
V a′,b′

g∗
))

,

they are equipped with induced pre-K-Betti structures, denoted by DΞg(ϕ∗FV ) and Dψg(ϕ∗FV ). We will use
the following obvious lemma implicitly.

Lemma 7.4 The natural isomorphisms Ξg

(
ϕ†(V )

)
' ϕ†

(
Ξg(V )

)
and ψg

(
ϕ†V

)
' ϕ†ψg(V ) are compatible with

the induced pre-K-Betti structures.

Since φg(MP ) is the cohomology of the complex ϕ†V! −→ Ξg(ϕ†V ) ⊕M −→ ϕ†V , we obtain a pre-K-
Betti structure of φg(MP ), denoted by Dφg(F). The tuples

(
Ξg(ϕ†V ),Ξg(ϕ∗FV )

)
,
(
ψg(ϕ†V ), ψg(ϕ∗FV )

)
and(

φg(M),Dφg(F)
)

are also denoted by Ξgϕ†(V,FV ), ψgϕ†(V,FV ) and φg(M,F).

7.2 K-holonomic D-modules

7.2.1 Definition of K-Betti structure

Let X be a complex manifold, and P be a point of X. Let (M,F) be a pre-K-holonomic D-module on X. Let
us define the notion of K-Betti structure ofM at P , inductively on the dimension of SuppM.

Definition 7.5 In the case dimP SuppM = 0, a K-Betti structure is defined to be a pre-K-Betti structure.
Let us consider the case dimP SuppM≤ n. We say that F is a K-Betti structure ofM at P , if there exists

an n-dimensional good K-cell C0 = (Z0, ϕ0, U0, V0) at P with the following property:

• dimP

((
SuppM∩XP

)
\ ϕ0(Z0)

)
< n for some neighbourhood XP of P in X.
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• For any dominant refinement C ≺ C0 and any cell function g for C, the induced pre-K-Betti structure
Dφg(F) is a K-Betti structure of φg(MP ) at P . Note that dimP φg(F) < n.

Such an n-cell C0 is called a bounding n-cell of M at P .

If C0 is a bounding n-cell ofM, its dominant refinement and enhancement are also bounding n-cells of M.

Definition 7.6 If F is a K-Betti structure of M at any point of X, it is called a K-Betti structure of M. A
holonomic D-module with a K-Betti structure is called a K-holonomic D-module.

A morphism of K-holonomic D-modules (M1,F1) −→ (M2,F2) is defined to be a morphism of pre-K-
holonomic D-modules.

Proposition 7.7 The category of K-holonomic D-modules is abelian.

Proof Let P be any point of X. We use an induction on the dimension of SuppP M. Let (fD, fP) :
(M1,F1) −→ (M2,F2) be a morphism of K-holonomic D-modules. Let us show that Ker(fP) is a K-Betti
structure of Ker fD.

Let n ≥ max
{
dim SuppP Mi

}
. Let Ci,0 = (Zi,0, Ui,0, ϕi,0, Vi,0) (i = 1, 2) be bounding n-cells for Mi at P .

By considering refinement and enhancement, we may assume that (Z1,0, U1,0, ϕ1,0) = (Z2,0, U2,0, ϕ2,0), which is
denoted by (Z0, U0, ϕ0). We may also assume that the union of the irregular values of Vi,0 are good at each point
of the pole. We have an induced morphism fZ0 : V1,0 −→ V2,0. We obtain a cell C0(Ker) =

(
Z0, U0, ϕ0,Ker fZ0

)
of Ker fD.

Let C(Ker) = (Z,U, ϕ,KZ) be a dominant refinement of C0(Ker). We have refinements Ci = (Z,U, ϕ, Vi) of
Ci,0 with the induced morphism fZ : V1 −→ V2. We have Ker fZ ' KZ . We obtain the following commutative
diagram of pre-K-holonomic D-modules:

ϕ†V1! −−−−→ M1 P −−−−→ ϕ†V1y y y
ϕ†V2! −−−−→ M2 P −−−−→ ϕ†V2

Hence, the induced morphisms ϕ∗KZ! −→ Ker(fD)P −→ ϕ∗KZ are compatible with the pre-K-Betti structures.
We have the following commutative diagram of pre-K-holonomic D-modules:

ϕ†
(
V a,b

1,g!

)
−−−−→ ϕ†(V

a,b
1,g∗)y y

ϕ†(V
a,b
2,g!) −−−−→ ϕ†(V

a,b
2,g∗)

Hence, the induced morphisms Ξg

(
ϕ†V1

)
−→ Ξg

(
ϕ†V2

)
and ψg

(
ϕ†V1

)
−→ ψg

(
ϕ†V2

)
preserve the pre-K-Betti

structures. Therefore, φg(fD) preserves the pre-K-Betti structures, i.e., Dφg(fP) : Dφg(F1) −→ Dφg(F2) is
induced. By the assumption of the induction, Ker Dφg(fP) is a K-Betti structure. It is easy to obtain that
Dφg Ker fP = Ker Dφg(fP). Then, we can conclude that

(
Ker fD,Ker fP

)
is a K-holonomic D-module. The

claims for the cokernel and the image can be shown similarly.

7.2.2 Dual

Lemma 7.8 For any K-holonomic D-module (M,F), its dual D(M,F) := (DM,DF) is also K-holonomic.

Proof Let P be any point of SuppM, and let C0 be a bounding n-cell at P . Let C = (Z,U, ϕ, V ) be any
refinement of C0. Let FV and FV ! be the canonical pre-K-Betti structures of V and V!. Let C∨ := (Z,U, ϕ, V ∨).
We have the induced K-structure of V ∨. According to Proposition 5.5 and Theorem 5.6, DFV ! and DFV are
the canonical pre-K-Betti structures of V ∨ and V ∨! . Hence, we obtain that C∨ and DF are compatible. We
also obtain that DDΞgϕ∗FV is equal to the canonical pre-K-Betti structure of Ξgϕ∗V

∨. Moreover, the induced
K-structure of φg(DMP ) is equal to DDφgF under the isomorphism φgDMP ' DφgMP . By the hypothesis of
the induction, it is K-Betti structure. Thus, we obtain that D(M,F) is K-holonomic.
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7.2.3 Sub-quotient

Let (M1,F1) ⊂ (M,F) be a pre-K-holonomic D-submodule.

Lemma 7.9 If (M,F) is K-holonomic, (M1,F1) is also K-holonomic. Similar claim holds for quotient.

Proof Let P be any point of X. We use an induction on the dimension of the support of M. Let n ≥
dimP SuppM. Let C = (Z,U, ϕ, V ) be a bounding n-cell ofM at P . Let V1 ⊂ V denote the subbundle induced
by M1. Then, C1 = (Z,U, ϕ, V1) is an n-cell of M1 at P . Let us show that C1 and F1 are compatible. Since
the K-structure and the Stokes structure for V1 are the restriction of those for V , they are compatible. Let F∗
and F! denote the canonical K-structures of ϕ†V and ϕ†V!. Let F1∗ and F1! denote the canonical K-structures
of ϕ†V1 and ϕ†V1!. We have the following morphisms:

ϕ†(V!) −−−−→ M −−−−→ ϕ†(V )x x x
ϕ†(V1!) −−−−→ M1 −−−−→ ϕ†(V1)

F! −−−−→ F −−−−→ F∗x x x
F1! F1 F1∗

Because the morphism ϕ†(V1!) −→ M/M1 is 0, the morphism F1! −→ F/F1 is also 0, i.e., F1! −→ F factors
through F1. Similarly, we obtain that F1 −→ F∗ factors through F1∗.

Let f be a cell function for C. We have DΞf (F) ⊃ DΞf (F1) and Dψf (F) ⊃ DψfF1. Hence, we obtain
Dφf (F) ⊃ Dφf (F1), which are pre-K-Betti structures of φfM and φfM1. By the assumption of the induction,
we obtain that Dφf (F1) is a K-Betti structure of φfM1.

7.2.4 Twist

Let (M,F) be a K-holonomic D-module on X. Let V be a flat bundle on X with a K-structure, i.e., we have a
K-local system FV such that FV ⊗C ' DRX(V ). Then, we obtain a pre-K-Betti structure F ⊗FV ofM⊗V.

Lemma 7.10 F ⊗ FV is a K-Betti structure of M⊗V.

Proof Let P be any point of X. We use an induction on dimP SuppM. Let C = (Z,U, ϕ, V ) be a K-
cell of M at P . Then, C′ =

(
Z,U, ϕ, V ⊗ ϕ∗V

)
is a K-cell of M ⊗ V at P . Let g be a cell function of

C. Then, we have natural isomorphism of pre-K-holonomic DX -modules ψg

(
ϕ∗(V ⊗ ϕ∗V)

)
' ψg

(
ϕ∗(V )

)
⊗ V

and Ξg

(
ϕ∗(V ⊗ ϕ∗V)

)
' Ξg

(
ϕ∗(V )

)
⊗ V. Hence, we obtain an isomorphism of pre-K-holonomic D-modules

φg(M⊗V) ' φg(M)⊗V. By using the hypothesis of the induction, we obtain that φg(M⊗V) is K-holonomic.
Hence, we obtain that M⊗V is K-holonomic at P .

7.2.5 Complement

Let (M,F) be a K-holonomic D-module.

Lemma 7.11 Any good cell C = (Z,U, ϕ, V ) of M is compatible with F , and the morphisms ϕ†V! −→M −→
ϕ†V are compatible with the K-Betti structures.

Proof The first claim is easy to see. If we take an appropriate refinement C′ = (Z ′, U ′, ϕ′, V ′) of C, the induced
morphismsM−→ ϕ′∗V

′ and ϕ†V −→ ϕ′†V
′ are compatible with K-Betti structures. Because ϕ†V −→ ϕ′†V

′ is
a monomorphism, we obtain that M −→ ϕ†V is also compatible with K-Betti structures. We can show that
ϕ!V −→M is also compatible with K-Betti structures with a similar argument.

7.3 K(∗D)-holonomic D(∗D)-modules

We introduce some auxiliary notion of K(∗D)-Betti structure on DX(∗D)-modules, where D is a hypersurface.
Although we do not need it eventually, it will be useful in the argument in Section 8.
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7.3.1 Cell and cell function for holonomic DX(∗D)-modules

Let X be a complex manifold or smooth complex algebraic variety, and let D be a hypersurface of X. LetM be
a holonomic DX(∗D)-module, i.e.,M is a holonomic DX -module such thatM(∗D) =M. Let P ∈ D∩SuppM.
A cell of a holonomic DX(∗D)-module M is defined to be a cell of a holonomic DX -module M. The notions of
refinement and enhancement of a cell of a holonomic DX(∗D)-module are defined as those for cells of a holonomic
DX -modules. However, we will be interested in the morphisms ϕ†(V!)(∗D) −→MP −→ ϕ†V .

