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1 Introduction and Main Theorem

Lie groups played important roles in mathematics because of its close relations
with the notion of symmetries. They appear in almost all branches of mathe-
matics and have many applications. While Lie groups are usually understood as
finite dimensional ones, many infinite dimensional symmetries appear in natural
ways: for instance, loop groups C∞(S1, G) [17], current groups C∞

c (M,G) [1],
diffeomorphism groups Diff ∞(M) of manifolds [3] and Hilbert-Schmidt groups
[5] are among well-known cases. They have been extensively investigated in
several concrete ways.

In this context, it would be meaningful to consider a general theory of infi-
nite dimensional Lie groups. One of the most fundamental infinite dimensional
groups are Banach-Lie groups. They are modeled on Banach spaces and many
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theorems in finite dimensional cases are also applicable to them. Since it has
been shown that a Banach-Lie group cannot act transitively and effectively on a
compact manifold as a transformation group [16], however, Banach-Lie groups
are not sufficient for treating infinite dimensional symmetries. After the birth of
Banach-Lie group theory, more general notions of infinite dimensional Lie groups
have been scrutinized to date: locally convex Lie groups [12], ILB-Lie groups
[15], pro-Lie groups [6, 7] and so on. While there are many interesting and im-
portant results about them, we note that not all theorems in finite dimensional
cases remain valid in these categories and their treatments are complicated. For
example, the exponential map might not be a local homeomorphism and the
Baker-Campbell-Hausdorff formula may no longer be true [10].

We understand that the one of the most fundamental class of finite dimen-
sional Lie groups are the unitary groups U(n) in such a sense that any compact
Lie group can be realized as a closed subgroup of them. From this viewpoint,
it would be important to study the infinite dimensional analogue of it; that
is, we like to explicate the Lie theory for the unitary group U(H) of an infi-
nite dimensional Hilbert space H. One of the most fundamental question is
whether Lie(G) defined as the set of all generators of continuous one-parameter
subgroups of a closed subgroup G of U(H) forms a Lie algebra or not. For
the infinite dimensional Hilbert space H, there are at least two topologies on
U(H), (a) the norm topology and (b) the strong operator topology. We discuss
the above topologies separately. In the case (a), U(H) is a Banach-Lie group
and for each closed subgroup the set Lie(G) forms a Lie algebra. But it is well
known that there are not many “nice” continuous unitary representations of
groups in H, and hence, U(H) with the norm topology is very narrow. On the
other hand, U(H) with the strong operator topology (b) is important, because
there are many “nice” continuous unitary representations of groups in H–say,
diffeomorphism groups of compact manifolds, etc. However, the answer is neg-
ative to the question whether there exists a corresponding Lie algebra or not.
Indeed, by the Stone theorem, the Lie algebra of U(H) coincides with the set
of all (possibly unbounded) skew-adjoint operators on H, but we cannot define
naturally a Lie algebra structure with addition and Lie bracket operations on
it. This arises from the problem of the domains of unbounded operators. For
two skew-adjoint operators A,B on H, dom(A+B) = dom(A)∩dom(B) is not
always dense. Even worse, it can be {0}. Because of this, the Lie theory for
U(H) has not been successful, although the group itself is a very natural object.
On the other hand, it is possible that even though the whole group U(H) does
not have a Lie algebra, some suitable class of closed subgroups of it have ones.
Indeed their Lie algebras Lie(G) are smaller than Lie(U(H)).

We give an affirmative answer to the last question. Furthermore we prove
that for a suitable subgroup G, Lie(G) is a complete topological Lie algebra with
respect to some natural topology. We outline below the essence of our detailed
discussions in the text.

First, a group G to be studied in this paper is a closed subgroup of the
unitary group U(M) of some finite von Neumann algebra M acting on a Hilbert
space H. Clearly it is also a closed subgroup of U(H). The key proposition is
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the following result of Murray-von Neumann (cf. Theorem 2.17):

Theorem 1.1 (Murray-von Neumann). The set M of all densely defined closed
operators affiliated with a finite von Neumann algebra M on H,

M :=
{
A ;

A is a densely defined closed operator on H
such that uAu∗ = A for all u ∈ U(M′).

}
,

constitutes a *-algebra under the sum A+B, the scalar multiplication αA (α ∈
C), the product AB and the involution A∗, where X denotes the closure of a
closable operator X.

The inclusion G ⊂ U(M) implies Lie(G) ⊂ M and hence, for arbitrary two
elements A, B ∈ Lie(G), the sum A+B, the scalar multiplication αA, the Lie
bracket [A,B] := AB −BA are determined as elements of M. We can prove
that they are again elements of Lie(G), which is not trivial. Therefore Lie(G)
indeed forms a Lie algebra which is infinite dimensional in general. Thus if
we do not introduce a topology, it is difficult to investigate it. Then, what is
the natural topology on Lie(G)? Since Lie(G) is a Lie algebra, it should be a
vector space topology. Furthermore, in view of the correspondences between Lie
groups and Lie algebras it is natural to require the continuity of the mapping

exp : Lie(G) ∋ A 7−→ eA ∈ G,

where G is equipped with the strong operator topology and eA is defined by
the spectral theorem. Under these assumptions, a necessary condition for a
sequence {An}∞n=1 ⊂ Lie(G) to converge to A ∈ Lie(G) is given by

s- lim
n→∞

etAn = etA, for all t ∈ R.

This condition is equivalent to

s- lim
n→∞

(An + 1)−1 = (A+ 1)−1.

The latter convergence is well known in the field of (unbounded) operator the-
ory as the convergence with respect to the strong resolvent topology. Therefore
it seems natural to consider the strong resolvent topology for Lie(G). How-
ever, there arises, unfortunately, another troublesome question as to whether
the vector space operations and the Lie bracket operation are continuous with
respect to the strong resolvent topology of Lie(G). For example, even if se-
quences {An}∞n=1, {Bn}∞n=1 of skew-adjoint operators converge, respectively to
skew-adjoint operators A, B with respect to the strong resolvent topology, the
sequences {An +Bn}∞n=1 are not guaranteed to converge to A+B. We can solve
this difficulty by applying the noncommutative integration theory and proving
that the Lie algebraic operations are continuous with respect to the strong re-
solvent topology and that Lie(G) is complete as a uniform space. Hence Lie(G)
forms a complete topological Lie algebra. Finally, let us remark one point: re-
markably, Lie(G) is not locally convex in general. Most of infinite dimensional
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Lie theories assume the locally convexity explicitly, but as soon as we consider
such groups as natural infinite dimensional analogues of classical Lie groups,
there appear non-locally convex examples.

We shall explain the contents of the paper. §2 is a preliminary section. We
recall the basic facts about closed operators affiliated with a finite von Neumann
algebra and explain the generalization of the Murray-von Neumann theorem for
non-countably decomposable case. In §3, we introduce three topologies on the
set M of all densely defined closed operators affiliated with a finite von Neumann
algebra M. The first topology originates from (unbounded) operator theory,the
second one is Lie theoretical and the last one derives from the noncommutative
integration theory. We discuss their topological properties and show that they
do coincide on M. The main result of this section is Theorem 3.9 which states
that M forms a complete topological *-algebra with respect to the strong re-
solvent topology. In §4 constituting the main contents of the paper, we show
that Lie(G) is a complete topological Lie algebra and discuss some aspects of it.
The main result is given in Theorem 4.6. In §5, applying the results of §3, we
consider the following problem: What kind of unbounded operator algebras can
they be represented in the form of M? We give their characterization from the
viewpoint of a tensor category. We show that R can be represented as M if and
only if it is an object of the category fRng (cf. Definition 5.2). The main result
is Theorem 5.5, which says that the category fRng is isomorphic to the cate-
gory fvN of finite von Neumann algebras as a tensor category. In Appendix, we
list up some fundamental definitions and results of the direct sums, the strong
resolvent convergence and the categories.

2 Preliminaries

In this section we review some basic facts about operator algebras and un-
bounded operators. For the details, see [18, 21]. See also Appendix A for the
direct sums.

2.1 von Neumann Algebras

Let H be a Hilbert space with an inner product ⟨ξ, η⟩, which is linear with respect
to η. We denote the algebra of all bounded operators on H by B(H). Let M be
a von Neumann algebra acting on H. The set M′ := {x ∈ B(H) ; xy = yx, for
all y ∈ M} is called the commutant of M. The group of all unitary operators
in M is denoted by U(M). The lattice of all projections in M is denoted by
P (M). The orthogonal projection onto the closed subspace K ⊂ H is denoted
by PK.

Definition 2.1. Let M be a von Neumann algebra acting on a Hilbert space
H.

(1) A von Neumann algebra with no non-unitary isometry is called finite.
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(2) A von Neumann algebra is called countably decomposable if it admits
at most countably many non-zero orthogonal projections.

(3) A subset D of H is called separating for M if xξ = 0, x ∈ M for all
ξ ∈ D implies x = 0.

It is known that a von Neumann algebra M acting on a Hilbert space H is
countably decomposable if and only if there exists a countable separating subset
of H for M.

Definition 2.2. Let M be a von Neumann algebra.

(1) A state τ on M is called tracial if for all x, y ∈ M,

τ(xy) = τ(yx)

holds.

(2) A tracial state τ is called faithful if τ(x∗x) = 0 (x ∈ M) implies x = 0.

(3) A tracial state τ is called normal if it is σ-weakly continuous.

It is known that a von Neumann algebra is countably decomposable and
finite if and only if there exists a faithful normal tracial state on it. For more
informations about tracial states, see [21].

Let M be a von Neumann algebra and p ∈ M ∪ M′ be a projection. Define
the set Mp of bounded operaotrs on the Hilbert space ran(p) as{

px|ran(p) ; x ∈ M
}
,

then Mp forms a von Neumann algebra acting on the Hilbert space ran(p) and
(Mp)

′ = (M′)p holds.
If (M,H) and (N,K) are von Neumann algebras and if there exists a unitary

operator U of H onto K such that

UMU∗ = N,

then (M,H) and (N,K) are said to be spatially isomorphic. The map π of M
onto N defined by

φ(x) = UxU∗, x ∈ M,

is called a spatial isomorphism. The next is useful.

Lemma 2.3. Let (M,H) be a finite von Neumann algebra. Then there exists
a family of countably decomposable finite von Neumann algebras {(Mα,Hα)}α

such that (M,H) is spatially isomorphic to the direct sum
(⊕b

α Mα,
⊕

α Hα

)
.

A von Neumann algebra M is called atomic if each non-zero projection in M
majorizes a non-zero minimal projection. It is known that a finite von Neumann
algebra is atomic if and only if it is spatially isomorphic to the direct sum of
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finite dimensional von Neumann algebras Mn(C) (n ∈ N), where Mn(C) is the
algebra of all n× n complex matrices.

