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Abstract

We show that computing the Shapley value of minimum cost spanning tree
games is #P-hard even if the cost functions are restricted to be {0, 1}-valued.
The proof is by a reduction from counting the number of minimum 2-terminal
vertex cuts of an undirected graph, which is #P-complete. We also investigate
minimum cost spanning tree games whose Shapley values can be computed in
polynomial time. We show that if the cost function of the given network is a
subtree distance, which is a generalization of a tree metric, then the Shapley
value of the associated minimum cost spanning tree game can be computed in
O(n4) time, where n is the number of players.

1. Introduction

This paper deals with the computational complexity of the Shapley value [22] of
minimum cost spanning tree games. Suppose that KV is the complete graph with
vertex set V and a function c which assigns a nonnegative cost c(v, w) to each edge
{v, w} of KV is given. A minimum cost spanning tree game (MCST game for short) is
a cooperative (cost) game (N, c̃) defined as follows. The set of players is N = V −{r},
where r ∈ V is a designated vertex, and for eachX ⊆ V c̃(X) is the cost of a minimum
cost spanning tree of the subgraph of KV induced byX∪{r}. Minimum cost spanning
tree games are introduced in the seminal paper [6] by Bird and fundamental theory
was developed in [6], [13], [14] and [15].

There is a considerably rich literature on MCST games by economists, studying
mostly axiomatic properties of several solution concepts for them. See, e.g., [8], [19],
[17], [11] and [7]. In contrast, there is only few literature on the computational com-
plexity of MCST games. (Faigle, Kern and Kuipers [10] show that computing the nu-
cleolus of the MCST games is NP-hard and Faigle, Kern, Fekete and Hochstättler [9]
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show that testing membership in the core of MCST games is co-NP-complete.) Es-
pecially, the computational complexity of the Shapley value of the MCST games has
been an open problem.

In this paper, we show that computing the Shapley value of MCST games is
#P-hard even if the cost functions are restricted to be {0, 1}-valued, where we use
a reduction from counting the number of minimum 2-terminal vertex cuts of an
undirected graph. We also investigate MCST games whose Shapley values can be
computed in polynomial time. We show that if the cost function of the given network
is a subtree distance [16], which is a weaker notion of tree metric (see [21]), then
the Shapley value of the associated game can be computed in O(n4) time, where n
is the number of players. This class of MCST games properly includes the formerly
known subclass of MCST games for which there exists a polynomial time algorithm
computing the Shapley value (see [5], [2]).

The rest of this paper is organized as follows. In Section 2, we give basic definitions
and review fundamental results on MCST games. In Section 3, we prove the #P-
hardness of the Shapley value of MCST games. In Section 4, we consider cases where
the Shapley value can be computed in polynomial time. Section 5 gives summary
and concluding remarks of this paper.

2. Basic Definitions and Preliminaries

We denote by R the set of real numbers and by R+ the set of nonnegative real
numbers. For a subset X and a single element y, we write X ∪ y instead of X ∪ {y}.
The set difference of two sets X and Y is denoted by X − Y and we write X − y

instead of X − {y} if Y = {y} is a singleton.

2.1. Cooperative games and the Shapley value

A cooperative (cost) game (N, f) is a pair of a finite set N and a function f : 2N → R

with f(∅) = 0. We call N the set of the players and the function f is called the
characteristic function. In the sequel, we sometimes call a cooperative game simply
a game.

The Shapley value Φ(f) ∈ R
N of game (N, f) is defined as

Φv(f) =
∑

v 6∈X⊆N

|X|!(n− |X| − 1)!

n!
(f(X ∪ v) − f(X)) (v ∈ N). (2.1)

See a survey [23] for axiomatic characterizations of the Shapley value. For our pur-
pose, an important feature of the Shapley value is the linearity: for any two games
(N, f), (N, g) and scalers λ, µ ∈ R, we have

Φ(λf + µg) = λΦ(f) + µΦ(g), (2.2)

where game (N, λf + µg) is defined by (λf + µg)(X) = λf(X) + µg(X) (X ⊆ N).
For game (N, f) and U ⊆ N , the restriction of (N, f) to U is a game (U, f |U)

defined by (f |U)(X) = f(X) (X ⊆ U).
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Lemma 2.1: Let (N, f) be a cooperative game and U ⊆ N . For a game (N, f ∗ U)
defined by (f ∗ U)(X) = f(X ∩ U) (X ⊆ N), we have

