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1 Introduction

In this paper, we would like to introduce a notion of Betti structure for holonomic D-modules in a naive
way, motivated by a question in [9]. For regular holonomic D-modules, it is clearly defined in terms of the
Riemann-Hilbert correspondence. Namely, a Betti structure of a regular holonomic Dx-module M is defined
to be a Q-perverse sheaf F with an isomorphism « : F ® C ~ DR x M. It has a nice functorial property for
standard functors such as pull back, push-forward, dual etc.. The non-regular version of the Riemann-Hilbert
correspondence has not yet been established as far as the author knows, except for the case that the dimension
of the support is one dimensional. Although it would be a natural and attractive to expect a correspondence
between holonomic D-modules and perverse sheaves equipped with “Stokes structure” in some sense, it seems
to require some more complicated machinery for a precise formulation. Instead, we make an attempt to define
just “Betti structure” of holonomic D-modules with functorial property (at least in the algebraic case), by using
only the classical machinery of holonomic D-modules and perverse sheaves. It still requires a non-trivial task,
and we hope that it would be useful for further study toward Riemann-Hilbert correspondence.

1.1 Betti structure
1.1.1 Pre-Betti structure

To define a Betti structure of a holonomic Dx-module M, it is a most naive idea to consider a pair (F,«) as
above, which is called a pre-Betti structure of M in this paper. We should say that pre-Betti structure is too
naive for the following reasons:

e It is not so intimately related with Stokes structure.

e Although pre-Betti structures have nice functoriality with respect to dual and push-forward, they are not
functorial with respect to pull back, nearby cycle and vanishing cycle functors. Recall that the de Rham
functor is not compatible with the latter class of functors.

We would like to introduce a condition for a pre-Betti structure to be a “Betti structure” with an inductive
way on the dimension of the support. In the zero dimensional case, we do not need any additional condition.

In the following, a Q-structure of a C-perverse sheaf F¢ is a Q-perverse sheaf Fgp with an isomorphism
Fo Q¢ C ~ Fc.

1.1.2 One dimensional case

Before explaining the condition for Betti structure in the one dimensional case, let us recall “Riemann-Hilbert
correspondence” for holonomic D-module on curves, which are not necessarily regular singular. For simplicity,
we consider holonomic D-modules on X = A = {|z| < 1} which may have a singularity at the origin D = {O}.



Meromorphic flat bundles Let V be a meromorphic flat bundle on (X, D). Let 7 : X(D) — X be the real
blow up along D. Let £ be the local system on )?(D) associated to the flat bundle V|x_p. Let P be any point
of 771(D). According to the classical asymptotic analysis, we have the Stokes filtration F¥ of the stalk Lp
given by the growth order of flat sections. The meromorphic flat bundle V' can be reconstructed from the flat
bundle V|x_p and the system of filtrations {.7: P | P e ﬂfl(D)}, which is a Riemann-Hilbert correspondence
for meromorphic flat bundles on a curve.

Let VV be the dual of V as a meromorphic flat bundle, and let Vi := Dx V"V be the dual of VV as a
Dx-module. Let us recall that the de Rham complexes DRx (V) and DRx (Vi) can be described in terms of
Stokes filtrations. Let £5P and £<P be the constructible subsheaves of £ such that EISDD = FL,(Lp) and

L3P = FE,(Lp). Then, we have natural isomorphisms:

DR(V) ~ Rr.L5P,  DR(W) ~ Rr.L~P. (1)

Gluing Let us very briefly recall a key construction due to A. Beilinson [3] on the gluing of holonomic D-
modules, which we will review in Subsection 2.2 in more details. Let M be a holonomic Dx-module such that
V := M(xD) is a meromorphic flat bundle on (X, D). We have the natural morphisms V; % M Loy
According to [3], we have the D-modules E,(V) and 1,(V) associated to V, with morphisms

ba

P:(V) L (V) Lg(V), VS E(V) BV 2)

It can be shown that by o ag = by 0 as. We also have by 0o a; = 0 and by o as = 0. We obtain the D-module
¢.(M) as the cohomology of the natural complex:

Vi—Z(V)eM—V (3)

can var

We have the naturally induced morphisms ¢,(V) — ¢.(M) — ¢.(V). Then, M is reconstructed as the
cohomology of the complex:

(V) — Eo(V) ® ¢ (M) — (V) (4)
Recall that =,(V), ¥,(V), and ¢,(M) are called the maximal extension, the nearby cycle sheaf, and the
vanishing cycle sheaf of M.

Good Q-structure of a meromorphic flat bundle Let V' be a meromorphic flat bundle on (X, D), and
let £ denote the associated local system on X (D) with the Stokes structure. We say that V has a good Q-
structure, if £ has a Q-structure such that the Stokes filtrations F¥ are defined over Q. By the isomorphisms
(1), we obtain the pre-Betti structures of V' and Vi. Moreover, it is easy to observe that (V) and Z(V) are
also naturally equipped with pre-Betti structures such that the morphisms a; and b; (i = 1,2) are compatible
with pre-Betti structures.

Betti structure of a holonomic D-module Let M be a holonomic D-module on (X, D) such that V :=
M(xD) is a meromorphic flat bundle. Let (F,a) be a pre-Betti structure of M. It is called a Betti structure,
if the following holds:

e The induced Q-structure on DR(V|x_p) induces a good Q-structure of V. As remarked above, we have
the induced pre-Betti structures on V' and V.

e The natural morphisms ay and by are compatible with the pre-Betti structures.

Note that we obtain a pre-Betti structure on ¢(M) from the expression as the cohomology of the complex (3),
and the morphisms var and can are compatible with the pre-Betti structures. The pre-Betti structure of M
can be reconstructed from the pre-Betti structure of ¢(M) and the good Q-structure of V.

1.1.3 Higher dimensional case

We would like to generalize it in the higher dimensional case in a naive way.



Good meromorphic flat bundle and good Q-structure Let X be a complex manifold with a simple
normal crossing hypersurface D. Let (V, V) be a good meromorphic flat bundle in the sense that it is equipped
with a good lattice as in [32]. (See also [34], [35] and [33].) Asymptotic analysis for meromorphic flat bundles on
curves can be naturally generalized for good meromorphic flat bundles (see [25], [34], [32]). Let 7 : X (D) — X
be the real blow up along D, which means in this paper the fiber product of the real blow up at each irreducible
component taken over X. Let £ be the local system on X (D) associated to Vjx_p. For any point P € 7~ (D),
we have the Stokes filtration ¥ of the stalk £p. We can reconstruct V from Vix—p and the system of filtrations
{FF ’P € m1(D)}. We obtain the constructible subsheaf L5 of £ which consists of flat sections with the

growth of polynomial order, i.e., E%D = FE (Lp). Let L=P be the constructible subsheaf of £, which consists of
flat sections with exponential decay along D. (It is also described in terms of Stokes filtrations. See Subsection
5.1.2.) We have natural generalization of the isomorphisms (1). For a holomorphic function g on X such that
g~1(0) = D, we obtain Dx-modules Vi, 1,(V) and Z,(V) with morphisms as in (2).

As in the one dimensional case, we say that V has a good Q-structure, if £ has a Q-structure such that the
Stokes filtrations are defined over Q. Then, the Dx-modules V, Vi, Z,(V) and 94(V) are naturally equipped
with pre-Betti structures, and the natural morphisms are compatible with pre-Betti structures.

Remark 1.1 We have resolution of turning points for any algebraic meromorphic flat bundles [31], [32].
Namely, let (V,V) be an algebraic meromorphic flat bundle on (X, D), which is not necessarily good. Then,
there exists a projective birational morphism ¢ : (X', D) — (X, D) such that ©*(V,V) has no turning points.
In [20], Kedlaya showed the existence of a resolution of turning points for meromorphic flat bundles on complex
surfaces. |

Cell and induced pre-Betti structure Let P be a point of X. For any closed analytic subset W of X, let
dimp W denote the dimension of W at P. Let M be a holonomic D-module on X with dimp Supp M < n. An
n-dimensional good cell of M at P is a tuple (Z,U, p, V) as follows:

(Cell1) ¢ : Z — X is a morphism of complex manifolds such that P € ¢(Z) and dimZ = n. There
exists a neighbourhood Xp of P in X such that ¢ : Z — Xp is projective. We permit that Z may be
non-connected or empty.

(Cell 2) U C Z is the complement of a normal crossing hypersurface Dz. The restriction o)y is an immersion.
Moreover, there exists a hypersurface H of Xp such that ¢~ 1(H) = Dg.

(Cell 3) V is a good meromorphic flat bundle on (Z,Dy). For a hypersurface H as in (Cell 2), we have
M(xH) = ¢+V and M('H) = p+Vi. The restriction of V' to some connected components may be 0. We
obtain the natural morphisms ¢V — M — @i V.

(The conditions are stated in a slightly different way from that in Subsection 7.1.1.) A holomorphic function g on
X is called a cell function for C, if U = Supp M \ g=1(0). We set gz := ¢~ '(g). We have natural isomorphisms
012, (V) > Egp1(V) and @31y, (V) ~ g0+ (V). The Dx-module ¢4(M) is obtained as the cohomology of the
complex:

piVi — Egpi(V) O M — o3V ()

We also have a description of M around P as the cohomology of the complex:
Ya(p1V) — Eg(p1V) ® ¢g(M) — Yg(p4V).

Let F be a pre-Betti structure of M. Let C = (Z,U, »,V) be a good n-cell of M at P. We say that F and
C are compatible, if the following holds:

e The induced Q-structure of Vi is good, i.e., compatible with the Stokes filtrations. It implies that o1V,
eiVi, Egp1 Vo and g1V are equipped with the induced pre-Betti structures.

e The morphisms ¢+Vi — M — ¢+ V are compatible with pre-Betti structures.

Such a cell C is called a Q-cell of M at P. Since ¢4(M) is the cohomology of the complex (5), we have the
induced pre-Betti structure on ¢4(M).



Inductive definition of Betti structure Let us define the notion of Betti structure of M at P, inductively
on the dimension of Supp M. In the case dimp Supp M = 0, a Betti structure is defined to be a pre-Betti
structure. Let us consider the case dimp Supp M < n. We say that a pre-Betti structure of M is a Betti
structure at P, if there exists an n-dimensional Q-cell C = (Z, ¢, U, V') at P with the following property:

. dimp<(SuppM NXp)\ ap(Z)) < n for some neighbourhood Xp of P in X.

o For any cell function g for C, the induced pre-Betti structure of ¢4(M) is a Betti structure at P.

A holonomic D-module with Betti structure is called a Q-holonomic D-module. The category of Q-holonomic
D-modules is abelian.

Remark 1.2 The above definition is slightly different from that given in Subsection 7.2. |

1.2 Main purpose

It is our main purpose to show the functoriality of Betti structures.

Theorem 1.3 The category of Q-holonomic D-modules is equipped with the standard functors such as dual,
push-forward, pull-back, tensor product, and inner homomorphism, compatible with those for the category of
holonomic D-modules with respect to the forgetful functor.

It is not so trivial to show that obvious examples are Q-holonomic D-modules.

Theorem 1.4 Let X be a complex projective manifold with a simple normal crossing divisor D. Let V be a
good meromorphic flat bundle on (X, D) with a good Q-structure. Then, the associated pre-Betti structure of V
is a Betti structure.
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2 Preliminary

2.1 Notation and words
2.1.1 Dual, push-forward and de Rham functor

We prepare some notation. See very useful text books [13] and [18] for more details and precise on D-modules.
Let X be a complex manifold with dim X = dx. Let Dx denote the sheaf of holomorphic differential operators
on X. In this paper, Dx-module means left Dy-module. Let Hol(X) be the category of holonomic Dx-
modules, and let wal(DX) be the derived category of cohomologically holonomic Dx-complexes. Let %
denote the sheaf of holomorphic j-forms. The invertible sheaf Q?g‘ is denoted by Qx. The dual functor on the
derived category of Dx-modules is denoted by Dy, i.e., DxM® := RHomp, (M',DX ® Q}e}*l)[dx]. Recall
that Dx M is a holonomic Dx-module, if M is a holonomic Dx-module. For Dx-modules M; (i = 1,2), the
tensor product My ®p, Ma is naturally a Dx-module. For a tangent vector field v, we have v(m; ® mg) =
(vm1) ® ma +my @ (vms). The Dx-module is denoted by M; @ M,. It is also denoted by M; ® Mo, if there
is no risk of confusion.



Lemma 2.1 Let M be a holonomic Dx-module. Let V be a Dx-module, coherent and locally free as an Ox-
module. Its dual is denoted by VV. Then, we have a natural isomorphism

Dx (M &P V) ~ (DxM) @° VY

Proof We recall Remark 3.4 in [18]. For a left Dx-module A/, we have the left Dx-action on Dy @P N. It
is also equipped with a right Dx-action given by the multiplication (f ® m)-g = fg ® m for g € Dx. The
two-sided (Dx,Dx)-module is denoted by N;j. Similarly, we have a left action of Dy on Dx ®o, N (the
Ox-module structure of Dy is given by a right multiplication) given by the multiplication ¢g- (f @ m) = gf @ m
for ¢ € Dx, and a right Dx-action given by (f @ m) -v = fo ® m — f ® vm for a tangent vector v. The
two-sided (Dx,Dx)-module is denoted by Ny. We have a naturally defined Ox-morphism N' — Nj given
by m — 1 ® m. It is naturally extended to a morphism of left Dx-modules N5 — Aj. Actually, it is an
isomorphism and compatible with the right Dx-action, as remarked in [18].

We have two left Dx-actions on Dx ® Q?é_l. The first one is the natural one, and the second one is induced
by the right Dx-action. They induce two Ox-actions. Let (Dx ® Q?}fl) ®29X N denote the tensor product
with respect to the i-th one. Each is equipped with two left Dx-actions. From the consideration in the previous
paragraph, we obtain a natural isomorphism ¢ : N ®%9X (Dx ® Q;@}_l) — N ®?9X (Dx ® Q?}_l), compatible
with the Dx-actions.

Let us return to Lemma 2.1. We have the following natural isomorphisms of Dx-modules:

Dx(M &P V) = RHomp, (M &P V, Dx © 05 ~1) = RHomp, (M, V¥ &b, (Dx ©9%7"))
~ RHomp, (M, VY@, (Dx® Qg?;—l)) = (Dx M) 2P VY (6)

Here, the first one is obtained by using Godment type injective resolution, and the second one is induced by ¢
above. |

For any field R, let Rx denote the sheaf on X associated to the constant presheaf valued in R. Let
D%(Rx) denote the derived category of cohomologically constructible Rx-complexes, and let Per(X, R) denote
the category of R-perverse sheaves. Let wx r denote the dualizing complex of Rx-modules. It will be denoted
by wx, if there is no risk of confusion. The dual functor on the derived category of Rx-modules is also denoted
by Dx, i.e., for a Rx-complex F*, let DxF*® := RHomp, (f‘,wX’R).

The de Rham functor is denoted by DRy, i.e., DRx M = Qx ®1L;X M = Q% ®o, M[dx]. According
to [15], it gives a functor of triangulated categories DRx : D} (Dx) — D%(Cx) compatible with the ¢-
structures, where the t-structure of Df_;(Dx) is the natural one, and the t-structure of D%(Cx) is given by the
middle perversity. In particular, it induces an exact functor DRx : Hol(X) — Per(X,C). We can identify
wx = DRx Oxl[dx]. It is easy to observe that DRx M = 0 implies M = 0 for M € Hol(X). Hence,
DRy : Hol(X) — Per(X,C) is faithful, although it is not full in general.

Let F': X — Y be a morphism of complex manifolds. The push-forward for Cx-complexes in the derived
category is denoted by RF,. (It is also denoted by F, if there is no risk of confusion.) Its i-th perverse
cohomology is denoted by F,fZ Put

Dx_y := Ox ®@p-10, F'Dy, Dy._x = Qx ®@p-10, F 1 (Dy ®0, QF 7).

The push-forward for D y-complexes is denoted by F}, i.e., FiM = RF, (DYHX ®%X M) Its i-th cohomology
is denoted by F]Z

Recall that these functors are compatible on the derived category of cohomologically holonomic D-modules.
Let F: X — Y be a proper morphism of complex manifolds. We have natural transformations

DRYOFTERF*ODR)(, ]D)XODR)(ZDRXOD)(, DYOFTZFTOD)(.
We have the following diagram, which is commutative as shown in [39].
RF.DxDRx —— RF.DRxDx —— DRy FiDx

| | »

DyRF.DRy —— Dy DRy F; ——— DRy Dy F}



2.1.2 Hypersurface

For a hypersurface D C X, let Ox(xD) denote the sheaf of meromorphic functions whose poles are contained
in D. For M € Hol(X), we have M(xD), M(!D) € Hol(X) given as follows:

M(+D) := M @0, Ox(xD), M(ID) := Dy ((]D)XM)(*D)).
We have naturally defined morphisms:
M(D) — M — M(xD)

If D is given as the zero set of a holomorphic function f, they are denoted by M(xf) and M(!f), respectively.
They are also denoted by j,.j*M and j5*M, where j : X — D — X. Note that j,j* (x = x,!) are exact
functors on Hol(X).

We put Dx(.py := Dx ® Ox(xD). A Dx(.py-module M is called holonomic, if it is holonomic as a Dx-
module. Let Hol(X(*D)) be the category of holonomic D, py-modules, which is a full subcategory of Hol(X).
The dual functor on Hol(X (D)) is denoted by Dy (. p), i.e., Dy (xp)(M) = Dx (M)(xD).

2.1.3 Pre-K-holonomic D-modules

Let M be a holonomic Dx-module. Let K be a subfield of C. A pre-K-Betti structure of M is defined to
be a K-perverse sheaf F with an isomorphism A : F ® x C ~ DRx M. Such a tuple (M, F,\) is called a
pre-K-holonomic Dx-module. We will often omit to denote A. A morphism of K-holonomic Dx-modules
(M, F1) — (Ma, Fs) is defined to be a pair of a morphism of Dx-modules M; — M and a morphism of
perverse sheaves F; — F5 such that the following induced diagram is commutative:

F1 @ C —=— DRx(M,)

l |

Fo®k C —= DRx(Mz)
The following lemma is clear.

Lemma 2.2 The category of pre-K-holonomic Dx -modules is abelian. |

Let F be a pre-K-Betti structure of M. We have induced pre-K-Betti structures DF and FTiJ’: of DM
and FJ?M, where F : X — Y be a proper morphism. We put D(M,F) := (DM,DF) and F]f(./\/l,f) =
(FiM, FiF).

Lemma 2.3 The isomorphism DFy M ~ F;DM is compatible with the induced pre-K-Betti structures.
Proof Because (7) is commutative, we have the commutativity of the following naturally induced diagram:
DRDF;M —— DF;DRM ——— DF;F ®C
DR F{DM —— F;DDRM —— FDF®C

It means the claim of the lemma. |



2.1.4 Formal completion

Let Y be a real analytic manifold. Let C3° denote the sheaf of C"°°-functions on Y. For a real analytic subset
Z, let C§,°<Z denote the subsheaf of C9® which consists of the sections f such that the Taylor expansion of
[ at each point P € Z are 0. We set CZ := C52/C°<%. We have other descriptions. (i) It is the sheaf of
Whitney functions of class C*° on Z, i.e., sections of co-jets along Z satisfying the conditions in Theorem
1.2.2 of [26]. (ii) Let Zz o be the ideal sheaf of C{° corresponding to Z. Then, C%C is also isomorphic to
@C@O/ZZDO. (See the proof of Theorem 1.4.1 of [26].) For any C¢°-module F, let F,z denote F ®cg CZ.
Let Z; (i = 1,2) be real analytic subsets in Y. According to Corollary IV.4.4 of [26], the natural sequence
C°° — CX B CY — C=— — 0 is exact.
UZs Zy Zo Z1\NZsy
Let Z (i € A) be real analytic subsets of Y. For any subset I C A, we put Z; := (,c; Z;. We put Z(I) :=

Uier Zi- We fix a total order on A. For J C K C A, we have the restriction 7k : C‘ZO — Coo If K = Ju{i},
we put k(J, K) :={k € J|k < i} and djx = (=1)"SF)pr; . We set ICm(CE([)) D s1=mi1, ,CICE The
above morphisms d; x induce d,, : K™ (621)) — (C‘i" ) Thus, we obtain the complex K® (C°° ) By
using the exactness in the previous paragraph, it can be 5hown that the natural inclusion C% ICO (C; ; )

~ C* (C;I)). (See [34], for example.)

z(1)

induces a quasi-isomorphism C% 2

Let X be a complex manifold. For a complex analytic subset Z, we set O3 :=lim Ox /I3, where Zy denote

the ideal sheaf of Z. We set Qi' = Q;<|.2 which is equipped with the dlﬂerentlal operators 0 and 0. If Z is

smooth, it is easy to see that the natural inclusion O — 0% 2 is a quasi-isomorphism.

Let D be a simple normal crossing hypersurface with the irreducible decomposition D = J;c, Di. By
the above procedures, we obtain the complexes C® ((9 B I)). It is known that the natural inclusion Op T
KO
Ke (Q

I)) induces a quasi-isomorphism Op  ~ K* ((’)5([)). (See [10] and [34].) We also have QO° o~

( D)
. . 0,e
(I)). Then, we obtain (915( ~ QD(I

e O

2.2 Beilinson’s construction of some functors

Let us recall Beilinson’s beautiful construction of nearby cycle functor, vanishing cycle functor and maximal
functor, which is crucial in this paper. See [3] for more details and precise.

2.2.1 Preliminary

Let k be a field of characteristic 0. Let A := k((s)) and A® := s'k[s]. The multiplication of s induces a nilpotent
map Ny of A7 := A?/AJ. Let J:= A® Og,, be a meromorphic flat bundle on Gy, := Speck[t,t~!] of infinite
rank, equipped with a connection given by

Va—a.<sit>, a € A

We have the ﬂat subbundle 3¢ := A’ ® Og,,. We formally set - = 3. We set J¢° := Ja/jb for a < b,
and formally 3% := J* We have a natural morphism J** — 3%¢ for ¢ > ¢ and b > d. We have a natural
isomorphism J* a+l ~ 3% = Og,  given by 5% «— 1.

This construction makes sense also in the analytic situation, in which multi-valued flat sections are formally
given by «a - exp(—slogt) for a € A.

2.2.2 Nearby cycle functor and maximal functor

Let X be a complex manifold with a hypersurface D. Let Y be a hypersurface of X. Let j: X =Y — X
denote the inclusion. Functors j.j* and jij* for holonomic Dy, p)-modules M are given as follows:

Jei M= M(Y), 51" M = Dx (4. Dx M) (xD) = (M(IY))(xD).



We have a naturally defined morphism jj* M — j,j* M.
Let f be a meromorphic function on (X, D), i.e., the pole of f is contained in D. We set J ”“ b= fr3o0(xD),

which is a meromorphic flat bundle on (X, f~Yoyu D). Let j: X — f~1(0) — X. For a holonormc Dx («D)-
module M, we obtain the following holonomic Dy (. p)-module:

Put Ha b./\/l = ]‘j*/\/la * and Hu b./\/l = j*j*./\/l;’b. In the case b = oo, they are denoted by TI%,M and I}, M.
Belhnson defined the functors wf and = "( ) as follows:
OM =1, M /MM, EWM =19, M /T M

In the case a = 0, they are denoted by 1M and Z;M, respectively. The multiplication of s naturally induces

isomorphisms 1/}f )/\/l 7,!1(“_1)/\/1 and "(a)/\/l ~ Egca—H)M. They will be implicitly identified. We have the exact
sequences of holonomic D X (+D)" modules

(
0 —— I MM 2o =M = M —— 0

—(a) dg”)

(a)
0 —— PiM T =M B et M —— 0

The multiplication of s and the endomorphism céa) o d(a) induce an endomorphism N(@+1) of 1/)}““)./\/1.
Recall the important observation limH‘;}bM o~ hmH“ b/\/l : Iy M due to Beilinson. See [3] for lim. In

particular, it implies that N(@*+1) is nilpotent. We also obtain the following morphism of exact sequences:
0 —— IHM —— M —— H;!Oo’a/\/l — 0

l - |

0—>HbM—>HfM—>H_OObM—>O

Hence, we have a natural isomorphism Cok (H},M — Hl}*./\/l) ~ Ker (H;!‘x”a/\/l — H;fo’b), In particular,
we have the following identifications:

P M > Ker (I M — I;2°°M),  E%M = Ker (L, M — T, M). (8)
Remark 2.4 When we distinguish that we work on the category of Dx .p)y-modules, we will use the symbols
w;.a) (M, *D), EE‘-‘Z) (M, D), etc.. |
2.2.3 Vanishing cycle functor and gluing
Let f be as above. Let Mx be a holonomic Dx,py-module such that My (xf) = M. We have the natural
identifications H;f/\/l x =107, P M for « = %,! and the naturally defined morphisms:

a,a+1 c(a) d(a> a a+1
Myt M 2 My 22 Tt m

Beilinson defined the vanishing cycle functor qﬁsfl)./\/l x as the H'-cohomology of the following sequence of holo-
nomic Dx ,py-modules:

(@) a4 — (),

@C a a,a
H;;““M 2 2P Me My ——5 T M



The morphisms dﬁ“) and cga) induce can and var:

w}a+1)M can ¢§ca)M var w)(ca)M

By construction, we have var o can = céa) ° dga).
Conversely, let My be a holonomic Dy . p)-module whose support is contained in ¥ = f ~1(0), with mor-
phisms such as
PIM - My 5 POM, wou=cy) od”.

Then, we obtain a holonomic Dx (. py-module Glue(My, u,v) as the cohomology of the complex:

d® oy O _y
w;l)M 1 ® Ef(M) o My Co w;O)M

Beilinson made an excellent observation that the above two operations are mutually inverse. See [3] for more
details.
2.2.4 Comparison with ordinary definitions

Let 1’/; f,—1 and 5 ¢ be ordinary nearby cycle functor and vanishing cycle functor defined in terms of V-filtrations
[17], ie., Y5 1 (M) = Gr¥y M and ¢;(Mx) := Gry Mx. For simplicity, 1; 1 is denoted by 1y in the
following.

Lemma 2.5 We have natural isomorphisms 1y ~ {/;f, and ¢f ~ af-

Proof Recall that (E r(Mx) and qu (Mx) are naturally equipped with the nilpotent endomorphisms N, which
is the nilpotent part of the multiplication of —d;t. We have natural identifications:

O (IH'M) = 67 (IFIM) =y M@ A
The natural nilpotent endomorphisms are given by N ® id —id ®(se), which is denoted by N — s. Here, se

denotes the multiplication of s on A%?. In the following, we argue on any compact subset of X.

Let us look at the natural morphism G®? : H;’!b./\/l — H‘}’*b/\/l. The supports of the kernel and the cokernel

are contained in f~1(0). The morphism qu(Ga’b) : @ (H;’!b/\/l) — %f (H;’*b/\/l) is naturally identified with
N—s: M@ A% — M ® A%, Hence, if b is sufficiently larger than a, Cok(G*?) is isomorphic to
TZfM ® A%%+1 independently of b. Therefore, we obtain zp}“)/\/l ~ JfM ® A%9t! In particular, we naturally
have ' M = ¢y M.

It follows that Cok (H;,H’MM — H‘}’*MM) are independent of any sufficiently large M, which should be
isomorphic to Egca)/\/l. We obtain af (E(a)./\/l) ~ Cok(N —s: M@ ATTM s Y M ® A“’M) for any
sufficiently large M. Because qbgco) (Mx) is naturally isomorphic to the cohomology of the complex

65 (' M) — 65 (B M) @ ¢ (Mx) — 6 (I} M),

it is easy to obtain qbgco) (M) ~ &Ef (M) by a direct calculation. 1

As was observed in the proof, on any compact subset of X, we have the following identifications for any
sufficiently large M:

UM = Cok (T MM — M M), =0 M = Cok (T M — 3 M) (9)
Similarly, on any compact subset of X, we have the following identifications for any sufficiently large M:

M = Ker (G M — 132 M), - 210 M = Ker (57 M — M) (10)



2.2.5 Compatibility with dual

n [3], the pairing A x A — k = A~ /A% is given by (f(s), g(s)) = Res,— 0( s) ) It induces pairings
Avb @ A=b=a s A=1 /A0 Then, we obtain flat pairings J®J — I~ and b ® 3 bma 3710 We can
identify 3% with the dual of J=%~% by the pairing.

Let D denote the dual functor on the category of holonomic D (,py-modules. By using the Dx (,p)-version
of Lemma 2.1, we obtain identifications:

D(TIM) =T (DM)), D(THM) =110 (D(M))
By (9) and (10), we obtain the following identifications:
Dyp(M) = ¢y (DM)  DEf(M) = Zf(DM)  Dér(M) ~ ¢y (DM)

2.2.6 Compatibility with push-forward

Let F : X — Y be a proper morphism. Assume that D = F~1(Dy), for simplicity. Let g be a holomorphic
function on Y. Let M be a holonomic Dx(,p)-module. We set g := F*g. Let jy : Y — g 10) — Y and
jx : X — g 1(0) — X. We have natural isomorphisms FT (M2 b) ~ FT’(M) ® jg’b of Dy («p,)-modules.
By a general theory, we have (jy*jy)FT FJr (Jxwj%) for x = *, ' Hence, it is easy to obtain the following
identification:

FipgM =g FiM  FIE,M =EgFM FlgpgM = ¢ Fi M

2.2.7 Choice of a function

Let f and h be meromorphic functions on (X, D). Assume that h is nowhere vanishing. We have natural
isomorphisms of O x-modules J ”a b~ 32;’ ~ Avb @ Ox («p)y(*f). For their flat connections Vy and Vj; and for
a € A% we have the formulas

We have the flat isomorphism ® : J% f o~ 3h + given by ®(a) = eXp(—slog h) a. It induces isomorphisms:

—(a —(a a a
:f)ﬁiéf), 7/’f wh,u ¢_(f)2¢§zf) (11)

They depend on a choice of the branch of log h.

