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§1. Introduction

In this article we study a Schrödinger equation

(

− d2

dx2
+ η2Q(x, η)

)

ψ = 0 (η > 0: a large parameter) (1.1)

with the potential Q(x, η) of the form

Q(x, η) =
1

4
− α

x
+ η−2 β

x2
(α, β: complex constants), (1.2)

that is, the Whittaker equation with a large parameter η, from the viewpoint

of exact WKB analysis.

In [AKT2] Aoki, Kawai and the second author of this article studied ana-

lytic properties of the Borel transform of WKB solutions of an MTP equation,

that is, a Schrödinger equation with a merging pair of simple turning points.

Making use of the reduction of an MTP equation to a canonical one, we deter-

mined the location of “fixed singular points” (i.e., singular points whose relative

locations with respect to the reference singular point are unchanged; cf. [DDP],

[DP]) of Borel transformed WKB solutions and succeeded in explicitly comput-

ing the alien derivative of WKB solutions at fixed singular points for an MTP
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equation. In the case of an MTP equation the canonical equation is given by

the Weber equation and what we call Sato’s conjecture, that is, the explicit

form of the Voros coefficient of the Weber equation in terms of the Bernoulli

numbers (cf. [KT1]; see also [SS] and [T] for its proof), played an important

role in studying analytic properties of Borel transformed WKB solutions. (See,

e.g., (2.14) in Section 2 for the definition of the Voros coefficient.)

On the other hand, as is emphasized in [Ko1] and [Ko2], the behavior of

a WKB solution of a Schrödinger equation (1.1) near a simple pole is similar

to that near a simple turning point. Inspired by these results, in a joint work

[KKKoT1] with Kamimoto and Kawai we extended the analysis developed in

[AKT2] to an MPPT equation, that is, a Schrödinger equation with a merging

pair of a simple pole and a simple turning point, again by making use of the

reduction of an MPPT equation to a canonical one. In the case of an MPPT

equation the canonical equation is given by the Whittaker equation and this

motivates our interests in the Whittaker equation, and the computer-assisted

study of its Voros coefficient indicated that it should be written down again

in terms of the Bernoulli numbers. The aim of this paper is to show that it

is really the case and to analyze analytic structure of Borel transformed WKB

solutions of the Whittaker equation by using the explicit form of the Voros

coefficient thus obtained.

The paper is organized as follows: In Section 2 we present our main result,

i.e., the precise formulation of the counterpart of Sato’s conjecture for the

Whittaker equation. In Section 3 we give a proof of the main result presented

in Section 2. The proof is done along the idea used in [T]. Finally in Section

4, by using the main result we study analytic structure of the Borel transform

of WKB solutions of the Whittaker equation.

In ending this Introduction, we would like to express our sincere grati-

tude to Professor Takahiro Kawai and Professor Takashi Aoki for their kind

encouragements and stimulating discussions with them.

§2. Main Theorem

The equation we discuss in this article is the Whittaker equation with a

large parameter η:

{

− d2

dx2
+ η2

(

1

4
− α

x
+ η−2 β

x2

)}

ψ = 0. (2.1)
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Here α (6= 0) and β are complex constants. Our main interest consists in the

analysis of a WKB solution, that is, a formal solution of (2.1) of the form

ψ = exp

(
∫ x

S(x, η)dx

)

, (2.2)

where

S(x, η) = ηS−1(x) + S0(x) + η−1S1(x) + · · · (2.3)

is a formal solution of the Riccati equation

S2 +
dS

dx
= η2

(

1

4
− α

x
+ η−2 β

x2

)

(2.4)

associated to (2.1). Here we briefly review the construction of WKB solutions

(cf. [KT2]). By substituting (2.3) into (2.4), we obtain the following recursion

relations:

S−1
2 =

1

4
− α

x
, (2.5)

2S−1 S0 +
dS−1

dx
= 0, (2.6)

2S−1 S1 + S0
2 +

dS0

dx
=

β

x2
, (2.7)

2S−1Sn +
n−1
∑

j=0

SjSn−j−1 +
dSn−1

dx
= 0 (n ≥ 2). (2.8)

It follows from (2.5) that the leading term S−1(x) of (2.3) should be

S−1(x) = ±
√

1

4
− α

x
. (2.9)

Once we fix the sign in (2.9), i.e., the branch of
√

1/4− α/x, the higher order

terms {Sn}n≥0 are determined uniquely and recursively by (2.6) – (2.8). In

particular, the sign in (2.9) is inherited only to the odd degree terms. Therefore

there exist two formal solutions of (2.4) of the form

S(±)(x, η) = ±Sodd(x, η) + Seven(x, η), (2.10)

where

Sodd(x, η) =

∞
∑

j=0

η−2j+1S2j−1(x), Seven(x, η) =

∞
∑

j=0

η−2jS2j(x). (2.11)

Since

Seven(x, η) = −1

2

d

dx
logSodd(x, η) (2.12)
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holds (see Remark 2.2 in [KT2]), we thus obtain two WKB solutions of (2.1)

ψ±(x, η) =
1

√

Sodd(x, η)
exp

(

±
∫ x

x0

Sodd(x, η)dx

)

. (2.13)

In exact WKB analysis (cf. [V], [DP], [KT2]), we give an analytic mean-

ing to these WKB solutions (2.2) or (2.13) through the Borel resummation

method. As was explained in Introduction, the following theorem then plays

a crucially important role in studying analytic structure of Borel transformed

WKB solutions.

