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Abstract. We discuss certain arithmetic invariants arising from the monodromy rep-
resentation in fundamental groups of a family of once punctured elliptic curves of char-
acteristic zero. An explicit formula in terms of Kummer properties of modular units is
given to describe these invariants. In the complex analytic model, the formula turns out
to feature the generalized Dedekind-Rademacher functions as a main periodic part of the
invariant.

1. Introduction

In this paper, we study certain invariants arising from (geometrically meta-abelian)
arithmetic fundamental groups of once punctured elliptic curves. Suppose we are given
an elliptic curve E over a number field k with Weierstrass equation

(1.1) E : y2 = 4x3 − g2x− g3

with discriminant ∆ = ∆(E, dx
y

) = g3
2 − 27g2

3 ∈ k×. The local coordinate t := −2x
y

at the

infinity point O of E \{O} := Spec(k[x, y]/(4x3− g2x− g3−y2)) gives rise to a tangential
base point

−→
w and a split exact sequence of profinite fundamental groups

(1.2) 1−→π1(Ek̄ \ {O},−→w)−→π1(E \ {O},−→w)
x−→Gk = Gal(k̄/k)−→ 1.

It is well known that the geometric fundamental group π1(Ek̄\{O},−→w) has a presentation
with generators x1,x2, z and relation [x1,x2]z = x1x2x

−1
1 x−1

2 z = 1 so that z generates an
inertia subgroup over the missing infinity point O.

Let l be a rational prime and π the maximal pro-l quotient of π1(Ek̄ \ {O},−→w). Write
ϕ−→w : Gk → Aut(π) for the Galois representation induced from (1.2). In [Bl84], S.Bloch
considered an elliptic analog of Ihara’s construction of the universal power series for Jacobi
sum [Ih86a], and proposed a new power series representation

(1.3) E : Gk(El∞ )−→Zl[[T1, T2]] ∼= Zl[[π
ab]] (σ 7→ Eσ)

from the meta abelian reduction of ϕ−→w in π/π′′. Here k(El∞) is the field obtained by
adjoining the coordinates of all l-power torsion points of E, and Zl[[π

ab]] is the l-adic
complete group algebra of the abelianization πab of π identified with the commutative ring
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of two variable formal power series in Ti := ‘the image of xi’−1 (i = 1, 2). This construc-
tion was first applied by H.Tsunogai [Tsu95a] to deduce a result of anabelian geometry.
Subsequently, an explicit formula for the coefficients of Eσ using Kummer properties of
the special values of the fundamental theta function θ(z, τ) = ∆(τ)e−6η(z,τ)zσ(z, τ)12 at
z = x1τ + x2 ((x1, x2) ∈ Q2 \ Z2) was given in [N95]. Our main motivation of this paper
is to generalize these results to more general σ ∈ Gk not necessarily contained in Gk(El∞ ).

In [Tsu95a], Tsunogai also derived an equation (see Remark 3.4.4 below) suggesting a
naive difficulty of extending Bloch’s construction of Eσ to general σ ∈ Gk, which makes
the elliptic case more complicated than Ihara’s case of π1(P

1−{0, 1,∞}). In fact, Ihara’s
universal power series for Jacobi sums is naturally defined on GQ, whereas Bloch’s power
series Eσ is not on Gk. In this paper, we propose a way to bypass the difficulty in
elliptic case still by extending Tsunogai’s treatment but in a somewhat twisted way.
Consequently, for each l-power m, we will construct a certain continuous mapping

(1.4) Em : Gk × Z2
l −→Zl

(
(σ, (u

v)) 7−→ Em(σ; u, v)
)

from the meta-abelian reduction Gk → Aut(π/π′′) of ϕ−→w . The value Em(σ; u, v) is not
periodic in u, v modulo m for general σ ∈ Gk, but turns out to be periodic for σ ∈ Gk(El∞ )

so as to determine an element Em(σ) of the finite group ring Zl[(Z/mZ)2]. Then, Eσ can
be recovered as the limit measure on Z2

l :

(1.5) Eσ = lim←−
m

(
Em(σ) +

1

12
ρ∆(E,m dx

y
)(σ) em

)
(σ ∈ Gk(El∞ )),

where ρ∆(E,m dx
y

) means a Kummer 1-cocycle along (a specified sequence of) l-power roots

of ∆(E, mdx
y

) = m−12(g3
2 − 27g2

3), and em ∈ Zl[(Z/mZ)2] designates the group element

sum (cf. §6.10 for details).
In this paper, we work in a slightly more general setting of pro-C versions, namely we

allow π to be the maximal pro-C quotient of the geometric fundamental group for any full
class of finite groups C closed under formation of subgroups, quotients and extensions.
Moreover, we consider the Weierstrass equation (1.1) with k arbitrary algebra B over Q,
which naturally fits in the language of Γ(1)-test object in the sense of N.Katz [K76]. One
can leave the role of Gk to π1(S, b̄) for S = Spec(B) with a chosen base point b̄ on S,
and start the same group-theoretical construction from the monodromy representation
ϕ−→w : π1(S, b̄) → Aut(π). Writing |C| := {m ∈ N; (Z/mZ) ∈ C}, ZC := lim←−M∈|C|(Z/MZ),

we obtain then the invariants (as continuous mappings in profinite topology)

(1.6) Em : π1(S, b̄)× Z2
C −→ZC (m ∈ |C|).

These invariants, after collected over all m ∈ |C|, will turn out to recover the meta-abelian
reduction of ϕ−→w in π/π′′ (Proposition 3.4.5 (ii)). Meanwhile, Eσ is defined on the pro-C
congruence kernel π1(S

C, b̄C), the kernel of monodromy representation ρC : π1(S, b̄) →
Aut(πab) ∼= GL2(ZC) in the abelianization πab of π. One then also gets generalization of
the above formula (1.5) on π1(S

C, b̄C) (cf. Theorem 6.10.3).
At this stage, entered into our view is anabelian geometry of the moduli space Mω

1,1

(= Spec(Q[g2, g3,
1
∆

])) and the universal once-punctured elliptic curve Mω
1,2 over it: In

the geometric fundamental group of the punctured Tate elliptic curve Tate(q) \ {O},
we can specify a standard generator system x1,x2, z with relation [x1,x2]z = 1 by the
van-Kampen gluing of π1(P

1 − {0, 1,∞}) along Neron polygons as considered in [IN97],
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[N99-02] §4. Then, choosing such a generator system in the geometric fiber of an arbitrary
elliptic curve E \{O} → S over b̄ corresponds to choosing a specific path on Mω

1,1 from the

representing point of b̄ to the locus of Tate elliptic curve Tate(q)/Q((q)). In §5, we will
discuss location of several significant tangential base points on Mω

1,2 and Mω
1,1 in the spirit

of our collaboration with L. Schneps [NS00], H.Tsunogai-S.Yasuda [NT03-06, NTY10] on
the “Galois-Teichmüller theory” of Grothendieck’s programme [G84].

Our first main theorem is an explicit formula providing the values of Em(σ; u, v) in
approximation modulo arbitrarily higher modulus in ZC:
Theorem A (Modular unit formula (Theorem 6.2.1)). Let σ ∈ π1(S, b̄). For any
M ∈ |C| and (u, v) ∈ Z2

C \ (mZC)2, pick two pairs of rational integers r = (r1, r2),
s = (s1, s2) such that r ≡ (u, v) mod mM22ε (where ε = 0, 1 according as 2 -M , 2|M
respectively) and

(
s1

s2

) ≡ ρC(σ)
(

r1

r2

)
mod m2MeC, where eC ∈ {1, 3, 4, 12} according as C

contains both, either or none of Z/3Z, Z/2Z (cf. §5.10). Then,

Em(σ; u, v) ≡
κm,m2M2

r
m
→ s

m
(σ)− ρ∆(E,m dx

y
)(σ)

12
mod M2,

where κm,m2M2

r
m
→ s

m
(σ) ∈ ẐC is defined by certain Kummer properties of power roots of mod-

ular units “σ( ∗
√

θ r
m

)/( ∗
√

θ s
m

)” for rational pairs r
m

= ( r1

m
, r2

m
), s

m
= ( s1

m
, s2

m
) with specified

branches of ∗√¤’s introduced in §5. ¤
Here we also note that by definition, Em(σ; 0, 0) = 0 and that Em(σ; u, v) for (u, v) ∈
(mZC)2 can be evaluated from Em(σ; u + 1, v), Em(σ; 1, 0) together with an elementary
arithmetic term (cf. Proposition 3.4.8).

Application of the above theorem to the complex analytic case of the universal (once
punctured) elliptic curve provides us with exact integer values of Em(σ; u, v) for σ ∈ B3

and (u, v) ∈ Z2, as the congruence assumptions modulo mM22ε, m2M2eC come to be void
(or, hold true for M = ∞) when s is obtained from r = (u, v) by multiplication of a matrix

in SL2(Z). In §7, we are led to evaluation of the quantity κm,m2∞
r
m
→ s

m
(σ) through examining

specific choices of logarithm of Siegel units. It turns out that the main periodic term can
be described in terms of the generalized Rademacher function of weight two studied by
B.Schoeneberg [Sch74] and G.Stevens [St82, St85, St87], which is, for x = (x1, x2) ∈ Q2

and A = (a
c
b
d) ∈ SL2(Z), given explicitly by

Φx(A) (= Φx(−A))

=

{
−P2(x1)

2
b
d

(c = 0),

−P2(x1)
2

a
c
− P2(ax1+cx2)

2
d
c

+
∑c−1

i=0 P1(
x1+i

c
)P1(x2 + ax1+i

c
) (c > 0),

where P1 and P2 denote the 1st and 2nd periodic Bernoulli functions respectively. We
shall also deduce an explicit formula evaluating the complementary non-periodic term
“Kx(A) ∈ Q” by comparing the infinite product expansions of Siegel units and generalized
Dedekind functions. Our main assertion in this setting is then summarized as follows:

Theorem B (Generalized Dedekind sum formula (Theorem 7.2.3)). Let B3 =
〈τ1, τ2〉 be the braid group of three strands with relation τ1τ2τ1 = τ2τ1τ2, and let ρ∆ : B3 →
Z be the abelianization homomorphism by τ1, τ2 7→ −1. For each σ ∈ B3, let Aσ ∈ SL2(Z)
denote the transposed matrix of the image of σ by the homomorphism B3 → SL2(Z)



4 HIROAKI NAKAMURA

determined by τ1 7→ ( 1
−1

0
1), τ2 7→ (1

0
1
1). Let m ≥ 1, and for (r1, r2) ∈ Z2 \ (mZ)2, set

x = (x1, x2) = ( r1

m
, r2

m
). Then, for σ ∈ B3, we have

Em(σ; r1, r2) = Kx(Aσ)− Φ(2)
x (Aσ)− 1

12
ρ∆(σ). ¤

Since each of the above three terms 1
12

ρ∆(σ), Φ
(2)
x (Aσ) and Kx(Aσ) generally has a rational

value with denominator, it would be curious to find how the integer value Em(σ; r1, r2) can
be composed of those three rational values in the above right hand side, say, in computer
calculations (see Example 7.2.4). We will also obtain an explicit formula to compute
Em(σ,mk1,mk2) from elementary arithmetic functions. (See Proposition 7.5.1.)

As mentioned above, our main motivation of the present paper is to construct an elliptic
analogue of Ihara’s universal power series for Jacobi sums [Ih86a] hoping to discuss analogs
of deep arithmetic phenomena in π1(P

1 − {0, 1,∞}) studied by Deligne, Ihara and other
subsequent authors (cf. e.g., [De89], [Ih90, Ih02], [MS03] etc.) Our approach basically
follows a combinatorial group-theoretical line of S.Bloch [Bl84] and H.Tsunogai [Tsu95a],
and the principal idea of our proof of Theorem A is, generalizing [N95], to observe closely
monodromy permutations of inertia subsets in π1(E\{O}) distinguished by punctures on a
certain family of meta-abelian coverings of E\{O}. Along with our early works [N95, N99]
together with subsequent complementary results such as [N01, N02j, N03j], the author had
realized that a main obstruction to integration of his results in a uniform theory lies in the
problem of descending the field of definition of Eσ from Gk(El∞ ) to Gk. This obstruction
is, as suggested in the equation derived by Tsunogai (Remark 3.4.4), an essential feature
which distinguishes the treatment of Galois representations in π1(E − {O}) from that in
π1(P

1 − {0, 1,∞}). We hope that our innovation of the bypass object Em(σ; u, v) in the
present paper could propose one possible solution to the problem. It is probably good to
stress that, in our approach here, the extension is constructed so as to keep integrality
of values of invariants even after extended to Gk. In topological higher genus mapping
class groups, this sort of extension problem was successfully treated by S.Morita [Mor93]
by introducing the “extended Johnson homomorphism” which keeps cocycle property but
allowing denominators. In genus one case, we should still leave it for future studies to
investigate an unknown extension in this direction.

Connections of Eσ to Eisenstein series of weight > 2, especially, to Eichler-Shimura type
periods of them have been studied to some extent in [N01, N02j, N03j]. In subsequent
works, we hope to discuss them in more details. More investigation of anabelian geometry
of moduli spaces of pointed elliptic curves should also be pursued from the viewpoint of
[NT03-06], [NTY10].

Before closing Introduction, we should like to mention some related works suggesting
further hopeful directions. Good reduction criterion of Oda-Tamagawa (cf. [Od95],[Ta97])
ensures that one can think about the pro-l version of Em(σ; u, v), say, at Frobenius ele-
ments σ for primes (not equal to l, bad primes), in which we might expect some newtype
arithmetic nature of elliptic curves. The fundamental groups of once punctured elliptic
curves have also been studied in depth by M.Asada [As01], R.Hain [Ha97], M.Kim [Ki07],
S.Mochizuki [Moc02], J.Stix [Sti08] and H.Tsunogai [Tsu95b, Tsu03], which enlarge (and
enrich) our scope on this fundamental object. Z.Wojtkowiak [Woj04] studied Galois ac-
tions on torsors of paths on once punctured elliptic curves from a viewpoint close to [N95].
It would certainly be interesting to investigate this direction from the point of view of
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the present paper. It seems apparently relevant to the motivic aspects of elliptic poly-
logarithms studied by several authors, e.g., Beilinson-Levin [BL94], Bannai-Kobayashi
[BK07]. At the time of writing this paper, however, the author does not see explicit links
between their works and ours. We hope to see relations with their works in future studies.

The construction of this paper is as follows. In §2, we prepare some terminologies
on elliptic curves and our basic objects, especially recalling some language of Γ(N)-test
objects in the sense of N.Katz. In §3, we introduce and discuss our main object Em mainly
from the view point of combinatorial group-theoretical treatment. In §4, we review and
formulate basic modular forms, especially, Siegel units and Eisenstein series and their
behaviors under GL2-action. In §5, we focus on the universal once-punctured elliptic
curves Mω

1,2 over the moduli space Mω
1,1 and discuss their anabelian geometry from the

viewpoint of Galois-Teichmüller theory in the sense of Grothendieck [G84], Drinfeld [Dr90]
and Ihara [Ih90]. In §6, we present our first main theorem (Theorem A, modular unit
formula) and the most part of this section is devoted to its proof. In §7, we apply the
modular unit formula to the complex analytic model, and deduce our second main theorem
(Theorem B, generalized Dedekind sum formula).

Acknowledgements. A seminal key idea of relating my old work [N95] with Dedekind
sums was first suggested to the author by Tomoyoshi Ibukiyama when we accidentally
came across to each other on a train to a Kinosaki conference in 1993, Japan. An original
version of the present paper had started as a manuscript entitled “On exterior monodromy
representations associated with affine elliptic curves” since the author’s stay at Bonn
University in the summer of 2001 (cf. [N01]). After a couple of years lack of chance to
work out the subject (except for some related works [N02j, N03j, N03]), essential part
of the present paper has been written up during my participation in the project “Non-
Abelian Fundamental Groups in Arithmetic Geometry” organized by J.Coates, M.Kim,
F.Pop and M.Saidi at Newton Institute in 2009. In view of the above amount of logbooks
on history of this paper, I would like to express my sincere gratitude to all named in the
above for their assistance and hospitality during the present work.

2. Some terminologies on elliptic curves

In this section, we shall prepare some notations and terminologies on elliptic curves and
their moduli space following mainly the formulation found in the paper by N. Katz [K76].
Since we will only be concerned with Galois theory of fundamental groups of algebraic
varieties of characteristic zero, we restrict ourselves to treating schemes over Q-algebras.

2.1. Γ(1)-test object. An elliptic curve over a Q-algebra B is a smooth family of elliptic
curves over S = Spec(B) with a fixed 0-section O : S → E of the structure morphism
f : E → S. The direct image sheaf of the relative differentials ωE/S := f∗(ΩE/S) is a
locally free sheaf over OS; suppose that we are given a global basis ω of ωE/S (“nowhere-
vanishing invariant differential”). Following [K76], we shall call the triple (E, O, ω) a
Γ(1)-test object defined over B. If IO denotes the ideal sheaf of the (image of the) zero
section O, then, for each n ≥ 2, the direct image sheaf f∗(I−n

O ) is locally free of rank
n on S (cf.[KM85] Chap.2). Thus, everywhere locally, one has an affine neighborhood
Spec(A) ⊂ S such that the restriction EA = E ⊗B A has a formal parameter t near the
zero section O and a unique basis {1, x, y} of f∗(I−3

O ) such that

(1) the formal completion (EA/O)∧ is isomorphic to Spf(A[[t]]);
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(2) ω|EA
is of the form (1 + O(t))dt;

(3) x ∼ t−2, y ∼ −2t−3 (∼ means “up to a factor of 1 + O(t)”);
(4) the affine ring H0(EA \ {O},O) = lim−→n

H0(EA, I−n
O ) is of the form

A[x, y]/(y2 = 4x3 − g2x− g3) for some g2, g3 ∈ A.

The above x, y and g2, g3 are uniquely determined on each Spec(A) ∈ U independently of
the choice of t’s. Moreover, g3

2 − 27g2
3 ∈ A×.

2.2. The moduli space Mω
1,1 and associated parameters. The universal Γ(1)-test

object is defined over the affine variety

Mω
1,1 := Spec(Q

[
g2, g3,

1

g3
2 − 27g2

3

]
)

where g2, g3 are indeterminates. We understand the superscript ω of Mω
1,1 here is only a

symbol (not indicating a particular differential form etc.) Note that, over Mω
1,1, there is a

canonical family of elliptic curves E ⊂ P2
Mω

1,1
defined by the equation y2z = 4x3− g2xz2−

g3z
3 with a specific 0-section O given by (x : y : z) = (0 : 1 : 0).

To see the universal property of (E/Mω
1,1, O, ω = dx/y) for the moduli problem of

(E/B,O, ω) (in characteristic zero), suppose we are given any Γ(1)-test object (E/B,O, ω).
Pick any Zariski open covering U = {Spec(Ai)}i∈I of S = Spec(B) as in §2.1, and con-
sider the family of representative morphisms fAi

: Spec(Ai) → Mω
1,1. By the uniqueness

of x, y and g2, g3 for each EAi
, one sees that the collection {fAi

} patch together to yield
a (canonical) morphism S → Mω

1,1.
It is obvious from the above construction that any Γ(1)-test object (E/B,O, ω) can be

realized as the pull back of (E/Mω
1,1, O, ω = dx/y) by a unique morphism S = Spec(B) →

Mω
1,1. Through the pullback morphisms, we, in particular, find specific elements g2, g3 ∈ B

and x, y ∈ H0(E, I−3
O ) satisfying

E \ {O} = Spec(B[x, y]/(y2 = 4x3 − g2x− g3)).

Then, it turns out that ω = dx/y and the function t = −2x/y could play the role of t of
§2.1 globally over B. We shall call these (x, y, g2, g3, t) the associated parameter for the
Γ(1)-test object (E/B,O, ω).

2.3. Weierstrass tangential base point. Let (E/B, O, ω) be a Γ(1)-test object with
the associated parameter (x, y, g2, g3, t) and suppose S = Spec(B) is a connected and
normal. Suppose we are given a geometric point b̄ : Spec(Ω) → S (Ω : an algebraically
closed field) which is defined by a ring homomorphism B → Ω. We shall define a tangential
base point

−→
w b̄ on E\{O} near the origin lying over b̄ as follows, and call it the Weierstrass

tangential base point over b̄.
Observe first that the coefficientwise application of the above ring homomorphism B →

Ω induces a homomorphism of B[[t]] into the (algebraically closed) field of Puiseux power
series Ω{{t}}, which gives a base point for πO

1 ((E/O)∧), the fundamental group of the
formal completion (E/O)∧ = Spf(B[[t]]) with ramifications along O allowed in the sense
of Grothendieck-Murre [GM71]. Obviously this tangential base point naturally lies in the
geometric fiber Eb̄ = E⊗B Ω over b̄ minus O; denote it and its natural images on Eb̄\{O},
(E/O)∧ by the same symbol

−→
w b̄ for simplicity. Also let

−→
w ′̄

b
,b̄′ be their natural images in

the universal family E/Mω
1,1 respectively. Then, applying the Grothendieck-Murre theory
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([GM71]), we obtain a commutative diagram of exact sequences of fundamental groups:

1 −−−→ Ẑ(1) −−−→ πO
1 ((E/O)∧,−→w b̄) −−−→ π1(S, b̄) −−−→ 1y

y
∥∥∥

1 −−−→ π1(Eb̄ \ {O},−→w b̄) −−−→ π1(E \ {O},−→w b̄) −−−→ π1(S, b̄) −−−→ 1∥∥∥
y

y
1 −−−→ π1(Eb̄′ \ {O},−→w ′̄

b
) −−−→ π1(E \ {O},−→w ′̄

b
) −−−→ π1(M

ω
1,1, b̄

′) −−−→ 1.

In fact, the exactness of the bottom sequence follows from the fact that Mω
1,1(C) is K(π, 1)

and the center-triviality of π1(E \ {O}). Since the upper left vertical arrow (hence the

upper middle vertical one too) is injective (it is an embedding of Ẑ(1) into a free profinite
group of rank 2), it turns out that the left horizontal arrows are also injective. This
explains the exactness of the above three lines.

2.4. Weierstrass tangential section. In the above diagram, we also would like to have
a canonical section π1(S, b̄) → π1(E \{O},−→w b̄) (depending only on the choice of t), which
we shall call the Weierstrass tangential section. The following argument to construct such
a section may be viewed as a simple digest of “tangential morphism” explained in [Ma97]
or in a more thorough formulation using log geometry [Moc99], [Ho09]. Here it suffices to
argue in the classical context using the device of Grothendieck-Murre [GM71]. Namely,
in our case, we may construct a fiber functor of Galois categories Φ : RevO((E/O)∧) →
Rev(S) which produces a section π1(Spec(B), b̄) → πO

1 (Spf(B[[t]]),
−→
w b̄) as follows. First,

we interpret the top exact sequence in the diagram of §2.3 under the assumption that b̄ is
a generic geometric point, i.e., Ω includes the ring B. The structure of πO

1 ((E/O)∧,−→w b̄)

as an extension of π1(B, b̄) by Ẑ(1) implies the following description of this group. Let
Bur ⊂ Ω be the universal etale cover of the ring B such that Aut(Bur/B) is canonically
identified with π1(S, b̄). Then, the automorphism group of the ring of Puiseux series⋃

n Bur[[t1/n]] over B[[t]] gives πO
1 ((E/O)∧, ā). This means that any connected finite cover

Y of SpfB[[t]] ramified only over t = 0 is dominated by SpfBur[[t1/n]] for some large enough
n. But since Bur[[t1/n]]⊗B[[t]] B[[t1/n]] = Bur[[t1/n]]n which is etale over B[[t1/n]], it follows

that the intermediate cover Y ⊗B[[t]] B[[t1/n]] is also etale over B[[t1/n]]. But since the

category of finite etale covers over B[[t1/n]] (fixed n) is equivalent to the category of those
over B ([GM71] 3.2.4), there corresponds to Y an etale cover Φ(Y ) over S = Spec(B)
which turns out to be determined independently of n. The functor Y 7→ Φ(Y ) gives our
desired fiber functor Φ : RevO((E/O)∧) → Rev(S).

Once the functor Φ is obtained, it is not difficult to check that, for any base points
b̄ on S, the fiber functor

−→
w b̄ : RevO((E/O)∧) → Sets is the composite of Φ with b̄ :

Rev(Y ) → Sets. In slightly more general, for any two base points b̄, b̄′ on S, there arises
a natural mapping of etale homotopy classes of chains π1(S; b̄, b̄′) → π1(E \{O};−→w b̄,

−→
w b̄′).