2.2.8 Q-structure of J

In the analytic case, the Q-structure of A%? is given as follows:
C-s/ DQ-(2rmv-1)s

It gives a Q-structure of the fiber of 3% over 1 € C*. We would like to extend it to a flat Q-structure of the
flat bundle J|c-. Let u := 2wy/—1s. The connection of J%b is expressed as

1 dt
2my/—1 1
Here, N denotes the constant matrix such that N; ;1 = 1 and N;; = 0 otherwise. Since the monodromy is
expressed by exp(—N), the Q-structure is well defined. More generally, for any subfield K C C, we obtain a

K-structure of J*? in this way.
Note that the pairing (-,-) is not defined over Q. We have the following formula:

<f(u), g(u)> = E{;%g(f(u)g(*u) du)

V(u,... ") = we,...,u"") N

1
2my/—1
Namely, the pairing (-, -) is valued in the Tate twist Q(—1) = (2m/—1)~!
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2.2.9 Comparison with the functors for perverse sheaves

Let Loc(J)g denote the Q-local system associated to J. The fiber over 1 is Q((u)), and the monodromy along
the loop with the clockwise direction is given by the multiplication of exp(u). Recall another expression of this
local system as in [3].

Let Ap := Q((v)). We set t := v + 1. The pairing Ap x Ap — Q(—1) is given as follows:

iy
t /2wy —1

We have a Q-local system Jp on C* such that the fiber over 1 is Ap, and the monodromy along the loop
with the clockwise direction is given by the multiplication of ¢ = 1 + v. Let us compare Jp and Loc(J)q.
We take an algebra homomorphism ® : Q((u)) — Q((v)) determined by ®(exp(u)) = 1+ v. We identify the

fibers of Loc(J)g and Jp by ®. Because it is compatible with the monodromies, it induces the identification
Loc(J)g ~ Jp. Note that ®(f(—u)) = ®(f)(t7!) and ®(du) = dt/t. Hence the pairing is preserved.

(£, 9() =Res(F(H) gt™)

Remark 2.6 Recall that the functors ¥, = and ¢ for perverse sheaves are given in terms of Jp, according to
[3]. Hence, the above comparison gives the compatibility of the de Rham functor DR with ¢, ¥ and Z in the
reqular singular case. |

2.3 A resolution

This subsection is a preparation for the proof of Theorem 8.1.

2.3.1 Commutativity of push-forward in the non-characteristic case

Let M be a holonomic D-module on a complex algebraic manifold X. We have natural isomorphisms
M(+D) =~ M ®0, Ox (xD), Dx ((]D)XM)(*D)) ~ M & Ox(ID).

If a hypersurface D C X is non-characteristic to M, we obtain M(!D) ~ M ® Ox(!D).

Lemma 2.7 Let D; (i = 1,2) be hypersurfaces of X. If D; (i = 1,2) and Dy N Dy are non-characteristic to
M, we have a natural isomorphism:

(M(xD1))(1D2) = (M(1D2)) (xD1) (12)

Proof Note that Ch(M(*Dl)) = Ch(./\/l) U Ch(il*z”{/\/l), where i; : D; — X. We have a stratification
Supp M = [] Z; such that Ch(M) = [[ T X. We obtain a stratification Supp M = [[(Z; \ D1) UT[(Z; N Dy),
for which we have the following:

Ch(M(+D1)) = [[ T30, X U ][ 5.0, X
Hence, D, is non-characteristic to M ® O(xD;). Similarly, we can show that D; is non-characteristic to
M ® O(!Ds). Then, the both sides of (12) are naturally isomorphic to M ® O(!D3) ® O(xD»). |
2.3.2 Transversality

Let M be a holonomic D-module on a complex algebraic manifold X. There exists a stratification Supp(M) =
[T;ca Zi such that (i) each Z; is a smooth locally closed analytic subset of X, (ii) Ch(M) = [[;c, T, X.

Lemma 2.8 An analytic subset W C X is non-characteristic to M, if and only if W and Z; are transversal
for any i € A.

Proof For P € WNZ;, we have subspaces (1% X)|p and (17}, X)|p of (" X)|p. Then, W and Z; are transversal
at P if and only if (T3, X)|p N (T, X)|p = {0}. Then, the claim of the lemma is clear. 1
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2.3.3 Non-characteristic tuple of hyperplane subbundles

Let € be a locally free sheaf on a complex algebraic manifold Y. We put X := P(£) with the projection
G : X — Y. The zero set of a section of Opgy/y (1) is called a hyperplane subbundle of X.

Let M be a holonomic Dx-module. Let H := (Hy,...,Hy) be a tuple of hyperplane subbundles of X. We
say that H is non-characteristic to M, if Hy := (,c; H; are non-characteristic to M for any I C {1,...,N}.
We can show the following lemma by a standard argument of genericity.

Lemma 2.9 Let H = (Hy,...,Hy) be non-characteristic to M. We can take a hyperplane subbundle Hy i1
such that (Hy,...,Hy,HN41) 18 also non-characteristic to M. |

Recall the following general lemma.

Lemma 2.10 Let (Hy, Hs) be a tuple of hyperplane bundles of X, which is non-characteristic to M. Then,
Gé (M(xHy!Hy)) =0 for any i # 0.

Proof Let M; (i = 1,2) be holonomic Dx-modules, to which H; is non_—characteristic. It is easy to show that
GiMl(*Hl) = 0 for any ¢ > 0. By using the duality, we obtain that G} (./\/lg(!Hg)) =0 for any 7 < 0. Then,
the claim follows from Lemma 2.7. |

2.3.4 A resolution

Let X, Y and M be as in Subsection 2.3.3. Let H = (H;) be a tuple of hyperplane subbundles of X, non-
characteristic to M. Let i := {1,...,i}, and let ¢z, denote the inclusion H; C X. We put Ny := M(xH1). We
also put C; := LHA.TLRM, and N; := C;(xH;11). We have the natural exact sequences:

0—>M—>No—>cl—>0, 0—>Cl—>M—>CZ+1—>O
Hence, we obtain the following exact sequence:
0—M—Ny— N — -+ — N, — -

Let H = (H ) be a tuple of hyperplane subbundles of X such that H LI H " is non-characteristic to M. We
set Q; 0 := N;(1H{). We also put K; _; := LH”L}};/\/Z- and Q; _; =K, _;(!H;41). We have the natural exact
sequences: T

0 — Ki—1— Qio— N, —0, 0 —Kij_jo1— Qi — K;_; —0

Hence, we obtain the following exact sequences:
0— N, — Qo Qi1 — Qg -
By construction, we have the naturally defined morphisms Q; _; — Q;4+1,—; and the commutative diagrams:
Qi—; —— Qiy1,-5
Qi —jr1 — Qit1,—j11

Let Tot(Q.v.) denote the total complex of the double complex Q... We have natural quasi-isomorphisms

Tot(Q.,.) =N S M.

3 Good holonomic D-modules and their de Rham complexes

3.1 Good holonomic D-modules

3.1.1 7Z-good meromorphic flat bundle

We put X := A", D; := {7z =0} and D := Ule D;. For I C £, we set D(I) := (;¢; Di and Dy := (;¢; D;.
We put D := Dy N D(I¢), where I°:= ¢ —I. Let M (X, D) be the set of meromorphic functions on X whose
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poles are contained in D. Let H(X) be the set of holomorphic functions on X. Let Z ¢ M(X,D)/H(X) be
a good set of irregular values. For I C £, let Z'(I) be the set of the elements a € Z which are regular along z;
(i € I), and we put Z(I) := {a;p, |a € T'(I) }.

Let X(™) = A" = {(Zi/m,...,Z;/m,24+1,...,zn)}, ng) = {zl(m) = 0} and D("™) = Ule Dl(m), ie.,
X(m) — X is a ramified covering along D. We have the induced ramified covering D§m) = Nier ng) — Dy.
Let Z ¢ M(X(™) D) /H(X(™)) be a good set of irregular values. Let I C £. A meromorphic flat bundle
& on (D;,0Dy) is called Z-good, if it is the descent of an unramifiedly good meromorphic flat bundle &£ (m) on
(D;m), 8D§m)) whose set of irregular values is contained in Z(I).

In this subsection, we use the following notation for simplicity of the description.

Notation 3.1 The vanishing cycle functor ¢, is denoted by ¢;. We use the symbols ¢;, Z; and H?;b in similar
meanings. For a holonomic Dx-module M, we set M(xi) := M(xD;) and M(1i) := M(1D;). If we are given
a subset I C £, we put M(!I) :== M(!D(I)) and M(xI) := M(xD(I)). |

Lemma 3.2 Let £ be an Z-good meromorphic flat bundle on (X, D). Ifi # j, the natural morphism ¢;(E) —
di(E)(x4) is an isomorphism.

Proof It follows from a direct computation of the Kashiwara-Malgrange filtration along z;. We give only an
indication. We use an order on C given by the lexicographic order on R x R and the identification C ~ R? via
a — (Rea,Ima). For a = (o | k € £), we can take a good lattice Eo of £ such that any eigen values 8 of
Res; (V) satisfy —a; < 8 < —a; — 1. Let 4D denote the sheaf of subalgebras of D generated by Ox, 0y (k # i)
and 2;0;. Put D(i€) := ;4 j<, Dj. For a € C, take an o whose i-th component is «, and let WV, (€) be the
#yD-submodule of € generated by 1€ := o E(xD(i¢)). We can check that V_,_1(&) is generated by o E, where
the i-th component of « is «, and the other components of a are larger than 1. Hence, we can deduce that
WV, (€) are VyDx-coherent. We can also check that the induced action of —9;2; — a on V,,/V_,, is nilpotent.
Hence, V (€) is the Kashiwara-Malgrange filtration of £ along z;. Then, the claim of the lemma is clear. |

Lemma 3.3 Ifi # j, the natural morphism E(1i) — E(1)(xj) is an isomorphism.

Proof Let N denote the nilpotent part of the action of —0;z; on ¢;(£). We have the following commutative
diagram:

0 —— KeeN —— &%) & CokN —— 0
‘| ] -| |
0 —— Ker N(xj) —— &(1)(xj) & Cok N(xj) —— 0
By Lemma 3.8, we obtain that a and ¢ are isomorphisms. Hence, b is also an isomorphism. |

3.1.2 7Z-good holonomic D-modules

We continue to use the notation in Subsection 3.1.1.

Definition 3.4 A holonomic Dx-module M is called T-good on (X, D), if the following holds:
o M(xD) is a good meromorphic flat bundle whose good set of irregular values is T.

e For an ordered tuple I = (i1,...,4m) where 1 < i; < ¢, we set ¢1 = ¢y, 0---0¢; . Then, qb;(./\/l)(*lc) is
the push-forward of a good meromorphic flat bundle on (D, dDr) whose set of irregular values is T(I). I

The full subcategory of Z-good holonomic D-modules is abelian, and it is closed under extensions. If V' is a
good meromorphic flat bundle, it is a good holonomic Dx-module in the above sense. When we do not have to
distinguish 7, we will omit to denote it. We will implicitly use the following obvious lemma.

Lemma 3.5 Let M be a holonomic Dx-module. Assume (i) M(xD) is an T-good meromorphic flat bundle,
(i) ¢;(M) are I-good for anyi=1,...,L. Then, M is Z-good. |
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Lemma 3.6 Let M be a good holonomic D-module on (X, D). Then, Dx M is also good.

Proof We use an induction on the dimension of the support of M. It is easy to check that Dx M(xD) is
a good meromorphic flat bundle. By the hypothesis of the induction, ¢;(DxM) ~ Dx¢,(M) are also good.
Hence, we obtain that M is good.

For a good holonomic D-module M, let p(M) € Z>g X Zso denote the pair of dim Supp M and the
number of the irreducible components of Supp M with the maximal dimension. We use the lexicographic order
on Z>qo X Zso. For a good holonomic D-module M, there exists J C £ with dimSuppM = n — |J| such
that M(xJ¢) # 0. The kernel N and the cokernel N> of the natural morphism M — M (xJ¢) satisfy
p(Ni) < pM) (i=1,2).

Lemma 3.7 Let M be good on (X, D). Then, 1;(M) are also good for any i =1,...,¢.

Proof We use an induction on p(M). Let J and N (j = 1,2) be as above. By the assumption of the induction,
¥i(N5) (4 = 1,2) are good. It is easy to show that v, (M(*JC)) is good by using the lattice as in the proof of
Lemma 3.2. Hence, we obtain that 1;(M) is also good. |

3.1.3 Commutativity of the functor along the coordinate functions
Let M be good on (X, D).
Lemma 3.8 For i # j, we have natural isomorphisms ¢; (M (%)) =~ ¢;(M)(xj) and ¢; (M(15)) = ¢;(M)(1j).

Proof The second isomorphism is obtained as the dual of the first one. Let us consider the first isomorphism.
We have the following naturally defined morphisms:

$i (M(%5)) — s (M (%)) (%) <= ¢ (M) (%)

Because the restriction of b to X — D; is an isomorphism, it is easy to show that b is an isomorphism. Let us
show that a is an isomorphism by using an induction on p(M). As in the proof of Lemma 3.7, the issue can be
reduced to the case that M is a good meromorphic flat bundle, which is given in Lemma 3.2. |

Lemma 3.9 M(xj) and M(!j) are also good.

Proof Because ¢; (M(*])) ~ 1);(M), we obtain that M(xj) is good from Lemmas 3.5, 3.7 and 3.8. By using
Lemma 3.6, we obtain that M(!j) is also good. |

We have the following corollary of Lemma 3.9.

Corollary 3.10 Let f be a meromorphic function on (X, D) whose zero and pole are contained in D. Take
DW c D such that the pole of f is contained in D. The holonomic Dx-module Haf(M,*D(l)) is good on
(X, D). Hence, (M, +DM), Zp(M,*DWV)) and ¢¢(M,+DM) are also good on (X, D). |

We have the following naturally defined morphisms:
M (i) (1) = M) (1) (+) <> M) (i)
It is easy to show that b is an isomorphism.
Lemma 3.11 a is also an isomorphism, by which we can identify M(xi)(15) and M(!5)(x1).

Proof By using an induction on p(M), we can reduce the issue to the case that M is a good meromorphic
flat bundle, which is given in Lemma 3.3. |

In the following, we will not distinguish M (xi)(!j) and M(1j)(xi) for i # j, which will be denoted by
M(xilj). For I UJ C £, we have the natural identification M(!IxJ) =~ M (xJ!T), which will be used implicitly.
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Lemma 3.12 We have the commutativity Z; 0 E; = E; 0 E;, 1) 095 = ¢ 01; and ¢; 0 p; = ¢ 0 ¢;. Moreover,
the functors Z;, v; and ¢y are mutually commutative, where i, j and k are mutually distinct. In the following,
we will not care about the order of these functors for good holonomic D-modules on (X, D).

;ﬁ = H;’j o H?*’b from Lemma 3.11. Then, the claim of the

Proof We obtain the natural identification H?*’b oll
lemma is clear. 1

3.1.4 Globalization

Let X be a complex manifold with a normal crossing hypersurface D.
Definition 3.13 A holonomic Dx-module M is called good on (X, D), if the following holds:

e Let P be any point of D. Let (U, z1,...,2,) be a coordinate neighbourhood around P such that DNU =
Ule{zi = 0}. Then, My is good in the sense of Definition 3.4. |

We obtain the following from the results in Subsections 3.1.2-3.1.3.

Lemma 3.14 Let M be good on (X, D).
e The dual Dx M is also good on (X, D).

e Let DY) C D be a union of some irreducible components. Then, M(xDM) and M(!DM) are also good
on (X, D).

o Let DU C D (i = 1,2) be unions of some irreducible components such that dim DM N D®) < dim X — 1.
Then, we have a natural isomorphism M(xD™M)(ID®)) ~ M(!D®)(xDM)).

e Let f be a meromorphic function on (X, D) whose zero and pole are contained in D. Take DM < D such
that the pole of f is contained in D. Then, 1;(M,*DM), Zp(M,*DWV)) and ¢;(M,*DM) are also good
on (X, D). 1

3.2 De Rham complexes
3.2.1 De Rham complex with infinite decay

For a complex manifold X, let Q57 denote the sheaf of C*°-(p, ¢)-forms on X. For any analytic subset Z C X,
we set ng = 0% ®ce CZ. If we are given a normal crossing hypersurface D C X, we set ng(*D) =
ng ®oy Oz(xD). We say that D; U Dy = D is a decomposition of D, if D; C X (i = 1,2) are hypersurfaces
such that codimx(D; N D3) > 1. In that situation, we say that Dy is the complement of Dy in D. When we
are given a normal crossing hypersurface D C X with a decomposition D = D; U D5, let Qg(’q(*Dg)<D1 denote
the kernel of Q%9 (xDy) — Q%?(*Dg).

Let Dg be a normal crossing hypersurface of X with a decomposition Dy = D1 U D5y. Let M be a holonomic
Dx-module. We define DR;DISD2 M in the derived category D*(Cx) as follows:

DR P2 M = Q00 <P (xDy) % . M ~ Q% <P (xDs) ®0, M[dim X]

It is easy to observe that the natural morphism DR;{DISD2 M — DR}DISD2 (M(*Dy)) is an isomorphism in
D*(Cx). We also have the following natural isomorphisms:

DR (D M (Do) = Q5™ % (+D2) <Pt @, DxM(+Dy)
~ RHomp, (xpy) (M, Q% (+D2) <L) ~ RHomp, (M, Q%°(+Dy)<P1)  (13)
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3.2.2 The identification in the case of good holonomic D-modules
Let X and D; (i = 0,1,2) be as above. Let D be a normal crossing hypersurface such that Dy C D. Let M be
a good holonomic D-module on (X, D).

Proposition 3.15 If M(xD,) = M, the natural morphism DR;DlSD2 DxM — DR)S(D2 DxM is a quasi-
isomorphism.

Proof We have only to consider the case X = A™ and D = Ule{zi = 0}. We have I, C £ (a = 1,2) such that
Do = U;er, {7 = 0}. By using an induction on p(M) (Subsection 3.1.2), we can reduce the issue to the case
that M is the push-forward of a good meromorphic flat bundle on D; for some J C £\ I; as in the proof of
Lemma 3.7. Moreover, we have only to consider the case M is a good meromorphic flat bundle V" on (X, D).

Note that the induced morphism 0; : z’/;ziv,l(]D) xV) — ¢.,(Dx V) is an isomorphism, which can be checked
by using the lattices in the proof of Lemma 3.2. Hence, we have the following vanishing for any I C I;:

RHOTI’LDX (‘/, Oﬁ[ (*Dg)) = RHO?TLDX (Ox, DxV ® 051 (*DQ)) =0

Here, Dy := (;c;{zi = 0}. (Note Dy # D; for i = 1,2 in general.) Then, we obtain the vanishing
RHomp, (V, Op, (*D3)) = 0 by using the standard resolution of Op, interms of Op (I C I1). (See Subsection
2.1.4.) Because the cone of Q%*<"*(xDy) — Q%*(+Dy) is quasi isomorphic to Q%"(*Dg) ~ Op (*D2), we

obtain the claim of the lemma. |

Let M be a good holonomic D-module on (X, D). Let D; C D. Applying Proposition 3.15 to Dx M (xDy),
we obtain an isomorphism DR<P* M ~ DR M(!D;). Note M(!D;) ~ Dx (DxM(xDy)). In particular, we
obtain the following corollary.

Corollary 3.16 Let D = D1 U D5 be a decomposition. Let V' be a good meromorphic flat bundle on (X, D).
We have a natural isomorphism DRY”" (V) ~ DRy (V(!D)(xD2)) ~ DRx (V(!Dy)). |

Lemma 3.17 Let Dy and D} be hypersurfaces of X such that (i) D1, D} C D, (it) dim(Dy N D}) < dim X — 1.
We have the following commutative diagram:

DRy M(!D;!D}) —— DRx M(ID;)

I I

DR;” M(D}) —— DR M

I -

DRI M —— DRI M
Proof It follows from the commutativity of the following:

RHomp, (DxM(xDY),Q%") ———  RHomp, (DxM(xD1),Q%")

I I

RHomp, (Dx M(xDY), Q%" <P") ——— RHomp, (DxM(xD1), Q% <P) (14)

I -

RHomp, (DxM(xD{), 03" ="1) —— RHomp, (DxM(xDy), 0% <)

Here, we put DY := D, U Dj. |
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3.2.3 Duality

We continue to use the notation in Subsection 3.2.2. For simplicity, we assume D = Dy. Let V be a good
meromorphic flat bundle on (X, D). Let us construct a morphism DR;DlSD2 (DxV) — Dx DR;DQSD1 V. Let

O x denote the sheaf of holomorphic tangent vectors on X. We set 0% := A°®* ©x. Because V and Qg("d)l (%*D2)
are Dx (xD)-modules, we have a natural isomorphism:

RHomp, (V,Q%* <P1(xDy)) ~ Homp, (DX ® 0% ®V, Dx ® 0% @ Q** <D1(>«<D2)). (15)

dim X,e <Ds
QX

By considering ®@py (+D), We have the following morphism:

Homn, (Dx © 0% ® V, Dx © 0% © Q" <P1(xDy) ) — Home, (05" 7 & V, 03 <)
. RHome, (DR;DQSDl(V), Q%*<P[dim X]) (16)

By using the inclusion Q%°*<? < Q%°*, we obtain the following morphism:

DR =2 (Dx V) — Dx DRY72=P1 v
I J (17)
RHomp, (V,Q%° (+xD2)<P1)  —  RHomc, (DRF2=P' V, Q%°[dim X])
Note DxV(xD) =VV.
Theorem 3.18 The following diagram is commutative:

DR<P1=P2 (V) L, py DRP25P (V)

. g 08)

DRVY(ID;) —%— DyDR(V(IDy))

The vertical isomorphisms are given in Proposition 3.15, and G2 is induced by the natural isomorphism of
D-modules VY (1Dy) ~ Dx (V(!D2)). (See Subsection 3.1.3.) In particular, Gy is also an isomorphism.

Proof We have only to check the commutativity locally. Recall that we have used the identifications VY (1D;) ~
(DxV)(xD3) and V(!1D3) ~ (DxV")(xD1) in the construction of the vertical arrows. Since an isomorphism
Dx (V(1D2)) — (DxV)(xD>) is uniquely determined by its restriction to X — D, we can regard that G5 is
induced by “Ox (x*D2)®e,” as follows:

RHO’ITLDX (vav(*Dl), Dx ® Q;eéil) — R'HomDX (Vv, Dx ® Q%il(*Dg)) (19)

Applying the de Rham functor to (19), we obtain the upper horizontal arrow in the following diagram:

RHomp, (DxVV(xD1), Q%) GT> RHomop, (V,9%° (+Dy))

gTbo ET% (20)
RHomp, (DxVV(xDy), Q%*<"") —22 RHomp, (V,Q%" <" (xDy))

Up to shift of the degree, b; is the left vertical arrow in (18), and G3 = G5 ! 'We have the following commutative
diagram:

RHomp, (DXVV(*D1)7 0% <D1) _ b, RHomp, (ID)XVV(*Dl), 92()

~

.| |

RHome, (DRF (DxVY), DRx O} <”')  ——  RMome, (DRZ™ (DxVY), DRx %) (21)

o] .|

Riome, (DREPSP (D VY), DRx 0" <7) —“— RHome, (DRFP <P (DxVY), DRx 0}
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Let us consider the following diagram:

RHomp, (DxVV(xDy), Q%° <P) S RHomp, (V,Q%° <P (xDy))

all a4l (22)

RHome, (DRZ” (DxVY), DRy Q%° <"") —2— RHomc, (DRF”="1(DxVV), DRy Q}* ")

The morphism ay4 is given by (15), (16) and the inclusion Q%* <P — Q%* <P

Lemma 3.19 The diagram (22) is locally commutative, i.e., for any point P € X, there exists a neighbourhood
of U such that (22) considered on U is commutative.

Proof We set DS = Dx ® Q?}_l, equipped with the Dx-action induced by the right Dx-action on Dx.
Because Q%° <P1is an Ox (+D1)-module, we have

RHomp, (D% (+D1), Q% ="") = Homp, (D (+D1), Q%" <™).

Similarly, we have RHomp, (D% (D), Q%" "' (+Dy)) ~ Homp, (D% (*D), Q%* <P*(xDs)). The following
naturally defined diagram is commutative:

Homp, (Dg((*Dl), Dx ® 0% © 0%° <D1) s Homp, (D}(*D), Dx ® 0% @ Q§'<D1(*D2))

| !

Home, (Qgg'(*pl), DRy Q%° <Dl) ——— Home, (Qg( <P2(4Dy), DRy Q%° <D1)

Then, we can check the commutativity of (22) by taking a free resolution of VV. |

By construction, ag o a4 is the equal to G in (18). Then, the claim of Theorem 3.18 follows from the
commutativity of the diagrams (20), (21) and (22). 1

3.2.4 Functoriality

Let X be a complex manifold, and let D be a normal crossing hypersurface with a decomposition D = Dy U Ds.
Let D3 be a hypersurface of X. Let ¢ : X’ — X be a proper birational morphism such that (i) D’ =
¢~ !(D U Ds) is normal crossing, (i) X'\ D' ~ X \ (DU D3). We put D} := ¢~ !(D;). We take D} such that
D’ = D} U D} is a decomposition.

Let V be a meromorphic flat bundle on (X, D), and we set V' := ¢*V @ Ox/(xD’). We have a natural iso-
morphism (V (xDs3))(!Dy) ~ ¢; (V'(1D})), which induces a morphism of Dx-modules V(D) — ¢; (V'(!D})).
We have a naturally induced morphism ¢~ (Q%° <Pr«Dy)® V) — QY <P (x*D%)® V', from which we obtain
the following:

<D}<Dj

DR”*=P*(V) — Rp.DRY/ ' =72(V') (23)
By considering the dual with V'V (see Theorem 3.18), we obtain the morphism

Ry DRLP2SPH (V) — DREP S (V) (24)
Theorem 3.20 We have the following commutative diagram:

DRI SP2 v . Ry, DRSPe v

:l :l (25)

DRX V('Dl) E— R(p* DRX/ V/('Dll)
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Here, the vertical isomorphisms are given in Proposition 3.15, the upper horizontal arrow is (23), and the lower
horizontal arrow is induced by the morphism of Dx-modules V (!1D1) — ¢+ (V'(1D})).
Similarly, we have the following commutative diagram:

R DRy ="V —— DRP=Pry
:l Zl (26)
Rp. DR/ V'(IDy) —— DRx V(IDy)

Here, the vertical isomorphisms are given in Proposition 3.15, the upper horizontal arrow is (24), and the lower
horizontal arrow is induced by the natural morphism of Dx-modules ¢ (V'(!D4)) — V(ID2).

Proof We set Dy = Dx ® Q%' Put dx := dimX. Let us consider the commutativity of (26). By
construction and the duality in Theorem 3.18, the morphism (24) is expressed as follows:

R, RHome (DR}? N @b}g?) [dx] — RHomc, (ch* (DRI V'Y), @*Qb;;t) [dx]
— RHome, (DR}DI vV, ga*@b;;) [dx] — RHomc, (DR§D1 vV, @b};') [dx] (27)
The morphism DRx ¢; (V'(1D4)) — DRx V(!D2) is represented as follows:

Rp,.RHomp,, (V'Y,0x:(xD})) — RHomp, (¢:V", p;Ox/(xD}))
— RHomp, (VV,0:O0x/(xD])) — RHomp, (VY,0x(xDy)) (28)

We have the following commutative diagram:

Rg.RHomp,, (V",0x/(+D})) ——  Rp,RHome,, (DREZT V'Y, Db%3)[dx]

l |

RHomp, (¢:V", 01Ox(+D})) ——— RHome, (ch* (DRI V), ga*Qb;("T) [dx] (29)
RHomp, (VV, 1Ox:(+D}))  ——  RHome, (DRF™ VY, 005! ) ldx]

Lemma 3.21 The following diagram is commutative:
RHomp, (VV,¢:Ox/ (D)) ——— RHomc, (DRF™ VV, 0. Db%")[dx]
J l (30)
RHomp, (VV,0x(xD1)) ———— RHomc, (DRF™ VY, Db%*)[dx]
Proof Note that we have the commutativity of the following diagram:
0. (DBYT(+D))) @ QY0P —— o, (D6Y?)
l l (31)
Db (+Dy) @ QYT —— Dby

The vertical arrows are induced by the trace maps, and the horizontal arrows are multiplications. Hence, the
following diagram is commutative:

Homp (DX, 0. (Db} (xD)) @ D}’() — % Home, (Qg(im X <D 90*@[7;(’7)

1 l o

Hompy (Dx, DbY°(xD1) @ D) ——— Homey (AR <P, Db%°)
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The vertical arrows are induced by the trace maps, and the horizontal arrows are induced by the tensor product
QX <Prgy and (31). By considering a free resolution of V, we obtain the commutativity of (30) from
(32).

We obtain the commutativity of (26) from (29) and (30). Let us consider the commutativity of (25). In
general, we have the following commutative diagram for N' — @i N, where N (resp. N”) is a coherent
Dx-module (resp. Dx/-module):

Ro.DRDN’ =~ DRg;DN’ =~ DRDyp;N' — DRDN
! ! !
Rp,DDRN’ =~ DRp,DRN’ =~ DDR¢piN' — DDRN

The vertical arrows are also isomorphisms. Applying this commutativity to VY (1D1) — ¢4 V"V (1D}), we obtain
the following commutative diagram:

Rp,DRV'(ID}) ——— DRgV/(IDy) —— DRDg;VV(ID}) —— DRV(!Dy)

! | !

