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Abstract

The turning point problems for instanton-type solutions of Painlevé
equations with a large parameter are discussed. Generalizing the main
result of [KT2] near a simple turning point, we report in this paper
that Painlevé equations can be transformed to the second Painlevé
equation and the most degenerate third Painlevé equation near a dou-
ble turning point and near a simple pole, respectively. An outline
of the proof based on the theory of isomonodromic deformations of
associated linear differential equations is also explained.

1 Background and main results

The purpose of this report is to discuss the turning point problem for
instanton-type solutions of Painlevé equations from the viewpoint of exact
WKB analysis.

In our series of papers ([KT1],[AKT],[KT2]) we develop the exact WKB
analysis of Painlevé equations (PJ) with a large parameter η (> 0):

(PJ)
d2λ

dt2
= GJ

(
λ,
dλ

dt
, t

)
+ η2FJ(λ, t).
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Here J runs over the following set of indices

(1.1) I = { I, II, III′, III′(D7), III′(D8), IV, V, VI },

and FJ(λ, t) and GJ(λ, µ, t) are some rational functions of (λ, t) and (λ, µ, t),
respectively. For the concrete form of FJ(λ, t) and GJ(λ, µ, t) see Table 1
below. Note that instead of the usual third Painlevé equation (PIII) we
use (PIII′), which is equivalent to (PIII), for the sake of convenience in this
paper. Note also that it is now considered to be natural to distinguish the
degenerate third Painlevé equations of type (D7) and (D8) from the generic
third Painlevé equation since the type of their affine Weyl group symmetries
is different from that of the generic third Painlevé equation. In this paper,
being conformed to this convention, we have listed up (PIII′(D7)) and (PIII′(D8))
as well in Table 1. These Painlevé equations (PJ) are related to one another
according to the so-called coalescence diagram described in Table 2.

As can be readily confirmed, every Painlevé equation (PJ) (J ∈ I) admits
the following formal power series solution (in η−1) called a “0-parameter
solution”:

(1.2) λ
(0)
J (t, η) = λ0(t) + η−2λ2(t) + η−4λ4(t) + · · · ,

where the top term λ0(t) satisfies an algebraic equation

(1.3) FJ(λ0(t), t) = 0

and the other terms λ2j(t) (j ≥ 1) are recursively determined once λ0(t) is
fixed. Furthermore, by using the multiple-scale method, we have constructed
in [AKT] the following formal solution of (PJ), called a “2-parameter solu-
tion” or an “instanton-type solution”, containing 2 free complex parameters
(α, β):

(1.4) λJ(t, η;α, β) = λ0(t) + η−1/2λ1/2(t, η) + η−1λ1(t, η) + · · · .

Here the leading term λ0(t) is the same as that of a 0-parameter solution and
the other terms λj/2(t, η) (j ≥ 1) are of the form

(1.5) λj/2(t, η) =

j∑

k=0

b
(j/2)
j−2k(t) exp ((j − 2k)ΦJ) ,
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(PI)
d2λ

dt2
= η2(6λ2 + t).

(PII)
d2λ

dt2
= η2(2λ3 + tλ+ c).

(PIII′)
d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
+ η2

[
c∞λ

3

t2
− c′∞λ

2

t2
+
c′0
t
− c0

λ

]
.

(PIII′(D7))
d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
− η2

[
2λ2

t2
+
c

t
+

1

λ

]
.

(PIII′(D8))
d2λ

dt2
=

1

λ

(
dλ

dt

)2

− 1

t

dλ

dt
+ η2

[
λ2

t2
− 1

t

]
.

(PIV)
d2λ

dt2
=

1

2λ

(
dλ

dt

)2

− 2

λ
+ η2

[
3

2
λ3 + 4tλ2 +

(
2t2 + c1

)
λ− c0

λ

]
.

(PV)
d2λ

dt2
=

(
1

2λ
+

1

λ− 1

)(
dλ

dt

)2

− 1

t

dλ

dt
+

(λ− 1)2

t2

(
2λ− 1

2λ

)

+ η2 2λ(λ− 1)2

t2

[
c∞ −

c0

λ2
− c2t

(λ− 1)2
− c1t

2(λ+ 1)

(λ− 1)3

]
.

(PVI)
d2λ

dt2
=

1

2

(
1

λ
+

1

λ− 1
+

1

λ− t

)(
dλ

dt

)2

−
(

1

t
+

1

t− 1
+

1

λ− t

)
dλ

dt

+
2λ(λ− 1)(λ− t)

t2(t− 1)2

[
1− λ2 − 2tλ+ t

4λ2(λ− 1)2

+ η2

{
c∞ −

c0t

λ2
+
c1(t− 1)

(λ− 1)2
− ctt(t− 1)

(λ− t)2

}]
.

Table 1: Painlevé equations with a large parameter η. Here λ denotes an
unknown function, t is an independent variable and c, c0 etc. are complex
parameters.
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(PVI) −→ (PV) −→ (PIII′) −→ (PIII′(D7)) −→ (PIII′(D8))

↘ ↘

(PIV) −→ (PII) −→ (PI)

Table 2: Coalescence diagram of Painlevé equations.

where ΦJ = ΦJ(t, η), sometimes called an “instanton”, is defined by

(1.6) ΦJ(t, η) = η

∫ t
√
∂FJ

∂λ
(λ0(s), s)ds+ αβ log

(
η2θJ(t)

)

with an appropriately defined function θJ(t) and b
(j/2)
l (t) (l = j, j−2, . . . ,−j)

are functions of t depending also on α and β but not on η, that is, the η-
dependence of λj/2(t, η) comes only from the l-instanton terms exp(lΦJ). In
particular, the subleading term λ1/2(t, η) is of the form

(1.7) λ1/2(t, η) = µJ(t) (α exp(ΦJ) + β exp(−ΦJ)) .