It is also rather a routine task to see that this gives a section of the canonical projection
π1(E \ {O};−→w b̄,

−→
w b̄′) → π1(S; b̄, b̄′). We shall write the constructed section associated

with the parameter t = −2x/y as

s−→w : π1(S; b̄, b̄′) → π1(E \ {O};−→w b̄,
−→
w b̄′)

and call it the Weierstrass tangential section.
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2.5. Pro-C monodromy representation. Below, we suppose that any full class C of
finite group is given and denote the maximal pro-C quotient of Π1,1 by Π1,1(C). Denote
by |C| the set of positive integers N with Z/NZ ∈ C, and write ZC = lim←−N∈|C|(Z/NZ).

We continue our discussion concerning a Γ(1)-test object (E/B,O, ω) and turn now to
the exact sequence discussed in §2.3:

1 −→ Π1,1 = π1(Eb̄ \ {O},−→w b̄) −→ π1(E \ {O},−→w b̄) −→ π1(S, b̄) −→ 1

with the Weierstrass section s−→w (§2.4). Then, by conjugation through s−→w , there arises a
monodromy representation

ϕC−→
w

: π1(S, b̄) → Aut(Π1,1(C)).

We shall call it the pro-C monodromy representation arising from the Γ(1)-test object
(E/B,O, ω). By the comparison theorem ([GR71]), the geometric fundamental group
π1(Eb̄ \ {O},−→w b̄) may be identified with a free profinite group presented as Π1,1 =
〈x1,x2, z | [x1,x2]z = 1〉 so that z generates an inertia subgroup over O. We will take z

to be a unique generator of the image of πO
1 ((Eb̄/O)∧,−→w b̄) (§2.4) having the monodromy

property: t1/n|az = ζ−1
n t1/n (n ≥ 1) in our later terminology in §6.1. It is easy to see then

that ϕC−→
w

(π1(S, b̄)) stabilizes 〈z〉 and acts on it by the C-adic cyclotomic character.
The monodromy representation in the maximal abelian quotient of Π1,1(C) corresponds

to the action on the first etale homology group of the issued elliptic curves. It can be
described in a more concrete way by matrices as follows. The abelianization of Π1,1(C)
is nothing but πC1 (Eb̄)(∼= Z2

C) which is canonically identified with the C-adic Tate module
lim←−N∈|C| Eb̄[N ]. Reduction of ϕC−→

w
to this quotient gives the representation

ρC : π1(S, b̄) → GL(Z2
C) = GL2(ZC).

2.6. Multiplication by N isogeny covering. For convenience of illustrations, we sup-
pose that an identification of the geometric fundamental group π1(Eb̄ \ {O},−→w b̄) with a
free profinite group Π1,1 = 〈x1,x2, z | [x1,x2]z = 1〉 is given and fixed, so that z generates
the (specific) inertia group over O as in the previous subsection.

Let N ∈ |C|. Then, there is a canonical isomorphism between the set of N -division
points Eb̄[N ] of Eb̄ and the quotient π1(Eb̄)/Nπ1(Eb̄), and after selecting the generators
x1,x2 of π1(Eb̄ \ {O},−→w b̄) ∼= Π1,1, we may identify the latter quotient with (Z/NZ)2

by x1 7→ (1, 0), x2 7→ (0, 1). Let ρN : π1(S, b̄) → GL2(Z/NZ) be the monodromy
representation obtained as the N -th component of ρC under this identification, and let
(SN = Spec(BN), b̄N) be a pointed etale cover of (S, b̄) corresponding to the kernel of
ρN . If EN denotes the pull-backed elliptic curve over BN , then, the group scheme EN [N ],
the kernel of the isogeny EN → EN given by the multiplication by N , is a finite etale
cover of BN with trivial monodromy, hence is the disjoint union of N2 copies of BN

which bijectively corresponds to the set Eb̄[N ]. Through this identification, the elliptic
curve EN/BN has BN -rational sections of N -division points labelled by (Z/NZ)2. This,
together with the nowhere vanishing differential ωN inherited from ω, defines a Γ(N)-test

object (EN/BN , α : (Z/NZ)2 ∼−→EN [N ], ωN) in the sense of [K76].
The ring BN necessarily contains µN , the N -th roots of unity. Indeed, there is a

morphism of flat commutative group schemes eN : EN [N ] × EN [N ] → µN over BN

called the Weil pairing. This canonically defines a primitive N -th root of unity ζN =
eN(α(1, 0), α(0, 1)) ∈ BN .
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One can choose a sequence of the pointed covers (SN , b̄N) of (S, b̄) to be multiplica-
tively compatible for all N ∈ |C| so that their inverse limit (SC = Spec(BC), b̄C) forms a
pro-etale cover of (S, b̄). The associated elliptic curve EC/BC has the rational C-torsion
sections whose “Tate module” is labelled by Z2

C. Under this setting, the fundamental
group π1(S

C, b̄C) is, as a subgroup of π1(S, b̄), nothing but the kernel of the representation
ρC : π1(S, b̄) → GL(Z2

C). We shall call it the pro-C congruence kernel of π1(S, b̄). Note that
the restriction of ϕC−→

w
to the pro-C congruence kernel is the same as the monodromy repre-

sentation of π1(S
C, b̄C) on πC1 ((EC)b̄C \ {O},−→w b̄C) for the Γ(1)-test object (EC/BC, O, ωC).

2.7. Anti-homomorphism a : π1(S, b̄) → Aut(SN/S). The covering transformation
group Aut(SN/S) acts on SN from the left. The elements of Aut(SN/S) bijectively
correspond to the image of ρN : π1(S, b̄) → GL2(Z/NZ) as follows. Let SN(b̄) be the
geometric fiber of SN → S over b̄ which contains the above selected particular point
b̄N . Then, the fundamental group π1(S, b̄) acts on SN(b̄) from the left. The action of
Aut(SN/S) on SN(b̄) commutes with that of π1(S, b̄) and is simply transitive. Therefore,
for each σ ∈ π1(S, b̄), there is a unique aσ ∈ Aut(SN/S) such that σ(b̄N) = aσ(b̄N). This
mapping satisfies

(2.7.1) aσσ′ = aσ′aσ (σ, σ′ ∈ π1(S, b̄))

and induces an anti-isomorphism

(2.7.2) aN : Im(ρN)
∼−→Aut(SN/S).

By the anti-functoriality of Spec(∗), each a ∈ Aut(SN/S) comes from a unique automor-
phism of the ring BN which we shall write as b 7→ b|a (b ∈ BN). Note that the mapping
σ 7→ ( |aσ) gives a (non-canonical) isomorphism Im(ρ) ∼= Aut(BN/B). If we change the
choice of b̄N in SN(b̄), then the above anti-homomorphism changes up to conjugation by
an element of Aut(SN/S).

With each morphism φ : T = Spec(R) → SN associated is a Γ(N)-test object (Eφ/R, αφ :

(Z/NZ)2 ∼−→Eφ[N ], ωφ) by natural fiber product formation. Given an automorphism
a ∈ Aut(SN/S), we obtain another morphism φ′ = a ◦ φ and the induced Γ(N)-test ob-

ject (Eφ′ , αφ′ : (Z/NZ)2 ∼−→Eφ′ [N ], ωφ′). Suppose that the morphisms φ, φ′ correspond to
ring homomorphisms φR, φ′R : BN → R respectively. Then, the values of the “functions”
b and b|a ∈ BN at those T -valued points φ, φ′ are related by

(2.7.3) φ′R(b) = φR(b|a) (b ∈ BN , φ′ = a ◦ φ).

[For example, if s ∈ SN(C) is any complex point, then it holds that b(as) = (b|a)(s).]
Since the two morphisms T → S through φ, φ′ are the same, we may canonically identify
Eφ = Eφ′ . Thus, we have

(2.7.4) αφ′ = αφ ◦ ρN(σ) (φ′ = aσ ◦ φ).

Using this and standard argument observing the Weil pairing, one sees that

(2.7.5) (ζN |aσ) = ζ
det(ρN (σ))
N = ζ

χ(σ)
N (N ∈ |C|, σ ∈ π1(S, b̄)),

where χ : π1(S, b̄) → Z×C the C-adic cyclotomic character.
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2.8. Relation of ρN(σ) and aN(σ) on M1,1[N ]. Now we shall consider the moduli stack
M1,1 of elliptic curves. The relative moduli problem of naive level N structures for N ≥ 3
over elliptic curves is known to be relatively representable by a scheme M1,1[N ] which is
etale over the stack M1,1 with Galois group GL2(Z/NZ). Write (E, O) for the universal
family of elliptic curves over M1,1, and (EN , O) its pull back over M1,1[N ] which has the

(universal) level N -structure αN : (Z/NZ)2 ∼−→EN [N ]. Pick any base point b̄ on M1,1

and its lift b̄N on M1,1[N ]. Then, we obtain the identification αb̄N : (Z/NZ)2 ∼= EN
b̄N [N ] ∼=

Eb̄[N ]. This gives us the monodromy representation ρN : π1(M1,1, b̄) → GL2(Z/NZ). On
the other hand, for each σ ∈ π1(M1,1, b̄), let aσ be the unique automorphism of M1,1[N ]
over M1,1 determined by σ(b̄N) = aσ(b̄N). Given a morphism φ : T = Spec(R) →
M1,1[N ], we obtain a pull-backed elliptic curve Eφ over R with a level N -structure αφ :

(Z/NZ)2 ∼−→Eφ[N ]. The composition φ′ = aσ ◦ φ induces another elliptic curve Eφ′ with

level N -structure αφ′ : (Z/NZ)2 ∼−→Eφ′ [N ]. As similar to (2.7.3-4), the two morphisms
T → M1,1 through φ, φ′ are the same, so that after identifying Eφ = Eφ′ , we have

(2.8.1) αφ′ = αφ ◦ ρN(σ) (φ′ = aσ ◦ φ).

2.9. Complex modular curves. The complex model of the “universal elliptic curve
E/{±1}” over the “j-line” Y1(C) := SL2(Z)\H is given as the quotient space of C × H
modulo the left action of Z2 o SL2(Z) by (cf. [Mum83] §9)

(2.9.1) (z, τ) 7→
(z + (2πi)(mτ + n)

cτ + d
,
aτ + b

cτ + d

)
((a

c
b
d) ∈ SL2(Z), (m,n) ∈ Z2).

Fix an embedding Q(µN) ↪→ C. Then, there arises a commutative diagram

(2.9.2)

EN ⊗ C −−−→ Z2 o Γ(N)\C× Hy
y

M1,1[N ]⊗ C −−−→ Y (N)⊗ C = Γ(N)\H,

where ⊗C are taken over Q(µN), in such a way that the section αN(x, y) : M1,1[N ] → EN

(x, y ∈ Z/NZ) is mapped to the image of {((2πi)( τ
N

x + 1
N

y), τ)|τ ∈ H}.
Since the natural morphism of M1,1[N ] to the modular curve Y (N)/Q(µN) of level N is

the quotient by {±1} ⊂ GL2(Z/NZ), each aσ (σ ∈ π1(M1,1, b̄)) induces also an automor-
phism a∗σ of Y (N). Suppose aσ fixes µN . Then, a∗σ gives a Q(µN)-automorphism of Y (N)
which naturally comes from an element of Aut(Y (N)/Y (1) ⊗ Q(µN)) ∼= PSL2(Z/NZ).
Now, we realize that there arise two matrices in our discussions so far. One is the image
ρN(σ) ∈ SL2(Z/NZ), where ρN : π1(S, b̄) → GL2(Z/NZ) is the monodromy representation
in the N -division points (§2.6). The other is the covering transformation A ∈ PSL2(Z) of
H lifting a∗σ. We claim then,

(2.9.3) ρN(σ) ≡ tA in PSL2(Z/NZ).

Proof. Let τ0 designate the image of small segment τ = iy (R 3 y À 0) on Y (N)(C)
and let A = (a

c
b
d) ∈ PSL2(Z/NZ) act on it as an automorphism of the modular curve.

Then, as explained in (2.9.2), the level structures on elliptic curves on the images of τ0

and A(τ0) = aτ0+b
cτ0+d

are given by the images of αφ : (x, y) 7→ ((2πi)( τ0
N

x + 1
N

y), τ0) and

αφ′ : (x, y) 7→ ((2πi)(A(τ0)
N

x + 1
N

y), A(τ0)) modulo the action of Z2 o Γ(N) respectively.
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Let us compute the latter one in regard with equivalences under the action of Z2oSL2(Z)
on C× H. It follows then:

(
x

N

aτ0 + b

cτ0 + d
+

y

N
,
aτ0 + b

cτ0 + d

)
=

(
(2πi)

( aτ0+b
N

x + cτ0+d
N

y

cτ0 + d

)
,
aτ0 + b

cτ0 + d

)

∼
(

(2πi)
( τ0

N
(ax + cy) +

1

N
(bx + dy)

)
, τ0

)
.

The interpretation is that the point represented by the elliptic curve Eτ0 with level struc-
ture αφ : (x, y) 7→ (2πi)( τ0

N
x + 1

N
y) is transformed to the point represented by the same

elliptic curve but with level structure αφ′ : (x, y) 7→ (2πi)( τ0
N

(ax+ cy)+ 1
N

(bx+dy)) under
the automorphism of Y (N) induced from the matrix A. Namely, the corresponding action
of ρN(σ)/ ± 1 on E [N ] must come from (x

y) 7→ (a
b
c
d)(

x
y). Hence αφ′ = ±αφ ◦ (a

b
c
d), which

implies ρN(σ) = ±(a
b
c
d) by (2.7.3) ¤

3. Monodromy invariants of Eisenstein type

3.1. Setting. In this section, we fix a full class C of finite groups and a Γ(1)-test object
(E, O, ω) over a connected normal affine scheme S = Spec(B) with associated parameter
(x, y, g2, g3, t) as in §2.1, 2.2. Pick a geometric basepoint b̄ on S which induces the Weier-
strass tangential basepoint

−→
w b̄ on the once punctured elliptic curve Eb̄\{O}. We consider

then the pro-C monodromy representation ϕC−→
w b̄

: π1(S, b̄)−→Aut(π1(Eb̄ \ {O},−→w b̄)(C)) as

in §2.5. Let us set π := π1(Eb̄ \ {O},−→w b̄)(C), and write π′ := [π, π] (resp. π′′ := [π′, π′])
for the commutator (resp. double commutator) subgroup of π in the sense of profinite
groups. Call πab := π/π′ the abelianization of π. The abelianization map extends to a
natural projection of the complete group algebras of π to that of πab:

(∗)ab : ZC[[π]]−→ZC[[πab]].

The purpose of this section is to extract a sequence of arithmetic representations of
π1(S, b̄), which we wish to call of Eisenstein type, from the action of π1(S, b̄) on the
meta-abelian quotient π/π′′ in a combinatorial group-theoretical way.

3.2. Pro-C free differential calculus. Suppose we are given a free generator system
x1,x2 of π so that z := [x1,x2]

−1 generates an inertia subgroup over the puncture on
Eb̄ \ {O}. The pro-C free differential operator ∂

∂xi
: ZC[[π]] → ZC[[π]] (i = 1, 2) is well

defined and is characterized by the formula:

(3.2.1) λ = ε(λ) +
∂λ

∂x1

(x1 − 1) +
∂λ

∂x2

(x2 − 1),

where ε : ZC[[π]] → ZC is the augmentation map. Concerning the abelianization images of
the terms in the above formula, we have a pro-C version of the Blanchfied-Lyndon exact
sequence of ZC[[πab]]-modules:

(3.2.2) 0 // π′/π′′ ∂ // ZC[[πab]]⊕2 d // ZC[[πab]] // 0 ,

where ∂(s) := ( ∂s
∂x1

)ab⊕ ( ∂s
∂x2

)ab and d(µ1⊕ µ2) := µ1(x̄1− 1) + µ2(x̄2− 1) for x̄i := (xi)
ab

(i = 1, 2). It is known by [Ih86a, Ih99-00] that π′/π′′ is a free Ẑ[[πab]]-cyclic module
generated by the image z̄ of z ∈ π′ in π′/π′′. In view of this fact, we can write each
element s̄ ∈ π′/π′′ uniquely as µ · z̄ (µ ∈ ZC[[πab]]). The embedding ∂ of π′/π′′ in (3.2.2)
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is often useful to calculate the “coordinate” µ of s̄. In fact, since ∂(z̄) = (x̄2 − 1, 1− x̄1),
we have

(3.2.3) µ =

(
∂s

∂x1

)ab

/(x̄2 − 1) =

(
∂s

∂x2

)ab

/(1− x̄1)

for s̄ = µ · z̄ ∈ π′/π′′ given as the image of s ∈ π′.

3.3. Guv-invariants. For simplicity below, we shall write the action of σ ∈ π1(S, b̄) via
ϕC−→

w b̄
just by

(3.3.1) σ(x) := ϕC−→
w b̄

(σ)(x)
(
σ ∈ π1(S, b̄), x ∈ π = π1(Eb̄ \ {O},−→w b̄)(C)

)
.

As explained in §2.5, the monodromy action on the abelianization πab = ZCx̄1 ⊕ ZCx̄2 is
written by the 2 by 2 matrices: We shall write:

(3.3.2) ρ(σ) = ρC(σ) =

(
a(σ) b(σ)
c(σ) d(σ)

)
(σ ∈ π1(S, b̄)),

so that σ(x1) ≡ x
a(σ)
1 x

c(σ)
2 , σ(x2) ≡ x

b(σ)
1 x

d(σ)
2 mod π′. Observe then that, for each pair

(u, v) ∈ Z2
C, the quotient

(3.3.3) Suv(σ) := σ(x−v
2 x−u

1 ) · (xa(σ)u+b(σ)v
1 x

c(σ)u+d(σ)v
2 )

lies in π′, which gives us a unique element Guv(σ) ∈ ZC[[πab]] determined by the equation

(3.3.4) Suv(σ) ≡ Guv(σ) · z̄
in π′/π′′.

3.4. Integral invariant ECm(σ). Let m ∈ |C|. The above element Guv(σ) ∈ ZC[[πab]] can
be regarded as a ZC-valued measure (written dGuv(σ)) on the profinite space πab ∼= Z2

C.
So one can think about the volume of the subspace (mZC)2 ⊂ Z2

C under this measure:

Definition 3.4.1. For m ∈ |C|, σ ∈ π1(Sb̄) and (u, v) ∈ Z2
C, we define

ECm(σ; u, v) :=

∫

(mZC)2
dGuv(σ).

Note that, by definition, S00(σ) = 1, G00(σ) = 0, hence ECm(σ; 0, 0) = 0. One of our
principal concerns in this and the following subsections is to examine dependency of
ECm(σ; u, v) on (u, v) ∈ Z2

C modulo m. Let us first express Guv by G10 and G01.

Proposition 3.4.2. For each σ ∈ π1(S, b̄), we have

Guv(σ) =
(x̄−b

1 x̄−d
2 )v − 1

x̄−b
1 x̄−d

2 − 1
G01(σ) + (x̄−b

1 x̄−d
2 )v (x̄−a

1 x̄−c
2 )u − 1

x̄−a
1 x̄−c

2 − 1
G10(σ)− Rest(a

c
b
d).(

u
v),

Here, (a
c
b
d) = ρC(σ) ∈ GL2(ZC) and Rest(a

c
b
d).(

u
v) is an explicit element in x̄1, x̄2 defined by

Rest(a
c
b
d).(

u
v) := Rv

b,d + (x̄−b
1 x̄−d

2 )vRu
a,c +

x̄−bv
1 − 1

x̄1 − 1

x̄−cu
2 − 1

x̄2 − 1
x̄−dv

2 ,

where, for any α, β, γ ∈ ZC,

Rγ
α,β :=

1

x̄1 − 1

(
(x̄−α

1 x̄−β
2 )γ − 1

x̄−α
1 x̄−β

2 − 1
· x̄

−β
2 − 1

x̄2 − 1
− x̄−βγ

2 − 1

x̄2 − 1

)
.
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Note. In the above notation Rest(a
c
b
d).(

u
v), the dot between (a

c
b
d) and (u

v) plays separation of
matrix component and vector component. Namely, Rest gives a map from SL2(ZC)× Z2

C
to ZC.

Proof. What we need to do is to evaluate (3.3.3) in π′/π′′. We may decompose Suv into
three factors lying in π′ as follows:

Suv =
(
(S01x

−d
2 x−b

1 )vxbv
1 xdv

2

) · x−dv
2 x−bv

1

(
(S10x

−c
2 x−a

1 )uxau
1 xcu

2

)
xbv

1 xdv
2

· (x−dv
2 x−bv

1 x−cu
2 xbv

1 xcu+dv
2

)
.

Then, apply (3.2.2-3) to each of the three factors. Note that for free differential calculus,
we can make use of basic laws of Leibniz type as shown in [Ih86b]. Only one nontrivial
point is to show a formula like

(
∂(x−b

2 x−d
1 )vxbv

1 xdv
2

∂x2

)ab

=
(x̄−b

1 x̄−d
2 )v − 1

x̄−b
1 x̄−d

2 − 1
· x̄

−d
2 − 1

x̄2 − 1
− x̄−dv

2 − 1

x̄2 − 1
,

which, however, follows easily by induction for non-negative integers u, and then by the
standard argument of continuity. ¤

Remark 3.4.3. In general, there are no reasons to expect that the values ECm(σ; u, v)
are periodic in (u, v) with any modulus. But we will see later (see Corollary 6.9.8)
that ECm(σ; u, v) mod M2 (M ∈ |C|) is determined by the residue class of (u, v) in
(Z/mM22εZ)2, where ε = 0, 1 according as 2 - M , 2|M respectively. Namely, we have a
well defined mapping

Em,M2 : π1(S, b̄)−→ (Z/M2Z)[(Z/mM22ε)2].

In fact, one can refine Em,M2 more minutely with replacing M2 by M , which amounts
to examining an elementary arithmetic divisibility property of

∫
(mẐ)2

dRmM2ε

α,β . We will

discuss it in a forthcoming separate article.

Remark 3.4.4. In [Tsu95a] Prop. 1.12, H.Tsunogai derived, by applying σ to the relation
[x1,x2]z = 1, an equation held by G−1,0 := G−1,0(σ) and G0,−1 := G0,−1(σ):

(x̄b
1x̄

d
2 − 1)G−1,0 − (x̄a

1x̄
c
2 − 1)G0,−1 = (ad− bc)− (x̄d

2 − 1)(x̄a
1x̄

c
2 − 1)− (x̄c

2 − 1)(x̄b
1x̄

d
2 − 1)

(x̄1 − 1)(x̄2 − 1)

in the same notations of the above proposition. Since ZC[[Z2
C]] has no zero-divisors as

shown in [Ih99-00], the above Tsunogai’s equation implies that only G−1,0 determines
G0,−1 or vice versa.

Proposition 3.4.5. Let σ ∈ π1(S, b̄) with ρC(σ) = (a
c
b
d). For (u, v) ∈ (ZC)2, denote by

Cm(u, v) ⊂ Z2
C the coset modulo (mZC)2 represented by (a

c
b
d).(

u
v) = u(a

c) + v(b
d).

(i) It holds that
∫

Cm(u,v)
dG10(σ) = ECm(u + 1, v)− ECm(u, v) +

⌊
au + bv

m

⌋
·
(⌊

c(u + 1) + dv

m

⌋
−

⌊
cu + dv

m

⌋)
,

where b α
m
c := − ∫

mZC d
(

x−α−1
x−1

)
for α ∈ ZC.

(ii) The values of
{
ECm(σ; u, v) | (u, v) ∈ Z2

C,m ≥ 1
}

determine the action of σ on π/π′′.
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Proof. By simple calculation from definition, it follows that

Guv(σ) = Gu+1,v(σ)− (x̄−a
1 x̄−c

2 )u(x̄−b
1 x̄−d

2 )vG10(σ) + Rest(a
c
b
d).(

u+1
v )− Rest(a

c
b
d)(

u
v)(3.4.6)

= Gu+1,v(σ)− (x̄−a
1 x̄−c

2 )u(x̄−b
1 x̄−d

2 )vG10(σ)− x̄−cu−dv
2

x̄−c
2 − 1

x̄2 − 1

x̄−au−bv
1 − 1

x̄1 − 1
.