A von Neumann algebra with no non-zero minimal projection is called dif-
fuse. It is known that every von Neumann algebra is spatially isomorphic to
the direct sum of some atomic von Neumann algebra Matomic and diffuse von
Neumann algebra Mdiffuse. These von Neumann algebras Matomic and Mdiffuse

are unique up to spatial isomorphism. We call Matomic and Mdiffuse the atomic
part and the diffuse part of M, respectively.

2.2 Murray-von Neumann’s Result

The domain of a linear operator T on H is written as dom(T ) and the range of
it is written as ran(T ). If T is a closable operator, we write T for the closure of
T .

Definition 2.4. A densely defined closable operator T on H is said to be
affiliated with a von Neumann algebra M if for any u ∈ U(M′), uTu∗ = T
holds. If T is affiliated with M, so is T . The set of all densely defined closed
operators affiliated with M is denoted by M.

Note that T is affiliated with M if and only if xT ⊂ Tx for all x ∈ M′. Next,
we define algebraic structures of unbounded operators in the style of Murray-von
Neumann [11].

Let x1, y1, x2, y2, · · · be (finite or countable infinite number of) indetermi-
nants. A non-commutative monomial with indeterminants {xi, yi}i is a formal
product z1z2 · · · zn, where all zk equal to xi or yi. If n = 0, we write this mono-
mial as 1. A non-commutative polynomial p(x1, y1, · · · ) is a formal sum of finite
number of monomials. p(x1, y1, · · · ) has the following form:

p(x1, y1, · · · ) =


q∑

ρ=1

aρ · z(ρ)
1 · · · z(ρ)

nρ
(q = 1, 2, · · · ),

0 (q = 0).

Here, aρ ∈ C and we allow such a term as 0 · z1z2 · · · zn in this expression. If
there is a term with coefficient 0, it cannot be omitted in the representation.
Hence x1 is different from x1 +0 · y1 as non-commutative polynomials . If there
are two such terms as a · z1 · · · zn, b · z1 · · · zn, we identify the sum of them
with the term (a + b) · z1 · · · zn. The sum, the scalar multiplication and the
multiplication of non-commutative polynomials are defined naturally, where we
do not ignore the terms with 0 coefficients.

Once a non-commutative polynomial p(x1, y1, · · · ) is given we obtain a new
polynomial p(r)(x1, y1, · · · ) by omitting terms with coefficient aρ = 0 in the
representation of p. We call p(r)(x1, y1, · · · ) the reduced polynomial of p. We
also define the adjoint element by x+

i := yi, y
+
i := xi. We also define the
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conjugate polynomial of p by

p(x1, y1, · · · )+ :=


q∑

ρ=1

aρ · (z(ρ)
nρ

)+ · · · (z(ρ)
1 )+ (q = 1, 2, · · · ),

0 (q = 0).

Suppose there is a corresponding sequence {Xi}i of densely defined closed
operators on H. For all i, we assume (xi, yi) corresponds to the pair of the
closed operators (Xi, X

∗
i ). In this case we define a new operator p(X1, X

∗
1 , · · · )

obtained by substituting each {xi, yi} in the representation of p(x1, y1, · · · ) of the
pairs (Xi, X

∗
i ). More precisely, the domain of p(X1, X

∗
1 , · · · ) is defined according

to the following rules:

(1) dom(0) = dom(1) = H, 0ξ := 0, 1ξ := ξ, for all ξ ∈ H,

(2) dom(aX) := dom(X), (aX)ξ := a(Xξ), for all ξ ∈ dom(aX),

(3) dom(X + Y ) := dom(X) ∩ dom(Y ), (X + Y )ξ := Xξ + Y ξ,
for all ξ ∈ dom(X + Y ),

(4) dom(XY ) := {ξ ∈ dom(Y ); Y ξ ∈ dom(X)}, (XY )ξ := X(Y ξ),
for all ξ ∈ dom(XY ),

where X and Y are densely defined closed operators on H and a ∈ C. In general,
M is not a *-algebra under these operations. This is the reason for the difficulty
of constructing Lie theory in infinite dimensions. However, Murray and von
Neumann proved, in the pioneering paper [11], that for a finite von Neumann
algebra M, M does constitute a *-algebra of unbounded operators, which we
will explain more precisely in the sequel.

Murray-von Neumann proved the following results for a countably decompos-
able case. Since we need to apply these results for a general finite von Neumann
algebra case, we shall offer the generalization of their proofs. First of all, we
recall the notion of complete density, which is important for later discussions.

Definition 2.5. A subspace D ⊂ H is said to be completely dense for a finite
von Neumann algebra M if there exists an increasing net {pα}α ⊂ P (M) of
projections in M such that

(1) pα ↗ 1 (strongly).

(2) pαH ⊂ D for any α.

It is clear that a completely dense subspace is dense in H. We often omit
the phrase “for M” when the von Neumann algebra in consideration is obvious
from the context.

Remark 2.6. In [11], Murray and von Neumann used the term “strongly
dense”. However, this terminology is somewhat confusing. Therefore we tenta-
tively use the term “completely dense”.
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Lemma 2.7. Let M be a countably decomposable, finite von Neuman algebra on
a Hilbert space H, τ be a faithful normal tracial state on M. For a completely
dense subspace D ⊂ H, the following are equivalent.

(1) D is completely dense.

(2) There exists an increasing sequence {pn}∞n=1 ⊂ P (M) such that

pn ↗ 1 (strongly), ran(pn) ⊂ D.

(3) For every ε > 0, there exists p ∈ P (M) such that

τ(p⊥) < ε, pH ⊂ D.

Proof . It is clear that (2)⇒(1)⇒(3) holds. We shall prove (3)⇒(2). By as-
sumption, for all n ∈ N, there exists pn ∈ P (M) such that τ(p⊥n ) < 1/2n and
pnH ⊂ D. Put

qn :=
∞∧

k=n

pk ∈ P (M).

Since qn ≤ qn+1, the strong limit s-limn→∞ qn =: q ∈ P (M) exists. It holds
that

τ(q⊥) = lim
n→∞

τ(q⊥n ) = lim
n→∞

τ

( ∞∨
k=n

p⊥k

)

≤ lim
n→∞

∞∑
k=n

τ(p⊥k ) ≤ lim
n→∞

∞∑
k=n

1
2k

= 0.

Therefore we have q = 1.

Lemma 2.8. Let {(Mλ,Hλ)}λ∈Λ be a family of countably decomposable, finite
von Neumann algebras. Let

M :=
b⊕

λ∈Λ

Mλ, H :=
⊕
λ∈Λ

Hλ.

For each λ ∈ Λ, let Dλ ⊂ Hλ be a completely dense subspace for Mλ. Then⊕̂
λ∈ΛDλ ⊂ H is a completely dense subspace for M.

Proof . By Lemma 2.7, for each λ ∈ Λ, there exists an increasing sequence
{pλ,n}∞n=1 ⊂ P (Mλ) such that pλ,n ↗ 1 (strongly) and ran(pλ,n) ⊂ Dλ. For a
finite set F ⊂ Λ, define

pF,n := ⊕λp
(λ)
F,n,

p
(λ)
F,n :=

{
pλ,n (λ ∈ F ),
0 (λ /∈ F ).
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Then we have pF,n ∈ P (M) and {pF,n}(F,n) is an increasing net of projections.
Here, we define (F, n) ≤ (F ′, n′) by F ⊂ F ′ and n ≤ n′. It is clear that pF,n ↗ 1
(strongly) and ran(pF,n) ⊂

⊕̂
λ∈ΛDλ. Hence

⊕̂
λ∈ΛDλ is completely dense.

Remark 2.9. Lemma 2.7 does not hold if M is not countably decomposable.
We will show a counterexample. Let

H :=
⊕
t∈R

ℓ2(N), M :=
b⊕

t∈R
Mt, D :=

⊕̂
t∈R

ℓ2(N)

Here, all Mt are isomorphic copies of some finite von Neumann algebra on ℓ2(N).
By Lemma 2.8, D is completely dense for M. Suppose (2) of Lemma 2.7 holds.
Then there exists pn ∈ P (M) such that ran(pn) ⊂ D and pn ↗ 1 (strongly).
Represent pn as ⊕tpt,n (pt,n ∈ P (Mt)). Then we have⊕

t∈R
ran(pt,n) = ran(pn) ⊂ D =

⊕̂
t∈R

ℓ2(N).

Therefore for each n ∈ N, there exists a finite set Fn ⊂ R such that pt,n = 0
for t /∈ Fn. Since F :=

∪∞
n=1 Fn ⊂ R is at most countable, there exists some

t0 /∈ F . Choose ξ(t0) ∈ ℓ2(N) to be a unit vector and ξ(t) := 0 (t ̸= t0). Then
for ξ =

{
ξ(t)
}

t∈R ∈ H, it follows that

||pnξ − ξ||2 =
∑
t∈R

||pt,nξ
(t) − ξ(t)||2 = || pt0,n︸︷︷︸

=0

ξ(t0) − ξ(t0)||2

= ||ξ(t0)||2 = 1.

On the other hand, we have ||pnξ − ξ||2 → 0, which is a contradiction.

Proposition 2.10 (Murray-von Neumann [11]). Let M be a finite von Neu-
mann algebra on a Hilbert space H. Let {Di}∞i=1 ⊂ H be a sequence of com-

pletely dense subspaces for M. Then the intersection
∞∩

i=1

Di is also completely

dense.

The proof requires some lemmata.

Lemma 2.11. Proposition 2.10 holds if M is countably decomposable.

Proof . Let τ be a faithful normal tracial state on M. By Lemma 2.7, for each
ε > 0 and i ∈ N, there exists pi ∈ P (M) such that τ(p⊥i ) < ε/2i and piH ⊂ Di.
Put

p :=
∞∧

i=1

pi ∈ P (M).
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Then we have

τ(p⊥) = τ

( ∞∨
i=1

p⊥i

)
≤

∞∑
i=1

τ(p⊥i ) ≤
∞∑

i=1

ε

2i
= ε,

pH =
∞∩

i=1

(piH) ⊂
∞∩

i=1

Di.

Hence by Lemma 2.7, the intersection
∩∞

i=1 Di is completely dense.

Lemma 2.12. Let {(Mλ,Hλ)}λ∈Λ be a family of countably decomposable, finite
von Neumann algebras. Put

M :=
b⊕

λ∈Λ

Mλ, H :=
⊕
λ∈Λ

Hλ.

Let D ⊂ H be a completely dense subspace for M. Then for each λ ∈ Λ, there
exists some completely dense subspace Dλ ⊂ Hλ for Mλ such that⊕̂

λ∈Λ

Dλ ⊂ D.

Proof . By the definition, there exists an increasing net {pα}α∈A ⊂ P (M) such
that pα ↗ 1 (strongly) and ran(pα) ⊂ D. Let pα =: ⊕λpλ,α (pλ,α ∈ P (Mλ)).
Then it holds that pλ,α ↗ 1 (strongly). Put

Dλ :=
∪

α∈A

ran(pλ,α) ⊂ Hλ.

