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Abstract. In the present paper, we construct a nongeometric
pro-p Galois section of a proper hyperbolic curve over a number
field, as well as over a p-adic local field. This yields a negative
answer to the pro-p Section Conjecture. We also observe that there
exists a proper hyperbolic curve over a number field which admits
infinitely many conjugacy classes of pro-p Galois sections.
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Introduction

Generalities on the Section Conjecture:

Let Primes be the set of all prime numbers, Σ ⊆ Primes a nonempty
subset of Primes, k a field of characteristic 0, k an algebraic closure of
k, X a scheme which is geometrically connected and of finite type over
k, and x : Spec k → X a geometric point of X. By abuse of notation, we
shall write x for the geometric points of X ⊗k k and Spec k determined
by the geometric point x of X. Moreover, we shall write

π1(X ⊗k k, x)Σ

for the maximal pro-Σ quotient of π1(X ⊗k k, x) — i.e., the pro-Σ
geometric fundamental group of X — and

π1(X, x)Σ
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for the quotient of π1(X, x) by the kernel of the natural surjection
π1(X ⊗k k, x) ³ π1(X ⊗k k, x)Σ — i.e., the geometrically pro-Σ fun-
damental group of X. Then the natural isomorphism Gal(k/k) '
π1(Spec k, x) (cf. [4], Exposé V, Proposition 8.1) and the natural mor-
phisms X ⊗k k → X, X → Spec k determine a commutative diagram
of profinite groups

1 −−−→ π1(X ⊗k k, x) −−−→ π1(X, x) −−−→ Gal(k/k) −−−→ 1y y ∥∥∥
1 −−−→ π1(X ⊗k k, x)Σ −−−→ π1(X, x)Σ −−−→ Gal(k/k) −−−→ 1

— where the horizontal sequences are exact (cf. [4], Exposé IX, Théorème
6.1), and the vertical arrows are surjective. Now we shall refer to a (con-
tinuous) section of the lower exact sequence of the above commutative
diagram as a pro-Σ Galois section of X and to the π1(X ⊗k k, x)Σ-
conjugacy class of a pro-Σ Galois section as the conjugacy class of the
pro-Σ Galois section. Then it follows from the definition of the above
commutative diagram that a k-rational point of X (i.e., a section of
the structure morphism X → Spec k of X) determines — up to com-
position with an inner automorphism arising from π1(X ⊗k k, x)Σ —
a pro-Σ Galois section of X, i.e., we have a natural map from the
set X(k) of k-rational points of X to the set GSΣ(X/k) of conjugacy
classes of pro-Σ Galois sections of X. Now the Section Conjecture may
be stated as follows (cf. [3]):

(SC): If k is a finitely generated extension of the field
of rational numbers, and X is a proper hyperbolic curve
over k, then this map X(k) → GSPrimes(X/k) is bijec-
tive.

Note that one may also formulates a version of (SC) for affine hyper-
bolic curves.

Grothendieck proved the injectivity of the map X(k) → GSPrimes(X/k)
by means of a well-known theorem of Mordell-Weil (cf. e.g., [9], Theo-
rem 2.1). On the other hand, the above conjecture — i.e., the surjec-
tivity of the map appearing in (SC) — remains unsolved.

Pro-p version of the Section Conjecture:

Although the above conjecture (SC) remains unsolved, results re-
lated to this conjecture have been obtained by various authors:

(I) An archimedean analogue of (SC), i.e., an analogue of (SC) for
hyperbolic curves over the field of real numbers — cf. [8], §3.

(II) The injectivity portion of the pro-p version of (SC) — i.e., the

injectivity of the natural map X(k) → GS{p}(X/k) — in the
case where k is a generalized sub-p-adic field (e.g., k is either
a number field or a p-adic local field) — cf. [7], Theorem C



NONGEOMETRIC PRO-p GALOIS SECTIONS 3

(and its proof); [8], Theorem 4.12 (and Remark following this
theorem).

(III) The pro-p version of a birational analogue of (SC) for hyper-
bolic curves over p-adic local fields — cf. [10], Theorem A.

The validity of the above three results (I), (II), and (III) suggests
the possibility of the validity of the assertion obtained by replacing the
expression “finitely generated extension of the field of rational num-
bers” in the statement of (SC) by the expression “nonarchimedean
local field”. Moreover, the validity of the two results (II) and (III)
suggests the possibility of the validity of the assertion obtained by re-
placing the notation “Primes” in the statement of (SC) by the notation
“{p}” for some prime number p. That is to say, one is led to expect
the validity of the following pro-p Section Conjecture:

(pSC): If k is either a number field (i.e., a finite exten-
sion of the field of rational numbers) or a p-adic local
field (i.e., a finite extension of the field of p-adic ratio-
nal numbers), and X is a proper hyperbolic curve over

k, then the natural map X(k) → GS{p}(X/k) is bijec-
tive, or, equivalently — by the above result (II) — the

natural map X(k) → GS{p}(X/k) is surjective.