Integrating measures represented by the above terms over the subspace (mZC)2 ⊂ Z2
C

enables us to find
∫

Cm(u,v)
dG10(σ)− ECm(u + 1, v) + ECm(u, v) equal to

∫

mZC
d

(
x̄−au−bv

1 − 1

x̄1 − 1

)
·
∫

mZC
d

(
x̄−cu−dv−c

2 − x̄−cu−dv
2

x̄2 − 1

)
,

from which (i) follows immediately. The formula (i) determines the measure G10(σ) ∈
ZC[[Z2

C]] from the collection of values ECm(σ; u, v) ((u, v) ∈ Z2
C, m ∈ |C|). If we put

u = −1, v = 0, then we find that it also determines

G−1,0(σ) = −x̄a
1x̄

c
2G1,0(σ)− x̄a

1 − 1

x̄1 − 1

x̄c
2 − 1

x̄2 − 1
.

Tsunogai’s equation (Remark 3.4.4) then also determines G0,−1(σ). Thus, both S−1.0(σ) =
σ(x̄1)x̄

−a
1 x̄−c

2 and S0,−1(σ) = σ(x̄1)x̄
−b
1 x̄−d

2 are determined modulo π′′. The assertion (ii)
follows since π is generated by x1, x2. ¤

Remark 3.4.7. We may use the notation
⌊ α

m

⌋
:= −

∫

mZC
d

(
x−α − 1

x− 1

) (
resp.

⌈ α

m

⌉
:=

∫

mZC
d

(
xα − 1

x− 1

))

for m ∈ N, α ∈ ZC to designate the pro-C floor (resp. ceiling) function. Obviously,
d− α

m
e = −b α

m
c. In fact, it is not difficult to verify the following: If α = mβ, then,

d α
m
e = β. When m - α, writing α ≡ 〈α〉m mod m with 〈α〉m ∈ [0, m) ⊂ N, it follows that

d α
m
e = 1 + α−〈α〉m

m
.

The following proposition allows us to compute ECm(σ; u, v) with both u and v divisible
by m in ZC from the values of ECm(σ; 1, 0), ECm(σ; u+1, v) and an arithmetically elementary
term.

Proposition 3.4.8. If (u, v) ∈ (mZC)2, then, for each σ ∈ π1(S, b̄) with ρC(σ) = (a
c
b
d),

ECm(σ; u, v) = ECm(σ; u + 1, v)− ECm(σ; 1, 0) +

⌊
au + bv

m

⌋
·
⌊ c

m

⌋
.

Proof. If we consider terms in the RHS of (3.4.6) as measures on the space Z2
C, then, under

the assumption (u, v) ∈ (mZC)2, the multiplications by (x̄−a
1 x̄−c

2 )u(x̄−b
1 x̄−d

2 )v, x̄−cu−dv
2 in

the second and third terms turn out to have no effects upon integration over (mZC)2.
This observation proves the proposition. ¤

3.5. Twisted invariants and their composition rule. Let σ ∈ π1(S, b̄) and regard σ
as acting on πab through ρ(σ) ∈ GL2(ZC). Noting that the Guv-invariant may be rewritten
as

(3.5.1) Guv(σ) = σ

(
x̄−v

2 − 1

x̄−1
2 − 1

)
G01(σ) + σ

(
x̄−v

2

x̄−u
1 − 1

x̄−1
1 − 1

)
G01(σ)− Restρ(σ).(u

v),
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we shall introduce its twist by a matrix ε ∈ GL2(ZC) as follows:

Gε
(u
v )(σ) :=(σε)

(
x̄−v

2 − 1

x̄−1
2 − 1

)
Gε(01)(σ) + (σε)

(
x̄−v

2

x̄−u
1 − 1

x̄−1
1 − 1

)
Gε(10)(σ)(3.5.2)

− [Restρ(σ)ε.(u
v)] + χ(σ) · σ [Restε.(u

v)] .

Since RestI.(u
v) = 0 for the unit matrix I = (1

0
0
1), it turns out that GI

(u
v )(σ) = Guv(σ).

A merit to introduce the ε-twisted invariants is the following composition rule:

Proposition 3.5.3. For σ, τ ∈ π1(S, b̄) and ε ∈ GL2(ZC), we have

Gε
(u
v )(στ) = G

ρ(τ)ε
(u
v ) (σ) + χ(σ) · σ (

Gε
(u
v )(τ)

)
.

Proof. We start from studying composition rules for G10 and G01. Let ρ(σ) = (a
c
b
d),

ρ(τ) = (α
γ

β
δ ) so that ρ(στ) = (aα+bγ

cα+dγ
aβ+bδ
cβ+dδ). Then, in π′/π′′ we have:

G10(σ) · z̄ ≡ S10(στ) = (στ)(x−1
1 )xaα+bγ

1 xcα+dγ
2 .

One can decompose the RHS as the product of two factors G10(τ)(σ(x̄1), σ(x̄2)) · z̄χ(σ) and

σ(x2)
−γσ(x1)

−αxaα+bγ
1 xcα+dγ

2 , the latter is equivalent to Gαγ(σ) · z̄ mod π′′ with Gαγ is
given as in §3.4. Applying the parallel argument to G01, we obtain

G10(στ) = χ(σ)G10(τ)(σx̄1, σx̄2) + Gαγ(σ);(3.5.4)

G01(στ) = χ(σ)G01(τ)(σx̄1, σx̄2) + Gβδ(σ).(3.5.5)

Putting these together into Guv(στ) developed by the formula (3.5.1) and collecting terms
according to the definition (3.5.2), we obtain

(3.5.6) Guv(στ) = χ(σ) · σ(Guv(τ)) + G
ρ(τ)
(u
v ) (σ) (σ, τ ∈ π1(S, b̄)).

Now, if f : S → Mω
1,1 is the representing morphism, then the monodromy representa-

tion from π1(S, b̄) factors through π1(M1,1, f(b̄)) and the above formula can hold true
for all elements σ, τ ∈ π1(M1,1, f(b̄)). Because of the surjectivity of ρ in the universal
elliptic curves, any given ε ∈ GL2(ZC) is realized as the image by ρ of some element
τ ∈ π1(M1,1, f(b̄)). Apply then (3.5.6) to σ = σ1σ2, then one gets

Gε
(u
v )(σ) = Guv(σ1σ2τ)− χ(σ1σ2) · σ1σ2(Guv(τ))

=
{
χ(σ1) · σ1(Guv(σ2τ)) + G

ρ(σ2τ)
(u
v ) (σ1)

}− χ(σ1) · σ1

(
χ(σ2) · σ2(Guv(τ))

)

= χ(σ1) · σ1(G
ρ(τ)
(u
v ) (σ2)) + G

ρ(σ2)ε
(u
v ) (σ1).

This concludes the proposition. ¤
As in §3.4, for each m ∈ |C|, one can consider the volume of the subspace (mZC)2 ⊂ Z2

C
under the measure dGε

(u
v )(σ), i.e.,

(3.5.7) Eε
m(σ; u, v)

(
= EC,ε

m (σ; u, v)
)

:=

∫

(mZC)2
dGε

(u
v )(σ).

Concerning the composition, noticing that the subspace (mZC)2 is invariant under the
GL2(ZC)-action on Z2

C, one derives easily from Prop. 3.5.3 that

(3.5.8) Eε
m(στ ; u, v) = Eρ(τ)ε

m (σ; u, v) + χ(σ)Eε
m(τ ; u, v) (σ, τ ∈ π1(S, b̄), (u, v) ∈ Z2

C).
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3.6. Measure ECσ on the congruence kernel. In our argument so far, we have not
allowed m to move over the integers m ∈ |C|, as our invariant ECm(σ; u, v) does not directly
provide a coherent sequence in the projective system of the group ring ZC[(Z/mZ)2]
in general. However, this is the case if σ lies in the congruence kernel π1(S

C, b̄C) =
ker(π1(S, b̄) → GL2(ZC)), i.e., ρC(σ) = I. In fact, in this case, Tsunogai’s equation
(Remark 3.4.4) reduces to the equation (originally observed by S.Bloch [Bl84]):

(3.6.1) (x̄2 − 1)G−1,0(σ)− (x̄1 − 1)G0,−1(σ) = 0,

from which it follows that there exists a unique measure ECσ ∈ ZC[[πab]] such that G−1,0(σ) =
(x̄1−1)ECσ and G0,−1(σ) = (x̄2−1)ECσ . On the other hand, by (3.4.6), we have G−1,0(σ) =
−x̄1G10(σ) and by Prop. 3.4.2, we see

(3.6.2) Guv(σ) =
x̄−v

2 − 1

x̄−1
2 − 1

G01(σ) + x̄−v
2

x̄−u
1 − 1

x̄−1
1 − 1

G10(σ)

when ρC(σ) = I. Applying u = 0, v = −1 in the latter gives also G0,−1(σ) = −x̄2G01(σ).
Thus, putting the above equations together we conclude:

(3.6.3) Guv(σ) = (x̄−u
1 x̄−v

2 − 1) · ECσ (σ ∈ π1(S
C, b̄C)).

This equation implies that the image of Guv(σ) in ZC[(Z/mZ)2], hence that of ECm(σ; u, v)
depends only on (u, v) modulo m: For σ ∈ π1(S

C, b̄C), it defines ECm(σ) ∈ ZC[(Z/mZ)2].
Now, write the image of ECσ in ZC[(Z/mZ)2] as

∑
a∈(Z/mZ)2 ECm(σ, a)(σ)ea, where ea

denotes the image of x̄u
1 x̄

v
2 under the projection ZC[[πab]] → ZC[x̄1, x̄2]/(x̄

m
1 −1, x̄m

2 −1) =
ZC[(Z/mZ)2] for any representative (u, v) ∈ Z2

C of the class a ∈ (Z/mZ)2. Then, (3.6.3)
allows us to express

(3.6.4) ECm(σ, a) = ECm(σ, a)− ECm(σ; 0, 0).

From this, for any fixed σ ∈ π1(S
C, b̄C), the incoherence of ECm(σ) ∈ ZC[(Z/mZ)2] with

respect m, in other words, the main reason for the sequence {ECm(σ)}m to fail to form a
measure on Z2

C, turns out to amount to the “error term” sequence {ECm(σ; 0, 0)}. In §6.10,
we will relate ECm(σ) and ECσ by estimating exactly this error term to be 1

12
of the Kummer

cocycle along power roots of “∆(E, mω)” which will be introduced in the next section.

Remark 3.6.5. If two full classes of finite groups C, C ′ satisfy C ⊂ C ′, then the natural
projection Π1,1(C ′) → Π1,1(C) induces ZC′ [[Π1,1(C ′)ab]] → ZC[[Π1,1(C)ab]]. Then, it is easily
seen that EC′m is mapped to ECm. This means that our pro-C formulation of ECm is somehow
superfluous, i.e., one can say that the full profinite version is essentially enough in our
hand. However, this is not the case when considering ECσ , as it is defined only on the
congruence kernel π1(S

C, b̄C) — depending on the set of primes in |C| as a subgroup of
π1(S, b̄) with respect to C.

Proposition 3.6.6. The mapping EC : π1(S
C, b̄C) → ZC[[πab]] (σ 7→ EC(σ) = ECσ ) is an

additive homomorphism, i.e.,

EC(στ) = EC(σ) + EC(τ) (σ, τ ∈ π1(S
C, b̄C)).

Moreover, this is “det⊗GL2”-equivariant in the sense that,

EC(στσ−1) = det(ρ(σ)) · σ(EC(τ)) (σ ∈ π1(S, b̄), τ ∈ π1(S
C, b̄C)).

This assertion can be proven in the same way as [N95] (4.8). We will give an alternative
proof in §6.10 using (3.5.8).
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4. Review of algebraic modular forms

In this section, we review special families of modular functions and forms — so called
the modular units and Eisenstein series — in algebraic style convenient for our later
discussions.

4.1. Fundamental theta functions. We begin by introducing the fundamental theta
function θ(z, L) (z ∈ C) for a lattice L ⊂ C. Let ℘(z) = ℘(z, L) be the Weierstrass ℘-
function. As is well known, the associated parameters for the Γ(1)-test object (C/L, dz)
are given by x = ℘(z), y = ℘′(z), g2 := 60

∑′
ω ω−4 and g3 = 140

∑′
ω ω−6 (

∑′
ω means the

sum over ω ∈ L′ = L \ {0}). Then, we define

(4.1.1) θ(z, L) := ∆(L)e−6”(z,L)zσ(z, L)12.

Here ∆(L) = g3
2 − 27g2

3, σ(z, L) is the Weierstrass σ-function of L:

(4.1.2) σ(z, L) = z
∏

ω∈L′
(1− z

ω
) exp(

z

ω
+

1

2
(
z

ω
)2),

and η : C→ C is the R-linear extension of the period function L → C (ω 7→ − ∫ ∗+ω

∗ ℘(z)dz).
Note here that ℘(z)dz = xdx/y is a meromorphic differential form of the 2nd kind, i.e.,
without residues; hence the integral is well defined. It is easy to see

(4.1.3) θ(z, L) = θ(λz, λL) (λ ∈ C×, z ∈ C).

According to the above definition of η(z, L), the function θ(z, L) is not holomorphic in
z. When z lies in QL, one can show from [KL81] (K2) p.28 that θ(z, L) behaves like an
“almost” periodic function w.r.t. L, i.e.,

(4.1.4)

{
θ(z + ω, L) = ζθ(z, L) (z ∈ 1

N
L, ω ∈ L, ζ ∈ µN),

θ(z + ω, L) = θ(z, L) (z ∈ 1
N

L, ω ∈ NL).

The following distribution relations are also essential in our later applications.

Proposition 4.1.5. Let m,n, d, r be integers such that n = md and r = l.c.m.(m, d).
Then,

θ(ω0,mL) = ζ
∏

ω∈mL/nL

θ(ω0 + ω, nL), (ω0 ∈ L \ nL, ∃ ζ ∈ µr);(1)

d12 = ζ
∏

ω∈mL/nL, ω 6∈nL

θ(ω, nL), (∃ ζ ∈ µd).(2)

Proof. These are just special forms of the distribution relations due to Ramachandra-
Robert (cf. [KL81] p.43). ¤

Now, let us restrict the lattices L to those in the form Lτ = Zτ + Z1 (τ ∈ H), and
write σ(z, τ) = σ(z, Lτ ), θ(z, τ) = θ(z, Lτ ). The infinite product expansions of the first
two holomorphic functions in qz = e2πiz, qτ = e2πiτ are well known as follows (e.g.,[L87]):

∆(Lτ ) = (2πi)12qτ

∞∏
n=1

(1− qn
τ )24,

σ(z, τ) =
e”(1)z2/2

(2πi)
(q1/2

z − q−1/2
z )

∞∏
n=1

(1− qn
τ qz)(1− qn

τ q−1
z )

(1− qn
τ )2

.
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As remarked in the above, the fundamental theta function θ(z, τ) is not holomorphic in z,
but it is holomorphic in τ . Writing z = x1τ + x2 (x1, x2 ∈ R), from the above expansions
we obtain:

(4.1.6) θ(z, τ) = q6B2(x1)
τ e12πix2(x1−1)

[
(1− qz)

∏
n≥1

(1− qn
τ qz)(1− qn

τ q−1
z )

]12

,

where B2(T ) = T 2 − T + 1
6

is the 2nd Bernoulli polynomial. (Here, we use η(z) =
x1η(τ) + x2η(1) and the Legendre relation η(1)τ − η(τ)1 = 2πi.) Comparing this with
the classical expansion of Jacobi’s theta function ϑ1(z, τ), we also see

θ(z, τ) = e12πix1z

[
ϑ1(z, τ)

η(τ)

]12

(z = x1τ + x2; x1, x2 ∈ R),

where η(τ) = e2πiτ/24
∏∞

n=1(1− qn
τ ) is the Dedekind η-function.

4.2. Siegel units. If x = (x1, x2) is fixed to be a pair of rational numbers, then θx(τ) :=
θ(x1τ + x2, τ) is a holomorphic function on the upper half plane H known as the 12-th
power of what is called the Siegel function gx(τ):

gx(τ) = −qB2(x1)/2
τ eπix2(x1−1)(1− qz)

∏
n≥1

(1− qn
τ qz)(1− qn

τ q−1
z ), (z = x1τ + x2).

The detailed properties of gx(τ) are closely studied in the book [KL81] by Kubert-Lang.
Here, we shall collect several properties of them for our later use. Let m ≥ 1 and assume
x = (r1/N, r2/N) (r1, r2 ∈ Z, N ≥ 1). Then, we consider the condition

Q(x,N, m) :

{
If N is odd, then mr2

1 ≡ mr2
2 ≡ mr1r2 ≡ 0 mod N.

If N is even, then mr2
1 ≡ mr2

2 ≡ 0 mod 2N , mr1r2 ≡ 0 mod N .

Proposition 4.2.1. Notations being as above, the following statements hold:
(i) The function θx(τ)m = gx(τ)12m is modular of level N if and only if the condition

Q(x, N, 12m) holds. In particular, θ(x1τ + x2, τ) is modular of level N2.
(ii) When g.c.d.(N, 12) = 3, the function gx(τ)4m is modular of level N iff the condition

Q(x, N, 4m) holds. In particular, gx(τ)4 is modular of level 3N2.
(iii) When, g.c.d.(N, 12) = 4, the function gx(τ)3m is modular of level N iff the condition

Q(x, N, 3m) holds. In particular, gx(τ)3 is modular of level 4N2.

Proof. The first claims of (i),(ii),(iii) are only special cases of [KL81] Chap. 3, Th. 5.2 and
5.3. To see the latter claim of (i), apply Q(x,N2, 12) to x = (Nr1

N2 , Nr2

N2 ). The latter claims
of (ii), (iii) follow similarly from applying Q(x, 3N2, 4), Q(x, 4N2, 3) respectively. ¤
Proposition 4.2.2. Let x = (x1, x2) ∈ Q2 and A = (a

c
b
d) ∈ SL2(Z). Then, we have

θx(Aτ) = θxA(τ) (τ ∈ H).

In particular, θx(τ) = θ−x(τ).

Proof. The Siegel function gx(τ) is by definition the product of (2πi)η(τ)2 and the Klein
form `x(τ) = e−”(z,τ)z/2σ(z, Lτ ). By [KL81] (K1), we know `x(Aτ) = (cτ + d)−1`xA(τ).
This together with the well known formula ∆(Aτ) = (cτ + d)12∆(τ) proves the desired
formula. (In [L87] Chap.19 §2 (S2), a similar formula is claimed to hold in the level of gx.
But it is false as the transformation formula of η(τ) involves another nontrivial “Dedekind
sum factor” ∈ µ24 besides (cτ + d).) ¤
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Before stepping forward, let us review similar behaviors to Prop.3.3.1 for certain powers

of the Dedekind η-function η(τ) = q
1/24
τ

∏∞
n=1(1− qn

τ ).

Proposition 4.2.3. (i) η(τ)24 = ∆((2πi)Lτ ) is a modular form of weight 12 and level 1.
(ii) η(τ)8 is a modular form of weight 4 and level 3.
(iii) η(τ)6 is a modular form of weight 3 and level 4.

Proof. This is essentially included in [KL81] Chap.3, Lemma 5.1. We reproduce a proof
for the sake of reader’s convenience. The general transformation formula of η is :

η
(aτ + b

cτ + d

)
= ε(a, b, c, d)

√
cτ + d

i
η(τ),

(
(a
c
b
d) ∈ SL2(Z), c > 0

)
,

where ε(a, b, c, d) is a certain 24-th root of 1 given by a precise formula (cf. [Rad73]
(74.93)). (i) follows immediately. For (ii), observe that

ε(a, b, c, d)8 =

{
exp(2

3
πi(bd(1− c2) + c(a + d))), (c = odd),

exp(2
3
πi(ac(1− d2) + d(b− c))), (d = odd).

and that in either case ε(a, b, c, d)8 = 1 when 3|b, c. For (iii), we also calculate in the case
of d = odd that

ε(a, b, c, d)6 = exp(
3

2
πid) exp(

πi

2
(ac(1− d2) + d(b− c))).

Since 8|(1 − d2) for d = odd, when 4|b, c, we have ε(a, b, c, d)6 = exp(3
2
πid). Given

A = (a
c
c
d) ∈ Γ(4), if c > 0, then we may apply the above transformation formula directly,

and then d ≡ 1(4) implies ε6 = i−1. Hence η(Aτ) = (cτ + d)3η(τ). If c < 0, then we
apply the formula for −A. Then, ε(−a,−b,−c,−d)6 = i. But in this time, the factor
from

√∗ is (−cτ − d)3/i3. Hence, we obtain again η(Aτ) = η((−A)τ) = (cτ + d)3η(τ) as
desired. ¤

4.3. Eisenstein series. Next, we review the Eisenstein series G
(amod N)
k and E

(x)
k . Our

main reference here is [Sch74]. Let k ≥ 2, N ≥ 1 be integers and let a = (a1, a2) ∈
(Z/NZ)2. We first define

G
(amod N)
k (τ) := lim

s→0+

′∑

amod N

1

(m1τ + m2)k

1

|m1τ + m2|s (τ ∈ H),

where the sum is taken over all (m1,m2) ∈ Z2 \ {(0, 0)} with m1 ≡ a1, m2 ≡ a2 (mod N).
Note that, in the above formula, if k ≥ 3 then we do not need lims and the factor |...|s,
because

∑′
m1,m2

1/(m1τ + m2)
k converges absolutely and uniformly on each compact sets.

The trick of lims→0+ (Hecke) works essentially when k = 2 (and k = 1). The function

G
(amod N)
2 is not holomorphic as seen from the following “q-expansion” formula:

(4.3.1) G
(amod N)
k (τ) =

{
−2πi

N2(τ−τ̄)
+

∑
ν≥0 αν(N, 2, a)qν

τ , (k = 2),∑
ν≥0 αν(N, k, a)qν

τ , (k ≥ 3),

where

αν(N, k, a) =

{
δ(a1

N
)
∑′

m2≡a2(N)
1

mk
2
, (ν = 0),

(−2πi)k

Nk(k−1)!

∑
m|ν ν

m
≡a1(N) mk−1sgn(m)ζa2m

N (ν ≥ 1).
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For applications, more important are certain linear combinations of the Eisenstein series
of the above type: Given a pair x = (x1, x2) ∈ (Q/Z)2, choose any (large) N such that
x ∈ ( 1

N
Z/Z)2. Then, define

E
(x)
k (τ) :=

(k − 1)!

(2πi)k

∑

ā∈(Z/NZ)2

e2πi(x1a2−x2a1)G
(amod N)
k (τ).

It turns out that E
(x)
k (τ) is independent of the choice of N with x ∈ ( 1

N
Z/Z)2 and is

holomorphic unless k = 2,x = (0, 0). We have the following “q-expansion” formula:

(4.3.2) E
(x)
k (τ) = −Pk(x1)

k
+

∑

0<s∈x1+Z

∞∑

l=1

sk−1e2πil(x2+sτ) +
∑

0<s∈−x1+Z

∞∑

l=1

sk−1e2πil(−x2+sτ),

for k ≥ 3 or x 6= 0, while in the exceptional case of k = 2 and x = (0, 0), the above right
hand side should be added by the non-holomorphic term i/(2π(τ− τ̄)). Here, Pk : R/Z→
R is the periodic Bernoulli function defined as follows. First, the k-th Bernoulli polynomial
Bk(X) ∈ Q[X] is defined by the generating function

∑
k Bk(X)tk/k! = tetX/(et−1). Then,

using the Gaussian notation by [∗], define Pk(t modZ) to be Bk(t − [t]) for k ≥ 2. Note
that since Bk(0) = Bk(1) for k ≥ 2, Pk (k ≥ 2) are continuous functions. Meanwhile,
P1 (defined similarly as t− btc − 1/2 on R/Z− {0}) is discontinuous at 0 so that we set

P1(0) = 0 as the mean of P1(0+) and P1(0−). From the definitions of G
(amod N)
k and E

(x)
k ,

we see the transformation formulae:

G
(amod N)
k (Aτ) = (cτ + d)kG

(aA mod N)
k ,(4.3.3)

E
(x)
k (Aτ) = (cτ + d)kE

(xA)
k .

for A = (a
c
b
d) ∈ SL2(Z). It follows then that both G

(amod N)
k and E

(x)
k are modular forms

of weight k of level Γ(N). Finally, comparing the q-expansion formula, we may relate the

Siegel function gx(τ) and the Eisenstein series E
(x)
2 (τ) as follows:

(4.3.4)
d

dτ
log gx(τ) = (−2πi)E

(x)
2 (τ), (x = x modZ).

In §7.3, we will discuss a standard lift of this equation which will play a crucial role in
our proof of Theorem B stated in Introduction.