We see that Dλ is completely dense for Mλ. It is clear that
⊕̂

λ∈ΛDλ ⊂ D
holds.

Proof of Proposition 2.10. Since M is finite, there exists a family of count-
ably decomposable, finite von Neumann algberas {(Mλ,Hλ)}λ∈Λ and a unitary
operator U : H →

⊕
λ∈Λ Hλ such that UMU∗ =

⊕
λ∈Λ Mλ. Put D′

i := UDi.
To prove the proposition, it suffices to prove that

∩∞
i=1 D′

i is completely dense
for

⊕
λ∈Λ Mλ. By Lemma 2.12, for each i ∈ N, there exist competely dense

suspaces Dλ,i ⊂ Hλ for Mλ such that D′
i ⊃

⊕̂
λ∈ΛDλ,i. Then it follows that

∞∩
i=1

D′
i ⊃

∞∩
i=1

(̂⊕
λ∈Λ

Dλ,i

)
=
⊕̂
λ∈Λ

( ∞∩
i=1

Dλ,i

)
.

By Lemma 2.11,
∩∞

i=1 Dλ,i is compeltely dense for Mλ. Therefore by Lemma
2.8,

⊕̂
λ∈Λ (

∩∞
i=1 Dλ,i) is completely dense for

⊕
λ∈Λ Mλ, which implies

∩∞
i=1 D′

i

is also completely dense for
⊕

λ∈Λ Mλ.
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Proposition 2.13 (Murray-von Neumann [11]). Let M be a finite von Neu-
mann algebra. Then for each X ∈ M and a completely dense subspace D for
M, the subspace

{ξ ∈ dom(X) ; Xξ ∈ D}

is also completely dense. In particular, dom(X) is completely dense for all
X ∈ M.

Proof . See [11].

Proposition 2.14 (Murray-von Neumann [11]). Let M be a finite von Neu-
mann algebra.

(1) Every closed symmetric operator in M is self-adjoint.

(2) There are no proper closed extensions of operators in M. Namely, if
X, Y ∈ M satisfy X ⊂ Y , then X = Y .

(3) Let {Xi}i be a (finite or infinite) sequence in M. The intersection of
domains

DP :=
∩
p∈P

dom(p(X1, X
∗
1 , X2, X

∗
2 , · · · ))

of all unbounded operators obtained by substituting {Xi}i into the non-
commutative polynomial p(x1, y1, · · · ) is completely dense for M, where
P is the set of all non-commutative polynomials with indefinite elements
{xi, yi}i.

Proof . See [11].

Remark 2.15. Murray-von Neumann proved (1) of Proposition 2.14 using Cay-
ley transform, but there is a simpler proof. We record it here.

Proof . Let A ∈ M be a symmetric operator. It is easy to see that A + i is
injective. Let A+ i = u|A+ i| be its polar decomposition. From the injectivity,
u∗u = Pker(A+i)⊥ = 1H. Since M is finite and uu∗ = Pran(A+i), we see that
ran(A+ i) = H. On the other hand, since A is closed and symmetric, ran(A+ i)
is closed. Therefore we obtain ran(A+ i) = H. By the same way, it holds that
ran(A− i) = H, which means A is a self-adjoint operator.

Similarly, we see that for X ∈ M the injectivity of X is equivalent to the
density of ran(X).

Lemma 2.16 (Murray-von Neumann [11]). Let M be a finite von Neumann
algebra and {Xi}i be a (finite or infinite) sequence in M. Let

p(x1, y1, x2, y2, · · · ), q(x1, y1, x2, y2, · · · ), r(x1, y1, x2, y2, · · · )

be non-commutative polynomials and p(X1, X
∗
1 , X2, X

∗
2 , · · · ) be an operator ob-

tained by substituting (xi, yi) by (Xi, X
∗
i ).

12



(1) p(X1, X
∗
1 , X2, X

∗
2 , · · · ) is a densely defined closable operator on H, and

p(X1, X∗
1 , X2, X∗

2 , · · · ) ∈ M.

(2) If p(r)(x1, y1, · · · ) = q(r)(x1, y1, · · · ), then

p(X1, X∗
1 , · · · ) = q(X1, X∗

1 , · · · ).

Namely, the closure of the substitution of operators depends on a reduced
polynomial only.

(3) If p(x1, y1, · · · )+ = q(x1, y1, · · · ), then{
p(X1, X∗

1 , · · · )
}∗

= q(X1, X∗
1 , · · · ).

(4) If αp(x1, y1, · · · ) = q(x1, y1, · · · ) (α ∈ C), then

α ·
{
p(X1, X∗

1 , · · · )
}

= q(X1, X∗
1 , · · · ).

(5) If p(x1, y1, · · · ) + q(x1, y1, · · · ) = r(x1, y1, · · · ), then

p(X1, X∗
1 , · · · ) + q(X1, X∗

1 , · · · ) = r(X1, X∗
1 , · · · ).

(6) If p(x1, y1, · · · ) · q(x1, y1, · · · ) = r(x1, y1, · · · ), then

p(X1, X∗
1 , · · · ) · q(X1, X∗

1 , · · · ) = r(X1, X∗
1 , · · · ).

Proof . See [11].

In summary, we have the following theorem.

Theorem 2.17 (Murray-von Neumann [11]). For an arbitrary finite von Neu-
mann algebra M, the set M forms a *-algebra of unbounded operators, where
the algebraic operations are defined by1

(X,Y ) 7→ X + Y , (α,X) 7→ αX,

(X,Y ) 7→ XY , X 7→ X∗.

To conclude these preliminaries, we shall show a simple but useful lemma.

Lemma 2.18. Let M be a finite von Neumann algebra, A be an operator in M.
If D is a completely dense subspace of H contained in dom(A), then it is a core
of A. That is, A|D = A.

1αX equals αX when α ̸= 0. However, dom(0 · X) = H ̸= dom(X).

13



Proof . From the complete density of D, there exists an increasing net of closed
subspaces {Mα}α of H with Pα := PMα ∈ M such that

D0 :=
∪
α

Mα ⊂ D

is dense in H. Define A0 := A|D0 . Take an arbitrary u ∈ U(M′). Let ξ ∈ D0 =
dom(A0), so that there is some α such that ξ ∈Mα. Then we have

uA0ξ = uAξ = Auξ = AuPαξ

= APαuξ = A0Pαuξ

= A0uξ.

Therefore uA0 ⊂ A0u holds. Since u ∈ U(M′) is arbitrary, we have uA0u
∗ = A0.

Taking the closure of both sides, we see that A0 = uA0u
∗. This means A0 ∈ M.

Therefore, it follows that
A0 = A|D ⊂ A = A

Therefore by Proposition 2.14, we have A0 = A.

2.3 Converse of Murray-von Neumann’s Result

The converse of Theorem 2.17 is also true. We shall give a proof here.

Lemma 2.19. Let M be a von Neumann algebra acting on a Hilbert space H.
Assume that, for all A, B ∈ M, the domains dom(A+B) and dom(AB) are
dense in H. Then A + B and AB are densely defined closable operators on H
and the closures A+B and AB are affiliated with M for all A, B ∈ M.

Proof . By the assumption, A+B is densely defined and

(A+B)∗ ⊃ A∗ +B∗.

Since the right hand side is densely defined, A+B is closable. As same as above,
we see that AB is closable. Affiliation property is easy.

Remark 2.20. Let M be a von Neumann algebra. It is easy to check that
αA (α ∈ C, A ∈ M) is always densely defined closable and its closure αA is
affiliated with M. Moreover M is closed with respect to the involution A 7→ A∗.

Theorem 2.21. Let M be a von Neumann algebra acting on a Hilbert space
H. Assume that, for all A, B ∈ M, the domains dom(A+B) and dom(AB)
are dense in H. If the set M forms a *-algebra with respect to the sum A+B,
the scalar multiplication αA (α ∈ C), the multiplication AB and the involution
A∗, then M is a finite von Neumann algebra.

Proof . Step 1. We first show that all closed symmetric operators affiliated
with M are automatically self-adjoint. Let A be a closed symmetric operator
affiliated with M. Define operators B ∈ M and C ∈ M as

B :=
1
2
(
A+A∗

)
, C :=

1
2i
(
A−A∗

)
,

14



then B and C are self-adjoint and A = B + iC holds because M is a *-algebra.
Since A is symmetric, we see that

C ⊃ 1
2i

(A−A∗) ⊃ 1
2i

(A−A) = 0|dom(A).

By taking the closure, we obtain C = 0. Hence A = B is self-adjoint.

Step 2. We shall prove that M is finite. Let v be an arbitrary isometry
in M. By the Wold decomposition, there exists a unique projection p ∈ M
such that ran(p) reduces v, s := v|ran(p) ∈ Mp is a unilateral shift operator and
u := v|ran(p⊥) ∈ Mp⊥ is unitary. It is easy to see that

ker(1 − s) = {0}, ker(1 − s∗) = {0},

so that we can define the closed symmetric operator T on ran(p) as follows:

T := i(1 + s)(1 − s)−1.

We immediately see that T is affiliated with the von Neumann algebra Mp.
Define the operaotr A on H = ran(p)

⊕
ran(p⊥) by

A := T ⊕ 0ran(p⊥),

then A is a closed symmetric opeator and it is affiliated with M. From Step
1, A is self-adjoint, so that T is also self-adjoint. Since the Cayley transform
of a self-adjoint operator is always unitary and the Cayley transform of T is
s, s is unitary. This implies p = 0 because a unilateral shift operator admits
no non-zero reducing closed subspace on which it is unitary. Hence v = u is
unitary.

3 Topological Structures of M

In this section we investigate topological properties of M. We need these results
in the next section. We first endow M with two topologies, called the strong
resolvent topology and the strong exponential topology. The former is (un-
bounded) operator theoretic and the latter is Lie theoretic. To show that these
two topologies do coincide and M forms a complete topological *-algebra with
repect to them, we introduce another topology, called the τ -measure topology
which originates from the noncommutative integration theory. They seem quite
different to each other, but in fact they also coincide. The main topic of the
present section is to study correlations between them.

3.1 Strong Resolvent Topology

First of all, we define the topology called the strong resolvent topology on the
suitable subset of densely defined closed operators. Let H be a Hilbert space.
We call a densely defined closed operator A on H belongs to the resolvent class
RC (H) if A satisfies the following two conditions:

15



(RC.1) there exist self-adjoint operators X and Y on H such that the intersec-
tion dom(X) ∩ dom(Y ) is a core of X and Y ,

(RC.2) A = X + iY , A∗ = X − iY .

Note that (RC.1) implies dom(X)∩dom(Y ) is dense, so X+ iY and X− iY
are closable. Thus X + iY and X − iY are always defined. Furthermore, we
have

1
2
(A+A∗) =

1
2
(X + iY +X − iY ) ⊃ X|dom(X)∩dom(Y ).