Theorem 2.1. Let V be the Voros coefficient of the Whittaker equation

(2.1),that is,

V :=

∫ ∞

4α

(Sodd(x, η) − ηS−1(x))dx =

∞
∑

n=0

η1−2n

∫ ∞

4α

S2n−1(x)dx. (2.14)

Then the following relation holds as a formal power series in η−1:

V =

∞
∑

n=1

(αη)1−2n B2n(−γ)
2n · (2n− 1)

. (2.15)

Here γ is a constant satisfying γ(γ + 1) = β and Bn(z) denotes the Bernoulli

polynomial of degree n defined by

Bn(z) =

n
∑

k=0

n!

k! (n− k)!
Bk z

n−k, (2.16)

where {Bk}k≥0 are the Bernoulli numbers defined by the generating function

t

et − 1
=

∞
∑

n=0

Bn
tn

n!
. (2.17)

Figure 1

Remark. (i) The lower endpoint x = 4α of the integral in the right-

hand side of (2.14) is a simple turning point of (2.1). Since Sn(x) behaves like
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O((x − 4α)−1−3n/2) near x = 4α, S2n−1(x) (n ≥ 0) is not integrable from 4α.

We consider the integral in (2.14) as a contour integral along a path γ shown

in Figure 1, i.e.,

V =
1

2

∫

γ

(Sodd(x, η) − ηS−1(x))dx. (2.18)

Note also that, since we can show

Sn(x) = O(|x|−1−n/2) (|x| → ∞) (2.19)

by an induction on n, Sn(x) with n ≥ 1 is integrable from the infinity.

(ii) First few Bernoulli numbers are

B0 = 1, B1 = −1

2
, B2k+1 = 0 (k = 1, 2, · · · ), (2.20)

B2 =
1

6
, B4 = − 1

30
, B6 =

1

42
, B8 = − 1

30
, B10 =

5

66
. (2.21)

(iii) The generating function of the Bernoulli polynomials is given by

tetz

et − 1
=

∞
∑

n=0

Bn(z)
tn

n!
. (2.22)

Formula (2.22) is obtained by using the definition (2.16) of the Bernoulli poly-

nomials and the generating function (2.17) of the Bernoulli numbers.

(iv) It is also known that the Bernoulli polynomial satisfies Bn(1 − z) =

(−1)nBn(z). In view of this relation we can readily find that the 2n-th Bernoulli

polynomial B2n(z) is a function of z(z − 1). Therefore the right-hand side

of (2.15) is a function of β, not depending on the choice of a solution γ of

γ(γ + 1) = β.

Theorem 2.1 is the counterpart of Sato’s conjecture for the Whittaker

equation. It is proved in Section 3 and by using Theorem 2.1 we study some

analytic properties of the Borel transform of WKB solutions in Section 4. Note

that our results play an essential role in analyzing the fixed singular points of

an MPPT equation in [KKKoT1] (see also [KKKoT2] for its review).

§3. Proof of Main Theorem

We prove Theorem 2.1 along the same idea as that employed in [T]. Firstly,

we derive the difference equation that the Voros coefficient satisfies. In this

derivation the raising and lowering operators (with respect to the parameter

α) play a crucially important role. Then, as the difference equation determines
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a solution uniquely, we compute its solution to verify that it coincides with

the right-hand side of (2.15). In this paper we use the Borel transformation

technique to compute a unique solution of the difference equation.

§3.1. Derivation of the difference equation

In the discussion of this section the parameter α plays an important role.

To show the dependency on αmore manifestly, we use the notation S(±)(x, α, η)

for solutions (2.10) of the Riccati equation, ψ±(x, α, η) for WKB solutions, etc

in what follows. We also set

I(α, η) :=

∫

γ

(Sodd(x, α, η) − ηS−1(x, α))dx = 2V. (3.1)

In this subsection we prove

Proposition 3.1. I(α, η) formally satisfies

I(α + η−1, η) − I(α, η)

= 2 + log
α2 + η−1α− η−2β

α2
− 2(αη + 1) log(1 +

1

αη
) (3.2)

= 2 + log

[(

1 − γ

αη

) (

1 +
γ + 1

αη

)]

− 2(αη + 1) log(1 +
1

αη
). (3.3)

In Proposition 3.1 the word “formally” means that the equality holds as

a formal power series with respect to η−1. In fact, the right-hand side of (3.2)

has a formal power series expansion as

−1 + 6β

α2
η−2 +

1 + 6β

α3
η−3 − 10β2 + 20β + 3

20α4
η−4 +

15β2 + 15β + 2

15α5
η−5 + · · ·

(3.4)

by the (formal) use of the Taylor expansion.