We make a modification for the notion of cell function. Let C = (Z,U, ϕ, V ) be a cell of a holonomic DX(∗D)-
moduleM. A cell function g of C is a meromorphic function on (X,D) such that U = SuppM\

(
g−1(0)∪D

)
.

7.3.2 K(∗D)-cell

Let F be a pre-K(∗D)-Betti structure of M. Let C = (Z,U, ϕ, V ) be a good n-cell of M at P . We say that
F and C are compatible if (i) the induced K-structure of V|U is compatible with the Stokes filtrations, (ii) the
induced morphisms ϕ†(V!)(∗D) −→ MP −→ ϕ†(V ) are compatible with the pre-K-Betti structures. Such a
cell C is called a K(∗D)-cell of (M,F).

Let g be a cell function for a good K(∗D)-cell C. We set V a,b
g? (∗D) :=

(
V ⊗ Ia,b

ϕ−1(g)

)
(∗ϕ−1D) for ? = ∗, !.

Note that ϕ†
(
V a,b

g? (∗D)
)

have the canonical pre-K-Betti structures. Since Ξg

(
ϕ†V, ∗D

)
and ψg

(
ϕ†V, ∗D

)
are

of the form Ker
(
ϕ†

(
V a,b

g! (∗D)
)
−→ ϕ†

(
V a′,b′

g∗ (∗D)
))

, they are equipped with the induced pre-K(∗D)-Betti

structures, denoted by DΞg(ϕ∗FV , ∗D) and Dψg(ϕ∗FV , ∗D). The tuples
(
Ξg(ϕ†V, ∗D),DΞg(ϕ∗FV , ∗D)

)
and(

ψg(ϕ†V, ∗D),Dψg(ϕ∗FV , ∗D)
)

are also denoted by Ξgϕ†(V,FV , ∗D) and ψgϕ†(V,FV , ∗D). We will use the
following obvious lemma implicitly.

Lemma 7.12 The natural isomorphisms

Ξg

(
ϕ†V, ∗D

)
' ϕ†Ξg(V, ∗ϕ−1D), ψg

(
ϕ†V, ∗D

)
' ϕ†ψg(V, ∗ϕ−1D)

are compatible with the induced pre-K-Betti structures.

Since φg(MP , ∗D) is the cohomology of the complex of pre-K(∗D)-holonomic DX(∗D)-modules

ϕ†(V!)(∗D) −→ Ξg(ϕ†V, ∗D)⊕MP −→ ϕ†(V )(∗D),

we obtain a pre-K(∗D)-Betti structure of φg(MP , ∗D), denoted by Dφg(F , ∗D). The pre-K(∗D)-holonomic
DX(∗D)-module

(
φg(MP , ∗D),Dφg(F , ∗D)

)
is also denoted by φg(MP ,F , ∗D).

7.3.3 Definition of K(∗D)-Betti structure

Let P be a point of D. Let (M,F) be a pre-K(∗D)-holonomic DX(∗D)-module. Let us define the notion of
K(∗D)-Betti structure ofM at P , inductively on the dimension of SuppM. Note that we haveM = 0 around
P in the case dimP SuppM = 0.

Definition 7.13 Let us consider the case dimP SuppM≤ n. We say that F is a K(∗D)-Betti structure ofM
at P , if there exists an n-dimensional good K(∗D)-cell C0 = (Z0, ϕ0, U0, V0) at P with the following property:

• dimP

((
SuppM∩XP

)
\ ϕ0(Z0)

)
< n for some neighbourhood XP of P in X.

• For any dominant refinement C ≺ C0 and any cell function g for C as a DX(∗D)-module, the induced
pre-K(∗D)-Betti structure Dφg(F , ∗D) is a K(∗D)-Betti structure at P .

Such an n-cell C0 is called a bounding n-cell of M at P .

If C0 is a bounding n-cell ofM, its dominant refinement and enhancement are also bounding n-cells of M.

Definition 7.14 If F is K-Betti structure of M at any point of X −D, and K(∗D)-Betti structure of M at
any point of D, it is called a K(∗D)-Betti structure of M. A holonomic DX(∗D)-module with a K(∗D)-Betti
structure is called a K(∗D)-holonomic DX(∗D)-module.
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A morphism of K(∗D)-holonomic DX(∗D)-modules (M1,F1) −→ (M2,F2) is defined to be a morphism of
pre-K(∗D)-holonomic DX(∗D)-modules. Let Hol

(
X(∗D),K

)
denote the category of K(∗D)-holonomic DX(∗D)-

modules. The following lemma is similar to Proposition 7.7.

Lemma 7.15 The category Hol
(
X(∗D),K

)
is abelian.

The following lemma is similar to Lemma 7.9.

Lemma 7.16 Let (M1,F1) ⊂ (M,F) be pre-K(∗D)-holonomic DX(∗D)-submodules. If (M,F) is K(∗D)-
holonomic, then (M1,F1) is also K(∗D)-holonomic. Similar claim holds for quotient.

7.3.4 Uniqueness

We have the following uniqueness.

Proposition 7.17 Let M be a holonomic DX(∗D)-module. Let Fi (i = 1, 2) be K(∗D)-Betti structures of M.
If F1|X−D = F2|X−D, then we have F1 = F2.

Proof The claim is local. Let P ∈ D. We use an induction on dimP SuppM. In the case dimP SuppM = 0,
the claim is clear. Let dimP SuppM≤ n. Let C be any bounding cell at P , and let g be any cell function of C.
Let Dφg(Fi, ∗D) be the induced pre-K(∗D)-Betti structures of φg(M, ∗D). By the assumption of the induction,
we have Dφg(F1, ∗D) = Dφg(F2, ∗D). Because Fi can be reconstructed from Dφg(Fi, ∗D) and the canonical
pre-K(∗D)-Betti structures of ψg(ϕ∗V, ∗D) and Ξg(ϕ∗V, ∗D), we obtain F1 = F2.

7.3.5 Independence of compactification

Let F : X ′ −→ X be a proper birational morphism of complex manifolds such that X ′ −D′ ' X −D, where
D′ := F−1(D).

Proposition 7.18 Let M′ be a holonomic DX′(∗D′)-module, and we set M := F†M′.

• Let F ′ be a K(∗D′)-Betti structure of M′. Then, F∗F ′ is a K(∗D)-Betti structure of M.

• Let F be a K(∗D)-Betti structure of M. Then, M′(∗D′) is equipped with a K-Betti structure F ′ such
that F ′|X′−D′ = F|X−D under the isomorphism M′|X′−D′ 'M|X−D. It is functorial.

Proof We have only to check the claims locally around D. Let P be any point of D. We use an induction on
dimP SuppM. Let C = (Z,U, ϕ, V ) be a good cell of M at P . By taking a refinement, we may assume that ϕ
factors through F , i.e., ϕ = F ◦ ϕ′, and that C′ = (Z,U, ϕ′, V ) is a good cell of M′. Let g be a cell function
for C as DX(∗D)-module. Note that g′ = g ◦ F is a cell function for C′. We have a description of M′ as the
cohomology of the following complex:

ψg′(ϕ′†V, ∗D′) −→ Ξg′(ϕ′†V, ∗D′)⊕ φg′(M′, ∗D′) −→ ψg′(ϕ′†V, ∗D′) (79)

By the push-forward F†, it induces a description ofM as the cohomology of the following complex:

ψg(ϕ†V, ∗D) −→ Ξg(ϕ†V, ∗D)⊕ φg(M, ∗D) −→ ψg(ϕ†V, ∗D) (80)

Let us show the first claim. By the assumption of the induction, the induced pre-K(∗D)-Betti structure of
φg(M, ∗D) is a K(∗D)-Betti structure. Hence, F is also a K(∗D)-Betti structure. Let us show the second claim.
By the hypothesis of the induction, the K(∗D)-Betti structure of ψg

(
ϕ†(V ), ∗D

)
and φg(M, ∗D) induce the

K(∗D)-Betti structures of ψg′
(
ϕ′†(V ), ∗D′

)
and φg′(M′, ∗D′), which are compatible with the natural morphisms.

We also have the canonical K-Betti structures of ψg′
(
ϕ′†(V ), ∗D′

)
and Ξg′

(
ϕ′†V, ∗D′

)
. By Proposition 7.17, the

induced K(∗D)-Betti structures on ψg′
(
ϕ′†(V ), ∗D′

)
are the same. Hence, (79) is a complex of K(∗D)-holonomic

D(∗D)-modules. Hence, we have an induced K(∗D)-Betti structure of M′. The functoriality is clear from the
above construction.

Corollary 7.19 The functor F† gives the equivalence of the categories Hol
(
X(∗D),K

)
and Hol

(
X ′(∗D′),K

)
.
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8 Some functoriality

8.1 Statements

In the following, D-modules are assumed to be algebraic unless otherwise indicated. We give several statements.

Theorem 8.1 Let F : X −→ Y be a projective morphism of smooth algebraic varieties. Let (M,F) be a
K-holonomic DX-module. Then, F i

†(M,F) :=
(
F i
†M, F i

†F
)

are K-holonomic for any i.

Here, F i
†F is the i-th cohomology of RF∗F with respect to the middle perversity.

Theorem 8.2 Let X be a smooth complex algebraic variety with a normal crossing hypersurface D. Let M be
a good holonomic D-module on (X,D) with a good K-structure. The associated pre-K-Betti structure F is a
K-Betti structure of M.

Theorem 8.3 Let X be a smooth complex algebraic variety with a hypersurface D, and let (M,F) be a K-
holonomic D-module on X.

• There exists a unique K(∗D)-Betti structure F(∗D) of M(∗D) such that the natural morphism M −→
M(∗D) is compatible with the pre-K-Betti structures.

• For a morphism of K-holonomic D-modules (M1,F1) −→ (M2,F2), the morphismM1(∗D) −→M2(∗D)
is compatible with the induced pre-K-Betti structures.

We will use an induction on the dimension of the support of M for the proof. Let SI(<n), GOOD(<n)
and LOC(<n) denote the statements of Theorems 8.1, 8.2 and 8.3 in the case dim SuppM < n, respectively.
Our induction will proceed as follows:

• SI(< n) +GOOD(< n) =⇒ GOOD(≤ n) (Subsection 8.2.3).

• SI(< n) +GOOD(< n) + LOC(< n) =⇒ LOC(≤ n) (Subsection 8.3.3).

• SI(< n) +GOOD(< n) + LOC(< n) =⇒ SI(≤ n) (Subsection 8.4).

Remark 8.4 In the proof, we will observe the equivalence of K(∗D)-Betti structure and K-Betti structure.
(See Lemma 8.8.)

Remark 8.5 The arguments in Subsections 8.2 and 8.3 can work even in the analytic situation. Although most
of Subsection 8.4 can also work even in the analytic situation, we need the existence of resolution of turning
points for any meromorphic flat bundle.