Main results:

In the present paper, we construct a counter-example to the above
conjecture (pSC). The first main result of the present paper is as fol-
lows (cf. §4):

Theorem A (Existence of nongeometric pro-p Galois sections).
Let Q be the field of rational numbers, Q an algebraic closure of Q, p
an odd regular prime number, ζp ∈ Q a primitive p-th root of unity,

Qunr ⊆ Q the maximal Galois extension of Q(ζp) that is pro-p and
unramified over every nonarchimedean prime of Q(ζp) whose residue
characteristic is 6= p, kNF ⊆ Qunr a finite extension of Q(ζp) contained

in Qunr, TNF
def
= Spec kNF[t±1, 1/(t − 1)] — where t is an indetermi-

nate — UNF → TNF a connected finite étale covering of TNF, and XNF

the (uniquely determined) smooth compactification of UNF over (a fi-
nite extension of) kNF. Suppose that the following four conditions are
satisfied:

(A) XNF is of genus ≥ 2.
(B) XNF(kNF) 6= ∅. (In particular, XNF, hence also UNF, is geo-

metrically connected over kNF; thus, XNF and UNF are hy-
perbolic curves over kNF [cf. condition (A)].)

(C) The finite étale covering UNF ⊗kNF
Q → TNF ⊗kNF

Q is Galois
and of degree a power of p.
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(D) The hyperbolic curve UNF (cf. condition (B)), hence also XNF,
has good reduction at every nonarchimedean prime of kNF

whose residue characteristic is 6= p.

(For example, if p > 3, then the number field kNF = Q(ζp) and the
connected finite étale covering

UNF = Spec Q(ζp)[x
±1
1 , x±1

2 ]/(xp
1 + xp

2 − 1) −→ TNF

— where x1 and x2 are indeterminates — given by “t 7→ xp
1” satisfy the

above four conditions.) Then there exists a finite extension k′
NF ⊆ Qunr

of kNF contained in Qunr which satisfies the following condition:

Let ¤ be either “NF” or “LF”, k′′
NF ⊆ Qunr a finite ex-

tension of k′
NF contained in Qunr, and k′′

LF the completion
of k′′

NF at a nonarchimedean prime of k′′
NF whose residue

characteristic is p. Then there exists a nongeomet-
ric (cf. Definition 1.1, (iii), also Remark 1.1.3) pro-p
Galois section (cf. Definition 1.1, (i)) of the hyperbolic
curve XNF ⊗kNF

k′′
¤ (respectively, UNF ⊗kNF

k′′
¤) over k′′

¤.

If one’s primary interest lies in diophantine geometry, one may take
the point of view that the finiteness of the set GSΣ(X/k) is more im-
portant than the bijectivity of the natural map X(k) → GSΣ(X/k)
— where Σ ⊆ Primes is a nonempty subset of Primes. Indeed,
for example, even if the natural injection (cf. the above result (II))
X(k) ↪→ GSΣ(X/k) in the case where X is a proper hyperbolic curve
over a number field k is not bijective, the finiteness of the set GSΣ(X/k)
already implies the finiteness of the set X(k), i.e., an affirmative an-
swer to the well-known conjecture of Mordell, which is now a theorem
of Faltings.

On the other hand, it follows from the following result, which is the
second main result of the present paper, that if one only considers the
case where Σ = {p}, then this approach to the conjecture of Mordell
fails (cf. §4):

Theorem B (Existence of hyperbolic curves over number fields
that admit infinitely many pro-p Galois sections). We continue
to use the notation of Theorem A. Moreover, we take p > 7 and

UNF
def
= Spec kNF[x±1

1 , x±1
2 ]/(xp

1 + xp
2 − 1)

— where x1 and x2 are indeterminates. Then there are infinitely
many conjugacy classes of pro-p Galois sections (cf. Definition 1.1,
(i)) of the hyperbolic curve XNF (respectively, UNF) over kNF.

The present paper is organized as follows: In §1, we discuss the
notion of a pro-Σ Galois section. In §2, we consider the pro-p outer
Galois representations associated to certain hyperbolic curves obtained
as finite étale coverings of tripods. In §3, we consider pro-p Galois
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sections of certain hyperbolic curves obtained as finite étale coverings
of tripods. In §4, we prove Theorems A and B.
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0. Notations and Conventions

Numbers: The notation Primes will be used to denote the set of all
prime numbers. The notation Z will be used to denote the set, group,
or ring of rational integers. The notation Q will be used to denote the
set, group, or field of rational numbers. If p is a prime number, then
the notation Zp (respectively, Qp) will be used to denote the p-adic
completion of Z (respectively, Q).

A finite extension of Q will be referred to as a number field. If p is
a prime number, then a finite extension of Qp will be referred to as a
p-adic local field.

Profinite groups: If G is a profinite group, then we shall write

Aut(G)

for the group of (continuous) automorphisms of G,

Inn(G) ⊆ Aut(G)

the group of inner automorphisms of G, and

Out(G)
def
= Aut(G)/Inn(G) .

If, moreover, G is topologically finitely generated, then one verifies eas-
ily that the topology of G admits a basis of characteristic open sub-
groups, which thus induces a profinite topology on the groups Aut(G)
and Out(G).

If G is a profinite group, and H ⊆ G is a closed subgroup of G, then
we shall write

[H,H] ⊆ G

for the closed subgroup of G topologically generated by h1h2h
−1
1 h−1

2 ∈
G, where h1, h2 ∈ H. Note that if H is normal in G, then it follows
from the fact that [H,H] ⊆ H is a characteristic subgroup of H that
the closed subgroup [H,H] is normal in G.