Rp DDRV"(ID}) —— DRp,DRV"Y(ID]) —— DDRp;V"V(1D]) —— DDRVY(!Dy)
It implies the commutativity of the following:

DDR(V(IDy)) —— DRy, DR(V'(!D}))

DR(VVY(1Dy)) —— Ryp.DR(V™V(ID}))

Then, (25) is obtained as the dual of (26) with V'V, and hence it is commutative. Thus, the proof of Theorem
3.20 is finished. i

4 Some sheaves on a real blow up

4.1 (*°-functions holomorphic functions
4.1.1 Preliminary

Let X be an n-dimensional complex manifold with a simply normal crossing hypersurface D with the irreducible
decomposition | J;c, D;. In this paper, the real blow up 7 : X (D) — X means the fiber product of X (D;) over
X. For any subset I C A, we set Dj :=(,c; D; and D(I) := J,c; Ds. Formally, Dy := X. For J C I¢:= A\,
we put Dy(J) := Dy N D(J). In particular, Dy := D;(I¢). Let D° be a (possibly empty) hypersurface of X

such that (i) DU D® is simply normal crossing, (ii) dim DN D® <n—1. For J C A, we set D(J) := D(J)U D°.
For TUJ C A, we put Dy(J) := Dy N D(J).
Recall that a holomorphic function on X (D) is defined to be a C*°-function f on X (D) such that fix_p

is holomorphic. Let O (D) denote the sheaf of holomorphic functions on X. Let Q%‘z D) denote the sheaf of

¢ is locally described as a linear combination of

(D)
f-cﬁil/2“~-~d3im/§im~dEjl-ndEjk (lgil,...,imgﬁ,€+1§j1,...,jk§n,f€C°~° )

C>-logarithmic (0, q)-forms on X (D), i.e., a section of Q(;?’

X(D)
in terms of a local coordinate (z1,. .., 2, ) such that D is locally described as Uf{zi = 0}. We have the naturally
defined operator 0 : Q%?D) — Q%Q(E;. The complex Q%ZD) is called the Dolbeault complex of X (D). We put

0,0 . 0,0 . =~
0z = QX( 5 for any real analytic subset Z C X (D).

D)
Let Z be n=!(D;(J)) for some I LUJ C A. Let Iy C O%(py be the ideal sheaf of Z, and put Oy :=
@OX/I?. For a given O)?(D)—module F, we set .7-"‘2 =F Qo-

X(D)

O5. According to a generalized Borel-Ritt

20



theorem due to Majima and Sabbah ([25], [34]), the natural morphism O_—— = — O__—— . is surjective.

(D1) 7=1(Dr(J))
The kernel is denoted by (’)<[1(J)
(D)’

For a given C*°-manifold Y and a real analytic subset W C X, let Cooﬂ denote the sheaf C* =" W)Xy
1(D1)XY ™ I(DI)XY

~ 0, o<W L 0,e co<W
0~n X(D) x Y, for simplicity of the description. We also put Q7T By QX(D) ®C§<D> " D)XY
X(D)x Y.

Let q; denote the projection 7=(D;) — D;(0D;). We have (9<D ‘2 )= =q; (’);D(;DJ))[[ZZ |i € I]. By a

I
. . 1 D 1 |[| o0 <D(J) _ po0<Dr(J) s

natural diffeomorphism 7~ (D;) ~ D;(0D;) x (S')!] we can identify Dy = CBioDx (s [z |4 € I].

Put T(m,1,J) = {K C J|I C K,|K| = |I| +m+1} for m > 0. We set zcm(orl(ﬁm) -

@KGT(M’I’J) (’)7T D)’ We obtain the complex K*® ((9 as in Subsection 2.1.4. Similarly, we ob-

r@m)

tain complex K*® (QO o <D" ).
_I(DI(J))XY
Lemma 4.1 ([34]) Let B be O oy O QO”%J)) v The natural inclusion B — K°(B) induces a
7T ™ T X
quasi-isomorphism B — K*(B). 1

4.1.2 Dolbeault resolution

In this subsection, we do not consider D°.

0,0 0,0 <D(J) . o <D(J) i
Proposition 4.2 ([25], [34]) Q D) and Qr/l(BI) are resolutions of OTr—l(DI(J)) and Ow*/l(BI) respec

tively, where J C I°€.

Proof We give only an outline. In each case, it is easy to compute the 0-th cohomology of the Dolbeault
complexes. We have only to show the vanishing of the higher cohomology. We may assume X = A", D; =

{z;=0}and D = Ule D;. First, let us look at Q% z Dy’ For 1 < j <n, let PZ; be the sheaf of C*-functions on

X (D) which are d;-holomorphic for i > j. We set X;=A ={(z1,...,2;)} and Dj, := Ui<mingsey 12: = 0}
Let g<; be the projection )~((D) — )?j (Dje). Let P%j be the sheaf of C*°-sections of qg;Q%:(Dj’l), which
are O;-holomorphic for i > j. We set Pz, = A° 73%]- over P%j. We have the naturally defined operator
RE P, — P'H.

Because 7)50 =O%p) and P2, = QS(ID) we have only to show that the natural inclusions P2, — P2,
are quasi-isomorphisms for the vanishing of the higher cohomology of Q%’?D). Let Q% ;= ’P%j 41- Let ng ; be
the sheaf of qgjlﬁ%j (D) which are 8;-holomorphic for i > j + 1. We take the exterior product Q%, = A* QL
over QO . We have the naturally defined operator 5j+1 : Q.Sj — Q.SJ A d2j+1/zj+1. We clearly have

Ker 8J+1 = P2,. Let us show Cokgﬁ_l = 0. In the case 7 > /¢, it can be shown by the argument for the
standard Dolbeault s lemma. Let us consider the case j < /.

L 4.3 The cok L of th hism 0,41 : Q° — * — ANdZj11/Zj41 15 0.
emma e cokernel of the morphism 041 Qéj\wfl(DHl) — Q§j|w*1(Dj+1) z]+1/zj+1 18

Proof We use the polar coordinate z; 1, = 741 €Y~ 1%+, The action of 8,4, is expressed as follows:
_ . V-1 n _
8J‘+1(Z frn(0j41) Zj+1> = Z(Taej+1)fn(9j+1) 2y Az [Zin

Then, it is easy to show the claim of Lemma 4.3. |
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Put D’ := Ule’#jﬂ{zi = 0}, and let us consider the real blow up ©’ : X(D') — X. We have a

natlirally induced morphism ¢<; : X(D') — X;(Djy). Let SL, x be the sheaf of sections of (q;j)_lﬁg(’i(DM)
on X (D'), which are 9;-holomorphic for i > j + 1. Let S 2, x be the sheaf of C'*°-functions on X(D ), which
are 0;-holomorphic for i > j + 1. We set 82, = A° SS ;- It is easy to show the vanishing of the cokernel of
Dji1: 82, — 8%, ANdzjtq1 by using the argument for standard Dolbeault’s lemma.

Let P € 7= 1(D). Let U be a small neighbourhood around P, which will be shrinked in the following
argument. According to Lemma 4.3, for any section ¢ of QLN dZ;41/Zj+1 on U, we can take a local section
¢ of Q% such that

(P = 03%) =75,y = 0

We put A := ¢ — 9;9. We take a cut function p around P, i.e., p is constantly 1 around P and constantly 0
near the boundary of U. We can regard p A as a section of S; A dz;41. Then, we can find a section « of 82

around 7;(P) such that 0,41k = p), where 7; denotes the natural projection X(D) — X(D'). We obtain
¢ = 9;(¥ + k) around P. Thus, we obtain the vanishing of the cokernel of 9;1 : QY, — QLA dZj41/Zj41

and hence the vanishing of the higher cohomology of Qg{: D)’

Because 7~ 1(D;) = D;(0D;) x ()1, we can reduce the vanishing of the higher cohomology of Q" /(3 ) to

the vanishing of QO ° by a formal calculation as in Lemma 4.3. By using the resolution in Lemma 4.1, we

Dr(0Dr)
obtain the vanishing of the higher cohomology of QO W)’ We have the following diagram of exact sequences:
<D(I
0 OX(D) O%(p) Ow—ﬁp\(f)) 0
0,0<D(I) 0 0,

0 Yoy T YRy (D) 0
Then, we obtain the vanishing of the higher cohomology of € )?E ;)D 0, By a formal calculation as in Lemma
4.3, we obtain the vanishing of the higher cohomology of QO B and 907%(;). |

T I

4.1.3 Flatness

In this subsection D° is not necessarily empty.

Proposition 4.4 Let TUJ C A. The sheaves C*2 =20 <D() C°°</DO\ , 0<PY)  4nd © _i—— . are flat over
1Dy’ T w-U(D(J) =~ 1(Dp) m=1(Dr(J))
7T_IOX.

Proof Let us recall a general result. For a real analytic manifold Y, let O% denote the sheaf of real analytic
functions on Y. If Y is the product of a complex manifold Y; and a real analytic manifold Y5, let OYI ~hol denote

the sheaf of real analytic functions which are holomorphic in the Y;j-direction. The extension (9Y1 —hol ~ O% is
faithfully flat.

Lemma 4.5 Let Wy C W2 C Y be real analytic subsets. Then, Cy* <" and C3* <" /C3* <W2 are flat over OF.

Proof The sheaf C5° is faithfully flat over OF (Corollary 1.12 of [26]). Theorem VI.1.2 of [26] implies a C5° <"1n
Cy” <Wa2 _ aCy” W2 for any real analytic subsets Wy C Wy C Y and for any ideal sheaf a of O%. By using the
argument in the proof of Proposition II1.4.7 in [26], we can show the following:

e Let A be aring. Let M be an A-flat module. Let N be an A-submodule of M. If aM NN = aN for any
ideal a of A, then N and M/N are also A-flat.
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We immediately obtain the claim of Lemma 4.5 from these results. |

Let Zy be a complex manifold with a normal crossing hypersurface Dy. Let Z; be a real analytic manifold.
We put Z := Zy x Z1 and D := Dy X Zy. Let G denote the composite of the maps Z7 — Zy — Zy x C™,
where the latter is induced by the inclusion {(0,...,0)} C R™. Let (t1,...,t,) be the coordinate of C™.

Lemma 4.6 C} <D[[t1, ooy ta] is flat over G710z, wcn -

Proof Let ¢; denote the inclusion Z — Z5 := Z x R". We put Dy := D x R". We regard that (t1,...,t,)
is a real coordinate of R C C". We have the natural identification C3° <P[t1,...,t,] = CZ<D2/C2<D2UZ.

According to Lemma 4.5, it is flat over Ll_l(’)ﬂéz. Let G be the composite of 7 — Zy — Zy x R™. We have a
natural isomorphism G;lOgg;Igﬁl ~ G710y, xcn. Since the extension Gfl(’)gg;ﬁﬁl C 0% is faithfully flat, we
obtain the claim of Lemma 4.6. |

Let us return to the proof of Proposition 4.4. We may assume that X = A" D, = {z; =0}, D = Ule D
and D° = (J~, D;. For I C { let 7y : X(D(I)) — X be the real blow up. We have the natural
identification 7; ' (Dr) = Dy x (S*)/ and W;I(D](TC)) D;(T%) x (Y11, From Lemma 4.6, we obtain that

oo <D(I° oo <Dy (I° . . _
Cw;/lE\D(]) ) = Cﬂ;l(DII() )[[zi|z € I] is flat over 7; ' Ox.

oo <D(I )

Lemma 4.7 C is flat over m'Ox. (Note that 7 : X(D) — X.)

Proof The claim is clear outside of w’l(aDl). Let P be any point of 9D;. Let a be a finitely generated ideal of

Ox p. We take a free resolution Q, of a, i.e., -+ — Q1 — Qy — a. We obtain a 71O x-free resolution 71 Q,
of 7~ 'a. We set Q_; := a for simplicity of the description. We have only to show that 77'Q, ® Coif(?)j) )y
I

exact. Let p: X(D) — X(D(I)) be the naturally induced map. Note
( 1Q.®COO<D(I )) :Wl_l(Q.)®p*( oo<D(I )) _I(Q.) ®COO<D(I D)

(Dr) 1(D ) T (DI)

oo <D(I°)

Let Q € 7~ (P). Take a cycle o of 7~ 1Q1®C e

oo<D )

at ). By using a cut function around @, we can regard it
as a global cycle of 77 1Q; ® C whose support is a small neighbourhood of ). Then, it can be regarded

as a cycle of 77 1(Q;) ® == <(D(I) ) around p(Q). Because C°°1<D(I ) is flat over 77 'Ox, we obtain that ¢ is a
T Dy T (DI)

boundary in the complex 7 (Q.) ®CT =2 <(D(I) Then, it is easy to deduce that ¢ is a boundary in the complex
7TI 1
“1(Q.) ® COO f([;(l) ). Thus, the proof of Lemma 4.7 is finished. |
Let us show that COo <IZ(J) is flat over 7~ 1Ox, where I L J C £. We put
I
S(I,J;m):={KCct—J|ICK,|K|=m}.
Put G 41 := Oo/f(%(j)), and descending inductively
™ I
_7 0o <D(K®)
gI,m = Ker(gl,m+1 — @ CW*T(_BK) )
KeS(1,J,m)
We have Gy 141 = Coi/f(D\(T)c), which is flat over 77*Ox. By an induction, we obtain that Gy ,, are flat over
I
7 1Ox. Hence, we obtain that COO <£)(‘;) is flat over 7~'Ox. By using the resolution of C* f(’f) = in Lemma
I ™ I
4.1, we obtain that C° <2~ is flat over 7~ 'Ox. As a result, we obtain that Q" 0,0 <D(J) 0,0 <D°
x=1(D(J)) n=1(Dr) m=1(D1(J))
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flat over 7~ 1Ox, where J C I¢. In particular, Q% <L) and Q% are flat over 7 1Ox. Then, we obtain

m=1(Dr) m=1(D1(J))
the 71O x-flatness of O<D/1((JB) ) and O DY) by using Proposition 4.2. Thus, the proof of Proposition 4.4
T I 7T
is finished. |

4.2 Functions of Nilsson type
4.2.1 Preliminary

We set Nil(z) := @, 2*Cllog z]. For (o, k) € C x Z> o, we put @q(z) := 2*(log 2)¥ € Nil(z). Let T be a
finite subset T' C C such that the induced map T'— C/Z is injective. For simplicity, we assume 0 € T. Let N
be a non-negative integer. We set

NﬂT’N(Z) = {Z Aoy, j.k cpaﬂ’k(z) Qq,j,k € (C, 7> —N, k< N} C Nll(Z)

Note that Nilp x(z) is a finitely generated free C[z]-module. For T C T" and N < N’, we have a natural
inclusion Nilr, n(2) C Nilgv n/(2). We have Nil(z) = lim Nilp, y (2).

Let C.(0) be the real blow up of C, along 0. Let ¢ be the inclusion ¢ : C* — C,(0). We regard Nil(z) and
Nilp n(z) as subsheaves of ¢,O¢~ on ((NZ(O)

We put Nil(z1,...,2) := Nil(21) ¢ - - - ®c Nil(z¢) and Nilp y(21,. .., 2¢) := Nilp y(21) ®c - - - ®c Nilp n (2¢).
We naturally regard Nil(z1, .. . , z¢) as a subsheaf of t,Ocn_p on the real blow up C(D), where D = Ule{zi =0}
and 1 : C"—D — C™(D). For (a, k) € C/xZ., we put 0o (21, > 2n) i= [1-—; o k: (2), which are regarded
as multi-valued flat sections of Nil(zy, ..., 2¢).

4.2.2 Sheaves of functions of Nilsson type

Let X be a complex manifold with a simply normal crossing hypersurface D. Let D = DM U D® be a
decomposition. Let D° be a hypersurface of X such that (i) DUD® is simply normal crossing, (ii) dim DND° <

n—1. We put D® := D) U D°. We would like to introduce sheaves A;(D;))SD(Z) and C%O(Z?(g)SDm on X (D).

First, let us consider the case X = A", D = Ule{zi =0} and D° = U2, 1{z = 0}. Let £ =1, UL be
determined by DU) = Uier, {zi =0} for j = 1,2. Let 7 denote the inclusion X — D — X (D). Let A;?;?SD(Q)
be the image of the naturally defined morphisms:

OSD(I) & 1\111(2’Z |Z S 12) — :]T*OX,D.

X(D)
)
Similarly, let C;:(EI)D(S <P? be the image of the naturally defined morphisms:
(3) . . ~ h00 N
e P O Nil(z i € b) — LCE
We can observe that they are independent of the choice of a coordinate (z1, ..., z,). Hence, we obtain globally
1 2 2 ~ . 1 . E
defined sheaves A}Z;))SD( " and C;%o(if;(g)SD( " on X (D). They are also denoted by A;l(f)?( " and C§(;‘;<D(J).
0,6 <D®<D® 0,0 o< D@ <D® . . . .
We put Q)?(D) = Q)?(D) ®C§?°<D) D) . We will show the following theorem in Subsection 4.2.7.

(Actually, more refined claims will be proved.)

Theorem 4.8
QO <PP<D® | irally gi lution of ASL<P® oy, D° =
° D) naturally gives a c-soft resolution of (D) . (The case =0.)

A<D(1>§D(2> and Q%° <D®<p®

-1
(D) (D) are flat over 1~ Ox.

e The sheaves
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Let D) = Ujen, Dy) (i = 1,2) be the irreducible decomposition. Fix k € A; U As. We put
D= |J DY (i=12)
JEAN{K}
We put E := EM U E® and E®) := D®). We have the naturally defined projection p : X (D) — X (E). We
will prove the following theorem in Subsection 4.2.8.

Theorem 4.9 If k € Ay, the following naturally defined morphism is an isomorphism.:

907. <E(3)§E(2) QO .<D(3)<D(2)
X(E) X (D)

If k € Ay, the following naturally defined morphism is a quasi-isomorphism:

0,0<E(3)§E(2) (2) 0, .<D(3)<D(2)
X(B) (D7) — g i)

Corollary 4.10 The natural morphism

0,06 <D 0,6 <DM<D@
oyt (D(z))—mr*QX(;)

is a quasi-isomorphism. In particular, RW*A“XJI(D) ~ Ox (D).

For the proof of the theorems, we may assume X = A™ and D = Ule{zi =0} and D° = U;le-u{zi =0},
where 1 </ <m < n. We set D; := {z; =0} for i = 1,...,m. We use the notation in Subsection 4.1. For a
subset J C £, we set J := J U (m\ﬁ).

4.2.3 Sheaves of holomorphic functions of Nilsson type

For any real analytic subset Z C X (D), we implicitly regard O as the sheaf on X (D) in a natural way. For
any I UJ C U/, let Aml <(D(;) denote the image of the following naturally defined morphism:

Dy
<D(J) . <D(J) . .
OW:(B ) AC[z1,...,2¢] Nil(z1,. .. ,Zg) — O‘n-*l(mDI) QC[z; i) Nil(z; |Z el
In the case I = 0, it is .A?(ﬂ(zl)) For TUJ C ¢, let Amll( ) denote the image of the following naturally
=Dy

defined morphism:

O By EClerzd] Nil(z1,...,20) — @ O __ 1(Br\oDsy) OCliliel] Nil(z; |i € Ij)
jeJ
Here, Ij := I U{j}. In particular, .Am1 is the image of the following morphism:

D(J))

O, <3ty et NI, 20 — IO ) Gy N(5)

jeJ
nil <D(J) nil . . . .
Let Ar/I(B,),T,N and Arl()ﬁ VN be the sheaves obtained from NllTJ\/(.zl7 ..., 2) instead Of_ Nil(z1,...,20).
For T ¢ 7' and N < N’, we have natural inclusions APL=D) nil <D(J) an nil
©=1(D;),T,\N *=1(D;),T',N’ ==1(D;(J)),T,N

nil

— . We have the following natural isomorphisms:
x—Y(Dy(J)), T",N'

nil<D(J) _ 1 nil <D(J) nil U nil
==1(Dr) = lim #=1(Dr), TN rl(Dz(J))—h—n>1 7=1(D;(J)),T,N (33)

Let qr : 7= Y(D;) — 51(8D[) denote the projection. Let 7y : 51(8D1) — Dy be the real blow up. Then,

we have
nil <D(J) 1 4mil<Dy(J)

71_,/1(31)7,1—‘71\/ — 4r BI(BDI),T,NIIZi |Z € I]] ®C[Zi|i61] NHT,N(Zi IZ € I) (34)
A =q A _— [2i |7 € I] ®c(z,jien Nilr, n (2 |7 € 1) (35)

m=1(Dr(J)),T,N 7N (D (J)),T,N
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4.2.4 Specialization

Let us construct a morphism Aml — A" for any I UJ C £. First, let us construct Aml —
~1(Dr) m=1(Dr(J)) X (D)

.Ami/l(\D) in the case D = D;. Let ® denote the natural morphism & : OX(D) ® Nil(z1) — j*OX_D, where
j: X —-D— X(D).

Lemma 4.11 Assume that D = Dy. Let S C C be a finite subset such that the induced map S — C/Z is

injective. Assume that we are given f =3 s ZJ 0 faj ®¢a(21) € O py @Nil(z1) such that ®(f) € O;?D)

Then, we have fq ; € (’))?(DD). In particular, we have the well deﬁned map A?I(D) .Aml D) in the case

Proof Let us consider the growth order of f, ;2{(logz1)?. For the polar coordinate z; = reV=1? we have
2y = exp(ﬁlogr—’y@—{—« (710g7"+[30)), where § = Rea and v = Ima. Let V be the set of (o, j) € S X Z>¢

such that f, ; is not contained in (9<( D)’ We will derive a contradiction by assuming V' # (). For each («, j) € V,

there exists a unique integer m(«, j) such that (i) hq,; == zfm(a’j)fmj € O}?(D)’ (ii) ha,jjx—1(D) is not constantly
0. We set

wi= max {Reatmia,))}, 8= {(aj) € V|Reatmla,j)=r}
@,7)€

For (a1,j1), (a2, j2) € S, we have Reay = Reas and m(aq,j1) = m(az,j2). We also have Im oy # Im g if
a1 # as. We obtain the following estimate for some € > 0:

Z hajin-1(D) L0 (16g 21 ) = Tn( Z hewjix—(D) ¢~ Tmad+y=T(Im alogr+Read) (1oq Zl)j)
(,))eV (a,))eV

= 0(r"*) (36)

Let us deduce that h, j.—1(p) are constantly 0 from (36). Assume the contrary. Let Q € 7~Y(D) at which
ha,; (@) # 0 for one of (e, j) € V. We may assume 6(Q)) = 0. We obtain the following from (36):

> haj(Q) eV TIN5 (logr)i = O(r) (37)
(a,j)EV

But, for any § > 0, we can take 0 < r < § such that the amplitudes of the complex numbers
(—1) haj (@) eV~ (a,5) €V

are sufficiently close, which contradicts with (37). Hence, h, ; (a,j) € V are constantly 0. Thus, we obtain
Lemma 4.11. |

Let us return to the general case. We take S C C such that the induced map & — C/Z is bijective. Let
¢ : (S x Z)* — S x Z be the projection onto the i-th component, and ; : (S x Z)* — (S x Z)*~! be the
projection forgetting the i-th component. For a given

Y Ak ® ek € O @Nil(z,... 2),
(a,k)es"'xzéo
we set Fj 1= 30 o k)=(5.5) Aok Pri(ank) (2| JF D). Put i€ =€ —{i}. I 3" Aak - Pk € Offm\w L(D(ie))’

we obtain ’Fﬂj‘ A\ BBDs) =0 by applying Lemma 4.11 to > "Fj ; - ¢g,;(2;). It implies that the morphism

Oz (py ®Nil(z1,.,20) — O =5 @Nil(z1,.., 20) — A:ﬂl(D )
nil : nil nil . L.
factors through A% (D)’ Hence, we have a well defined morphism A% (D) .A S5, By construction, it is
surjective. We also obtain that the following morphism factors through A%(D)

. . nil nil
O}?(D) ® Nll(Zl, ceey Zg) — Oﬂfl/(—D\(I)) X 1\111(2717 ey Zg) — An—ﬁD\(I)) C ®A7T_/1(Bl)
i€l
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Hence, we obtain the well defined map A% —— AM__  We also obtain A%! — An!

X(D) T=1(D(1)) X(D),T,N ==1(D({I)),T,N’
They are surjective by construction. By using (33), (34) and (35), we also obtain the surjective morphisms
Anil/\ N Anil . n nil/\ __, Anil - .
== 1(Dr) m=1(Dr(J)) ©=(D1),T,N n=1(Dr(J)),T,N
Lemma 4.12 We have the following:
n11<D(J) ( nil nil )
Ao Aoy Aoy
nil<D(J) ( nil nil )
'An 1(D1)TN ASE 7=1(D;),T,N —)Arr—l(Dz(J)),T,N
Proof The implication C is clear. Let us show the converse. First, we consider the case I = (. Let
= > AakPakr be a section of Ker(Aml(D) — AniijD\(J))). Let us show the following equality on
—1(D?8DK) for any subset K C £ such that K NJ # :
Z Aa,k|7r:(-3;<) H Povi ks (21) =0 (38)
ax (o,k)=(B.7) igK

We use an induction on |K|. In the case |K| = 1, it follows from the assumption. Let K = K’ U {j}. Assume
that we have already known (38) for K'. By using Lemma 4.11, we obtain the claim for K. In particular, we
obtain Aa,k\w—/l(Bg) =

Note that the expression of f is not unique. We would like to replace Aq k such that the following holds:

P(m): A =0if |[K|>m and KNJ # 0.

.kl (Dx)

We use a descending induction on m. In the case m = ¢, it holds as was already shown. Assume that P(m +1)
holds. Take K C £ such that |[K| =m and K N J # (. We have

- <D(K*)
Aa,k|7r*1(DK) Zl;}[{‘ﬁm,ki(zl) €0 (D)’

<D(K )

By a generalized Borel-Ritt theorem due to Majima and Sabbah, we can take Gqox € (’) satisfying

Ga’k‘rl(DK) Aa’k‘rl D) [Ligx ®aiki(2:). By (38), the following holds:
Z Ga,k\rl/(BK) =0
ax (a,k)=(B,4)

We have the following equality:

=3 (Aak— 2t Y panan )+ (X Gak) pplali€ K)
ok

Higz{ S"ai,ki(zi) B ax(ak)=(8.5)

Note that >°, (o x)=g) Gak is 0on 7= (Dg) Un 1(D(KC))/.£1 particular, it is 0 on Uk, =, 77" (Dk, )
By construction, Aak — Gak [Ligr ©a; k; (2i) 71 vanishes on m=1(Dg). Moreover, if A kin T (D1) 0 for some

IL| = m with LNJ # 0, Aok — Gak [Ligr Pai ki (2;)~! also vanishes on Wfl(BL). Hence, by applying the
above procedure to each K satisfying |K| =m and K NJ # (), we can arrive at P(m). The status P(0) means

f=>"Aak Yok With Ag p, € O;(DD) , which implies that f € Agl(;?(‘]) Thus, we are done in the case I = 0.

We can reduce the general case to the case I = @) by using (33), (34) and (35). 1
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4.2.5 A resolution
Put T(m,I,J):={K C J|ICK, |K|=|I|+m+1} for m >0. We set

m nil _ nil
K (A 71<DI(J>>)_ D Aﬁ@()'

KeT(m,I,J)

We obtain the complex IC* (Amll(D 2 ))) as in Subsection 2.1.4.
ko I

Lemma 4.13 The 0-th cohomology of K*® (.Amll ) is A and the higher cohomology sheaves
“H(Dr(J)) m=1(D1(J))

are 0. Similarly, The 0-th cohomology of IC'( Zlil(m),T,N) 1s Aziil()/T(J)),T,N’ and the higher cohomology

sheaves are 0.
Proof We have only to consider the issue for K*® (A“‘EI(D T N) First, let us consider the case I = (). We
I
use an induction on |J| and the dimension of X. The cases |J| =1 or dim X = 1 are clear. Let J = Jo U {j}.
3 m — nil
SAeZSITéEiejchat the claim holds for Jo. We set L7y = @D x|=mi1jexcs A D) TN We have the exact

° ° nil . nil
0—Lpy —K (AW—WJ)),T,N) —K (Aw—mg)),T,N) —0

Let ¢; : 7~ *(D;) — D;(8D;) and 7, : D;(8D;) — D, be the projections. We have a natural isomorphism:

. ~ '71 ° nil . . 3 .
Loy =g K (Afrj_l(DjﬁD(Jo)),T,N)[[zj]] ®c(z,] Nilr, v (25)

By the hypothesis of the induction, we obtain the vanishing of the higher cohomology sheaves of L% y and

Ke (.A“ill/\ ) Hence, we obtain the vanishing of the higher cohomology of K® (Aml ) The
n©—1(D(Jov)),T,N -(D(J)),T,N
calculation of the 0-th cohomology is easy. The general case can be easily reduced to the case I = Q) by (33),

(34) and (35).