Since A+A∗ is closable and by (RC.1), we get

1
2
A+A∗ ⊃ X.

As X is self-adjoint, X has no non-trivial symmetric extension, we have

1
2
A+A∗ = X.

Therefore, X is uniquely determined. As same as above, Y is also unique and

1
2i
A−A∗ = Y.

We denote

Re(A) := X =
1
2
A+A∗, Im(A) := Y =

1
2i
A−A∗.

Also note that bounded operators and (possibility unbounded) normal operators
belong to RC (H).

Now we endow RC (H) with the strong resolvent topology (SRT for short),
the weakest topology for which the following mappings

RC (H) ∋ A 7−→ {Re(A) − i}−1 ∈ (B(H), SOT )

and
RC (H) ∋ A 7−→ {Im(A) − i}−1 ∈ (B(H), SOT )

are continuous. Thus a net {Aα}α in RC (H) converges to A ∈ RC (H) with
respect to the strong resolvent topology if and only if

{Re(Aα) − i}−1ξ → {Re(A) − i}−1ξ, {Im(Aα) − i}−1ξ → {Im(A) − i}−1ξ,

for each ξ ∈ H. This topology is well-studied in the field of unbounded operator
theory and suitable for the operator theoretical study. We denote the system of
open sets of the strong resolvent topology by OSRT.

Let M be a finite von Neumann algebra on a Hilbert space H. We shall
show that M is a closed subset of the resolvent class RC (H). This fact follows
from Proposition 2.10, Theorem 2.17, Lemma 2.18 and the following lemmata.
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Lemma 3.1. Let M be a finite von Neumann algebra on a Hilbert apace H,
A be in M. Then there exist unique self-adjoint operators B and C in M such
that

A = B + iC.

Proof . Put
B :=

1
2
A+A∗, C :=

1
2i
A−A∗.

Applying Proposition 2.10, dom(B) and dom(C) are dense in H. Hence B and
C are closed symmetric operators affiliated with M. By Proposition 2.14, in
fact, B and C are self-adjoint. As M is a *-algebra, we have

A = B + iC.

Lemma 3.2. Let M be a finite von Neumann algebra. Then M is closed with
respect to the strong resolvent topology.

Proof . Let {Aα}α ⊂ M be a net converging to A ∈ RC (H) with respect to
the strong resolvent topology. Then, for all u ∈ U(M′), we have

{uRe(A)u∗ − i}−1 = u{Re(A) − i}−1u∗ = s- lim
α
u{Re(Aα) − i}−1u∗

= s- lim
α
{uRe(Aα)u∗ − i}−1 = s- lim

α
{Re(Aα) − i}−1

= {Re(A) − i}−1.

This implies Re(A) belongs to M. As same as above, we obtain Im(A) ∈ M.
Thus so is A = Re(A) + Im(A).

The next lemma is important in our discussion.

Lemma 3.3. Let M be a finite von Neumann algebra acting on a Hilbert space
H. Then the following are equivalent:

(1) M is countably decomposable,

(2) (M, SRT ) is metrizable as a topological space,

(3) (M, SRT ) satisfies the first countability axiom.

Proof . (1) ⇒ (2). Let {ξk}k be a countable separating family of unit vectors
in H for M. For each A, B ∈ M, we define

d(A,B) :=
∑

k

1
2k

∥{Re(A) − i}−1ξk − {Re(B) − i}−1ξk∥

+
∑

k

1
2k

∥{Im(A) − i}−1ξk − {Im(B) − i}−1ξk∥.
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It is easy to see that the above d is a distance function on the space M, and the
topology induced by the distance function d coincide with the strong resolvent
topology on M.

(2) ⇒ (3) is trivial.
(3) ⇒ (1). Let S ⊂ P (M) be a family of mutually orthogonal nonzero

projections in M. Since (M, SRT ) satisfies the first countability axiom, the
origin 0 ∈ M has a countable fundamental system of neighborhoods {Vk}k. Put

Sk := {p ∈ S ; p /∈ Vk},

then S =
∪

k Sk. This follows from the Hausdorff property of the strong re-
solvent topology. Next we show that each Sk is a finite set. Suppose Sk is an
infinite set, then we can take a countably infinite subset {pn ; n ∈ N} of Sk.
Define

p := s- lim
N→∞

N∑
n=1

pn.

For every ξ ∈ H we see that

∥pnξ∥ = ∥
n∑

i=1

pnξ −
n−1∑
i=1

pnξ∥

≤ ∥
n∑

i=1

pnξ − pξ∥ + ∥pξ −
n−1∑
i=1

pnξ∥

−→ 0.

Thus pn converges strongly to 0. By Lemma B.1, this implies pn converges to
0 with respect to the strong resolvent topology. Hence there exists a number
n ∈ N such that pn ∈ Vk. This is a contradiction to pn ∈ Sk. Therefore Sk is a
finite set. From the above arguments, we conclude that S =

∪
k Sk is at most

countable.

Remark 3.4. As we see in the sequel, (M, SRT ) is a Hausdorff topological lin-
ear space. Thus in the case that M satisfies conditions (1), (2) or (3) of Lemma
3.3, (M, SRT ) is metrizable with a translation invariant distance function. In
particular, it is also metrizable as a uniform space.

Finally, we state one lemma.

Lemma 3.5. Let M be a finite von Neumann algebra acting on a Hilbert space
H. Then the strong resolvent topology and the strong operator topology coincide
on the closed unit ball M1.

Proof . Note that if a von Neumann algebra is finite, then the involution is
strongly continuous on the closed unit ball. The lemma follows immediately
from this fact, Lemma B.1 and Lemma B.5.

See Appendix B for more informations of the strong resolvent topology.
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3.2 Strong Exponential Topology

Next we introduce a Lie theoretic topology on M. Let H be a Hilbert space. For
each A ∈ RC (H), each SOT-neighborhood V at 1 ∈ B(H) and each compact
set K of R, we define W (A;V,K) the subset of RC (H) by

W (A;V,K) :=
{
B ∈ RC (H) ;

e−itRe(A)eitRe(B) ∈ V,
e−itIm(A)eitIm(B) ∈ V, ∀t ∈ K.

}
,

then {W (A;V,K)}A,V,K is a fundamental system of neighborhoods on RC (H).
We denote the system of open sets of the topology induced by this fundamental
system of neighborhoods by OSET, and call this topology the strong exponential
topology (SET for short). Note that a net {Aλ}λ∈Λ in RC (H) converges to
A ∈ RC (H) in the strong exponential topology if and only if

eitRe(Aλ)ξ −→ eitRe(A)ξ, eitIm(Aλ)ξ −→ eitIm(A)ξ,

for each ξ ∈ H, uniformly for t in any finite interval. This topology is important
from the viewpoint of Lie theory. Indeed it can be defined by the unitary group
U(H) only. Before stating the main theorem in this section, we study relations
between the strong resolvent topology and the strong exponential topology.

Lemma 3.6. Let M be a countably decomposable finite von Neumann algebra
acting on a Hilbert space H. Then (M, SET ) is metrizable as a topological
space.

Proof . Let {ξn}n be a countable separating family of unit vectors in H for M.
For each A, B ∈ M we define

d(A,B) :=
∑

n

∞∑
m=1

1
2n+m

sup
t∈[−m,m]

∥eitRe(A)ξn − eitRe(B)ξn∥

+
∑

n

∞∑
m=1

1
2n+m

sup
t∈[−m,m]

∥eitIm(A)ξn − eitIm(B)ξn∥.

It is easy to see that the above d is a distance function on the space M, and the
topology induced by the distance function d coincide with the strong exponential
topology on M.

Lemma 3.7. Let M be a countably decomposable finite von Neumann algebra.
Then the strong resolvent topology and the strong exponential topology coincide
on M.

Proof . This follws immediately from Lemma 3.3, Lemma 3.6 and Lemma B.2.

Remark 3.8. Similar to the above argument, one can prove that the strong
resolvent topology and the strong exponential topology coincide on RC (H) if
the Hilbert space H is separable. But the authors do not know whether this is
true or not if H is not separable. However we can show the following theorem.
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The next is the main theorem in this section.

Theorem 3.9. Let M be a finite von Neumann algebra acting on a Hilbert space
H. Then M is a complete topological *-algebra with respect to the strong resol-
vent topology. Moreover the strong resolvent topology and the strong exponential
topology coincide on M.

Throughout this section, we prove the above theorem.

3.3 τ-Measure Topology

We first prove Theorem 3.9 in a countably decomposable von Neumann algebra
case. In this case, we can use the nonmmutative integration theory thanks
to a faithful normal tracial state. We shall introduce the τ -measure topology.
Let M be a countably decomposable finite von Neumann algebra acting on a
Hilbert space H. Fix a faithful normal tracial state τ on M. The τ -measure
topology (MT for short) on M is the linear topology whose fundamental system
of neighborhoods at 0 is given by

N(ε, δ) :=
{
A ∈ M ;

there exists a projection p ∈ M

such that ∥Ap∥ < ε, τ(p⊥) < δ

}
,

where ε and δ run over all strictly positive real numbers. It is known that M is
a complete topological *-algebra with respect to this topology [14]. We denote
the system of open sets with respect to the τ -measure topology by Oτ . Note
that the τ -measure topology satisfies the first countability axiom.

Remark 3.10. In this context, the operators in M are sometimes called τ -
measurable operators [4].

Thus there are two topologies on M, the strong resolvent topology and the
τ -measure topology. It seems that these two topologies are quite different.
However, in fact, they coincide on M, i.e.,

Lemma 3.11. Let M be a countably decomposable finite von Neumann algebra
acting on a Hilbert space H. Then the strong resolvent topology and the τ -
measure topology coincide on M. In particular, M forms a complete topological
*-algebra, whose topology is independent of the choice of a faithful normal tracial
state τ . Moreover the τ -measure topology is independent of the choice of a
faithful normal tracial state τ .

This lemma is the first step to our goal.

3.4 Almost Everywhere Convergence

To prove Lemma 3.11, we define almost everywhere convergence. Let M be a
countably decomposable finite von Neumann algebra on a Hilbert space H.

Definition 3.12. A sequence {An}∞n=1 ⊂ M converges almost everywhere (with
respect to M) to A ∈ M if there exists a completely dense subspace D such that
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(i) D ⊂
∩∞

n=1 dom(An) ∩ dom(A),

(ii) Anξ converges to Aξ for each ξ ∈ D.

We shall investigate the relations between the almost everywhere conver-
gence and the other topologies.

Lemma 3.13. Let {An}∞n=1 ⊂ M be a sequence, A ∈ M. Suppose An converges
to A in the τ -measure topology, then there exists a subsequence {Ank

}∞k=1 of
{An}∞n=1 such that Ank

converges almost everywhere to A.