Φv(f ∗ U) =
{

Φv(f |U) if v ∈ U ,
0 otherwise

(v ∈ N). (2.3)

(Proof) If v 6∈ U , then we have (f ∗ U)(X ∪ v) = (f ∗ U)(X) for all X ⊆ N . Hence,
Φv(f ∗ U) = 0. Suppose that v ∈ U . Then, we have

Φv(f ∗ U) (2.4)

=
∑

X⊆N−v

|X|!(n− |X| − 1)!

n!
(f((X ∩ U) ∪ v) − f(X ∩ U)) (2.5)

=
∑

Y ⊆U−v

∑

Z⊆N−U

|Y ∪ Z|!(n− |Y ∪ Z| − 1)!

n!
(f(Y ∪ v) − f(Y )) (2.6)

=
∑

Y ⊆U−v

n−u∑

z=0

(
n− u

z

)
(y + z)!(n− y − z − 1)!

n!
(f(Y ∪ v) − f(Y )), (2.7)

where we set u = |U |, y = |Y | and z = |Z|. Since

n−u∑

z=0

(n− u)!

z!(n− u− z)!

(y + z)!(n− y − z − 1)!

n!
(2.8)

=
(n− u)!y!(u− y − 1)!

n!

n−u∑

z=0

(y + z)!

y!z!

(n− y − z − 1)!

(n− u− z)!(u− 1)!
(2.9)

=
(n− u)!y!(u− y − 1)!

n!

n−u∑

z=0

(
y + z

z

)(
n− y − z − 1

n− u− z

)
(2.10)

=
(n− u)!y!(u− y − 1)!

n!

(
n

n− u

)
(2.11)

=
y!(u− y − 1)!

u!
, (2.12)

we have

Φv(f ∗ U) =
∑

Y ⊆U−v

y!(u− y − 1)!

u!
(f(Y ∪ v) − f(Y )) = Φv(f |U). (2.13)

2.2. The Shapley value of MCST Games

All graphs we consider in this paper are simple undirected graphs (without self-loop
and parallel edges). For a graph G = (V,E) and U ⊆ V , we denote by G[U ] the
subgraph of G induced by U . We denote by KV the complete graph with the vertex
set being V , i.e., KV = (V,

(
V

2

)
), where

(
V

2

)
= {{v, w} | v, w ∈ V, v 6= w}. For a graph

G = (V,E) a subgraph H = (W,F ) is called a spanning tree if V = W and H is a
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tree. We also say that F is a spanning tree of G = (V,E) if H = (W,F ) is a spanning
tree of G.

Let KV = (V,
(

V

2

)
) be the complete graph with vertex set V and let c:

(
V

2

)
→ R+

be a function. We call such a pair (KV = (V,
(

V

2

)
), c) a network. For each subset

T ⊆
(

V

2

)
, we define the cost c(T ) of T by c(T ) =

∑
{v,w}∈T c(v, w).

Let (KV , c) be a network with a designated vertex r called the source. The min-
imum cost spanning tree game (or MCST game for short) associated with network
(KV , c) is a cooperative game (N, c̃) defined as follows. The set of players is N = V −r
and c̃: 2N → R is defined by

c̃(X) = min{c(T ) | T ⊆
(

X∪r

2

)
is a spanning tree of KX∪r} (X ⊆ N), (2.14)

where KX∪r is the complete subgraph of KV induced by X ∪ r.
For a network (KV = (V,

(
V

2

)
), c), let the distinct values of positive c(v, w)’s be

(0 <)γ1 < · · · < γp (2.15)

and let γ0 = 0. For each i = 1, · · · , p define ci:
(

V

2

)
→ {0, 1} by

ci(v, w) =
{

1 if γi ≤ c(v, w),
0 otherwise

({v, w} ∈
(

V

2

)
). (2.16)

We have

c =

p∑

i=1

(γi − γi−1)ci. (2.17)

Furthermore, we have the following proposition due to Norde, Moretti and Tijs [19].
The proof is essentially the same as that of [19] but is slightly shorter.

Proposition 2.2 (Norde, Moretti and Tijs [19]): Let (KV , c) be a network with source
r. Then, c̃: 2N → R is decomposed as

c̃ =

p∑

i=1

(γi − γi−1)c̃i, (2.18)

where ci:
(

V

2

)
→ {0, 1} is defined by (2.16) for i = 1, · · · , p.