Curves: We shall say that a scheme X over a field k is a smooth
curve over k if there exist a scheme Y which is of dimension 1, smooth,
proper, and geometrically connected over k and a closed subscheme
D ⊆ Y which is finite and étale over k such that X is isomorphic to
the complement of D in Y over k. If, moreover, a geometric fiber of Y
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over k is of genus g, and a finite étale covering D over k is of degree r,
then we shall say that X is a smooth curve of type (g, r) over k.

We shall say that a scheme X over a field k is a hyperbolic curve
(respectively, tripod) over k if there exists a pair of nonnegative integers
(g, r) such that 2g − 2 + r > 0 (respectively, (g, r) = (0, 3)), and,
moreover, X is a smooth curve of type (g, r) over k.

1. Galois sections and their geometricity

Throughout the present paper, fix an odd prime number p and an
algebraic closure Q of Q; moreover, let ζp ∈ Q be a primitive p-th root
of unity.

In the present §, we discuss the notion of a pro-Σ Galois section. In
the present §, let k be a field of characteristic 0 and k an algebraic
closure of k containing Q.

Definition 1.1. Let Σ ⊆ Primes be a nonempty subset of Primes
(where we refer to the discussion entitled “Numbers” in §0 concerning
the set Primes), X a scheme which is geometrically connected and of
finite type over k, and x : Spec k → X a geometric point of X. By
abuse of notation, we shall write x for the geometric points of X ⊗k k
and Spec k determined by the geometric point x of X.

(i) If we write

π1(X ⊗k k, x)Σ

for the maximal pro-Σ quotient of π1(X ⊗k k, x) — i.e., the
pro-Σ geometric fundamental group of X — and

π1(X, x)Σ

for the quotient of π1(X, x) by the kernel of the natural surjec-
tion π1(X ⊗k k, x) ³ π1(X ⊗k k, x)Σ — i.e., the geometrically
pro-Σ fundamental group of X — then the natural isomorphism
Gal(k/k) ' π1(Spec k, x) (cf. [4], Exposé V, Proposition 8.1)
and the natural morphisms X⊗kk → X, X → Spec k determine
a commutative diagram of profinite groups

1 −−−→ π1(X ⊗k k, x) −−−→ π1(X, x) −−−→ Gal(k/k) −−−→ 1y y ∥∥∥
1 −−−→ π1(X ⊗k k, x)Σ −−−→ π1(X, x)Σ −−−→ Gal(k/k) −−−→ 1

— where the horizontal sequences are exact (cf. [4], Exposé
IX, Théorème 6.1), and the vertical arrows are surjective. Now
we shall refer to a section of the lower exact sequence of the
above commutative diagram as a pro-Σ Galois section of X.
Moreover, the π1(X ⊗k k, x)Σ-conjugacy class of a pro-Σ Galois
section of X as the conjugacy class of the pro-Σ Galois section.
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(ii) It follows from the definition of the commutative diagram in
(i) that a k-rational point of X (i.e., a section of the structure
morphism X → Spec k of X) gives rise to a conjugacy class of
a pro-Σ Galois section of X. Now we shall say that a pro-Σ
Galois section of X arises from a k-rational point x ∈ X(k) of
X if the conjugacy class of the pro-Σ Galois section coincides
with the conjugacy class of a pro-Σ Galois section determined
by the k-rational point x ∈ X(k) of X.

(iii) Suppose that X is a hyperbolic curve over k (where we refer
to the discussion entitled “Curves” in §0 concerning the term
“hyperbolic curve”). Then we shall say that a pro-Σ Galois
section is geometric if the image of the pro-Σ Galois section
is contained in a decomposition subgroup of π1(X, x)Σ associ-
ated to a k-rational point of the (uniquely determined) smooth
compactification of X over k.

Remark 1.1.1. Let Y be a scheme which is geometrically connected
and of finite type over k and Y → X a morphism over k. If a pro-Σ
Galois section of Y arises from a k-rational point of Y , then it follows
from the various definitions involved that the pro-Σ Galois section of
X determined by the pro-Σ Galois section of Y and the morphism
Y → X arises from a k-rational point of X. If, moreover, X and Y are
hyperbolic curves over k, and a pro-Σ Galois section of Y is geometric,
then it follows from the various definitions involved that the pro-Σ
Galois section of X determined by the pro-Σ Galois section of Y and
the morphism Y → X is geometric.

Remark 1.1.2. Suppose that X is a hyperbolic curve over k. Then it
follows from the various definitions involved that the geometricity of a
pro-Σ Galois section of X depends only on its conjugacy class.

Remark 1.1.3. Suppose that X is a hyperbolic curve over k. Let
s be a pro-Σ Galois section of X. Then it follows from the various
definitions involved that if s arises from a k-rational point of X, then
s is geometric. If, moreover, the hyperbolic curve X is proper, then it
follows from the various definitions involved that s is geometric if and
only if s arises from a k-rational point of X.

Remark 1.1.4. Suppose that X is an abelian variety over k. Then it
follows from the various definitions involved that the following hold:

(i) The pro-Σ geometric fundamental group π1(X⊗k k, x)Σ is natu-
rally isomorphic to the pro-Σ Tate module TΣ(X) of X, and the
geometrically pro-Σ fundamental group π1(X, x)Σ is naturally
isomorphic to the semi-direct product TΣ(X) o Gal(k/k).