8.2 Step 1

8.2.1 K-Cell

Let ϕ : Z −→ X be a projective morphism of smooth complex algebraic varieties such that dimZ = n. Let D
be a normal crossing hypersurface of Z such that ϕ|Z−D is immersive. Let (V,∇) be a good meromorphic flat
bundle on (Z,D) with K-structure compatible with the Stokes filtrations. Let F∗ be the associated K-structure
of DR(V ). Let F! be the associated K-structure of DR(V!).

Proposition 8.6 Assume that SI(< n) and GOOD(< n). Then, ϕ∗FV is a K-Betti structure of ϕ†V , and
ϕ†FV ! is a K-Betti structure of ϕ†V!.

Proof Note that C0 = (Z,U, ϕ, V ) is an n-cell of ϕ†V , where U = Z −D. Let us show that it is a bounding n-
cell. Let C′ = (Z ′, U ′, ϕ′, V ′) be a dominant refinement. Let g be a cell function for C′. We have a factorization
ϕ′ = ϕ ◦ ϕ1, where ϕ1 : Z ′ −→ Z. We put g′ := g ◦ ϕ. We have V ′ = ϕ−1

1 V ⊗ OZ′(∗g′). We have the
canonical pre-K-Betti structures FV ′ and FV ′! of V ′ and V ′! , respectively. According to Theorem 5.12, the
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morphisms ϕ1†V
′
! −→ ϕ†V −→ ϕ1†V

′ are compatible with pre-K-Betti structures. We have the induced pre-K-
Betti structures DΞg(ϕ∗FV ), Dψg(ϕ∗FV ) and Dφg(ϕ∗FV ) of Ξg(ϕ†V ), ψg(ϕ†V ) and φg(ϕ†V ), respectively. We
also obtain pre-K-Betti structures DΞg′(FV ′), Dψg′(FV ′) and Dφg′(FV ′) of Ξg′(V ′), ψg′(V ′) and φg′(V ′) on Z ′.
Note that

(
φg′(V ′),Dφg′(FV ′)

)
is good on (Z ′, D′). (See Subsection 6.2.3). Hence, it should be K-holonomic

according to the assumption GOOD(< n). Then, ϕ†
(
φg′(V ′), Dφg′(FV ′)

)
is K-holonomic by the assumption

SI(< n). Because
(
φg(ϕ†V ), Dφg(ϕ∗F)

)
⊂ ϕ′†

(
φg′(V ′), Dφg′(FV ′)

)
, we obtain that Dφg(ϕ∗F) is a K-Betti

structure of φg(ϕ†V ) by Lemma 7.9. Another claim can be shown similarly, or we can deduce it as dual.

Corollary 8.7 Assume that SI(< n) and GOOD(< n). Let f be a cell function of C = (Z,U, ϕ, V ). Then,
ψf (ϕ†V ) and Ξf (ϕ†V ) with the canonical pre-K-Betti structures are K-holonomic.

Proof Applying the previous results to ϕ†
(
Πa,b

f? V
)

(? =!, ∗), we obtain that they are K-holonomic. Then, we
obtain the corollary.

8.2.2 Gluing

According to Corollary 8.7, we obtain the gluing construction of K-holonomic D-module. Let X be a complex
manifold, C = (Z,U, ϕ, V ) be a K-cell as in Subsection 8.2.1. Let f be a cell function for C on X. Let Q
be a K-holonomic D-module whose support is contained in f−1(0). Assume that we are given morphisms of
K-holonomic D-modules

ψf (ϕ†V ) −→ Q −→ ψf (ϕ†V ),

such that the composite is equal to the nilpotent map N on ψf (ϕ†V ). Then, we obtain a K-holonomic D-module
as the cohomology of the following complex:

ψf (ϕ†V ) −→ Ξf (ϕ†V )⊕Q −→ ψf (ϕ†V )

8.2.3 Good holonomic D-module with good K-structure

Let us show GOOD(≤n) by assuming SI(<n) and GOOD(<n). Let X be a smooth complex algebraic variety
with a simply normal crossing hypersurface D. Let M be a good holonomic D-module on (Z,D) with a good
K-structure such that dim SuppM = n. Let F be the associated pre-K-Betti structure. We would like to show
that F is a K-Betti structure. Let D =

⋃`
i=1Di be the irreducible decomposition. We may assume that X is

affine and that each Di is given as g−1
i (0) for an algebraic function. Let ρ(M) ∈ Z≥ 0 × Z>0 denote the pair of

dim SuppM and the irreducible components of SuppM with the maximal dimension. We use the lexicographic
order on Z≥ 0×Z>0. For a good holonomic D-moduleM on (X,D), there exists J ⊂ ` with n = dimZ−|J | such
that V :=M

(
∗g

)
6= 0 comes from a meromorphic flat bundle on DJ , where g :=

∏
j 6∈J gj . We have a description

ofM as the cohomology of the complex of pre-K-holonomic D-modules ψg(V ) −→ Ξg(V )⊕φg(M) −→ ψg(V ).
By Corollary 8.7, ψg(V ) and Ξg(V ) are K-holonomic. Because ρ(φg(M)) < ρ(M), we obtain that φg(M) is
K-holonomic. Hence, we obtain that M is also K-holonomic, and we obtain GOOD(≤n).

8.3 Step 2

8.3.1 Equivalence of K(∗D)-Betti structure and K-Betti structure

Let X be a smooth complex algebraic variety with a hypersurface D. Let (M,F) be a pre-K-holonomic
DX(∗D)-module with dim SuppM≤ n.

Lemma 8.8

• Assume SI(<n) and GOOD(<n). If F is a K(∗D)-Betti structure, then it is a K-Betti structure.

• Assume LOC(≤ n). If F is a K-Betti structure, then it is a K(∗D)-Betti structure.
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Proof Let us show the first claim. We use an induction on the dimension of the support. Let P be any
point of D ∩ SuppM. We take a bounding cell C = (Z,U, ϕ, V ) of (M,F) at P , and a cell function g of C as
DX(∗D)-module. We have a description ofM as the cohomology of the following complex of K(∗D)-holonomic
DX(∗D)-modules:

ψg

(
ϕ†(V!), ∗D

)
−→ Ξg(ϕ†V, ∗D)⊕ φg(M, ∗D) −→ ψg

(
ϕ†(V ), ∗D

)
By the hypothesis of the induction, φg(M, ∗D) is K-holonomic. According to Corollary 8.7, ψg

(
ϕ†(V!), ∗D

)
and Ξg(M, ∗D) are K-holonomic. Hence, we obtain that M is also K-holonomic.

Let us show the second claim. By the assumption LOC(≤ n), we obtain a K(∗D)-holonomic DX(∗D)-module(
M(∗D),F(∗D)

)
with a morphism (M,F) −→

(
M(∗D),F(∗D)

)
of pre-K-holonomic D-modules. Because

M =M(∗D), we obtain F = F(∗D), and hence F is a K(∗D)-Betti structure.

We reformulate the uniqueness (Proposition 7.17) as follows.

Corollary 8.9 Let ? be ∗ or !. Assume SI(< n), GOOD(< n) and LOC(≤ n). Let M be a holonomic D-
module on X such that M(?D) = M. Let Fi (i = 1, 2) be K-Betti structures on M. If F1|X−D = F2|X−D,
then F1 = F2.

Proof The claim for ? = ∗ follows from Lemma 8.8 and Proposition 7.17. We obtain the claim for ? =! by
using the dual with Lemma 7.8.

Corollary 8.10 LetM be a holonomic DX-module. Assume that one of the following holds: (i)M(!D) −→M
is surjective, (ii) M −→ M(∗D) is injective. Let Fi (i = 1, 2) be K-Betti structures on M. If F1|X−D =
F2|X−D, then F1 = F2.

We reformulate the independence of compactification (Proposition 7.18). Let F : X ′ −→ X be a projective
birational morphism of complex manifolds. Let D be a hypersurface, and we put D′ := F−1(D). Assume
X ′ −D′ ' X −D.

Proposition 8.11 Assume SI(< n), GOOD(< n) and LOC(≤ n). Let M′ be a holonomic DX′(∗D′)-module.
We set M := F†M′.

• Let F ′ be a K-Betti structure of M′. Then, F∗F ′ is a K-Betti structure of M.

• Let F be a K-Betti structure ofM. Then,M′ is equipped with a K-Betti structure F ′ such that F ′|X′−D′ =
F|X−D under the isomorphism M′|X′−D′ 'M|X−D. It is functorial.

8.3.2 K(∗D)-cell

Let ϕ : Z −→ X be a morphism of smooth complex algebraic varieties such that dimZ = n. Let DZ be a
normal crossing hypersurface of Z such that ϕ|Z−DZ

is immersive, and that D1 := ϕ−1(D) ⊂ DZ . Let V be a
good meromorphic flat bundle on (Z,DZ) with K-structure compatible with the Stokes filtrations. Let FV be
the associated pre-K-Betti structure of V . Let FV !(∗D1) be the associated pre-K-Betti structure of V!(∗D1).

Proposition 8.12 Assume SI(<n), GOOD(<n) and LOC(<n). Then, ϕ†
(
V!(∗D1),FV !(∗D1)

)
and ϕ†

(
V,FV

)
are K(∗D)-holonomic.

Proof Let us show that C0 = (Z,U, ϕ, V ) is a bounding n-cell. Let C′ = (Z ′, U ′, ϕ′, V ′) be a dominant
refinement. Let g be a cell function for C′ as D(∗D)-modules. We have a factorization ϕ′ = ϕ ◦ ϕ1, where ϕ1 :
Z ′ −→ Z. We put g′ := g ◦ϕ and D′1 := ϕ−1D. We have V ′ = ϕ−1

1 V ⊗OZ′(∗g′). According to Proposition 6.7,
the morphisms ϕ′†(V

′
! )(∗D) −→ ϕ†(V!)(∗D) −→ ϕ†V −→ ϕ′†V

′ are compatible with the canonical pre-K(∗D)-
Betti structures. We obtain the induced pre-K(∗D)-Betti structures of φg

(
ϕ†(V ), ∗D

)
and φg

(
ϕ†(V!), ∗D

)
.