4.4. Algebraic modular forms. Let f(τ) be a holomorphic modular form of weight k
and level Γ(N), and suppose that its q1/N -expansion has coefficients in a subring R ⊂ C.
Then, it is known (see [K76] 2.1.1 and 2.4.1) that there is an algebraic modular form F

over R which assigns, to each Γ(N)arith-test object (E, β : Z/NZ× µN
∼−→E[N ], ω) over

an R-algebra B, a value F (E, β, ω) ∈ B in such a way that

(1) F (E, β, ω) depends only on the B-isomorphism class of the test object;
(2) F (E, β, λω) = λ−kF (E, β, ω) for each λ ∈ B×;
(3) if (E ′/B′, β′, ω′) is the scalar extension of (E, β, ω) by the R-homomorphism φ :

B → B′, then φ(F (E, β, ω)) = F (E ′, β′, ω′).
(4) For any complex point s ∈ Spec(B)(C) given by φs : B → C with the fiber

(Es/C, βs, ωs) over s,

φs(F (Es, βs, ωs)) =

(
2πi

ω2

)k

f(τ),
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where τ = ω1/ω2 ∈ H is given as the quotient of a Z-basis (ω1, ω2) of the lattice
obtained as the collection of period integrals of ωs along loops on Ex so that
1
N

ω1 mod L = β((1, 1)), 1
N

ω2 mod L = β((0, e2πi/N)).

Conversely, suppose we are given an algebraic modular form F of weight k and level N
over R ⊂ C. Then, the corresponding f is given by f(τ) = F (C×/(qτ/N)NZ, ι, dx/x),

where qτ/N = e2πiτ/N and ι is the canonical embedding Z/NZ × µN ↪→ C×/qZτ with

(a, e2πib/N) 7→ (qa
τ/N , e2πib/N). The value of F at the Tate curve Tate(qN)/R((q)) gives the

q(= e2πiτ/N)-expansion of f .
The above story may be applied to the modular units and modular forms in the previous

subsections.
We first consider the case of Eisenstein series. If x ∈ 1

N
Z2/Z2 is given, then the

Eisenstein series E
(x)
k (τ) is a holomorphic modular form of weight k and level N unless

k = 2 and x = 0. The q-expansion given in (3.4.3) has coefficients in Q(µN). Hence, the
corresponding algebraic modular form is defined over Q(µN). We may apply it to any
Γ(N)arith-test object (E/B, β, ωN). Moreover, we shall also regard any Γ(N)-test object

(E/B, α : (Z/NZ)2 ∼−→E[N ], ω) as a Γ(N)arith-test object with defining β : (Z/NZ) ×
µN

∼−→E[N ] by β(a, ζb
N) = α(a, b), where ζN = eN(α(1, 0), α(0, 1)) ∈ B (cf. 2.6). Thus,

one can speak about

(4.4.1) E
(x)
k (E/B, α( or β), ω) ∈ B[µN ] (k ≥ 3 or x 6= (0, 0)).

In the similar way, since the modular forms ∆ = η24, η8, η6 which appeared in Prop. 4.2.3
have rational q-coefficients, they give algebraic modular forms of the prescribed weight
and level over Q.

For example, suppose we are given a Γ(1)-test object (E/B, O, ω) with the associated
parameter (x, y, g2, g3, t) (cf. 2.2). Then, one can easily show:

g2 = 10 E
(0,0)
4 (E/B,O, ω), g3 =

7

6
E

(0,0)
6 (E/B,O, ω);(4.4.2)

g3
2 − 27g2

3 = ∆(E/B,O, ω).

Next, we consider modular units. Assume x = (x1, x2) ∈ 1
N
Z2 \Z2 (hence N2 ≥ 3). By

Prop.4.2.1, θx(τ) = gx(τ)12 and its inverse are modular functions of level N2. Observing
the q-expansion, we know that there are corresponding algebraic modular forms θ±1

x of
weight 0 and level N2 defined over Q(µN2). So, we may apply θ±1

x to the Γ(N2)arith-test
objects and Γ(N2)-test objects. Thus,

(4.4.3) θx(E/B, α( or β), ω) ∈ B[µN2 ]×

makes sense. In fact, in the case of weight 0, the value is independent of the change
of ω (by multiplication by elements of B×). This means that the value comes from the
representative morphism of Spec(B) to the modular curve Y (N2) of level N2 defined
over Q(µN2). The space of complex points of Y (N2) is identified with the Fuchsian
model H/Γ(N2). Write O(Γ(N2)) for the ring of holomorphic modular functions of Γ(N2)

whose Fourier coefficients with respect to e2πiτ/N2
are lying in Q(µN2), so that Y (N2) =

Spec(O(Γ(N2))). Then by [Sh71] Prop. 6.9, we see

(4.4.4) θx(τ) ∈ O(Γ(N2))×.
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The conclusion is that the image of θx(τ) by the representative homomorphismO(Γ(N2)) →
B coincides with θx(E/B, α, ω).

For the other cases of Prop.4.2.1 where g12m
x , g4m

x or g3m
x becomes a modular function

of level N under suitable condition, one can talk about g12m
x (E/B, α, ω) ∈ B[µN ]× as the

image of g12m
x (τ) ∈ O(Γ(N)) etc. in similar ways.

4.5. Compatibilities of GL2-actions. Before closing this section, we review the (left)
action of GL2(Z/NZ)/{±1} on the function field FN of the modular curve Y (N) given in
[Sh71](§6.2). Decompose GL2(Z/NZ) as the product of SL2(Z/NZ) and D = {(1

0
0
d)|d ∈

(Z/NZ)×}, and define the action on FN of each component as follows. Let f(τ) ∈ FN

whose Fourier expansion in q
1/N
τ has coefficients in Q(µN). We define the action of A ∈

SL2(Z/NZ) by f → f |tA. Identify D with the Galois group Gal(Q(µN)/Q) and define
its action on f(τ) by Galois transformation of the Fourier coefficients. It follows, in
particular, that

(4.5.1) A(ζN) = ζ
det(A)
N (A ∈ GL2(Z/NZ)/{±1}).

The above action is compatible with the context we developed in §2.8-9 as follows. With
each σ ∈ π1(M1,1, b̄) associated are the matrix A = ρN(σ) ∈ GL2(Z/NZ) and the automor-
phism aN

σ ∈ Aut(M1,1[N ]/M1,1) together with āN
σ ∈ Aut(Y (N)/Y (1)). Our compatibility

claim is then as follows.

Claim 4.5.2. The automorphism ( |āN
σ
) of FN defined by (f |āN

σ
)(s) = f(āN

σ (s)) (where
s : Spec(C) → M1,1[N ] → Y (N) is any complex point) coincides with the above action of
the matrix A = tρN(σ) on FN .

Proof. Indeed, when σ fixes µN , the matrix A = ρN(σ) is contained in SL2(Z/NZ).
Then, the claim follows from (2.9.3). So, we have only to consider the case where A =
ρN(σ) is of the form (1

0
0
d) (d ∈ (Z/NZ)×). Recall that the q1/N -expansion of f is given

as the value at the Tate curve Tate(q)/Q(ζN)((q1/N)) with level N -structure (1, 0) 7→
q1/N , (0, 1) 7→ ζN (where ζN = exp(2πi/N) ∈ C). We can view it as the image of
f by the homomorphism FN → Q(µN)((q1/N)), which corresponds to a representative
morphism φ : SpecQ(µN)((q1/N)) → Y (N). By (2.7.3), the value of f |āN

σ
at φ is the

value of f at φ′ = āN
σ ◦ φ, but (2.8.1) means that this φ′ is the representative morphism

of Tate(q)/Q(µN)((q1/N)) with the level N -structure (1, 0) 7→ q1/N , (0, 1) 7→ ζd
N . The

resulting value is thus what is obtained from f by changing all coefficients by the Galois
transformation of Q(µN) with ζN → ζd

N . ¤

The above sort of compatibility also extends to the context of Γ(1)-test object (§2.6) as
follows. Suppose that (E/B, O, ω) is Γ(1)-test object as in §2.3 and b̄ is a base point on
S = Spec(B). Let (SN , b̄N) be as in §2.6. Then, there is a natural commutative diagram

SN −−−→ M1,1[N ] −−−→ Y (N)y
y

S −−−→ M1,1.

For each σ ∈ π1(S, b̄), there is associated an automorphism aN
σ ∈ Aut(SN/S) in §2.7. On

the other hand, the image σ′ of the σ in π1(M1,1) induces an automorphism aN
σ′ of M1,1[N ]

as in §2.8. The relation between these aN
σ and aN

σ′ is, apriori, just a pointwise one, i.e,
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they convey b̄N on SN and its image on M1,1[N ] to those points obtained respectively by
monodromy transformations by σ, σ′. But this, together with the fact that SN/S is a
connected component of the pullback of M1,1[N ]/M1,1 by S → M1,1 which is preserved by
the pullbacks of aN

σ′ (σ ∈ π1(S, b̄)), ensures the commutativity of

SN −−−→ M1,1[N ]

aN
σ

y
yaN

σ′

SN −−−→ M1,1[N ].

Thus, if we write ι : O(Γ(N)) → BN to designate the ring homomorphism of “functions”
corresponding to the morphism SN → Y (N), then we deduce from Claim 4.5.2 that

(4.5.3) ι(f)|aN
σ

= ι(f |tρN (σ)) (σ ∈ π1(S, b̄)).

4.6. GL2-action on modular units and its refinements. We are particularly in-
terested in a consequence of the above discussion on the modular units θx, g4

x, g3
x of

level N2, 3N2, 4N2 respectively. First, observing the Fourier expansion of θx(τ) (x =
(x1, x2) ∈ 1

N
Z2), we see that the matrix (1

0
0
d) (d ∈ (Z/N2Z)×) maps θx 7→ θ(x1,dx2). This

and Prop.4.2.2 imply the formula

(4.6.1) θx|tA = θx(tA) (x ∈ 1

N
Z2, A ∈ GL2(Z/N2Z)).

Note that the lower equation of (4.1.4) implies

(4.6.2) θx = θy

(
x ≡ y mod N ; x = (x1, x2), y = (y1, y2) ∈ (

1

N
Z)2

)
.

In other words, GL2(Z/N2Z) has a well defined action on the indices ( 1
N
Z/NZ)2 of mod-

ular units θx’s. Then, combining (4.5.3) and (4.5.4), we obtain for any Γ(N2)-test object
(E, α, ω),

(4.6.3) θx(E, α, ω)|aN2
σ

= θx(tρN2(σ))(E, α, ω) (x = (x1, x2) ∈
(

1

N
Z

)2

, σ ∈ π1(S, b̄)).

In exactly same way, parallel statements to the above for g4
x, g3

x hold after replacing N2

by 3N2, 4N2 respectively. But we have to work in a subtler way using the definition of
gx as product of (2πi)η2 and the Klein form `x(τ). As seen in Prop. 4.2.1 and 4.2.3, the
function g4

x and g3
x can be defined in the language of lattices with level 3 or 4 basis of

torsion points. For Klein forms `x(
ω1
ω2

), the transformation of formulas with respect to
x = ( r

N
, s

N
) ∈ ( 1

N
)2, y = (b1, b2) ∈ Z2 and A = (a

c
b
d) ∈ Γ(N) in [KL] (K2) (K3) p.28 read:

(4.6.4)

{
`x+y((

ω1
ω2

)) = ε(x, y)`x((
ω1
ω2

)),

`x(A(ω1
ω2

)) = `xA((ω1
ω2

)) = εx(A)`x((
ω1
ω2

)),

with

ε(x, y) = (−1)b1b2+b1+b2e−2πi
b1s−b2r

2N ,(K2)

εx(A) = −(−1)(
a−1
N

r+ c
N

s+1)( b
N

r+ d−1
N

s+1)e2πi
br2+(d−a)rs−cs2

2N2 .(K3)
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One can derive then invariance of g4
x (resp. g3

x) for x ∈ ( 1
N
Z) modulo x 7→ x + (3NZ)2

(resp. x 7→ x + (4NZ)2), i.e.,

g4
x = g4

y

(
x ≡ y mod 3N ; x = (x1, x2), y = (y1, y2) ∈ (

1

N
Z)2

)
,(4.6.5)

g3
x = g3

y

(
x ≡ y mod 4N ; x = (x1, x2), y = (y1, y2) ∈ (

1

N
Z)2

)
.(4.6.6)

Concerning GL2-action, invariance of type (4.6.1) or Prop. 4.2.2 for g4
x, g6

x is not available,
mainly because of the η2-factor of gx = (2πi)η2`x. We still find

g4
x|tA = ζ · g4

x(tA) (x ∈ 1

N
Z2, A ∈ GL2(Z/3N2Z), ζ ∈ µ3),(4.6.7)

g3
x|tA = ζ · g3

x(tA) (x ∈ 1

N
Z2, A ∈ GL2(Z/4N2Z), ζ ∈ µ4).(4.6.8)

We also obtain statements corresponding to (4.6.2) by replacing N2 by 3N2 (resp. 4N2)
for Γ(3N2)-(resp. Γ(4N2)-)test objects modulo µ3 (resp. µ4).

5. Universal elliptic curve

5.1. Quick review of Grothendieck-Teichmüller theory. The starting point of the
Grothendieck-Teichmüller theory was Belyi’s theorem [B79] which implies, in particular,
that the absolute Galois group GQ is embedded into the (outer) automorphism group of

a simplest profinite group F̂2 := π1(P
1
Q − {0, 1,∞}). This enables us to parameterize

the elements of GQ in terms of the cyclotomic character χ : GQ → Ẑ× together with a

mysterious parameter f : GQ → F̂ ′
2 = [F̂2, F̂2] (σ 7→ fσ) in such a way that a lift of σ ∈ GQ

acts on standard generators x, y of F̂2 by the formula:

(5.1.1) σ(x) = xχ(σ), σ(y) = f−1
σ yχ(σ)fσ.

Usually, we fix an embedding of Q ↪→ C, and take x, y as loops illustrated as below:

0x y101

Figure 1

and the above standard lift (Belyi’s lift of GQ into Aut(F̂2)) is understood geometrically

by the notion of tangential base point
−→
01 introduced by Deligne [De89].

The collection {(χ(σ), fσ) ∈ Ẑ× × F̂ ′
2 | σ ∈ GQ} is thus a copy of GQ mapped in the

“concrete set” Ẑ×× F̂ ′
2. One important open problem is to characterize the copied image.

In this direction, the (profinite) Grothendieck-Teichmüller group ĜT was introduced by
Drinfeld [Dr90] and Ihara [Ih90], and some of its refined version/variants have been studied
by several authors (cf., e.g., [LS06], [F10]).

Besides the fundamental property GQ ↪→ ĜT , important is the reason why it is called

ĜT , namely, as expected by Grothendieck [G84], that it should act on (a tower of) the
profinite Teichmüller groups π1(Mg,n) (2−2g−n < 0) in a certain consistent way in view
of “cutting and pasting of Riemann surfaces”. This second feature has been, to a certain
extent, established in [NS00]-[N99-02] by introducing a group IΓ intermediate between GQ
and ĜT .
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Thus, theoretically one can write down the action of GQ on those π1(Mg,n) (2−2g−n <
0) in terms of the two parameters χ(σ) and fσ (σ ∈ GQ). One interesting problem is to
find informations on the mysterious parameter fσ from the actions on various subgroups
or quotients of π1(Mg,n). Even in the most primitive case of M0,4 = P1 − {0, 1,∞},
deep arithmetic nature was found by a series of works by Y.Ihara and his colleagues
[Ih86a], [Ih86b], [IKY87], [A89], [C89], [Ih99-00], [Ih02], [MS03]. Some other studies of
this direction have also been investigated, e.g., in a series of works [NT03-06], [NTY10].

5.2. Tate elliptic curve. The Weierstrass equation of the Tate elliptic curve Tate(q)
over Q((q)) is given by

Tate(q) : Y 2 = 4X3 − g2(q)X − g3(q),

where

g2(q) = 20(−B4

8
+

∑
n≥1

σ3(n)qn),(5.2.1)

g3(q) =
7

3
(−B6

12
+

∑
n≥1

σ5(n)qn).(5.2.2)

(B4 = −1/30, B6 = 1/42 are the Bernoulli numbers.) Let q̄ the generic geometric point
over Sq := SpecQ((q)) valued in the Puiseux power series field

Ω =
∞⋃

n=1

⋃

[K:Q]<∞
K((q1/n))

and let
−→
w q̄ be the Weierstrass tangential base point on Tate(q) \ {O}. The fundamental

group π1(Sq, q̄) is canonically split as the semi-direct product GQnẐ(1) where GQ acts on Ω
via the coefficients of each Puiseux series. Therefore, the pro-C monodromy representation
(§2.5) is in the form:

(5.2.3) ϕC−→
w q̄

: π1(Sq, q̄) = GQ n Ẑ(1)−→Aut
(
π1(Tate(q)⊗ Ω \ {O},−→w q̄)

)
.

Based on the technique studied in [IN97], in [N99], we studied the restriction of ϕC−→
w q̄

to the

GQ-part. Using the formal patching of π1(P
1−{0, 1,∞}) along Neron polygons of Deligne-

Rapoport type, we introduced suitable generators x1,x2, z of Π1,1 := π1((Tate(q) ⊗ Ω \
{O},−→w q̄) with [x1,x2]z = 1 so that z gives the generator of the inertia group rotating
once anticlockwise, and showed

Theorem 5.2.4 ([N99]Th. 3.4). The Galois representation ϕC−→
w q̄
|GQ is expressed by the

following formulae in terms of (χ(σ), fσ) ∈ ĜT :

(5.2.5)





x1 7→ z
1−χ(σ)

2 fσ(x1x2x
−1
1 , z)x1fσ(x−1

2 , z)−1,

x2 7→ fσ(x−1
2 , z)x

χ(σ)
2 fσ(x−1

2 , z)−1

z 7→ zχ(σ). ¤

(This theorem was shown for C = {all finite groups}, hence holds for arbitrary full class C
of finite groups.) The choice of generators was given in a precise way using van-Kampen
type amalgamation of groups devised in a previous paper [N99-02] Part I. Naively, those
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chosen generators may be illustrated as in the following picture, where x2 represents a
vanishing cycle.

point
base

z x

2

1

x

Figure 2

In [N99], we gave an explicit description of ECσ for the Tate curve with C = (p) the class
of all finite p groups and σ in the congruence kernel GQ(µp∞). Note that in this case
ZC[[πab]] is isomorphic to the power series ring Zp[[T1, T2]] with Ti = x̄i − 1 (i = 1, 2).

Theorem 5.2.6 ([N99] Th. 3.3 and Th. 3.5). Consider E (p)
σ ∈ Zp[[T1, T2]] for the Tate

curve Tate(q) over Q((q)). Let Ui = log(1 + Ti) (i = 1, 2). Then, in Qp[[U1, U2]], we have

E (p)
σ (T1, T2) =

∑
m≥2
even

χm+1(σ)

1− pm

Um
2

m!
(σ ∈ GQ(µp∞ )).

Here χm : GQ(µp∞ ) → Zp(m) is the m-th Soule character defined by the properties:




∏
1≤a<pn

p-a

(1− ζa
pn)am−1




1
pn (σ−1)

= ζ
χm(σ)
pn (∀n ≥ 1). ¤

In fact, in [N99] we gave proofs in twofold; one using the explicit formula given in [N95],
and one using the formula of Magnus-Gassner type. In the next section, we shall generalize
the explicit formula for finite level’s ECm (m ∈ |C|).
5.3. Mordell transformation on Mω

1,2. The universal once-punctured elliptic curve
E \ {O} over Mω

1,1 (§2.2) has a profile as Mω
1,2 which is by definition the fiber product of

M1,2 and Mω
1,1 over M1,1. It is the representative scheme for the moduli problem of the

Γ(1)-test object (E/B,O, ω) with an extra section P : B → E disjoint from O.
It is also often useful to consider Mω

1,2 as the moduli space of quartic models of elliptic

curves Y 2 = f(X) = X4+bX2+cX+d with distinguished two infinities (∞+,∞−), where
∞± corresponds respectively to (ξ, η) = (0,±1) after the change of variables ξ = X−1,
η = Y X−2. In [NTY10], we introduced the Mordell transformation M which transforms
this quartic model Y 2 = f(X) = X4 + bX2 + cX + d to the Weierstrass cubic model

(5.3.1) y2 = 4x3 −
(

4

3
b2 + 16d

)
x−

(
− 8

27
b3 +

32

3
bd− 4c2

)

by the variable transformation

(5.3.2)

{
X = −3y−6c

12x+8b
,

Y = −x
2

+ b
6

+ X2,

{
x = 2X2 − 2Y + b

3
,

y = 8X(Y −X2 − b
2
)− 2c.
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The two marked points ∞± on the quartic model Y 2 = f(X) are mapped to the points
on Ef by

(5.3.3)

{
∞+ 7→ Pf := (−2b/3, 2c),

∞− 7→ O.

Conversely, given an elliptic curve with Weierstrass equation E : y2 = 4x3− g2x− g3 with
a finite point P = (x0, y0) on it, we can recover the quartic model

(5.3.4) Y 2 = (M−1(E, P ))(X) := X4 +

(
−3

2
x0

)
X2 +

(
1

2
y0

)
X +

1

16

(
g2 − 3x2

0

)
.

We call this latter mapping M−1 from (E, P ) to the above quartic the inverse Mordell
transformation.

An illustration of usefulness of these transformations has been given in [NTY10], where
used is a modified version of M (written M in loc. cit.) normalized to provide monic
cubic models of elliptic curves. (Cf. also arguments in [N99-02] §7.8).

5.4. Cardano-Ferrari mapping of braid configuration space. We are now at the
stage of considering the braid configuration spaces. Let An

u \D denote the space of monic
polynomials of degree n in variable u with no multiple roots (here D is understood the
discriminant locus), and let (An

u \ D)0 denote its subspace of those with second highest
coefficient vanishing.

In [NTY10] (2.10), we introduced the (Cardano-)Ferrari morphism

F0 : (A4
u \D)0 → (A3

u \D)0

which assigns to a quartic its resolvent cubic in the following way:

F0(u
4 + bu2 + cu + d) = u3 −

(
b2

3
+ 4d

)
u−

(
2

27
b3 − 8

3
bd + c2

)
.

(In our normalization, if T1, T2, T3, T4 are the zeros of a given quartic u4 + bu2 + cu + d,
then the resolvent cubic F0(u

4 + bu2 + cu + d) has zeros Ui = Si + 2
3
b (i = 1, 2, 3) with Si

are given as S1 = −(T1 +T4)(T2 +T3), S2 = −(T1 +T3)(T2 +T4), S3 = −(T1 +T2)(T3 +T4).
(The term “+2

3
b” is just for parallel transport to have U1 + U2 + U3 = 0.) The solutions

of the original quartic equation are given by those 1
2
(
√

S1 +
√

S2 +
√

S3) with 4 choices of

signs of
√

Si’s satisfying
√

S1

√
S2

√
S3 = −c. (See also loc. cit. (2.6)). Let us now define

4ι : (A3 \D)0 −→ Mω
1,1

γ(u) 7−→ y2 = −4γ(−x),

namely, if γ(u) = u3 − γ2u + γ3, then 4ι(γ) gives an elliptic curve defined by y2 =
4x3 − 4γ2x− 4γ3. Then, we obtain the commutative diagram

(5.4.1)

(A4
u \D)0

M−−−→ Mω
1,2

F0

y
yproj.

(A3
u \D)0

4ι−−−→ Mω
1,1,

where horizontal arrows give isomorphisms of schemes.
Since there is a well known deformation retract of Tschirnhaus type between the spaces

An \D and (An
u \D)0, their etale homotopy types do not need to be distinguished. We
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shall write “F” to designate any one of the morphisms A4
u\D → A3

u\D which are parallel
transforms of F0 (dropping the “zero sum” condition) giving the same homomorphism on
fundamental groups.

On An \ D, Ihara-Matsumoto [IM95] introduced a standard tangential base point b̄n.
Let us briefly recall their construction: Let An

v \ ∆ be the affine n-space with distinct
coordinates v = (v1, . . . , vn) and consider the etale covering map (An

v \ ∆) → (An
u \ D)

which maps each point v ∈ An
v \∆ to the monic in An

u \D which has v as ordered zeros.
Then, b̄n is defined as the image of the tangential basepoint v = (0, tn−1, . . . , t2, t) valued
in Q{{t}}. The geometric fundamental group π1((A

n \ D) ⊗ Q, b̄n) can then presented
as the profinite completion of the Artin braid group Bn which has standard generators
τ1, . . . , τn−1 with braid relations τiτj = τjτi, τiτi+1τi = τi+1τiτi+1 (i = 1, . . . , n−1, i+1 < j),
and each τi gives a specific element “interchanging marked points vi and vj positively”.