Figure 2

To prove Proposition 3.1, we first note that S2n(x, α) for n = 1, 2, · · · are

single-valued around x = 4α and their residues are zero (cf. (2.12)). Therefore

I(α, η) =

∫

γ

(S(+)(x, α, η) − ηS−1(x, α) − S0(x, α))dx (3.5)
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holds. In studying the right-hand side of (3.5), we also consider the following

cut-off integrals:

Ix(α, η) =

∫

γx

S(+)(x, α, η)dx, (3.6)

Ix
n(α, η) =

∫

γx

Sn(x, α)dx (n = −1, 0), (3.7)

where γx is a contour shown in Figure 2. From (3.5) and the definition of Ix

and Ix
n , we have

I(α, η) = lim
x→∞

[

Ix(α, η) − ηIx
−1(α) − ηIx

0 (α)
]

. (3.8)

We then determine the asymptotic behavior of Ix(α+ η−1, η) − Ix(α, η).

Lemma 3.1. As x tends to infinity, we have

Ix(α+ η−1, η) − Ix(α, η) = log
α2 + η−1α− η−2β

x2
+O(|x|−1). (3.9)

To prove Lemma 3.1, we use the raising and lowering operators of the

Whittaker equation with respect to α:

A(α) = η−1 d

dx
+

1

2
x− α, A†(α) = η−1 d

dx
− 1

2
x+ α. (3.10)

We also set

L(α) = − d2

dx2
+ η2

(

1

4
− α

x
+ η−2 β

x2

)

. (3.11)

Lemma 3.2. If ψ is a solution of the Whittaker equation (2.1) (i.e.

L(α)ψ = 0), then L(α− η−1)A(α)ψ = 0 and L(α+ η−1)A†(α)ψ = 0.

Proof. By direct computations, we have

η−2x2L(α) = A(α+ η−1)A†(α) + c(α) (3.12)

= A†(α− η−1)A(α) + c(α− η−1) (3.13)

with

c(α) = α2 + η−1α− η−2β. (3.14)

Therefore

η−2x2L(α+ η−1)A†(α)ψ =
[

A†(α)A(α + η−1) + c(α)
]

A†(α)ψ

=
[

A†(α)A(α + η−1)A†(α) + c(α)A†(α)
]

ψ

=
[

A†(α)
{

η−2x2L(α) − c(α)
}

+ c(α)A†(α)
]

ψ

= 0. (3.15)
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By the same reasoning we can also prove η−2x2L(α− η−1)A(α)ψ = 0.

Proof of Lemma 3.1. Lemma 3.2 implies that there exists a constant C(η)

for which
(

η−1x
d

dx
− 1

2
x+ α

)

ψ+(x, α, η) = C(η)ψ+(x, α + η−1, η) (3.16)

holds. Since the left-hand side of (3.16) is
(

η−1xS(+) − 1

2
x+ α

)

ψ+(x, α, η), (3.17)

the logarithmic derivatives of both sides of (3.16) give

S(+)(x, α+ η−1, η) = S(+)(x, α, η) +
d

dx
log

[

η−1xS(+)(x, α, η) − 1

2
x+ α

]

.

(3.18)

Therefore we obtain
∫

γx

S(+)(x, α+ η−1, η)dx−
∫

γx

S(+)(x, α, η)dx

= log

[

η−1xS(+)(x, α, η) − 1

2
x+ α

]

− log

[

η−1xS(−)(x, α, η) − 1

2
x+ α

]

.

(3.19)

To determine the asymptotic behavior of the right-hand side of (3.19), we use

the following explicit formulas as x → ∞ which are easily obtained from the

recursion relations (2.5) – (2.8):

S−1(x, α) =

√

1

4
− α

x
=

1

2
− α

x
− α2

x2
− 2α3

x3
+O(|x|−4), (3.20)

S0(x, α) =
1

4

(

1

x
− 1

x− 4α

)

= − α

x2
+O(|x|−3), (3.21)

S1(x, α) = − 5

16
x1/2(x− 4α)−5/2 +

1

8
x−1/2(x− 4α)−3/2

+ (β +
3

16
)x−3/2(x− 4α)−1/2 (3.22)

=
β

x2
+O(|x|−3). (3.23)

These asymptotic formulas together with (2.19) show

S(+)(x, α, η) = η

(

1

2
− α

x
− α2

x2

)

+
−α+ η−1β

x2
+O(|x|−5/2), (3.24)

S(−)(x, α, η) = η

(

−1

2
+
α

x
+
α2

x2

)

+
−α− η−1β

x2
+O(|x|−5/2). (3.25)
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The formula (3.9) readily follows from (3.19), (3.24) and (3.25). This completes

the proof of Lemma 3.1. �

Next we determine the asymptotic behavior of Ix
−1(α+ η−1)− Ix

−1(α) and

Ix
0 (α + η−1) − Ix

0 (α).