Proof . For all j ∈ N, we can take nj ∈ N and pj ∈ P (M) which satisfy the
following conditions:

∥(Anj −A)pj∥ < 1/2j , τ(p⊥j ) < 1/2j , nj < nj+1.

Put p :=
∨∞

l=1

∧∞
k=l pk ∈ P (M), then ran(p) =

∪∞
l=1

∩∞
k=l ran(pk). On the other

hand,

τ(p⊥) = lim
l→∞

τ

( ∞∨
k=l

p⊥k

)
≤ lim

l→∞

∞∑
k=l

τ(p⊥k )

≤ lim
l→∞

∞∑
k=l

1
2k

= 0.

Therefore, H = ran(p) =
∪∞

l=1

∩∞
k=l ran(pk). This implies

D0 :=
∞∪

l=1

∞∩
k=l

ran(pk)

is completely dense. Let D1 be the intersection of the domains of all non-
commutative polynomials of operators {Ank

, A, pk}∞k=1, where we do not take
closure for each non-commutative polynomial of operators. Then D1 is also
completely dense and so is D := D0 ∩D1. Take ξ ∈ D, then there exists k0 ∈ N
such that ξ ∈

∩∞
k=k0

ran(pk). Consequently, for all k ≥ k0, we get

ξ = pkξ, pkξ ∈ dom(A) ∩ dom(Ak), ξ ∈ dom(A) ∩ dom(Ak),

and

∥(Ank
−A)ξ∥ = ∥(Ank

−A)pjξ∥

≤ ∥(Anj −A)pj∥ · ∥ξ∥

≤ 1
2k

· ∥ξ∥ −→ 0.

Thus Ank
converges almost everywhere to A.
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Lemma 3.14. Let {An}∞n=1 be a sequence in M converging almost everywhere
to A ∈ M. Suppose {An

∗}∞n=1 also converges almost everywhere to A∗, then
{An}∞n=1 converges to A in the strong resolvent topology.

Proof . It is easy to check that Re(An) and Im(An) converge almost every where
to Re(A) and Im(A), respectively. Applying Lemma B.1 and Lemma 2.18 for
Re(An) and Im(An), we see that Re(An) and Im(An) converge to Re(A) and
Im(A) in the strong resolvent topology, respectively. This implies {An}∞n=1

converges to A in the strong resolvent topology.

The following is well-known:

Lemma 3.15. Let X be a metric space, {xn}∞n=1 ⊂ X be a sequence, x ∈ X.
Suppose for each subsequence {xnk

}∞k=1 of {xn}∞n=1 has a subsequence {xnkl
}∞l=1

of {xnk
}∞k=1 which converges to x, then xn converges to x.

3.5 Proof of Lemma 3.11

We shall start to prove Lemma 3.11. We prove that the system of open sets of
the strong resolvent topology OSRT and the system of open sets of the τ -measure
topology Oτ coincide on M. Let {An}∞n=1 ⊂ M be a sequence, A ∈ M.

OSRT ⊂ Oτ : Suppose that {An}∞n=1 converges to A in the τ -measure topology.
Let {Ank

}∞k=1 be an arbitrary subsequence of {An}∞n=1. By Proposition 3.13,
there exists a subsequence {Ankl

}∞l=1 of {Ank
}∞k=1 such that {Ankl

}∞l=1 and
{Ankl

∗}∞l=1 converge almost everywhere to A and A∗, respectively. Applying
Lemma 3.14, Ankl

converges to A in the strong resolvent topology. This implies
An converges to A in the strong resolvent topology, by Lemma 3.15. Thus we
get OSRT ⊂ Oτ .

Oτ ⊂ OSRT: Suppose that {An}∞n=1 converges to A with respect to the strong
resolvent topology. First we consider the case that An and A are self-adjoint.
Let |An| =:

∫∞
0
λdEn(λ) and |A| =:

∫∞
0
λdE(λ) be spectral resolutions of |An|

and |A|, respectively. Fix an arbitrary positive number ε > 0. It is clear that
s- limλ→∞E([0, λ)) = 1, so there exists a positive number Λ > 0 such that
τ(E([0,Λ))⊥) < ε, where we can take Λ > 0 which is not a point spectrum of
|A|. Indeed, self-adjoint operators have at most countable point spectra, as M
is countably decomposable. Next we define a continuous function ϕ on R as
follows:

ϕ(λ) :=


0 if λ ≤ −2Λ,
−λ− 2Λ if −2Λ ≤ λ ≤ −Λ,
λ if −Λ ≤ λ ≤ Λ,
−λ+ 2Λ if Λ ≤ λ ≤ 2Λ,
0 if 2Λ ≤ λ.
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Let |ϕ(An)−ϕ(A)| =:
∫∞
0
λdFn(λ) be a spectral resolution of |ϕ(An)−ϕ(A)|, e

be a spectral measure of A. Note that E([0,Λ)) = e((−Λ,Λ)). For each ξ ∈ H,

⟨ξ, AE([0,Λ))ξ⟩ =
∫

(−Λ,Λ)

λd⟨ξ, e(λ)ξ⟩

=
∫

(−Λ,Λ)

ϕ(λ)d⟨ξ, e(λ)ξ⟩

=
∫

R
ϕ(λ)d⟨ξ, e(λ)E([0,Λ))ξ⟩

= ⟨ξ, ϕ(A)E([0,Λ))ξ⟩.

Thus we have AE([0,Λ))ξ = ϕ(A)E([0,Λ))ξ. Similar to the above argument,
we get AnEn([0,Λ))ξ = ϕ(An)En([0,Λ))ξ. Therefore, for all ξ ∈ H, we see that

∥(An −A){En([0,Λ)) ∧ E([0,Λ)) ∧ Fn([0, ε))}ξ∥2

= ∥{ϕ(An) − ϕ(A)}{En([0,Λ)) ∧ E([0,Λ)) ∧ Fn([0, ε))}ξ∥2

= ∥|ϕ(An) − ϕ(A)|{En([0,Λ)) ∧ E([0,Λ)) ∧ Fn([0, ε))}ξ∥2

=
∫

[0,ε)

λ2d∥Fn(λ){En([0,Λ)) ∧E([0,Λ)) ∧ Fn([0, ε))}ξ∥2

≤ ε2∥ξ∥2.

This implies

∥(An −A){En([0,Λ)) ∧ E([0,Λ)) ∧ Fn([0, ε))}∥ ≤ ε.

On the other hand,

τ({En([0,Λ)) ∧ E([0,Λ)) ∧ Fn([0, ε))}⊥)

≤ τ(En([0,Λ))⊥) + τ(E([0,Λ))⊥) + τ(Fn([0, ε))⊥)

≤ τ(En([0,Λ))⊥) + ε+ τ(Fn([0, ε))⊥).

By Lemma B.4, |An| converges to |A| in the strong resolvent topology, as the
function

R ∋ λ 7−→ (|λ| − i)−1 ∈ C

is bounded continuous. By Lemma B.3,

En([0,Λ)) = En((−1,Λ))
SOT−−−→ E((−1,Λ)) = E([0,Λ)).

Thus for all sufficiently large number n ∈ N,

τ(En([0,Λ))⊥) = τ(E([0,Λ))⊥) + τ(E([0,Λ)) − En([0,Λ)))
≤ ε+ ε = 2ε.
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Furthermore, by Lemma B.4, ϕ(An) converges strongly to ϕ(A). We obtain that
for each ξ ∈ H,

∥|ϕ(An) − ϕ(A)|ξ∥ = ∥{ϕ(An) − ϕ(A)}ξ∥ −→ 0.

Applying Lemma B.1 and Lemma B.3 for |ϕ(An) − ϕ(A)|, we see that

Fn([0, ε)) = Fn((−1, ε)) SOT−−−→ 1.

Hence, for all sufficiently large numbers n ∈ N, τ(Fn([0, ε))⊥) < ε. Thus, for all
sufficiently large numbers n ∈ N, we have

τ({En([0,Λ)) ∧E([0,Λ)) ∧ Fn([0, ε))}⊥) ≤ 4ε.

From the above argument, we conclude that An converges to A in the τ -measure
topology. In a general case, self-adjoint operators Re(An) and Im(An) converge
to Re(A) and Im(A) in the strong resolvent topology, respectively. By the above
argument, we see that Re(An) and Im(An) converge to Re(A) and Im(A) in the
τ -measure topology, respectively. Since the addition is continuous with respect
to the τ -measure topology, An converges to A in the τ -measure topology. This
implies Oτ ⊂ OSRT. Hence the proof of Lemma 3.11 is complete.

Remark 3.16. We referred to the proof of Theorem 5.5 of the paper [20] to
prove the inclusion Oτ ⊂ OSRT.

3.6 Direct Sums of Algebras of Unbounded Operators

To prove Theorem 3.9 in a general case, we show some facts about the direct
sums of unbounded operators. See Appendix A for the definition of the di-
rect sums of unbounded operators. The next lemma follows immediately from
Lemma A.3.

Lemma 3.17. Let Hα be a Hilbert space, H be the direct sum Hilbert space of
{Hα}α. For each α, we consider a net {Aα,λ}λ∈Λ of self-adjoint operators on
Hα and self-adjoint operator Aα on Hα. Set

Aλ := ⊕αAα,λ,

and
A := ⊕αAα,

on the Hilbert space H.

(1) Aλ converges to A in the strong resolvent topology if and only if each
{Aα,λ}λ∈Λ converges to Aα in the strong resolvent topology.

(2) Aλ converges to A in the strong exponential topology if and only if each
{Aα,λ}λ∈Λ converges to Aα in the strong exponential topology.
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Proof . (1). By Lemma A.3, we have

(Aλ − i)−1 = ⊕α(Aα,λ − i)−1, (A− i)−1 = ⊕α(Aα − i)−1.

The necessary condition is trivial. On the other hand, it is easy to see that
{(Aλ − i)−1}λ∈Λ converges to (A − i)−1 on ⊕̂αHα. Since

⊕̂
αHα is dense in⊕

α Hα and {(Aλ − i)−1}λ∈Λ is uniformly bounded, the sufficient condition
follows.

(2). Similar to the proof (1).

The next lemma is the key to prove Theorem 3.9.

Lemma 3.18. Let Mα be a finite von Neumann algebra acting on Hα, and put

M :=
b⊕
α

Mα.

Then
M =

⊕
α

Mα

holds. The sum, the scalar multiplication, the multiplication and the involution
are given by

(⊕αAα) + (⊕αBα) = ⊕α

(
Aα +Bα

)
,

λ (⊕αAα) = ⊕α

(
λAα

)
, for all λ ∈ C,

(⊕αAα) (⊕αBα) = ⊕α

(
AαBα

)
,

(⊕αAα)∗ = ⊕α (Aα
∗) .