We obtain pre-K-holonomic D-modules φg′
(
V ′! , ∗D′1

)
and φg′

(
V ′, ∗D′1

)
on Z ′. Because they are good on

(Z ′, D′), they are K-holonomic by GOOD(<n). We obtain that φg

(
ϕ′†V

′, ∗D
)

and φg

(
ϕ′†

(
V ′! ), ∗D

)
are K-

holonomic by the assumption SI(< n). By Lemma 8.8 we obtain that φg(ϕ′†V
′, ∗D) and φg(ϕ′†V

′
! , ∗D) are

59



K(∗D)-holonomic. Because φg(ϕ†V, ∗D) ⊂ φg

(
ϕ′†V

′, ∗D
)

is compatible with the pre-K-Betti structures, we
obtain that φg(ϕ†V, ∗D) is also a K(∗D)-holonomic by Lemma 7.16. Since the surjection φg

(
ϕ′†V

′
! , ∗D

)
−→

φg

(
ϕ†V!, ∗D

)
is compatible with the pre-K-Betti structures, φg

(
ϕ†V!, ∗D

)
is also K(∗D)-holonomic by Lemma

7.16.

Corollary 8.13 Assume SI(<n), GOOD(<n) and LOC(<n). Let f be a cell function of an n-dimensional
cell C = (Z,U, ϕ, V ) as DX(∗D)-module. Then, ψf (ϕ†V, ∗D) and Ξf (ϕ†V, ∗D) with the canonical pre-K-Betti
structures are K(∗D)-holonomic.

Proof Applying the previous results to Πa,b
f?

(
ϕ†V, ∗D

)
for ? = ∗, !, we obtain that they are K(∗D)-holonomic.

Then, we obtain the corollary.

8.3.3 Localization

Let us show LOC(≤ n) by assuming SI(< n), GOOD(< n) and LOC(< n). By Proposition 7.17, the problem
is local. Let (M,F) be a K-holonomic DX -module with dim SuppM≤ n.

Let P be any point of D. Let (Z,U, ϕ, V ) be a bounding cell of M at P . By taking a refinement, we may
assume U ∩D = ∅. Let g be a cell function ofM as D-modules. We put g1 := ϕ−1(g) and D1 := ϕ−1(D). We
have the expression ofM as the cohomology of the following complex of the K-holonomic D-modules:

ψgϕ†(V!) −→ Ξgϕ†(V )⊕ φg(M) −→ ψgϕ†(V ) (81)

By the assumption of the induction, ψg

(
ϕ†V!, ∗D

)
and φg(M, ∗D) are equipped with the induced K(∗D)-Betti

structures. We also have the following commutative diagram of pre-K-holonomic D-modules:

ψg(V ) −−−−→ φg(M) −−−−→ ψg(V )y y y
ψg

(
ϕ†V!, ∗D

)
−−−−→ φg(M, ∗D) −−−−→ ψg

(
ϕ†V!, ∗D

)
We have the canonical pre-K-Betti structures of ψg1

(
V, ∗D1

)
and Ξg1

(
V, ∗D1

)
. According to Corollary

8.13, their push-forward ϕ†ψg1

(
V, ∗D1

)
and ϕ†Ξg1

(
V, ∗D1

)
are K(∗D)-holonomic. We also have the following

commutative diagram of pre-K-holonomic D-modules:

ϕ†ψg1(V ) −−−−→ ϕ†Ξg1(V ) −−−−→ ϕ†ψg1(V )y y y
ϕ†ψg1

(
V, ∗D1

)
−−−−→ ϕ†Ξg1

(
V, ∗D1

)
−−−−→ ϕ†ψg1

(
V, ∗D1

)
By Proposition 7.17, the identification ϕ†ψg1

(
V, ∗D1

)
' ψg

(
ϕ†V, ∗D

)
is compatible with the pre-K-Betti struc-

tures. Hence, we obtain a K(∗D)-Betti structure of M(∗D) with a morphism of pre-K-holonomic D-modules
M −→ M(∗D) whose restriction to X − D is an isomorphism. The functoriality is clear from the above
construction.

8.3.4 Twist

Let (M,F) be a K(∗D)-holonomic D(∗D)-module with dim SuppM≤ n. Let V be a meromorphic flat bundle
on (X,D) with a K-Betti structure FV . According to Lemma 7.10, FM|X−D ⊗FV|X−D is a K-Betti structure
of (M⊗V)|X−D.

Lemma 8.14 Assume SI(< n), GOOD(< n) and LOC(< n). There exists a K(∗D)-Betti structure FM⊗V
of M⊗V such that

FM⊗V|X−D ' FM|X−D ⊗FV|X−D.

It is functorial with respect to M and V.
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Proof Let P ∈ D. We have only to consider the issue locally around P . We use an induction on dimP SuppM.
Let C = (Z,U, ϕ, V ) be a dominating cell ofM at P . By considering an appropriate refinement, we may assume
that V ⊗ ϕ∗V is good on (Z,DZ), where DZ = Z − U . Let g be a cell function for C as DX(∗D)-module. By
the hypothesis of the induction, we have the K(∗D)-Betti structure of ψg(ϕ†V, ∗D)⊗ V and φg(ϕ†V, ∗D)⊗ V.
According to Proposition 8.12, we have the K(∗D)-Betti structures of ψg(ϕ†V, ∗D) ⊗ V and Ξg(ϕ†V, ∗D) ⊗ V
induced by the isomorphisms ψg(M, ∗D)⊗V ' ψg(M⊗V, ∗D) and Ξg(M, ∗D)⊗V ' Ξg(M⊗V, ∗D). By the
uniqueness, the induced K(∗D)-Betti structures on ψg(M, ∗D)⊗ V are equal. Because M⊗V is expressed as
the cohomology of the complex

ψg(M, ∗D)⊗ V −→ Ξg(M, ∗D)⊗ V ⊕ φg(M, ∗D)⊗ V −→ ψg(M, ∗D)⊗ V,

we obtain a K(∗D)-Betti structure onM⊗V with the desired property.

8.4 Step 3

Let us show that SI(<n), GOOD(<n) and LOC(<n) imply SI(≤n). The following argument is inspired by
[2].

8.4.1 Special case I

Let G : X −→ Y be a projective morphism of complex algebraic varieties. Let D be a normal crossing
hypersurface of X. Let V be a meromorphic flat bundle on (X,D) with a K-Betti structure. Let D = D1 ∪D2

be a decomposition of D. We have the holonomic D-module M := V (∗D1!D2) with the induced K-Betti
structure, denoted by F .

Proposition 8.15 If Gi
†M = 0 for i 6= 0, RG∗F is a K-Betti structure of G0

†M.

Proof Since the claim is local, we may assume that Y is affine. Let us consider the case SuppG0
†M ( G(X).

We take a function f such that SuppG0
†M ⊂ f−1(0) and G(X) 6⊂ f−1(0). We set fX := G−1(f). We have a

description of the K-holonomic D-module φfX
M as the cohomology of the following:

M(!fX) −→ ΞfX
M(∗fX)⊕M −→M(∗fX)

By the assumption, we obtain that G†M(!fX) = G†M(∗fX) = G†ΞfX
M(∗fX) = 0. Hence, we obtain that

G†(M,F) ' G†φfX
(M,F). By the assumption SI(< n), we obtain that RG∗F is a K-Betti structure of G0

†M.

Let us consider the case G(X) = SuppM. Let P ∈ SuppG0
†M. As remarked in Subsection 7.1.1, there

exists a good cell C = (Z,U, ϕ,E) of G0
†M at P , according to [32]. Let g be a cell function of C. We set

gZ := ϕ−1g and gX := G−1g. We have the K-Betti structures F(∗gX) ofM(∗gX), obtained as the localization.
(See Subsection 8.3.3.) By considering the dual, we obtain the K-Betti structure F(!gX) ofM(!gX).

Lemma 8.16

• The K-structure of E is compatible with the Stokes structure.

• For ? = ∗, !, the natural isomorphisms ϕ†E? ' G†(M)(?g) are compatible with the pre-K-Betti structures.

Proof Let us consider the case ? = ∗. The case ? =! can be argued similarly. We take a projective birational
morphism κ : X1 −→ X such that (i) X1 is smooth, (ii) X1 − (gX ◦ κ)−1(0) ' X − g−1

X (0), (iii) (gX ◦ κ)−1(0) is

normal crossing, (iv) the induced morphism X ′ −→ Y factors into X ′ GZ−→ Z
ϕ−→ Y .

We set D′1 := κ−1
(
D1 ∪ g−1(0)

)
. Let D′2 be the complement of D′1 in D′ := κ−1(D ∪ g−1(0)). We set

V ′ := κ−1V ⊗O(∗D′). We set M′ := V ′(∗D′1!D′2). Note that κ†M′ 'M(∗gX) and GZ†M′ = E.
According to Proposition 8.11, we have the induced K-Betti structure F ′ ofM′ such that Rκ∗F ′ = F(∗gX).

By Proposition 6.15, we obtain that the K-structure of E is compatible with the Stokes structures, and that
RGZ∗F ′ is the canonical K-Betti structure of GZ†M′. Hence, we obtain that RG∗F(∗gX) is the canonical
K-Betti structure of G†(M)(∗g) = ϕ†E. Thus, we obtain Lemma 8.16.
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Lemma 8.17 The natural isomorphisms G†ΞgX

(
M(∗gX)

)
' Ξg

(
ϕ†E

)
and G†ψgX

(
M(∗gX)

)
' ψg

(
ϕ†E

)
are

compatible with the induced pre-K-Betti structures.

Proof By Lemma 8.16, we obtain that the natural isomorphisms G†
(
M(∗gX)⊗Ia,b

gX

)
(?gX) ' ϕ†E⊗Ia,b

gX
(?gX)

are compatible with the induced pre-K-Betti structures. Hence, we obtain Lemma 8.17.

By Lemma 8.16, the morphisms ϕ†E! −→ G†M −→ ϕ†E are compatible with the induced pre-K-Betti
structures. Hence, we have an induced pre-K-Betti structure Dφg(RG∗F) of φg(G0

†M). We also have the
induced K-Betti structure DφgX

(F) of φgX
M. By using Lemma 8.17, we obtain Dφg(RG∗F) = RG∗

DφgX
(F)

under the isomorphism φg(G0
†M) ' G0

†φgX
M. By the assumption SI(< dimX), we obtain that Dφg

(
RG∗F

)
is a K-Betti structure of φg

(
G†M

)
. Thus, we obtain Proposition 8.15.

8.4.2 Special case II

Let G : X −→ Y be a projective morphism of complex algebraic varieties. Let ϕ : Z −→ X be a projective
morphism. LetDZ be a normal crossing hypersurface of Z. Let V be a good meromorphic flat bundle on (Z,DZ)
with a K-Betti structure. Assume that ϕ|Z−DZ

is an immersion. Let DZ = DZ,1 ∪DZ,2 be a decomposition.
We have the holonomic D-module V

(
∗DZ,1!DZ,2

)
on Z, with the canonical K-Betti structure FV (∗DZ,1!DZ,2).

We setM := ϕ†V (∗DZ,1!DZ,2) on X, with the canonical K-Betti structure F := ϕ†FV (∗DZ,1!DZ,2).

Lemma 8.18 If Gi
†M = 0 for any i 6= 0, then the induced pre-K-Betti structure of G0

†M is a K-Betti structure.