4.2.6 The C°°-version

Let Y be a C°°-manifold. For I LI J C £, let COo n(ll<;D(J) denote the image of the following morphism:
I xXY

oo <D(J . . c jo%s) o . .
cﬁg(\;l)ly Oczficse) Nil(z i € J¢) — cﬂ_f(’f?\a Doy Sleilien Nil(zi i € 1)

Let C™ nil <D°

oy be the image of the following morphism:
=D (J)xY

Ti%mw ®Cler,....ze] Nil(z1, - .+, 2¢) — J@Cff(%?apmxy ®c(zficr) Nil (zi | i € Ij)
In particular, C oo1n/(llDi(§)) XY is the image of the following morphism:
O ey Otz N2, 20) — D C:if(%jtaDj)xY ®c(s,) Nil(z;)
Similarly, let C:o fg;i(i)T N and C:‘il’%;?f] O))XY,T,N denote the sheaves obtained from Nilp y(z1,. .., 2¢) instead
of Nil(z1, ..., 2:). We have
O = Cortomon obyn cyrw il € 11 ©ctaien Nilr v (zili € 1) (39)
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o nil<D* S ili € I] @cps,jien Nilr,n (zi]i € 40
Ty N~ Cotpriaysiy il € 1 @ctzpien Nilrav (i € 1) (40)

By the argument in Subsection 4.2.4, we obtain the well defined surjective morphisms:

. o . o . o H o
conll<b” _,cooml<Pl o coonl<D — > Ml<P (41)
7=1(D1)xY m=1(D;(J))xY m=1(D;)xY,T,N m=1(D;(J))xY,T,N

By the argument in the proof of Lemma 4.12, we can show that the kernels of the morphisms in (41) are

o0 Wil <D(J) ,nq ¢ ML<D() , respectively.
7=1(D;)xY ©=1(D;)xY,T,N
m  poo nil <D o oo nil <D° o[ 00 1111<D .
We set (C 71(DI(J))Xy> = @rerm.1.0) CTr e R We obtain the complex K (C7T D) x ) It is
easy to see that the 0-th cohomology is C°° 1“5;8)) v By using an argument in the proof of Lemma 4.13, we
- X
can show the vanishing of the higher cohomology. Similar claims hold for ® (COO nil <D° )
7= {(Dr(1))xY,T,N
4.2.7 Proof of Theorem 4.8
In this subsection, we do not consider D°. We put QO o nil <D(J) QO * ®ew  XMISPU) 5nq Ol nil =
~1(Dr) X(D) ""X(>) 7-(Di) *1(D1(J))
0,e o nil 0 . n11<D(J) 0,e nil . S
Q)?(D) ®C§(D) Cﬂ'*l(/DT(J)). We use the symbols QTr D) TN and Qw*m/T(J)),T,N in similar meanings. The

following proposition implies the first claim of Theorem 4.8.

Proposition 4.14 Q?r '11(12[<)D(J) and Q:):%T(J)) give c-soft resolutions of Am1 1<(D(1;) and A:ill()/ET(J))’ respec-

0,8 nil <D(J 0,8 nil il <D(J :
il <D g Q00 give c-soft resolutions of.Anl ) nil

tively. Similarly, Q" — iy _
7=1(D1),T,N m=1(D1(J)),T,N Y(Dr),T,N 7= (D1 (J)), TN

)

respectively.

Proof We use an induction on dim X. In the case dim X = 0, the claim is trivial. Let us show the claim
for 7= (D;) For I # 0, let ¢; : #Y(D;) — D;(dD;) denote the naturally induced morphism. We put
NllT,N( ) := Clzli € I] ®cjz,jien Nily n(2:]i € I). By using the hypothesis of the induction and a formal
calculation as in Lemma 4.3, we can show that the following morphisms are quasi-isomorphisms:

nil <Dy (J)

—10,e nil<D;(J) 0,8 nil <D(J)
I 7"Dr(oD1),T,N Q3 ®N11T N(I) — QT

®N11T7N( ) —>ql D](@D[)TN 7T71(D1).,T,N

It implies the claim for Ami f([; )]) . We obtain the claim for Aml <[; )) from (33). For any subset I C £ (I can
1), T,N I
o ( Anil . 0 e nil nil
be 0), by using the resolutions K* (A D ))) and IC. (Q 7T71(’/7({]))) we can reduce the claim for Aﬁ )
to the claims for AL (I € K). The claim for A" __ can be obtained in a similar way. By using
©—1(Dg) ©—Y(D;(J)), T,N
the exact sequences
0,0 <D 0,e nil 0,e nil <D nil nil

0— QX(D) QX(D) Qﬂ_/l(\D) — 0, 0—>(’)5€D AX(D) Aﬂ%) — 0, (42)

we obtain the claim for A;l( D)’ By using the exact sequences
0,0 <D(J) 0,e nil 0,e nil nil <D(J) nil nil
0= %0 " %o %m0 0 ke e w0

we obtain the claim for AEI(;?(J) The claims for A;l( pyr.N A nd Ail(;?T J)V can be obtained similarly. |

The following proposition implies the second claim of Theorem 4.8.

Proposition 4.15 The sheaves COO nil <D(J ), oo nil<D® , AMLEL) g AL e flat over 7 1Ox. The
1(Dr) n=3(Dr(J))"  w1(Dr) 7=1(Dr(J))

1<D(J ° i1<D(J i _
sheaves C™° 21 < ) , ¢oonil<D , nil <D(J) and AM____ are also flat over 1~ 1O0x.
©=1(D7),T,N’ ==YD;(J)),T,N" ~ x=Y(D;),T,N ==1(Dr(J)),T,N

Proof We have COO n?<?(l ) = C(Xf(DD( ))®C[zmel] Nil(z;] i € I), which is flat over 7~ 1Ox, according to Lemma
I

4.7. Then, we can show Proposition 4.15 by the arguments in the last part of the proof of Proposition 4.4. 1
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4.2.8 Proof of Theorem 4.9

The first claim of Theorem 4.9 is obvious. We give a preliminary for the second claim. Put X’ := C x X,
X4 :={0} x X and D" := (C x D) U ({0} x X). Let J C L. Put D'(J) := C x D(J). Letﬂ'oiX/(D/)—>X/
and 7 : C x X(D) — C x X be the real blow up. We have a natural diffeomorphism 7o H(X}) ~ S* x X(D).

Let po : X'(D') — C x X(D) be the naturally induced map. We use the coordinate z = reV~1¢ of C. We
have a natural inclusion:

(o nil < nil <D’ (J) X *< oo/nl<D'(7)) 43
Ty K0 (O (43)

The differential operator Z0, induces the endomorphisms of €7 22" 1!1(11<)D “ )(*XO) and pos (Coo/ln(ﬂ\< )D ( )>, which
m (X ™ (X{

are denoted by Fy and Fb, respectively.
Lemma 4.16 The cokernel of F; (i =1,2) are 0, and (43) induces the isomorphism Ker Fy ~ Ker F5.

Proof It is easy to obtain the vanishing of Cok Fj by a formal calculation. Let us show the other claims. We
take S C C such that (i) the induced map & — C/Z is bijective, (ii) 0 € S. Corresponding to the decomposition

Nil(z) = @ es2*Clz,27"][log 2], we have the decomposition C*Z nil <D'(7) _ = PLes O nil <D'(T) et U

75 H(X4) 75 (X))
X’(D) be an open subset. Let f be a section of C°7 1" 1n(11<)D @) on S x U ¢ Wal(Xé) expressed as follows:
7r0 X/
—v—10a ,a+n j 0o <D(T
f - Z Z fﬁ,k,n,j Bk € v < * (log |Z‘2)] (f,&km,,j S CSl jfféé)))
B,k n,j

We have the following equality:

Z0.f = ZZ(

B,k n,j

Mjléaza+n<log |Z|2)j

39-1- )f,ekn,g<%k€

+3 D fonkmgeare Y 0 j(log [22)T ! (44)
Bk

0o <D(J) on St

(D) x U, we can solve the equation

For any section g of C

29G —vV—=1aG =g (a#0)

in COO m)l;[?)(]). We remark fozw e~V=194(9) dh = 0. Then, it is easy to obtain Cok(z8z) = 0 and Ker(zdz) = 0

in the part a # 0 by using (44). Let us consider the part « = 0. We use the filtration with respect to the order
of log|z|?. If we take Gr with respect to this filtration, the second term in (44) with o = 0 disappears. We
obtain H® Gr; = H! Gr; for each j, and they are represented by constants with respect to 6. Then, the second
term in (44) induces H° Gr; ~ H! Grj_; for j > 1. Hence, we obtain the vanishing of the cokernel of Zdz, and
the kernel is H° Grg. Then, the claim of Lemma 4.16 are clear. |

We have the following morphism of exact sequences:

0 0% 0,0 <D’ (j)UX[I) QO,Q<D'(7)(*X6) Qv <P 0,0 <D’ (J) 0

CxX(D) CxX(D) ﬂll(xo)
0 . Q0 o <D'(J)UX| po*QO’. <D'(J) po*QO’. <D'(J) 0

X/(D") X(D) g LX)

The left vertical arrow is an isomorphism. According to Lemma 4.16, the right vertical arrow is a quasi-

isomorphism. Thus, the central vertical arrow is also a quasi-isomorphism, which is the second claim of Theorem
4.9. 1
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5 Some complexes associated to meromorphic flat bundles

5.1 De Rham complex on the real blow up
5.1.1 De Rham complex and a description by dual

Let X be a complex manifold and D be a normal crossing hypersurface with a decomposition D = D1 U Ds.
(Note that D; are not necessarily irreducible. See Subsection 3.2.1.) Let 7 : X(D) — X be the real blow up.

. <D1<Dy . 4nil<D 0,6 <D1<Ds ._ (ynil<D
We set 'A)?(D) = .A)?(D) ! and Q)?(D) = Q)?(D) 1. We put

0% <D1<Dy ._ QO;' <D1<D>

e <D1<Dsy ,_  4<D1<Do

—10e
(D) (D) D10y

—10e
®7r*1(9x s QX;

For a holonomic D-module M on X, we define DR;ZS)Sm M) := .Aj}l()g)SDz Qr-105 ™ 'DRx (M), ie.,

D<D . 0*<Di<D _ O Di<D _
DR;}(D)_ 2('/\/l) T QX?D) 2 ®7\'_1OX ™ IM[dX] — )}(D<) ! 2 ®7T_1OX iy 1M[dx},

Note that DR;(DLI))SDZ (M) ~ DR;{?LI))SDZ (M(xD)) because Q;{DD;SDZ’ (xD) = Q;?TDD)ISDQ.

By Theorem 4.8, we have an isomorphism R, DR;(DI;)SDQ (./\/l) ~ DR;DlSD2 M induced as follows:

e 0 <D <D — o0 <D <D o0 <D
Rﬂ'*( 55(;) =T Qum10, T 1/\/1) ~ Rm, )?(D<) 1572 @0 M = Q% <P (D) @0, M (45)

Lemma 5.1 We have a natural isomorphism RHom,-1p, <7T_1M7¢4)<—€_€)5)§D2) ~ DR;Z;})SM (]D)M)

Proof We have the following isomorphisms:

_ D, <D - - D <D
RHomg-1p, (7'M, Aj?(D)_ ?) = RHomq-1py (7'M, 77 Dx) @7 1p, Aj?(f))_ 2

= 71'*1 (QX RO ]D)M) ®7I;71DX A;{(DB)SDz [_dX] ~ (7T710X ®7T710X A)<~((DD1)§D2> ®£*1Dx ﬂ,fl]D)M[_dX] (46)

Because A}I(DE))SDZ is flat over 77 1Ox (Theorem 4.8), 7~ 'Dyx Or-104 A}Z;)SM is flat over 7~ 'Dx. Therefore,

D1<D — . D1 <D
Atpy "t 27 (Px B0y O ) Satox AL

is a m~1Dx-flat resolution. Hence, (46) is quasi-isomorphic to the following:

— . D.<D — e <D<D —
<7T 1(QX ®Dx) Qr-10y Aj?(Dl)* 2) Qnp-1py T DM ~ Q)?TD;* P Qu-104 T DM

Thus, we obtain the desired isomorphism. |

According to Lemma 5.1, we have a natural isomorphism

DR (py " (M) = RHom-ip (17 DM, AL 3<"?) = RHom-ip, (x'DM(xD), AZ L) (47)

We will implicitly identify them in the following argument.

5.1.2 A combinatorial description in the case of good meromorphic flat bundles

Let X be a complex manifold with a normal crossing hypersurface D. Let 7 : X (D) — X be the real blow
up. Let V be a good meromorphic flat bundle on (X, D). We have the local system on X — D associated to
Vix—p- Its prolongment over X (D) is denoted by £. For any P € 7~1(D), we have the Stokes filtration F¥ of
the stalk £p indexed by the set of irregular values Irr(V, P) C OX(*D)p/OXJ: with the order <p. The system
of filtrations {F¥ | P € 771(D)} satisfies some compatibility condition. See [32] or [33] for more details.

Let D = D1 U Dy be a decomposition. Let us describe DR}I(DE)SDz(V) in terms of the Stokes filtrations. For

P e X(D), let E;DlSDQ be the union of the subspaces FX'(Lp) C Lp such that (i) a <p 0, (ii) the poles of a
contains the germ of D; at P.
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Lemma 5.2 The family {ﬁ;DlSDQ} gives a constructible sheaf L<P1<P2 opn )N((D)

Proof We have only to consider the case X = A™ and D = Ule{zi = 0}. By a decomposition around P as
in Section 7.7.4 of [32], we have only to consider the case V = Ox(xD) with the flat connection Ve = eda,
where a = []%, z.™ (m; > 0). We have a decomposition £ = I; U I, such that D; = Uier, {7 = 0}. For

=171

P € X(D), we set I;(P) == {i € I | z(w(P)) = 0}. We set Fy := —|a|"'Rea. We put Ry := ;" {2 = 0}
and Ry := Uf:mH{Zi =0} \ Ro.

e For P € X — D, we have E;DISDZ # 0.
e For P € n='(Ry), we have L5”"=P2 =£ 0 if and only if I, (P) = 0.
e For P € 771 (Ry), we have C;DISDZ # 0 if and only if (i) Fy(P) <0, (ii) I1(P) C m.
Then, the claim of the lemma is clear. |

We recall the following proposition. (See [25] and [34]. See also [12].)

D1<D

Proposition 5.3 The natural inclusion L<P1<P2 DRE(D)

(V) is a quasi-isomorphism.

Proof We give a preparation from elementary analysis on multi-sectors. We set Y := A, x A” and Dy =
{z=0}U Ule{wi =0}. Let 7 : Y(Dy) — Y be the real blow up. For m > 0 and m = (my, ..., my) € zk,
(0<k<{,weputa=z" Hle w; ™. We put F, = —|a~!| Re(a), which naturally gives a C°°-function on
Y (Dy). Take a point P € 7~ 1(0) C Y(Dy). Let S = S, x Sy, be a small multi-sector in Y — Dy such that P
is contained in the interior part of the closure of S in }N/(Dy).

o If F,(P) <0 (resp. Fy(P) > 0), we assume that F, < 0 (resp. F, > 0) on S.

o If F},(P) = 0, we assume that Fy; is monotonous with respect to 6, where z = reV=1% is the polar coordinate.
Let 0; (i = 1,2) be the arguments of the edges of S., i.e., S, = {(r7 ) ‘ 01 <0<0,,0<r< ro}. Let 04
be one of 6; such that F; > 0 on {re\/jl9+} X Sap-

Let f be a holomorphic function on S of polynomial order with respect to z and w. We set
BEw) = [ ew(calw) +alw) fGw)dc (48)
v(z,w

Here, v(z,w) is a path contained in S, x {w} taken as follows.
Case F(P) < 0: We fix a point 29 € S, and ~(z,w) is a path from z to z.
Case I, (P) > 0: Let y(z,w) be the segment from 0 to z.

Case F,(P) = 0: Let 6_ be as above. For the polar coordinate z = re¥~=1?  let (2, w) be the union of the ray
{peV=T0+ 10 < p < r} and the arc connecting reV=1%+ and 2.

Lemma 5.4 For each N > 0, there exists a constant Cy such that |®(f)(z,w)| < Cn - C |2V Hle lw; |Ne, if
¢ v
[f(z,w)] < Cl|N TTizy wil ¥

Proof We give only an outline. Let us consider the case Fy(P) < 0. Let 2 = roeV~=1% and z = reV=17. We
may assume that the path + is the union of (i) the arc 4, connecting zo and z; = roeV =1, (ii) the segment
Y2 connecting z; and zg. The segment 72 is divided into 721 = 71 N {[¢] > 3|z[/2} and v22 = v N {[¢] <
3|z|/2}. The contributions of y; and 72,1 are dominated by |exp(—a(z,w))] Hf:k-&-l |w;|Ni. The function
Rea is monotone on vy22. We also have |f({,w)| < C' |zN|Hf:1 |w;

Ni on v2,2. Hence, the contribution
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of 73,2 is dominated by |z|NHf:1 |w;|NVi. Let us consider the case Fy(P) > 0. On v, we have ’f((,w)|

C' 2N Hle |w;|V, and Re(a) is monotone. Hence, it is easy to obtain the desired estimate. |

IN

Let us return to the proof of Proposition 5.3. We have only to consider the case X = A™ and D = Ule{zi =
0}. Let P € 7~ 1(0,...,0). By using the local decomposition around P as in Section 7.7.4 of [32], we can reduce
the issue to the case V 691 1 Ox (xD) e; with the flat connection

Ve (da—l—zg:aZIM—i-N)izl)

i=1 v

where Ip; denotes the identity matrix, N; (i = 1,...,£) are mutually commuting nilpotent matrices, «; are

complex numbers, and we put e := (e1,...,e,) and a:= [[/~, z; ™. Then, it is easy to show that /.Z<D1<D2 is

R<D1 <D2’L L
X(D)
(V). We have only to consider the case rank V' = 1, and we put v = €.

naturally isomorphic to the 0-th cohomology of D (V). Hence, we have only to show the vanishing of
<D1<Ds

)

First, let us consider the case D; = D. For a subset J C {1,...,n}, we set dzy = dz;;, A--- Adz;,. For a

section w of Q;??g), we have the unique decomposition w = > w; dz;, where w; € A;’(DD) Let S; (1 =1,...,0)

be a small sector in A}, and let U be a small neighbourhood of (0, ...,0) in Hi:£+1 A, such that the closure
Sof §:=][S; x U in X(D) is a neighbourhood of P. In the following, S will be shrinked without mention. It
is easy to observe that we have only to consider the case a; =0 (i = 1,. 6).

Take h = 1,...,n. Assume V(wv) = 0 for some section w of Q;((D) on S such that w; = 0 unless

J C {1,...,h}. We have d(exp(a)w) = 0. For the expression exp(a)w = Yongy frdandzy + 3,5 frdzy, we
set 7(2) = ;4 exp(—a) (fv(Z) fr dzh> dzy, where y(z) is a path taken as follows:

the higher cohomology of D

e If h < m, the condition is similar to that for the path in (48).

e If m < h, v is a path connecting (z1,...,2,-1,0, Zn41,-..,2n) and (21,...,2n).
By using Lemma 5.4, we obtain that 7 € Q;{?g) ® V. By a formal computation, we can show that wv — V(7 v)
does not contain dz; for j > h. Hence, we can show the vanishing of the higher cohomology of 2% <P oV by

X (D)
an induction.

We have the decomposition I; Ll I, = £ such that D; = Uiel {z; = 0}. Let us consider Q°<D(J )<D()

7'!'1 J)

KLZ(] ; b ® V is acyclic
J
by a formal computation. Assume mNJ = 0. Let V; = Op,(*x0D ;) vs be equipped with the flat connection

®V
for any subset J C Iy, where J¢:= £\ J. f mNJ # 0, it is easy to show that

Vov; =wvy-dap, on D;. Let q; be the projection 7~ YDy) — D;(0Dy). Then, it is easy to obtain a natural

quasi-isomorphism q}l (Q};?@Db’ ) ® VJ) ~QO° %] ))<D(‘]) ® V by a formal computation. Hence, we obtain the
J
vanishing of the higher cohomology of Q° <DI(DJ ))<D(J) QV.
J
We put h := [I5|. Let G denote the kernel of the surjection Q% <DisDz gy, f <DisP2 g7 Inductively,

X(D) 7=1(Dr,)
let Gp be the kernel of the following surjection:

Gr — @ 0* 2P gy

gor, TPD

|J]=k
Because G} = Q;(DD) ® V', we obtain the vanishing of the higher cohomology by an induction on k. Thus, the
proof of Proposition 5.3 is finished. |
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5.2 Duality
5.2.1 Duality morphism

Let X, D and M be as in Subsection 5.1.1. We have the following naturally defined morphism:

<D1<D5 <D><D;
DR =" (DM) — DDREZ=P (M)
I (49)

Qoo<D2<D1® _1M Q..<D)

RHomz-ip, (17" M, QO.<D1<D2) - RHom‘CmD)( X(D) X(D)

X(D)
Proposition 5.5 The following diagram is commutative:

D1<D> D2<D,
R, DRE(D)— (DM) —— Rm.DDRY o M)

:l :J (50)
DRY”'="2(DM)  —— DDRZ”="1 (M)

Here, the upper horizontal arrow is induced by (49), the lower horizontal arrow is given as in (17), the left vertical
arrow is given as in (45), and the right vertical arrow is given by Rm,.D DR<D2<D1 M ~ DR, DREP2SP1 M ~

X(D) X(D)
DDR7>=PH(M).

Proof By Lemma 5.1, we have a morphism R, DR<D[1))<D2 (DM) — DR =P2(DM) given as follows:

R RHome 1y (n~ M, 05350502 = RHom (M, Rr 0750 =)
~ RHomp, (M, Qy°(xD2)<"")  (51)

It is easy to check that it is equal to the morphism obtained as in (45). The right vertical arrow in (50) is given
as follows:

R?T*RHom(c)?(D) (Q. :;)D2<D1 _1./\/1 Q% .D<)D) — RHomCX (RW*Q;(’ZE)D2<D1 ® M, Rr Qo,z <)D)
~ RHomc, (Q%° <P25D1 g M, (95t <D) — RHomc, (Q%° <P25Prg M, Q¥")  (52)

Then, it is easy to check the commutativity of (50). |

5.2.2 The case of good meromorphic flat bundle
Let us consider the case M is a good meromorphic flat bundle V on (X, D).

Theorem 5.6 The duality morphism DR<€:1))<D2 DV — ]D)DR;?;;Dl V' is an isomorphism.

Proof We begin with elementary preparations. Let R? = Sy U S; U S be a decomposition given as follows:
So={(z,y)|y=0}  Si:={(z,y)|y<0,2<0}  Sy:={(z,y)|y<0,2>0}
We put X := (R x S1) U(R>o x Sp) and X5 := (R x S3) U (R<g x Sp). The following lemma is easy to see.

Lemma 5.7 X; C R3 (i = 1,2) are closed C°-submanifolds with boundaries. We have X1 U X2 = R? and
X1 N Xy =0X;. 1

We put J =] — 1,1, J4+ = [0,1], J- :=] — 1,0], and Z; := [0, 1] ( = 1,2,3). We have a homeomorphism
(I x Iy x IT3) ~ R?, and we can identify the decomposition

6(11 X Lo X Is) = (811 X Lo X Is) @] (Il X 0Ly X Ig) @] (Il X Lo X 813)
with R2 :SoLJSlUSQ. We put
X! = (ijx612x13>u<j+x811><12><13), X, = (ijxlgxalg,)U(j_ x@lenglg)

They are closed subsets of J x 9(Z; x Zy x Z3). We obtain the following lemma from Lemma 5.7.
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Lemma 5.8 X/ C J x 8(Zy x I x I3) are C°-submanifolds with boundaries. We have X{ U X} =T x 8(Iy x
Ty x T) and X! N X} = 0X. i

We recall some elementary facts on constructible sheaves. Let Y be an /-dimensional C°-manifold with the
boundary Y. For a closed C%-submanifold W C 0Y with boundary such that dim W = £, let ji denote the
inclusion Y — W — Y. We have the following natural isomorphisms:

RHome, (jwiCy—w, K) =~ Rjw.RHome, _,, (Cy_w, Rjiy K) ~ Rjw.jw K
The dualizing complex of Y is given by joy1Cy _gyv [¢].
Lemma 5.9 LetY; C 9Y be closed C°-submanifolds with boundaries such that Y1 UYs =Y and Y1 NY, = 0Y;.
Then, we have Djy,1Cy_y, ~ jy,1Cy_y,.
Proof The left hand side is naturally isomorphic to jy,«jy,wy =~ Jjv;«joCy_ay[f], where jo denotes the

inclusion Y — Y — Y — Y7. Then, we can check the claim directly. |

Let us return to the proof of Theorem 5.6. We have only to consider the case X = A" and D = Ule{zi =
0}. As in the proof of Proposition 5.3, we can reduce the issue to the case that V = Ox(*D)v with the
meromorphic flat connection Vv = vda, where a = [~ z; ™" (m; > 0). We put F, := —|a|~' Rea. We have

the decomposition I; L Iy = £ such that D; = Uiglj{zi =0} (j =1,2). Weset Ij(>m):={i€l;|i>m}.
We also put D(> m) := |} {z; = 0} and D(< m) = |J~,{z; = 0}. The closed subsets W; C 7—!(D)

i=m-+1
(i =1,2) are given as follows:

Wy =L (D1 nD(> m)) U [w‘l(D(g m)) N {F, > 0}]

Wy =1t (D2 nD(> m)) U [w—l (D(<m)) N {F, < 0}}

Lemma 5.10 W; C 7= 1(D) are closed C°-submanifolds with boundaries, and we have W1 UWs = 7~ 1(D) and
Wi N Wy = 0W;.

Proof It is easy to observe that we have only to consider the case n = £. We have the natural identification

X(D) ~ (SY)! x RY ;. By the decomposition £ = m L Iy (> m) U Io(> m), we identify RS, = RZ, x ]Rgé>m)
R§é>m). We fix homeomorphisms

RY, =T x R™7, REC™ = Ty x RIGm™I= - REG™) & 7 RIGmIL

We put N :=m + |I;(> m)| + |I2(> m)| — 3. Let Hy be the subsets of (S1) given as follows:

H, = {COS(Z mﬂl) > O} H_ = {COS(Z miﬁi) < 0}
Then, 7=1(D) is identified with (S1)¢ x 9(Z1 x Ty x Z3) x RY, under which we have

Wi = (81 X T x 0Tz x T) U (H- x 0T, x Tp x T) ) x RY

Wa= (") X Ty % To x O15) U (Hy, x0T x Ty x Ty) ) xR

For a point ) € H; N H_, we can take a neighbourhood Ug such that U ~ J x R under which H4 N Ug =
Jir x RE-1L, Then, we obtain Lemma 5.10 from Lemma 5.8.

Let jw, be the inclusion X (D)\ W; — X (D). Let £ and LY be the local systems on X (D) associated to V
and V'V, respectively. According to the description of £L<P1=P2 and £V<P2<P1_ we have the following natural
isomorphisms:

£<D1§D2 ~ le! (L: £V<D2§D1 ~ jWQ! (‘C}%(D)\WQ)
By applying Lemma 5.9, we obtain an isomorphism DL<P1<P2 ~ £V <DP2<D1_ [t is uniquely determined by its

restriction to X — D. Then, we can deduce that DR;Z;)SDQ DV — DDRE(DE)SDl V' is an isomorphism. Thus,

the proof of Theorem 5.6 is finished. |

)?(D)\Wl)
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Corollary 5.11 For a good meromorphic flat bundle V' on (X, D), we have the following commutative diagram:

<D, <D =~ <Dy<D
RW*DR)?(Dl) DV —— RW*DDR}?(E) %

DRx VY(ID;) —=— DDRxV(!Dy)

Proof It follows from Theorem 3.18, Proposition 5.5 and Theorem 5.6. |

5.3 Functoriality

Let X be a complex manifold, and let D be a normal crossing hypersurface with a decomposition D = Dy U Ds.
Let D3 be a hypersurface of X. Let ¢ : X’ — X be a proper birational morphism such that (i) D’ :=
©1(D U D3) is normal crossing, (ii) X'\ D' ~ X \ (D U Ds). Let X(D) — X and X'(D') — X’ be the
real blow up. Both the projections are denoted by 7. Let ¢ : )Z"(D') — )A(:(D) be the induced map. We put
D} := ¢~Y(D;1). We have D) C D’ such that D’ = D} U D} is a decomposition. Let V be a meromorphic flat
bundle on (X, D). We set (V', V') := ¢*(V,V) ® Ox (xD").