(ii) There exists a natural bijection between the set of conjugacy
classes of pro-Σ Galois sections of X and the Galois cohomology
group H1(k, TΣ(X)).
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Moreover, it follows from a similar argument to the argument used in
the proof of [9], Theorem 2.1 (cf. also [9], Claim 2.2), that the following
holds.:

(iii) Under the bijection in (ii), the natural map from X(k) to the
set of conjugacy classes of pro-Σ Galois sections of X obtained
by sending x ∈ X(k) to the conjugacy class of a pro-Σ Galois
section of X arising from x ∈ X(k) coincides with the pro-Σ
Kummer homomorphism for X

X(k) −→ H1(k, TΣ(X)) .

2. Pro-p outer Galois representations associated to
certain coverings of tripods

In the present §, we consider the pro-p outer Galois representations
associated to certain hyperbolic curves obtained as finite étale coverings
of tripods (where we refer to the discussion entitled “Curves” in §0
concerning the term “tripod”). In the present §, let

kNF ⊆ Q

be a number field (where we refer to the discussion entitled “Numbers”
in §0 concerning the term “number field”). Write

GNF
def
= Gal(Q/kNF)

for the absolute Galois group of kNF and

TNF
def
= Spec kNF[t±1, 1/(t − 1)]

— where t is an indeterminate — i.e., TNF is a split tripod P1
kNF

\
{0, 1,∞} over kNF. Let

UNF −→ TNF

be a connected finite étale covering of TNF,

(UNF ⊆) XNF

the (uniquely determined) smooth compactification of UNF over (a finite
extension of) kNF, and

x : Spec Q −→ UNF

a geometric point of UNF. Suppose that the following four conditions
are satisfied:

(A) XNF is of genus ≥ 2.
(B) XNF has a kNF-rational point O ∈ XNF(kNF). (In particular,

XNF, hence also UNF, is geometrically connected over kNF; thus,
XNF and UNF are hyperbolic curves over kNF [cf. condition (A)].)

(C) The finite étale covering UNF ⊗kNF
Q → TNF ⊗kNF

Q is Galois
and of degree a power of p.
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(D) The hyperbolic curve UNF (cf. condition (B)), hence also XNF,
has good reduction at every nonarchimedean prime of kNF whose
residue characteristic is 6= p.

We shall write
JNF

for the Jacobian variety of XNF (cf. condition (A)) and

ιO : XNF −→ JNF

for the closed immersion determined by O ∈ XNF(kNF) (cf. condition
(B)); moreover, write

∆TNF
(respectively, ∆UNF

; ∆XNF
; ∆JNF

)

for the maximal pro-p quotient of the geometric fundamental group
π1(TNF ⊗kNF

Q, x) (respectively, π1(UNF ⊗kNF
Q, x); π1(XNF ⊗kNF

Q, x);
π1(JNF ⊗kNF

Q, x)) — here, by abuse of notation, we write x for the
geometric points of TNF, XNF, and JNF determined by the geometric
point x of UNF — and

ΠTNF
(respectively, ΠUNF

; ΠXNF
; ΠJNF

)

for the quotient of the fundamental group π1(TNF, x) (respectively,
π1(UNF, x); π1(XNF, x); π1(JNF, x)) by the kernel of the natural sur-
jection π1(TNF ⊗kNF

Q, x) ³ ∆TNF
(respectively, π1(UNF ⊗kNF

Q, x) ³
∆UNF

; π1(XNF ⊗kNF
Q, x) ³ ∆XNF

; π1(JNF ⊗kNF
Q, x) ³ ∆JNF

). Then
the finite étale covering UNF → TNF, the open immersion UNF ↪→ XNF,
and the closed immersion ιO : XNF ↪→ JNF induce a commutative dia-
gram of profinite groups

1 −−−→ ∆TNF
−−−→ ΠTNF

−−−→ GNF −−−→ 1x x ∥∥∥
1 −−−→ ∆UNF

−−−→ ΠUNF
−−−→ GNF −−−→ 1y y ∥∥∥

1 −−−→ ∆XNF
−−−→ ΠXNF

−−−→ GNF −−−→ 1y y ∥∥∥
1 −−−→ ∆JNF

−−−→ ΠJNF
−−−→ GNF −−−→ 1

— where the horizontal sequences are exact — and an isomorphism of
profinite groups

ΠXNF
/[∆XNF

, ∆XNF
]

∼−→ ΠJNF

— where we refer to the discussion entitled “Profinite groups” in §0
concerning the notation “[−,−]”. Finally, we shall write

ρTNF
: GNF −→ Out(∆TNF

)

(respectively, ρUNF
: GNF −→ Out(∆UNF

);
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ρXNF
: GNF −→ Out(∆XNF

);

ρJNF
: GNF −→ Aut(∆JNF

))

— where we refer to the discussion entitled “Profinite groups” in §0
concerning the notation “Out”, “Aut” — for the homomorphism de-
termined by the corresponding horizontal sequence in the above com-
mutative diagram,

GNF[T ] (respectively, GNF[U ]; GNF[X]; GNF[J ])

for the quotient of GNF obtained as the image of ρTNF
(respectively,

ρUNF
; ρXNF

; ρJNF
), and

Qunr ⊆ Q
for the maximal Galois extension of Q(ζp) that is pro-p and unramified
over every nonarchimedean prime of Q(ζp) whose residue characteristic
is 6= p.

Lemma 2.1 (Quotients determined by the pro-p outer Galois
representations associated to certain coverings of tripods).