Proof It follows from Proposition 8.15.

8.4.3 Special case III

Let E be a locally free sheaf on a smooth complex algebraic variety Y . We put X := P(E). Let Hi (i = 1, 2)
be hyperplane subbundles. Let N be a K-holonomic D-module on X such that N (∗H1) = N . By shrinking Y ,
we take a meromorphic function g on X such that (i) g−1(∞) ⊂ H1, (ii) N (∗g) is a cell. Assume the following:

• H2 is non-characteristic to N , ψg(N , ∗H1), Ξg(N , ∗H1) and φg(N , ∗H1).

Lemma 8.19 The induced pre-K-Betti structure of G0
†N (!H2) is a K-Betti structure.

Proof We have the K-holonomic D-modules

N (∗g)⊗ Ia,b
g (!g ∗H1!H2),

(
N (∗g)⊗ Ia′,b′

g

)
(!H2).

Note that Gi
†

((
N (∗g)⊗ Ia,b

g (!g ∗H1!H2),
))

= 0 and Gi
†

((
N (∗g)⊗ Ia′,b′

g

)
(!H2)

)
= 0 unless i = 0. According to

Lemma 8.18, the induced pre-K-Betti structures of

G0
†

((
N (∗g)⊗ Ia,b

g

)
(!g ∗H1!H2)

)
, G0

†

((
N (∗g)⊗ Ia′,b′

g

)
(!H2)

)
are K-Betti structures. Hence, we obtain that the induced pre-K-Betti structure of

G0
†

(
Ξg(N (∗g), ∗H1)(!H2)

)
, G0

†

(
ψg(N (∗g), ∗H1)(!H2)

)
are K-Betti structures. Because we have a description of G0

†N (!H2) as the cohomology of the following complex

G0
†ψg

(
N (∗g), ∗H1

)
(!H2) −→ G0

†Ξg

(
N (∗g), ∗H1

)
(!H2)⊕G0

†φg(N , ∗H1)(!H2) −→ G0
†ψg

(
N (∗g), ∗H1

)
(!H2),

we obtain Lemma 8.19.
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8.4.4 Proof of Theorem 8.1

We have only to consider the case X = P(E) for some locally free sheaf E on Y . We use an induction on
the dimension of the support of M. We take a resolution Tot(Q•,•) of M as in Subsection 2.3.4. It is
naturally equipped with the K-Betti structure Tot

(
FQ•,•

)
. Then, F i

†(M,F) is described as the i-th cohomology

of Tot
(
F 0
†
(
Q•,•,FQ•,•

))
. Hence, we have only to show that F 0

†
(
Q•,•,FQ•,•

)
areK-holonomic. By the construction,

we have dim SuppQi,j < dim SuppM for (i, j) 6= (0, 0), to which we can apply the hypothesis of the induction.
Hence, we have only to show that F 0

†
(
Q0,0,FQ0,0

)
is K-holonomic, which follows from Lemma 8.19. Thus, the

proof of Theorem 8.1 is finished.

9 Derived category of algebraic K-holonomic D-modules

We study the standard functors on the derived category of algebraic K-holonomic D-modules. We have only
to follow very closely the argument due to Beilinson [2], [3] and Saito [38]. This section is included for a rather
expository purpose.

9.1 Standard exact functors

Let X be a smooth complex quasi-projective variety. We take a smooth projective completion X ⊂ X such that
D = X −X is a normal crossing hypersurface. We set Hol(X,K) := Hol

(
X(∗D),K

)
, which is independent of

the choice of a completion X (Proposition 8.11). Let Db
hol(X,K) be the derived category of Hol(X,K). We will

implicitly use the following obvious lemma. (Later, we will prove the stronger version in Theorem 9.14.)

Lemma 9.1 The forgetful functors Hol(X,K) −→ Hol(X) is faithful.

Dual Let (M,F) ∈ Hol
(
X(∗D),K

)
. We put DXM := DX(M)(∗D). It is naturally equipped with the

induced K-Betti structure DXF(∗D). Thus, we obtain DX(M,F) :=
(
DX(M)(∗D),DXF(∗D)

)
.

Lemma 9.2 DX(M,F) is well defined in Hol(X,K).

Proof Let X
′
be another smooth projective compactification of X. Put D′ := X

′ −X. We assume to have a
projective morphism ϕ : X

′ −→ X such that ϕ|X = idX . Let (M′,F ′) be a K-holonomic DX
′
(∗D′)-module such

that ϕ†M′ =M and F ′|X = F|X . We have
(
DX

′F ′(∗D′)
)
|X =

(
DXF(∗D)

)
|X under the natural isomorphism

DX
′M′(∗D′)|X ' DXM(∗D)|X . It implies the claim of the lemma.

Corollary 9.3 There exists a functor DX on Hol(X,K) which is compatible with the standard duality functors
on Hol(X) and the category of K-perverse sheaves. We also have a functor DX on Db

hol(X,K), compatible with
the standard duality functors on Db

hol(X) and Db
c(KX). They are unique up to natural equivalence.

We use the symbol KDX , if we would like to emphasize that it is a functor for K-holonomic D-modules.

Lemma 9.4 For M,N ∈ Hol(X,K), we have a natural isomorphism:

Exti
Hol(X,K)(M,N ) ' Exti

Hol(X,K)

(
KDXN ,KDXM

)
Proof It follows from the comparison of Yoneda extensions.

Localization Let H be a hypersurface of X. As is shown in Theorem 8.3 and Proposition 8.11, we have the
localization:

∗H : Hol(X,K) −→ Hol(X,K), (M,F) 7−→
(
M(∗H),F(∗H)

)
It is an exact functor. By considering the dual, we obtain an exact functor:

!H : Hol(X,K) 7−→ Hol(X,K), (M,F) 7−→
(
M(!H),F(!H)

)
They induce exact functors ∗H and !H on Db

hol(X,K).
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Lemma 9.5 For M,N ∈ Hol(X,K), we have the following natural isomorphisms:

Exti
Hol(X,K)

(
M,N (∗D)

)
' Exti

Hol(X,K)

(
M(∗D),N (∗D)

)
Exti

Hol(X,K)

(
M(!D),N

)
' Exti

Hol(X,K)

(
M(!D),N (!D)

)
Proof It follows from comparisons of Yoneda extensions.

Nearby cycle, vanishing cycle and maximal functors Let g be an algebraic function on X. By Lemma
8.14, we have the exact functor Πa,b

g? (? = ∗, !) on Hol(X,K) given by Πa,b
g? (M,F) :=

(
(M,F) ⊗ Ia,b

g

)
(?g) and

a, b ∈ Z. Hence, we obtain the exact functors Ξg, ψg and φg on Hol(X,K). They induce the corresponding
exact functors on Db

hol(X,K). We use the symbols KΞg, Kψg and Kφg, when we would like to emphasize that
they are functors for K-holonomic D-modules.

9.2 Push-forward and pull-back

9.2.1 Statement

Let f : X −→ Y be an algebraic morphism of quasi-projective varieties. We take a factorization X ⊂ X f ′−→ Y
such that (i) f ′ is projective, (ii) H = X − X is normal crossing. We have a natural equivalence between
Hol

(
X(∗H),K

)
and Hol(X,K). Let (M,F) ∈ Hol

(
X(∗H),K

)
correspond to (M,F) ∈ Hol(X,K). According

to Theorem 8.1, we have

Kf i
∗(M,F) :=

(
f i
†M, f i

†F
)
∈ Hol(Y,K), Kf i

! (M,F) :=
(
f i
†M(!H), f i

†F(!H)
)
∈ Hol(Y,K)

They are independent of the choice of X up to natural isomorphisms. Thus, we obtain the cohomological
functors we have the cohomological functor Kf i

∗,
Kf i

! : Hol(X,K) −→ Hol(Y,K) for i ∈ Z.

Proposition 9.6 For ? =!, ∗, there exists a functor of triangulated categories

Kf? : Db
hol(X,K) −→ Db

hol(Y,K)

such that (i) it is compatible with the standard functor f? : Db
hol(X) −→ Db

hol(Y ), (ii) the induced functor
Hi(Kf?) : Hol(X,K) −→ Hol(Y,K) is isomorphic to Kf i

?. It is characterized by the property (i) and (ii) up to
natural equivalence.

As in [38], the pull back is defined to be the adjoint of the push-forward.

Proposition 9.7 Kf! has the right adjoint Kf !, and Kf∗ has the left adjoint Kf∗. Thus, we obtain the following
functors:

Kf? : Db
hol(Y,K) −→ Db

hol(X,K) (? =!, ∗)

They are compatible with the corresponding functors of holonomic D-modules with respect to the forgetful functor.

Let us consider the case that f is a closed immersion, via which X is regarded as a submanifold of Y . Let
Db

hol,X(Y,K) be the full subcategory of Db
hol(Y,K) which consists of the objectsM• such that the supports of

the cohomology
⊕

iHiM• are contained in X.

Proposition 9.8 The natural functor Kf! : Db
hol(X,K) −→ Db

hol,X(Y,K) is an equivalence.
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9.2.2 Preliminary

Let X be a smooth complex projective variety with a hypersurface D. Let Db
hol

(
X(∗D),K

)
denote the derived

category of Hol
(
X(∗D),K

)
. Similarly, let Db

hol

(
X(∗D)

)
denote the derived category of Hol

(
X(∗D)

)
.

Let f : X −→ Y be a morphism of smooth projective varieties. Let DX and DY be hypersurfaces of X and
Y respectively, such that DX ⊃ f−1(DY ). We have the functor Kf i

∗ : Hol
(
X(∗DX),K

)
−→ Hol

(
Y (∗DY ),K

)
,

naturally given by f i
†. We have the decomposition DX = DX1 ∪DX2 such that DX2 = f−1(DY ). We have the

functor Kf i
! : Hol

(
X(∗DX),K

)
−→ Hol

(
Y (∗DY ),K

)
given by

Kf i
! (M,F) =

(
f i
†M(!DX1 ∗DX2), f i

†F(!DX1 ∗DX2)
)
.

Lemma 9.9 For ? = ∗, !, there exists a functor Kf? : Db
hol

(
X(∗DX),K

)
−→ Db

hol

(
Y (∗DY ),K

)
such that (i)

it is compatible with the standard functor f? : Db
hol

(
X(∗DX)

)
−→ Db

hol

(
Y (∗DY )

)
, (ii) the induced functor

Hi(Kf?) : Hol
(
X(∗DX),K

)
−→ Hol

(
Y (∗DY ),K

)
are isomorphic to Kf i

?. It is characterized by (i) and (ii) up
to natural equivalence.