<D1<D}

Theorem 5.12 We have a morphism DR}S(](D[I))SD2 (V) — R@., DR)?’(D') (V') in the derived category of coho-

mologically constructible sheaves, such that the following diagram of perverse sheaves is commutative:

<D:1<D ~ <D1<D;
Rm, DRG 57 (V) —— Rm.RE.DRG (V)

~ l gl (53)

DRx (V(!Dl)) —— Ry DRx/(V/(IDY))
Here, the vertical isomorphisms are given by (45) and Corollary 3.16, and the lower horizontal arrow is induced
by the morphism of D-modules V(!D1) — ¢4 V'(1D]).
Similarly, we have a morphism R, DR<~D2§D1(V') — DR;DZSDl(V) such that the following diagram of

X'(D") (D)
perverse sheaves is commutative:

~ DL<D} L

:l :l (54)

Rp.DRx(V/(ID})) ——  DRx(V(IDy))

Proof We have a naturally induced morphism:

e, <Di<Dj

~_1 o0 <D:<D —1
O s oY) — QY

(D) @m V. (55)

It induces a morphism of cohomologically constructible complexes:
~ D} <D,
DR 572 (V) — @. DR, 157 (V) (56)

We can directly check the commutativity of the following diagram:

0% <Di<D: g vy 0. (Q;J <D} <D} ® V’)

| |

e,0 <D <D 1 ~ ~eo,0<D/<D/ v
”*(Q)?(D) e V) - ”*(“"*ch'w'f e V)
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It implies the commutativity of the following diagram:

<D,<D» <D1<Dj
Rm.DRZ =7 (V) —— Rm.RE. DR, 157 (V)

gl :l (57)

DRIPISP2(V)  ———  Rp  DRYISP(v)

Then, we obtain the commutativity of (53) from Theorem 3.20.
Considering the dual of (56) with V'V (see Theorem 5.6), we obtain the following morphism:

_D <D/, <D;1<Ds
RE. DR, 7 (V/) — DRE<P2(V) (58)

Let us show the commutativity of the diagram (54). From (57) for V'V, we obtain the following commutative
diagram:

<Dy <D} " <Di<D v
DR?T*RQO* DRX/(D/) 2(V ) —— DRmwm, RX([;) 2(V )

DRy, DREDSDH(yv)y  — DDRIP <P (1Y)
By Proposition 5.5 and Theorem 5.6, we have the following commutative diagram:

DRm. DRE =" (VY) —=— Rm, DRTISP(V)

DDRP=Px(VV)  —=—  DR”*="1(V)

We have a similar diagram for V’. Then, we obtain the commutativity of (54) from the constructions of (58)

and (24). |

5.4 A relation between de Rham complexes on real blow up
5.4.1 Sheaves of functions of Nilsson types

Let X be a complex manifold with a normal crossing hypersurface D. Let g be a holomorphic function on
X such that ¢g7'(0) = D. The image of id xg : X — X x C is denoted by I'y. Let m : X(D) — X and

: X x C — X x C be the real blow up. We set X := = I'y x(xxc) (X x (C) We obtain the following
commutatlve diagram:

XD) —— X —“ xxC

I

X —2-r1, - XxC

We set Aml A%lx(ﬁ ®0xc Or, on X. Let t be the coordinate of C. Because ¢ is invertible in A’)‘(ﬂx@ we have

A = A;‘;lxc(*g) ®0x e Or,-

Proposition 5.13 A naturally defined morphism A‘}(il — p*A“‘l(D) induces an isomorphism .A‘)‘(~i1 o~ Rp*A;‘(‘l(D)

Proof Let vy : X(D) x C — X(D) x C and 1, : X(D) x C — X x C be the naturally induced morphisms.
According to Theorem 4.9, we have

Rl/l*.Aml _ Anll ( t), RVQ*AmI _ Anll ( ) (59)

X(D)xC X(D)xC X(D)xC XxC

37



We put X; := Ly X(xxc) ()N((D) x C) and Xy = Ly X(xxc) ()Z'(D) X @) We set

AHXNH = Anll (*t) ®Ox xC OFg? Anil : Allll ®OX xC OF

X(D)xC X(D)xC e

We have the following naturally given commutative diagram:
X, 20X
nzl l
X —— Iy
From (59), we obtain Rm*AI)‘?ii = A;‘gi and RKQ*AI)%L = A}(ﬂ. We have a natural identification X; ~ X (D) and

A;ll ~ .A“XJI(D). We also have po k; = kg, and hence Rﬁ*Anxil(D) ~ RHQ*AI)%L ~ A‘)‘%l. Thus, we are done. |

5.4.2 De Rham complexes for good meromorphic flat bundles

Let X be a complex manifold with a normal crossing hypersurface D. Let 7 : X (D) — X be the real blow

up. Let C denote the real blow up of C along 0. Let g be a holomorphic function on X such that g=1(0) = D.
The induced inclusion id xg : X — X x C is denoted by ¢4, and the image is denoted by I'

X’(D) B, XxC

S
X —“ ., XxXxcC

Proposition 5.14 We have a natural quasi-isomorphism Dle (LQTM) Rig, DR;I(D (M) on X x C.

Proof Note that (g4 M = i3, M[0;]. By using Proposition 5.13, we obtain

75 gt M @ A = Ry (rp M) @ AT )

Here, a tangent vector v of X and 8; acts on M[9;] by v(87 @m) = 97 @ (vm) — ;"' @ (vg)m and 0;(8) @m) =
8?“ ® m. Then, we obtain the following natural quasi-isomorphisms:

T3 %% e Ors10x e Rigs (wl‘lM[at] ® A“XJI(D)) =,

dt Oy
—

AL, (Wl—l(Qg(,o B Mal) & AL 01 (0% 0 Mia]) @ A dt)

S Ry (0 — m (X @ M) @ AR dt)  (60)

Thus, Proposition 5.14 is proved. 1

5.4.3 Complement

Let Fy : Xo — Yj be a proper morphism of complex manifolds. Let C denote the real blow up of C along 0.
We set X := Xy xCand X := Xy x C. We use the symbols ¥ and Y in similar meanings. Let F': X — Y and
F: X —>Ybe1nducedbyFo Put Dx := X x {0} and Dy := Yy x{0}. Let 7x : X — X and 7y : Y —Y
be the projections.

Let M be a holonomic D-module on X such that M(xDx) = M. We set

Fi(rx' M ®, a0, AR) i= RE, (75! (Dy - x ©b, M) @, 10, AY)
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By using A‘)‘(ﬂ = ﬁ_lA%ﬂ ®(Forx)~10y F;(lox, we obtain a natural isomorphism:
' -1 nil\ ~ —1 nil
Fi(rx' M Qrztox A;?) ~ my' (FyM) ®rsloy A5

We set DRI)%I(M) =yt (Qx ®7L3X M) @rtoy Ar)l?ﬂ. By a formal argument for the compatibility between the
de Rham functor and the push-forward, we obtain a natural isomorphism:

RF, o DR%' ~ DRY' oF} (61)

5.5 Some rigidity

5.5.1 Statement

We set X := A" and D := Ule{zi =0}. We put D™ :=J ;c, Dj. Let (V,V) be a good meromorphic flat
bundle on (X, D). Let £ be the associated local system on )Z'l(lg)m Let g be a holomorphic functiog on X such
that g71(0) = D. Let 'y C X x C be the image of the graph of g. We put X :=T, X(xxc) (X x C). We have

the naturally defined morphisms:
Xn) - x o X

We put my := mgom. We set K := Rm, LS. In this subsection, we will work on the derived category of
cohomologically constructible sheaves.

Theorem 5.15 Let n > 2. The restriction Hom(K, K) — Horrl(IC|7T51(X7D[21)7 IClﬂ_O—l(XiD[g])) is injective.
We will give a consequence in Subsection 5.5.6.

5.5.2 Reduction

We have only to show the injectivity of the following morphisms for m > 2:
Hom(’Ch;l(X—D[mﬂl), ’C|wgl(x—D[m+11)) I Hom(K\wgl(X—Dlml)v K|WJI(X—D[W]))
Then, it is easy to observe that we have only to consider the case £ = n and the following morphism:

Hom(IC,/C) —_— Hom(lC‘qu(X_O), IC|7T(;1(X—O))

By the adjunction Hom (7], £L5P) ~ Hom(K, K), we have only to show the injectivity of the following mor-

phism:
HOIII(’]TTIC, CSD) — Hom(wf}Cle—l(Xfo), £=P )

|7y 1 (X-0)
We have Rimr . LSP =0 unless 0 < i <n — 1, because the real dimension of the fiber is less than n — 1. We set
K= 7y i LS50
Let j: my {(X — 0) — X(D) and i : 75 1(0) — X (D).
Lemma 5.16 To show Theorem 5.15, we have only to show

Ext! (LKL LSP) =0 i,j<n—1 (62)

Proof From the distinguished triangle K'[—i] — 757K — 75;41mK +—1>7 we obtain the long exact
sequence:

Ext (K, £5P) — HOID(TZZ‘+17T>{IC, ESD) — Hom(TZZ-ﬂ"f/C, LSD) — Ext’ (ICi, ESD)
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We have the corresponding long exact sequences for the restrictions to 75 1(X — 0). The injectivity of

Hom (7> 7K, L5P) — HOII’I(TZZ‘T('T}CM_Q—I(X_O), ‘C\Sn?l(xfo)) can follow from the injectivity of
i(gi p<D i (i <D
Ext® (K', £L57) — Ext' (K] o), E\wgl(xfo))’ (63)
* <D * <D
Hom (7> jp1mi K, L5P) — Hom(Tzi+17rllC‘ﬂ;1(X_O), Lﬂrgl(xfo))’ (64)
and the surjectivity of
i—1(4i p<D i—1 (i <D

Ext'™ (K', L") — Ext (Klw;I(X—O)’E\wgl(X—O))' (65)

By an easy inductive argument, we can reduce Theorem 5.15 to the injectivity of (63) and the surjectivity of
(65) for any i <n — 1.

From the exact sequence 0 — jj*K? — K? — 1,i*K’ — 0 and the adjunction Ext’(j,j*K?, L=P) ~
Ext’ (j*K?, j*L=P), we obtain the following exact sequence:

Ext’'(K', £5P) — Ext’" ! (*K7, j*£=P) — Ext’ (i,i*K7, £=P)
— Ext’ (ICi, ESD) — Ext’ (j*’Ci, j*ﬁgD) (66)
Hence, the proof of Theorem 5.15 is reduced to the vanishing Ext’ (i*i*lCi, ESD) =0forany 0 <i<n-—1. For
that purpose, we have only to show (62). Thus, the proof of Lemma 5.16 is finished. |
In the following, we will show Ext’ (wfl(I), L:SD) =0(=0,...,n—1) for any constructible sheaf I on
75 H(O) =~ S*.
5.5.3 Local form of 7, '(I)

Let (z1,...,2,) be a coordinate with z;'(0) = D;. Tt induces a coordinate (61,...,60,) of w5 *(0), which is
independent of the choice of (z1,...,2,) up to parallel transport. We take a coordinate ¢ of C, which induces
a coordinate § of m;*(0). The induced map 7, '(O) — 7, (O) is affine with respect to the coordinates
(01,...,0,) and 0.

Let us consider the behaviour of 7, *(I) around P € m;*(O), where I is a constructible sheaf on m;*(O).
We may assume P = (0, ...,0). The map 7, *(O) — 75 ' (O) is of the form (61,...,60,) — 3 a; 0; + 3, where
B = w1 (P). The sheaf I is the direct sum of sheaves of the following forms:

e The constant sheaf around £.

e jiC; or 5,C;, where J is an open interval such that one of the end points is 3, and j denotes the inclusion
J — 77 10).

Hence, 77 *(I) around P is described as the direct sum of sheaves of the following forms:

e The constant sheaf (Cﬂ_gl(o).

e j,Cp or 5iCp, where H is an open half space such that 0H > P, and j : H — 7r0_1(0). They are denoted
by (CH* and (CH!.

5.5.4 Local form of £L<P and L£/L=P

Let P ¢ 71'61(0). We have a decomposition around P:

L= P . = P g’

a€lrr(V) aclrr(V)
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Let us describe £, and E/EED around P. For an appropriate coordinate, a = z; ™ --- 2™ for some

m; > 0. Let gq : A™ — A be given by (z1,...,2,) — [[2]"". Let ma : A(0) — A be the real blow up. We
have the induced map:

go : X(D) — A0), (ri,0;) — (ﬁ Y mis)

Let Q be the local system on A(0) with Stokes structure, corresponding to (Oa(x0), d + d(1/2)). Note that
Q/Q=Y is the constructible sheaf j.C; on 75" (0), where j : J = (—m,7) — 71" (0). Let r(a) be the rank of
L4. We have isomorphisms:

Lo q;Q" @ L3P~ (@)Y L/LEP ~gr(0/050) "

Around P, we have an isomorphism ¢} (Q/Q=") ~ 1.C, where Z := ¢;'(J) and + : Z — (S")" x R%;. Note
that Z is of the form Zo x 9R%, where Z is the inverse image of .J via the induced map (S*)" x {0} — S* x {0}
Hence, q:(Q/ QSO) is isomorphic to one of the following, around P:

e The constant sheaf C(g1ynxgrn o

° jK*(CKxaRgO, where K is an open half space such that 0K 3> P, and ji : K X 8[&%0 — (SH)" x RY . It
is denoted by CKxaRgo*~

5.5.5 Proof of Theorem 5.15
We reduce the proof of the theorem to the computation of Ext’ (WflL q;l(Q/QSO)) fori<n-—2.

Lemma 5.17 We have é’xti(wfll,qu_lg) =0 for any i. In particular, we have isomorphisms:
Ext'(n7 ', q; 1 Q=0) ~ Ext'™ (m ', ¢ 1 (Q/Q=Y)).

Proof Let ¢ : (S')" x {0} — (S1)™ x ORZ, denote the inclusion. There exists a constructible sheaf F on
(SN such that m;'T ~ ¢, F. We have the adjunction Ext' (1 F, q71Q) = w.Eat'(F,i'qz*Q). Note !z 10 =
D 'D(g;*Q) = 0, because Dg; ' Q is 0-extension of a constant sheaf on (S1)™ x RZ; by (S')" x RZ, —
(S1)™ x RZ,. Hence, we obtain Extt (L*]:, qa_lQ) = 0, and the proof of Lemma 5.17 is finished. |

Now, let us show the following vanishing of the stalks at P:
Ext! (7711,4,1(Q/Q%")) p =0, (j<n—2) (67)

It can be computed on (S*)" x 9RZ,. We have the following cases, divided by the local forms of 7 Y(I) and
q;1(Q/ Q=) around P:

(I) 7T1_1[ >~ (C(Sl)n and qa_l(Q/QSO) >~ C(Sl)nxaRgo.
(1) 7' 1 = C(g1yn and ;' (Q/Q=°) = Crexome, »-
(ITT) ;71 = Ciry and g7 (Q/Q%0) = Csoypome » where x = »,1

(Iv) 7r1_1] ~ Cg4 and q;l(Q/QSO) ~ CxxaRgO*7 where x = x,!. Moreover, this is divided into three cases
(IV-1) OH and 0K are transversal, (IV-2) H = K, (IV-3) H = —K.

In the following, for a given i : Y7 C Y2 and x = #,!, let Cy,, := i.Cy; on Y5. It is also denoted just by Cy,, if
there is no risk of confusion.
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The case (I) Instead of (S')" x {0} — (S")" x IRZ;, we have only to consider the inclusion {0} —
ORZ, ~R"~!. We obtain (67) from the following standard result:

0 (j<n-2

Ext! ((CO,C]R"*1)0 = { C (j=n-— 1;

The case (II) We have the exact sequence 0 — C(g1yn\ g1 — C(g1yn — Cg, — 0. Let ¢ denote the
inclusion ((S*)"\ K) x dR% ; — (S')™ x OR%,. Note ¢* = /', and hence L!(CKXa]R;LO* = 0. We have

) ) | 7
Ext? ((C((Sl)"\K)X{O}I’ CKX@REO*>P ~ 1 Ext! (C((Sl)"\K)X{O}7 L CKX@R%O*>P =0
Hence, we obtain
j : 0 (j<n-2)
Ext! (C(sl)n,CKxaRgo*)P ~ Ext! ((CK*,(CKxaRgO*)P = { C (j=n-1)

The case (IIT) Let us consider the case x = . We have the exact sequence:
0 — Cs1ynxory \#x{o}t — Cis1ynxory , — Cae — 0

Let kq denote the inclusion H x {0} — (S)" x IRZ ,, and let ko denote the open embedding of the complement.
Because k1 Cg1)n xoR2 \Hx{o}! = 0, we have the following isomorphisms:

RHOW(C(Sl)nxaR;O\Hx{o}u (C(swnxmgo),) ~ RHOW(C(Sl)nxaRgo\Hx{o}u (C(swnxamgo\Hx{o}!)P
= ko (Cistynxary \mx{o}) p = (Cistynxome ) p (68)
Hence, we obtain RHom((CH*, (C(Sl)nxaRgo)P = 0. In particular, Sxtj((CH*, C(Sl)nXaRgO)P = 0 for any j.

Let us consider the case x =!. We have the exact sequence 0 — Cp1 — Cg1yn — C(g1yn\ g — 0.
Hence, we obtain the following isomorphisms:

; ; 0 j<n—2
5wt] (CH!,C(Sl)nxa]RTZLO)P == 51’t] (((:(Sl)n7 C(Sl)nxaRgo)P = { (C E; ; n— 1;

The case (IV-1) Let us consider the case x = . Let A/ be the kernel of Cy, — Crngx.

Lemma 5.18 We have RHom(N, Ck xorz «) p = 0.

Proof Let ¢ be the inclusion ((S*)"\ K) x dRZ, — (S*)" x OR%,. Then, N is of the form uN;. Then, the
claim follows from ¢'C KXORZ jx- |

We have the exact sequence: 0 — CKXORT;O\(HOK)X{O}! — Ckxorr, — Cnk)yx{oy» — 0. Let k
denote the inclusion K x ORY ;\ (H N K) x {0} — K x ORY,. We have the following isomorphisms:

RHOW(CKxaRgD\(HmK)x{o}!» Crxomrz ) p =~ Rk, RHOW(CKxaRg \HENE)x {0} Crxorn \(HNK)x 1) p

~ Crxorn . p (69)
Hence, we obtain RHom((C(HmK)X{O}*, (CKxaRgo *)P =0, and Ext? ((CH*, (CKanRgO *)P = 0 for any j.
Let us consider the case x =!. We have an exact sequence 0 — Cp — C(S_l)n — C(Sl)n\H* — 0 on

(S1)™. By using the previous results, we obtain

; 0 j <n—2
Eat! (Crt, Croxomy,e) p = { C 8 . 1;
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The case (IV-2) Let us consider the case x = *. By considering 0 — JRY,, we obtain

4 0 (j<n-2)
Ext! ((CH*,(CHxaRgU*)p a { C (j=n-1)
Let us consider the case x =!. We have an exact sequence 0 — Cpy1 — Cpg, — Csgy. — 0. Let us look at

Ext? ((CaH*, CHX(‘)]R;O). For 0 — [0, 1[xR"!, we have Ext’ (CO,C[OJ[XRn—l) = 0 for any j. Hence, we obtain

) 0 <n—2
Ext! (Chy, (CHxaRgo) = { C 8 — Z _ 1%

The case (IV-3) It is easy to show Ext’ ((CHg, (CKXQ]R”;O) = 0 for any j. By using the argument in (IV-2), we
can show £zt ((CH*, CKXB]R") = 0 for any j. Thus, the proof of Theorem 5.15 is finished. |

5.5.6 Some uniqueness of K-structure

We use the notation in Subsection 5.5.1. Let V be a good meromorphic flat bundle on (X, D). Let g be
a holomorphic function on X such that ¢g='(0) = D, and let ig be the graph X — X x C. We regard

DRE(HX@(Z'QTV) as a cohomologically constructible sheaf on X.

Let K be a subfield of C. A K-structure of DRHXHX@ (igTV) is defined to be a K-cohomologically constructible

complex F on X with an isomorphism « : F ® C ~ DR

nil
X xC
(Fi, ;) (i = 1,2) are called equivalent, if there exists an isomorphism g : F; — Fy for which the following

diagram is commutative:

(ig+V') in the derived category. Two K-structures

Fec £, gpec

.| o]

DR”X“X@(igTV) - DR“X“X@(igTV)

Lemma 5.19 Let (F;, ;) (i = 1,2) be K-structures of DR;‘;IX(E(igTV). If their restriction to n; (X — D)
are equivalent, then they are equivalent on X.

Proof We put F¢ := F; ® C. We have the following commutative diagram:
HOm(fl,fQ) ® C _— Hom(}—l‘ﬂl—l(xiD[Q]),.7:2|7T1—1(X7D[2])> ® (C

- -

Hom(F{, F§) —— Hom(f:ﬁﬂ'l_l(X—D[Q])7f;ﬂl_l(x—D[Q]))

According to Theorem 5.15, the horizontal arrows are injective. Hence, Hom(F;,F») is the intersection of
C

Hom(flml(x_m),f2lw;1(X_D[2])) and Hom (FT, %) in Hom(fﬁwl,l(XfD[zl),lew;l(xfm)). Then, the el-

ement of Hom(F*, FY) corresponding to the identity of DRI;IX(E(Z'gTV) comes from Hom(Fy, F3). |

6 Good pre-K-holonomic D-modules

6.1 Good K-structure and the associated pre-K-Betti structure
6.1.1 Good meromorphic flat bundle with good K-structure

Let K C C be a subfield. Let X be a complex manifold with a normal crossing hypersurface D. Let V be a
good meromorphic flat bundle on (X, D).

Definition 6.1 We say that V has a good K-structure, if the flat bundle V|x_p has a pre-K-Betti structure
such that any Stokes filtrations are defined over K. |
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Let D = D1 U Dy be a decomposition. Recall that the complex DR;().E)SDQ (M) is quasi-isomorphic to its
<Da3

0-th cohomology sheaf L<P1<P2_ (See Subsection 5.1.2.) It is naturally equipped with a K-structure E;Dl ,
if V has a good K-structure. By Corollary 3.16 and (45), we obtain a pre-K-Betti structure

D.<D D.<D
FyPrsPe = Ru LPrsP

of the holonomic D-module V(!Dy). These pre-K-Betti structures are called canonical. Let D} U Dy = D be
another decomposition such that Dy C Df. The natural morphism V (!D}) — V(!Dy) is compatible with the

pre-K-Betti structures. We also use the symbols Fy. and Fy to denote fED and f;D , respectively. We also
use the symbol Fy to denote Fy . for simplicity.

More generally, let + : Z C X be a complex submanifold with a normal crossing hypersurface Dz. Let V
be a meromorphic flat bundle on (Z, Dz). We say ¢+Vz has a good K-structure if ¥V has a good K-structure
in the above sense. The canonical pre-K-Betti structures for 14Vz(!Dz 1) are also defined in a similar way for
a decomposition Dz = Dz U Dgs.

6.1.2 Induced pre K-Betti structures on the nearby cycle functor and the maximal functor

We set X := A" and D := Ule{zi = 0}. Let V be a good meromorphic flat bundle on (X, D) with a good
K-structure. For each I C ¢, we set I; := T U{i} and I,; := I \ {i}. The D-module

e (vD(D)) = (V @ 32 ) (1D(L.0))

has the canonical pre-K-Betti structure, where x = *,1. Hence, ¢;(V(!D(I))) and Z;(V(ID(I))) have the
induced pre-K-Betti structures.

Lemma 6.2 The induced pre-K-Betti structure of 1;(V) p,\ap, is good, i.e., it is compatible with the Stokes
filtrations. Moreover, the induced pre-K -Betti structure of 1;(V (ID(I))) is canonical for each I C .

Proof We have only to consider the case ¢ = 1. We give a preparation. By Lemma 3.17, we have the following
commutative diagram:

DRx (T (V(1D(1)))) —— DRx (122" (V(1D(1))))

DR)<(D(I*1) (HEOO’OV) . DR;D(I*I) (Hl—*oo,ov) (70)
DR;D(IH) (V ® jz—loo,o) _ DR;D(I*I) (V & j;OO7O)

By the upper square, the induced K-structure of DRx 1 (V(!D(I))) can be identified with the K-structure of
the following:

DR;D(IH) b1 (V) = Cone(DR}D(l*l)(H;“’Ov) SN DR;D(I“) (Hl_f"*ov)) (71)

We set D’ := Uf:2 D;. Let m : X(D') — X be the real blow up. We obtain (71) as the push-forward of the
following on X (D’):

DRI EPE) (V) = Come (DRGIDSPE I (m7207) — DREPIISPEDD (peoyy) - (72)

We prepare some commutative diagram in a general setting. For a holonomic Dx-module M, we put

DR;(DIg{!)l)SD(E*Iu) M = Q}(Dlg{!)l)SD(ﬁflu) ®W;10X ﬂflM[dimX]
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DR M = 0 PUISPEI (D) 6 g,y Midin X

We have the following commutative diagram obtained from a commutative diagram similar to (14):

<D(I,1)<D(¢—I)) | <D(I,.1)<D(f—Iy)
DRX(D,) M(Dy) —— DRX(D,) M(xDy)

<D(In)<D(£—Tn) <D(I.1)<D({—1I.1)
DRX(D,) ) M —_— DRX'(D') M
If M is a good meromorphic flat bundle, the left vertical arrow is also quasi-isomorphism, which can be shown
by the argument in the proof of Proposition 3.15.
Let p: X(D) — X (D’) be the induced map. We have the following natural commutative diagram, where
the vertical arrows are quasi-isomorphisms by Theorem 4.9:

<D(I1)<D({—1y1) <D(I,.1)<D(£—I.y)
DRX(D, M — DRX(D, M

s DRfD(I'1)<D(€ I'l)M s DR;(D]:()g*l)<D(€ I*I)M

Thus, we obtain the following commutative diagram, in which the vertical arrows are quasi-isomorphisms:

R<D(L1)<D(é 1,1)(H—oo OV)

<D(I1)<D(U—I11) {1—00,0
X(D) DR % o’ ()

X(D")

-] =] (73)

R;(DD(gll)SD(gflll) (V ® 3;100,0) P R;(DD(§*1)<D(Z I*l) (V ® J—oo 0)

—

Because DR;(D;”)SD@_I”) (V@320 and DR;I(D];*I)SD@_I*I) (V @379 are equipped with K-structures

compatible with the morphism, we obtain a K-structure of DR;Zg{)”)SD@*I”)wl(V) from (72) and (73).
Moreover, the lower square in (70) is obtained as the push-forward of (73). Hence, the K-structure of

DRx ¢1 (V(ID(I))) is obtained as the push-forward of the K-structure of DR;?;{TKD@ ) gy (V).

Let us consider the case I = (). By the above consideration, we obtain that }"<0 is compatible with the

K-structure, where F denotes the Stokes filtration of (V) at each point P € 77 *(8D;). By considering
the tensor product with meromorphic flat bundles with rank one, we can deduce that F* is defined over K.

Since the pre-K-Betti structure of ¢ (V(!D(I))) comes from the K-structure of DR;?D({;I)SD@*I”) P1(V), it

is canonical. |
6.1.3 Good holonomic D-module with good K-structure
Let M be a good holonomic D-module on (X, D).
Definition 6.3 We say that M has a good K -structure, if (i) ¢1(M)(xD(I°)) has a good K -structure, (put
dp(M) :== M), (ii) the induced morphisms

Yigr(M)(xD(I°)) — ¢ipr(M)(+D(I%)) — Pigr(M)(xD(I°)) (i € 1)
are compatible with the K-structures. |

A morphism of good holonomic D-module with good K-structures f : M1 — M is defined to be a morphism
of D-modules such that ¢;(f) are compatible with K-structures for any I C £. Let Hol®*°*?(X, D, K) denote
the category of good holonomic D-modules with good K-structures on (X, D). It is an abelian category.

Let V be a good meromorphic flat bundle on X with a good K-structure. Then, we naturally have
s (V(ID(I))) (xD(J€)) ~ ¢;(V) for any I,J C £, which are equipped with good K-structures. Via these
K-structures, we regard V(!D(I)) € Hol®*°Y(X, D, K).
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Lemma 6.4 Let M € Hol**°Y(X, D, K) such that M(xD(J)) = M. Let I C £ such that |I| = n— dim Supp M
and Vi = ¢r(M)(xD(I%)) # 0. Then, the morphisms i;Vi(!D(I¢) *D(J)) — M — i;V; are compatible with
good K -structures.

Proof We set My := itV;(ID(I°) * D(J)) and My := i+V;. Let us show that ¢r(M;)(xD(L°)) —
(M) (xD(L)) — ¢r(Mz)(xD(L?)) are compatible with K-structures for any L C £. We have only to
consider the case L D I. In the case L = I, it is clear. Assume that we have already known the compatibility
for L. We set L; := LI {j} C £. We obtain the following morphisms compatible with K-structures:

05 (60 (M) (<D(L9)) ) — 5 (6 (M)(D(L)) ) — 6561 (M) (+D(L5))
— 1Yy (¢L(M)(*D(LC))> — 1 (¢L(M2)(*D(Lc))) (74)
It implies the compatibility for L;. |

6.1.4 Pre-K-Betti structures for Z;¢;(¢:V7)
Let KUJUI =L C{. Let Vi be a good meromorphic flat bundle on (D, dDy). Let ¢ : D; — X. For a map
f:KuJ—{0,1}, we set Ko(f):= f~1(0) N K. We put
e KV = (Ve @ 3 e @ 95°7) (DG H0)).
keKo(f) kZKo(f)

Let 0 denote the constant map valued in {0}. Let §; denote the map such that §;(j) =0 (j # ¢) and §;(¢) = 1.
We can identify Zx1) (LTVI) as the kernel of the following morphism:

Co(J, K, 1tV) — P Co.(J. K, 14Vr) (75)
e KUJ

If Vi has a good K-structure, we obtain a pre-K-Betti structure of Zx ¢ ;(¢+Vr) by (75).

Lemma 6.5 Fori & L, we set Ki:= KU{i} and Ji:= JU{i}. The following morphisms are compatible with
the pre-K -Betti structures:

Extri(iVr) — Exiths (14Vr) — Extri (4 Vi)
Proof It is clear by construction. |

Recall that we have the naturally induced good K-structure on v;(:+V;) for i € I (Lemma 6.2).

Lemma 6.6 For i ¢ L, the natural isomorphism Zx)y; (LTVI) ~ Sy (1/12- (LTV])) is compatible with the
induced K -structures.

Proof Both the K-structures are obtained as the kernel of the morphism (75) for (Ji, K). 1

6.1.5 Functoriality

Let D1 U D5 be a decomposition of D. Let D3 be a hypersurface of X. Let ¢ : X’ — X be a proper birational
morphism such that (i) D’ := ¢~ !(D3 U D) is normal crossing, (ii) X' — D' ~ X — (D3 U D). Let V be a
good meromorphic flat bundle on (X, D) with a good K-structure. We put V' := ¢*V @ Ox.(xD’"). We set
D} == ¢~Y(Dy). We take D C D’ such that D} U D} is a decomposition.

Proposition 6.7 V' is equipped with an induced K-good structure. Moreover, the natural morphisms

V(ID1) — @iV'(ID1),  ¢iV'(ID3) — V(IDy)

are compatible with the canonical pre-K -Betti structures.
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Proof The first claim is easy to see. Let us show the second claim. We use the notation in Subsection

5.3. Let @ : X'(D') — X (D) be the induced map. By construction, it is easy to see that the morphisms
D1<D ~ <D' <D ~ <D.,<D} Do<D . .

DR} Dy *(V) — Rg.DRZ, (o 2(V') and R@. DR, o (V') — DR} 5 (V) are compatible with the

induced K-structures. Then, the second claim follows from Theorem 5.12. |

6.2 The associated pre-K-Betti structure
6.2.1 /-squares of complexes

For small categories A; (i = 1,...,¢), let Hle A; denote their product, i.e., the category whose objects and
morphisms are given by ob (Hle Ai) = Hle ob(A4;) and Mor(a, b) = [[ Mor(a;, b;). Let I' be a small category

given by the following commutative diagram:
(0,00 —— (0,1)
bl cl coa=dob
(1,0) —2— (1,1)

Let A be an abelian category. Let C'(A) be the category of complexes in A. A square in C(A) is a functor
F:T — C(A). For a given square F, let H(F') be the total complex of the following double complex:

F(a)+F(b) F(c)-F(d)
_— _—

F(0,0)[1] F(0,1) @ F(1,0) F(1,1)[-1]

An {-square in C(A) is a functor F : TY — C(A). Let m; : I'Y — T'*~1 be the projection forgetting the i-th
component. For a given ¢-square F', we obtain an (¢ — 1)-square 7 F by 7. F(a) = H(ﬂﬂ_jl(a)).