(i) If ζp ∈ kNF, then the quotient GNF[T ] of GNF is pro-p.
(ii) If kNF ⊆ Qunr, then the natural surjections GNF ³ GNF[T ],

GNF ³ GNF[U ], GNF ³ GNF[X], and GNF ³ GNF[J ] factor
through the natural surjection GNF ³ Gal(Qunr/kNF).

Proof. Assertion (i) follows immediately from [1], Theorems A, B. Next,
we verify assertion (ii). It follows from [5], Theorem C, (i), that we have
natural surjections

GNF ³ GNF[U ] ³ GNF[T ] ;

moreover, it follows from the fact that the natural open (respectively,
closed) immersion UNF ↪→ XNF (respectively, ιO : XNF ↪→ JNF) induces
a surjection ∆UNF

³ ∆XNF
(respectively, ∆XNF

³ ∆JNF
) that we have

natural surjections

GNF ³ GNF[U ] ³ GNF[X] ³ GNF[J ] .

Thus, to prove assertion (ii), it suffices to verify the fact that the natural
surjection GNF ³ GNF[U ] factors through the natural surjection GNF ³
Gal(Qunr/kNF). Moreover, since one may easily verify that the kernel
of ρUNF

is contained in the open subgroup Gal(Q/kNF(ζp)) ⊆ GNF of
GNF — to verify the fact that the natural surjection GNF ³ GNF[U ]
factors through the natural surjection GNF ³ Gal(Qunr/kNF) — we may
assume without loss of generality that ζp ∈ kNF. On the other hand,
it follows from the condition (D) that — to prove the fact that the
natural surjection GNF ³ GNF[U ] factors through the natural surjection
GNF ³ Gal(Qunr/kNF) — it suffices to verify the fact that the natural
surjection GNF ³ GNF[U ] factors through a pro-p quotient of GNF. On
the other hand, if we write

ρUNF/TNF
: ∆TNF

/∆UNF
−→ Out(∆UNF

)
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for the homomorphism arising from the exact sequence of profinite
groups

1 −→ ∆UNF
−→ ∆TNF

−→ ∆TNF
/∆UNF

−→ 1

(cf. condition (C)), then it follows immediately that we have inclusions

ρUNF
(Ker(ρTNF

)) ⊆ Im(ρUNF/TNF
) ⊆ Out(∆UNF

) ;

in particular, ρUNF
(Ker(ρTNF

)) is a p-group. Thus, the fact that the
natural surjection GNF ³ GNF[U ] factors through a pro-p quotient of
GNF follows immediately from assertion (i). This completes the proof
of assertion (ii). ¤

3. Pro-p Galois sections of certain coverings of tripods

In the present §, we consider pro-p Galois sections of certain hyper-
bolic curves obtained as finite étale coverings of tripods. The purpose
of the present § is to show that a certain pro-p Galois section of the Ja-
cobian variety of a hyperbolic curve arises from a pro-p Galois section
of the original hyperbolic curve (cf. Theorem 3.5 below). The main
results of the present paper, i.e., Theorems A and B in Introduction,
may be derived from this result (cf. §4).

We maintain the notation of the preceding §. In the present §, sup-
pose that

Q(ζp) ⊆ kNF ⊆ Qunr .

In the present §, let
kLF

be the completion of kNF at a nonarchimedean prime whose residue
characteristic is p and kLF an algebraic closure of kLF containing Q;
write, moreover,

GLF
def
= Gal(kLF/kLF)

for the absolute Galois group of kLF. Then we have a proper hyperbolic
curve

XLF
def
= XNF ⊗kNF

kLF ,

an affine hyperbolic curve

ULF
def
= UNF ⊗kNF

kLF ,

whose smooth compactification is naturally isomorphic to XLF, and an
abelian variety

JLF
def
= JNF ⊗kNF

kLF ,

which is naturally isomorphic to the Jacobian variety of XLF, over kLF.
Moreover, we shall write

∆XLF

def
= ∆XNF

; ∆ULF

def
= ∆UNF

; ∆JLF

def
= ∆JNF

;

ΠXLF

def
= ΠXNF

×GNF
GLF ; ΠULF

def
= ΠUNF

×GNF
GLF ;

ΠJLF

def
= ΠJNF

×GNF
GLF .
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Note that “∆(−)” is naturally isomorphic to the pro-p geometric fun-
damental group of “(−)” — i.e., the maximal pro-p quotient of the
fundamental group of “(−) ⊗kLF

kLF” — and “Π(−)” is naturally iso-
morphic to the geometrically pro-p fundamental group of “(−)” — i.e.,
the quotient of the fundamental group of “(−)” by the kernel of the
natural surjection from the fundamental group of “(−)⊗kLF

kLF” to its
maximal pro-p quotient.

Definition 3.1. Let ¤ be either “NF” or “LF”.

(i) We shall write

G¤ ³ Q¤
def
= Im(G¤ → Gal(Q/Q) ³ Gal(Qunr/Q))

— where the arrow “G¤ → Gal(Q/Q)” is the homomorphism
determined by the natural inclusions Q ↪→ k¤ and Q ↪→ k¤.