For the explicit forms of θJ(t) and µJ(t) we refer the reader to [KT2, Sec-
tion 1].

The subject of our series of papers ([KT1],[AKT],[KT2]) is the analysis

of the structure of λ
(0)
J (t, η) and λJ(t, η;α, β) near a simple turning point of

(PJ). Here a (simple) turning point of (PJ) is defined as follows:

Definition 1.1. Let

d2

dt2
∆λ =η2∂FJ

∂λ
(λ

(0)
J , t)∆λ(∆PJ)

+
∂GJ

∂λ

(
λ

(0)
J ,

dλ
(0)
J

dt
, t

)
∆λ+

∂GJ

∂µ

(
λ

(0)
J ,

dλ
(0)
J

dt
, t

)
d

dt
∆λ

be the linearized equation (or the Frechét derivative) of (PJ) at its 0-

parameter solution λ
(0)
J . Then a turning point of (PJ) is, by definition,

a turning point of (∆PJ). That is, a turning point of (PJ) is a zero of
(∂FJ/∂λ)(λ0(t), t). In particular, a point t satisfying

(1.8)
∂FJ

∂λ
(λ0(t), t) = 0 and

∂2FJ

∂λ2
(λ0(t), t) 6= 0
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is called a simple turning point. Similarly, a Stokes curve (PJ) is defined as
a Stokes curve of (∆PJ), that is, a Stokes curve (PJ) is an integral curve of
the direction field Im

√
(∂FJ/∂λ)(λ0(t), t) dt = 0 emanating from a turning

point.

The main result of [KT2] is then described in the following Theorem 1.2
(where we put ˜ to the variables relevant to (PJ) to distinguish them from
those relevant to the first Painlevé equation (PI)).

Theorem 1.2. Let t̃ = t̃∗ be a simple turning point of (PJ) and σ̃ a point
on a Stokes curve emanating from t̃∗. Then there exists a neighborhood Ṽ of
σ̃ so that every 2-parameter instanton-type solution λ̃J(t̃, η; α̃, β̃) of (PJ) is
formally transformed to a 2-parameter instanton-type solution λI(t, η;α, β) of
(PI) in Ṽ . To be more specific, there exist a formal transformation t(t̃, η) of
an independent variable and a formal transformation x(x̃, t̃, η) of an unknown
function of the form

t(t̃, η) =
∑

j≥0

tj/2(t̃, η)η−j/2,(1.9)

x(x̃, t̃, η) =
∑

j≥0

xj/2(x̃, t̃, η)η−j/2,(1.10)

where tj/2 and xj/2 are holomorphic in both x̃ and t̃, that satisfy the following
relation:

(1.11) x(λ̃J(t̃, η; α̃, β̃), t̃, η) = λI(t(t̃, η), η;α, β).

Theorem 1.2 implies that the first Painlevé equation (PI) can be thought of
as a canonical equation (or a normal form) near a simple turning point of
Painlevé equations (PJ). For instanton-type solutions of (PI) we have the
following connection formula on its Stokes curve, say, on {arg t = π} (cf.
[T1]):

β ′ 22α′β′

Γ(2α′β ′ + 1)
=

β 22αβ

Γ(2αβ + 1)
,(1.12)

e2iπα′β′ α′ 2−2α′β′

Γ(−2α′β ′ + 1)
= e2iπαβ α 2−2αβ

Γ(−2αβ + 1)
− ie4iπαβ ,(1.13)

where λI(t, η;α, β) (resp., λI(t, η;α′, β ′)) is an instanton-type solution of (PI)
in {arg t < π} (resp., {arg t > π}). In particular, the analytic continuation
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across the Stokes curve {arg t = π} of a 0-parameter solution λ
(0)
I (t, η) =

λI(t, η; 0, 0) in {arg t < π} is given by λI(t, η;−i/(2√π), 0) in {arg t > π}.
In view of Theorem 1.2 it is expected that the same connection formula as
(1.12) and (1.13) should hold also for an instanton-type solution of (PJ) on
its Stokes curve emanating from a simple turning point.

The aim of this report is to discuss some generalizations of Theorem 1.2.
Now, what kind of generalizations of Theorem 1.2 is possible? To
consider possible generalizations of Theorem 1.2, we first briefly review a
simpler case, that is, the case of second order linear ordinary differential
equations

(1.14)

(
− d2

dx2
+ η2Q(x)

)
ψ = 0.

It is well-known that at a simple turning point Equation (1.14) can be trans-
formed into the Airy equation (i.e., Equation (1.14) with Q(x) = x). In
fact, such a transformation is constructed in the framework of exact WKB
analysis as well (cf. [KT3, Chapter 2]) and Theorem 1.2 can be regarded as
a nonlinear analogue of this result. For linear equations (1.14) several gen-
eralizations of this result are also known. For example, at a double turning
point (i.e., a double zero of Q(x)) (1.14) can be transformed into the Weber
equation (i.e., Equation (1.14) with Q(x) = x2 + η−1E with some constant
E). Furthermore at a simple pole of Q(x) (1.14) is transformed into the
Whittaker equation (i.e., Equation (1.14) with Q(x) = 1/x + η−2γ/x2 with
some constant γ). This fact means that a simple pole of Q(x) also plays
a role of turning points for Equation (1.14) and in the framework of exact
WKB analysis this fact is verified by Koike in [K].