Proof Let us consider the case ? = ∗. Let M• be a complex of K-holonomic DX(∗DX)-modules. We take
sufficiently generic ample hypersurfaces Hi (i = 1, . . . ,M) and H ′j (j = 1, . . . , N) such that

⋂M
i=1Hi = ∅ and⋂N

i=1H
′
j = ∅. We put HI :=

⋃
i∈I Hi and H ′J :=

⋃
j∈I H

′
j . We have f i

†M(∗HI !H ′J ∗DX) = 0 for i 6= 0, and we
have K-holonomic DY (∗DY )-modules Kf0

†M•(∗HI !H ′J ∗DX). For m,n ≥ 0, we put

Cm,n(Mp,H,H ′) :=
⊕

|I|=m+1, |J|=n+1

Mp(∗HI !H ′J ∗DX).

Let Tot
(
C•,•(M•,H,H ′)

)
be the total complex. It is naturally quasi-isomorphic toM•.

Let (Hi,H
′
i) (i = 1, 2) be tuples of sufficiently generic ample hypersurfaces as above for M•. We say

that we have a morphism (H1,H
′
1) −→ (H2,H

′
2), if either H1 ⊂ H2 or H ′1 ⊃ H ′2 is satisfied. In that

case, we have a naturally induced morphism C•,•(M•,H1,H
′
1) −→ C•,•(M•,H2,H

′
2). For given tuples of

sufficiently generic ample hypersurfaces (Hi,H
′
i) (i = 1, 2), we can find a sequence of tuples of hypersurfaces

(H(j),H ′(j)) (j = 1, . . . , 2L) such that (i) (H(1),H ′(1)) = (H1,H
′
1) and (H(2L),H ′(2L)) = (H2,H

′
2), (ii) we

have morphisms
(H(2m−1),H ′(2m−1))←− (H(2m),H ′(2m)) −→ (H(2m+1),H ′(2m+1)).

Let M•1 −→ M•2 be a morphism of complexes of K-holonomic DX(∗DX)-modules. We can take a tuple of
ample hypersurfaces (H,H ′) which are sufficiently generic with respect to both M•i (i = 1, 2). For such a
(H,H ′), we obtain an induced morphism C•,•(M•1,H,H ′) −→ C•,•(M•2,H,H ′).

For each M•, we take a tuple (H,H ′) as above, and we put
Kf∗M• := Kf0

† Tot C•,•
(
M•,H,H ′

)
in Db

hol(Y,K). By using the above considerations, we obtain the map

HomDb
hol(X,K)

(
M•1,M•2

)
−→ HomDb

hol(Y,K)

(
Kf∗M•1, Kf∗M•2

)
,

which is compatible with HomDb
hol(X)

(
M•1,M•2

)
−→ HomDb

hol(Y )

(
f†M•1, f†M•2

)
. Thus, we obtain the functor

Kf∗ : Db
hol(X,K) −→ Db

hol(Y,K). By construction, it satisfies the conditions (i) and (ii). We set Kf! :=
KDY ◦ Kf∗ ◦ KDX . It satisfies the conditions (i) and (ii). The uniqueness follows from the existence of a
resolution by K-holonomic D-modules N such that f i

†N = 0 unless i = 0.

9.2.3 Proof of Proposition 9.6

We take projective completions X ⊂ X and Y ⊂ Y with the following commutative diagram:

X
⊂−−−−→ X

⊃←−−−− DX

f

y f

y fD

y
Y

⊂−−−−→ Y
⊃←−−−− DY

(82)
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Here, DX := X −X and DY := Y − Y . We have the functors Kf? : Db
hol

(
X(∗DX),K

)
−→ Db

hol

(
Y (∗DY ),K

)
,

which induce Kf? : Db
hol(X,K) −→ Db

hol(Y,K).
Let X ⊂ X ′ and Y ⊂ Y ′ be another projective completions with a commutative diagram as in (82). We set

D′X := X
′−X and D′Y := Y −Y . Let us show that the induced morphism Kf? : Db

hol(X,K) −→ Db
hol(Y,K) are

equal up to equivalence. We have only to consider the case that we have the following commutative diagram:

X
′ f

′

−−−−→ Y
′

ϕX

y ϕY

y
X

f−−−−→ Y

Here, ϕX and ϕY are projective and birational such that ϕ−1
X (DX) = D′X and ϕ−1

Y (DY ) = D′Y . We have the
following diagrams which are commutative up to equivalences:

Db
hol

(
X
′
(∗D′X),K

) Kf?−−−−→ Db
hol

(
Y
′
(∗D′Y ),K

)
KϕX?

y KϕY ?

y
Db

hol

(
X(∗DX),K

) Kf?−−−−→ Db
hol

(
Y (∗DY ),K

)
It implies that Kf? : Db

hol(X,K) −→ Db
hol(Y,K) are independent of the choice of projective completions up to

equivalence. Thus, the proof of Proposition 9.6 is finished.

9.2.4 Proof of Proposition 9.8

Let M,N ∈ Hol(X,K). According to [4], we have only to check the following effaceability:

• For any f ∈ Exti
Hol(Y,K)(M,N ), there exists a monomorphism with a monomorphism N −→ N ′ in

Hol(X,K) such that the image of f in Exti
Hol(Y,K)(M,N ′) is 0.

We can show it by using the arguments in Sections 2.2.1 and 2.2.2 in [2].

9.2.5 Proof of Proposition 9.7

We have only to consider the cases (i) f is a closed immersion, (ii) f is a projection X × Y −→ Y . We closely
follow the arguments in Subsections 2.19 and 4.4 of [38].

Closed immersion Let f : X −→ Y be a closed immersion. The open immersion X − Y −→ X is denoted
by j. Let M• be a complex of K-holonomic DY -modules. Let Hi (i = 1, . . . , N) be sufficiently general
ample hypersurfaces such that (i) Hi ⊃ X, (ii) M• −→ M•(∗Hi) are injective, (iii)

⋂N
i=1Hi = X. For any

subset I = (i1, . . . , im) ⊂ {1, . . . , N}, let CI be the subspace of
∧m CN generated by ei1 ∧ · · · ∧ eim

, where
ei ∈ CN denotes an element whose j-th entry is 1 (j = i) or 0 (j 6= i). For I = I0 t {i}, the inclusion
Mp(∗HI0) −→ Mp(∗HI) and the multiplication of ei induces Mp(∗HI0) ⊗ CI0 −→ Mp(∗HI) ⊗ CI . For
m ≥ 0, we put Cm(Mp, ∗H) :=

⊕
|I|=mMp(∗HI)⊗ CI , and we obtain the double complex C•(M•, ∗H). The

total complex is denoted by Tot C•(M•, ∗H). It is easy to observe that the support of the cohomology of
Tot C•(M•, ∗H) is contained in X. According to Proposition 9.8, we obtain Kf !M• := Tot C•(M•, ∗H) in
Db

hol(X,K). We obtain a functor Kf ! : Db
hol(Y,K) −→ Db

hol(X,K) as in Lemma 9.9. Note that the underlying
DY -complex is naturally quasi-isomorphic to f !M•, where f ! is the left adjoint of f† : Db

hol(X) −→ Db
hol(Y ).

We have the naturally defined morphism α : Tot C•(M•, ∗H) −→ M•. We put K• := Cone(α). We have
another description. For m ≥ 0, we put Cm

(Mp, ∗H) :=
⊕
|I|=m+1Mp(∗HI) ⊗ CI , and we obtain the double

complex C•(M•, ∗H). We have a natural quasi-isomorphism K• ' Tot C•(M•, ∗H). By using the second
description and Lemma 9.5, we obtain the following vanishing for any N • ∈ Db

hol(X,K):

HomDb
hol(Y,K)

(
Kf!N •,K•

)
= 0
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Hence, we have the following isomorphisms for any K-holonomic DX -complex N •:

HomDb
hol(Y,K)

(
Kf!N •,M•

)
' HomDb

hol(Y,K)

(
Kf!N •, Kf!

Kf !M•
)
' HomDb

hol(X,K)

(
N •, Kf !M•

)
Hence, we obtain that the above functor Kf ! is the right adjoint of Kf!. By taking the dual, we obtain the left
adjoint Kf∗ of Kf∗.

Projection Let f : Z × Y −→ Y be the natural projection. Let (M,F) be a K-holonomic DY -module. We
put Kf∗(M,F) :=

(
OZ �M[−dimZ],KZ � C

)
. It is easy to check that Kf∗(M,F) is K-holonomic. Thus, we

obtain the exact functor Kf∗ : Db
hol(Y,K) −→ Db

hol(Z × Y,K). Let us show that Kf∗ is the left adjoint of Kf∗.
We have only to repeat the argument in Subsection 4.4 of [38], which we include for the convenience of readers.
We have only to construct natural transformations α : id −→ Kf∗

Kf∗ and β : Kf∗Kf∗ −→ id such that

β ◦ Kf∗α : Kf∗M• −→ Kf∗Kf∗
Kf∗M• −→ Kf∗M•, Kf∗β ◦ α : Kf∗N • −→ Kf∗

Kf∗Kf∗N • −→ Kf∗N •

are the identities. We define α as the external product with (C,K) −→
(
HDR(Z),H0(Z,K)

)
. For the con-

struction of β, the following diagram is used:

Z × Y i−−−−→ Z × Z × Y q1−−−−→ Z × Y

q2

y p1

y
Z × Y p2−−−−→ Y

Here, i is induced by the diagonal Z −→ Z × Z, qj are induced by the projection Z × Z −→ Z onto the j-th
component, and pj are the projections. We have the following morphisms of D-complexes, compatible with the
K-Betti structures:

Kf∗Kf∗M• = Kp∗2
Kp1∗M• ' Kq2∗

Kq∗1M• −→ Kq2∗
(
Ki∗

Ki∗Kq∗1M•
)
' Ki∗Kq∗1M• (83)

Lemma 9.10 We have a natural isomorphism Ki∗Kq∗1M• 'M• in Db
hol(Z × Y,K).

Proof We have a natural isomorphism of the underlying D-complexes. We have only to check that it is
compatible with K-Betti structures. Since the composite Ki∗Kq∗1 : Db

hol(Z × Y,K) −→ Db
hol(Z × Y,K) is exact,

we have only to consider the compatibility for any K-holonomic DZ×Y -module M. Moreover, we have only to
check it locally on Z × Y . Then, it can be done directly from the construction.

We define β as the composite of (83) with the isomorphism in Lemma 9.10. Let us look at Kf∗β ◦ α, which
is the composite of the following morphisms:

Kf∗N = Kp1∗N −→ Kp2∗
Kp∗2

Kp1∗N −→ Kp2∗
Kq2∗

Kq∗1N −→ Kp2∗
Kq2∗

Ki∗
Ki∗Kq∗1N −→ Kf∗

Ki∗Kq∗1N ' Kf∗N

Hence, we can observe that it is equivalent to the identity. As for β ◦ Kf∗α, it is expressed as follows:
Kf∗N = Kp∗2N −→ Kp∗2

Kp1∗
Kp∗1N −→ Kq2∗

Kq∗1
Kp∗1N −→ Kq2∗

Ki∗
Ki∗Kq∗2

Kp∗2N ' Kp∗2N = Kf∗N

Hence, it is equivalent to the identity. Thus, the proof of Proposition 9.7 is finished.