(ii) It follows from Lemma 2.1, (ii), that the outer pro-p Galois rep-
resentation G¤ → Out(∆X¤ ) (respectively, G¤ → Out(∆U¤ ))
associated to X¤ (respectively, U¤) factors through G¤ ³ Q¤.
We shall write

ΠQ
X¤

(respectively, ΠQ
U¤

)

for the profinite group obtained by pulling back the natural
exact sequence of profinite groups

1 −→ ∆X¤ −→ Aut(∆X¤ ) −→ Out(∆X¤ ) −→ 1

(respectively,

1 −→ ∆U¤ −→ Aut(∆U¤ ) −→ Out(∆U¤ ) −→ 1)

— where we refer to the discussion entitled “Profinite groups”
in §0 concerning the topologies of “Aut” and “Out” — via the
resulting (continuous) homomorphism Q¤ → Out(∆X¤ ) (re-
spectively, Q¤ → Out(∆U¤ )). Note that it follows from the

definition of ΠQ
X¤

(respectively, ΠQ
U¤

) that we have a commuta-
tive diagram of profinite groups

1 −−−→ ∆X¤ −−−→ ΠX¤ −−−→ G¤ −−−→ 1∥∥∥ y y
1 −−−→ ∆X¤ −−−→ ΠQ

X¤
−−−→ Q¤ −−−→ 1

(respectively,

1 −−−→ ∆U¤ −−−→ ΠU¤ −−−→ G¤ −−−→ 1∥∥∥ y y
1 −−−→ ∆U¤ −−−→ ΠQ

U¤
−−−→ Q¤ −−−→ 1 )

— where the horizontal sequences are exact, and the vertical
arrows are surjective.
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(iii) We shall write

ΠQ
J¤

def
= ΠQ

X¤
/[∆X¤ , ∆X¤ ]

— where we refer to the discussion entitled “Profinite groups”
in §0 concerning the notation “[−,−]”. Thus, the isomorphism

ΠX¤/[∆X¤ , ∆X¤ ]
∼−→ ΠJ¤

induced by ιO determines a commutative diagram of profinite
groups

1 −−−→ ∆J¤ −−−→ ΠJ¤ −−−→ G¤ −−−→ 1∥∥∥ y y
1 −−−→ ∆J¤ −−−→ ΠQ

J¤
−−−→ Q¤ −−−→ 1

— where the horizontal sequences are exact, and the vertical
arrows are surjective.

Remark 3.1.1. It follows from the various definitions involved that
the open immersion U¤ ↪→ X¤ and the closed immersion ιO : X¤ ↪→ J¤
determine a commutative diagram of profinite groups

1 −−−→ ∆U¤ −−−→ ΠQ
U¤

−−−→ Q¤ −−−→ 1y y ∥∥∥
1 −−−→ ∆X¤ −−−→ ΠQ

X¤
−−−→ Q¤ −−−→ 1y y ∥∥∥

1 −−−→ ∆J¤ −−−→ ΠQ
J¤

−−−→ Q¤ −−−→ 1

— where the horizontal sequences are exact, and the vertical arrows
are surjective.

Lemma 3.2 (Freeness of certain Galois groups). Suppose that p
is regular. Then the profinite groups QNF and QLF are free pro-p
groups.

Proof. Since a closed subgroup of a free pro-p group is a free pro-p
group (cf. [13], Corollary 7.7.5), to prove Lemma 3.2, it suffices to
verify the fact that Gal(Qunr/Q(ζp)) is free pro-p. On the other hand,
this follows from [12], the first example following Theorem 5. ¤
Lemma 3.3 (Factorization of certain pro-p Galois sections).
Let ¤ be either “NF” or “LF”, sNF a pro-p Galois section of JNF (cf.
Definition 1.1, (i)), and sLF the pro-p Galois section of JLF obtained
as the restriction of sNF. Then the composite

G¤
s¤
↪→ ΠJ¤ ³ ΠQ

J¤

factors through G¤ ³ Q¤, i.e., the composite determines a section
of the natural surjection ΠQ

J¤
³ Q¤.
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Proof. First, we verify Lemma 3.3 in the case where ¤ = “NF”. It
follows from the definition of the quotient QNF of GNF that, to prove
Lemma 3.3 in the case where ¤ = “NF”, it suffices to show that the
following two assertions hold:

(i) The composite GNF
sNF
↪→ ΠJNF

³ ΠQ
JNF

factors through a pro-p
quotient of GNF.

(ii) If l is a nonarchimedean prime of kNF whose residue charac-
teristic is 6= p, and Il ⊆ GNF is an inertia subgroup of GNF

associated to l, then the image of the composite

Il ↪→ GNF
sNF
↪→ ΠJNF

³ ΠQ
JNF

is {1}.
Now assertion (i) follows from the fact that ΠQ

JNF
is pro-p. Next, we

verify assertion (ii). It follows immediately from the definition of QNF

that the image of the composite Il ↪→ GNF
sNF
↪→ ΠJNF

³ ΠQ
JNF

is con-

tained in ∆JNF
⊆ ΠQ

JNF
; in particular, if we write Dl ⊆ GNF for the

decomposition subgroup of GNF associated to l containing Il ⊆ GNF,
then we obtain a Dl/Il-equivariant homomorphism Il → ∆JNF

, which
factors through the abelianization of the maximal pro-p quotient of Il

(cf. assertion (i)). On the other hand, since JNF has good reduction at
l (cf. condition (D) in §2) (respectively, the residue characteristic of
l is 6= p), the weight of the action of the Frobenius element in Dl/Il

on ∆JNF
(respectively, on the abelianization of the maximal pro-p quo-

tient of Il) is 1 (respectively, 2). Thus, it follows that the image of the
Dl/Il-equivariant homomorphism Il → ∆JNF

is {1}. This completes
the proof of assertion (ii) hence also of Lemma 3.3 in the case where
¤ = “NF”.