Lemma 3.3.

(i) As x tends to infinity, we have

Ix
−1(α + η−1) − Ix

−1(α)

= η−1

[

−2 + 2(1 + αη) log(1 +
1

αη
) + log

α2

x2

]

+O(|x|−1). (3.26)

(ii) Ix
0 (α+ η−1) − Ix

0 (α) = 0. (3.27)

Proof. Since S0(x) is single-valued near x = 4α, Ix
0 (α) is 2πi multiple of

the residue of S0(x) at x = 4α. Hence Ix
0 (α) = −iπ/2 and thus we obtain (ii).

To prove (i), we compute the integral explicitly:

Ix
−1(α) =

∫

γx

S−1dx (3.28)

= 2x

√

1

4
− α

x
− α log

[

x− 2α+ 2x

√

1

4
− α

x

]

+ α log

[

x− 2α− 2x

√

1

4
− α

x

]

. (3.29)

As x tends to infinity, we have

√

1

4
− α

x
=

1

2
− α

x
+
α2

x2
+O(|x|−3), (3.30)

and hence

x− 2α+ 2x

√

1

4
− α

x
= 2x− 4α− 2α2

x
+O(|x|−2), (3.31)

x− 2α− 2x

√

1

4
− α

x
=

2α2

x
+O(|x|−2). (3.32)

Therefore we obtain

Ix
−1(α) =

∫

γx

S−1(x, α)dx = x− 2α+ α log
α2

x2
+O(|x|−1). (3.33)
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This asymptotic behavior of Ix
−1(α) verifies (i).

We now prove Proposition 3.1.

Proof of Proposition 3.1. Lemmas 3.1 and 3.2 give

[

Ix(α + η−1, η) − ηIx
−1(α+ η−1) − Ix

0 (α+ η−1)
]

−
[

Ix(α, η) − ηIx
−1(α) − Ix

0 (α)
]

=
[

Ix(α+ η−1, η) − Ix(α, η)
]

− η
[

Ix
−1(α+ η−1) − Ix

−1(α)] (3.34)

= 2 − 2(1 + αη) log(1 +
1

αη
) + log

α2 + η−1α− η−2β

α2
+O(|x|−1). (3.35)

This relation and (3.8) give (3.2). Since β = γ(γ + 1), we can also verify

α2 + η−1α− η−2β

α2
=

(

1 − γ

αη

)(

1 +
γ + 1

αη

)

. (3.36)

This proves (3.3). �

§3.2. Determination of the Voros coefficient

Let V (α, η) be the Voros coefficient defined by (2.14). From Proposition

3.1 and (3.1), we have

V (α+ η−1, η) − V (α, η)

= 1 +
1

2
log

[(

1 − γ

αη

) (

1 +
γ + 1

αη

)]

− (αη + 1) log(1 +
1

αη
). (3.37)

In this subsection we verify that this difference equation determines V uniquely.

To this end we convert (3.37) to a difference equation with respect to η by using

the homogeneity of V (α, η).

Lemma 3.4. Let

V2n−1(α) =

∫ ∞

4α

S2n−1(x, α)dx (n = 1, 2, 3, · · · ). (3.38)

Then

V2n−1(α) = α1−2nV2n−1(1) (3.39)

holds for n = 1, 2, 3, · · · .
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Proof. Using the recursion relations (2.5) – (2.8), we can verify

Sn(αx, α) =
1

αn+1
Sn(x, 1) (n = −1, 0, 1, 2, · · · ) (3.40)

by an induction on n. Therefore

∫ ∞

4α

S2n−1(x, α)dx = α

∫ ∞

4

S2n−1(αt, α)dt = α1−2n

∫ ∞

4

S2n−1(t, 1)dt (3.41)

holds for n = 1, 2, · · · .

Thanks to Lemma 3.4,

V (α, η) =
∞
∑

n=1

V2n−1(α)η1−2n =
∞
∑

n=1

V2n−1(1)(αη)1−2n (3.42)

holds, and

(α+ η−1)η = αη + 1 = α(η +
1

α
) (3.43)

entails

V (α+ η−1, η) = V (α, η +
1

α
). (3.44)

From (3.44) and (3.37) we obtain the following difference equation for V with

respect to η.

Proposition 3.2.

V (α, η +
1

α
) − V (α, η)

= 1 +
1

2
log

[(

1 − γ

αη

) (

1 +
γ + 1

αη

)]

− (αη + 1) log(1 +
1

αη
). (3.45)

We solve this difference equation (3.45) by using the Borel transformation.