(Proof) We proceed by induction on p ≥ 0. For p = 0, 1 we have nothing to prove.
Suppose that k > 2 and the assertion of the present proposition is true for p = k− 1.

Let us consider c′:
(

V

2

)
→ R+ defined by

c′(v, w) =
{
c(v, w) − γ1 if c(v, w) > 0,
0 otherwise

({v, w} ∈
(

V

2

)
). (2.19)

Then, we have

c′ = c− γ1c1 =

p∑

i=2

(γi − γi−1)ci. (2.20)

Let X ⊆ N and let T ⊆
(

X∪r

2

)
be a minimum cost spanning tree of (KX∪r, c1).

Define T (0) = {{v, w} | {v, w} ∈ T, c1(v, w) = 0}. Since for each {v, w} ∈ T (0) we
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have c′(v, w) = 0, it follows from the validity of the greedy algorithm of Kruskal [18]
that there exists a minimum cost spanning tree T ′ of (KX∪r, c

′) such that T (0) ⊆ T ′.
Then, we have c1(T

′) ≤ |X| − |T (0)| = c1(T ), and hence, T ′ is also a minimum cost
spanning tree of (KX∪r, c1). Therefore, we have

c̃(X) = γ1c̃1(X) + c̃′(X). (2.21)

It follows from the induction hypothesis that

c̃(X) =

p∑

i=1

(γi − γi−1)c̃i(X). (2.22)

This completes the proof of the present lemma.

We have from Proposition 2.2 and the linearity of the Shapley value the following
proposition.

Proposition 2.3: Suppose that (KV , c) be a network and c is decomposed as in
(2.17). Then, we have

Φ(c̃) =

p∑

i=1

(γi − γi−1)Φ(c̃i). (2.23)

Therefore, computation of the Shapley value of an MCST game is reduced to that of
an MCST game with a {0, 1}-valued cost function.

Suppose that (KV , c) is a network with source r ∈ V , where c is {0, 1}-valued.
Let us consider the graph G(0) = (V,E(0)), where

E(0) = {{v, w} | {v, w} ∈
(

V

2

)
, c(v, w) = 0}. (2.24)

It is straightforward to see the following propositions.

Proposition 2.4: Suppose that (KV , c) is a network with source r ∈ V , where c is
{0, 1}-valued and graph G(0) = (V,E(0)) is defined by (2.24). Then, c̃(X) is equal to
the number of connected components of G(0)[X ∪ r] − 1 for each X ⊆ N .

Note that if r is an isolated vertex ofG(0)[X∪r], then c̃(X) is the number of connected
components of G(0)[X].

Proposition 2.5: Suppose that (KV , c) is a network with source r ∈ V , where c is
{0, 1}-valued and graph G(0) = (V,E(0)) is defined by (2.24). For a clique Q ⊆ V of
G(0), we have

(i) If r 6∈ Q and r is an isolated vertex of G(0), then Φv(c̃|Q) = 1
|Q|

for all v ∈ Q.

(ii) If r ∈ Q, then Φv(c̃|Q− r) = 0 for all v ∈ Q− r.
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3. #P-Hardness

In this section, we show that the following problem is #P-hardness even if the cost
functions c are restricted to be {0, 1}-valued.

Definition 3.1: MCSTG-SHAPLEY: Given a network (KV , c) with source r, we are
asked to compute the Shapley value of game (N, c̃), where c̃: 2N → R is defined by
(2.14).

The proof is by a reduction from counting the number of minimum 2-terminal vertex
cuts of an undirected graph.

Let G = (N,E) be an undirected graph with two terminal vertices s, t ∈ N

(s 6= t). Vertex set X ⊆ N −{s, t} is called an s-t vertex cut if s and t are not in the
same connected component of G−X, where G−X is the subgraph of G induced by
N −X.

Definition 3.2: #MINIMUM s-t VERTEX CUT: Given an undirected graph G =
(N,E) and distinct vertices s, t ∈ N , we are asked to compute the number of minimum
cardinality s-t vertex cuts of G.

AboElFotoh and Colbourn [1] show that #MINIMUM s-t VERTEX CUT is #P-
complete.

Let G = (N,E) be an undirected graph and r 6∈ N . Let V = N ∪ r and define
cost function cG:

(
V

2

)
→ {0, 1} by

cG(v, w) =
{

0 if {v, w} ∈ E,
1 otherwise

({v, w} ∈
(

V

2

)
). (3.1)

Let G = (N,E) be an undirected graph and let s, t ∈ N be distinct vertices of G
which are not adjacent. Let G′ = (N,E ′) be the graph defined by E ′ = E ∪ {{s, t}}.