9.3 Tensor product and inner homomorphism

9.3.1 Statement

Let (Mi,Fi) (i = 1, 2) be K-holonomic D-modules on Xi.

Proposition 9.11 F1 � F2 is a K-Betti structure of M1 �M2. As a result, we obtain a natural functor
� : Hol(X1,K)×Hol(X2,K) −→ Hol(X1×X2,K), compatible with the standard external products � : Hol(X1)×
Hol(X2) −→ Hol(X1 ×X2) and Db

c(KX1)×Db
c(KX2) −→ Db

c(KX1×X2).

Before going into a proof of Proposition 9.11, we give a consequence. Let X be an algebraic variety. Let
δX : X −→ X×X be the diagonal morphism. We obtain the functors ⊗ and RHom on Db

hol(X,K) in standard
ways:

M⊗N := Kδ∗X
(
M�N

)
, RHom(M,N ) := Kδ!X

(
DXM�N

)
They are compatible with the corresponding functors on Db

hol(X).
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9.3.2 Preliminary

Let (M,FM) be a K-holonomic DX -module. Let V be a good meromorphic flat bundle on (Y,DY ) with a
K-Betti structure FV . Let FV! be the canonical K-Betti structure of V!.

Lemma 9.12 FV � FM and FV! � FM are K-Betti structures of V �M and V! �M, respectively.

Proof We use an induction on the dimension of the support ofM. Let P be any point of X. We have only to
consider locally around Y ×{P}. Let C = (Z,U, ϕ, V ) be a K-cell ofM at P . Let g be a cell function of C. The
pre-K-holonomic D-module V⊗M is expressed as the cohomology of the following complex of pre-K-holonomic
D-modules:

V � ψg

(
ϕ†V

)
−→ V � Ξg

(
ϕ†V

)
⊕ V � φg(M) −→ V � ψg

(
ϕ†V

)
By the hypothesis of the induction, FV�Dψg(ϕ∗FV ) and FV�Dφg(ϕ∗FV ) are K-Betti structures of V�ψg(ϕ†V )
and V � φg(ϕ†V ), respectively. We put gZ := ϕ∗g. By using Theorem 8.2, we obtain that FV � DΞgZ

(
FV

)
and FV � DψgZ

(
FV

)
are K-Betti structures of V � ΞgZ

(V ) and V � ψgZ
(V ), respectively. By construction, the

isomorphism V � ϕ†
(
ψgZ

(V )
)
' V � ψg

(
ϕ†V

)
preserves K-Betti structures. Hence, we obtain that FM � FV

is a K-Betti structure. Thus, we obtain the first claim. By considering the dual, we obtain the second claim.

Let g be a holomorphic function on Y such that g−1(0) = DY . We obtain the following corollary from
Lemma 9.12.

Corollary 9.13 Dψg(FV) � FM and DΞg(FV) � FM are K-Betti structures of ψg(V) �M and Ξg(V) �M,
respectively.

9.3.3 Proof of Proposition 9.11

Let P be any point of X1. We have only to consider locally around {P} × X2. We use an induction on
dimP SuppM1. Let C = (Z,U, ϕ, V ) be a K-cell of M1. The pre-K-holonomic D-module M1 �M2 is
expressed as the cohomology of the following complex:

ψg(ϕ†V ) �M2 −→ Ξg(ϕ†V ) �M2 ⊕ φg(M1) �M2 −→ ψg(ϕ†V ) �M2

By the hypothesis of the induction, ψg(ϕ†V )�M2 and φg(ϕ†V )�M2 are K-holonomic. According to Theorem
8.1 and Corollary 9.13, Ξg(ϕ†V ) �M2 is K-holonomic. Hence, we obtain thatM1 �M2 is also K-holonomic.
Thus, we obtain Proposition 9.11.

9.4 K-structure of the space of morphisms

9.4.1 Statement

Theorem 9.14 For M•, N• ∈ Db
hol(X,K), the induced morphism

HomDb
hol(X,K)(M

•, N•)⊗ C −→ HomDb
hol(X)(M

•, N•)

is an isomorphism. In other words, Db
hol(X,K)⊗ C −→ Db

hol(X) is fully faithful.

We closely follow Beilinson’s argument in [2] for the proof.

Theorem 9.15 We have the following natural isomorphism

HomDb
hol(X,K)(M

•, N•) ' HomDb
hol(X,K)

(
OX , RHom(M•, N•)[dX ]

)
We essentially use a commutative diagram due to Saito in [39].
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9.4.2 Homomorphisms and extensions for good meromorphic flat bundles

Let X be a complex manifold with a normal crossing hypersurface D. Let V be a good meromorphic flat bundle
on (X,D) withK-good structure, and let L(V ) be the associated local system with the Stokes structure on X̃(D).
It is naturally equipped with aK-structure LK(V ). If we are given an extension 0 −→ V −→ P −→ OX(∗D) −→
0 asK-holonomicDX -modules, P is also a good meromorphic flat bundle with a goodK-structure, and it induces
an extension 0 −→ LK(V )≤D −→ LK(P )≤D −→ K eX(D) −→ 0 of K-constructible sheaves. Conversely, assume
that we are given an extension of K-constructible sheaves 0 −→ LK(V )≤D −→ GK −→ C eX(D) −→ 0. We obtain

a K-local system G̃K := ι̃∗G|X\D, where ι : X \ D −→ X. The C-local system G̃K ⊗ C is naturally equipped
with a Stokes structure compatible with the K-structure. Hence, we obtain an extension of K-holonomic DX -
modules 0 −→ V −→ P −→ OX(∗D) −→ 0. The above procedures are mutually inverse. Thus, we obtain a
bijection Ext1Hol(X,K)

(
OX(∗D), V

)
' Ext1KfX(D)

(
K eX(D), LK(V )

)
' H1

(
X,FV

)
. Similarly, we have a natural

bijection Ext0Hol(X,K)

(
OX(∗D), V

)
' H0(X,FV ).

Let V,W be good meromorphic flat bundles on (X,D) with good K-structures. We have a natural bijection
Exti

Hol(X,K)(W,V ) ' Exti
Hol(X,K)

(
OX(∗D),W∨ ⊗ V

)
for any i. Hence, we obtain the natural isomorphisms

Exti
Hol(X,K)

(
W,V

)
' Hi

(
X,FW∨⊗V

)
for i = 0, 1. Because

Hi
(
X,FW∨⊗V

)
⊗K C ' Hi

(
X,DRX(W∨ ⊗ V )

)
=: Hi

DR(X,W∨ ⊗ V ),

the vector spaces Hi
DR(X,W∨⊗V ) have the natural K-structure. We say that an element f ∈ Hi

DR(X,W∨⊗V )
is compatible with K-structure, if it comes from Hi

(
X,FW∨⊗V

)
. An element f ∈ H1

DR(X,W∨ ⊗ V ) induces
an extension 0 −→ V −→ P −→W −→ 0 in Hol(X,K) as observed above.

9.4.3 Some extension

Let X be a smooth complex quasi-projective variety. Let Vi (i = 1, 2) be flat bundles on X with a good K-
structure, i.e., there exists a projective variety X ⊃ X such that (i) D := X −X is normal crossing, (ii)Vi are
good meromorphic flat bundle on (X,D) with a goodK-structure. According to [2], we have Exti

Hol(X)(V1, V2) '
Hi

(
X,V ∨1 ⊗ V2

)
.

Lemma 9.16 There exist an open subset U ⊂ X and an extension V3 ⊃ V2|U on U of algebraic flat bundles
with a good K-structure, such that the induced morphisms Exti

Hol(X)(V1, V2) −→ Exti
Hol(U)(V1|U , V3) are 0 for

i > 0.

Proof We use an induction on dimX. In the case dimX = 0, the claim is trivial. Let us consider the case
dimX > 0. We take a Zariski open subset X1 ⊂ X with a smooth affine fibration ρ : X1 −→ Z1 such that the
relative dimension is 1. For any meromorphic flat bundle V on X1, we put ρq

∗(V) := Rqρ∗
(
V ⊗ Ω•X1/Z1

)
. For a

Zariski open subset Z ′1 ⊂ Z1, the induced morphism ρ−1(Z ′1) −→ Z ′1 is also denoted by ρ.
We may assume that Lq := ρq

∗(V ∨1 ⊗ V2) are meromorphic flat bundles on Z1 with a good K-structure. We
have Lq = 0 unless q = 0, 1. It is easy to reduce Lemma 9.16 to Lemma 9.17 below which is Lemma 2.1.2 of [2]
with a minor enhancement.

Lemma 9.17

(a) There exist a Zariski open subset Z2 ⊂ Z1 and an extension P ⊃ V2|X2 of algebraic flat bundles with good
K-structures on X2 := ρ−1(Z2), such that the induced morphism ρ1

∗(V
∨
1 ⊗ V2|X2) −→ ρ1

∗(V
∨
1 ⊗ P ) is 0.

(b) There exists a Zariski open subset Z3 ⊂ Z1 and an extension Q ⊃ V2|X3 of algebraic flat bundles with good
K-structures on X3 := ρ−1(Z3), such that the induced maps

Hp
DR

(
Z3, ρ

0
∗(V

∨
1 ⊗ V2|X3)

)
−→ Hp

DR

(
Z3, ρ

0
∗(V

∨
1 ⊗Q)

)
are 0 for any p > 0.
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Proof We have only to use the argument in the proof of Lemma 2.1.2 of [2]. We give only an indication. Let
α ∈ H0

DR

(
Z1, L

∨
1 ⊗ L1

)
= H0

DR

(
Z1, ρ

1
∗((ρ

∗L1 ⊗ V1)∨ ⊗ V2)
)

be the element corresponding to the identity of L1,
which is compatible with K-structure. We have the following exact sequence compatible with K-structures:

H1
DR

(
X1,

(
ρ∗L1 ⊗ V1

)∨ ⊗ V2

)
−→ H0

DR

(
Z1, ρ

1
∗
(
(ρ∗L1 ⊗ V1)∨ ⊗ V2

))
∂−→ H2

DR

(
Z1, ρ

0
∗
(
(ρ∗L1 ⊗ V1)∨ ⊗ V2

))
= H2

DR(Z1, L
∨
1 ⊗ L0)

Applying the hypothesis of the induction to L∨0 and L∨1 , we have a Zariski open subset Z2 ⊂ Z1 and an
extension ϕ : L∨1 ⊂ R of algebraic flat bundles with a good K-structures on Z2, such that the induced morphism
H2

(
Z,L∨1 ⊗ L0

)
−→ H2(Z1, R⊗ L0) is 0. In particular, ϕ(∂α) = 0. We obtain the element

ϕ(α) ∈ H0
DR

(
Z1, R⊗ L1

)
= H0

DR

(
Z1, ρ

1
∗
(
(ρ∗R∨ ⊗ V1)∨ ⊗ V2

))
which is compatible with K-structure. By construction, we have a lift ϕ̃(α) ∈ H1

DR

(
X, (ρ∗R∨ ⊗ V1)∨ ⊗ V2

)
compatible with K-structure. It induces an extension 0 −→ V2|X2 −→ P −→ ρ∗R∨ ⊗ V1|X2 −→ 0 of algebraic
flat bundles with good K-structures on X2. (See Subsection 9.4.2.) It is easy to observe that P is the desired
one. Thus, we obtain the claim (a). The claim (b) can also be shown by the argument in [2].