We first note that (3.45) has a unique (formal) solution of the form

V =

∞
∑

n=1

Vnη
1−2n = V1η

−1 + V3η
−3 + V5η

−5 + · · · . (3.46)

Hence (3.45) determines V uniquely. We now explicitly compute its Borel

transform

VB =

∞
∑

n=1

Vn

(2n− 2)!
y2n−2 (3.47)
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by considering the Borel transform of (3.45). The Borel transform of the left-

hand side of (3.45) is

(e−y/α − 1)VB(α, y). (3.48)

To compute the Borel transform of the right-hand side, we use

Lemma 3.5. Let C be a non-zero complex constant. Then

(i) B
[

log(1 + Cη−1)
]

(y) =
1 − e−Cy

y
. (3.49)

(ii) B
[

η log(1 + Cη−1) − C
]

(y) =
−1 + (1 + Cy)e−Cy

y2
. (3.50)

Here B denotes the Borel transformation with respect to η.

Lemma 3.5 can be proved by straightforward computations. By using

Lemma 3.5 we can compute the Borel transform of the right-hand side of (3.45)

in the following way:

B
[

1 − (αη + 1) log(1 +
1

αη
)

]

= −B
[

α

(

η log(1 +
1

αη
) − 1

α

)]

− B
[

log(1 +
1

αη
)

]

(3.51)

=
α

y2

[

1 − (1 +
y

α
)e−y/α

]

− 1− e−y/α

y
(3.52)

= α
1 − e−y/α

y2
− 1

y
, (3.53)

B
[

1

2
log(1 − γ

αη
)(1 +

γ + 1

αη
)

]

=
1

2
B

[

log(1 − γ

αη
)

]

+
1

2
B

[

log(1 +
γ + 1

αη
)

]

(3.54)

=
1

2
· 1 − eγy/α

y
+

1

2
· 1 − e−(γ+1)y/α

y
(3.55)

=
1

y
− 1

2
· e

γy/α + e−(γ+1)y/α

y
. (3.56)

We conclude from (3.48), (3.53) and (3.56) that the difference equation

(3.45) becomes

(e−y/α − 1)VB(α, y) = α
1 − e−y/α

y2
− 1

2
· e

γy/α + e−(γ+1)y/α

y
(3.57)

after the Borel transformation. This equation can be easily solved and we

obtain
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Theorem 3.1. The Borel transform VB of the Voros coefficient V is

given by

VB(α, y) =
1

2y
· e

−γy/α + e(γ+1)y/α

ey/α − 1
− α

y2
. (3.58)

Thus, to prove Theorem 2.1, it suffices to show that the Borel transform of

the right-hand side of (2.15) coincides with the right-hand side of (3.58). The

Borel transform of the right-hand side of (2.15) is, by its definition,

∞
∑

n=1

α1−2nB2n(−γ)
(2n)!

y2n−2 =
α

y2

∞
∑

n=1

B2n(−γ)
(2n)!

( y

α

)2n

. (3.59)

We then use (2.22) to obtain

∞
∑

n=0

B2n(z)

(2n)!
t2n =

1

2

[

tetz

et − 1
+

−te−tz

e−t − 1

]

=
t

2
· e

tz + e−t(z−1)

et − 1
. (3.60)

From (3.59) and (3.60) we can confirm that the Borel transform of the right-

hand side of (2.15) is exactly the same as the right-hand side of (3.58). This

proves Theorem 2.1.

Remark. Since

e−γy/α + e(γ+1)y/α

=
1

2

[

(ey/α + 1)(eγy/α + e−γy/α) + (ey/α − 1)(eγy/α − e−γy/α)
]

(3.61)

= (ey/α + 1) cosh
γy

α
+ (ey/α − 1) sinh

γy

α
(3.62)

holds, we have the following expression of VB :

VB =
1

2

[

1

y

ey/α + 1

e−y/α − 1
cosh

γy

α
+

1

y
sinh

γy

α
− 2α

y2

]

. (3.63)

In [KKKoT1] and [KKKoT2] this expression of VB was used.

The following lemma will be used in the subsequent section.

Proposition 3.3. VB has poles at y = 2mπiα (m ∈ Z\{0}) and except

for these poles VB has no other singular points. They are all simple poles and

the residues of VB there are given by

Res
y=2mπiα

VB =
e2mπiγ + e−2mπiγ

4mπi
. (3.64)
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§4. Analytic structure of the Borel transform of WKB solutions

for the Whittaker equation

In this section we derive some important analytic properties of the Borel

transform of WKB solutions of the Whittaker equation. All of them are ob-

tained as consequences of our main theorems (Theorem 2.1 and Theorem 3.1).