Next, we verify Lemma 3.3 in the case where ¤ = “LF”. It fol-
lows from the various definitions involved that we have a commutative
diagram of profinite groups

GLF
sLF−−−→ ΠJLF

−−−→ ΠQ
JLF

−−−→ QLFy y y y
GNF −−−→

sNF

ΠJNF
−−−→ ΠQ

JNF
−−−→ QNF

— where the vertical arrows are injective. Therefore, Lemma 3.3 in
the case where ¤ = “LF” follows immediately from Lemma 3.3 in the
case where ¤ = “NF”, together with the definition of the quotient Q¤
of G¤. ¤

Lemma 3.4 (Uniqueness of certain pro-p Galois sections). Let
¤ be either “NF” or “LF”, i = 1 or 2, si

NF a pro-p Galois section of
JNF (cf. Definition 1.1, (i)), and si

LF the pro-p Galois section of JLF

obtained as the restriction of si
NF. If the ∆J¤ -conjugacy classes of the
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composites

G¤
s1
¤

↪→ ΠJ¤ ³ ΠQ
J¤

; G¤
s2
¤

↪→ ΠJ¤ ³ ΠQ
J¤

coincide, then the conjugacy classes of the pro-p Galois sections s1
¤,

s2
¤ coincide.

Proof. This follows immediately from Lemma 3.3, together with the
existence of the exact sequence of Galois cohomology groups

0 −→ H1(Q¤, ∆J¤ ) −→ H1(G¤, ∆J¤ ) −→ H1(N¤, ∆J¤ )Q¤

— where N¤ is the kernel of the natural surjection G¤ ³ Q¤. ¤
Theorem 3.5 (Lifting of certain pro-p Galois sections). Let ¤
be either “NF” or “LF”, sNF a pro-p Galois section of JNF (cf. Def-
inition 1.1, (i)), and sLF the pro-p Galois section of JLF obtained as
the restriction of sNF. Suppose that p is regular. Then there exists
a pro-p Galois section s̃¤ of X¤ (respectively, U¤) such that the pro-p
Galois section of J¤ obtained as the composite

G¤
es¤
↪→ ΠX¤ ³ ΠJ¤ (respectively , G¤

es¤
↪→ ΠU¤ ³ ΠJ¤ )

— where the second arrow is the surjection induced by ιO — coincides
with s¤.

Proof. It follows from Lemma 3.3 that the composite G¤
s¤
↪→ ΠJ¤ ³

ΠQ
J¤

determines a section sQ
¤ of the natural surjection ΠQ

J¤
³ Q¤. On

the other hand, since Q¤ is a free pro-p group, (cf. Lemma 3.2), and

ΠQ
X¤

(respectively, ΠQ
U¤

) is a pro-p group, there exists a section s̃Q
¤

of the natural surjection ΠQ
X¤

³ Q¤ (respectively, ΠQ
U¤

³ Q¤) such

that the composite Q¤
esQ
¤

↪→ ΠQ
X¤

³ ΠQ
J¤

(respectively, Q¤
esQ
¤

↪→ ΠQ
U¤

³
ΠQ

J¤
) coincides with sQ

¤. Therefore, by pulling back the section s̃Q
¤

via G¤ ³ Q¤, we obtain a section s̃¤ of the natural surjection ΠX¤ '
ΠQ

X¤
×Q¤ G¤ ³ G¤ ' Q¤×Q¤ G¤ (respectively, ΠU¤ ' ΠQ

U¤
×Q¤ G¤ ³

G¤ ' Q¤×Q¤ G¤). Now it follows from Lemma 3.4, together with the
definition of s̃¤, that — by replacing s̃¤ by a suitable ∆X¤ (respectively,
∆U¤ )-conjugate of s̃¤ — the pro-p Galois section s̃¤ of X¤ (respectively,
U¤) satisfies the condition in the statement of Theorem 3.5. This
completes the proof of Theorem 3.5. ¤
Corollary 3.6 (Existence of certain pro-p Galois sections). Let
¤ be either “NF” or “LF”. Suppose that p is regular. Then for
any xNF ∈ JNF(kNF), there exists a pro-p Galois section s¤ of X¤
(respectively, U¤) — cf. Definition 1.1, (i) — such that the conjugacy
class of the pro-p Galois section of J¤ obtained as the composite

G¤
s¤
↪→ ΠX¤ ³ ΠJ¤ (respectively , G¤

s¤
↪→ ΠU¤ ³ ΠJ¤ )
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— where the second arrow is the surjection induced by ιO — coin-
cides with the conjugacy class of a pro-p Galois section of J¤ which
arises from the kNF-rational point xNF ∈ JNF(kNF) ⊆ JLF(kLF) — cf.
Definition 1.1, (ii).