Lemma 3.3: Let C = c̃G and C ′ = c̃G′. Then, we have for each X ⊆ N

C(X) − C ′(X) =
{

1 if {s, t} ⊆ X and N −X is an s-t vertex cut of G,
0 otherwise.

(3.2)

(Proof) If {s, t} 6⊆ X, then G[X] = G′[X]. Suppose that {s, t} ⊆ X. If N − X is
not an s-t vertex cut of G, then the number of connected components of G′ is same
as that of G. Otherwise, the number of connected components of G′ is one less than
that of G. Therefore, the desired equation (3.2) follows from Proposition 2.4.

Lemma 3.4: Let Fj be the number of s-t vertex cuts of G of size j for j = 0, 1, · · · , n−
2. Then, we have

Φs(C) − Φs(C
′) =

n−2∑

j=0

Fj

j!(n− j − 1)!

n!
. (3.3)

(Proof) Let us consider the function f : 2N → {0, 1} defined by

f(X) =
{

1 if {s, t} ⊆ X and N −X is an s-t vertex cut of G,
0 otherwise

(3.4)
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for each X ⊆ N . The Shapley value Φs(f) is evaluated as follows:

n!Φs(f) =
∑

s∈X⊆N

(|X| − 1)!(n− |X|)!(f(X) − f(X − s)) (3.5)

=
∑

{s, t} ⊆ X ⊆ N

N − X is an s-t vertex cut of G

(|X| − 1)!(n− |X|)! (3.6)

=
∑

Y ⊆ N − {s, t}
Y is an s-t vertex cut of G

(n− |Y | − 1)!|Y |! (3.7)

=
n−2∑

j=0

Fj(n− j − 1)!j!. (3.8)

By Lemma 3.3 and the linearity of the Shapley value, we have the desired equa-
tion (3.3).

Theorem 3.5: MCSTG-SHAPLEY is #P-hard even if the cost functions are re-
stricted to be {0, 1}-valued.

(Proof) We reduce #MINIMUM s-t VERTEX CUT to MCSTG-SHAPLEY, where
we shall use the proof technique used in [3].

Let G = (N,E) be an undirected graph with s, t ∈ N being non-adjacent. Let
v̂1, · · · , v̂n−2 be new vertices disjoint from N and for i = 0, 1, · · · , n − 2 define Gi =
(Ni, Ei) by

Ni = N ∪ {v̂1, · · · , v̂i}, (3.9)

Ei = E ∪
i⋃

j=1

{{s, v̂j}, {v̂j, t}}. (3.10)

Let F
(i)
j be the number of s-t vertex cuts of Gi of size j for i = 0, 1, · · · , n − 2 and

j = 0, 1, · · · , n − 2 + i. Since the mapping X 7→ X ∪ {v̂1, · · · , v̂i} is a one-to-one
correspondence between the set of s-t vertex cuts of G and that of Gi, we have

F
(i)
j =

{
0 if 0 ≤ j < i,
Fj−i if i ≤ j ≤ n− 2 + i.

(3.11)

Let Ci = c̃Gi
and C ′

i = c̃G′

i
for i = 0, 1, · · · , n− 2. Then, we have from (3.11) and

Lemma 3.4 that

(n+ i)!(Φs(Ci) − Φs(C
′
i)) =

n−2+i∑

j=i

F
(i)
j j!(n+ i− j − 1)! (3.12)

=
n−2∑

j=0

Fj(i+ j)!(n− j − 1)! (3.13)

for i = 0, 1, · · · , n− 2.
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Let us denote (n−j−1)!Fj by fj (j = 0, 1, · · · , n−2). Now, we have the following
system of linear equations:

n−2∑

j=0

(i+ j)!fj = (n+ i)!(Φs(Ci) − Φs(C
′
i)) (i = 0, 1, · · · , n− 2). (3.14)

Since the determinant of the coefficient matrix of the left-hand side of (3.14) is

(Πn−2
j=0 j!)

2
(see [4]), the system (3.14) has the unique solution.