For simplicity we restrict our consideration in this section to the case where

argα = π/2 or argα is sufficiently close to π/2. The configuration of Stokes

curves, i.e., integral curves of the direction field = (S−1(x)dx) = 0 emanating

from turning points, of the Whittaker equation (2.1) for argα = π/2 is shown

in Figure 3. Note that the origin also plays the same role as a turning point

(cf. [Ko1] and [Ko2]). We also show in Figure 4 and Figure 6 (resp., Figure

5 and Figure 7) the configuration of Stokes curves for argα = π/2 − ε (resp.,

argα = π/2 + ε) for sufficiently small positive ε.

As we can observe from these figures, the degeneration occurs in the con-

figuration of Stokes curves for argα = π/2 (Figure 3), i.e., there exists a Stokes

curve connecting a turning point 4α and the origin in Figure 3. Although this

degeneration is resolved in Figure 4 ∼ Figure 7, the topological configuration

of Stokes curves is quite different between, for example, Figure 6 and Figure 7;

in particular, the configuration of a Stokes curve emanating from 4α abruptly

changes at argα = π/2. We will see in §4.2 that this abrupt change of the con-

figuration of Stokes curves is related to Stokes phenomena of WKB solutions

that occur when α varies.

§4.1. Fixed singularities of the Borel transform of WKB solutions

Let us consider WKB solutions normalized at a simple turning point 4α:

ψ± =
1√
Sodd

exp

[

±
∫ x

4α

Sodddx

]

. (4.1)

These WKB solutions ψ+ and ψ− can be expanded as

ψ± = eηy±(x)
∞
∑

n=0

ψ±,n(x)η−n−1/2 (4.2)

with

y±(x) = ±
∫ x

4α

S−1(x)dx = ±
∫ x

4α

√

1

4
− α

x
dx (4.3)

and the Borel transform ψ±,B of ψ± is given by

ψ±,B(x, y) =
∞
∑

n=0

ψ±,n(x)

Γ(n+ 1/2)
(y + y±(x))n−1/2. (4.4)
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Figure 3: argα = π/2

Figure 4: argα = π/2 − 0.2 Figure 5: argα = π/2 + 0.2

Figure 6: argα = π/2 − 0.45 Figure 7: argα = π/2 + 0.45
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Theorem 4.1. We assume that the path of integration in (4.1) does not

cross any Stokes curve for any α with | argα − π/2| < ε (ε > 0). Then the

Borel transform of the WKB solution ψ+,B (resp., ψ−,B) has singular points

at y = −y+(x) + 2mπiα (resp., y = −y−(x) + 2mπiα) with m ∈ Z \ {0}.
Furthermore, their alien derivatives there are given by

(∆y=−y±(x)+2mπiαψ±,B)(x, y)

=
e2mπiγ + e−2mπiγ

2m
ψ+,B(x, y − 2mπiα). (4.5)

Note that the singular points described in Theorem 4.1 are fixed singular

points (cf. [DDP], [DP]) of ψ+ (resp., ψ−) since their relative locations with

respect to the reference singular point y = −y+(x) (resp., y = −y−(x)) are

unchanged when x varies.

In this subsection we prove Theorem 4.1. Since the same reasoning holds

also for ψ−,B , we only consider ψ+,B . We refer the reader to [Sa] for the

definition of the alien derivative and the relevant alien calculus employed in

what follows. See also [AKT2, §3] where similar discussion is given for the

Weber equation.

To prove Theorem 4.1 we use the following relation

ψ+ = exp

[
∫ ∞

4α

(Sodd − ηS−1(x))dx

]

ψ
(∞)
+ = eV ψ

(∞)
+ , (4.6)

where ψ
(∞)
+ is a WKB solution normalized at infinity:

ψ
(∞)
+ =

1√
Sodd

exp

[

η

∫ x

4α

S−1(x)dx

]

exp

[
∫ x

∞

(Sodd(x, η) − ηS−1(x))dx

]

.

(4.7)

The formal relation (4.6) becomes

ψ+,B = B
[

eV
]

∗ ψ(∞)
+,B (4.8)

after the Borel transformation, where ∗ denotes the convolution product for

the variable y. Since VB is singular at y = 2mπiα (m ∈ Z \ {0}) as we have

seen in Section 3, we then find that y = 2mπiα is also a singular point of ψ+,B .

To compute the alien derivative of ψ+ there, we use

Lemma 4.1. The WKB solution (4.7) normalized at infinity is Borel

summable if the path of integration from infinity to x in (4.7) does not cross

any Stokes curve.
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See [DP, Theorem 1.2.2 (c)] for the corresponding result for the Weber equation.

Lemma 4.1 for the Whittaker equation can be verified in a similar manner.

Under our assumption we can choose a path of integration from infinity to

x in such a way that it does not cross any Stokes curve (see Remark below).