In parallel to the case of linear equations (1.14) we are then able to
consider some generalizations of Theorem 1.2 for Painlevé equations, that
is, generalizations to a transformation near a double turning point and that
near a simple pole. First, near a double turning point, we can prove the
following

Theorem 1.3. Near a double turning point every 2-parameter instanton-
type solution of (PJ) is formally transformed to that of the following second
Painlevé equation (PII,deg) (in the same sense as in Theorem 1.2):

(PII,deg)
d2λ

dt2
= η2(2λ3 + tλ + η−1c).
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Note that (PII,deg) is different from the ordinary second Painlevé equation
(PII) in that the parameter c is multiplied by η1 in (PII,deg) (while it is mul-
tiplied by η2 in (PII)). Next, near a simple pole, we have

Theorem 1.4. Near a simple pole every 2-parameter instanton-type solution
of (PJ) is formally transformed to that of the most degenerate third Painlevé
equation (PIII′(D8)) (in the same sense as in Theorem 1.2).

Theorem 1.3 and Theorem 1.4 are the main results of this report. Their
precise statements will be given below in Theorem 2.5 and Theorem 3.1,
respectively. Theorem 1.3 has been announced also in [T2].

The plan of this report is as follows: In Section 2, after discussing the
exact WKB theoretic structure of (PII,deg), we give the definition of a double
turning point of (PJ) and explain an outline of the proof of Theorem 1.3. A
key idea is to use the relationship between Painlevé equations and the theory
of isomonodromic deformations of the associated linear differential equations.
Then in Section 3 we review the discussion of [T2], that is, we consider the
transformation near a simple pole in a way parallel to Section 2. The details
will be discussed in our forthcoming paper(s).

Acknowledgment: The author is deeply grateful to Professor Takashi
Aoki for his great assistance in completing the proof of Proposition 2.4 and to
Professor Tatsuya Koike for his kind help in drawing Figure 1. He expresses
his sincere gratitude also to Professor Takahiro Kawai for the stimulating
discussions with him.

2 Transformation near a double turning

point

2.1 Exact WKB theoretic structure of (PII,deg)

In this section we consider transformation near a double turning point. We
first investigate the exact WKB theoretic structure of the canonical equation

(PII,deg)
d2λ

dt2
= η2(2λ3 + tλ + η−1c).

As was explained in Section 1, the top term λ0 = λ0(t) of the 0-parameter
solution

(2.1) λ
(0)
II,deg(t, η) = λ0(t) + η−1λ1(t) + η−2λ2(t) + · · ·
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of (PII,deg) is determined by an algebraic equation

(2.2) FII,deg(λ0, t) = 2λ3
0 + tλ0 = λ0(2λ2

0 + t) = 0.

Among the solutions of (2.2) we pick up a solution of 2λ2
0 + t = 0, i.e.,

(2.3) λ0(t) =

√
− t

2

(
or −

√
− t

2

)
,

when we consider a double turning point. Note that, as (PII,deg) contains an

odd order term ηc (with respect to η), λ
(0)
II,deg(t, η) also contains odd order

terms λ1(t), λ3(t), . . . . Then, starting with this top term λ0(t) given by
(2.3), we can construct a 2-parameter instanton-type solution of (PII,deg) of
the form

λII,deg(t, η;α, β)(2.4)

= λ0(t) + η−1/2(6λ2
0 + t)−1/4

(
α exp(ΦII,deg) + β exp(−ΦII,deg)

)
+ · · ·

with

(2.5) ΦII,deg(t, η) = η

∫ t

0

√
6λ2

0 + sds+ (2αβ + c/2) log
(
η2(6λ2

0 + t)3
)

by employing the multiple-scale method. (Since (PII,deg) contains an odd
order term ηc, the form of the instanton ΦII,deg is slightly different from the
general form (1.6) of ΦJ .)

The linearized equation of (PII,deg) at a 0-parameter solution (2.1) is given
by

(∆PII,deg)
d2

dt2
∆λ = η2

(
6(λ

(0)
II,deg)2 + t

)
∆λ = η2

(
−2t+O(η−1)

)
∆λ.

Hence (PII,deg) has a unique turning point at t = 0. Note that this turning
point t = 0 is also an algebraic branch point of the Riemann surface of
λ0(t). The Stokes curves of (PII,deg), i.e., integral curves of the direction field

Im
√

6λ2
0 + t dt = Im

√
−2t dt = 0 emanating from the turning point t = 0,

thus consist of the following three lines:

(2.6) {t ∈ C | arg t = π + 2nπ/3 (n ∈ Z)}.
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It is expected that a Stokes phenomenon should be observed on each
Stokes curve for instanton-type solutions λII,deg(t, η;α, β). To analyze the
Stokes phenomenon, we make use of the well-known relationship between
the Painlevé equation and the theory of isomonodromic deformations of the
associated linear differential equation (cf. [O],[JMU]). In the case of (PII,deg)
the relationship is formulated as follows: Let (SLII,deg) and (DII,deg) be the
following linear differential equations, respectively.