The base point b̄n supplies a splitting π1(A
n
u \D, b̄n) = GQn B̂n with Galois action in the

form of Drinfeld’s formula in terms of (χ(σ), fσ) ∈ ĜT for σ ∈ GQ:

(5.4.2)





σ(τ1) = τ
χ(σ)
1 ,

σ(τ2) = fσ(τ 2
1 , τ 2

2 )−1τ
χ(σ)
2 fσ(τ 2

1 , τ 2
2 ),

σ(τi) = fσ(ωi, τ
2
i )−1τ

χ(σ)
i fσ(ωi, τ

2
i ) (i ≥ 3),

where ωi = (τ1 · · · τi−1)
i.

NB. The construction of b̄n and the above formula have been generalized to higher
genus mapping class groups first in [N97], and then extended fully in [NS00]-[N99-02].

Dropping the (superfluous) “zero sum” condition, we calculate the image of b̄4 repre-
sented by (0, t3, t2, t) by the Ferrari morphism as (S1, S2, S3) = (−t4−t3,−t5−t3,−t4−t5)
which is equivalent to (0, t4− t5, t3− t5) ∼ (0, t4, t3) ∼ b̄3. Thus we may regard F(b̄4) ≈ b̄3

from the Galois theoretic point of view. Thus we obtain a GQ-compatible homomorphism

(5.4.3) π1(F) : π1(A
4
u \D, b̄4)−→π1(A

3
u \D, b̄3)

as remarked in [NTY10] (2.8). It is easy to see that the geometric part of this homo-

morphism is nothing but the surjection B̂4 → B̂3 given by τ1, τ3 7→ τ1, τ2 7→ τ2. We call
ker(π1(F)) the Ferrari kernel which is a free profinite group of rank 2 generated by

(5.4.4)





x1 := τ−1
1 τ3τ2τ1τ

−1
3 τ−1

2 ,

x2 := τ1τ
−1
3 ,

z := (τ1τ2)
6(τ1τ2τ3)

−4

with [x1,x2]z = 1. We will see that these generators correspond naturally to the standard
generators of the fundamental group of Tate elliptic curve over Q((q)) given in Theorem
5.2.4.

NB. The above choice of generators follow the way taken in [N99] and differs from
[NTY10](2.9), [NT-II] (4.2.2), [Na-I] §4 with ‘90◦-rotation’.

5.5. Analytic resolution of M−1(E,P ). In this subsection, we shall construct the solu-
tions of the quartic equation of the inverse Mordell transformation M−1(E, P ) explicitly
in any complex model. Suppose that E is a complex elliptic curve C/Zω1 + Zω2 and P
is a point (℘(z), ℘′(z)), where ℘ is the Weierstrass ℘-function with respect to the lattice
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Zω1 + Zω2 with τ := ω1/ω2 ∈ H. Set e1 := ℘(ω1

2
), e2 := ℘(ω2

2
) and e3 := ℘(ω1+ω2

2
). It is

known that there is a canonical choice of a square root of e2 − e1 given by

(5.5.1)
√

e2 − e1 =
π

ω2

∞∏
n=1

(1− q2n)2(1 + q2n−1)4 (q = q1/2
τ = eπiτ ).

See [Fr1916] p.406. Let sn(z), cn(z), dn(z) denote the Jacobian elliptic functions with
fundamental parallelogram given by 2K = ω2

√
e2 − e1, 2iK ′ = ω1

√
e2 − e1.

Proposition 5.5.2. Notations being as above, set w =
√

e2 − e1 · z. Then, the four zeros
of the quartic given as the inverse Mordell transformation M−1(E,P ) are:

T1 =

√
e2 − e1

2

(
1 + cn(w) + dn(w)

sn(w)

)
,

T2 =

√
e2 − e1

2

(
cn(w)− 1− dn(w)

sn(w)

)
,

T3 =

√
e2 − e1

2

(
dn(w)− 1− cn(w)

sn(w)

)
,

T4 =

√
e2 − e1

2

(
1− cn(w)− dn(w)

sn(w)

)
.

Proof. We make use of the “Mordell-Ferrari” commutative diagram (5.4.1). Tracing the
lower layer, we find the Ferrari resolvents of the quartic M−1(E, P ) should be given by
ι−1(E) = {−e1,−e2,−e3}. Then, if M−1(E, P ) is of the form u4 + bu2 + cu + d, then the
classical formula of Cardano-Ferrari tells us that the issued four solutions are obtained as
1
2
(
√

S1 +
√

S2 +
√

S3) for any choice of the square roots of Si := −ei− 2
3
b (i = 1, 2, 3) such

that
√

S1

√
S2

√
S3 = −c. But now b = −3

2
℘(z) and c = 1

2
℘′(z), and hence Si = ℘(z)− ei

(i = 1, 2, 3). On the other hand, it is also known (from [Fr1916] p.389) for w =
√

e2 − e1z
that

sn(w) =

√
e2 − e1√

℘(z)− e1

, cn(w) =

√
℘(z)− e2√
℘(z)− e1

, dn(w) =

√
℘(z)− e3√
℘(z)− e1

,

from which it turns out that they give a correct choice of
√

Si =
√

℘(z)− ei’s for Cardano-
Ferrari solutions. Our proposition follows from these equations immediately after express-
ing the

√
Si by Jacobian elliptic functions and

√
e2 − e1. ¤

5.6. Connection of Tate-Weierstrass point and b̄4. Let us fit the Tate elliptic curve
Tate(q)/Q((q)) in Mω

1,2 → Mω
1,1 to obtain a pair of tangential points (

−→
w q̄, q̄) on (Mω

1,2,

Mω
1,1) respectively. We shall connect the inverse Mordell transformation of

−→
w q̄ to the

standard base point b̄4 on A4
u \D by using Proposition 5.5.2. Observe that the defining

coefficients g2(q), g3(q) of Tate(q) in (5.2.1-2) are those g2(ω1, ω2), g3(ω1, ω2) applied to
the lattice generated by ω1 = (2πi)τ , ω2 = (2πi). In this case,

√
e2 − e1 ∼ 1

2i
. We look at

the point (T4, T3, T2, T1) on A4
v \∆, which, by parallel transportation, gives an equivalent

tangential base point to

(0, T3 − T4, T2 − T4, T1 − T4)

∼
√

e2 − e1

2

(
0,

2(dn(w)− 1)

sn(w)
,
2(cn(w)− 1)

sn(w)
,
2(cn(w) + dn(w))

sn(w)

)
∼

(
0,

k2z

8
,
z

8
,
2

z

)
,
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where

(5.6.1) k2 = λ = 16q
∞∏

n=1

(
1 + q2n

1 + q2n−1

)8

, (q = q1/2
τ = eπiτ ).

and we used in the last equivalence the well known Taylor expansions (cf. [Fr1916] p.399)

sn(w) = w − (1 + k2)
w3

3!
+ · · · , cn(w) = 1− w2

2
+ · · · ,

dn(w) = 1− k2w2

2
+ · · · .

The Weierstrass tangential base point is defined by t = −2x
y

which is, in analytic case,

equivalent to −2℘
℘′ ∼ z. Since these equivalences hold algebraically at the level of formal

series, we see that

(5.6.2) M−1(
−→
w q̄) ∼ (0, 2tq,

t

8
,
2

t
) ∼ (0, t1t2t3, t2t3, t3)

with t1 = 16q, t2 = t2

16
, t3 = 2

t
in the Ihara-Matsumoto coordinates (cf. [IM95]) of A4

v −∆

such that t1, t2 ∈ A1−{0, 1}, t3 ∈ A1−{0}. Define a path ε = (ε1, ε2, ε3) : b̄4 Ã M−1(
−→
w q̄)

on A4
u\D as the projection image of the path from (t1, t2, t3) to the above (16q, t2/16, 2/t)

on A4
v \∆ by using positive roots of 16 and 2. Then, we have

(5.6.3)





σ(ε1) = (τ 2
1 )4ρ2(σ) · ε1,

σ(ε2) = ((τ1τ2)
3)−4ρ2(σ) · ε2,

σ(ε3) = ((τ1τ2τ3)
4)−ρ2(σ) · ε3

for σ ∈ GQ.
Let us also calculate the image F(M−1(

−→
w q̄)) on A3

u \D. Using the above (5.6.2), the

Ferrari resolvents on A3
v \∆ can be seen as (S1, S2, S3) ∼ (−1

4
− 4q,−1

4
− t2q

4
,−4q − t2q

4
)

which is also equivalent to

(5.6.4) (0, S2 − S1, S3 − S1) ∼ (0, 4q,
1

4
) ∼ (0, s1s2, s2).

We observe that the image F(ε) looks like a segment path
−→
01 Ã 1

16

−→
01 on the s1-line.

This kind of avatar of the principal coefficient 16 of the modular function λ(τ) (5.6.1) was
observed in [N99-02] §4.10, and has continuously appeared in our works [N97], [NS00] etc.

5.7. Standard splittings of π1(M
ω
1,2). Below, we shall switch our working place to Mω

1,2-
side of the Mordell transformation (5.4.1). We write by the same symbols the images of
the base point b̄4 and the above path ε on A4

u \D on Mω
1,2 by M. Let β1(σ) ∈ π1(M

ω
1,2, b̄4),

s1(σ) ∈ π1(M
ω
1,2,
−→
w q̄) denote the elements corresponding to σ ∈ GQ. Also we represent

the images of generator elements of B̂4 by M by the same symbols, which are in the first
sense loops based at b̄4 but also may be regarded as loops based at

−→
w q̄ by conjugation by

ε. Under these abuse of notations, we may rephrase the above formula (5.6.3) as

β1(σ) ε s1(σ)−1 = ε · (τ 2
1 )4ρ2(σ)((τ1τ2)

3)−4ρ2(σ)((τ1τ2τ3)
4)−ρ2(σ)(5.7.1)

= (τ 2
1 )4ρ2(σ)((τ1τ2)

3)−4ρ2(σ)((τ1τ2τ3)
4)−ρ2(σ) · ε.



ARITHMETIC MONODROMY REPRESENTATION OF EISENSTEIN TYPE 31

Drawing back Drinfeld’s formula (5.4.2) by ε, we obtain Galois actions on τ1, τ2, τ3 at the
Tate-Weierstrass base point

−→
w q̄ as follows:

(5.7.2)





s1(σ) τ1 s1(σ)−1 = τ
χ(σ)
1 ,

s1(σ) τ2 s1(σ)−1 = ω
−4ρ2(σ)
2 fσ(τ 2

1 , τ 2
2 )−1τ

χ(σ)
2 fσ(τ 2

1 , τ 2
2 )ω

4ρ2(σ)
2 ,

s1(σ) τ3 s1(σ)−1 = ω
4ρ2(σ)
3 fσ(ω3, τ

2
3 )−1τ

χ(σ)
3 fσ(ω3, τ

2
3 )ω

−4ρ2(σ)
3 ,

where ω2 = τ 2
1 , ω3 = (τ1τ2)

3.
Next we shall look at the kernel of projection π1(M

ω
1,2,
−→
w q̄) → π1(M

ω
1,1, q̄) which is

identified with the Ferrari kernel ker(π1(F)) (5.4.3). In [N99-02] §4, we considered
π1(M1,2) = π1(M

ω
1,2)/〈ω4〉 as the topological mapping class group of a torus with two

marked points. The images of τ1, τ2, τ3 were then understood to be the Dehn twists along
certain simple closed curves on it. From this discussion, one could introduce genera-
tors x1,x2, z given by combination of Dehn twists as in (5.4.4). Since the Ferrari kernel
has isomorphic image in π1(M1,2), we see that GQ-action on these generators x1,x2, z of
π1(Tate(q)\{O}) in Theorem 5.2.4 exactly gives the GQ-action on the Ferrari kernel even
in π1(M

ω
1,2,
−→
w q̄).

At this stage, it is probably appropriate to expose how the above formulas can consis-
tently be combined to deduce a key formula of Theorem 5.2.4, namely, to the fact that
s1(σ) acts on x2 by

(∗) x2 7→ fσ(x−1
2 , z)x

χ(σ)
2 fσ(x−1

2 , z)−1.

In fact, since x2 = τ1τ
−1
3 , one can easily see from (5.7.2) that

x2 7→ ω
4ρ2(σ)
3 fσ(τ 2

3 , ω3)x
χ(σ)
2 fσ(τ 2

3 , ω3)
−1ω

−4ρ2(σ)
3 .

Now, recall the relation (IV) satisfied by GQ in ĜT which was found in [N99-02] Theorem
4.16. It (equivalently) implies (cf. also [NS00] p.543) the equation

(IV) fσ(τ 2
3 , ω3) = ω

−4ρ2(σ)
3 fσ(τ3, ω

2
3)(τ3ω3)

4ρ2(σ)τ
−4ρ2(σ)
3 (σ ∈ GQ).

The above (∗) follows then immediately after noting ω2
3 = zω4.

Before closing this subsection, we give a statement on how the Weierstrass tangential
section (§2.4) gives a complement of the Ferrari kernel, i.e., splitting of π1(M

ω
1,2,
−→
w q̄) with

it:

Proposition 5.7.3. The image of the Weierstrass section

s−→w : π1(M
ω
1,1, q̄)−→π1(M

ω
1,2,
−→
w q̄)

coincides with the subgroup 〈τ1, τ2〉 o s1(GQ). Consequently, the conjugate action on the
Ferrari kernel ker(π1(F)) = 〈x1,x2〉 via s−→w of each split component of π1(M

ω
1,1, q̄) =

B̂3 o s0(GQ) at q̄ is given by

Int(s−→w (τ1)) :

{
x1 7→ x1x

−1
2 ,

x2 7→ x2

; Int(s−→w (τ2)) :

{
x1 7→ x1,

x2 7→ x2x1

on B̂3 and by Theorem 5.2.4 on s0(GQ).

We will give a proof of this proposition later in §7.
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5.8. Lifting modular forms. As observed in §2.2, the moduli space Mω
1,1 and the uni-

versal elliptic curve Mω
1,2 over it are themselves affine schemes. Let Oω

1,1 denote the

former structure ring Q[g2, g3, (g
3
2 − 27g2

3)
−1], and let Oω

1,2 denote the latter structure ring

Oω
1,1[x, y]/(4x3 − g2x − g3 − y2). We shall fix a maximal pro-etale cover (i.e., univer-

sal cover) M̃ω
1,2 = Spec(Õω

1,2) of Mω
1,2, and a base point w̃q̄ on it that lifts

−→
w q̄. Note

that this determines, at the same time, the universal cover M̃ω
1,1 = Spec(Õω

1,1) of Mω
1,1

together with its base point q̃ as the pointed subobject under (M̃ω
1,2, w̃q̄). For any two

pointed Galois etale covers f : (Y, ȳ) → (X, x̄) dominated by (M̃ω
1,2, w̃q̄), we shall write

aY/X : π1(X, x̄) → Aut(Y/X) for the natural surjective anti-homomorphism determined
by aY/X(σ)(ȳ) = σ(ȳ).

In the above, we have already selected (an embedding Q ↪→ C and) standard gener-
ators x1,x2, z of π1(Tate(q)q̄ \ {O}, q̄) which determines the matrix representation ρN :
π1(M

ω
1,1, q̄) → GL2(Z/NZ).

As in §2.6, we obtain a system of etale coverings Mω
1,1[N ] → Mω

1,1 which corresponds

to the kernels of ρN (N ≥ 1). Also we pick a system of base points q̄N on Mω
1,1[N ]

in multiplicatively compatible way with respect to N ≥ 1. Regard then the associated

Γ(N)-test object (EN/Õω
1,1

N
, α : (Z/NZ)2 ∼−→EN [N ], ωN) with the pair of base points

(
−→
w q̄N , q̄N) as pointed subjects of (M̃ω

1,2, w̃q̄), so that the structure rings of both EN and

Oω
1,1

N become subrings of Õω
1,2 and of Õω

1,1 respectively. Note also that the Weil pairing

gives a compatible system of primitive roots of unity {ζN} in Õω
1,1. It turns out that

ζN = exp(2πi/N) under our choice of Q ↪→ C.
Now, we see how modular units, eta-functions and Eisenstein series introduced in §4 can

be lifted to certain elements of Õω
1,1. In fact, by Prop. 4.2.1, the Siegel function gx (x ∈

( 1
N
Z/Z)2) is a modular function of level 12N2 with q1/N -expansion in Q(µ2N2). By Prop.

4.2.3, the square of eta function η2 is a modular form of weight 1 and level 12 which has

Q-rational q1/12-expansion. By (4.3.2), the Eisenstein series E
(x)
k (x ∈ ( 1

N
Z/Z)2) for k ≥ 3

or x 6= 0 is a modular form of weight k of level N2 with q1/N -expansion in Q(µN). Thus,
forming algebraic modular forms corresponding to them over suitably large cyclotomic

fields (⊂ C) (§4.4), we obtain their values at (EN/Õω
1,1

N
, α : (Z/NZ)2 ∼−→EN [N ], ωN) in

Õω
1,1. Note that an algebraic form of level N may also be of level MN that, however,

still gives the same element in Õω
1,1. We shall use the same symbols as modular forms to

designate the corresponding elements in Õω
1,1. For example, we have ∆ = (η2)12, θx = g12

x

as elements of Õω
1,1. Moreover, their q1/N -expansions can be recovered as the values at the

Tate tangential base point, i.e., as the Puiseux power series images by Õω
1,1 → Ω ⊂ Q{{q}}

at q̄.

5.9. Power roots of ∆. Since η2 is a unit of Õω
1,1, its power roots (η2)1/N also lie in Õω

1,1.

The choice of their branches can be determined by specifying their images in Q{{q}}, or
more simply by specifying the principal coefficients as Puiseux power series in q. Since
η2 = q1/12

∏
(1 − qn)2, we simply set (η2)1/N to have the leading term q1/12N . Put also

∆1/N := ((η2)1/N)12.
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The Kummer character
ρ∆ : π1(M

ω
1,1, q̄)−→ Ẑ

is defined by
∆1/N |aσ

∆1/N
= ζ

ρ∆(σ)
N (N ≥ 1, σ ∈ π1(M

ω
1,1, q̄)).

The following gives a complete description of ρ∆:

Lemma 5.9.1. Let π1(M1,1, q̄) = s0(GQ)nB̂3 be the standard splitting of the fundamental

group of Mω
1,1 at the Tate tangential base point q̄. On s0(GQ), ρ∆ vanishes. On B̂3, ρ∆ is

determined by ρ∆(τ1) = ρ∆(τ2) = −1. Consequently, it holds that

ρ∆ : π1(M
ω
1,1, q̄)−→ Ẑ (τ1, τ2 7→ −1, s0(σ) 7→ 0(σ ∈ GQ)).

Proof. The action from s0(GQ) is defined by coefficientwise Galois action on the Puiseux
series in q. Our choice is given by setting principal coefficient 1, so ρ∆ vanishes. On
the discrete geometric fundamental group B3, we interpret ρ∆ as the rounding number of
the function ∆ = g3

2 − 27g2
3 = 16(e1 − e2)

2(e1 − e3)
2(e2 − e3)

2 along the motion of three
points e1, e2, e3 according to braids. The minus sign comes from our convention of path
composition. ¤
5.10. Power roots of Siegel units. For gx (x = ( r1

m
, r2

m
)), recall that the principal term

of q1/12m2
-expansion reads by definition (see §4.2) as:{

−eπix2(x1−1) (m - r1),

−eπix2(x1−1)(1− ζr2
m ) (m | r1).

In view of this, to determine the standard N -th root of gx (written g
1/N
x ), it suffices to

decide the standard N -th roots of those individual factors. Set

(−1)1/N = ζ2N , (eπix2(x1−1))1/N = ζ
r2(r1−1)

2Nm2

and let (1 − ζr2
m )1/N be the principal branch having the least argument as the complex

number. Certainly, we define g
1/N
x for x = ( r1

m
, r2

m
) with (r1, r2) ∈ [0,m)2−{0} so that the

principal coefficient of q1/12m2N is ζ2Nζ
r2(r1−1)

2Nm2 with multiplied by the (1 − ζr2
m )1/N when

r1 = 0. But we take a slightly more careful process using the complex model discussed in
§2.9, where the universal elliptic curve with level m structure was given as a quotient of

C×H by Z2oΓ(m). To specify g
1/N
x it suffices to choose its image as an analytic function

on the upper half plane H. Observe now that the Siegel function gx (x ∈ R2) varies real
analytically with respect to x, which is zero for x ∈ Z2 while non zero for x ∈ R2 \Z2. For

x = (x1, x2) ∈ [0, 1)2 (x 6= 0), we define g
1/N
x to be that whose Fourier expansion at i∞

has principal coefficient eπ(1+x2(x1−1))/N with multiplied by (1 − e2πix2)1/N when x1 = 0.
For general (x1, x2) = ( r1

m
, r2

m
) ∈ Q2 \ Z2, pick a sufficiently small real number 1

m
ε > 0,

and trace the branch of g
1/N
ξ from ξ = (ε, ε) in the already defined region [0, 1)2 − {0}

along the piecewise line path ξ = (ε, ε)−→ (ε, ε + x2)−→ (ε + x1, ε + x2), and then take
the limit ε → 0: the process may be summarized as

(5.10.1) g1/N
x := lim

ε→0
Move
t1:0 1

Move
t2:0 1

(
g

1/N
ξ((x1t1,0)+(0,x2t2)+(ε,ε))

)
.

Since the path does not meet a lattice point in Z2, the real analytic continuity of gx with

respect to x ∈ R2 determines a well defined branch of g
1/N
x . Obviously, g

1/N
x forms a power
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root system with respect to N , namely (g
1/MN
x )N = g

1/M
x for M, N ∈ N . We also define

θ
1/N
x := (g

1/N
x )12.

Before closing this section, we shall introduce certain Kummer type quantities. These
will be crucial in our main Theorem A approximating ECm(σ)-invariant, which we will
discuss in details in the next section.

Definition 5.10.2. Let C be a full class of finite groups. Define

eC :=
∏

l:prime∈|C|
el

where el = 1, 3, 4 according as l ≥ 5, = 3, = 2 respectively.

Let ρC : π1(M
ω
1,1, q̄) → GL2(ZC) be the standard representation on the abelianization of

Π1,1, and let m ≥ 1 and pick any σ ∈ π1(M
ω
1,1, q̄).

Definition 5.10.3. If two pairs of rational integers r = (r1, r2), s = (s1, s2) ∈ Z2 satisfy(
s1

s2

)
≡ ρC(σ)

(
r1

r2

)
mod m2MeC

for some M ∈ |C|, then, the move of pairs

x =
(r1

m
,
r2

m

)
−→ y =

(s1

m
,
s2

m

)
∈

(
1

m
Z

)2

is called ρC(σ)-admissible at level m modulo m2M . (Here ρC(σ) is considered as acting

on (Z/(m2MeC)Z)2 through ρm2MeC (§2.6).)

Note that, in this case, as noted in (4.6.2), (4.6.7-8), (gx)
cl |aσ = ζ · (gy)

cl (ζ ∈ µel
), where

cl = 12, 4, 3 (resp. el = 1, 3, 4) according as l ≥ 5, = 3, = 2.

Definition 5.10.4. Notations being as above, let x → y be a move of pairs of rational
numbers which is ρC(σ)-admissible at level m modulo m2M . (In this case, by assumption
x, y 6∈ Z2.) Define then the value

κm,m2M
x→y,C (σ) =

(
κm,m2M

x→y,l (σ)
)

l:prime∈|C|
∈ ZC

by (
(gcl

x )1/ln|aσ

(gcl
y )1/ln

)
= ζ

κm,m2M
x→y,l (σ)

elln
(ln ∈ |C|, l : prime).

An easy observation: Each l-component of κm,m2M
x→y,C (σ) for prime l ∈ |C| can be in-

terpreted as κm,m2M
x→y,(l) (σ), i.e., that obtained by replacing C by the full class of l groups

(denoted (l)). Note here that ρC(σ)-admissibility implies ρ(l)(σ)-admissibility.
One more crucial remark should be added here: Our move of pairs x → y is chosen after

σ ∈ π1(M
ω
1,1, q̄) is given. Therefore κm,m2M

x→y,C does not form a single function on π1(M
ω
1,1, q̄)

to ZC. What we have obtained is, in general, only a “collection of quantities”, which,
however, still turn out to have certain coherence as we will see in the next section.