Hence ψ
(∞)
+,B is holomorphic at y = −y+(x)+2mπiα. This enables us to compute

the alien derivative of ψ+,B at y = −y+(x) + 2mπiα as follows:

∆y=−y+(x)+2mπiαψ+,B = ∆y=−y+(x)+2mπiα

[

B(eV ) ∗ ψ(∞)
+,B

]

(4.9)

=
[

∆y=−y+(x)+2mπiαB(eV )
]

∗ ψ(∞)
+,B (4.10)

=
[

∆y=−y+(x)+2mπiαVB

]

B(eV ) ∗ ψ(∞)
+,B (4.11)

= 2πi Res
y=2mπiα

[VB(α, y)] · ψ+,B (4.12)

=
e2mπiγ + e−2mπiγ

2m
ψ+,B . (4.13)

This completes the proof of Theorem 4.1.

Remark. If x does not lie on a Stokes curve for argα = π/2, we can find

a path of integration from infinity to x so that it does not cross any Stokes

curve for all α with | argα − π/2| being sufficiently small. Examples of such

paths are shown in Figure 8, Figure 9 and Figure 10. For example, for xj

(j = 1, 2) in Figure 8, γj gives a path satisfying the above condition.

§4.2. Derivation of the Stokes automorphism for WKB solutions

It follows from Theorem 4.1 that, when argα = π/2, the singular points

y = −y+(x) − 2mπiα (m = 1, 2, 3, · · · ) of the Borel transform of the WKB

solution ψ+,B are located on

{y; <y ≥ <(−y+(x)), =y = =(−y+(x))}. (4.14)

As (4.14) is nothing but the path of integration for the Borel sum of ψ+,

this implies that ψ+ is not Borel summable when argα = π/2. If we let the

parameter α vary from argα = π/2 − ε to argα = π/2 + ε, these singular

points cross the path of integration for the Borel sum. Therefore, we conclude

that the WKB solution ψ+ suffers a Stokes phenomenon (with respect to α)

at argα = π/2. Such Stokes phenomena are well described by the Stokes

automorphism (cf. [Sa]). In this subsection we compute the action of the Stokes

automorphism on the WKB solutions ψ±.
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Figure 8: argα = π/2

Figure 9: argα = π/2 − 0.2 Figure 10: argα = π/2 + 0.2
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Let S denote the Stokes automorphism. In our case, it is defined by

Sψ+ = exp

[

∞
∑

m=1

∆y=−y+(x)−2mπiα

]

ψ+, (4.15)

Sψ− = exp

[

∞
∑

m=1

∆y=−y−(x)−2mπiα

]

ψ−. (4.16)

Theorem 4.2. When argα = π/2, Sψ± are explicitly given by

Sψ± = (1 − e2πi(αη+γ))1/2(1 − e2πi(αη−γ))1/2ψ±. (4.17)

Proof. We compute the action of the Stokes automorphism in the formal

model. Let ∆ be the sum of the alien derivatives:

∆ =

∞
∑

m=1

∆y=−y+(x)−2mπiα. (4.18)

We then obtain

∆ψ+ =

∞
∑

m=1

B
−1

[

∆y=−y+(x)−2mπiαψ+,B

]

(4.19)

= −
∞
∑

m=1

e2mπiγ + e−2mπiγ

2m
B

−1ψ+,B(x, y + 2mπiα) (4.20)

= −
∞
∑

m=1

e2mπiγ + e−2mπiγ

2m
e2mπiαηψ+ (4.21)

=
1

2
log

[

(1 − e2πi(αη+γ))(1 − e2πi(αη−γ))
]

ψ+. (4.22)

Here B denotes the Borel transformation. Therefore we obtain

Sψ+ = e∆ψ+ = (1 − e2πi(αη+γ))1/2(1 − e2πi(αη−γ))1/2ψ+. (4.23)

The same computation can be done also for ψ−.

§4.3. Borel sum of the Voros coefficient

In this final subsection we determine the Borel sum of the Voros coefficient.

Theorem 4.3. Let ε > 0 be sufficiently small. Then the Borel sum of

the Voros coefficient VB for argα = π/2 − ε is given by

1

2
log

Γ(αη − γ)√
2π

+
1

2
log

Γ(αη + γ)√
2π

+
1

2
log(αη + γ) + αη(1 − log(αη)), (4.24)
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and that for argα = π/2 + ε is

− 1

2
log

Γ(−αη − γ)√
2π

− 1

2
log

Γ(−αη + γ)√
2π

− 1

2
log(−αη + γ) + αη(1 − log(αη) + πi). (4.25)

Proof. Making a change of variables w = y/α, we obtain

αVB =
1

2w

[

ew

ew − 1
eγw +

1

ew − 1
e−γw

]

− 1

w2
(4.26)

=
1

2w

(

1

ew − 1
+

1

2
− 1

w

)

eγw +
1

2w

(

1

ew − 1
+

1

2
− 1

w

)

e−γw

+
sinh(γw)

2w
+

cosh(γw) − 1

w2
. (4.27)

Let S[V ] denote the Borel sum of the Voros coefficient V , i.e.,

S[V ](α, η) :=

∫ ∞

0

e−yηVB(α, y)dy =

∫ ∞

0

e−αwη(αVB(α, αw))dw. (4.28)