(SLII,deg)

(
− ∂2

∂x2
+ η2QII,deg

)
ψ = 0,

(DII,deg)
∂ψ

∂t
= AII,deg

∂ψ

∂x
− 1

2

∂AII,deg

∂x
ψ,

where

QII,deg = x4 + tx2 + 2η−1cx + 2KII,deg − η−1 ν

x− λ + η−2 3

4(x− λ)2
,(2.7)

AII,deg =
1

2(x− λ)
,(2.8)

with

(2.9) KII,deg =
1

2

[
ν2 − (λ4 + tλ2 + 2η−1cλ)

]
.

Then the compatibility condition of (SLII,deg) and (DII,deg) is represented by
the Hamiltonian system

(HII,deg)
dλ

dt
= η

∂KII,deg

∂ν
,

dν

dt
= −η∂KII,deg

∂λ
,

which is equivalent to the second order differential equation (PII,deg) for λ.
As its consequence, we find that the monodromy data of (SLII,deg) should
be independent of the deformation parameter t if a solution of (HII,deg) or
(PII,deg) is substituted into the coefficients of (SLII,deg).

To determine the connection formula which describes the Stokes phe-
nomenon for λII,deg(t, η;α, β) on a Stokes curve of (PII,deg), we then substitute
λII,deg(t, η;α, β) into the coefficients of (SLII,deg) and compute its monodromy
data by employing the exact WKB analysis. The following is a key proposi-
tion in executing the computation of the monodromy data.
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Proposition 2.1. If an instanton-type solution of (HII,deg) or (PII,deg) is
substituted into the coefficients of (SLII,deg), the following hold:
(i) The top term (with respect to η−1) Q0 of the potential QII,deg of (SLII,deg)
is factorized as

(2.10) Q0 = (x− λ0(t))2(x+ λ0(t))2.

That is, (SLII,deg) has two double turning points x = λ0(t) and x = −λ0(t).
(ii) When t lies on a Stokes curve (2.6) of (PII,deg), there exists a Stokes
curve of (SLII,deg) that connects the two double turning points x = ±λ0(t)
of (SLII,deg). (Cf. Figure 1, (ii), where the configuration of Stokes curves is
shown when t lies on a Stokes curve arg t = π.)

(i) (ii) (iii)

−λ0(t)

λ0(t) −λ0(t) λ0(t) −λ0(t)

λ0(t)

Figure 1: Configuration of Stokes curves of (SLII,deg) in the case of (i) arg t <
π, (ii) arg t = π, and (iii) arg t > π.

Proposition 2.1, (ii) implies that a change of the configuration of Stokes
curves of (SLII,deg) is observed on each Stokes curve of (PII,deg). For example,
the change on a Stokes curve arg t = π is visualized in Figure 1. This
change of the configuration causes a Stokes phenomenon for λII,deg(t, η;α, β)
to occur on a Stokes curve of (PII,deg). As a matter of fact, by substituting
an instanton-type solution λII,deg(t, η;α, β) into the coefficients of (SLII,deg)
and employing the exact WKB analysis for linear equations, we obtain the
following

Proposition 2.2. Suppose that an instanton-type solution of (PII,deg) is sub-

stituted into the coefficients of (SLII,deg). Let m
(±)
1 and m

(±)
2 be two indepen-

dent monodromy data (i.e., Stokes multipliers around x =∞ in this case) of
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(SLII,deg) when t belongs to the region Ω± = {t | ± (arg t− π) > 0}, respec-

tively. Then (m
(±)
1 , m

(±)
2 ) can be explicitly computed as follows:

(When t ∈ Ω+)

m
(+)
1 = −2

√
π

iβ 22αβ

Γ(2αβ + 1)
,(2.11)

m
(+)
2 = −2

√
π e2iπαβ α 2−2αβ

Γ(−2αβ + 1)
.(2.12)

(When t ∈ Ω−)

m
(−)
1 = −2

√
π

iβ 22αβ

Γ(2αβ + 1)
,(2.13)

m
(−)
2 = −2

√
π

(
e2iπαβ α 2−2αβ

Γ(−2αβ + 1)
− e4iπαβ i 2c+2αβ−1/2

Γ(c+ 2αβ − 1/2)

)
.(2.14)

Since the computation of monodromy data through the exact WKB analysis
heavily depends on the configuration of Stokes curves, the concrete expres-
sion of (m

(+)
1 , m

(+)
2 ) becomes different from that of (m

(−)
1 , m

(−)
2 ), as one can

readily see in Proposition 2.2, due to the difference of two configurations of
Stokes curves shown in Figure 1. On the other hand, thanks to the isomon-
odromic property, the monodromy data should coincide if two instanton-type
solutions in the two regions Ω± correspond to the same analytic solution.
Thus, if an instanton-type solution λII,deg(t, η;α, β) in Ω− corresponds to the
same analytic solution with λII,deg(t, η;α′, β ′) in Ω+, we obtain the following
relation in view of Proposition 2.2:

β ′ 22α′β′

Γ(2α′β ′ + 1)
=

β 22αβ

Γ(2αβ + 1)
,(2.15)

e2iπα′β′ α′ 2−2α′β′

Γ(−2α′β ′ + 1)
(2.16)

= e2iπαβ α 2−2αβ

Γ(−2αβ + 1)
− e4iπαβ i 2c+2αβ−1/2

Γ(c+ 2αβ − 1/2)
.