Therefore, if we have a polynomial time algorithm for computing the Shapley
values Φ(Ci) and Φ(C ′

i) for i = 0, 1, · · · , n − 2, we can compute the right-hand
side of system (3.14) in polynomial time. Since the size of each coefficient of the
system (3.14) of linear equations are polynomially bounded by n, we can compute
fj (j = 0, 1, · · · , n−2), and hence, Fj (j = 0, 1, · · · , n−2) by the Gaussian elimination
in time polynomial in n. In particular, we can compute the number of minimum s-t
vertex cuts of G in polynomial time.

4. Polynomial Cases

In this section, we consider subclasses of MCST games whose Shapley value can be
computed in polynomial time. We begin with MCST games (N, c̃) where the cost
functions c are {0, 1}-valued.

A cliqueQ ⊆ V of a graphG = (V,E) is called a clique cut ofG ifQ is also a vertex
cut of G. For a network (KV , c), where c is {0, 1}-valued, we define c+:

(
V

2

)
→ {0, 1}

by

c+(v, w) =

{
1 if r ∈ {v, w},
c(v, w) otherwise

({v, w} ∈
(

V

2

)
). (4.1)

Lemma 4.1: Suppose that (KV , c) is a network with source r ∈ V , where c is {0, 1}-
valued and graph G(0) = (V,E(0)) is defined by (2.24). Let Q be a clique cut of
G(0) = (V,E(0)) and U,W ⊆ V are such that r ∈ U , U ∪W = V , U ∩W = Q,
U −Q 6= ∅, W −Q 6= ∅ and there exists no edge connecting a vertex in U −Q and a
vertex in W −Q. Then, we have the followings.

(i) If r 6∈ Q, then

Φv(c̃) =





Φv(c̃|U − r) + Φv(c̃+|W ) − 1
|Q|

if v ∈ Q,

Φv(c̃|U − r) if v ∈ U −Q,

Φv(c̃+|W ) if v ∈W −Q

(v ∈ N). (4.2)

(ii) If r ∈ Q, then

Φv(c̃) =





Φv(c̃|U − r) + Φv(c̃|W − r) if v ∈ Q,
Φv(c̃|U − r) if v ∈ U −Q,
Φv(c̃|W − r) if v ∈ W −Q

(v ∈ N). (4.3)
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(Proof) We consider (i) only since (ii) can be treated similarly. Let G = G(0) for
the sake of notational simplicity. Let X ⊆ N and denote by C, CU and CW the
sets of connected components of G[X ∪ r], G[(X ∪ r) ∩ U ] = G[(X ∩ U) ∪ r] and
G[(X ∪ r) ∩W ] = G[X ∩W ], respectively.

Suppose X ∩Q = ∅. Then, C is the disjoint union of CU and CW . It follows from
Proposition 2.4 that

c̃(X) = |CU | + |CW | − 1 = c̃(X ∩ (U − r)) + c̃+(X ∩W ). (4.4)

Suppose X ∩ Q 6= ∅. Since Q is a clique, for each of C, CU and CW , there exists a
unique component intersecting Q. Let us denote these components by C,CU and CW ,
respectively. Then, we have

C = (CU − CU) ∪ (CW − CW ) ∪ {C} (4.5)

and it follows from Proposition 2.4 that

c̃(X) = |CU | − 1 + |CW | − 1 = c̃(X ∩ (U − r)) + c̃+(X ∩W ) − 1. (4.6)

Summarizing, we have

c̃(X) = c̃(X ∩ (U − r)) + c̃+(X ∩W ) − fQ(X) (X ⊆ N), (4.7)

where fQ: 2N → R is defined by

fQ(X) =
{

1 if X ∩Q 6= ∅,
0 otherwise

(X ⊆ N). (4.8)

Therefore, we have from the linearity of Φ that

Φ(c̃) = Φ(c̃ ∗ (U − r)) + Φ(c̃+ ∗W ) − Φ(fQ). (4.9)

Since we have

Φv(fQ) =

{
1
|Q|

if v ∈ Q,
0 otherwise

(v ∈ N), (4.10)

the desired equation (4.2) follows from (4.9) and Lemma 2.1.

It follows from Lemma 4.1 that for game (N, c̃) where c is {0, 1}-valued, the
computation of the Shapley value is reduced to the computation of the Shapley values
of games restricted to the 2-connected components of G(0).

A graph G is chordal if G does not contain an induced cycle of length four or
more. A vertex v of a graph G is called a simplicial vertex if the neighbors of v
induce a clique. A simplicial order of a graph G = (V,E) is an ordering v1, · · · , vn

of vertices of G such that vi is a simplicial vertex of G[{v1, · · · , vi}] for i = 1, · · · , n,
where n = |V |.