To compute S[V ](α, η), we make use of the following formula:
∫ ∞

0

(

1

et − 1
+

1

2
− 1

t

)

e−tθ dt

t
= log

Γ(θ)√
2π

−(θ− 1

2
) log θ+θ (<θ > 0) (4.29)

(cf. [E], Vol.I, Chapter I, §1.9, (5)). We also use the following formulas for

Laplace transforms of hyperbolic functions:
∫ ∞

0

e−pt sinh(at)

t
dt =

1

2
log

p+ a

p− a
, (4.30)

∫ ∞

0

e−pt cosh(at) − 1

t2
dt =

a

2
log

p+ a

p− a
+
p

2
log(1 − a2

p2
). (4.31)

Then, when argα = π/2 − ε, we find

S[V ](α, η) =
1

2

[

Γ(ηα− γ)√
2π

−
(

ηα− γ − 1

2

)

log(ηα− γ) + ηα− γ

]

+
1

2

[

Γ(ηα + γ)√
2π

−
(

ηα+ γ − 1

2

)

log(ηα+ γ) + ηα+ γ

]

+
1

4
log

ηα+ γ

ηα− γ
+
γ

2
log

ηα+ γ

ηα− γ
+
ηα

2
log

(

1 − γ2

η2α2

)

(4.32)

=
1

2
log

Γ(αη − γ)√
2π

+
1

2
log

Γ(αη + γ)√
2π

+
1

2
log(αη + γ) + αη(1 − log(αη)). (4.33)
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When argα = π/2 − ε, we can do the computation of S[V ](α, η) in a similar

manner by using the relation S[V ](α, η) = −S[V ](−α, η).

Using the concrete expressions (4.24) and (4.25) for the Borel sum of V

given by Theorem 4.3, we can prove Theorem 4.2 without resorting to the alien

calculus. We conclude this final section with providing a different proof of

Theorem 4.2 which is based on Theorem 4.3.

Since both ψ
(∞)
+ and V are Borel summable for argα = π/2± ε, it follows

from (4.6) that

S[ψ+]
∣

∣

arg α=π/2−ε
= exp

[

S[V ]
∣

∣

arg α=π/2−ε

]

· S[ψ
(∞)
+ ]

∣

∣

arg α=π/2−ε
, (4.34)

S[ψ+]
∣

∣

arg α=π/2+ε
= exp

[

S[V ]
∣

∣

arg α=π/2+ε

]

· S[ψ
(∞)
+ ]

∣

∣

arg α=π/2+ε
, (4.35)

where S denotes the Borel sum. Note that ψ
(∞)
+ is Borel summable for argα ∈

[π/2− ε, π/2+ ε] for a sufficiently small positive ε in view of Lemma 4.1. Thus

we have

S[ψ
(∞)
+ ]

∣

∣

arg α=π/2+ε
= S[ψ

(∞)
+ ]

∣

∣

arg α=π/2−ε
. (4.36)

Therefore, we obtain

S[ψ+]
∣

∣

arg α=π/2+ε

S[ψ+]
∣

∣

arg α=π/2−ε

= exp
[

S[V ]
∣

∣

arg α=π/2+ε
− S[V ]

∣

∣

arg α=π/2−ε

]

. (4.37)

The right-hand side of (4.37) can be explicitly computed thanks to Theorem

4.3:

S[V ]
∣

∣

arg α=π/2+ε
− S[V ]

∣

∣

arg α=π/2−ε

= −1

2
log

Γ(−αη − γ)Γ(−αη + γ)Γ(αη − γ)Γ(αη + γ)

(2π)2

− 1

2
log(γ2 − α2η2) + πiαη. (4.38)

Since

Γ(αη − γ)Γ(−αη + γ)

2π
=

1

−αη + γ

1

2 sinπ(αη − γ)
(4.39)

and

Γ(αη + γ)Γ(−αη − γ)

2π
=

1

−αη − γ

1

2 sinπ(αη + γ)
(4.40)
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hold, the right-hand side of (4.38) becomes

1

2
log

4(α2η2 − γ2) sinπ(αη + γ) sinπ(αη − γ)

γ2 − α2η2
+ πiαη (4.41)

=
1

2
log

[

(eiπ(αη+γ) − e−iπ(αη+γ))(eiπ(αη−γ) − e−iπ(αη−γ))
]

+ πiαη

(4.42)

=
1

2
log

[

(1 − e2iπ(αη+γ))(1 − e2iπ(αη−γ))
]

. (4.43)

Hence we obtain

S[ψ+]
∣

∣

arg α=π/2+ε
= (1 − e2iπ(αη+γ))1/2(1 − e2iπ(αη−γ))1/2S[ψ+]

∣

∣

arg α=π/2−ε
.

(4.44)

This proves Theorem 4.2.
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