Proof. This follows immediately from Theorem 3.5. ¤

4. Existence of nongeometric pro-p Galois sections

Proof of Theorem A. First, I claim that there exists a finite exten-
sion k′

NF ⊆ Qunr of kNF contained in Qunr which satisfies the following
condition (†):

(†) : There exists a k′
NF-rational point xNF ∈ JNF(k′

NF)[p∞]
of the Jacobian variety JNF of XNF which is annihilated
by a power of p such that

vp(ord(y)) < vp(ord(xNF))

for any y ∈ JNF(Q)[tor] ∩ ιO(XNF(Q)) — where vp is
the p-adic valuation on Z such that vp(p) = 1, and

JNF(Q)[tor] ⊆ JNF(Q) is the maximal torsion subgroup
of JNF(Q).

Indeed, it follows from Lemma 2.1, (ii), that the natural surjection
GNF ³ GNF[J ] factors through the natural surjection GNF ³ QNF;
thus, the above claim follows immediately from the fact that the inter-
section

JNF(Q)[tor] ∩ ιO(XNF(Q))

is finite (cf. [11], Théorème 1). This completes the proof of the above
claim.

The rest of this proof is devoted to verifying the fact that this finite
extension k′

NF ⊆ Qunr of kNF satisfies the condition in the statement
of Theorem A. Let ¤ be either “NF” or “LF”, k′′

NF ⊆ Qunr a finite
extension of k′

NF contained in Qunr, and k′′
LF the completion of k′′

NF at a
nonarchimedean prime of k′′

NF whose residue characteristic is p. More-
over, let xNF ∈ JNF(k′′

NF)[p∞] be a k′′
NF-rational point which satisfies

the condition in (†) in the above claim, i.e., a k′′
NF-rational point of JNF

which is annihilated by a power of p such that

vp(ord(y)) < vp(ord(xNF))

for any y ∈ JNF(Q)[tor] ∩ ιO(XNF(Q)). Then it follows from Corol-
lary 3.6 that there exists a pro-p Galois section s¤ of the hyperbolic
curve XNF ⊗kNF

k′′
¤ (respectively, UNF ⊗kNF

k′′
¤) over k′′

¤ such that the
conjugacy class of the pro-p Galois section of JNF ⊗kNF

k′′
¤ determined

by s¤ coincides with the conjugacy class of a pro-p Galois section of
JNF⊗kNF

k′′
¤ which arises from the k′′

NF-rational point xNF ∈ JNF(k′′
NF) ⊆

JNF(k′′
LF).
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Assume that the pro-p Galois section of XNF ⊗kNF
k′′

¤ determined by
s¤ arises from a k′′

¤-rational point x ∈ XNF(k′′
¤) (cf. Remarks 1.1.1,

1.1.3). Now it follows from the well-known theorem of Mordell-Weil if
¤ = “NF” or [6], Theorem 7, if ¤ = “LF” that the kernel of the pro-p
Kummer homomorphism for JNF ⊗kNF

k′′
¤

κ : JNF(k′′
¤) −→ H1(k′′

¤, ∆JNF
)

coincides with the subgroup JNF(k′′
¤)6=p of JNF(k′′

¤) consisting of torsion
elements a ∈ JNF(k′′

¤) of JNF(k′′
¤) such that every prime divisor of the

order ord(a) of a is 6= p. In particular, it follows from Remark 1.1.4, to-
gether with the various definitions involved, that the images of xNF and
ιO(x) in JNF(k′′

¤)/JNF(k′′
¤)6=p coincide; thus, since xNF ∈ JNF(Q)[tor], it

follows that ιO(x) ∈ JNF(k′′
LF)[tor] ∩ ιO(XNF(k′′

LF)) — in contradiction
to the assumption that xNF satisfies the condition in (†) in the above
claim. This completes the proof of the fact that the finite extension
k′

NF of kNF satisfies the condition in the statement of Theorem A. ¤
Proof of Theorem B. Since the set of kNF-rational points of the Ja-
cobian variety of XNF is infinite (cf. [2], Theorem 2.1), it follows im-
mediately from the well-known theorem of Mordell-Weil that the set
consisting of conjugacy classes of pro-p Galois sections of the Jacobian
variety of XNF is infinite (cf. the discussion concerning the kernel of
the pro-p Kummer homomorphism “κ” in the proof of Theorem A,
also Remark 1.1.4). Therefore, Theorem B follows immediately from
Corollary 3.6. This completes the proof of Theorem B. ¤
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Mathématiques, 3. Société Mathématique de France, Paris, 2003.

[5] Y. Hoshi and S. Mochizuki, On the combinatorial anabelian geometry of nodally
nondegenerate outer representations, RIMS preprint 1677.

[6] A. Mattuck, Abelian varieties over p-adic ground fields, Ann. of Math. (2) 62,
(1955). 92–119.

[7] S. Mochizuki, The local pro-p anabelian geometry of curves, Invent. Math. 138
(1999), no. 2, 319–423.

[8] S. Mochizuki, Topics surrounding the anabelian geometry of hyperbolic curves,
Galois groups and fundamental groups, 119–165, Math. Sci. Res. Inst. Publ.,
41, Cambridge Univ. Press, Cambridge, 2003.

[9] H. Nakamura, Galois rigidity of algebraic mappings into some hyperbolic va-
rieties, Internat. J. Math. 4 (1993), no. 3, 421–438.



18 YUICHIRO HOSHI

[10] F. Pop, On the birational p-adic section conjecture, to appear in Compositio
Math.

[11] M. Raynaud, Courbes sur une variété abélienne et points de torsion, Invent.
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