In particular, if we restrict the range of σ to the pro-C congruence kernel where ρC(σ) =

1, then we may fix x = y for all of them, and κm,m2M
x→x,C gives an additive character (even

independent of M). We will discuss about it in more details in §6.10.
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6. Modular unit formula

6.1. Set up. Let C be a full class of finite groups. Suppose we are given a Γ(1)-test object
(E, O, ω) defined over a normal ring B(⊃ Q) whose connected spectrum S = Spec(B) has
a fixed base point b̄ : SpecΩ → S. We have a unique representative morphism r : S → Mω

1,1

together with rE : E \ {O} → Mω
1,2. Pick any path γ from r(b̄) to the standard basepoint

q̄ on M1,1 introduced in the previous section. Then, through the Weierstrass tangential

section (§2.4), we obtain a path γ̃ from rE(
−→
w b̄) to

−→
w q̄ on Mω

1,2 lifting γ. Note that this

uniquely determines a lift rE(
−→
w b̄)

∼
on M̃ω

1,2 connecting to w̃q̄ selected in §5.8.
Let (x, y, g2, g3, t) be the associated parameter for (E/B,O, ω) and let OE denote the

structure ring H0(E\{O},O) = B[x, y]/(y2 = 4x3−g2x−g3) of the affine scheme E\{O}.
Fix a maximal etale extension ÕE whose spectrum Ẽ \ {O} := Spec(ÕE) serves as an etale

universal cover of E\{O} over B. We also pick and fix a lift w̃b̄ : Spec(Ω{{t}}) → Ẽ \ {O}
of the Weierstrass base point

−→
w b̄.

The fiber product P of M̃ω
1,2 and E \ {O} over Mω

1,2 is, in general, not connected. But

since there is a canonical bijection between the fiber set M̃ω
1,2(rE(

−→
w b̄)) and the fiber set

P (
−→
w b̄), we have a canonical point p0 in the latter set corresponding to rE(

−→
w b̄)

∼
. This

determines the morphism of pointed schemes

r̃E : (Ẽ \ {O}, w̃b̄)−→ (P, p0)−→ (M̃ω
1,2, rE(

−→
w b̄)

∼
)

which actually factors through the connected component of P carrying the p0. Corre-
spondingly, we have a canonical ring homomorphism

r̃E
∗ : Õω

1,2−→ÕE.

As usual, for any two pointed Galois etale covers f : (Y, ȳ) → (X, x̄) dominated by

(Ẽ \ {O}, w̃b̄), we write aY/X : π1(X, x̄) → Aut(Y/X) for the natural surjective anti-
homomorphism determined by aY/X(σ)(ȳ) = σ(ȳ). Observe also that the maximal un-

ramified subextension Bur of B inside the above ÕE whose spectrum Sur is naturally
pointed by w̃b̄. Thus, each of the spectrums of those rings in the inclusion series

B ⊂ BN ⊂ BC =
⋃

N∈|C|
BN ⊂ Bur

has a standard base point valued in Ω which we will write b̄, b̄N , b̄C, b̄ur respectively. From
the anti-isomorphism aSur/S : π1(S, b̄) → Aut(Sur/S), we have a standard isomorphism

π1(S, b̄)
∼−→Aut(Bur/B) written σ 7→ (∗|a(σ)) The above homomorphism r̃E

∗ induces by

restriction a ring homomorphism Õω
1,1−→Bur. This enables us to consider the images in

Bur of algebraic modular forms or of selected power roots of ∆ and Siegel units in the
last section (§5.8–5.10). Accordingly, 1

12
ρ∆, κm,m2M,C

x→y make senses on π1(S, b̄) which factor
through π1(M

ω
1,1, q̄) via the representative morphism r : S → Mω

1,1 and the selected path

γ : r(b̄) Ã q̄.

6.2. Main approximation theorem. In this subsection, we state our main approxima-
tion theorem. The proof will be given in the last part of this section.

By taking conjugation via the above rE and γ̃, we can also pull back the standard
generators x1,x2 of Π1,1 = π1(Tateq̄ \{O},−→w q̄) to π1(Eb̄ \{O},−→w b̄) (denoted by the same



36 HIROAKI NAKAMURA

symbols) so that z = [x1,x2]
−1 generates an inertia subgroup over the missing point O

on Eb̄ \ {O}. From this, we obtain, for m ∈ |C|, the monodromy invariants (of Eisenstein
type) ECm : π1(S, b̄)× Z2

C → ZC (Definition 3.4.1).

Theorem 6.2.1 (Modular unit formula). Let σ ∈ π1(S, b̄). For any M ∈ |C| and
(u, v) ∈ Z2

C \ (mZC)2, pick two pairs of rational integers r = (r1, r2), s = (s1, s2) such
that r ≡ (u, v) mod mM22ε (where ε = 0, 1 according as 2 -M , 2|M respectively) and
x = ( r1

m
, r2

m
) → y = ( s1

m
, s2

m
) is ρC(σ)-admissible at level m modulo m2M2. Then,

ECm(σ; u, v) ≡ κm,m2M2

x→y,C (σ)− ρ∆(σ)

12
+ ρm(σ) mod M2.

Since ∆(E, mω) = m−12∆(E, ω), the above right hand side can be written in the
form Theorem A of Introduction. We also note that by definition Em(σ; 0, 0) = 0, and
recall from Proposition 3.4.8 that Em(σ; u, v) for (u, v) ∈ (mZC)2 can be evaluated from
Em(σ; u + 1, v), Em(σ; 1, 0) and an elementary term.

For the proof of the above theorem, observe first that, without loss of generality, we may
assume C is a full class of all finite groups (cf. Remark 3.6.4). By the Chinese Remainder
Theorem, we may also assume M = ln for a prime l. Below, we shall start arguments to
prove this theorem in form of these assumptions being supposed. In particular, we drop

C from the notation κm,m2M2

x→y,C (σ), which means C is supposed to be the class of all finite
groups.

6.3. Geometrically abelian coverings. Let N be an integer in |C|. The isogeny

E
N−→E by multiplication by N gives an etale B-cover of degree N2. Let us write this

covering as EN
B → E to distinguish the copy EN

B from E/B. We have specified differ-
ential forms both on E/B and EN

B which will be written ω and ωN respectively. (We
need to reserve the notations ω1, ω2 also for the two components of fundamental period
integrals in C. There would not be chances to confuse them with the ωN introduced here.)
The pullback of ω to EN

B is then NωN . The associated parameter of EN
B is of the form

(g2, g3, xN , yN , tN), where the last three parameters xN , yN , tN can be explicitly written
by the original ones for E/B by classically well known N -division formulas of elliptic
functions. Especially, tN can be expanded in the power series of the form Nt(1 + tB[[t]]).

The above isogeny by multiplication by N also induces the etale cover

EN
0 := EN

B \ E[N ]−→E0 := E \ {O}.
The etale neighborhoods of zero sections O in both EN

0 and E0 are canonically isomorphic,
i.e., RevO((EN

B /O)∧) ≈ RevO((E/O)∧). From this we obtain a unique tangential base
point

−→
wN valued in Ω{{t}} near the zero section of EN

0 that lifts the Weierstrass base

point
−→
w b̄ on E0. Note that Weierstrass base point

−→
w

N

b̄ of EN
0 valued in Ω{{tN}} itself has

to be distinguished from
−→
wN . But since tN ∼ Nt and since we have a standard power

root system { n
√

N > 0}, we can fix an isomorphism of Puiseux power series

Ω{{tN}} ∼−→Ω{{t}} (t
1/n
N 7→ n

√
Nt1/n, n = 1, 2, 3, . . . )

which defines a standard path from
−→
wN to

−→
w

N

b̄ . The fundamental group π1(E
N
0 ,
−→
wN) is

a subgroup of π1(E0,
−→
w b̄), and is naturally isomorphic to π1(E

N
0 ,
−→
w

N

b̄ ) via the above path
−→
wN Ã −→

w
N

b̄ .
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6.4. Geometrically meta-abelian coverings. Suppose N = ml with l a prime factor
of N . We shall construct a sequence of etale covers of EN

0 of degrees ln (n = 1, 2, ...) whose
geometric fibers form connected cyclic covers of (EN

0 )b̄. As in the previous subsection, let
NωN on EN

B be the pull back of ω and let (g2, g3, xN , yN , tN) be the associated parameter
of (EN

B , O, ωN). Define then

(6.4.1) Θl,N =





∆(EN
B ,O,ωN )l2

l12

∏
P∈E[l]\{O}

1
(xN−xN (P ))6

, (l ≥ 5);
∆(EN

B ,O,ωN )3

34

∏
P∈E[3]\{O}

1
(xN−xN (P ))2

, (l = 3);
∆(EN

B ,O,ωN )

(−yN )3
, (l = 2).

Note that ∆(EN
B , O, ωN) ∈ B×. Each P ∈ E[l](⊂ EN

B [N ] ⊗ Bl) means a section Sl →
EN

B ⊗Bl and xN(P ) gives an element of Bl(⊂ BN). Although each factor xN − xN(P ) is
a function on EN

0 ⊗Bl, the product is easily seen to lie in the structure ring OEN
B

of EN
0

over B. The associated divisor div(Θl,N) of Θl,N is given by:

(6.4.2) div(Θl,N) =





12(l2 − 1) · [O]− 12 · (EN
B [l] \ {O}), (l ≥ 5);

4 · 8 · [O]− 4 · (EN
B [3] \ {O}), (l = 3);

3 · 3 · [O]− 3 · (EN
B [2] \ {O}), (l = 2).

Now, consider the function Θl,N = Θl,ml as a B-morphism of E \ E[ml] to Gm =

SpecB[T, 1
T
] (via T 7→ Θl,ml). And further take the pullback Y ml,lk by the lk-isogeny

of Gm = SpecB[U, 1
U
] → Gm = SpecB[T, 1

T
] (T 7→ U lk). Then, we have the following

commutative diagram

(6.4.3)

Gm

Θ
1/lk

l,ml←−−−− Y ml,lk ←−−− Y ml,lk

b̄

−→
w Y←−−− SpecΩ{{t}}

lk

y
y

y
y( )lk

Gm

Θl,ml←−−− Eml
B \ E[ml] ←−−− Eb̄ \ Eb̄[ml]

−→
w ml←−−− SpecΩ{{t}}y

y
∥∥∥

E0 = E \ {O} ←−−− Eb̄ \ {O}
−→
w b̄←−−− SpecΩ{{t}}y

y
y

S ←−−− b̄ SpecΩ

where
−→
wY is the induced base point on Y ml,lk

b̄
. Since the degrees of div(Θl,ml) at irreducible

divisors in E[l] are prime to l, the pullbacked scheme Y ml,lk is geometrically connected over

S. One can regard π1(Y
ml,lk ,

−→
wY ) naturally as a subgroup of π1(E

ml
0 ,
−→
wml). Moreover,

regarding the toroidal type transformation t 7→ t1/lk of Ω{{t}} as equivalence of base

points, we see a unique etale morphism (Ẽ \ {O}, w̃b̄) → (Y ml,lk ,
−→
wY ) is determined as a

pointed cover. In this way, Θ
1/lk

l,ml ∈ O(Y ml,lk)× is considered as a specific element of O×
E .

6.5. Inertia classes and Theta values. We inherit the notations of the previous sec-
tion. If we extend the base scheme S to SN = Spec(BN) which corresponds to the
kernel of the monodromy representation ρN : π1(S, b̄) → GL2(Z/NZ) (§2.6), the divisor



38 HIROAKI NAKAMURA

E[N ] ⊗ BN(⊂ EN
B ⊗B BN) is a union of N2 copies of SN indexed by the level struc-

ture αN : (Z/NZ)2 ∼−→EN [N ]. The geometric fiber (EN
0 )b̄ = Eb̄ \ Eb̄[N ] is an abelian

etale cover of (E0)b̄ = Eb̄ \ {O} with Galois group (Z/NZ)2. The puncture of (EN
0 )b̄

corresponding to αN(a) will be denoted by Pa.

Let αml : (Z/mlZ)2 ∼−→Eml[ml] be the induced level ml-structure, and let (Z/mlZ)2
0

be the subset of (Z/mlZ)2 consisting of the pairs a = (a1, a2) such that la 6= 0. For
a ∈ (Z/mlZ)2

0, since the image of the section αml(a) : Sml → Eml does not intersect with
the support of div(Θl,ml), the value Θl,ml(α

ml(a)) lies in (Bml)×. In fact, the classical
formula (cf. e.g. [KL81] §10, Th. 2.2) gives

(6.5.1) Θl,ml(a) = Θl,ml(α
ml(a)) =





∆ · (θx)
l2

/
θlx, (l ≥ 5),

η8 · (g4
x)

9
/

g4
3x, (l = 3),

η6 · (g3
x)

4
/

g3
2x, (l = 2).

for a ∈ (Z/mlZ)2
0, where x = ( r1

ml
, r2

ml
) ∈ Q2 such that ri ∈ [0,ml] (i = 1, 2) are integers

with ai = ri mod ml.
Now, we shall consider distributions of inertia subsets in π1(Y

ml,lk ,
−→
wY ). Since the

support of the divisor of Θl,ml is in EN [l], the inertia groups over Pa (a ∈ (Z/mlZ)2
0)

splits into a union of lk conjugacy classes of inertia subgroups in π1(Y
ml,lk ,

−→
wY ).

Definition 6.5.2. For (u, v) ∈ (Ẑ)2 \ (mẐ)2, define the missing point Qml,lk

u,v on Y ml,lk

b̄
to

be the one determined by the inertia group generated by

zuv := (x−v
2 x−u

1 )z(xu
1x

v
2).

Let Xml,lk be the integral closure of Eml
B − E[l] in Y ml,lk . The specific element Θ

1/lk

l,ml is

considered as a unit of the structure ring of Xml,lk . Moreover, the above point Qml,lk

u,v de-

termines a Bur-point of Xml,lk/B, which we shall write βml,lk

u,v : Sur → Xml,lk . Composing
these two, one obtains a unit of Sur which will be written as

(6.5.3) Θ
1/lk

l,ml(u, v) := Θ
1/lk

l,ml(β
ml,lk

u,v (Sur)) ∈ (Sur)×.

On the other hand, the Bur-point βml,lk

u,v : Sur → Xml,lk of Xml,lk/B lies over the Bml-

point of Eml
B − E[l] induced from the section αml(a) : Sml → Eml for a = (a1, a2) ∈

(Z/mlZ)2
0 representing the residue class of (u, v) modulo ml.

Lemma 6.5.4. Let cl = 12, 4, 3 according as l ≥ 5, = 3, = 2 respectively. For (r1, r2) ∈
Z2 \ (mZ)2, set x = ( r1

ml
, r2

ml
) ∈ Q2. Then, we have

Θ
1/lk

l,ml(r1, r2) = (η2cl)1/lk · ((gcl
x )1/lk)l2

(gcl
lx)

1/lk
,

where θ1/lk is the pull-back by (Mω
1,1)

ur → Sur of the corresponding element introduced in
the previous section.

Proof. By functoriality of construction, it suffices to work in the complex analytic models
with E \ {O} = Mω

1,2 and b̄ = q̄ on Mω
1,1. First, we shall see that one of the inertia group

over Pa is generated by zuv with (u, v) ∈ Ẑ2 satisfying (u, v) ≡ a mod N . The starting
inertia element z = z00 determines the origin puncture O = P0 on Eml \ E[ml] which is

tangent to the tangential base point
−→
w

ml
represented by (the image of) the real analytic
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small region {(ετ + ε) | 0 < ε ¿ 1}. Note that the puncture Pa is obtained as those

points tangent to the regions obtained from
−→
w

ml
by continuously tracing the paths xu

1x
v
2

for any u, v ∈ Z, (u, v) ≡ a mod m. The automorphism axu
1xv

2
∈ Aut(Eml \ E[ml]) is

determined by xu
1x

v
2(
−→
w

ml
) = axu

1xv
2
(
−→
w

ml
) = av

x2
au
x1

(
−→
w

ml
). Extend aγ ∈ Aut(Eml \ E[ml])

to a unique automorphism aγ of Eml. Observing

ax−v
2 x−u

1 zxu
1xv

2
(O) = axv

2
axu

1
az ax−u

1
ax−v

2

(
axv

2
axu

1
(O)

)
,

we see that the element zuv := x−v
2 x−u

1 zxu
1x

v
2 ((u, v) ≡ a mod m) generates an inertia

subgroup over Pa = axu
1xv

2
(O) = axv

2
axu

1
(O) in π1(E

ml
b̄
\ E[ml],

−→
w

ml

b̄ ).

Next we consider the cover Y ml,lk → Eml \ E[ml] and its partial compactification

Xml,lk → Eml \E[l]. As an element of Õω
1,2, Θ

1/lk

l,ml is taken so that its principal coefficient

in z (in the complex model) coincides with (∆l2

l12
z12)1/lk . Expressing Θl,ml as quotients

of theta function (4.1.6) with non-holomorphic factors cancelled, the principal factor in
z is contributed from factors “(1 − qz)” when (x1, x2) ∈ [0, 1

l
)2 for the denominator and

(x1, x2) ∈ [0, 1)2 for the numerator. This observation together with (6.5.1) settles the
claim when (r1, r2) ∈ [0,m)2. For general (r1, r2), we need to interpret the place where the
inertia element zr = (x−r2

2 x−r1
1 )z(xr1

1 xr2
2 ) detects. As in the similar account to the above

paragraph, it must be obtained as the puncture tangent to xr1
1 xr2

2 (
−→
wY ) whose location is

detected by tracing the continuous move of the tangential base point
−→
wY represented by

a real analytic small region {z1/lk = (ετ + ε)1/lk | 0 < ε ¿ 1} along the paths xr2
2 first and

then xr1
1 afterwards. From this, it turns out that our choice of the branch of power roots

of Siegel units (§5.10) keeps the assertion of our lemma valid even for general (r1, r2). ¤

6.6. Estimating difference of sections. We now work in the extension of the profinite
groups

1 −→ π1(Eb̄ \ {O},−→w b̄) = Π1,1 −→ π1(E \ {O},−→w b̄) −→ π1(S, b̄) −→ 1

with the Weierstrass tangential section s−→w : π1(S, b̄) → π1(E\{O},−→w b̄). Write σ̄ := s−→w (σ)
for each σ ∈ π1(S, b̄).

Since Θl,ml is defined over B and has zeros of order prime to l, the etale cover Y ml,lk →
Eml

B \E[ml] is connected, defined over B and totally ramified over O. Taking n →∞, we
can consider the subgroup π1(Y

ml,l∞ ,
−→
wY ) of π1(E \ {O},−→w b̄) surjectively mapped onto

π1(S, b̄). Since π1(Y
ml,l∞ ,

−→
wY ) ∩ 〈z〉 = {1}, for each σ ∈ π1(S, b̄), there exists a unique

σm ∈ π1(Y
ml,l∞ ,

−→
wY ) which normalizes 〈z〉 and is mapped to the σ. Let us compare the

difference between σ̄ and σm. Note that σ̄ is also contained in the normalizer of 〈z〉,
and π1(E \ E[ml],

−→
wml) contains this normalizer. The difference σ̄σ−1

m is thus belongs

to π1(Eb̄ \ Eb̄[ml],
−→
wml). Since π1(Eb̄ \ E[ml],

−→
wml)/π1(Y

lm,l∞

b̄
,
−→
wY ) is generated by the

image of z, it follows that there exists a unique l-adic integer ξm(σ) such that zξm(σ)σ̄ is
contained in π1(Y

lm,l∞ ,
−→
wY ). So, without loss of generality, we may take σm in the form

σm = zξm(σ)σ̄ for a unique ξm(σ) ∈ Zl.

Lemma 6.6.1.

ξm(σ) =
l2

12(l2 − 1)
ρ∆(σ)− 1

l2 − 1
ρl(σ)− ρml(σ) (σ ∈ π1(S, b̄)).
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Proof. Let tml be the associated parameter “t” for the cover E \E[ml] (§2.2). Then, near
the tml = 0, we have

(6.6.2) Θl,ml ∼





∆l2

l12
(t12

ml)
l2−1, (l ≥ 5),

(η8)9

34 (t4ml)
8 = ∆3

34 (t4ml)
8, (l = 3),

(η6)4

23 (t3ml)
3 = ∆

23 (t
3
ml)

3, (l = 2).

Since tml ∼ t/ml, we get

Θl,ml ∼ ∆12l2t12(l2−1)

l12(ml)12(l2−1)
,

∆3t32

34(3m)32
,

∆t9

23(2m)9

in the respective case l ≥ 5, = 3, = 2. By the definition, the σm keeps Θ
1/lk

l,ml invariant,

while σ̄ acts on its coefficients in the fractional powers of t. Noticing that t1/lk |az = ζ−1
lk

t1/lk

in our convention, we obtain when l ≥ 5,

ζ
−12(l2−1)ρml(σ)−12ρl(σ)+l2ρ∆(σ)

lk
· ζ−12(l2−1)ξm

lk
= 1.

From this the formula follows. By similar arguments for the cases l = 3, 2, we also see

ξm(σ) =

{
3
32

ρ∆(σ)− 1
8
ρ3(σ)− ρ3m(σ) (l = 3);

1
9
ρ∆(σ)− 1

3
ρ2(σ)− ρ2m(σ) (l = 2),

both cases of which fit into the same formula as the case l ≥ 5. ¤

6.7. Monodromy permutations of inertia subsets. As explained above, since our
Θl,ml gives an S-morphism Eml

B \ E[l] → Gm, the pull-backed scheme Y ml,lk still has a
canonical model over S. In particular, we have an exact sequence

(6.7.1) 1−→π1(Y
ml,lk

b̄
,
−→
wY )−→π1(Y

ml,lk ,
−→
wY )−→π1(S, b̄)−→ 1

which is our main working place in this subsection.

We shall consider the set of conjugacy unions of inertia subgroups in π1(Y
ml,lk

b̄
,
−→
wY )

over the missing points Qml,lk of Y ml,lk

b̄
lying on the integral closure Xml,lk of Eml

B −E[l] in

Y ml,lk (Definition 6.5.2). Denote, for each Q ∈ Qml,lk , by IQ the conjugacy union of the

inertia subgroups over Q in π1(Y
ml,lk ,

−→
wY ). We now realize the following twofold actions.

On one hand, the standard generator z ∈ Π1,1 = π1(E \ {O},−→w b̄) lies in π1(E
ml
B \

E[ml],
−→
wml) which contains π1(Y

ml,lk

b̄
,
−→
wY ) as a normal subgroup. The conjugation by z

induces a permutation of ∪QIQ, hence that of Qml,lk .
On the other hand, we also have the conjugate action by a preimage σm of σ by the

natural surjection π1(Y
ml,lk ,

−→
wY ) → π1(S, b̄). Recall that we have already specified a

particular choice of σm in §6.6. (However, the induced action on the set Qml,lk does not

depend on the choice of σm, as long as it is chosen up to the kernel π1(Y
ml,lk

b̄
,
−→
wY ).)

Note that the point Qml,lk

u,v determined by the inertia element zuv (Definition 6.5.2)

lies also in Qml,lk . In the following proposition, we examine the above twofold conjugate
actions on those inertia subsets including those zuv with numerical quantities to evaluate
distances of permuted points.
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Suppose we are given an element σ ∈ π1(S, b̄) with ρ(σ) = (a
c
b
d) ∈ GL2(Ẑ) and two pairs

of integers r = (r1, r2) and s = (s1, s2) in Z2 \ (mZ)2 so that s ≡ (ar1 + cr2, br1 + dr2)
mod m2lk.

Proposition 6.7.2. Notations being as above, there is a unique ν = νml,lk

r,s ∈ Zl deter-

mined up to modulo lk by either of the following equivalent conditions.

(1) σmzrσ
−1
m is conjugate to z−νz

χ(σ)
s zν in π1(Y

ml,lk

b̄
,
−→
wY ).

(2)

„
Θ

1/lk

l,ml (r1,r2)

«
|aσ

Θ
1/lk

l,ml (s1,s2)
= ζ

−cl(l
2−1)ν

lk
,

where cl = 12, 4, 3 according as l ≥ 5, = 3, = 2.

(3) ζ
ρ∆(σ)

ellk

(
(g

1/lk

x )cll
2

(g
1/lk

lx )cl

) ∣∣∣∣
aσ

= ζ
−cl(l

2−1)ν

lk

(
(g

1/lk

y )cll
2

(g
1/lk

ly )cl

)
,

where x = ( r1

ml
, r2

ml
), y = ( s1

ml
, s2

ml
) ∈ Q2, cl is as above and el = 12/cl.