Theorem 4.2: Suppose that (KV , c) is a network with source r ∈ V , where c is
{0, 1}-valued and graph G(0) = (V,E(0)) is defined by (2.24). If G(0) is chordal,
then the Shapley value of game (N, c̃) can be computed in O(n2) time.
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(Proof) We let G = G(0). Suppose that G is chordal. Then, G has a simplicial order
v1, · · · , vn+1, which can be found in O(n2) time using the lexicographical breadth-first
search [20]. For i = 1, · · · , n+ 1, let Wi = {v1, · · · , vi} and Qi the set of neighbors of
vi in Wi.

We can inductively compute the Shapley value of (N, c̃) by repeated applications
of Lemma 4.1 as follows. Let i∗ ∈ {1, · · · , n+ 1} such that vi∗ = r. We consider only
the case when i∗ 6= 1 since the other case is treated similarly. For i = 1, · · · , i∗ − 1,
since the neighbors Qi of vi is a clique cut of G[Wi], we have from Proposition 2.5
and Lemma 4.1 that

Φv(c̃+|Wi) =





Φv(c̃+|Wi−1) −
1

|Qi|(|Qi|+1)
if v ∈ Qi,

Φv(c̃+|Wi−1) if v ∈ Wi−1 −Qi,
1

|Qi|+1
if v = vi

(v ∈Wi). (4.11)

For i = i∗, we have similarly

Φv(c̃|Wi − r) =

{
Φv(c̃+|Wi−1) −

1
|Qi|

if v ∈ Qi,

Φv(c̃+|Wi−1) if v ∈ Wi−1 −Qi

(v ∈ Wi − r). (4.12)

For i = i∗ + 1, · · · , n+ 1, if r 6∈ Qi, then we have

Φv(c̃|Wi − r) =





Φv(c̃|Wi−1 − r) − 1
|Qi|(|Qi|+1)

if v ∈ Qi,

Φv(c̃|Wi−1 − r) if v ∈ Wi−1 −Qi,
1

|Qi|+1
if v = vi

(v ∈ Wi − r).

(4.13)
Otherwise, we have

Φv(c̃|Wi − r) =

{
Φv(c̃|Wi−1 − r) if v ∈Wi−1,
0 if v = vi

(v ∈Wi − r). (4.14)

It is now obvious the overall computation of the Shapley value takes O(n2) time.

Next, we consider MCST games (N, c̃), where c is not necessarily {0, 1}-valued.
For a network (KV , c), where c:

(
V

2

)
→ R+ is arbitrary, and α ∈ R+, we define

G(α) = (V,E(α)) by

E(α) = {{v, w} | {v, w} ∈
(

V

2

)
, c(v, w) ≤ α}. (4.15)

A function c:
(

V

2

)
→ R+ is called an ultrametric if for each distinct x, y, z ∈ V we

have
c(x, z) ≤ max{c(x, y), c(y, z)}. (4.16)

Equivalently, c is an ultrametric if and only if for each distinct x, y, z ∈ V the maxi-
mum of c(x, y), c(y, z), c(z, x) is attained by at least two pairs.

Proposition 4.3: Let (KV , c) be a network. Then, c is an ultrametric if and only if
for each α ∈ R+ all the connected components of G(α) are complete.
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(Proof) Suppose that c:
(

V

2

)
→ R+ is an ultrametric. Let α ≥ 0 and let us consider

two arbitrary vertices v, w in a component of G(α). Then, there exists a path

v = v0, v1, · · · , vl = w (4.17)

in G(α) from v to w. By definition of G(α), we have

c(vi−1, vi) ≤ α (i = 1, · · · , l). (4.18)

We show that for i = 1, · · · , l
c(v0, vi) ≤ α. (4.19)

For i = 1 this is trivial. Let k ≥ 2 and suppose that for i = k− 1 (4.19) holds. Then,
since c is an ultrametric, we have by the induction hypothesis that

c(v0, vk) ≤ max{c(v0, vk−1), c(vk−1, vk)} ≤ α. (4.20)

Therefore, {v, w} is an edge of G(α).
Conversely, suppose that c is not an ultrametric. Then, there exist distinct

x, y, z ∈ V such that c(x, z) > max{c(x, y), c(y, z)}. For α = max{c(x, y), c(y, z)},
x and z are in the same connected component of G(α) but {x, z} is not an edge of
G(0).