Lemma 6.8 For i < j, we have an isomorphism i F ~ 71,7 F.

Proof We have only to consider the case £ = 2, (¢,5) = (1,2). The i-th terms of the both complexes are given
by

@ F(Cll,ClQ,bl,bQ).

ai+az+byi+by=i—2
The multiplication of —1 on F(0,0,0,0) & F(1,1,0,0) ¢ F(0,0,1,1) ¢ F(1,1,1,1) interpolates the differentials
for mimj B and mj_q.mi F |

For any subset I C ¢, let w; : I'Y — I'! be the naturally defined projection. We take [ = Iop C I; C --- C

I,, = ¢, which induces the factorization 7; = 7 o 7@ o ... 0 7™ where 7(9) : I'Yi — Tfi-1. Then, we set

M

T =y .0 w,(km)F. It is well defined up to isomorphisms as above.

6.2.2 The associated pre-K-Betti structure

Let M be a good holonomic D-module on (X, D). Let H C £. Let us construct an H-cube in the category of
good holonomic D-modules on (X, D). For (¢,5) = ((ix,jx) | k € H) € obI'!| we have the following subsets of
H:

Then, we put Q7 (M,4,5) = 16,5 Yi,5)PK,5)M. For ko ¢ H, we have the following naturally induced

diagram:

Vo2 1Yy pr M ——— Ep ZEr o M

! ! m

Gk Vg Ox M ——— Y Zr oM
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For each decomposition H = {h}U(H —{h}), we have a similar diagram. Thus, we obtain an H-cube Q* (M) of
good holonomic D-modules. The cohomology associated to (76) is naturally isomorphic to =71 ;¢x M. Hence,
we have a natural quasi-isomorphism 7, QM) ~ QH(M). In particular, we have a quasi-isomorphism

T QM) = M.
If M has a good K-structure, each Q¢(M, 1, j) is equipped with the pre-K-Betti structure f%/t (2,7), given
as in Subsection 6.1.4.

Lemma 6.9 The morphisms are compatible with the pre-K -Betti structures.

Proof Let us consider the morphisms in the diagram (76). The morphisms

Vi 210 sor M — B Erpsog M — Y Erp o M

are compatible with the pre- K-Betti structures by construction, as remarked in Lemma 6.5. Let K’ := £ — (K U
ko). By definition, the morphisms

Uy o M(*D(K')) — ¢y dx M(+D(K')) — by, o M(+D(K"))
are compatible with the K-structures. We remark Lemma 6.6, and then it follows that

Vo 2110 M — Gy Zr o M — Vi Erp sk M
are compatible with the pre- K-Betti structures. |

Thus, we obtain a pre-K-Betti structure of 7. Q%M) ~ DR.M, which is independent of the choice of a
factorization of m,. It is called the pre-K-Betti structure of M associated to a good K-structure.

More generally, if M (*D(HC)) = M, any Q% (M, 1, j) are equipped with the pre-K-Betti structures, which
induce a pre-K-Betti structure of M. The naturally defined morphisms ZgExt;dr(M) — ZEx01(M)
induce the quasi-isomorphism 7, Q4(M) — 7. QH (M), which is compatible with the pre- K-Betti structures.
Namely, the associated pre-K-Betti structures of M are the same.

Lemma 6.10 The canonical pre-K-Betti structures of V(!D(H)) is equal to the pre-K -Betti structure associ-
ated to the good K -structure.

Proof By the above consideration, the following isomorphisms are compatible with the pre- K-Betti structures:
V(\D(H)) = Q"(V(D(H))) < QXV('D(L)))

Then, the claim of the lemma follows. |

6.2.3 The induced pre-K-Betti structures on the functors along a monomial function

Let g be a meromorphic function on (X, D) such that ¢~ '(0) C D. Let D = Dy U D5 be a decomposition such
that Dy D g~*(c0) and Dy C g7 1(0). (Note that D; are not necessarily irreducible.) We have the pre-K-Betti
structure of Z,(V, #D1) and ¢,(V,*D;) as the kernel of V @ J3,°%(!1Dyx D) — V ® J,°0(xD) for a = 1,0.
Since the canonical pre-K-Betti structures of V ® J;°%(I1Dy*D1) and V @ J;°°(xD) are associated to the
good K-structures, the induced pre-K-Betti structure of Z4(V, *D1) and 14(V,*D1) are also associated to the
good K-structures.

Let M € Hol**°Y(X, D, K) be such that M = M(xD;) and M (D) = V. By Lemma 6.4, we obtain the
following complex in Hol&*°¢(X, D, K):

M(!Dy % Dy) — M @ Ey(V,*Dy) — M(xD) (77)

Hence, we obtain that ¢q(M,xD;) € Hol®*°Y(X, D, K). The pre-K-Betti structure induced by (77) is the
same as the one associated to the good K-structures of ¢, (/\/l, *Dl). Similarly, we have the description of
pre-K (xD1)-holonomic D(xD;)-module M as the cohomology of

wQ(Mv *Dl) - Eg(Mﬂ *Dl) S (bg(Mﬂ *Dl) — wy(Mv *Dl)'
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6.2.4 Globalization

Let M; (i =1,2) be good on (X, D) with a good K-structure. Let F; be the associated pre-K-Betti structure

Lemma 6.11 Let ¢ : M1 — My be a morphism of D-modules. If it is compatible with the associated pre-K -
Betti structures F;, then it preserves good K -structure of M, i.e., ¢1(My)(xD(I€)) — ¢1(Mz)(xD(I€)) are
compatible with K -structures for any I.

Proof We use an induction on p(M; @ Ms). (See Subsection 3.1.2 for p.) We take a subset J C £ such that
|J| = n — dimSupp(M; & Ms) and (M; ® My)(xD(J)) # 0. Let g be a holomorphic function such that
g~(0) = D(J¢). We have the induced good K-structures of Zg(M;(xD(J¢))) and M;(xg) for i = 1,2 and
* = *,1. By the assumption, the morphism M| x_p(jey — Ma|x_p(se) is compatible with the K-structures.
Hence, M (xg) — Ma(xg) and =, (./\/ll(*g)) — By (/\/lg(*g)) are morphisms in Hol®*°Y(X, D, K). Moreover,
we obtain the following diagram of the pre-K-holonomic D-modules:

Mi(lg) —— ZE,Mi(xg)) © My ——— Mi(xg)

l I |

Ms(lg) —— Eg(Ma(xg)) ® Mz ——— Ma(xg)
Hence, the induced morphism ¢4(M1) — ¢4(M2) is also compatible with the pre-K-Betti structures. By

using the hypothesis of the induction, we obtain that ¢,(M;) — ¢4(M>) is a morphism in Hol&o°d (X,D,K).
Therefore, we obtain that M; — M is also a morphism in HolgOOd(X ,D,K). |

Lemma 6.11 means that a good K-structure can be recovered from the associated pre-K-Betti structure.

Definition 6.12 A pre-K-Betti structure F of M is called good, if it is the pre-K-Betti structures associated
to a good K -structure of M. |

Let (w1, ...,w,) be another holomorphic coordinate such that w; ' (0) = z;*(0).

Lemma 6.13 If M has a good K -structure with respect to the coordinate (z1,...,zn), it has an induced good
K -structure with respect to (wi, ..., wy,) such that the associated pre-K -Betti structures are the same. In this
sense, Definition 6.12 is independent of the choice of a coordinate.

Proof We use symbols ¢, ; and ¢ ; to distinguish the dependence on the coordinates. As remarked in
Subsection 2.2.7, we have the natural isomorphisms (11). They induce isomorphisms ¢, j(M) = ¢q 1 (M) and
Yi®z1(M) >~ ;¢ 1(M). Hence, we obtain good K-structure of M with respect to (wy,...,w,). Let QL (M)
and O, (M) denote the f-cube associated to M with respect to the coordinates (z1,...,2,) and (wy, ..., w,),
respectively. It is easy to observe that isomorphisms (11) induce 7y, Q,%(./\/l) o Ty Q%,(./\/l) compatible with

pre-K-Betti structures, and they induce the identity on M. Hence, the associated pre-K-Betti structures on
M are the same. |

In particular, the notion makes sense in a global situation.

Definition 6.14 Let Y be a complex manifold with a normal crossing hypersurface Dy. Let M be a good
holonomic D-module on (Y,Dy). A pre-K-Betti structure F of M is called good, if it is the pre-K-Betti
structure assoctated to a good K -structure on any coordinate neighbourhood. |

6.3 Preliminary for functoriality via push-forward
6.3.1 Statement

We put X := A™ and D := Ule{zi = 0}. Let G : Y — X be a proper morphism of complex manifolds.
Let Dy be a simply normal crossing hypersurface of Y with a decomposition Dy = Dy; U Dys such that
Gil(D) C Dyo.

Let V be a good meromorphic flat bundle on (Y, Dy ) with a good K-structure. Put M := V(!Dy1). Let
Fa be the canonical pre-K-Betti structure. Assume the following:

49



. GiM =0 for any i # 0, and G?M is a good meromorphic flat bundle on (X, D).

We put G := RG.(Fm) x—p, which gives a pre-K-Betti structure of G? (M)|x-p- The following proposition
will be used in the proof of Theorem 8.1. (See Subsection 8.4.1.)

Proposition 6.15 G is good, i.e., it is compatible with the Stokes filtrations. Moreover, RG.Faq is the canon-
ical K-Betti structure of GY(M).

Corollary 6.16 Under the assumption, the induced pre-K -Betti structure of RG . DFn, is the canonical K -Betti
structure of G(T)]D)M ~ ]DG(T)M. |

Remark 6.17 The special case dim X = 1 of Proposition 6.15 essentially appeared in [29] and [35]. |

6.3.2 A characterization of compatibility with Stokes filtrations

Let g be a holomorphlc function on X such that g=!(0) = D. Let i, : X — X x C be the graph, and T', be
the image. We put X := Iy xxxc (X x C). The induced map X (D) — X is denoted by p.

Let V7 be an unramlﬁedly good meromorphic flat bundle on (X, D). Its good set of irregular values is denoted
by Irr(V1). For each a € Irr(V7), put L(—a) = Ox(xD) e with the meromorphic flat connection Ve = e d(—a).
We fix a K-structure of L(—a) by the trivialization exp(a)e. We put Vi(—a) := V; ® L(—a). We regard

DRI)I;lXC(ZgTVI( )) as a constructible sheaf on X.

Lemma 6.18 Assume that Vi x_p has a K-structure with the following property:

e For each a € Irr(V4), R?lxc(zgﬂ/l( a)) has a K-structure whose restriction to X — D is equal to the

one induced by the K-structure of V1 and L(—a).

Then, the K-structure of Vi) x_p is good. Moreover, the K-structure of DRM £<D.

thc( g+ V1) is equivalent to Rp.

Proof As for the first claim, the general case can be reduced to the case that D is smooth, which is easy to
see. The second claim follows from Lemma 5.19

6.3.3 Proof of Proposition 6.15

Let mx : X — X be the induced map.

Lemma 6.19 DR“XHX@(Z'QTG?M) has a K-structure KC whose restriction to X — D 1is equal to G. Moreover, we
have Rrx ) = RG+F m

Proof We put gy := G~!(g). Let iz, : Y — Y x C denote the graph of gy, and I'y,, be the 1mage We put
Y =Ty, Xyxc (Y x C). Let 7y and py denote the induced maps ¥ — Y and Y(Dy) — Y. LetG:Y — X
be the induced map.

We have the K-structure LIS(DY of DR%H(Dy)(M). According to Proposition 5.14, it induces a K-structure

Rpy L3V of DR?,’IX(C( g+ M). By a general compatibility, we have RG. DRI;IX(C(ZQYTM) ~ DR;‘;IX(C(ZQTGOM)

as remarked in Subsection 5.4.3. Hence, K := RG pr*ﬁ ¥ gives a K-structure of Dle (ngGT/\/l) with
the desired property.

Let k : X’ — X be a ramified covering such that n_lGOM is unramified with the good set of irregular
values Z. We put D’ := k~1(D). We take a projective blratlonal map p:Y' — Y xx X’ such that (i) Y’ is
smooth, (i) Y/ —p= ' (Y xx D') =Y — (Y xx D), (iii) D} := p~(Dy xx X') is simply normal crossing. Let

1:Y" — Y be the induced map. Let G’ : Y/ — X’ be the induced morphism. For each a € Z, we have
the induced meromorphic flat bundle V'(—a) := pjV ® G"*L(—a) on (Y, D} ). We have the decomposition
D}, = Di{, U D}, such that D}, := p;'(Dy2). We put M'(—a) := (V'(—a))(!D},). We have a natural
isomorphism G}°(M'(—a)) =~ H*G?(M)(*a). By applying Lemma 6.18 and Lemma 6.19, we obtain that the
first claim of Proposition 6.15. By using Lemma 5.19 and Lemma 6.19, we obtain the second claim of Proposition
6.15. 1
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7 K-holonomic D-modules

7.1 Preliminary
7.1.1 Cell and cell function

Let X be a complex manifold or a smooth complex algebraic variety. In the complex analytic case, we use
ordinary topology. In the algebraic case, we consider Zariski topology. In the algebraic setting, D-modules are
assumed to be algebraic. An open subset U is called principal, if it is the complement of a hypersurface. Let P
be a point of X. For any closed subvariety W of X, let dimp W denote the dimension of W at P. Let M be a
holonomic D-module on X with dimp Supp M < n. If X is algebraic, we assume that M is also algebraic. An
n-dimensional cell of M at P is a tuple (Z,U, ¢, V) as follows:

(Cell 1) ¢ : Z — X is a morphism of complex manifolds or smooth complex algebraic varieties, such that
P € ¢(Z) and dim Z = n. We assume that there exists a neighbourhood of Xp of P in X such that
¢ : 9 Y Xp) — Xp is projective. We permit that Z may be non-connected or empty.

(Cell 2) U C Z is the complement of a simply normal crossing hypersurface Dz. The restriction ¢ is an
immersion. Moreover, there exists a hypersurface H of Xp such that ¢~ 1(H) = Dz N 1 (Xp).

(Cell 3) V is a meromorphic flat bundle on (Z,Dz). We have a morphism ¢+(V))p — Mp — ¢+(V)p
such that Mp(xH) ~ ¢+(V)p and Mp(!H) ~ (Vi) p for a hypersurface H in (Cell 2), where we put
Vi := V(!Dz) and subscript “P” means the restriction to Xp. The restriction of V' to some connected
components may be 0.

If V is good on (Z, D), C is called good. For a given holonomic Dx-module M and P € Supp M, there always
exists a cell for M at P. If dimp M = 1, any cell is good. If dimp M = 2, there always exists a good cell for
M at P, due to Kedlaya [20]. (See also [31] for the algebraic case.) In the algebraic case, there always exists a
good cell for M at P ([31] and [32]).

Remark 7.1 Let (Z,U, ) be a tuple satisfying (Cell 1) and (Cell 2). If we are given a meromorphic flat bundle
V on (Z,Dgz), the tuple (Z,U, ¢, V) is called a cell at P. |

Let g be a holomorphic or algebraic function on X p. It is called a cell function for C, if U = Supp M p\g~1(0).
For such g, we obtain a description of Mp as the cohomology of the complex in the category of analytic or
algebraic holonomic Dx ,-modules:

Yy (01 (V)p) — Eg(p1(V)p) ® ¢g(Mp) — vy (p1(V)p)

For a given cell, a cell function always exists after Xp and Z are shrinked.

Remark 7.2 Let C be a cell of M at P. If we have a neighbourhood Xp of P satisfying (Cell 1-3), any
neighbourhood X'» C Xp also satisfies (Cell 1-3). Hence, we do not have to be careful with a choice of Xp. |

7.1.2 Refinement and enhancement

Let ' = (Z/,¢',U’, V') and C = (Z,p,U, V) be n-cells of M at P. We say that C’ is a refinement of C, and
denote C' < C, if the following holds:

e ¢ factors through ¢ in the sense that there exists @1 : Z' — Z such that (i) ¢’ = popy, (ii) ¢1(U’) C U.
(] V/ = (,OTV ® OZ/(*DZ’); where DZ’ =7 — U/.
In that situation, there exist naturally induced morphisms:
OtV p — pi(V)p — Mp — p(V)p — ¢ (V')p (78)

We say that C’ is a dominant refinement of C, if U’ is dense in U.
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Let C = (Z,U,»,V) be an n-cell of M at P. We take an n-dimensional closed subvariety Z' C X such
that dim(p(Z) N Z') < n. We take a refinement of C such that U N Z’ = (. Let Z; be a complex manifold
with a projective birational morphism ¢, : Z; — Z’ and a smooth open subset U; C Z; such that (i) ¢y,
is an immersion, () — Uy is normal crossing and the pull back of a hypersurface in X around P. We set
Z:=2zU Z1 and U= U U U;._We have the induced map ¢ : Z — X. Let 1% be a meromorphic flat bundle
on Z such that Vo\z =V and V0|Z = 0. Then, it is easy to observe that C:= (Z U P, V) is an n-cell of M,
which is called an enhancement of C.

In the following, for a cell C = (Z,U, ¢, V), we implicitly assume ¢~ 1(Xp) = Z by taking a refinement of C.
So we omit the subscript “P” in ¢;(Vi)p and ¢;(V)p.

7.1.3 K-cell and the induced pre-K-Betti structure on the nearby cycle

Let F be a pre-K-Betti structure of M. Let C = (Z,U, p, V) be a good n-cell of M at P. We say that F and
C are compatible, if the following holds:

e The induced K-structure of Vi is good, i.e., compatible with the Stokes filtrations along D.

e The induced morphisms ¢+(Vi) — Mp — ¢4+(V) are compatible with the pre-K-Betti structures. (See
Subsection 6.1.1 for the canonical pre-K-Betti structures of V; and V.)

Such a cell C is called a good K-cell of (M, F). It is not difficult to construct an example of a pre-K-holonomic
D-module, for which there does not exist a good K-cell at some point.

Lemma 7.3 Let C = (Z,U,p,V) be a good K-cell of (M, F) at P. Let C' = (Z',U’,¢', V') be a refinement of
C. Then, C' is also a good K-cell. Moreover, the induced morphisms in (78) are compatible with pre-K -Betti
structures.

Proof It follows from Proposition 6.7. |

Let g be a cell function for a good K-cell C. Let us observe that pre-K-Betti structures of =, (@T(V)),

Yy (p1(V)) and ¢y(Mp) are induced. We set Vyy" := Hafl(g)*V for x = ,1. Note that ¢;(Vys") have the
canonical pre-K-Betti structures. Since =, (ngV) and v, (apTV) are of the form Ker (goT (Vga!’b) — t (Va b’ )),
they are equipped with induced pre-K-Betti structures, denoted by P=,(¢.Fy) and Py, (p.Fy). We will use
the following obvious lemma implicitly.

Lemma 7.4 The natural isomorphisms Zq(¢+ (V) 2 01 (E4(V)) and 1y (01 V) = @14(V) are compatible with
the induced pre-K -Betti structures. |

Since ¢4(Mp) is the cohomology of the complex ¢;Vi — Eg(p:V) @ M — ¢;V, we obtain a pre-K-
Betti structure of ¢,(Mp), denoted by P, (F). The tuples (Eg(ngV)7 Eg(0:Fv)), (Vg(0: V), thg(puFv)) and
(¢pg(M),Pg4(F)) are also denoted by Zgp+(V, Fv), byt (V, Fy) and ¢g(M, F).

7.2 K-holonomic D-modules

7.2.1 Definition of K-Betti structure

Let X be a complex manifold, and P be a point of X. Let (M, F) be a pre-K-holonomic D-module on X. Let
us define the notion of K-Betti structure of M at P, inductively on the dimension of Supp M.

Definition 7.5 In the case dimp Supp M = 0, a K-Betti structure is defined to be a pre-K -Betti structure.
Let us consider the case dimp Supp M < n. We say that F is a K-Betti structure of M at P, if there exists
an n-dimensional good K-cell Cy = (Zo, o, Un, Vo) at P with the following property:

e dimp ((Supp./\/l N Xp) \ <p0(Z0)) < n for some neighbourhood Xp of P in X.
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e For any dominant refinement C < Cy and any cell function g for C, the induced pre-K-Betti structure
Ppy(F) is a K-Betti structure of ¢o(Mp) at P. Note that dimp ¢4(F) < n.

Such an n-cell Cy is called a bounding n-cell of M at P. |

If Cy is a bounding n-cell of M, its dominant refinement and enhancement are also bounding n-cells of M.

Definition 7.6 If F is a K-Betti structure of M at any point of X, it is called a K-Betti structure of M. A
holonomic D-module with a K -Betti structure is called a K-holonomic D-module. |

A morphism of K-holonomic D-modules (Mj,F;) — (Mo, Fs) is defined to be a morphism of pre-K-
holonomic D-modules.

Proposition 7.7 The category of K-holonomic D-modules is abelian.

Proof Let P be any point of X. We use an induction on the dimension of Suppp M. Let (fp,fp) :
(M, F1) — (M2, F2) be a morphism of K-holonomic D-modules. Let us show that Ker(fp) is a K-Betti
structure of Ker fp.

Let n > max{dim Suppp Ml} Let Cio = (Zi0,Ui0,%i0,Vio) (i = 1,2) be bounding n-cells for M; at P.
By considering refinement and enhancement, we may assume that (Z1,0,U1,0,%1,0) = (Z2,0, U2,0,92,0), which is
denoted by (Zy, Uy, o). We may also assume that the union of the irregular values of V; o are good at each point
of the pole. We have an induced morphism fz, : V1,0 — V29. We obtain a cell Co(Ker) = (ZO, Uy, @o, Ker on)
of Ker fp.

Let C(Ker) = (Z,U, ¢, Kz) be a dominant refinement of Cy(Ker). We have refinements C; = (Z,U, ¢, V;) of
Ci,0 with the induced morphism f : Vi — V2. We have Ker f; ~ K. We obtain the following commutative
diagram of pre- K-holonomic D-modules:

piVii —— Mip —— iV

| l !

piVor —— Maop —— piVs
Hence, the induced morphisms ¢, Kz — Ker(fp)p — ¢« Kz are compatible with the pre- K-Betti structures.
We have the following commutative diagram of pre- K-holonomic D-modules:

Pt (Vﬁ;]l?) — ¥4 (Vf’gb*)

| l
o)

a,b
WT(Vz,gI) — o1 (Vo

Hence, the induced morphisms =, (gom) — Hy (CPTVQ) and g (cpTVl) — g (QOT‘/Q) preserve the pre- K-Betti
structures. Therefore, ¢,(fp) preserves the pre-K-Betti structures, i.e., Poy(fp) @ Py (F1) — Poy(F2) is
induced. By the assumption of the induction, Ker Pg,(fp) is a K-Betti structure. It is easy to obtain that
Pp,Ker fp = Ker P (fp). Then, we can conclude that (Ker fp,Ker fp) is a K-holonomic D-module. The

claims for the cokernel and the image can be shown similarly. |

7.2.2 Dual
Lemma 7.8 For any K-holonomic D-module (M, F), its dual DM, F) := (DM, DF) is also K-holonomic.

Proof Let P be any point of Supp M, and let Cy be a bounding n-cell at P. Let C = (Z,U,,V) be any
refinement of Cy. Let Fy and Fy be the canonical pre-K-Betti structures of V and Vi. Let C¥ := (Z,U, o, VV).
We have the induced K-structure of VV. According to Proposition 5.5 and Theorem 5.6, DFyy and DFy, are
the canonical pre-K-Betti structures of VY and V;¥. Hence, we obtain that C¥ and DF are compatible. We
also obtain that ]D)DEgap*]:V is equal to the canonical pre-K-Betti structure of Z4¢,V". Moreover, the induced
K-structure of ¢,(DMp) is equal to DP¢,F under the isomorphism ¢,DM p ~ Dp,Mp. By the hypothesis of
the induction, it is K-Betti structure. Thus, we obtain that D(M, F) is K-holonomic. |
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7.2.3 Sub-quotient
Let (M1, F1) C (M, F) be a pre-K-holonomic D-submodule.

Lemma 7.9 If (M, F) is K-holonomic, (My,F1) is also K-holonomic. Similar claim holds for quotient.

Proof Let P be any point of X. We use an induction on the dimension of the support of M. Let n >
dimp Supp M. Let C = (Z,U, ¢, V) be a bounding n-cell of M at P. Let V; C V denote the subbundle induced
by Mj. Then, C; = (Z,U, , V1) is an n-cell of M; at P. Let us show that C; and F; are compatible. Since
the K-structure and the Stokes structure for V; are the restriction of those for V', they are compatible. Let F,
and Fi denote the canonical K-structures of ¢;V and ¢:Vi. Let Fi. and F11 denote the canonical K-structures
of ¢+V1 and ¢; V1. We have the following morphisms:

e+(V1) M e+(V) F F F.
[ [ [ [ [ |
o1 (Vi) My e:(V1) Fu F1 Fix

Because the morphism ¢4(V11) — M/M; is 0, the morphism Fyy — F/F; is also 0, i.e., F11 — F factors
through F;. Similarly, we obtain that 7; — F, factors through Fi,.

Let f be a cell function for C. We have P=Z;(F) D P=;(F;) and Py (F) D Py Fi. Hence, we obtain
Po(F) D Ppp(F1), which are pre-K-Betti structures of ¢ M and ¢y M;. By the assumption of the induction,
we obtain that P¢(F;) is a K-Betti structure of ¢y M;. |

7.2.4 Twist

Let (M, F) be a K-holonomic D-module on X. Let V be a flat bundle on X with a K-structure, i.e., we have a
K-local system Fy such that Fy, ® C ~ DR x (V). Then, we obtain a pre-K-Betti structure 7 ® Fy of M @ V.

Lemma 7.10 F ® Fy is a K-Betti structure of M ® V.

Proof Let P be any point of X. We use an induction on dimp Supp M. Let C = (Z,U,p,V) be a K-
cell of M at P. Then, C' = (Z, Up,V® <p*V) is a K-cell of M ®V at P. Let g be a cell function of
C. Then, we have natural isomorphism of pre-K-holonomic Dx-modules g (. (V @ ©*V)) =~ ¥4(0.(V)) @ V
and Zg (¢ (V @ ¢*V)) ~ E¢(¢.(V)) ® V. Hence, we obtain an isomorphism of pre-K-holonomic D-modules
$g(MRV) > ¢pg(M)®V. By using the hypothesis of the induction, we obtain that ¢,(M ®V) is K-holonomic.
Hence, we obtain that M ® V is K-holonomic at P. |

7.2.5 Complement
Let (M, F) be a K-holonomic D-module.

Lemma 7.11 Any good cell C = (Z,U,p, V') of M is compatible with F, and the morphisms p1Vy — M —
¢iV are compatible with the K-Betti structures.

Proof The first claim is easy to see. If we take an appropriate refinement C' = (Z',U’, ¢’, V') of C, the induced
morphisms M — ¢\ V" and @1V — @iV’ are compatible with K-Betti structures. Because o3V — @iV is
a monomorphism, we obtain that M — ¢;V is also compatible with K-Betti structures. We can show that
»V — M is also compatible with K-Betti structures with a similar argument. |

7.3 K (xD)-holonomic D(xD)-modules

We introduce some auxiliary notion of K (*D)-Betti structure on Dx (. p)-modules, where D is a hypersurface.
Although we do not need it eventually, it will be useful in the argument in Section 8.
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7.3.1 Cell and cell function for holonomic Dy, p)-modules

Let X be a complex manifold or smooth complex algebraic variety, and let D be a hypersurface of X. Let M be
a holonomic Dx (, py-module, i.e., M is a holonomic Dx-module such that M(xD) = M. Let P € DN Supp M.
A cell of a holonomic Dx (,p)-module M is defined to be a cell of a holonomic Dx-module M. The notions of
refinement and enhancement of a cell of a holonomic Dx (., py-module are defined as those for cells of a holonomic
Dx-modules. However, we will be interested in the morphisms ¢+ (V))(*D) — Mp — ¢4 V.

We make a modification for the notion of cell function. Let C = (Z,U, ¢, V) be a cell of a holonomic Dx (. p)-
module M. A cell function g of C is a meromorphic function on (X, D) such that U = Supp M \ (¢~*(0) U D).

7.3.2 K(xD)-cell

Let F be a pre-K (xD)-Betti structure of M. Let C = (Z,U, p,V) be a good n-cell of M at P. We say that
F and C are compatible if (i) the induced K-structure of V|y; is compatible with the Stokes filtrations, (ii) the
induced morphisms ¢;(Vi)(*D) — Mp — ¢;(V) are compatible with the pre-K-Betti structures. Such a
cell C is called a K (xD)-cell of (M, F).

Let g be a cell function for a good K (xD)-cell C. We set Vg‘i’b(*D) =(Ve® j(;’fl(g))(*¢71D) for x = «, 1.

Note that ¢4 (Vg‘i’b(*D)) have the canonical pre-K-Betti structures. Since Z, (cpTV, *D) and 1, (ngV, *D) are
of the form Ker(cpT (Vga!’b(*D)) — i (Vg‘ﬁ:’b/(*D)))7 they are equipped with the induced pre-K (xD)-Betti

structures, denoted by PZ,(p.Fv,*D) and Py (p.Fy,*D). The tuples (Z4(p1V,*D), P24 (¢ Fv,*D)) and
(g(@1V,xD), Py (. Fv,xD)) are also denoted by Egp(V, Fy,xD) and hgp;(V, Fy,*D). We will use the
following obvious lemma implicitly.