The remaining part of this subsection is devoted to the proof of this proposition. Recall
from §6.5 that we write Pa for the point in Eml

B [ml] \ Eml
B [l] lying on the component

αml(Sml) over b̄. The set Qml,lk is naturally mapped onto the set Pml := {Pa | a ∈
(Z/mlZ)2

0}. Since the cover (Y ml,lk → Eml
B \{O})b̄ is totally ramified in 〈z〉, the conjugate

action by z gives a transitive orbit in Qml,lk as the fiber set at each Pa. Since the action
of π1(S, b̄) on Pml is given by the matrix ρml on the index set, the existence of ν and its
uniqueness up to modulo lk as in (1) is easy to see. To see the coincidence of ν given by
the conditions (1) and (2) needs more arguments.

Before going further, it is convenient for us to introduce a labelling of the set Qml,lk .
Recall first that Xml,lk is the integral closure of Eml

B −E[l] in Y ml,lk (Definition 6.5.2). The

structure ring of Xml,lk is a subring of that of Y ml,lk which are dominated by SpecÕE = Ẽ0.
The partial compactifications Eml

0 ⊂ Eml
B \ E[l] and Y ml,lk ⊂ Xml,lk fit in the following

cartesian diagram yielding a canonical morphism Spec(ÕE) → Sml(Θ
1/lk

l,ml(a)):

(6.7.3) SpecÕE

}} uu

ss

Gm

lk

��

Xml,lk

��

Θ
1/lk

l,ml

oo SpecBml[U ]/(U lk −Θl,ml(a))

��

oo

Gm Eml
B \ E[l]

Θl,ml

oo Sml
αml(a)

oo

Namely, we have a specific element Θ
1/lk

l,ml(a) ∈ (Bur)× as the image of U in Bur ⊂ ÕE.

Now, the carriers of the points Qml,lk as schemes over Sur = Spec(Bur) are of the form

(Xml,lk − Y ml,lk)⊗B Bur =
⊔

a∈(Z/mlZ)20

Spec(Bur[U ]/(U lk −Θl(a)))(6.7.4)

=
⊔

a∈(Z/mlZ)20

lk−1⊔

b=0

Spec(Bur[U ]/(U − ζb
lkΘl(a)1/lk)).
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Each (physical) component Spec(Bur[U ]/(U−ζb
lk
Θl(a)1/lk)) carries a unique missing point

Qa,b (a ∈ (Z/mlZ)2
0, b ∈ [0, lk− 1]) on the algebraic curve Xml,lk

b̄
. Thus, we have obtained

natural labellings of our issued sets:

(6.7.5) Qml,lk

��

(Xml,lk − Y ml,lk)b̄

��

{Qa,b | a ∈ (Z/mlZ)2
0, b ∈ [0, lk − 1]}

��

Pml (Eml
B [ml]− Eml

B [l])b̄ {Pa | a ∈ (Z/mlZ)2
0}.

Remark 6.7.6. From a real analytic argument similar to the proof of Lemma 6.5.4, one

would also see that Θ
1/lk

l,ml(r1, r2) = Θ
1/lk

l,ml(a) in (Sur)× at least for (r1, r2) ∈ [0,m)2. This
observation, however, will not be used in our proof of Theorem 6.2.1.

Now, we shall interpret the above two group-theoretic conjugate actions by z ∈ Π1,1

and σm ∈ π1(S, b̄) on Qml,lk in geometric terms.
On one hand, the standard generator z ∈ Π1,1 = π1(E \ {O},−→w b̄) lies in π1(E

ml
B \

E[ml],
−→
wml) which also induces an automorphism az of Y ml,lk ⊗B Bur which extends

naturally to an automorphism az of Xml,lk ⊗B Bur. Write by the same symbol az for the
induced permutations of the points Qml,lk := (Xml,lk − Y ml,lk)b̄.

On the other hand, Qml,lk is also regarded as a set of Bur-rational points on (Xml,lk −
Y ml,lk)/B on which there is a natural monodromy action of π1(S, b̄). We simply write it by

σm(∗), as it corresponds to a preimage σm of σ by the natural surjection π1(Y
ml,lk ,

−→
wY ) →

π1(S, b̄). In view of diagram (6.7.4), this action is given by the left action (∗)|aσ in the

value ring Bur on the images of U from the carrier schemes for points in Qml,lk .
Thus, the coincidence of the quantity ν of (1) and (2) amounts to the following

Lemma 6.7.7. For each Q ∈ Qml,lk , Iaz
ν(Q) = z−νIQz

ν.

Proof. This is only a general theory (but needs a careful treatment on conventions of path
compositions). Consider the pointed universal etale cover Ỹ of (Eml

B \E[ml])b̄ dominating

Y ml,lk and partial compactification X̃ as the projective limit of the integral closures of
finite layers over (Eml

B \ E[l])b̄. The profinite set Q̃ := X̃ − Ỹ is regarded as the set of

cusps. Then, for each γ ∈ π1(E
ml
B \E[ml])b̄,

−→
wml), let aγ denote the restriction on Q̃ of the

naturally extended action on X̃ from aγ ∈ Aut(Ỹ ). If γ is contained in the inertia group

for Q ∈ Q̃, i.e., aγ(Q) = Q, then, generally it follows from our convention (cf. (2.7.1))
that

az−1γz(az(Q)) = az·z−1γz(Q)

= aγz(Q)

= az(aγ(Q)) = az(Q).

The statement is only a reflection of this computation. ¤
Thus, we established the existence of ν = νml,lk

r,s and their coincidence in the conditions
(1) and (2). The condition (3) is only a restatement of (2) after Lemma 6.5.4 and the
Kummer property

(6.7.8) (η2cl)1/lk |aσ = (η2cl)1/lk · ζρ∆(σ)

el lk
.

Thus, the proof of Proposition 6.7.2 is completed. ¤
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6.8. Count character for winding numbers. Now, recalling that Y ml,l∞

b̄
is given as

the Kummer cover over Eb̄ \ Eb̄[ml], we have the following exact sequence

1 −→ π1(Y
ml,l∞

b̄
,
−→
wY ) −→ π1((E

ml
B \ E[ml])b̄,

−→
wml)

ϑml−−−→ Zl −→ 1,

where cl · ϑml : π1(Eb̄ \ Eb̄[ml]) → Zl (with cl = 12, 4, 3 according to l ≥ 5, = 3, = 2
respectively) counts rounding numbers of the images of paths by Θl,ml around zero. As
observed in [N95] (2.6), it is easy to show that ϑml is given by

ϑml(x
ml
1 ) = −l(l − 1)/2;(6.8.1)

ϑml(x
ml
2 ) = l(l − 1)/2;(6.8.2)

ϑml(zr) =





(l2 − 1), r ∈ mlN2,

−1, r ∈ mN2 \mlN2,

0, otherwise.

(6.8.3)

Before proceeding with the proof of Theorem 6.2.1, we shall present an immediate ap-
plication of ϑml concerning the points on Y ml,lk determined by the inertia elements
zuv = (xu

1x
v
2)
−1z(xu

1x
v
2) ((u, v) ∈ Ẑ2):

We note that this abelian quotient of π1((E
ml
B \E[ml])b̄,

−→
wml) is generally not invariant

under the conjugate action of π1((EB \ {O})b̄,
−→
w b̄), especially we do not expect a formula

like ϑml(xzx
−1) = ϑml(z).

If (u, v), (u′, v′) ∈ Ẑ2 satisfies the congruence (u, v) ≡ (u′, v′) mod ml, then the quotient
of xu

1x
v
2 by xu′

1 xv′
2 lies in π1((E

ml
B \E[ml])b̄,

−→
wml). The following lemma gives an estimate

of its value via ϑml.

Lemma 6.8.4. If (u, v), (u′, v′) ∈ Ẑ2 satisfies the congruence (u, v) ≡ (u′, v′) mod mlk+1,
then, ϑml((x

u′
1 xv′

2 )−1(xu
1x

v
2)) and ϑml((x

u′
1 xv′

2 )(xu
1x

v
2)
−1) are divisible by lk. If moreover

l ≥ 3, then the assumption may be replaced by (u, v) ≡ (u′, v′) mod mlk.

Proof. By assumption, we may write u′ = u + ε, v′ = v + δ with ε = mlk+1α,δ = mlk+1β
for some α, β ∈ Ẑ. We shall first prove

ϑml(x
−v′
2 x−u′

1 xu
1x

v
2) = ϑml((x

−δ
2 x−ε

1 ) · (xε
1x
−v
2 x−ε

1 xv
2)) ≡ 0 mod lk.

One immediately sees that ϑml(x
−δ
2 ) = βlk+1 1−l

2
, ϑml(x

−ε
1 ) = αlk+1 l−1

2
, each of which

vanishes modulo lk. ((∗): When l ≥ 3, even modulo lk+1.) For the second factor, using
free differential calculus, we have in Π′

1,1/Π
′′
1,1,

xε
1x
−v
2 x−ε

1 xv
2 ≡ −

(
x̄ε

1 − 1

x̄1 − 1
· x̄

−v
2 − 1

x̄2 − 1

)
· z.

Write the RHS as µ · z (µ ∈ Ẑ[[Πab
1,1]]), and consider µ as a measure on Ẑ2 of variable

separate type, we may compute

ϑml(x
ε
1x
−v
2 x−ε

1 xv
2) =

∫

mẐ
d

(
x̄ε

1 − 1

x̄1 − 1

) ∫

mẐ
d

(
x̄−v

2 − 1

x̄2 − 1

)

− l2
∫

mlẐ
d

(
x̄ε

1 − 1

x̄1 − 1

) ∫

mlẐ
d

(
x̄−v

2 − 1

x̄2 − 1

)
.

Then, taking into accounts that ε = mlk+1α, we see that both first factors of the above
two terms vanish modulo lk+1, l2 · lk respectively. When l ≥ 3, the above remark (∗) gives
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the refined implication as in the statement. For ϑml((x
u′
1 xv′

2 )(xu
1x

v
2)
−1) = ϑml(x

ε
1x

δ
2) +

ϑml(x
−δ
2 xu

1x
δ
2x
−u
1 ), we may argue in the similar way to the above case. This completes the

proof. ¤
Corollary 6.8.5. If (u, v), (u′, v′) ∈ Ẑ2 \ (mẐ)2 satisfy the congruence (u, v) ≡ (u′, v′)
mod mlk+1, then, zuv and zu′v′ determine the same cusp on Y ml,lk . If l ≥ 3, then the
assumption may be replaced by (u, v) ≡ (u′, v′) mod mlk.

Proof. To prove the proposition in this case, it suffices to show that the difference of
conjugating factors for zuv and zu′v′ to z is mapped to lkZl by ϑml. This is nothing but
the statement of the above lemma. ¤

Consider the above corollary when l ≥ 3 and k = 1. Then, all inertia elements zuv with
a fixed residue class of (u, v) modulo ml gives the same cusp in Qml,l. From this remark,

especially, one should notice that the points of the form Qml,lk

uv (u, v) ∈ Ẑ2 \ (mẐ)2 do not

exhaust all cusps in Qml,lk .

6.9. End of the proof of Theorem 6.2.1. Given a pair (u, v) ∈ (Ẑ)2 \ (mẐ)2, pick
(r1, r2) ∈ Z2 \ (mZ)2 such that (r1, r2) ≡ (u, v) mod ml2n+1. Then, by Proposition 6.8.4,

the cusps determined by zuv and zr are the same on Y ml,l2n
. Set x = ( r1

m
, r2

m
), y = ( s1

m
, s2

m
),

so that x → y is ρ(σ)-admissible at level m modulo m2l2n from x, and l−1x → l−1y is
ρ(σ)-admissible at level ml modulo m2l2n−2 (in fact, still modulo m2l2n). Proposition
6.7.2 (3) implies, then

Corollary 6.9.1. Notations being as above, especially el designates 1, 3, 4 according as
l ≥ 5, = 3, = 2 respectively, we have

12(l2 − 1)νml,l2n

r,s (σ) ≡ κm,m2l2n

x→y (σ)− l2κml,m2l2n−2

l−1x→l−1y (σ)− ρ∆(σ) mod el · l2n.

Therefore, the following congruence holds with uniquely determined congruence class in
the right hand side:

νml,l2n

r,s (σ) ≡ κm,m2l2n

x→y (σ)− l2κml,m2l2n−2

l−1x→l−1y (σ)− ρ∆(σ)

12(l2 − 1)
mod l2n. ¤

We shall now enter the heart of our proof of Theorem 6.2.1. Let t = (t1, t2) ∈ Ẑ2 be
such that t1 = a(σ)r1 + c(σ)r2, t2 = b(σ)r1 + d(σ)r2 so that t ≡ s mod m2l2n, and put
xt = x−t2

2 x−t1
1 , xs = x−s2

2 x−s1
1 so that zt = xtzx

−1
t , zs = xszx

−1
s . Then, we calculate

σmzrσ
−1
m = zξm(σ)σ̄zrσ̄

−1z−ξm(σ)

= zξm(σ)Sr(σ)(xtx
−1
s )zχ(σ)

s (xtxs−1)−1Sr(σ)−1z−ξm(σ)(6.9.2)

= zξm(σ)w{Gr(σ) · z}(xtx
−1
s )zχ(σ)

s (xsx
−1
t )−1{Gr(σ) · z}−1w−1z−ξm(σ)

for some w ∈ Π′′
1,1. By Corollary 6.8.5, the inertia elements zt and zs determine the same

cusp in Y ml2n

b̄
. Therefore, by Proposition 6.7.2 (1), there exists some h ∈ π1(Y

ml,l2n

b̄
,
−→
wY )

such that σmzrσ
−1
m is of the form hz−νz

χ(σ)
s zνh−1 with ν = νml,l2n

r,s (σ). Since 〈zr〉 is

self-centralizing in π1(Eb̄ \ {O},−→w b̄) and since π1(Y
ml,l∞

b̄
,
−→
wY ) ⊃ 〈zr, Π

′′
1,1〉, we see that

ν = νml,l2n

r,s (σ) satisfies

(6.9.3) z−ν ≡ zξm(σ){Gr(σ) · z}(xtx
−1
s ) mod π1(Y

ml,l2n

b̄
,
−→
wY ).
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Then, apply ϑml mod l2n to both sides of (6.9.2). Noticing that ϑml(xtx
−1
s ) ≡ 0 mod

l2n by Lemma 6.8.4, we find

(1− l2)νml,ln

r,s (σ) ≡ ϑml

(
zξm(σ)(Gr1,r2(σ) · z)(xtx

−1
s )

)
(6.9.4)

= ϑml({ξm(σ) + Gr1,r2(σ)} · z) + ϑml(xtx
−1
s )

≡ ξm(σ)(l2 − 1) + l2
∫

(mlZC)2
dGr1,r2(σ)−

∫

(mZC)2
dGr1,r2(σ)

= ξm(σ)(l2 − 1) + l2 Eml(σ; r1, r2)− Em(σ; r1, r2),

where the congruence is taken modulo l2n.
Now, let us apply the above (6.9.4) by replacing m, l2n by ml2i, l2n−2i (i = 0, 1, . . . ,)

respectively. Then, we obtain the following congruence modulo l2n−2i:

(6.9.5)i (1− l2)νmli+1,l2n−2i

r,s (σ) ≡ (l2 − 1)ξmli(σ) + l2Eml1+i(σ; r1, r2)− Emli(σ; r1, r2).

Summing up both sides with
∑

i≥0 l2i × (6.9.5)i, we obtain

(6.9.6) Em(σ; r1, r2) ≡ (l2 − 1)
∞∑
i=0

l2i
{

ξmli(σ) + νmli+1,l2n−2i

r,s (σ)
}

mod l2n,

where
∑∞

i=0 is essentially a finite sum. Combining Lemma 6.6.1 and Corollary 6.9.1, we
compute for 0 ≤ i ≤ n− 1

ξmli(σ) + νmli+1,l2n−2i

r,s (σ) =
ρ∆(σ)

12
− ρl(σ)

l2 − 1
− ρmli+1

+
1

12(l2 − 1)

(
κmli,m2l2n−2i

l−ix→l−iy
(σ)− l2κmli+1,m2l2n−2i−2

l−i−1x→l−i−1 (σ)
)

.

Noting that
∑∞

i=0(i + 1)l2i = (1− l2)−2 in Zl, we finally obtain the fundamental equation

(6.9.7) Em(σ; r1, r2) ≡ 1

12
κm,m2l2n

x→y (σ)− 1

12
ρ∆(σ) + ρm(σ) mod l2n.

This completes the proof of Theorem 6.2.1. ¤

Corollary 6.9.8. Let M ∈ |C| and let ε = 0, 1 according as 2 -M , 2|M respectively. Then,
the value ECm(σ; u, v) modulo M2 is periodic in (u, v) modulo mM22ε. Consequently, for
σ ∈ π1(S, b̄), the values Em(σ; u, v) mod M2 at (u, v) ∈ Z2

C determine a unique element of
the finite group ring (Z/M2Z)[(Z/mM22εZ)2].

Note. From numerical evidences (such as §7), one could immediately observe possibilities
to improve the above corollary by refining modulus and period more generally (e.g., not
only for squares M2 ∈ |C|. cf. Remark 3.4.3).

Proof. Suppose first that (u, v), (u′, v′) ∈ Ẑ2 \ (mẐ)2 satisfy (u, v) ≡ (u′, v′) mod mM22ε.
Then, the congruence ECm(σ; u, v) ≡ ECm(σ; u′, v′) mod M2 follows from the congruence
formula (6.9.4) and the determination of νml,ln

r,s through the cuspidal point determined by

zuv according to Corollary 6.8.5. Suppose next that (u, v), (u′, v′) ∈ (mẐ)2. Then, Propo-
sition 3.4.8 reduces the desired congruence to the above case and the obvious congruence
u− u′ ≡ v − v′ ≡ 0 mod M22ε. ¤
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6.10. Explicit formula for ECσ . Let C be a full class of finite groups. We shall study be-
haviors of ECm(σ) and ECσ introduced in §3.6 on the pro-C congruence kernel π1(S

C, b̄C). As

ρC(σ) = 1 for σ ∈ π1(S
C, b̄C), for every x ∈ ( 1

m
Z)2, the quantity κm,m2∞

x→x,C (σ) := κm,m2M
x→x,C (σ)

is well defined (independent of M ∈ |C|). Recalling that the structure ring BC of SC

contains all C-power roots of unity, we find that κm,m2∞
x→x,C : π1(S

C, b̄C) → ZC is defined by
the ordinary Kummer property:

(6.10.1) θ1/N
x |aσ = θ1/N

x · ζκm,m2∞
x→x (σ)

N (σ ∈ π1(S
C, b̄C), N ∈ |C|)

and depends only on the class of x in Q2/Z2. Define now µµµCm(σ) ∈ ZC[(Z/mZ)2] (with
notations of §3.6) by

(6.10.2) µµµCm(σ)
(
=

∑

a∈(Z/mZ)2

µµµCm(σ, a)ea

)
:= ρm(σ)e0 +

∑

mx∈a6=0

1

12
κm,m2∞

x→x,C (σ) ea.

The distribution relation of θx in Prop. 4.1.5 ensures that the sequence {µµµCm(σ)}m∈|C| forms
a measure µµµC ∈ ZC[[(ZC)2]] on Z2

C with no constant term (i.e., the image by the augmen-
tation map ε : ZC[[(ZC)2]] → ZC vanishes): ε(µµµC) = 0. Note also that, by Prop. 4.2.2,
µµµCm(σ, a) = µµµCm(σ,−a), i.e., µµµC(σ) is an “even measure”. Set em :=

∑
a∈(Z/mZ)2 ea.

Theorem 6.10.3. For σ ∈ π1(S
C, b̄C), we have

ECσ =
1

12
ρ∆(σ) · δ0 + µµµC(σ) = lim←−

m∈|C|

(
ECm(σ) +

1

12
ρ∆(E,m dx

y
)(σ) em

)
.

where δ0 indicates the unit Dirac measure at 0.

Proof. As observed in §3.6, ECm(σ, a) = ECm(σ, a) − ECm(σ; 0, 0). On the other hand, by
Theorem 6.2.1, it follows that ECm(σ, a) = µµµCm(σ, a)− 1

12
ρ∆(σ)+ρm(σ) for 0 6= a ∈ (Z/mZ)2.

Combining them, we obtain the equation

(6.10.4) µµµCm(σ, a)− ECm(σ, a) =
1

12
ρ∆(σ)− ρm(σ)− ECm(σ; 0, 0) (=: Ym(σ)).

Now, observe that µµµCm(σ, a)−ECm(σ, a) varies coherently with respect to m on a ∈ (Z/mZ)2\
{0}, while the RHS (set Ym(σ)) does not depend on a. Hence, for any prime power li ∈ |C|,
we obtain l2Ymli+1(σ) = Ymli(σ). This means l∞ | Ym(σ), hence Ym(σ) = 0. (cf. also [N95]
p.220). This, together with 6.10.4, completely determines Em(σ) as

(6.10.5) Em(σ, a) =

{
µµµCm(σ, a) = µµµCm(σ,−a), (a 6= 0),
1
12

ρ∆(σ)− ρm(σ), (a = 0).

The statement of theorem is nothing but the culmination of the above formula in m →∞
in the language of measures on (ZC)2. ¤

Proof of Proposition 3.6.5. By using the composition law (3.5.8) repeatedly, in general,
we have for σ, τ ∈ π1(S, b̄) and ε ∈ GL2(ZC),

Eε
m(σ−1) = −χ(σ)−1Eρ(σ−1)ε

m (σ),(6.10.6)

Eε
m(στσ−1) = χ(σ)Eρ(σ)−1ε

m (τ) + Eρ(τσ−1)ε
m (σ)− χ(τ)Eρ(σ−1)ε

m (σ).(6.10.7)

Now, in the above second formula, put ρ(τ) = 1 (hence χ(τ) = 1) and ε = 1. Then,

(6.10.8) Em(στσ−1) = χ(σ)Eρ(σ)−1

m (τ).
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Let us compute the coefficient of ea for a 6= 0. For the left hand side, it turns out that

Em(στσ−1, a) = Em(στσ−1, a)− χ(σ)Em(τ ; 0, 0)

as Em(∗, 0, 0) is the Kummer 1-cocycle 1
12

ρ∆ − ρm. Let us examine the right hand side

from the definition of twisted invariants in §3.5. If ρ(σ)−1 = (α
γ

β
δ ), then, calculations with

(3.5.2) yields:

G
ρ(σ)−1

(u
v ) (τ) = (x̄−αu−βv

1 x̄−γu−δv
2 − 1)ECτ .

Therefore, taking the mod m measure at 0, we see

χ(σ)Eρ(σ)−1

m (τ, a) = χ(σ) (Em(τ ; αu + βv, γu + δv)− Em(τ ; 0, 0))

= χ(σ)Em(τ ; a·tρ(σ)−1)− χ(σ)Em(τ ; 0, 0).

Thus, we obtain
Em(στσ−1; a) = χ(σ)Em(τ ; a·tρ(σ)−1)

which turns out to hold for all a ∈ (Z/mZ)2. Noticing that the action of ρ(σ) on the group
ring ZC[(Z/mZ)2] is given by ea 7→ ea·tρ(σ), we conclude the statement of proposition. ¤

Proof of Proposition 5.7.3. We have only to show that the restriction of Weierstrass
tangential section s−→w : π1(M

ω
1,1, q̄) → π1(M1,2,

−→
w q̄) to geometric part maps τ1, τ2 ∈ B̂3

to those in B̂4 respectively. Since the image of s−→w is in the normalizer of 〈z〉, without
loss of generality, we may set s−→w (τ1) = τ1z

c1 , s−→w (τ2) = τ2z
c2 for some c1, c2 ∈ Z. The

commutativity of z = (ω3)
2ω−1

4 and the braid relation τ1τ2τ1 = τ2τ1τ2 allows us to assume
c = c1 = c2. Now, consider the element σ := (τ1τ2)

6 which is in the congruence kernel

ker(B̂3 → SL2(Ẑ)). The constant term of Eσ is then 1
12

ρ∆(σ) = −1. On the other hand,

the monodromy action ϕ(σ) on Π̂1,1 is given by the inner action by s−→w (σ) = (τ1τ2)
6z6c =

z1+6cω4. Taking into consideration

(6.10.9)

(
∂zx−1

1 z−1x1

∂x1

)ab

= (x̄2 − 1)(1− x̄−1
1 )

with (3.2.3), we see G10(Int(z)) = 1− x̄−1
1 = (x̄−1

1 − 1) · EIntz. Therefore, by the definition
(§3.6), Eσ = (−1 − 6c)δ0. (δ0 : the unit Dirac measure). Thus we obtain −1 = −1 + 6c

in Ẑ. Comparing l-adic components, we conclude c = 0 and the proof of Proposition
5.7.3. ¤

7. Generalized Dedekind sums

7.1. Elementary characters. In this section, we shall study our invariant Em on the
fundamental group π1(M

ω
1,1(C), q̄) ∼= B̂3 in the universal setting introduced in §5. The

braid group B3 has a simple presentation B3 = 〈τ1, τ2|τ1τ2τ1 = τ2τ1τ2〉, whose generators
τ1, τ2 are given standard identification as elements of π1(M

ω
1,1(C), q̄) (§5.4-7). For any

given full class of finite groups C, we have a pair of elementary characters:

(ρC, ρ∆) : B̂3−→ SL2(ZC)× ZC(7.1.1)

σ 7−→
((

a(σ) b(σ)
c(σ) d(σ)

)
, ρ∆(σ)

)
.