In particular, the 0-parameter solution λ
(0)
II,deg(t, η) = λII,deg(t, η; 0, 0) in the re-

gion Ω− should be analytically continued to λII,deg(t, η;−i2c−1/2/Γ(c+1/2), 0)
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in Ω+ across the Stokes curve {arg t = π}. This is the mechanism for a Stokes
phenomenon to occur for instanton-type solutions of (PII,deg) on its Stokes
curve. The above relations (2.15) and (2.16) describe the connection formula
on {arg t = π}.

2.2 Transformation theory to (PII,deg) near a double

turning point

As we have observed in Subsection 2.1, in the case of (PII,deg) its linearized
equation (∆PII,deg) has a unique turning point at t = 0 and three Stokes
curves emanate from there. We call this kind of turning points a double
turning point in general. To be more specific, we define a double turning
point of (PJ) as follows:

Definition 2.3. A turning point t = τd of (PJ) is said to be a double turning
point if the following two conditions are satisfied.
(i) t = τd is an algebraic branch point of the Riemann surface of λ0(t).
(ii) Near t = τd, (∂FJ/∂λ)(λ0(t), t) has a simple zero, that is,

(2.17)
∂FJ

∂λ
(λ0(t), t) = c(t− τd) + · · ·

holds with a non-zero constant c.

In particular, from each double turning point of (PJ) three Stokes curves
emanate thanks to the condition (2.17). Note that at a simple turning point
of (PJ) (∂FJ/∂λ)(λ0(t), t) has a square-root branch point (and hence the
condition (i) is automatically satisfied there). Thus a double turning point
is a turning point more degenerate than a simple turning point.

A Painlevé equation (PJ) does not always have a double turning point.
For example, the first Painlevé equation (PI) has a unique turning point at
the origin t = 0 which is simple. Similarly, the degenerate third Painlevé
equation (PIII′(D7)) or (PIII′(D8)) does not possess any double turning point.
In order that (PJ) may have a double turning point, the parameters contained
in (PJ) should satisfy some algebraic condition, the explicit form of which is
described in the following

Proposition 2.4. (i) (PI), (PIII′(D7)) and (PIII′(D8)) have no double turning
points.
(ii) A double turning point appears for a Painlevé equation (PJ) (J =
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II, III′, IV,V,VI) if and only if the parameters contained in (PJ) should sat-
isfy the following relations:

c = 0 for J = II,(2.18)

c0(c′∞)2 − c∞(c′0)2 = 0 for J = III′,(2.19)

2c0 − c2
1 = 0 for J = IV,(2.20)

16c2
1c

2
∞ − 8c0c1c

2
2 − 8c∞c1c

2
2 + c4

2 = 0 for J = V,(2.21)

16(c2
0c

2
1 + c2

1c
2
t + c2

t c
2
0)− 32(c2

0c1ct + c0c
2
1ct + c0c1c

2
t )(2.22)

−64c0c1ctc̃∞ − 8(c0c1 + c1ct + ctc0)c̃2
∞ + c̃4

∞ = 0 for J = VI,

where c̃∞ = c∞ − (c0 + c1 + ct) in the case of J = VI.

Throught this subsection we assume that the conditions (2.18) ∼ (2.22)
listed in Proposition 2.4, (ii) are satisfied. The problem we want to discuss
is to develop transformation theory near a double turning point. Let t =
τd be a double turning point of (PJ) (J = II, III′, IV,V,VI). Generalizing
the transformation theory (Theorem 1.2) near a simple turning point, we
can then prove the following theorem which claims that every 2-parameter
instanton-type solution of (PJ) is transformed to that of (PII,deg) near t =
τd. (In stating Theorem 2.5, we put ˜ to the variables relevant to (PJ) to
distinguish them from those relevant to (PII,deg).)

Theorem 2.5. Suppose that the conditions (2.18) ∼ (2.22) are satisfied. Let
t̃ = τ̃d be a double turning point of (PJ) (J = II, III′, IV,V,VI) and σ̃ be a
point on a Stokes curve emanating from τ̃d. Then we can find a neighborhood
Ṽ of σ̃ and a formal power series of η−1 with constant coefficients

(2.23) c(η) = c0 + η−1c1 + η−2c2 + · · ·

such that in Ṽ every 2-parameter instanton-type solution λ̃J(t̃, η; α̃, β̃)
of (PJ) is formally transformed to a 2-parameter instanton-type solution
λII,deg(t, η;α, β) of the degenerate second Painlevé equation

(2.24)
d2λ

dt2
= η2(2λ3 + tλ+ η−1c(η))

with the infinite series c(η) of (2.23) being substituted into its coefficient. To
be more specific, there exist a formal transformation t = t(t̃, η) of an inde-
pendent variable and a formal transformation x = x(x̃, t̃, η) of an unknown
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function of the form

t(t̃, η) =
∑

j≥0

η−j/2tj/2(t̃, η),(2.25)

x(x̃, t̃, η) =
∑

j≥0

η−j/2xj/2(x̃, t̃, η),(2.26)

where tj/2 and xj/2 are holomorphic in both x̃ and t̃, that satisfy the following
relation:

(2.27) x(λ̃J(t̃, η; α̃, β̃), t̃, η) = λII,deg(t(t̃, η), η;α, β).