9.4.4 Proof of Theorem 9.14

We put C1(X) := Hol(X) and C2(X) := Hol(X,K)⊗ C. Let Vi (i = 1, 2) be algebraic flat bundles on X with
good K-structures. Let us consider the natural morphism:

gX : Exti
C2(X)(V1, V2) −→ Exti

C1(X)(V1, V2)

It is an isomorphism in the case i = 0, 1.

Lemma 9.18 Let i > 0.

• Let a ∈ Exti
C2(X)(V1, V2) such that gX(a) = 0. There exists U ⊂ X such that a = 0 in Exti

C2(U)(V1|U , V2|U ).

• Let a ∈ Exti
C1(X)(V1, V2). There exist U ⊂ X and b ∈ Exti

C2(U)(V1|U , V2|U ) such that a|U = gU (b).

Proof We give only an outline. We use an induction on i. We have already known the case i = 1. Let
a ∈ Exti

C2(X)(V1, V2) such that gX(a) = 0. We have an extension V2 ⊂ V3 of a meromorphic flat bundle with
a good K-structure such that the image of a is mapped to 0 via Exti

C2(X)(V1, V2) −→ Exti
C2(X)(V1, V3). Let

K := V3/V2. We have c ∈ Exti−1
C2(X)(V1,K) which is mapped to a via Exti−1

C2(X)(V1,K) −→ Exti
C2(X)(V1, V2). We

have d ∈ Exti−1
C1(X)(V1, V3) which is mapped to gX(c) via Exti−1

C1(X)(V1, V3) −→ Exti−1
C1(X)(V1,K). By using the

hypothesis of the induction, we can find U ⊂ X and e ∈ Exti−1
C2(U)(V1,K) such that gU (e) = d|U . By using the

hypothesis of the induction, and by shrinking U , we may assume e is mapped to c|U via Exti−1
C2(X)(V1, V3) −→

Exti−1
C2(X)(V1,K). Hence, we obtain a|U = 0.
Let a ∈ Exti

C1(X)(V1, V2). According to Lemma 9.16, we can find U ⊂ X and an extension V2|U ⊂ V3

of meromorphic flat bundles with good K-structures such that the induced map Extj
C1(U)(V1|U , V2|U ) −→

Extj
C1(U)(V1|U , V3) is 0 for any j > 0. We put K := V3/V2|U We can find c ∈ Exti−1

C1(U)(V1|U ,K) which
is mapped to a via Exti−1

C1(U)(V1|U ,K) −→ Exti
C1(U)(V1|U , V2|U ). By using the hypothesis of the induction

and by shrinking U , we can find d ∈ Exti−1
C2(U)(V1|U ,K) such that gU (d) = c. Let b be the image of d via

Exti−1
C2(U)(V1|U ,K) −→ Exti

C2(U)(V1|U , V2|U ). Then, it has the desired property.

LetM,N ∈ C2(X). We would like to show that Exti
C2(X)(M,N) −→ Exti

C1(X)(M,N) is an isomorphism. We
use an induction on the dimension of the support of M⊕N . We take a hypersurface D ⊂ X such that (i) M(∗D)
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and N(∗D) are cells, (ii) X −D is affine. We have the distinguished triangles Ki∗
Ki!N −→ N −→ N(∗D) +1−→

and M(!D) −→M −→ Ki∗
Ki∗M

+1−→. For j = 1, 2, we obtain the following exact sequence:

Exti−1
Cj

(
M(!D), N(∗D)

)
−→ Exti

Cj
(Ki∗

Ki∗M, Ki∗
Ki!N) −→ Exti

Cj
(M,N)

−→ Exti
Cj

(
M(!D), N(∗D)

)
−→ Exti+1

Cj
(Ki∗

Ki∗M, Ki∗
Ki!N) (84)

By the hypothesis of the induction, Exti
C2

(Ki∗
Ki∗M,Ki∗

Ki!N) −→ Exti
C1

(Ki∗
Ki∗M,Ki∗

Ki!N) is an isomorphism.
We have the natural isomorphisms Exti

Cj
(M(!D), N(∗D)) ' Exti

Cj
(M(∗D), N(∗D)), as remarked in Lemma

9.5. Let Z be the support of M(∗D) and N(∗D). By Beilinson’s argument using the functors Ξ, φ and ψ (see
Subsection 2.2.1 of [2]), we have natural isomorphisms

Exti
Cj(X)

(
M(∗D), N(∗D)

)
' Exti

Cj(Z)

(
M(∗D), N(∗D)

)
.

For D1 ⊂ D2, we have the following commutative diagram:

M −−−−→ M(∗D1)

=

y y
M −−−−→ M(∗D2)

N(!D1) −−−−→ Nx =

x
N(!D2) −−−−→ N

Hence, we have the following commutative diagram:

Exti
Cj

(Ki1∗
Ki∗1M,Ki1∗

Ki!1N) −−−−→ Exti
Cj

(M,N) −−−−→ Exti
Cj

(M(!D1), N(∗D1))y =

y y
Exti

Cj
(Ki2∗

Ki∗2M,Ki2∗
Ki!2N) −−−−→ Exti

Cj
(M,N) −−−−→ Exti

Cj
(M(!D2), N(∗D2))

Then, it is easy to show that Exti
C2

(M,N) −→ Exti
C1

(M,N) is an isomorphism by using Lemma 9.18.

9.4.5 Proof of Theorem 9.15

Recall a commutative diagram in [39]. For M•, N• ∈ D(DX), we have the following commutative diagram:

HomD(DX)(M•, N•)
'−−−−→ HomD(DX×X)

(
M• � DN•, δ†OX [dX ]

)y y
HomD(CX)

(
DRX M•, DRX N•

) '−−−−→ HomD(CX)

(
DRX M• ⊗ D DRX N•, δ∗CX [2dX ]

) (85)

Let M be a holonomic DX -module with a K-Betti structure F . We have

HomD(DX)(M,M) ' HomHol(X)(M,M) ' HomHol(X,K)(M,M)⊗ C

We have similar isomorphisms for HomD(DX)

(
M � DM, δ†OX [dX ]

)
. Hence, we obtain the following diagram

from (85):

HomHol(X,K)(M,M)⊗ C c−−−−→
'

HomHol(X×X,K)

(
M � DM, δ†OX [dX ]

)
⊗ C

a

y b

y
HomD(CX)

(
DRX M, DRX M

) '−−−−→ HomD(CX)

(
DRX M ⊗ D DRX M, δ∗CX [2dX ]

)
'
x '

x
HomD(KX)

(
F ,F

)
⊗ C '−−−−→ HomD(KX)

(
F � DF , δ∗KX [2dX ]

)
⊗ C
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Note that a is injective. Hence, b is also injective. Since a and b are compatible with K-structures, c is also
compatible with K-structures. Let C : M ⊗ DM −→ δ∗OX [dX ] correspond to 1 : M −→ M . It is compatible
with K-Betti structures.

For M• ∈ Db
hol(X,K), let C : M• � DM• −→ δ†OX [dX ] correspond to 1 : M• −→ M•. We obtain that C

is compatible with K-Betti structures. Then, we obtain that the isomorphism

HomD(DX)(M•, N•) −→ HomD(DX×X)

(
M• � DN•, δ†OX [dX ]

)
is compatible with K-Betti structures for any M•, N• ∈ Dhol(X,K). By taking the dual, we obtain Theorem
9.15.
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son, Manuscripta Math. 6, (1972), 207–244.

[2] A. Beilinson, On the derived category of perverse sheaves. In K-theory, arithmetic and geometry (Moscow,
1984–1986), Lecture Notes in Math., 1289, Springer, Berlin, (1987), 27–41.

[3] A. Beilinson, How to glue perverse sheaves, In K-theory, arithmetic and geometry (Moscow, 1984–1986),
Lecture Notes in Math., 1289, Springer, Berlin, (1987), 42–51.

[4] A. Beilinson, J. Bernstein, P. Deligne, Faisceaux pervers, Analysis and topology on singular spaces, I
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in Mathematics, 236. Birkhäuser Boston, Inc., Boston, MA, 2008.

[14] B. Iversen, Cohomology of sheaves, Springer-Verlag, Berlin, 1986.

[15] M. Kashiwara, On the maximally overdetermined system of linear differential equations. I, Publ. Res. Inst.
Math. Sci. 10 (1974/75), 563–579.

[16] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems, Publ. Res. Inst. Math. Sci. 20 (1984),
319–365.

[17] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differential equations, IN: Algebraic
geometry (Tokyo/Kyoto, 1982) Lecture Notes in Math., 1016, Springer, Berlin, (1983). 134–142.

[18] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathematical Monographs, 217. Iwanami
Series in Modern Mathematics. American Mathematical Society, 2003

72



[19] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag, Berlin, 1990

[20] K. Kedlaya, Good formal structures for flat meromorphic connections, I; Surfaces, arXiv:0811.0190

[21] B. A. Krasnov, Formal Modifications. Existence Theorems for modifications of complex manifolds, Math.
USSR. Izvestija 7, (1973), 847–881.

[22] G. Laumon, Transformation de Fourier, constantes d’équations fonctionnelles et conjecture de Weil. Inst.
Hautes Études Sci. Publ. Math. 65, (1987), 131–210.

[23] A. Levelt, Jordan decomosition for a class of singular differential operators, Ark. Math. 13, (1975), 1–27

[24] R. MacPherson, K. Vilonen, Elementary construction of perverse sheaves, Invent. Math. 84 (1986), 403–
435.

[25] H. Majima, Asymptotic analysis for integrable connections with irregular singular points, Lecture Notes in
Mathematics, 1075, Springer-Verlag, Berlin, 1984.

[26] B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Math-
ematics 3, Tata Institute of Fundamental Research, Bombay, Oxford University Press, London, 1967.

[27] B. Malgrange, La classification des connexions irrégulières à une variable, In Mathematics and physics
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