Recall that, in our setting of notational conventions, ρC maps τ1, τ2 to ( 1
−1

0
1), (1

0
1
1) respec-

tively, and ρ∆ maps both of them to −1. In the pro-C setting, the above pair of characters
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never gives an injection, as most part of the congruence kernel π1(M
ω,C
1,1 , q̄C) = ker(ρC) must

be annihilated by ρ∆. But if we restrict the range of σ to the discrete fundamental group
B3 = π1(M

ω
1,1(C)an, q̄), (⊂ B̂3), then the discrete group B3 is embedded into SL2(Z)× Z

by the elementary characters.
In this section, generically we drop the superscript C to designate objects at the discrete

level. The main purpose of this section is to give an explicit formula computing Em(σ; u, v)
for σ ∈ B3 and (u, v) ∈ Z2.

7.2. Generalized Dedekind sum formula. In the beautiful work [St87], G.Stevens
gave interpretation of the Rademacher function on GL2(Q)+ and its generalizations by
using Borel-Serre compactification of the upper half plane. The special case of weight 2
had also been studied intensively in [St82], [St85] as well as in the classic work [Sch74]
by B. Schoeneberg. We quote it in the restricted form on SL2(Z) and of weight 2 in
our notation. (A generalization to higher weights and its arithmetic properties is also
discussed in [N03], which we hope to continue to work in a subsequent work to this
paper.)

Definition 7.2.1. The generalized Rademacher function of weigh two on SL2(Z) is de-
fined, for x = (x1, x2) ∈ Q2 and A = (a

c
b
d) ∈ SL2(Z) by

Φx(A)
(
= Φ(2)

x (A)
)

=

{
−P2(x1)

2
b
d

(c = 0),

−P2(x1)
2

a
c
− P2(ax1+cx2)

2
d
c

+
∑c−1

i=0 P1(
x1+i

c
)P1(x2 + ax1+i

c
) (c > 0)

so that it factors through PSL2(Z) for the case c < 0. Here, P1 and P2 are the periodic
Bernoulli functions same as in §4.3. The last term in the above description for the case
c > 0 is called generalized Dedekind sum.

It is known that Φx(A) is invariant with respect to x mod Z2. We consider it only for
A ∈ SL2(Z), but still its values has in general denominators. If x ∈ ( 1

N
Z)2, then Φx(A)

has integer values for A ∈ Γ(12N2).

Definition 7.2.2 (Correction term). Let [x]o, P`1 (x) denote respectively the “mild Gauss-
ian symbol”, the “right continuous periodic sawtooth function” defined by

[x]o := x− 1

2
− P1(x), P`1 (x) := B1({x}) = x− bxc − 1

2
.

For x = (x1, x2), A ∈ SL2(Z), define

Kx(A) := Cx − CxA,

where

Cx :=
1

2
+

x2(x1 − 1)

2
− P`1 (x2) · [x1]

o.

The main result of this section is the following

Theorem 7.2.3 (Generalized Dedekind sum formula). Let m ≥ 1. For (r1, r2) ∈
Z2 \ (mZ)2, set x = (x1, x2) = ( r1

m
, r2

m
). Then, for each σ ∈ B3, we have

Em(σ; r1, r2) = Kx(Aσ)− Φ(2)
x (Aσ)− 1

12
ρ∆(σ),

where Aσ = tρ(σ) ∈ SL2(Z).
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Note that by definition Em(σ; 0, 0) = 0, and Em(σ; mk1,mk2) can be evaluated from
Em(σ; mk1+1,mk2), Em(σ; 1, 0) and an elementary term as remarked in Proposition 3.4.8.
We will also compute it in details later in Proposition 7.5.1.

Most part of this section will be devoted to the proof of the above theorem. Our basic
policy is to apply Theorem 6.2.1 in this discrete situation. Obviously, the congruence
condition on (u, v) ≡ r modulo mM22ε, and ρC(σ)-admissibility condition on r

m
→ s

m

modulo m2M2 becomes void, if we put (u, v) = r and s = r tρ(σ). The Kummer quantity

κm,m2∞
x→y (σ) turns out then to be a unique rational integer, and the assertion gives an

equality of integers. This allows us to argue the evaluation of Em(σ; u, v) in the complex
analytic model §2.9, §4.5.

Example 7.2.4. Let us here present an example to illustrate how the above Theorem
realizes the integer valued invariant Em(σ; r1, r2) for σ ∈ B3 and (r1, r2) ∈ Z2 \ (mZ)2.
Pick any braid σ ∈ B3 so that

tρ(σ) = A :=

(
11 24
5 11

)
∈ SL2(Z).

Such a σ can be given (say, τ−2
1 τ 6

2 τ 2
1 τ2(τ1τ2)

−3) up to 〈(τ1τ2)
6〉, hence 1

12
ρ∆(σ) is determined

up to integer values. Set m = 3. Calculation using generalized Dedekind sums yields the
following (3-stride periodic) matrix for (r1, r2) = (i− 4, j − 4) ∈ [−3, 3]2(⊂ Z2):

−Φ(A) :=
(
−Φ(2)

i−4
3 , j−4

3
(A)

)7

i,j=1
=




1
6

2
9

2
9

1
6

2
9

2
9

1
6

1
12

−19
36

2
9

1
12

−19
36

2
9

1
12

1
12

2
9

−19
36

1
12

2
9

−19
36

1
12

1
6

2
9

2
9

1
6

2
9

2
9

1
6

1
12

−19
36

2
9

1
12

−19
36

2
9

1
12

1
12

2
9

−19
36

1
12

2
9

−19
36

1
12

1
6

2
9

2
9

1
6

2
9

2
9

1
6




,

while the correction terms turn out to provide the (non-periodic) matrix:

K(A) :=
(
K i−4

3 , j−4
3

(A)
)7

i,j=1
=




−289
−8723

36
−6707

36
−139

−3863
36

−2567
36

−44

−1039
6

−1238
9

−3467
36

−379
6

−383
9

−767
36

−49
6

−523
6

−2243
36

−320
9

−103
6

−263
36

−5
9

−13
6

−30
−587
36

−155
36

0
−47
36

−335
36

−25

−13
6

4
9

−83
36

−73
6

−221
9

−1703
36

−463
6

−25
6

−443
36

−266
9

−325
6

−2783
36

−1031
9

−955
6

−35
−1955

36
−3107

36
−125

−5735
36

−7607
36

−270




.
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The consequent right hand side of Theorem 7.2.3 on [−3, 3]2(⊂ Z2) for a σ with 1
12

ρ∆(σ) =

− 1
12

(such σ is, in fact, equal to τ−2
1 τ 6

2 τ 2
1 τ2(τ1τ2)

−3) is then:

−Φ(A) + K(A) +
1

12

[
17×7

]
=




−1155
4

−242 −186
−555

4
−107 −71

−175
4

−173 −138 −96 −63 −43 −21 −8
−87 −62 −36 −17 −7 −1 −2
−119

4
−16 −4

1
4

−1 −9
−99
4

−2 0 −2 −12 −25 −47 −77
−4 −12 −30 −54 −77 −115 −159
−139

4
−54 −86

−499
4

−159 −211
−1079

4




.

By Theorem 7.2.3, we conclude that the components of the above matrix coincide with
those of (E3(σ, ; i− 4, j − 4))7

i,j=1, except for ∗
4

at (i, j)-components with i−1 ≡ j−1 ≡ 0
mod m = 3. Generally, exceptional gaps between both sides of Theorem 7.2.3 appear at
locations of (mZ)2(⊂ Z2). This phenomenon essentially signifies the singularity at 0 of
the Eisenstein-Dedekind symbol of G.Stevens [St87] that is reflected in the periodic part

Φ
(2)
x (Aσ) for x ∈ Z2.

7.3. Siegel units vs. generalized Dedekind functions. To evaluate the left hand
side of Theorem 6.2.1, we need to identify the branch of power roots of Siegel units
gx(τ) x = (x1, x2) ∈ Q2 \ Z2 in the complex model. This can be attained by identifying
the branch of log gx, which, in view of the equation (4.3.4), requests us to determine a

suitable constant term for the indefinite integral of the Eisenstein series E
(x)
2 of weight

2 (x = x mod Z). We achieve this by comparing gx with the generalized Dedekind
function “ηx(τ) = eψx(τ)” given in the book of B.Schoeneberg [Sch74] Chap.VIII §1.3,
whose infinite product form is given by

(7.3.1) ηx(τ) := eγ0(x)eπiP2(x1)τ
∏

0<s∈x1+Z
(1− e2πix2qs

τ )
∏

0<s∈−x1+Z
(1− e−2πix2qs

τ ).

where

(7.3.2) γ0(x) =

{
πiP1(x2)−

∑
m≥1

e−2πimx2

m
, (x1 ∈ Z, x2 6∈ Z),

0, otherwise .

Comparing this with the infinite product form of gx (cf. §4.2), we obtain the following
relation between them:

(7.3.3) gx(τ) = eπieπix2(x1−1)ηx(τ)e−2πi[x1](x2− 1
2
)
[
eπiP1(x2)

]δx1∈Z ,

where δx1∈Z = 1, 0 according as x1 ∈ Z or not respectively.
A careful examination shows that Schoeneberg’s lift ψx(τ) for ηx(τ) = eψx(τ) can be

identified, in fact, with = eγ0(x)+ψSt
x (τ) where ψSt

x (τ) is a “half of G.Stevens’ lift” given in
his book [St82] (cf. §2.3, Def. 2.3.1) as follows:

ψSt
x (τ) = πiP2(x1)τ −

∑

0<s∈x1+Z

∞∑

k=1

1

k
e2πix2kqsk

τ −
∑

0<s∈−x1+Z

∞∑

k=1

1

k
e−2πix2kqsk

τ(7.3.4)

= −2πi

(∫ τ

0

a0(E
(x)
2 )du +

∫ τ

i∞
Ẽ

(x)
2 (u)du

)
,
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where a0(E
(x)
2 ) (resp. Ẽ

(x)
2 (u)) is the constant term (resp. the remained part) of the

Eisenstein series E
(x)
2 (4.3.2).

In view of (7.3.3), in the home region x = (x1, x2) ∈ (0, 1)2, gx(τ) can be written as
eπi+πix2(x1−1)ηx(τ), so we choose the branch of log gx to be πi + πix2(x1 − 1) + ψx(τ).
For general x ∈ Q2 \ Z2, we will take a principle so as to fit with our normalization of
Kummer characters given in §5.10, which is compatible with its use in the proof of Lemma
6.5.4, i.e., with our moving rule: “walk along xr2

2 first and then along xr1
1 afterwards”.

For this purpose, we shall choose a branch of log gx(τ) so as to be continuous on the
following region (the complex plane minus ((−∞, 0) ∪ (1, +∞))× Z with limits from the
right (above) in lim

ε→0+
log gx2+ε for x1 6∈ Z, x2 ∈ Z.

x2-1-2-3 1 2 30

1

2

x1

-1

-2
Figure 3

For a fixed x2 6∈ Z, if x1 moves continuously from n − ε to n + ε for some n ∈ Z, then
ψSt

x gets one new term −∑
k e2πix2ke2πiεkτ and loose one old term +

∑
k e−2πix2ke2πi(−ε)kτ ,

so that when ε → 0, the jump of ψSt(τ) is counted as

−
∑

k

e2πix2k +
∑

k

e−2πix2k = log(1− e2πix2k)− log(1− e−2πix2k) = 2πi(x2 − 1

2
).

Therefore, to keep continuity of our lift log gx(τ), everytime x1 goes up across an integer
value, we need to add extra −2πi(x2 − 1

2
). This explains the term −2πi(x2 − 1

2
)[x1]. The

term coming from the inside of [∗]δx1∈Z is to back up Schoeneberg’s term which intends
to take the mean value of upper or lower limits at every discontinuous point. Finally,
after reaching the nearest unit square, one may want to arrive at destination with x2 ∈ Z
from above. So we substitute P`1 (x2) for P1(x2). Consequently, our choice of logarithm of
Siegel units can be summarized as

log gx(τ) = 2πi

(
1

2
+

x2(x1 − 1)

2
− P`1 (x2)[x1]

o

)
+ ψx(τ)(7.3.5)

= 2πiCx + ψx(τ) (x = (x1, x2) ∈ Q2 \ Z2),

which uniformizes our choice of g
1/N
x as e

1
N

log gx for all N ≥ 1.

7.4. Completion of proof of Theorem 7.2.3. To settle the proof of Theorem 7.2.3, we
only need to identify the Kummer character κm,m2∞

x→y (σ) for x = ( r1

m
, r2

m
), y = ( s1

m
, s2

m
) with
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(s1
s2

) = ρ(σ)(r1
r2

), i.e., (s1, s2) = (r1, r2)A, where A = tρ(σ) ∈ SL2(Z) for a given σ ∈ B3.
We have now

θ
1/N
x |aσ

θ
1/N
y

= ζ
κm,m2∞

x→y (σ)
N

(
aσ = A = tρ(σ)

)
.

Recalling Schoeneberg’s formula from ([Sch74], Chap.VIII §3 (30) p.199):

(7.4.1) πx(A) = ψx(Aτ)− ψxA(τ) = −2πiΦ(2)
x (A)

together with our convention of SL2-action on the upper half plane (cf. §4.6), we obtain
from the above (7.3.5):

ζ
κm,m2∞

x→y (σ)
N =

(
e

12
N

(2πiCx+ψx(τ))
)∣∣∣

A

/
e

12
N

(2πiCxA+ψxA(τ))

= exp
(24πi(Kx(A)− Φ

(2)
x (A))

N

)

for all N ≥ 1. Thus, κm,m2∞
x→y (σ) = 12(Kx(A)− Φ

(2)
x (A)). Applying Theorem 6.2.1 to the

present situation where ρm(σ) = 0, we complete the proof of Theorem 7.2.3. ¤

7.5. Explicit formula for Em on B3× (mZ)2. We shall compute Em(σ; u, v) for σ ∈ B3

in the case u, v ∈ Z are divisible by m.

Proposition 7.5.1. Let m ∈ N. For σ ∈ B3 with ρ(σ) = (a
c
b
d) ∈ SL2(Z) and for (k1, k2) ∈

Z2, we have

Em(σ; mk1,mk2) = −bck1k2 − 1

2

{
k1(ack1 + a− c− 1) + k2(bdk2 + b− d + 1)

}
.

Observe in the last term of the above expression that k1(ack1+a−c−1)+k2(bdk2+b−d+1)
always has a value of an even integer, since a and c (resp. b and d) have different parity
from ad− bc = 1.

By using the above Proposition, one can “repair” the last matrix in Example 7.2.4 at
components of (3Z)2(⊂ Z2) to get

(
E3(σ, i− 4, j − 4)

)7

i,j=1
=




−289 −242 −186 −139 −107 −71 −44
−173 −138 −96 −63 −43 −21 −8
−87 −62 −36 −17 −7 −1 −2
−30 −16 −4 0 −1 −9 −25
−2 0 −2 −12 −25 −47 −77
−4 −12 −30 −54 −77 −115 −159
−35 −54 −86 −125 −159 −211 −270




.

Proof. Applying Theorem 7.2.3 to the RHS of Proposition 3.4.8, we obtain

(7.5.2) Em(σ; u, v) = K(u+1
m

, v
m

)(A)−K( 1
m

, 0
m

)(A) +

⌊
au + bv

m

⌋
·
⌊ c

m

⌋
,

where A = tρ(σ) = (a
b
c
d). It is easy to see that terms of K(u+1

m
, v
m

)(A)−K( 1
m

, 0
m

)(A) can be

classified into three family: a quadratic form in k1, k2, a linear form in k1 and a linear
form in k2. After simple computation, we obtain from it those terms of the RHS of the
proposition formula together with −(ak1 + bk2)

⌊
c
m

⌋
which is cancelled out with the last

term of (7.5.2). ¤
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7.6. Examples of special cases. Now, we shall examine for some simple braids σ ∈
B3 the values Em(σ; , u, v) on (u, v) ∈ Z2 by means of their original definition given in
§3. These examples are also useful to check validity of the above Theorem 7.2.3 and
Proposition 7.5.1.

Case σ = τα
1 (α ∈ Z). First, using Proposition 5.7.3 one sees the action of the

Weierstrass lift s−→w (σ) is given by x1 7→ x1x
−α
2 , x2 7→ x2. Therefore, according to (3.3.3),

Suv(σ) = x−v
2 (x1x

−α
2 )−uxu

1x
u−αv
2 . The corresponding Guv(σ) (3.3.4) can be deduced by

the formula (3.2.3) of free differential calculus, and is found to be

(7.6.1) Guv(τ
α
1 ) =

x̄−u
1 x̄αu−v

2

x̄2 − 1

(
x̄u

1 − 1

x̄1 − 1
− (x̄1x̄

−α
2 )u − 1

x̄1x̄
−α
2 − 1

)
.

Recalling Definition 3.4.1 that our invariant Em(σ; , u, v) is the integral of the measure

dGuv(σ) on (mẐ)2, we find

(7.6.2) Em(τα
1 ; u, v) =





∑

1≤k≤u−1
m|k

(⌈
αu− v

m

⌉
−

⌈
αk − v

m

⌉)
(u > 0),

0 (u = 0),
∑

0≤k≤−u−1
m|k

(
−

⌈
αu− v

m

⌉
+

⌈−αk − v

m

⌉)
(u < 0).

In the calculation, we make use of the definition of the (profinite) ceiling function as
integral (Remark 3.4.7). The following matrix illustrates E3(τ1, u, v) for (u, v) ∈ [−6, 6]2:

(
E3(τ1, i− 7, j − 7)

)13

i,j=1
=




3 3 3 3 3 3 3 3 3 3 3 3 3
1 3 3 1 3 3 1 3 3 1 3 3 1
1 1 3 1 1 3 1 1 3 1 1 3 1
1 1 1 1 1 1 1 1 1 1 1 1 1
0 1 1 0 1 1 0 1 1 0 1 1 0
0 0 1 0 0 1 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 0 1 0 0 1 0 0 1
1 1 0 1 1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1




.

Case σ = τα
2 (α ∈ Z). In this case, the Weierstrass lift s−→w (σ) acts by x1 7→ x1 and

x2 7→ x2x
α
1 , and hence Suv(σ) = (x2x

α
1 )−vxαv

1 xv
2. From this it follows that

(7.6.3) Guv(τ
α
2 ) =

(x̄2x̄
α
1 )−v

x̄1 − 1

(
(x̄2x̄

α
1 )v − 1

x̄2x̄α
1 − 1

− x̄αv
1

x̄v
2 − 1

x̄2 − 1

)
.
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Integration over (mẐ)2 yields then:

(7.6.4) Em(τα
2 ; u, v) =





∑

1≤k≤v
m|k

−
⌈

αk

m

⌉
(v > 0),

0 (v = 0),
∑

0≤k≤−v−1
m|k

−
⌈

αk

m

⌉
(v < 0).

In this case, it is remarkable that Em(τα
2 ; u, v) does not depend on u. The following matrix

illustrates E3(τ2, u, v) for (u, v) ∈ [−6, 6]2:

(
E3(τ2, i− 7, j − 7)

)13

i,j=1
=




−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3




.

Case σ = τ1τ2τ1. In this case, the Weierstrass lift s−→w (σ) maps x1 7→ x−1
2 , x2 7→

x2x1x
−1
2 . Then, Suv(σ) = x2x

−v
1 xu−1

2 xv
1x

−u
2 , and it holds that

(7.6.5) Guv(τ1τ2τ1) =
x̄2 − x̄u

2

x̄2 − 1
· x̄

−v
1 − 1

x̄1 − 1
.

By integration of dGuv(σ) over (mẐ)2, we obtain the formula:

(7.6.6) Em(τ1τ2τ1; u, v) =
(
1−

⌈ u

m

⌉)
·
⌈−v

m

⌉
.

The following matrix illustrates E3(τ1τ2τ1, u, v) for (u, v) ∈ [−6, 6]2:

(
E3(τ1τ2τ1, i−7, j−7)

)13

i,j=1
=




6 6 6 3 3 3 0 0 0 −3 −3 −3 −6
4 4 4 2 2 2 0 0 0 −2 −2 −2 −4
4 4 4 2 2 2 0 0 0 −2 −2 −2 −4
4 4 4 2 2 2 0 0 0 −2 −2 −2 −4
2 2 2 1 1 1 0 0 0 −1 −1 −1 −2
2 2 2 1 1 1 0 0 0 −1 −1 −1 −2
2 2 2 1 1 1 0 0 0 −1 −1 −1 −2
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0

−2 −2 −2 −1 −1 −1 0 0 0 1 1 1 2
−2 −2 −2 −1 −1 −1 0 0 0 1 1 1 2
−2 −2 −2 −1 −1 −1 0 0 0 1 1 1 2




.
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Case σ = τ1τ2. In this case, the Weierstrass lift s−→w (σ) transforms generators as
x1 7→ x−1

2 , x2 7→ x2x1. Therefore, Suv = (x2x1)
−vxu

2x
v
1x

v−u
2 , and it turns out that

(7.6.7) Guv(τ1τ2) =
(x̄2x̄1)

−v

x̄2 − 1

(
x̄u

2

x̄v
1 − 1

x̄1 − 1
− x̄2

(x̄1x̄2)
v − 1

x̄1x̄2 − 1

)
.

By taking integration over (mẐ)2, we find:

(7.6.8) Em(τ1τ2; u, v) =





∑

1≤k≤v
m|k

(⌈
u− v

m

⌉
−

⌈
1− k

m

⌉)
(v > 0),

0 (v = 0),
∑

0≤k≤−v−1
m|k

(
−

⌈
u− v

m

⌉
+

⌈
1 + k

m

⌉)
(v < 0).

The following matrix illustrates E3(τ1τ2, u, v) for (u, v) ∈ [−6, 6]2:

(
E3(τ1τ2, i− 7, j − 7)

)13

i,j=1
=




3 3 3 2 2 2 0 0 0 −3 −3 −3 −7
1 3 3 1 2 2 0 0 0 −2 −3 −3 −5
1 1 3 1 1 2 0 0 0 −2 −2 −3 −5
1 1 1 1 1 1 0 0 0 −2 −2 −2 −5

−1 1 1 0 1 1 0 0 0 −1 −2 −2 −3
−1 −1 1 0 0 1 0 0 0 −1 −1 −2 −3
−1 −1 −1 0 0 0 0 0 0 −1 −1 −1 −3
−3 −1 −1 −1 0 0 0 0 0 0 −1 −1 −1
−3 −3 −1 −1 −1 0 0 0 0 0 0 −1 −1
−3 −3 −3 −1 −1 −1 0 0 0 0 0 0 −1
−5 −3 −3 −2 −1 −1 0 0 0 1 0 0 1
−5 −5 −3 −2 −2 −1 0 0 0 1 1 0 1
−5 −5 −5 −2 −2 −2 0 0 0 1 1 1 1




.

Errata for [N95]
p.205, line 4: order 12(l2 − 1) in lmL and poles of order 12 in lm−1L\lmL.
p.206, (2.6): ϑm(∗) should be defined by 12-multiples of the RHS.

p.207, (2.10) Lemma: RHS should read ζ
12(l2−1)νm

ab(σ)
N .

p.207, line↑ 5,6 : Replace ζ
−ν(l2−1)
N by ζ

−12ν(l2−1)
N

p.209, (3.5.1): RHS should read ζ
12µm(a,b;σ)
N .

p.210, (3.8): RHS should read ζ
12ε(µ(r)(σ))
N .

p.212, (3.11.4): RHS should read ζ
12κij(σ)
N .

Errata for [N99]
On p.204, p.213 figures should be inserted
(same ones as §5 of the present paper)
p.211: sign of g3(q)
p.212: (3.3) χm+1(σ)

1−lm should read χm+1(σ)
1−pm

p.213, line 6, (1− qn)24; line 22, ∞−1
n−1
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