If c:
(

V

2

)
→ R+ is an ultrametric, the number of distinct values of c(v, w) is at

most |V | − 1 = n (see [21]). Hence, it follows from Propositions 2.3, 4.3 and 2.5 that
Φ(c̃) can be computed in O(n3) time. However, it is possible to have an O(n2) time
algorithm for computing Φ(c̃) (see [5] and [2]).

A connected subgraph of a tree is called a subtree. A function c:
(

V

2

)
→ R+ is

called a subtree distance [16] if there exist a tree T = (X,F ), a function l:F → R+

and a family (Tv|v ∈ V ) of subtrees of T indexed by V such that

c(v, w) = dT (Tv, Tw) ({v, w} ∈
(

V

2

)
), (4.21)

where dT (Tv, Tw) is the minimum length of a path connecting a vertex of Tv and a
vertex of Tw with respect to the length function l.

Lemma 4.4: Let (KV , c) be a network. If c is a subtree distance, then G(α) is chordal
for each α ∈ R+.

(Proof) We call the pair (T, l) of an undirected tree T = (X,F ) and a function l:F →
R+ a weighted tree. Let d be a positive integer. For a weighted tree (T = (X,F ), l),
where l(x, y) > 0 for all {x, y} ∈ F , we call |T | ⊆ R

d an embedding of (T, l) if there
exists an injection ψ:X → R

d such that

(i) |T | =
⋃

{x,y}∈F [ψ(x), ψ(y)],

(ii) ||ψ(x), ψ(y)||2 = l(x, y) ({x, y} ∈ F ),

(iii) [ψ(x1), ψ(y1)] ∩ [ψ(x2), ψ(y2)] 6= ∅ implies {x1, y1} ∩ {x2, y2} 6= ∅
({x1, y1}, {x2, y2} ∈ F ),
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where [p, q] ⊆ R
d denotes the line segment with end-points p, q ∈ R

d. For an embed-
ding |T | of (T, l), a closed connected subset of |T | is called a subtree of |T |. For a
subtree R of |T | and α ≥ 0, define

R+α = {p | p ∈ |T |, d|T |(p,R) ≤ α}, (4.22)

where
d|T |(p,R) = min{d|T |(p, q) | q ∈ R} (4.23)

and d|T |(p, q) is the length of the unique path connecting p and q in |T |. Then, R+α

is again a subtree of |T |.

Let c:
(

V

2

)
→ R+ be a subtree distance. Then, there exist a weighted tree (T =

(X,F ), l) and a family (Tv = (Xv, Fv)|v ∈ V ) of subtrees of T such that (4.21) holds.
We can assume without loss of generality that l(x, y) > 0 for all {x, y} ∈ F . Let |T |
be an embedding of (T, l) with an injection φ:X → R

d for some d. For each v ∈ V ,
the embedding |T | of T naturally induces embedding of Tv:

|Tv| =
⋃

{x,y}∈Fv

[ψ(x), ψ(y)], (4.24)

which is a subtree of |T |.

For α ≥ 0, let us consider the family (|Tv|
+α

2 |v ∈ V ) of subtrees of |T |. Then,

|Tv|
+α

2 ∩ |Tw|
+α

2 6= ∅ if and only if dT (Tv, Tw) ≤ α. Therefore, in the graph G(α) =

(V,E(α)) defined by (4.15), we have {v, w} ∈ E(α) if and only if |Tv|
+α

2 and |Tw|
+α

2

intersect. It follows from [12, Theorem 3] that G(0) is a chordal graph.

By Proposition 2.2, Lemma 4.4 and Theorem 4.2, we have the following theorem.

Theorem 4.5: Let (KV , c) be a network. If c is a subtree distance, then the Shapley
value of game (N, c̃) can be computed in O(n4) time.

5. Summary and Concluding Remarks

We showed that computing the Shapley value of MCST games is #P-hard even if the
cost functions are restricted to be {0, 1}-valued. We also investigated MCST games
whose Shapley values can be computed in polynomial time. We showed that if the
cost function of the given networks is a subtree distance, then the Shapley value can
be computed in O(n4) time, where n is the number of players.

For future research, it would be interesting to investigate the computational com-
plexity of approximation of the Shapley value of MCST games. Also, finding a class
of MCST games for which the Shapley value can be computed efficiently, which pos-
sibly extends the class given in this paper, would be an interesting research topic as
well.
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