In addition, if each Mα is countably decomposable, then M is a complete topo-
logical *-algebra with respect to the strong resolvent topology, and the strong
resolvent topology coincides with the strong exponential topology on M.

Proof . we shall prove this lemma step by step.

Step 1. We first show that
⊕

α Mα ⊂ M. Indeed let ⊕αAα ∈
⊕

α Mα. By
Lemma A.1 and Lemma A.4, each unitary operator u ∈ U(M′) can be written
as u = ⊕αuα, where uα ∈ U(M′

α). Thus we have

u (⊕αAα) = ⊕α (uαAα) ⊂ ⊕α (Aαuα) = (⊕αAα)u.

This implies ⊕αAα ∈ M.

Step 2. We show that the converse inclusion M ⊂
⊕

α Mα. For each β, we
put

qβ := ⊕α (δαβ1Hα) ∈ M′,
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where δαβ is the Kronecker delta and 1Hα
is the identity operator on Hα. From

Lemma A.1, qβ is a projection and

ran(qβ) =
⊕

α

(δαβHα) =: H̃β .

Let A ∈ M be a self-adjoint operator. We would like to prove A ∈
⊕

α Mα.
Since qβ ∈ M′, we have qβA ⊂ Aqβ for all β. This implies that each H̃β reduces
A. We denote reduced part of A to H̃β by AH̃β

. AH̃β
is obviously self-adjoint.

For each β, we consider natural unitary operator vβ : Hβ −→ H̃β . Then the
operator Aβ := v∗βAH̃β

vβ is again self-adjoint. To prove A = ⊕αAα, we take an

arbitrary ξ ∈
⊕̂

αdom(Aα). Since vαξ
(α) ∈ dom(AH̃α

) ⊂ dom(A), we see that

ξ =
∑
α

finite sum

vαξ
(α) ∈ dom(A).

Therefore we obtain

(⊕αAα) ξ =
{
v∗αAvαξ

(α)
}

α
=

∑
α

finite sum

Avαξ
(α)

= A

 ∑
α

finite sum

vαξ
(α)

 = Aξ.

Hence (⊕αAα) |⊕̂
αdom(Aα)

⊂ A. By Lemma A.2, we have ⊕αAα ⊂ A. On the
other hand, both of ⊕αAα and A are self-adjoint and self-adjoint operators have
no non-trivial self-adjoint extension. These facts implies ⊕αAα = A. Next we
show that each Aα is in Mα. Taking arbitrary unitary operators uα ∈ U(M′

α)
and putting u := ⊕αuα, then by Lemma A.4, u is a unitary operator in M′.
Since A ∈ M, we see that

(⊕αuα) (⊕αAα) = uA ⊂ Au = (⊕αAα) (⊕αuα) .

Thus for all α, uαAα ⊂ Aαuα holds. This implies Aα ∈ Mα for all α. Hence
A ∈

⊕
α Mα.

Next we consider an arbitrary element A ∈ M. Putting B := Re(A),
C := Im(A), then A = B + iC. Since B and C are self-adjoint, by the
above argument, there exist operators Bα ∈ Mα and Cα ∈ Mα such that
B = ⊕αBα and C = ⊕αCα holds. Set D :=

⊕̂
α (dom(Bα) ∩ dom(Cα)). Since

dom(Bα) ∩ dom(Cα) is a core of Bα + iCα, D is a core of ⊕α

(
Bα + iCα

)
by

Lemma A.2 . We observe that

A = B + iC ⊃
(
B + iC

)
|D =

{
⊕α

(
Bα + iCα

)}
|D,

so that A ⊃ ⊕α

(
Bα + iCα

)
follows. Now we use Step 1., then we see that

⊕α

(
Bα + iCα

)
∈ M because Bα + iCα ∈ Mα for all α. Since M is a finite
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von Neumann algebra, Lemma 2.14 means that A = ⊕α

(
Bα + iCα

)
∈
⊕

α Mα.
Hence M =

⊕
α Mα follows.

Step 3. We shall show the formulae with respect to the sum, the scalar
product, the product and the involution. The formulae with respect to the scalar
product and the involution are trivial. We first prove the formula of the sum.
Let ⊕αAα, ⊕αBα ∈

⊕
α Mα = M. Put D+ :=

⊕̂
α (dom(Aα) ∩ dom(Bα)).

Since dom(Aα)∩dom(Bα) is a core of Aα +Bα, D+ is a core of ⊕α

(
Aα +Bα

)
.

We observe that

(⊕αAα) + (⊕αBα) ⊃
{
⊕α

(
Aα +Bα

)}
|D+ ,

so that
(⊕αAα) + (⊕αBα) ⊃ ⊕α

(
Aα +Bα

)
follows. Since both sides are elements in M, we have

(⊕αAα) + (⊕αBα) = ⊕α

(
Aα +Bα

)
.

Next, to show the formula of the product, we put D× :=
⊕̂

αdom(AαBα).
Since dom(AαBα) is a core of AαBα, D× is a core of ⊕α

(
AαBα

)
. We observe

that
(⊕αAα) (⊕αBα) ⊃

{
⊕α

(
AαBα

)}
|D+ ,

so that
(⊕αAα) (⊕αBα) ⊃ ⊕α

(
AαBα

)
follows. Since both sides are elements in M, we have

(⊕αAα) (⊕αBα) = ⊕α

(
AαBα

)
.

Hence the proof of Step 3. is complete.

In the sequel, we assume that each Mα is countably decomposable. Note
that, by Lemma 3.11, each Mα is a complete topological *-algebra with respect
to the strong resolvent topology.

Step 4. Let {Aλ}λ∈Λ be a net in M, A be an element of M. Corresponding
to M = ⊕αMα, we can write them as follows:

Aλ = ⊕αAα,λ, Aα,λ ∈ M,

A = ⊕αAα, Aα ∈ M.

We shall show that Aλ converges to A with respect to the strong resolvent
topology if and only if each {Aα,λ}λ∈Λ converges to Aα with respect to the
strong resolvent topology. From Step 3., we obtain

Re(Aλ) = ⊕αRe(Aα,λ), Im(Aλ) = ⊕αIm(Aα,λ),
Re(A) = ⊕αRe(Aα), Im(A) = ⊕αIm(Aα),
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so that, by Lemma 3.17, the above equivalence of convergence follows.

By Step 3. and Step 4., we see that M forms a topological *-algebra with
respect to the strong resolvent topology. Next, to prove the completeness, we
prepare some facts.

Step 5. Fix an arbitrary α0 and let V (α0) be an arbitrary SOT-open set in
Mα0 . Set V (α) := Mα (α ̸= α0) and V :=

⊕b
α V

(α). Then V is a SOT-open set
in M. Indeed, since for any x = ⊕αxα ∈ V , we have xα0 ∈ V (α0), there exists
a positive number ε > 0 and finitely many vectors ξ(α0)

1 ∈ Hα0 ,· · ·, ξ
(α0)
n ∈ Hα0

such that
n∩

k=1

{
y ∈ Mα0 ; ∥(y − xα0)ξ

(α0)
k ∥ < ε

}
⊂ V (α0).

Set ξ(α)
k := 0 (α ̸= α0), then we get ξk ∈

⊕
α Hα and

x ∈
n∩

k=1

{y ∈ M ; ∥(y − x)ξk∥ < ε} ⊂ V.

Since
∩n

k=1 {y ∈ M ; ∥(y − x)ξk∥ < ε} is a SOT-open set in M, V is a SOT-
open set.

Step 6. Fix an arbitrary α0. Let W (α0) be an arbitrary SRT-neighborhood
at 0 ∈ Mα0 . Set W (α) := Mα (α ̸= α0) and W :=

⊕
αW

(α). Then W is a
neighborhood at 0 ∈ M. Indeed, 0 ∈ W is trivial. On the other hand, since
0 ∈ Mα0 , there exists finitely many SOT-open sets V (α0)

1 , · · ·, V (α0)
n in Mα0 such

that

0 ∈
n∩

k=1

{
A ∈ Mα0 ; {Re(A) − i}−1

, {Im(A) − i}−1 ∈ V
(α0)
k

}
⊂W (α0).

Put V (α)
k := Mα (α ̸= α0) and Vk :=

⊕b
α V

(α)
k , then, by Step 5., each Vk is a

SOT-open set in M and

0 ∈
n∩

k=1

{
A ∈ M ; {Re(A) − i}−1

, {Im(A) − i}−1 ∈ Vk

}
⊂W.

By the definition of the strong resolvent topology,

n∩
k=1

{
A ∈ M ; {Re(A) − i}−1

, {Im(A) − i}−1 ∈ Vk

}
is a open set, so that W is a SRT-neighborhood at 0 ∈ M.

Step 7. We shall give a proof of the completeness of M. Let {Aλ}λ∈Λ be a
Cauchy net in M. For each λ ∈ Λ we can write as Aλ = ⊕αAα,λ ∈

⊕
α Mα. Fix

28



an arbitrary α0 and let W (α0) be an arbitrary SRT-neighborhood at 0 ∈ Mα0 .
Set W (α) := Mα (α ̸= α0) and W :=

⊕
αW

(α), then, by Step 6., W is a SRT-
neighborhood at 0 ∈ M. Therefore there exists λ0 ∈ Λ such that Aλ −Aµ ∈
W for all λ, µ ≥ λ0. Since Aλ −Aµ = ⊕α

(
Aα,λ −Aα,µ

)
, this implies that

Aα0,λ −Aα0,µ ∈ W (α0) for all λ, µ ≥ λ0. Hence {Aα0,λ}λ∈Λ is a Cauchy net
in Mα0 . We now use the completeness of Mα0 , then there exists an element
Aα0 ∈ Mα0 such that Aα0,λ → Aα0 . Since α0 is arbitrary, so that this means
that for each α, there exists an alement Aα ∈ Mα such that Aα,λ → Aα. Put
A := ⊕αAα, then, by Step 4., we conclude that Aλ → A. Thus M is complete.

Step 8. The strong resolvent topology coincides with the strong exponential
topology on M. This fact follows from Lemma 3.7 and Lemma 3.17.

Lemma 3.19. Let (M,H) and (N,K) be spatially isomorphic finite von Neu-
mann algebras. If a unitary operator U of H onto K induces the spatial isomor-
phism, then the map

Φ : M → N, X 7→ UXU∗

is a *-isomorphism. Moreover Φ is a homeomorphism with respect to the strong
resolvent topology and the strong exponential topology.

Proof . It is easy to see that Φ(X) ∈ N for all X ∈ M. Thanks to Proposition
2.14 (2), it is not difficult to show that Φ is a unital *-homomorphism:

U
(
X + Y

)
U∗ = UXU∗ + UY U∗

U
(
XY

)
U∗ = UXU∗UY U∗

UX∗U∗ = (UXU∗)∗.

Furthermore, it is straightforward to verify that Φ is invertible, the inverse of
which is given by N ∋ Y 7→ U∗Y U ∈ M. Topological property is trivial.