Lemma 7.12 The natural isomorphisms
Zg(p1V,#D) = p1Z4(Voxp ™' D), y(01V.xD) = g1ty (V, ¢~ ' D)
are compatible with the induced pre-K -Betti structures. |
Since ¢4(Mp,*D) is the cohomology of the complex of pre-K (+D)-holonomic Dx (. py-modules
1 (V)(xD) — Zy(1V,+D) & Mp — 1(V)(+D),
we obtain a pre-K (xD)-Betti structure of ¢,(Mp,*D), denoted by Pp,(F,«D). The pre-K (xD)-holonomic
Dy («py-module (¢g(Mp,xD), Ppy(F, D)) is also denoted by ¢g(Mp, F,+D).
7.3.3 Definition of K(xD)-Betti structure

Let P be a point of D. Let (M,F) be a pre-K (*D)-holonomic Dx,py-module. Let us define the notion of
K (xD)-Betti structure of M at P, inductively on the dimension of Supp M. Note that we have M = 0 around
P in the case dimp Supp M = 0.

Definition 7.13 Let us consider the case dimp Supp M < n. We say that F is a K(xD)-Betti structure of M
at P, if there exists an n-dimensional good K (xD)-cell Co = (Zy, o, Uy, Vo) at P with the following property:

° dimp((SuppM NXp)\ Lpo(Zo)) < n for some neighbourhood Xp of P in X.

e For any dominant refinement C < Co and any cell function g for C as a Dx.py-module, the induced
pre-K (xD)-Betti structure Po,(F,*D) is a K(xD)-Betti structure at P.

Such an n-cell Cy is called a bounding n-cell of M at P. |
If Cp is a bounding n-cell of M, its dominant refinement and enhancement are also bounding n-cells of M.

Definition 7.14 If F is K-Betti structure of M at any point of X — D, and K (xD)-Betti structure of M at
any point of D, it is called a K(xD)-Betti structure of M. A holonomic Dx . py-module with a K (xD)-Betti
structure is called a K (xD)-holonomic Dx . py-module. 1
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A morphism of K (+D)-holonomic Dx,pj-modules (M1, F1) — (Mpz, F2) is defined to be a morphism of
pre-K (xD)-holonomic Dx (. py-modules. Let Hol(X (+D), K) denote the category of K (*D)-holonomic Dx (.p)-
modules. The following lemma is similar to Proposition 7.7.

Lemma 7.15 The category Hol(X(*D),K) 1s abelian. 1

The following lemma is similar to Lemma 7.9.

Lemma 7.16 Let (My,F1) C (M, F) be pre-K(xD)-holonomic Dx . py-submodules. If (M,F) is K(xD)-
holonomic, then (M1, Fy) is also K(xD)-holonomic. Similar claim holds for quotient. |

7.3.4 Uniqueness

We have the following uniqueness.

Proposition 7.17 Let M be a holonomic Dx .p)-module. Let F; (i = 1,2) be K (xD)-Betti structures of M.
If]:1|X—D = f2|X_D, then we have F1 = Fs.

Proof The claim is local. Let P € D. We use an induction on dimp Supp M. In the case dimp Supp M = 0,
the claim is clear. Let dimp Supp M < n. Let C be any bounding cell at P, and let g be any cell function of C.
Let Ppy(F;, *D) be the induced pre-K (*D)-Betti structures of ¢,(M, *D). By the assumption of the induction,
we have Ppy(F1,*D) = P, (Fo,*D). Because F; can be reconstructed from ¢, (F;,*D) and the canonical
pre-K (xD)-Betti structures of ¢, (¢.V, *D) and Z4(p.V,*D), we obtain F; = Fo. |

7.3.5 Independence of compactification

Let F': X’ — X be a proper birational morphism of complex manifolds such that X’ — D’ ~ X — D, where
D' = F~YD).

Proposition 7.18 Let M’ be a holonomic Dx:(.py-module, and we set M := FyM’.
o Let F' be a K(xD')-Betti structure of M'. Then, F.F' is a K(xD)-Betti structure of M.

o Let F be a K(xD)-Betti structure of M. Then, M'(xD’) is equipped with a K-Betti structure F' such
that .7-""X,7D, = F|x—p under the isomorphism MIX_D, ~ Mx_p. It is functorial.

Proof We have only to check the claims locally around D. Let P be any point of D. We use an induction on
dimp Supp M. Let C = (Z,U, ¢, V) be a good cell of M at P. By taking a refinement, we may assume that ¢
factors through F, ie., p = F o ¢, and that C' = (Z,U,¢’,V) is a good cell of M’. Let g be a cell function
for C as Dx(,pjy-module. Note that g' = go F is a cell function for C’. We have a description of M’ as the
cohomology of the following complex:

z/;g,(gpqLV, x*D") — Eg ((pﬂrV, *D') @ ¢ (M, xD") — z/Jg,(gpﬂrV, *D') (79)
By the push-forward Fj, it induces a description of M as the cohomology of the following complex:
Ug(ptV,xD) — Eg(p4V, %D) & ¢g(M, +D) — tg(p:V, xD) (80)

Let us show the first claim. By the assumption of the induction, the induced pre-K (xD)-Betti structure of
¢g(M,*D) is a K (xD)-Betti structure. Hence, F is also a K (*D)-Betti structure. Let us show the second claim.
By the hypothesis of the induction, the K (xD)-Betti structure of ¢, (¢+(V),*D) and ¢4(M, D) induce the
K (xD)-Betti structures of 1,/ ((p; (V), *D’) and ¢4 (M’, *D’), which are compatible with the natural morphisms.
We also have the canonical K-Betti structures of ¢4/ (@ﬂr(V), *D’) and 2y (gp’TV, *D’). By Proposition 7.17, the
induced K (+D)-Betti structures on 14/ (<pﬁr (V), «D’) are the same. Hence, (79) is a complex of K (xD)-holonomic
D(xD)-modules. Hence, we have an induced K (xD)-Betti structure of M’. The functoriality is clear from the
above construction. |

Corollary 7.19 The functor F; gives the equivalence of the categories Hol(X(*D)7 K) and Hol(X’(*D’), K)
|
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8 Some functoriality

8.1 Statements

In the following, D-modules are assumed to be algebraic unless otherwise indicated. We give several statements.

Theorem 8.1 Let F' : X — Y be a projective morphism of smooth algebraic varieties. Let (M,F) be a
K-holonomic Dx-module. Then, Ff(M,f) = (FTZM,F;]:) are K-holonomic for any i.

Here, FTZ']-" is the i-th cohomology of RF,F with respect to the middle perversity.

Theorem 8.2 Let X be a smooth complex algebraic variety with a normal crossing hypersurface D. Let M be
a good holonomic D-module on (X, D) with a good K-structure. The associated pre-K-Betti structure F is a
K -Betti structure of M.

Theorem 8.3 Let X be a smooth complex algebraic variety with a hypersurface D, and let (M, F) be a K-
holonomic D-module on X.

o There exists a unique K (xD)-Betti structure F(xD) of M(xD) such that the natural morphism M —
M(xD) is compatible with the pre-K -Betti structures.

o For a morphism of K-holonomic D-modules (M, F1) — (Ma, Fa), the morphism M (D) — Mo (xD)
is compatible with the induced pre-K -Betti structures.

We will use an induction on the dimension of the support of M for the proof. Let SI(<n), GOOD(<n)
and LOC(<n) denote the statements of Theorems 8.1, 8.2 and 8.3 in the case dim Supp M < n, respectively.
Our induction will proceed as follows:

e SI(<n)+GOOD(< n) = GOOD(< n) (Subsection 8.2.3).
e SI(<n)+ GOOD(< n)+ LOC(< n) = LOC(< n) (Subsection 8.3.3).
e SI(<n)+ GOOD(< n)+ LOC(< n) = SI(< n) (Subsection 8.4).

Remark 8.4 In the proof, we will observe the equivalence of K(xD)-Betti structure and K-Betti structure.
(See Lemma 8.8.) 1

Remark 8.5 The arguments in Subsections 8.2 and 8.3 can work even in the analytic situation. Although most
of Subsection 8.4 can also work even in the analytic situation, we need the existence of resolution of turning
points for any meromorphic flat bundle. |

8.2 Step 1
8.2.1 K-Cell

Let ¢ : Z — X be a projective morphism of smooth complex algebraic varieties such that dim Z = n. Let D
be a normal crossing hypersurface of Z such that ¢|z_p is immersive. Let (V, V) be a good meromorphic flat
bundle on (Z, D) with K-structure compatible with the Stokes filtrations. Let F, be the associated K-structure
of DR(V). Let Fi be the associated K-structure of DR(V).

Proposition 8.6 Assume that SI(<n) and GOOD(< n). Then, ¢.Fy is a K-Betti structure of ¢;V, and
w1Fv is a K-Betti structure of piW.

Proof Note that Cy = (Z,U, ¢, V) is an n-cell of ¢4V, where U = Z — D. Let us show that it is a bounding n-
cell. Let C' = (Z',U’,¢', V') be a dominant refinement. Let g be a cell function for C’. We have a factorization
¢ = poy, where p; : Z/ — Z. We put g’ := go . We have V' = ¢;'V ® Oz (xg'). We have the
canonical pre-K-Betti structures Fy. and Fyn of V' and VY, respectively. According to Theorem 5.12, the
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morphisms ¢+ V) — ¢4V — 11V’ are compatible with pre- K-Betti structures. We have the induced pre-K-
Betti structures =g (0. Fv ), Py (0 Fv) and Loy (puFv) of Z4(0:V), 1bg(0:V) and ¢,4(p4V), respectively. We
also obtain pre-K-Betti structures P=, (Fy+), Py (Fvr) and Py (Fyr) of 2/ (V') g/ (V') and ¢y (V') on Z'.
Note that (¢g (V'), oy (Fv)) is good on (Z',D’). (See Subsection 6.2.3). Hence, it should be K-holonomic
according to the assumption GOOD(< n). Then, ¢4 (¢g/(V’), Dy (]—"V/)) is K-holonomic by the assumption
SI(< n). Because ((bg(goTV), Dqﬁg((p*]:)) C & (dgr(V'), Pog (Fyr)), we obtain that Poy(¢.F) is a K-Betti

structure of ¢4(p+V) by Lemma 7.9. Another claim can be shown similarly, or we can deduce it as dual. |

Corollary 8.7 Assume that SI(<n) and GOOD(<n). Let f be a cell function of C = (Z,U,p,V). Then,
Vi(psV) and Z(ps V') with the canonical pre-K -Betti structures are K-holonomic.

Proof Applying the previous results to ¢+ (H;’*bV) (* =!I, %), we obtain that they are K-holonomic. Then, we
obtain the corollary. |

8.2.2 Gluing

According to Corollary 8.7, we obtain the gluing construction of K-holonomic D-module. Let X be a complex
manifold, C = (Z,U,p,V) be a K-cell as in Subsection 8.2.1. Let f be a cell function for C on X. Let Q
be a K-holonomic D-module whose support is contained in f~!(0). Assume that we are given morphisms of
K-holonomic D-modules

Vi(piV) — Q — Pr(piV),

such that the composite is equal to the nilpotent map N on ¢;(¢+V'). Then, we obtain a K-holonomic D-module
as the cohomology of the following complex:

Yi(piV) — Zf(p1V) @ Q — ¥y (p4V)

8.2.3 Good holonomic D-module with good K-structure

Let us show GOOD(<n) by assuming SI(<n) and GOOD(<n). Let X be a smooth complex algebraic variety
with a simply normal crossing hypersurface D. Let M be a good holonomic D-module on (Z, D) with a good
K-structure such that dim Supp M = n. Let F be the associated pre- K-Betti structure. We would like to show
that F is a K-Betti structure. Let D = Ule D; be the irreducible decomposition. We may assume that X is
affine and that each D; is given as g; 1(0) for an algebraic function. Let p(M) € Z> ¢ X Zsq denote the pair of
dim Supp M and the irreducible components of Supp M with the maximal dimension. We use the lexicographic
order on Z> o X Zs¢. For a good holonomic D-module M on (X, D), there exists J C £ with n = dim Z —|J| such
that V .= M (*g) # 0 comes from a meromorphic flat bundle on D, where g := ngj g;. We have a description
of M as the cohomology of the complex of pre-K-holonomic D-modules ¢4 (V) — Z4(V) ® ¢pg(M) — g (V).
By Corollary 8.7, ¥4(V) and Z4(V) are K-holonomic. Because p(¢4(M)) < p(M), we obtain that ¢,(M) is
K-holonomic. Hence, we obtain that M is also K-holonomic, and we obtain GOOD(<n).

8.3 Step 2
8.3.1 Equivalence of K(xD)-Betti structure and K-Betti structure

Let X be a smooth complex algebraic variety with a hypersurface D. Let (M,F) be a pre-K-holonomic
Dx (+py-module with dim Supp M < n.

Lemma 8.8
o Assume SI(<n) and GOOD(<n). If F is a K(xD)-Betti structure, then it is a K-Betti structure.
o Assume LOC(< n). If F is a K-Betti structure, then it is a K(xD)-Betti structure.
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Proof Let us show the first claim. We use an induction on the dimension of the support. Let P be any
point of D N Supp M. We take a bounding cell C = (Z,U, ¢, V) of (M, F) at P, and a cell function g of C as
Dx (+p)-module. We have a description of M as the cohomology of the following complex of K (xD)-holonomic
Dx («p)-modules:

g (91(V1), #D) — (@i V,#D) @ g (M, +D) — 1y (4(V), +D)

By the hypothesis of the induction, ¢4(M,*D) is K-holonomic. According to Corollary 8.7, 1, (ng(V;), *D)
and Z4(M, *D) are K-holonomic. Hence, we obtain that M is also K-holonomic.

Let us show the second claim. By the assumption LOC(< n), we obtain a K (xD)-holonomic Dx (,p)-module
(M(xD), F(xD)) with a morphism (M,F) — (M(xD),F(xD)) of pre-K-holonomic D-modules. Because
M = M(xD), we obtain F = F(xD), and hence F is a K (+D)-Betti structure. 1

We reformulate the uniqueness (Proposition 7.17) as follows.

Corollary 8.9 Let x be * or!. Assume SI(< n), GOOD(< n) and LOC(< n). Let M be a holonomic D-
module on X such that M(xD) = M. Let F; (i = 1,2) be K-Betti structures on M. If Fiyx_p = Fax—-b,
then F1 = Fo.

Proof The claim for x = x follows from Lemma 8.8 and Proposition 7.17. We obtain the claim for x =! by
using the dual with Lemma 7.8. |

Corollary 8.10 Let M be a holonomic Dx-module. Assume that one of the following holds: (i) M(!D) — M
is surjective, (ii) M — M(xD) is injective. Let F; (i = 1,2) be K-Betti structures on M. If Fyx_p =
]:2|X7D7 then .7:1 :.7:2. I

We reformulate the independence of compactification (Proposition 7.18). Let F': X' — X be a projective
birational morphism of complex manifolds. Let D be a hypersurface, and we put D’ := F~!(D). Assume
X' —-D'~X-D.

Proposition 8.11 Assume SI(<n), GOOD(< n) and LOC(< n). Let M’ be a holonomic Dx(, pry-module.
We set M := FtM'.

o Let F' be a K-Betti structure of M'. Then, F.F' is a K-Betti structure of M.

o Let F be a K-Betti structure of M. Then, M’ is equipped with a K -Betti structure F' such that ,7-'|’X,7D, =
F x—p under the isomorphism MTX,_D, ~ M|x_p. It is functorial. |

8.3.2 K(xD)-cell

Let ¢ : Z — X be a morphism of smooth complex algebraic varieties such that dimZ = n. Let Dy be a
normal crossing hypersurface of Z such that ¢ z_p, is immersive, and that Dy := ¢~ (D) C Dz. Let V be a
good meromorphic flat bundle on (Z, D) with K-structure compatible with the Stokes filtrations. Let Fy be
the associated pre-K-Betti structure of V. Let Fy (D) be the associated pre-K-Betti structure of Vi(xDy).

Proposition 8.12 Assume SI(<n), GOOD(<n) and LOC(<n). Then, p; (Vi(xD1), Fvi(xD1)) and @1 (V, Fv)

are K (xD)-holonomic.

Proof Let us show that Co = (Z,U,¢,V) is a bounding n-cell. Let C' = (Z',U’,¢',V’) be a dominant
refinement. Let g be a cell function for C’ as D(xD)-modules. We have a factorization ¢’ = ¢ o 1, where 1 :
Z' — Z. We put ¢’ := goyp and D} := p~'D. We have V' = o] 'V ® Oz (xg'). According to Proposition 6.7,
the morphisms ¢} (V)')(*D) — ¢t(V))(*D) — ¢tV — ¢V’ are compatible with the canonical pre-K (+xD)-
Betti structures. We obtain the induced pre-K (xD)-Betti structures of ¢, (5(V), D) and ¢g(p:(Vi),*D).
We obtain pre-K-holonomic D-modules ngr( 7 *D’l) and ¢4 (V’, *D’l) on Z'. Because they are good on
(Z',D"), they are K-holonomic by GOOD(<n). We obtain that ¢, ((p}V’,*D) and ¢g (gp’T (VI’)7*D) are K-
holonomic by the assumption SI(< n). By Lemma 8.8 we obtain that (bg(goirV’, D) and ¢g(goth!’, xD) are
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K (*D)-holonomic. Because ¢4(¢1V,*D) C ¢, (goﬁ[V’, *D) is compatible with the pre-K-Betti structures, we
obtain that ¢4(p+V,*D) is also a K (*D)-holonomic by Lemma 7.16. Since the surjection ¢, ((pﬁrV!’, *D) —
bg ((pTVg, *D) is compatible with the pre-K-Betti structures, ¢, (<pTV!, *D) is also K (xD)-holonomic by Lemma
7.16. 1

Corollary 8.13 Assume SI(<n), GOOD(<n) and LOC(<n). Let f be a cell function of an n-dimensional
cell C = (Z,U,,V) as Dx(.p)y-module. Then, 1;(iV,*D) and Zy(p1V, D) with the canonical pre-K -Betti
structures are K (xD)-holonomic.

Proof Applying the previous results to H}L’*b (goTV, *D) for x = #,!, we obtain that they are K (xD)-holonomic.
Then, we obtain the corollary. |

8.3.3 Localization

Let us show LOC(< n) by assuming SI(< n), GOOD(< n) and LOC(< n). By Proposition 7.17, the problem
is local. Let (M, F) be a K-holonomic Dx-module with dim Supp M < n.

Let P be any point of D. Let (Z,U, ¢, V) be a bounding cell of M at P. By taking a refinement, we may
assume U N D = (). Let g be a cell function of M as D-modules. We put g; := ¢~ 1(g) and Dy := ¢~ }(D). We
have the expression of M as the cohomology of the following complex of the K-holonomic D-modules:

Vet (V1) — Zgpi(V) @ dg(M) — hgp3(V) (81)

By the assumption of the induction, 1, (ngVI, *D) and ¢4(M, D) are equipped with the induced K (+D)-Betti
structures. We also have the following commutative diagram of pre-K-holonomic D-modules:

be(V)  —— dyM) —— (V)

l l l

QZJQ(SDTVH*D) — ¢g(M,xD) —— T/JQ(WVI’*D)

We have the canonical pre-K-Betti structures of 1, (V, *Dl) and 2y, (V7 *Dl). According to Corollary
8.13, their push-forward @11, (V7 *Dl) and p;Zg, (V7 *Dl) are K (xD)-holonomic. We also have the following
commutative diagram of pre- K-holonomic D-modules:

¢T¢91 (V) - SOTEEM (V) - QOngl (V)

! ! !

O1tg, (V, *Dl) — 015, (V, *Dl) — iy, (V, *Dl)

By Proposition 7.17, the identification g, (V, *Dl) ~ 1)y (SDTVv *D) is compatible with the pre- K-Betti struc-
tures. Hence, we obtain a K (xD)-Betti structure of M(*D) with a morphism of pre-K-holonomic D-modules
M — M(xD) whose restriction to X — D is an isomorphism. The functoriality is clear from the above
construction. |

8.3.4 Twist

Let (M, F) be a K(xD)-holonomic D(*D)-module with dim Supp M < n. Let V be a meromorphic flat bundle
on (X, D) with a K-Betti structure F,. According to Lemma 7.10, Fmix—p @ Fy|x—p is a K-Betti structure
of (M & V)|X7D-

Lemma 8.14 Assume SI(< n), GOOD(< n) and LOC(< n). There exists a K(xD)-Betti structure Fgy
of M ®YV such that

Fmevix—p =~ Fmx—p ®Fyx—bp-
It is functorial with respect to M and V.
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Proof Let P € D. We have only to consider the issue locally around P. We use an induction on dimp Supp M.
Let C = (Z,U, ¢, V) be a dominating cell of M at P. By considering an appropriate refinement, we may assume
that V @ ¢*V is good on (Z, Dz), where Dz = Z — U. Let g be a cell function for C as Dx(,pj-module. By
the hypothesis of the induction, we have the K (*D)-Betti structure of 14(¢;V,*D) @ V and ¢4(p+V,*D) @ V.
According to Proposition 8.12, we have the K (xD)-Betti structures of ¢4(¢;V,*D) ® V and Zg4(p3V,*D) @ V
induced by the isomorphisms ¢4 (M, *D) @V ~ (M @V, *D) and E4(M,*D) @V ~ Z,(M @V, D). By the
uniqueness, the induced K (xD)-Betti structures on 14(M,*D) ® V are equal. Because M @ V is expressed as
the cohomology of the complex

Yg(M,*D) @V — Eg(M,*D) @V & ¢g(M,*D) @V — 1y(M,*D) @ V,

we obtain a K (xD)-Betti structure on M ® V with the desired property. |

8.4 Step 3

Let us show that SI(<n), GOOD(<n) and LOC(<n) imply SI(<n). The following argument is inspired by
[2].

8.4.1 Special case I

Let G : X — Y be a projective morphism of complex algebraic varieties. Let D be a normal crossing
hypersurface of X. Let V' be a meromorphic flat bundle on (X, D) with a K-Betti structure. Let D = Dy U Dy
be a decomposition of D. We have the holonomic D-module M := V(xD;!Dy) with the induced K-Betti
structure, denoted by F.

Proposition 8.15 If G:L/\/l =0 fori# 0, RG.F is a K-Betti structure of G?M.

Proof Since the claim is local, we may assume that Y is affine. Let us consider the case Supp G?M C G(X).

We take a function f such that Supp G?M C f710) and G(X) ¢ f~(0). We set fx := G~1(f). We have a
description of the K-holonomic D-module ¢¢, M as the cohomology of the following:

M(fx) — Ep M(xfx) @M — M(xfx)

By the assumption, we obtain that Gt M(!fx) = GiM(xfx) = G;Z5  M(*fx) = 0. Hence, we obtain that
GH(M, F) = Gi¢y (M, F). By the assumption SI(< n), we obtain that RG.F is a K-Betti structure of G M.

Let us consider the case G(X) = Supp M. Let P € Supp G?M. As remarked in Subsection 7.1.1, there
exists a good cell C = (Z,U, ¢, E) of G?M at P, according to [32]. Let g be a cell function of C. We set

gz = ¢ g and gx := G~ 'g. We have the K-Betti structures F(xgx) of M(*gx ), obtained as the localization.
(See Subsection 8.3.3.) By considering the dual, we obtain the K-Betti structure F(lgx) of M(lgx).

Lemma 8.16
o The K-structure of E is compatible with the Stokes structure.

o For* = x,!, the natural isomorphisms @3 E, ~ G+(M)(*g) are compatible with the pre-K -Betti structures.

Proof Let us consider the case x = *. The case x =! can be argued similarly. We take a projective birational
morphism # : X; — X such that (i) X; is smooth, (i) X; — (gx 0 £) 71 (0) = X — g5 (0), (iii) (gx o &)~*(0) is
normal crossing, (iv) the induced morphism X’ — Y factors into X’ Sz, 7 2.y,

We set D} := x~!(Dy Ug~'(0)). Let D} be the complement of D} in D' := x~(D U g~'(0)). We set
V= k7V ® O(*D’). We set M’ := V'(xD}{!D}). Note that kM’ ~ M(xgx) and GztM' = E.

According to Proposition 8.11, we have the induced K-Betti structure ' of M’ such that Rx.F' = F(xgx).
By Proposition 6.15, we obtain that the K-structure of E is compatible with the Stokes structures, and that
RG 7. F' is the canonical K-Betti structure of Gz+M’. Hence, we obtain that RG,F(xgx) is the canonical
K-Betti structure of G4(M)(*g) = ¢4+E. Thus, we obtain Lemma 8.16. 1
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Lemma 8.17 The natural isomorphisms G+Z4, (M(xgx)) =~ Z¢(¢+E) and Githg, (M(xgx)) = ¢y(p+E) are
compatible with the induced pre-K -Betti structures.

Proof By Lemma 8.16, we obtain that the natural isomorphisms G; (M (xgx) ®Jg£) (*x9x) 2 p: E® Jg;f(*gx)
are compatible with the induced pre-K-Betti structures. Hence, we obtain Lemma 8.17. |

By Lemma 8.16, the morphisms ¢;Ey — GyM — @+E are compatible with the induced pre-K-Betti
structures. Hence, we have an induced pre-K-Betti structure P, (RG.F) of ng(G?M). We also have the

induced K-Betti structure P, (F) of ¢4, M. By using Lemma 8.17, we obtain Pp,(RG.F) = RG. D¢, (F)
under the isomorphism ¢,(GIM) =~ G¢4, M. By the assumption ST(< dim X), we obtain that P, (RG.F)
is a K-Betti structure of ¢4(G;M). Thus, we obtain Proposition 8.15. |

8.4.2 Special case II

Let G : X — Y be a projective morphism of complex algebraic varieties. Let ¢ : Z — X be a projective
morphism. Let Dz be a normal crossing hypersurface of Z. Let V be a good meromorphic flat bundle on (Z, Dy)
with a K-Betti structure. Assume that ¢|z_p, is an immersion. Let Dz = Dz 1 U Dz 2 be a decomposition.
We have the holonomic D-module V(*Dz,l!ng) on Z, with the canonical K-Betti structure Fy (*Dz 11Dz ).
We set M := @;V(xDz1!Dz2) on X, with the canonical K-Betti structure F := o1 Fy (*Dz1!Dyz o).

Lemma 8.18 IfG%LM =0 for any i # 0, then the induced pre-K -Betti structure ofG(J?M is a K -Betti structure.
Proof It follows from Proposition 8.15. |

8.4.3 Special case II1

Let € be a locally free sheaf on a smooth complex algebraic variety Y. We put X := P(€). Let H; (i = 1,2)
be hyperplane subbundles. Let N be a K-holonomic D-module on X such that A (xH;) = N. By shrinking Y,
we take a meromorphic function g on X such that (i) g~ (c0) C Hi, (ii) N (*g) is a cell. Assume the following:

e H, is non-characteristic to N, ¢, (N,*Hy), Z4(N,xH;) and ¢4 (N, xHy).
Lemma 8.19 The induced pre-K-Betti structure of G?N(!Hg) is a K-Betti structure.

Proof We have the K-holonomic D-modules

N(xg) @ 3% (g« Hi'Hy), (N(xg) ® 32 ) (1Hs).

Note that G?[ ((J\/(*g) ® j;,b(!g *x Hy11Hy), )) =0 and Gﬁt ((N(*g) ® jg':b') (!HQ)) = 0 unless ¢ = 0. According to
Lemma 8.18, the induced pre-K-Betti structures of

el ((N(*g) ©3%) (g * H1!H2)), el ((N(*g) 237" (!H2))
are K-Betti structures. Hence, we obtain that the induced pre-K-Betti structure of
Gy (24N (eg), +HY) (Ha) ), G (4N (sg), < H) (1))
are K-Betti structures. Because we have a description of G?./\/' (!Hs) as the cohomology of the following complex
Gty (N (xg), *H1) (1Ha) — G{E (N (xg), +H1) (Ha) ® G6g(N, <Hy) (1Hz) — Gty (N (xg), +H1) ({H2),

we obtain Lemma 8.19. |
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8.4.4 Proof of Theorem 8.1

We have only to consider the case X = P(€) for some locally free sheaf £ on Y. We use an induction on
the dimension of the support of M. We take a resolution Tot(Q.y.) of M as in Subsection 2.3.4. It is
naturally equipped with the K-Betti structure Tot (}'.%). Then, FJF(M, F) is described as the i-th cohomology
of Tot (FTO Qe ]—"3,)) . Hence, we have only to show that FY (Q, +, F%,) are K-holonomic. By the construction,

we have dim Supp Q; ; < dim Supp M for (4, j) # (0,0), to which we can apply the hypothesis of the induction.
Hence, we have only to show that FTO(QO70,.7-"OQ70) is K-holonomic, which follows from Lemma 8.19. Thus, the

proof of Theorem 8.1 is finished. |

9 Derived category of algebraic K-holonomic D-modules

We study the standard functors on the derived category of algebraic K-holonomic D-modules. We have only
to follow very closely the argument due to Beilinson [2], [3] and Saito [38]. This section is included for a rather
expository purpose.

9.1 Standard exact functors

Let X be a smooth complex quasi-projective variety. We take a smooth projective completion X C X such that
D = X — X is a normal crossing hypersurface. We set Hol(X, K) := HOI(Y(*D), K ), which is independent of
the choice of a completion X (Proposition 8.11). Let D?_ (X, K) be the derived category of Hol(X, K). We will
implicitly use the following obvious lemma. (Later, we will prove the stronger version in Theorem 9.14.)

Lemma 9.1 The forgetful functors Hol(X, K) — Hol(X) is faithful. |

Dual Let (M,F) € Hol(X(xD),K). We put DxM := Dx(M)(xD). It is naturally equipped with the
induced K-Betti structure D F(*D). Thus, we obtain Dx (M, F) := (Dg(M)(xD), DF(xD)).