Hence the (degenerate) second Painlevé equation (PII,deg) can be regarded as
the canonical equation of Painlevé equations near a double turning point.
Theorem 2.5 suggests that the connection formula (2.15) and (2.16) for
(PII,deg) described in section 2.1 should hold also for an instanton-type solu-
tion of (PJ) on its Stokes curve emanating from a double turning point.

Let us explain an outline of the construction of the transformations t(t̃, η)
and x(x̃, t̃, η). It is done in a parallel way to the transformation theory near a
simple turning point; we again make use of the relationship between Painlevé
equations and the theory of isomonodromic deformations of linear differential
equations, that is, we use the fact that (PJ) is equivalent to the compatibility
condition of a system of linear differential equations

(SLJ)

(
− ∂2

∂x2
+ η2QJ

)
ψ = 0,

(DJ)
∂ψ

∂t
= AJ

∂ψ

∂x
− 1

2

∂AJ

∂x
ψ.

(See [KT1] or [KT3, Chapter 4] for the concrete form of QJ and AJ .) A
key proposition in constructing the transformations is then the following
Proposition 2.6, which is a generalization of Proposition 2.1 to (PJ).

Proposition 2.6. Suppose that the conditions (2.18) ∼ (2.22) are satisfied
and let t = τd be a double turning point of (PJ) (J = II, III′, IV,V,VI). If an
instanton-type solution λJ(t, η;α, β) of (PJ) is substituted into the coefficients
of (SLJ), then the following hold:
(i) The top term (with respect to η−1) Q0 of the potential QJ of (SLJ) has
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two double zeros, one of which is given by the top term λ0(t) of the instanton-
type solution λJ(t, η;α, β). In what follows the other double zero is denoted
by κ(t). Hence (SLJ) has two double turning points x = λ0(t) and x = κ(t).
(ii) When t lies on a Stokes curve of (PJ) emanating from a double turning
point t = τd, there exists a Stokes curve of (SLJ) that connects the two double
turning points x = λ0(t) and x = κ(t) of (SLJ).

Using this Proposition 2.6 of geometric character, we construct the trans-
formations in the following manner. (In what follows we again adopt the
convention of putting ˜ to the variables relevant to (PJ) and (SLJ) to dis-
tinguish them from those relevant to (PII,deg) and (SLII,deg).) Let t̃ = σ̃ be a
point on a Stokes curve of (PJ) emanating from a double turning point t̃ = τ̃d
and let γ̃ denote a Stokes curve of (SLJ) that connects the two double turn-
ing points x̃ = λ̃0(t̃) and x̃ = κ̃(t̃) at t̃ = σ̃ (whose existence is guaranteed
by Proposition 2.6, (ii)). Then we can construct an invertible formal trans-
formation (x(x̃, t̃, η), t(t̃, η)) which brings the simultaneous equations (SLJ)
and (DJ) into (SLII,deg) and (DII,deg) in a neighborhood of γ̃×{σ̃}. That is,
we have

Theorem 2.7. Under the above geometric situation there exist a neighbor-
hood Ũ of the Stokes curve γ̃, a neighborhood Ṽ of σ̃, and a formal coordinate
transformation

x = x(x̃, t̃, η) =
∑

j≥0

η−j/2xj/2(x̃, t̃, η),(2.28)

t = t(t̃, η) =
∑

j≥0

η−j/2tj/2(t̃, η)(2.29)

with xj/2(x̃, t̃, η) and tj/2(t̃, η) being holomorphic on Ũ×Ṽ and Ṽ , respectively,
for which the following conditions (i) ∼ (v) are satisfied:
(i) The function x0(x̃, t̃, η) is independent of η and ∂x0/∂x̃ never vanishes
on Ũ × Ṽ .
(ii) The function t0(t̃, η) is also independent of η and dt0/dt̃ never vanishes
on Ṽ .
(iii) x0(x̃, t̃) and t0(t̃) satisfy

x0(λ̃0(t̃), t̃, η) = λ0(t0(t̃)) =

√
−t0(t̃)

2
,(2.30)

x0(κ̃0(t̃), t̃, η) = −λ0(t0(t̃)) = −
√
−t0(t̃)

2
.(2.31)
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(iv) x1/2 and t1/2 identically vanish.
(v) If ψ(x, t, η) is a WKB solution of (SLII,deg) that satisfies (DII,deg) also,
then ψ̃(x̃, t̃, η) defined by

(2.32) ψ̃(x̃, t̃, η) =

(
∂x(x̃, t̃, η)

∂x̃

)−1/2

ψ(x(x̃, t̃, η), t(t̃, η), η)

satisfies both (SLJ) and (DJ) on Ũ × Ṽ
The transformations (2.25) and (2.26) that provide a local equivalence (2.27)
between λ̃J(t̃, η; α̃, β̃) and λII,deg(t, η;α, β) in Theorem 2.5 are given by the
semi-global transformation (2.28) and (2.29) constructed in Theorem 2.7.
Otherwise stated, by considering a transformation for the underlying system
(SLJ) and (DJ) of linear differential equations, we can find a transformation
of the Painlevé equation (PJ). This is a sketch of the proof of Theorem 2.5.
The details will be discussed in our forthcoming paper.