3.7 Proof of Theorem 3.9

We shall give a proof of Theorem 3.9. By Lemma 2.3, there exists a fam-
ily of countably decomposable finite von Neumann algebras {Mα}α such that
M is spatially isomorphic onto

⊕b
α Mα. From Lemma 3.19, there exists a

*-isomorphism of M onto
⊕

α Mα which is homeomorphic with respect to the
strong resolvent topology and the strong exponential topology. By Lemma 3.18,⊕

α Mα is complete topological *-algebra, so that so is M. Hence the proof of
Theorem 3.9 is complete.

3.8 Local Convexity

We study the local convexity of
(
M, SRT

)
here.

Proposition 3.20. Let M be a finite von Neumann algebra. Then the following
are equivalent.
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(1) (M, SRT ) is locally convex.

(2) M is atomic.

We need some lemmata to prove the above proposition.

Lemma 3.21. Let M be an atomic finite von Neumann algebra, then
(
M, SRT

)
is locally convex.

Proof . Every atomic finite von Neumann algebra is spatially isomorphic to the
direct sum of matrix algebras {Mnλ

(C)}λ∈Λ, where each Mnλ
(C) is the algebra

of all nλ × nλ complex matrices. Thus we should only prove this lemma in the
case that M is equal to

⊕b
λ∈ΛMnλ

(C). Note that

M =
b⊕

λ∈Λ

Mnλ
(C) =

⊕
λ∈Λ

Mnλ
(C) =

⊕
λ∈Λ

Mnλ
(C).

Let pλ be a semi-norm on M defined by

pλ(x) := ∥xλ∥, x = ⊕λ∈Λxλ ∈ M =
⊕
λ∈Λ

Mnλ
(C).

Then the strong resolvent topology on M coincides with the locally convex
topology induced by the semi-norms {pλ}λ∈Λ because there is only one Haus-
dorff linear topology on a finite dimensional linear space. Hence the proof is
complete.

Lemma 3.22. Let M be a diffuse finite von Neumann algebra, then there exists
no non-zero SRT-continuous linear functional on M.

Proof . Suppose there exists a non-zero SRT-continuous linear functional f on
M and we shall show a contradiction. Since SOT and SRT coincides on M1, the
restriction of f onto M is σ-strongly continuous. This fact and the SRT-density
of M in M implies that there exists a projection e0 in M such that f(e0) ̸= 0.

Step 1. For any orthogonal family of non-zero projections {en}∞n=1 of M,
f(en) = 0 except at most finitely many n ∈ N. Indeed, put

A :=
∞∑

n=1

anen ∈ M, an :=
{ 1

f(en) if f(en) ̸= 0,
0 if f(en) = 0,

where convergence of A is in the strong resolvent topology. Then we have

f(A) =
∞∑

n=1

anf(en) =
∑

f(en )̸=0

1 <∞,

so that f(en) = 0 except at most finitely many n ∈ N.
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Step 2. For any e ∈ P (M) with f(e) ̸= 0, there exists e′ ∈ P (M) such that
0 ̸= e′ ≤ e and f(e′) = 0. Indeed, since M is diffuse, there exists an orthogonal
family of non-zero projections {en}∞n=1 in M such that e =

∑
n≥1 en. By Step

2., J := {n ∈ N ; f(en) ̸= 0} is a finite set. In particular,

e′ := e−
∑
n∈J

en ̸= 0

satisfies f(e′) = 0.

Step 3. We shall get a contradition. By Step 2., we can take a maximal
orthogonal family of non-zero projections {eα}α∈A in M such that eα ≤ e0 and
f(eα) = 0. Let e :=

∑
α∈A eα. The maximality of {eα}α∈A and Step 2. implies

e = e0. Thus we have

0 ̸= f(e0) =
∑
α∈A

f(eα) = 0,

which is a contradiction. Hence there exists no non-zero SRT-continuous linear
functional on M.

Lemma 3.23. Let Ma be an atomic finite von Neumann algebra, Md be a
diffuse finite von Neumann algebra and M := Ma

⊕b
Md be the direct sum von

Neumann algebra. Denote the conjugate spaces of
(
Ma, SRT

)
and

(
M, SRT

)
by
(
Ma

)∗
and

(
M
)∗

respectively. For each f ∈
(
Ma

)∗
, we define I(f) ∈

(
M
)∗

as

I(f)(A⊕B) := f(A), A⊕B ∈ M = Ma

b⊕
Md,

then I is a bijection between
(
Ma

)∗
onto

(
M
)∗

.

Proof . This follows immediately from Lemma 3.22.

Proof of Proposition 3.20. We have only to prove (1)⇒(2). Since M is
spatially isomorphic to the direct sum of an atomic von Neumann algebra
Matomic and a diffuse von Neumann algebra Mdiffuse, it is enough to show that
Mdiffuse = {0}. Suppose Mdiffuse ̸= {0} and take y ∈ Mdiffuse\{0}. Then, by
locally convexity of M, there exists a SRT-continuous linear functional f on M
such that f(0 ⊕ y) ̸= 0. However this is a contradiction by Lemma 3.23.

Similarly one can prove the following proposition.

Proposition 3.24. Let M be a finite von Neumann algebra. Then the following
are equivalent.

(1) There exists no non-zero SRT-continuous linear functional on M.

(2) M is diffuse.
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4 Lie Group-Lie Algebra Correspondences

In this section we state and prove the main result of this paper. As explained in
the introduction, Lie theory for U(H) is a difficult issue. What one has to resolve
for discussing the Lie group-Lie algebra correspondence is a domain problem of
the generators of one parameter subgroups of G ⊂ U(H). The second to be
discussed is a continuity of the Lie algebraic operations. However we can show
that, for any strongly closed subgroup G of unitary group U(M) of some finite
von Neumann algebra M, there exists canonically a complete topological Lie
algebra. Since there are continuously many non-isomorphic finite von Neumann
algebras on H, there are also varieties of such groups. We hope that the “Lie
Groups-Lie Algebras Correspondences” will play some important roles in the
infinite dimensional Lie theory. We study the SRT-closed subalgebra of M, too.

4.1 Existence of Lie Algebra

Let M be a finite von Neumann algebra acting on a Hilbert space H. Recall
that a densely defined closable operator A is called a skew-adjoint operator if
A∗ = −A, and A is called essentially skew-adjoint if A is skew-adjoint.

Remark 4.1. In general, the strong limit of unitary operators is not necessarily
unitary. It is known that U(M) is strongly closed if and only if M is a finite
von Neumann algebra.

Definition 4.2. For a strongly closed subgroup G of U(M), the set

g = Lie(G) := {A ; A∗ = −A on H, etA ∈ G, for all t ∈ R}

is called the Lie algebra of G. The complexification gC of g is defined by

gC :=
{
A+ iB ; A,B ∈ g

}
.

If G = U(M), we sometimes write g as u(M).

At first sight, it is not clear whether we can define algebraic operations on
g. However,

Lemma 4.3. Under the above notations, g ⊂ M holds.

Proof . Let u ∈ U(M′) and A ∈ g. By definition, we have etAu = uetA. Taking
the strong derivative on each side, we have uA ⊂ Au. Since u is arbitrary we
obtain uA = Au, which implies A ∈ M.

Therefore the sum A+B and the Lie bracket AB −BA are well-defined
operations in M, but it is not clear whether they belong to g again. The next
proposition guarantees the validity of the name “Lie algebra”. The former part
of the proof is based on the two lemmata established by Trotter-Kato and E.
Nelson, which are of importance int their own.
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Lemma 4.4 (Trotter-Kato, Nelson [13]). Let A,B be skew-adjoint operators on
a Hilbert space H.

(1) If A+B is essentially skew-adjoint on dom(A)∩dom(B), then it holds
that

et(A+B) = s- lim
n→∞

(
etA/netB/n

)n

,

for all t ∈ R.

(2) If (AB −BA) is essentially skew-adjoint on

dom(A2) ∩ dom(AB) ∩ dom(BA) ∩ dom(B2),

then it holds that

et[A,B] = s- lim
n→∞

(
e−

√
t
n Ae−

√
t
n Be

√
t
n Ae

√
t
n B
)n2

,

for all t > 0, where [A,B] := AB −BA.

Lemma 4.5. Let G be a strongly closed subgroup of U(M). Then g is a real
Lie algebra with the Lie bracket [X,Y ] := XY − Y X.

Proof . Let A,B ∈ g. It suffices to prove that A+B and AB −BA belong to g.
Since dom(A) ∩ dom(B) is completely dense, A+B is essentially skew-adjoint.
Therefore by Lemma 4.4 (1), we have et(A+B) ∈ G

s
= G for all t ∈ R. This

implies A+B ∈ g. It is clear that λA ∈ g for all λ ∈ R. On the other hand, as
AB −BA is essentially skew-adjoint on

D := dom(AB) ∩ dom(BA) ∩ dom(A2) ∩ dom(B2),

since D is completely dense by Proposition 2.10 and AB −BA ∈ M. Therefore
by Proposition 4.4 (2), we have et(AB−BA) ∈ G for all t > 0. Thanks to the
unitarity, this equality is also valid for t < 0. Thus we obtain [A,B] ∈ g. The
associativity of the algebraic operations follows from the Murray-von Neumann’s
Theorem 2.17.

Now we state the main result of this paper, whose proof is almost completed
in the previous arguments.

Theorem 4.6. Let G be a strongly closed subgroup of the unitary goroup U(M)
of a finite von Neumann algebra M. Then g is a complete topological real Lie
algebra with respect to the strong resolvent topology. Moreover, gC is a complete
topological Lie ∗-algebra.

Proof . The Lie algebraic properties are proved in Lemma 4.5. By Lemma B.2,
we see that g and gC are SRT-closed Lie subalgebras of M. As the algebraic
operations (X,Y ) 7→ X + Y , [X,Y ] are continuous with respect to the strong
resolvent topology and, by Theorem 3.9, the topological properties follow.
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Remark 4.7. It is easy to see that for G = U(M), its Lie algebra u(M) is equal
to {A ∈ M;A∗ = −A} and the exponential map

exp : u(M) → U(M)

is continuous by Lemma B.2 and surjective by the spectral theorem.

Proposition 4.8. Let M1, M2 be finite von Neumann algebras on Hilbert
spaces H1, H2 respectively. Let Gi be a strongly closed subgroup of U(Mi) (i =
1, 2). For any strongly continuous group homomorphism φ : G1 → G2, there
exists a unique SRT-continuous Lie homomorphism Φ : Lie(G1) → Lie(G2)
such that φ(eA) = eΦ(A) for all A ∈ Lie(G1). In particular, if G1 is isomorphic
to G2, then Lie(G1) and Lie(G2) are isomorphic as a topological Lie algebra.