Lemma 9.2 Dx (M, F) is well defined in Hol(X, K).

Proof Let X be another smooth projective compactification of X. Put D’ := X' — X. We assume to have a
projective morphism ¢ : X' — X such that ¢|x = idx. Let (M’, F') be a K-holonomic 'Dy/(*D/)-mOdule such
that ¢ M’ = M and F|y = Fjx. We have (IDT}"’(*D’))‘X = (DY]:(*D))M
D M'(+D')|x ~ Dx M(xD)|x. It implies the claim of the lemma. 1

under the natural isomorphism

Corollary 9.3 There exists a functor Dx on Hol(X, K) which is compatible with the standard duality functors
on Hol(X) and the category of K -perverse sheaves. We also have a functor Dx on DY (X, K), compatible with
the standard duality functors on Db (X) and D2(Kx). They are unique up to natural equivalence.

We use the symbol ¥Dy, if we would like to emphasize that it is a functor for K-holonomic D-modules.
Lemma 9.4 For M,N € Hol(X, K), we have a natural isomorphism:
EXtiHol(X,K)(MaN) ~ EXtﬁol(X,K) (*Dx N, EDx M)

Proof It follows from the comparison of Yoneda extensions. |

Localization Let H be a hypersurface of X. As is shown in Theorem 8.3 and Proposition 8.11, we have the
localization:
#H : Hol(X, K) — Hol(X,K), (M, F) s (M(+H), F(xH))

It is an exact functor. By considering the dual, we obtain an exact functor:
|H : Hol(X, K) — Hol(X,K), (M,F)+— (M(IH),F('H))

They induce exact functors xH and !H on D} (X, K).
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Lemma 9.5 For M, N € Hol(X, K), we have the following natural isomorphisms:
Extio x gy (M, N (D)) 2 Extiyo x gy (M(xD), N (xD))
Extigonx i) (M(ID), N) ~ Extigox ) (M(ID), N(!D))
Proof It follows from comparisons of Yoneda extensions. |

Nearby cycle, vanishing cycle and maximal functors Let g be an algebraic function on X. By Lemma
8.14, we have the exact functor H;’*b (* = #,!) on Hol(X, K) given by Hg;b(/\/l,f) = (M, F)® Jg’b) (xg) and
a,b € Z. Hence, we obtain the exact functors =g, ¥, and ¢, on Hol(X, K). They induce the corresponding
exact functors on Dflol(X , ). We use the symbols KEg, Kz/Jg and K¢g, when we would like to emphasize that
they are functors for K-holonomic D-modules.

9.2 Push-forward and pull-back
9.2.1 Statement

Let f: X — Y be an algebraic morphism of quasi-projective varieties. We take a factorization X C X Ly
such that (i) f’ is projective, (ii) H = X — X is normal crossing. We have a natural equivalence between
Hol(X (xH), K) and Hol(X, K). Let (M, F) € Hol(X (+H), K) correspond to (M, F) € Hol(X, K). According
to Theorem 8.1, we have

Kf{M,F) == (fiM, fiF) € Hol(Y, K), "fi(M,F):= (fiM(IH), f{F(\H)) € Hol(Y, K)

They are independent of the choice of X up to natural isomorphisms. Thus, we obtain the cohomological
functors we have the cohomological functor Xf¢ Kfi : Hol(X, K) — Hol(Y, K) for i € Z.

Proposition 9.6 For x =!, x, there exists a functor of triangulated categories
K b b
f* : Dhol(X>K) - Dhol(YaK)

such that (i) it is compatible with the standard functor f, : D} (X) — D! (Y), (ii) the induced functor
H(Xf,) : Hol(X, K) — Hol(Y, K) is isomorphic to Kfi. It is characterized by the property (i) and (i) up to
natural equivalence.

As in [38], the pull back is defined to be the adjoint of the push-forward.

Proposition 9.7 Xf, has the right adjoint Kf', and Xf, has the left adjoint Kf*. Thus, we obtain the following
functors:
Kf*:Dﬁol<Y>K)—>Dﬁol(X7K) (* :!7*>

They are compatible with the corresponding functors of holonomic D-modules with respect to the forgetful functor.

Let us consider the case that f is a closed immersion, via which X is regarded as a submanifold of Y. Let
Dy x (Y, K) be the full subcategory of D} (Y, K) which consists of the objects M® such that the supports of

the cohomology @, H'M® are contained in X.

Proposition 9.8 The natural functor Xf, : D? (X, K) — Df’lol’X(Y, K) is an equivalence.
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9.2.2 Preliminary

Let X be a smooth complex projective variety with a hypersurface D. Let D? | (X (xD), K ) denote the derived
category of Hol(X (xD), K). Similarly, let D% (X (*D)) denote the derived category of Hol(X (xD)).

Let f : X — Y be a morphism of smooth projective varieties. Let Dx and Dy be hypersurfaces of X and
Y respectively, such that Dx O f~!(Dy). We have the functor *f; : Hol(X (xDx), K) — Hol(Y (+Dy), K),
naturally given by le We have the decomposition Dx = Dx1 U Dx2 such that Dxs = f_l(Dy). We have the
functor Xf{ : Hol(X («*Dx), K) — Hol(Y (xDy), K) given by

KHMF) = (fiMDxs  Dxa), SiF(IDxs = Dxca)).

Lemma 9.9 For x = x,!, there exists a functor Xf, : D} (X (xDx),K) — D} (Y (xDy), K) such that (i)
it is compatible with the standard functor f. : Db (X(*Dx)) — D}, (Y (xDy)), (ii) the induced functor
HI(Xf,) - Hol(X(*DX),K) — Hol(Y(*Dy),K) are isomorphic to Kfi. It is characterized by (i) and (i) up
to natural equivalence.

Proof Let us consider the case x = *. Let M*® be a complex of K-holonomic Dx.p,)-modules. We take
sufficiently generic ample hypersurfaces H; (i = 1,...,M) and H} (j = 1,...,N) such that ﬂf\il H; = () and
Nisy H = 0. We put Hy == J;c; H; and HY := |, H}. We have fiM(+H\H', «Dx) = 0 for i # 0, and we
have K-holonomic Dy (xDy )-modules KfJ?M'(*HI!H} xDx). For m,n >0, we put

c(MP H, H') = T MP(xH\H; % Dx).
|I|=m+1,|J|=n+1
Let Tot (C”’(./\/l', H, H')) be the total complex. It is naturally quasi-isomorphic to M®.

Let (H;, H}) (i = 1,2) be tuples of sufficiently generic ample hypersurfaces as above for M*®. We say
that we have a morphism (Hy, H}) — (Haz, H3), if either Hy C Ho or H} D Hj is satisfied. In that
case, we have a naturally induced morphism C**(M*, Hy, H}) — C**(M®, Ho, HY). For given tuples of
sufficiently generic ample hypersurfaces (H;, H;) (i = 1,2), we can find a sequence of tuples of hypersurfaces

=1,... such that (1 = an = 1) we
(HY,H'D) (j =1,...,2L) such that (i) (H", H'V) = (H,, H}) and (H®Y, H'®Y) = (H,, H}), (if)
have morphisms
(H(Qm—1)7H/(2m—1)) - (H(Qm)’H/(Zm)) N (H(2m+1)7Hl(2m+l)).

Let M? — M3 be a morphism of complexes of K-holonomic Dx ,p,)-modules. We can take a tuple of
ample hypersurfaces (H, H') which are sufficiently generic with respect to both M? (i = 1,2). For such a
(H,H'), we obtain an induced morphism C**(M$, H, H') — C**(M$, H,H').

For each M*, we take a tuple (H, H') as above, and we put

KfM® = Ef) TotC** (M®, H, H')
in Dﬁol(Y, K). By using the above considerations, we obtain the map
Hongol(x,K)( IaMﬁ) - Hongol(Y,K) (Kf* 1 Kf*ME)v

which is compatible with Hompy (x) (M3, M3) — Homps (v (f M3, frM3). Thus, we obtain the functor
Kf, . Db (X,K) — D} (Y,K). By construction, it satisfies the conditions (i) and (ii). We set Kf, :=
KDy o Kf, o EDx. It satisfies the conditions (i) and (ii). The uniqueness follows from the existence of a
resolution by K-holonomic D-modules N such that f]?./\/ = 0 unless ¢ = 0. |
9.2.3 Proof of Proposition 9.6
We take projective completions X C X and Y C Y with the following commutative diagram:

X - X —— Dy

fl fDJ, (82)

Y —~-Y «—— Dy

|
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Here, Dx := X — X and Dy :=Y — Y. We have the functors Xf, : D} (X (xDx),K) — D} (Y (*Dy), K),
which induce Xf, : D? (X, K) — D! (Y, K).

Let X C X and Y C Y be another projective completions with a commutative diagram as in (82). We set
D’ = X — X and D}, ;=Y —Y. Let us show that the induced morphism £f, : D} (X, K) — D? (Y, K) are
equal up to equivalence. We have only to consider the case that we have the following commutative diagram:

il

x L ¥

ox | er |

x .y

Here, px and @y are projective and birational such that ¢3'(Dx) = D% and ¢3! (Dy) = D}.. We have the
following diagrams which are commutative up to equivalences:

DY, (X' (+DY), K) —L Db (Y (+D}). K)

KWX*J/ KAPY*l
— K _
Db, (X(«+Dx),K) —L— Db, (V(+Dy),K)

It implies that Xf, : D} (X, K) — D} (Y, K) are independent of the choice of projective completions up to
equivalence. Thus, the proof of Proposition 9.6 is finished. |

9.2.4 Proof of Proposition 9.8
Let M, N € Hol(X, K). According to [4], we have only to check the following effaceability:

e For any f € Ext’ﬁol(y, x)(M,N), there exists a monomorphism with a monomorphism N — N in
Hol(X, K) such that the image of f in Extiyy. ) (M, N”) is 0.

We can show it by using the arguments in Sections 2.2.1 and 2.2.2 in [2].

9.2.5 Proof of Proposition 9.7

We have only to consider the cases (i) f is a closed immersion, (ii) f is a projection X x Y — Y. We closely
follow the arguments in Subsections 2.19 and 4.4 of [38].

Closed immersion Let f: X — Y be a closed immersion. The open immersion X —Y — X is denoted
by j. Let M*® be a complex of K-holonomic Dy-modules. Let H; (i = 1,...,N) be sufficiently general
ample hypersurfaces such that (i) H; D X, (ii) M®* — M®*(xH;) are injective, (iii) ﬂf\[:l H; = X. For any
subset I = (i1,...,im) C {1,...,N}, let C; be the subspace of A™ C¥ generated by e;, A--- Ae;, , where
e; € CN denotes an element whose j-th entry is 1 (j = i) or 0 (j # i). For I = Iy U {i}, the inclusion
MP(xHp,) — MP(xHy) and the multiplication of e; induces MP(xHp,) ® C;;, — MP(xH;) ® C;. For
m > 0, we put C"(MP,«H) := @, MP(+H) ® Cy, and we obtain the double complex C*(M®, «H). The
total complex is denoted by TotC®(M®,«H). It is easy to observe that the support of the cohomology of
Tot C*(M?®,+H) is contained in X. According to Proposition 9.8, we obtain Xf'M* := TotC*(M®,*H) in
Db (X, K). We obtain a functor Xf': Db (Y, K) — D} (X, K) as in Lemma 9.9. Note that the underlying
Dy-complex is naturally quasi-isomorphic to f'M®, where f' is the left adjoint of f; : D} | (X) — Db (V).
We have the naturally defined morphism « : Tot C*(M?*,«H) — M®*. We put K* := Cone(a). We have
another description. For m > 0, we put C (MP,xH) := D =1 MP(xH) ® Cp, and we obtain the double

complex 5.(/\/1‘, xH). We have a natural quasi-isomorphism K® ~ Tot @.(/\/P, xH). By using the second
description and Lemma 9.5, we obtain the following vanishing for any N'* € D} (X, K):

Hompy (v k) ("fN*,K*) =0
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Hence, we have the following isomorphisms for any K-holonomic Dx-complex N'®:
Hompy (i) (FAN®, M®) = Hompy (o) (AN, KREpme) ~ Hompy (x.x)(N°, Kfme)

Hence, we obtain that the above functor Xf' is the right adjoint of Xf,. By taking the dual, we obtain the left
adjoint Kf* of Kf,.

Projection Let f:Z xY — Y be the natural projection. Let (M, F) be a K-holonomic Dy-module. We
put Xf*(M,F) := (07 K M[—dim Z], Kz KC). It is easy to check that Xf*(M,F) is K-holonomic. Thus, we
obtain the exact functor Xf* : Db (Y, K) — D} (Z x Y, K). Let us show that Xf* is the left adjoint of Xf,.
We have only to repeat the argument in Subsection 4.4 of [38], which we include for the convenience of readers.
We have only to construct natural transformations a : id — Kf,Kf* and g : Kf*Ef, — id such that

ﬁOKf*a:Kf*M. —’Kf*Kf*Kf*M. _>Kf*M.7 Kf*ﬁOOé:Kf*N. —7Kf*Kf*Kf*N. —>Kf*N.
are the identities. We define o as the external product with (C,K) — (Hpr(Z),H°(Z,K)). For the con-
struction of 3, the following diagram is used:

IxXY — s ZxZxY -, ZxY

QZl PIJ(
Zxy 2

Here, i is induced by the diagonal Z — Z x Z, g; are induced by the projection Z x Z — Z onto the j-th
component, and p; are the projections. We have the following morphisms of D-complexes, compatible with the
K-Betti structures:

Kf*Kf*M. — Kp;Kpl*M' ~ KQ2*KQT LIS KQQ* (Ki*Ki*KqIM.) ~ Z'*KL]TM. (83)
Lemma 9.10 We have a natural isomorphism %i* gt M® ~ M® in D} |(Z x Y, K).

Proof We have a natural isomorphism of the underlying D-complexes. We have only to check that it is
compatible with K-Betti structures. Since the composite %i* gy : DY (Z x Y, K) — D} (Z x Y, K) is exact,
we have only to consider the compatibility for any K-holonomic Dy «y-module M. Moreover, we have only to
check it locally on Z x Y. Then, it can be done directly from the construction.

We define 3 as the composite of (83) with the isomorphism in Lemma 9.10. Let us look at Xf,3 o a, which
is the composite of the following morphisms:

KEN = 5p N — Epo. KpsEpra N — p0,. B0, KGN — Fpo B0 S S KGN — KR giN ~ KN
Hence, we can observe that it is equivalent to the identity. As for 8o Kf*q, it is expressed as follows:

Hence, it is equivalent to the identity. Thus, the proof of Proposition 9.7 is finished. |

9.3 Tensor product and inner homomorphism
9.3.1 Statement
Let (M;, F;) (i = 1,2) be K-holonomic D-modules on X;.

Proposition 9.11 F; X F5 is a K-Betti structure of M1 K Ms. As a result, we obtain a natural functor
X : Hol(X;, K) xHol(X3, K) — Hol(X1 x X2, K), compatible with the standard external products X : Hol(X7) x
Hol(X») — Hol(X; x X») and DY(Kx,) x D2(Kx,) — DY(Kx,xx,)-

Before going into a proof of Proposition 9.11, we give a consequence. Let X be an algebraic variety. Let
§x : X — X x X be the diagonal morphism. We obtain the functors ® and RHom on DY (X, K) in standard
ways:

MAN =K55 (MBN), RHom(M,N) =55\ (DxMEN)
They are compatible with the corresponding functors on Dﬁol(X ).
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9.3.2 Preliminary

Let (M, Fa) be a K-holonomic Dx-module. Let V be a good meromorphic flat bundle on (Y, Dy) with a
K-Betti structure Fy. Let Fyr be the canonical K-Betti structure of V).

Lemma 9.12 F, X Faq and Fyy K Faq are K-Betti structures of VXM and V) K M, respectively.

Proof We use an induction on the dimension of the support of M. Let P be any point of X. We have only to
consider locally around Y x {P}. Let C = (Z,U, ¢, V) be a K-cell of M at P. Let g be a cell function of C. The
pre-K-holonomic D-module V® M is expressed as the cohomology of the following complex of pre- K-holonomic
D-modules:

VR (p1V) — VRE (p1V) @ VK ¢g(M) — VR g (p1V)

By the hypothesis of the induction, Fy, R Py, (¢.Fy ) and Fy, KPP, (p. Fy ) are K-Betti structures of V&R, (p1V)
and VX ¢y (p+V), respectively. We put gz := ¢*g. By using Theorem 8.2, we obtain that 7y X DEgZ (fv)
and Fy X Doy, (.7-'\/) are K-Betti structures of VX Z,, (V) and VK1), (V), respectively. By construction, the
isomorphism V X ¢4 (wgz (V)) ~ VK, (‘F’TV) preserves K-Betti structures. Hence, we obtain that Fq X Fy,
is a K-Betti structure. Thus, we obtain the first claim. By considering the dual, we obtain the second claim. |

Let g be a holomorphic function on Y such that g=*(0) = Dy. We obtain the following corollary from
Lemma 9.12.

Corollary 9.13 Py (Fy) K Fa and P2,(Fy) ® Faq are K-Betti structures of 1¥,(V) ®M and Z,(V) X M,
respectively. |

9.3.3 Proof of Proposition 9.11

Let P be any point of X;. We have only to consider locally around {P} x X5. We use an induction on
dimp SuppM;. Let C = (Z,U,,V) be a K-cell of M;. The pre-K-holonomic D-module M; K My is
expressed as the cohomology of the following complex:

V(@ V) B My — Eg (o1 V) KMo @ ¢g (M) KMo — 1hg(p: V) K Mo

By the hypothesis of the induction, ¥, (¢;V)RMs and ¢4(¢;V)RMsy are K-holonomic. According to Theorem
8.1 and Corollary 9.13, Z4(p+V) B M, is K-holonomic. Hence, we obtain that M; X M, is also K-holonomic.
Thus, we obtain Proposition 9.11. |

9.4 K-structure of the space of morphisms
9.4.1 Statement
Theorem 9.14 For M*,N*® € D} (X, K), the induced morphism

HomD};;ol(XK)(M',N') ®C— HomDﬁol(X)(M‘,N')
is an isomorphism. In other words, D} (X, K)® C — D} (X)) is fully faithful.
We closely follow Beilinson’s argument in [2] for the proof.
Theorem 9.15 We have the following natural isomorphism
Hompy  (x k) (M®,N®) ~ Hompy (x k) (Ox, RHom(M*®,N*®)[dx])

We essentially use a commutative diagram due to Saito in [39].
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9.4.2 Homomorphisms and extensions for good meromorphic flat bundles

Let X be a complex manifold with a normal crossing hypersurface D. Let V' be a good meromorphic flat bundle
on (X, D) with K-good structure, and let £(V') be the associated local system with the Stokes structure on X (D).
It is naturally equipped with a K-structure Lx (V). If we are given an extension ) — V — P — Ox (xD) —
0 as K-holonomic Dx-modules, P is also a good meromorphic flat bundle with a good K-structure, and it induces
an extension 0 — Lx (V)P — L (P)SP — K5 (py — 0 of K-constructible sheaves. Conversely, assume

that we are given an extension of K-constructible sheaves 0 — L (V)P — Gx — (C;((D) — 0. We obtain
a K-local system Gr = G x\p, where ¢ : X \ D — X. The C-local system Gk ®C is naturally equipped
with a Stokes structure compatible with the K-structure. Hence, we obtain an extension of K-holonomic Dx-

modules 0 — V — P — Ox(*D) — 0. The above procedures are mutually inverse. Thus, we obtain a
bijection Exthol(X,K)((’)X(*D), V) ~ Ext}(}?(m (K)?(D), Lk(V)) ~ H(X,Fy). Similarly, we have a natural

bijection Extp x i) (Ox (+D), V) ~ HO(X, Fy).

Let V, W be good meromorphic flat bundles on (X, D) with good K-structures. We have a natural bijection
Extiox, 1) (W, V) o Extiggx i) (Ox (xD), WY @ V) for any i. Hence, we obtain the natural isomorphisms
EXtiIol(X,K)(VVv V) ~ HY(X, Fwvgy) for i = 0,1. Because

Hi(vaWV®V) ®K(C =~ HZ(X,DRX(WV ®V)) = H]i)R(X,WV ®V)7

the vector spaces Hjy g (X, WY @V) have the natural K-structure. We say that an element f € Hi (X, WV®V)
is compatible with K-structure, if it comes from H* (X, .7-'Wv®v). An element f € Hig (X, WY ® V) induces
an extension 0 — V — P — W — 0 in Hol(X, K') as observed above.

9.4.3 Some extension

Let X be a smooth complex quasi-projective variety. Let V; (i = 1,2) be flat bundles on X with a good K-
structure, i.e., there exists a projective variety X O X such that (i) D := X — X is normal crossing, (ii)V; are
good meromorphic flat bundle on (X, D) with a good K-structure. According to [2], we have Exty, x(V1, V2) ~

H (X, VY @ Va).

Lemma 9.16 There exist an open subset U C X and an extension V3 D Vyy on U of algebraic flat bundles

with a good K -structure, such that the induced morphisms Extﬁol(x)(Vh Vo) — Extﬁol(U)(VuU, V3) are 0 for
1> 0.

Proof We use an induction on dim X. In the case dim X = 0, the claim is trivial. Let us consider the case
dim X > 0. We take a Zariski open subset X; C X with a smooth affine fibration p : X; — Z; such that the
relative dimension is 1. For any meromorphic flat bundle V on X, we put pf(V) := Rip,(V ® 93(1/21)' For a

Zariski open subset Z; C Zi, the induced morphism p~!(Z]) — Z] is also denoted by p.

We may assume that L, := p(V}Y ® Vz) are meromorphic flat bundles on Z; with a good K-structure. We
have L, = 0 unless ¢ = 0, 1. It is easy to reduce Lemma 9.16 to Lemma 9.17 below which is Lemma 2.1.2 of [2]
with a minor enhancement.

Lemma 9.17

(a) There exist a Zariski open subset Zy C Zy and an extension P D Vo x, of algebraic flat bundles with good
K -structures on Xy := p~1(Z3), such that the induced morphism pL(VyY @ Vax,) — pi(V}Y @ P) is 0.

(b) There exists a Zariski open subset Zz C Zy and an extension Q D Vo x, of algebraic flat bundles with good
K -structures on X3 := p~(Z3), such that the induced maps

HP (23, p2(VY @ Vo x,)) — HBR (Z3, p2(VY @ Q))

are 0 for any p > 0.
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Proof We have only to use the argument in the proof of Lemma 2.1.2 of [2]. We give only an indication. Let
o€ HYp(Z1, LY ® Ly) = HR R (Z1, pi((p*L1 ® V1)¥ ® V2)) be the element corresponding to the identity of Ly,
which is compatible with K-structure. We have the following exact sequence compatible with K-structures:

Hpr (Xla (r'Liovi)’ @ Vz) — Hpg (thi((P*Ll ®@W)’® Vz))

17} *
— H%R<Zl,p2((p L1 ® Vl)v (9 Vz)) = H%R(ZhL;/ & Lo)

Applying the hypothesis of the induction to LY and LY, we have a Zariski open subset Z; C Z; and an
extension ¢ : LY C R of algebraic flat bundles with a good K-structures on Zs, such that the induced morphism
H?*(Z,LY ® Ly) — H?(Z1, R® Ly) is 0. In particular, ¢(da) = 0. We obtain the element

p(a) € Hpg(Z1, R® L) = HJ%R(Zl,pi((p*Rv @Vi)'® Vz))
which is compatible with K-structure. By construction, we have a lift ;(\&/) € Hig (X ,(pFRY @ V1)V ® Vg)

compatible with K-structure. It induces an extension 0 — V3 x, — P — p*RY ® Viix, — 0 of algebraic
flat bundles with good K-structures on Xs. (See Subsection 9.4.2.) It is easy to observe that P is the desired
one. Thus, we obtain the claim (a). The claim (b) can also be shown by the argument in [2]. 1

9.4.4 Proof of Theorem 9.14

We put C(X) := Hol(X) and C2(X) := Hol(X, K) ® C. Let V; (i = 1,2) be algebraic flat bundles on X with
good K-structures. Let us consider the natural morphism:

gx 1 Bxt, ) (Vi, V2) — Exte, ) (V1, V2)
It is an isomorphism in the case i =0, 1.
Lemma 9.18 Leti > 0.

o Leta € Exticz(x)(Vl, Vo) such that gx (a) = 0. There exists U C X such thata = 0 in Extic2(U)(V1‘U, Vo).

o Letac Exticl(x)(Vl, Va). There exist U C X and b € ExtiCQ(U)(VMU, Vo) such that ajy = gy (b).

Proof We give only an outline. We use an induction on i. We have already known the case i = 1. Let
a € Exte, x)(Vi, V2) such that gx(a) = 0. We have an extension Vo C V3 of a meromorphic flat bundle with
a good K-structure such that the image of a is mapped to 0 via Exti@(X)(Vl, Vo) — ExtiCz(X)(Vh V). Let
K :=V3/Vs. We have c € Exta%X)(Vl, K) which is mapped tq a via Extlc_z%X)(Vl, K) — Exte, (x)(Vi, V2). We
have d € Extgl}x)(m,w,) which is mapped to gx(c) via Expgix)(m,%) — EthC_I}X)(Vl,K). By using the
hypothesis of the induction, we can find U C X and e € Exta}U)(Vl, K) such that gy(e) = d;y. By using the
hypothesis of the induction, and by shrinking U, we may assume e is mapped to ¢y via Extic_i X)(Vl, Vi) —
Extg}x)(‘/l, K)'. Hence, we obtain a;; = 0.

Let a € Extzcl(x)(Vth). According to Lemma 9.16, we can find U C X and an extension Vo C V3
of meromorphic flat bundles with good K-structures such that the induced map Extél (U)(VHU,V2|U) —
Extglw)(mw,w,) is 0 fgr any j > 0. We put K = V3/Voy We can find ¢ € Extg}U)(vHU,K) which
is mapped to a via Exta%U)(VHU,K) — Exte, oy (Viju, Vo). By using the hypothesis of the induction
and by shrinking U, we can find d € Extic_jU)(Vl‘U,K) such that gy(d) = ¢. Let b be the image of d via
EXtiC;}U)(VhU, K)— ExtiCQ(U)(V”U, Vo). Then, it has the desired property. |

Let M, N € C2(X). We would like to show that Exti@(x)(M, N) — Exticl(x)(M, N) is an isomorphism. We
use an induction on the dimension of the support of M & N. We take a hypersurface D C X such that (i) M (xD)
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and N (xD) are cells, (i) X — D is affine. We have the distinguished triangles %i,%'N — N — N(xD) RN

and M(!D) — M — %, Ki* M L. For j = 1,2, we obtain the following exact sequence:

Exte ' (M(ID), N(xD)) — Extg, (%i.%* M, %6, %' N) — Extg, (M, N)
— Extg, (M(!D), N (D)) — Extef (%5 M, %, %' N)  (84)
By the hypothesis of the induction, ExtC (%, B ML K KN ) — Extc (%3, 5 M, K3, 55' N) is an isomorphism.
We have the natural isomorphisms Extcj (M(!D),N(xD)) =~ Extcj (M(«D), N(xD)), as remarked in Lemma

9.5. Let Z be the support of M (xD) and N(xD). By Beilinson’s argument using the functors E, ¢ and ¢ (see
Subsection 2.2.1 of [2]), we have natural isomorphisms

Exte, (x) (M(xD), N(+D)) ~ Extg, () (M(xD), N(xD)).

For D; C Ds, we have the following commutative diagram:

M ——— M(xDy) N(ID;) —— N
-| | | al
M ——— M(xDy) N(IDy) —— N

Hence, we have the following commutative diagram:

Exte, (%S M, iy Ki) N) —— Extg, (M, N) —— Extg, (M(1Dy), N(+Dy))

! - !

Ext, (%ig.Sis M, Kig Kil, N) ——— Exti (M, N) —— Extg, (M(!1Ds), N(+D2))
Then, it is easy to show that Extic2 (M,N) — Extic1 (M, N) is an isomorphism by using Lemma 9.18. |

9.4.5 Proof of Theorem 9.15

Recall a commutative diagram in [39]. For M*, N®* € D(Dx), we have the following commutative diagram:

HOInD(DX)(M',N.) ;> HOI’HD(DXXX)(M.&]D)N., 6TOX[dX])

l ! g

Hompcy) (DRx M*, DRy N*) —— Hompc,)(DRx M* @ DDRx N°*, §,Cx[2dx])
Let M be a holonomic Dx-module with a K-Betti structure 7. We have
Homp(p ) (M, M) ~ Homyx)(M, M) ~ Homye x,x) (M, M) @ C

We have similar isomorphisms for HomD(DX)(M XM, 6;0x [dX]). Hence, we obtain the following diagram
from (85):

HomHol(XvK) (M, M) ® C %) HomHol(XxxyK) (M |Z|]D)M, (STOX[dX]) ® C
‘| |
HOHlD(CX)(DRxM DRX M) ;) HOIIID(CX)(DR)(M@DDRX M, 5*((:)([2(1)(})
(

Homp ) (F, F) ® ——  Hompgy)(FRDF, 5. Kx[2dx]) @ C
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Note that a is injective. Hence, b is also injective. Since a and b are compatible with K-structures, c¢ is also
compatible with K-structures. Let C : M @ DM — 6,0Ox|dx] correspond to 1 : M — M. Tt is compatible
with K-Betti structures.

For M* € D} (X, K), let C: M* KDM® — 6;Ox[dx] correspond to 1 : M®* — M*®. We obtain that C
is compatible with K-Betti structures. Then, we obtain that the isomorphism

Hom pp)(M*,N*) — Homp(py, ) (M* KDN®, 6;0x[dx])

is compatible with K-Betti structures for any M®, N® € Dyo (X, K). By taking the dual, we obtain Theorem
9.15. 1
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