3 Transformation near a simple pole

As was outlined in [T2], the transformation theory near a simple pole, i.e.,
Theorem 1.4, is proved in a parallel way to the case of the transformation
theory near a double turning point discussed in Section 2. In this section
we briefly review the discussion of [T2] to explain the transformation near a
simple pole.

In view of the list of Painlevé equations (Table 1) we readily find that the
Painlevé equations (PJ) have the following singular points:

(3.1)

(PI), (PII), (PIV) : {∞},
(PIII′), (PIII′(D7)), (PIII′(D8)), (PV) : {0,∞},
(PVI) : {0, 1,∞}.

Among them a pair of a Painlevé equation and its singular point contained
in the following list is of “the first kind” or of “regular singular type”.

((PIII′), 0), ((PIII′(D7)), 0), ((PIII′(D8)), 0), ((PV), 0),

((PVI), 0), ((PVI), 1), ((PVI),∞).
(3.2)

At a singular point of the first kind, in addition to a double pole type 0-
parameter solution, there exists a simple pole type 0-parameter solution,
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that is, for any pair ((PJ), τs) in (3.2), there exists a 0-parameter solution
whose top term λ0(t) has a branch point at t = τs and satisfies

(3.3)
∂FJ

∂λ
(λ0(t), t) = O((t− τs)−3/2) as t→ τs,

where FJ(λ, t) denotes the coefficient of η2 in the expression of (PJ). Note
that the condition (3.3) guarantees that the corresponding linearized equa-
tion (∆PJ) of (PJ) at the 0-parameter solution in question has a simple pole
type singularity at t = τs after a new independent variable t̃ = (t − τs)1/2,
which is a local parameter of the Riemann surface of λ0(t) at t = τs, is in-
troduced. Consequently, if ((PJ), τs) is a simple pole, only one Stokes curve
of (PJ) emanates from t = τs.

Using the top term λ0(t) of a simple pole type 0-parameter solution,
we can also construct a 2-parameter instanton-type solution λJ(t, η;α, β) of
simple pole type for each pair ((PJ), τs) listed in (3.3). The problem we want
to discuss is then to develop transformation theory for these instanton-type
solutions λJ(t, η;α, β) of simple pole type. The precise formulation of the
main result (i.e., Theorem 1.4) in this case is the following theorem (where
we again adopt the convention of putting ˜ to the variables relevant to (PJ)
to distinguish them from those relevant to (PIII′(D8))).

Theorem 3.1. Let λ̃J(t̃, η; α̃, β̃) be a 2-parameter instanton-type solution of
simple pole type for one of the pairs ((PJ), τ̃s) of a Painlevé equation and
its singular point listed in (3.2). Let σ̃ be a point on a Stokes curve ema-
nating from τ̃s. Then we can find a neighborhood Ṽ of σ̃ and a 2-parameter
instanton-type solution λIII′(D8)(t, η;α, β) of (PIII′(D8)) such that λ̃J(t̃, η; α̃, β̃)

is formally transformed to λIII′(D8)(t, η;α, β) in Ṽ . To be more specific, there
exist a formal transformation t = t(t̃, η) of an independent variable and a
formal transformation x = x(x̃, t̃, η) of an unknown function of the form

t(t̃, η) =
∑

j≥0

η−j/2tj/2(t̃, η),(3.4)

x(x̃, t̃, η) =
∑

j≥0

η−j/2xj/2(x̃, t̃, η),(3.5)

where tj/2 and xj/2 are holomorphic in both x̃ and t̃, that satisfy the following
relation:

(3.6) x(λ̃J(t̃, η; α̃, β̃), t̃, η) = λIII′(D8)(t(t̃, η), η;α, β).
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Thus (PIII′(D8)) can be thought of as a canonical equation of Painlevé equa-
tions near a simple pole.

The proof of Theorem 3.1 is done in a parallel way to that of Theorem 2.5.
We again make use of the fact that a Painlevé equation (PJ) is equivalent
to the compatibility condition of (SLJ) and (DJ) given in Section 2. A key
geometric proposition in this case is the following

Proposition 3.2. Suppose that an instanton-type solution λJ(t, η;α, β) of
simple pole type of (PJ) is substituted into the coefficients of (SLJ). Then
the following hold:
(i) The top term (with respect to η−1) Q0 of the potential QJ of (SLJ) has
a double zero at x = λ0(t), that is, (SLJ) has a double turning point at
x = λ0(t).
(ii) When t lies on a Stokes curve of (PJ) emanating from a simple pole type
singular point τs in question, there exists a Stokes curve of (SLJ) that starts
from λ0(t) and returns to λ0(t) after encircling several singular points and/or
turning points of (SLJ).

For example, in the case of the canonical equation, i.e., the most degen-
erate third Painlevé equation (PIII′(D8)),

(3.7) λ
(0)
III′(D8)(t, η) =

√
t

is a 0-parameter solution and the linearized equation of (PIII′(D8)) at this
0-parameter solution is given by

(∆PIII′(D8))
d2

dt2
∆λ = η2

(
2

t3/2
− η−2 1

4t2

)
∆λ.

Hence t = 0 is a simple pole type singularity (and a unique turning point) of
(PIII′(D8)) and only one Stokes curve

(3.8) {t ∈ C | arg t = 4nπ (n ∈ Z)}

(i.e., the positive real axis) emanates from t = 0. Since the potential QIII′(D8)

of the associated linear equation (SLIII′(D8)) has the form

QIII′(D8) =
t

2x3
+

1

2x
+
λ2

x2

[
ν2 −

(
t

2λ3
+

1

2λ

)]
(3.9)

−η−1λν

[
1

x2
+

1

x(x− λ)

]
+ η−2 3

4(x− λ)2
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(where ν = η−1(tdλ/dt+ λ)/(2λ2)), its top term Q0(x, t) becomes

(3.10) Q0(x, t) =
(x−

√
t)2

2x3

after the substitution of an instanton-type solution of simple pole type of
(PIII′(D8)) beginning with the leading term λ0(t) =

√
t. Using (3.10), we thus

find that when t lies on a Stokes curve of (PIII′(D8)), i.e., when t > 0, a circle

{|x| =
√
t} is a Stokes curve of (SLIII′(D8)) that starts from

√
t, encircles the

simple pole t = 0, and returns to
√
t, as is indicated in Figure 2, (ii).

(i) (ii) (iii)

0

√

t

0

√

t
0

√

t

Figure 2: Configuration of Stokes curves of (SLIII′(D8)) in the case of (i)
arg t > 0, (ii) arg t = 0, and (iii) arg t < 0.

In parallel to Theorem 2.7, near a Stokes curve γ of (SLJ) that starts
from a double turning point λ0(t) and returns to λ0(t) at a point t = σ
on a Stokes curve of (PJ) emanating from a simple pole whose existence is
guaranteed by Proposition 3.2, (ii), we can construct an invertible formal
transformation which brings (SLJ) and (DJ) into (SLIII′(D8)) and (DIII′(D8))
in a neighborhood of γ × {σ}. That is, we have

Theorem 3.3. Let ((PJ), τ̃s) be one of the pairs in the list (3.2) and σ̃ a point
on a Stokes curve emanating from τ̃s. Suppose that an instanton-type solution
λ̃J(t̃, η; α̃, β̃) of simple pole type of (PJ) is substituted into the coefficients of
(SLJ). Then there exist a neighborhood Ũ of a Stokes curve γ̃ of (SLJ) that
starts from and returns to λ̃0(t̃) at t̃ = σ̃, a neighborhood Ṽ of σ̃, and a
formal coordinate transformation of the form

x = x(x̃, t̃, η) =
∑

j≥0

η−j/2xj/2(x̃, t̃, η),(3.11)

t = t(t̃, η) =
∑

j≥0

η−j/2tj/2(t̃, η)(3.12)
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with xj/2(x̃, t̃, η) and tj/2(t̃, η) being holomorphic on Ũ×Ṽ and Ṽ , respectively,
for which the following conditions (i) ∼ (v) are satisfied:
(i) The function x0(x̃, t̃, η) is independent of η and ∂x0/∂x̃ never vanishes
on Ũ × Ṽ .
(ii) The function t0(t̃, η) is also independent of η and dt0/dt̃ never vanishes
on Ṽ .
(iii) x0(x̃, t̃) and t0(t̃) satisfy

(3.13) x0(λ̃0(t̃), t̃, η) = λ0(t0(t̃)) =

√
t0(t̃).

(iv) x1/2 and t1/2 identically vanish.
(v) If ψ(x, t, η) is a WKB solution of (SLIII′(D8)) that satisfies (DIII′(D8))

also, then ψ̃(x̃, t̃, η) defined by

(3.14) ψ̃(x̃, t̃, η) =

(
∂x(x̃, t̃, η)

∂x̃

)−1/2

ψ(x(x̃, t̃, η), t(t̃, η), η)

satisfies both (SLJ) and (DJ) on Ũ × Ṽ .

The semi-global transformation (3.11) and (3.12) constructed in Theo-
rem 3.3 again provides a local equivalence (3.6) between λ̃J(t̃, η; α̃, β̃) and
λIII′(D8)(t, η;α, β) in Theorem 3.1. This is a sketch of the proof of Theo-
rem 3.1. The details will be discussed in our forthcoming paper.

In the case of the canonical equation (PIII′(D8)), we can explicitly compute
the monodromy data of the associated linear equation (SLIII′(D8)) by using
exact WKB analysis for linear differential equations. Combining this com-
putation with Proposition 3.2, we obtain the following connection formula
for instanton-type solutions of (PIII′(D8)) on its Stokes curve arg t = 0: Let
λ(t, η;α, β) and λ(t, η;α′, β ′) be instanton-type solutions of (PIII′(D8)) in the
region Ω− = {arg t < 0} and Ω+ = {arg t > 0}, respectively. If λ(t, η;α′, β ′)
is the analytic continuation of λ(t, η;α, β) across the Stokes curve arg t = 0,
then we have

α′ 2−2α′β′

Γ(−2α′β ′ + 1)
=

α 2−2αβ

Γ(−2αβ + 1)
,(3.15)

iβ ′ 22α′β′

Γ(2α′β ′ + 1)
+ e2iπα′β′ α′ 2−2α′β′

Γ(−2α′β ′ + 1)
(3.16)

=
iβ 22αβ

Γ(2αβ + 1)
− e−2iπαβ α 2−2αβ

Γ(−2αβ + 1)
.
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See [TW, Section 5] for the computation of the monodromy data of
(SLIII′(D8)). Theorem 3.1 then suggests that the same connection formula
as (3.15) and (3.16) should hold also for instanton-type solutions of simple
pole type of (PJ) listed in (3.2) on its Stokes curve emanating from a simple
pole.
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