Proof . Let X be an element in Lie(G1). From the strong continuity of φ,
t 7→ φ(etX) is a strongly continuous one-parameter unitary group. Therefore
by Stone theorem, there exists uniquely a skew-adjoint operator Φ(X) on H2

such that φ(etX) = etΦ(X). This equality implies Φ(X) ∈ Lie(G2). Since φ is
strongly continuous, thanks to the Nelson’s theorem, we see that

etΦ([X,Y ]) = φ(et·[X,Y ])

= φ
(
s- lim

n→∞

[
e−

√
t
n Xe−

√
t
n Y e

√
t
n Xe

√
t
n Y
]n)

= s- lim
n→∞

[
φ
(
e−

√
t
n X
)
φ
(
e−

√
t
n Y
)
φ
(
e
√

t
n X
)
φ
(
e
√

t
n Y
)]n

= s- lim
n→∞

[
e−

√
t
n Φ(X)e−

√
t
n Φ(Y )e

√
t
n Φ(X)e

√
t
n Φ(Y )

]n
= et·[Φ(X),Φ(Y )],

for all t > 0. Taking the inverse of unitary operators, the equality etΦ([X,Y ]) =
et[Φ(X),Φ(Y )] is also valid for all t < 0. Therefore from the uniqueness of a
generator of one-parameter group, we have Φ([X,Y ]) = [Φ(X),Φ(Y )]. Similarly,
we can prove that Φ is linear. Thus, Φ is a Lie homomorphism. The SRT-
continuity of Φ follows immediately from the uniform continuity of φ.

As above, G has finite dimensional characters. On the other hand, it also
has an infinite dimensional character.

Proposition 4.9. Let M be a finite von Neumann algebra, then the following
are equivalent.

(1) The exponential map exp : u(M) ∋ X 7→ exp(X) ∈ U(M) is locally
injective. Namely, the restriction of the map onto some SRT-neighborhood
of 0 ∈ M is injective.

(2) M is finite dimensional.

Proof . (2)⇒(1) is trivial. We should only prove that (1)⇒(2).
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Step 1. For each orthogonal family of non-zero projections in M, its car-
dinal number is finite. Indeed if there exists a orthogonal family of non-zero
projections in M whose cardinal number is infinite, we can take a countably
infinite subset of it and write it as {pn}∞n=1. Since pn converges strongly to 0,
it also converges to 0 in the strong resolvent topology. Define xn := 2πipn ̸= 0.
Since the spectral set of pn is {0, 1}, we have exn = 1 for all n ∈ N, while
xn converges to 0 in the strong resolvent topology. This implies that the map
exp(·) is not locally injective, which is a contradiction.

Step 2. M is atomic. Indeed if M is not atomic, the diffuse part of it is
not {0}. Thus we can take an infinite sequence of non-zero mutually orthogonal
projections in M. But this is a contradiction to Step 1..

Step 3. We shall show that M is finite dimensional. By Step 2., M is
spatially isomorphic to the direct sum of a family {Mnλ

(C)}λ∈Λ (nλ ∈ N),
where Mnλ

(C) is the algebra of all nλ × nλ complex matrices. By Step 1., the
cardinal number of Λ is finite. Hence M is finite dimensional.

Remark 4.10. Lie(G) is not always locally convex, whereas most of infinite
dimensional Lie theories, by contrast, assume locally convexity. Indeed, by
Proposition 3.20, u(M) is locally convex if and only if M is atomic.

4.2 Closed Subalgebras of M

Next, we characterize closed *-subalgebras of M.

Proposition 4.11. Let M be a finite non Neumann algebra on a Hilbert space
H, R be a SRT-closed *-subalgebra of M with 1H. Then there exists a unique
von Neumann subalgebra N of M such that R = N.

Remark 4.12. A von Neumann subalgebra of a finite von Neumann algebra is
also finite.

Proof of Proposition 4.11. Put

N := {x ∈ R ; x is bounded}.

Since 0, 1 ∈ N, N is not empty. We first show that N is a von Neumann algebra.
It is clear that N is a subalgebra of M. Thus it is enough to check that N is
closed with respect to the strong* operator topology. Let {xα} be a net in N
converging to x ∈ N with respect to the strong* operator topology. So we have

Re(xα) −→ Re(x), Im(xα) −→ Im(x)

with respect to the strong* operator topology. By Lemma B.1,

Re(xα) −→ Re(x), Im(xα) −→ Im(x)
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with respect to the strong resolvent topology. As Re(xα) ∈ R, Im(xα) ∈ R and
R is SRT-closed, we see that Re(x) ∈ R and Im(x) ∈ R. Therefore

x = Re(x) + iIm(x) ∈ R.

Since x is bounded, x belongs to N. Thus N is a von Neumann algebra.
Next, we show that R ⊂ N. Let A be an element of R. It is enough to

consider the case that A is self-adjoint. Put

CA :=
∞∪

n=1

ran(EA([−n, n])),

where EA(·) is the spectral measure of A. CA is completely dense and all ele-
ments of CA are entire analytic vectors for A. Thus we have for all ξ ∈ CA,

eitA = lim
J→∞

J∑
j=1

(itA)j

j!
ξ.

Therefore the sequence 
J∑

j=1

(itA)j

j!


∞

J=1

⊂ R ⊂ M

converges almost everywhere to eitA. By Proposition 3.14, it converges to eitA

with respect to the strong resolvent topology. Since R is SRT-closed and eitA

is bounded, we get eitA ∈ N. This implies A belongs to N.
On the other hand, by the definition of N, N ⊂ R. Since N is a SRT-closure

of N, we see that N ⊂ R. Thus we conclude that N = R.
Finally, we show that the uniqueness for N. Let L be a von Neumann

subalgebra of M satisfying L = R. Then, we have

N = {x ∈ N ; x is bounded}
= {x ∈ R ; x is bounded}
= {x ∈ L ; x is bounded}
= L.

Thus N is unique.

Corollary 4.13. Let M be a finite non Neumann algebra on a Hilbert space H,
g be a real SRT-closed Lie subalgebra of u(M). Then the following are equivalent:

(1) there exists a von Neumann subalgebra N of M such that g = u(N),

(2) 1H ∈ g and for all A,B ∈ g, i
(
AB +BA

)
∈ g.

In the above case, N is unique.
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Proof . First of all, we shall show (1) ⇒ (2). Since u(N) ⊂ N, we have
i
(
AB +BA

)
∈ N. On the other hand,

u(N) = {X ∈ N ; X∗ = −X}.

Thus i
(
AB +BA

)
∈ u(N) = g. Next we shall show (2) ⇒ (1). By direct

computations, we see that

R :=
{
X + iY ∈ M ; X, Y ∈ g

}
is a SRT-closed *-subalgebra of M. Thus, by Proposition 4.11, there is a von
Neumann subalgebra N of M such that R = N. Then we see that

g = {X ∈ R ; X∗ = −X}
=
{
X ∈ N ; X∗ = −X

}
= u(N).

Finally, we show the uniqueness for N. Let L be a von Neumann subalgebra of
M satisfying u(L) = g. Then, we have

N =
{
X + iY ; X, Y ∈ u(N)

}
=
{
X + iY ; X, Y ∈ u(L)

}
= L

By the uniqueness of Proposition 4.11, we get N = L.

5 Categorical Characterization of M

5.1 Introduction

In this last section we turn the point of view and consider some categorical
aspects of the *-algebra M. Especially, we determine when a *-algebra R of
unbounded operators on a Hilbert space H turns out to be of the form M,
without any reference to von Neumann algebraic structure in advance. As is
well known, there are many examples of *-algebra of unbounded operators that
is not of the form M. For example, many O∗-algebras [19] are not related to
any affiliated operator algebra. Therefore, the appropriate condition to single
out suitable class of *-algebras of unbounded operators are necessary. For this
purpose, we define the category fRng of unbounded operator algebras and com-
pare this category with the category fvN of finite von Neumann algebras and
show that both of them have natural tensor category structures (cf. Appendix
C). Furthermore, we will see that they are isomorphic as a tensor category, in
spite of the fact that the object in fRng is not locally convex in general while
the one in fvN is a Banach space. However, the algebraic structures of M and
M are very similar and in fact they constitute isomorphic categories. To begin
with, let us introduce the structure of tensor category into fRng.
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5.2 fvN and fRng as Tensor Categories

Now we turn to the question of characterizing the category fRng of *-algebras
of unbounded operators which are realized as M, where M is a von Neumann
algebra acting on a Hilbert space. It is well known that the usual tensor product
(M1,M2) 7→ M1⊗M2 of von Neumann algebras and the tensor product of σ-
weakly continuous homomorphisms (ϕ1, ϕ2) 7→ ϕ1 ⊗ ϕ2 makes the category of
finite von Neumann algebras a tensor category. Therefore we define:

Definition 5.1. The category fvN is a category whose objects are pairs (M,H)
of a finite von Neumann algebra M acting on a Hilbert space H and whose
morphisms are σ-weakly continuous unital *-homomorphisms. The unit object
is (C1C,C). The tensor functor is the usual tensor product functor of von
Neumann algebras. The definition of left and right unit constraint functors
might be obvious.

If we are to characterize the objects in fRng, we must settle some subtleties
due to the fact that we cannot use von Neumann algebraic structure from the
outset. However, this difficulty can be overcome thanks to the the notion of the
strong resolvent topology and the resolvent class whose definitions are indepen-
dent of von Neumann algebras (See §3). We define fRng as follows.

Definition 5.2. The category fRng is a category whose objects (R,H) consist
of a SRT-closed subset R of the resolvent class RC (H) on a Hilbert space H
with the following properties:

(1) X + Y and XY are closable for all X, Y ∈ R.

(2) X + Y , αX, XY and X∗ again belong to R for all X, Y ∈ R and
α ∈ C.

(3) R forms a *-algebra with respect to the sum X + Y , the scalar multi-
plication αX, the multiplication XY and the involution X∗.

(4) 1H ∈ R.

The morphism set between (R1,H1) and (R2,H2) consists of SRT-continuous
unital *-homomorphisms from R1 to R2.

Remark 5.3. From the definition of fRng, it is not clear whether, for each
objects in fRng, its algebraic operations are continuous or not. However, the
next lemma shows that R is a complete topological *-algebra.

Lemma 5.4. Let (R,H) be an object in fRng. Then there exists a unique finite
von Neumann algebra M on H such that R = M. Furthermore, M = R∩B(H)
holds.

Proof . Define M := R ∩ B(H). Then one can prove that M is von Neumann
algebra by the same way as in Proposition 4.11.
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We next show that R ⊂ M. Let A ∈ R be a self-adjoint operator. Define
the dense subspace CA according to the spectral decomposition of A:

CA :=
∞∪

n=1

ran(EA([−n, n])),

where
A =

∫
R
λdEA(λ).

Since all ξ ∈ CA is an entire analytic vector for A, we have

eitAξ = lim
n→∞

n∑
k=0

(itA)k

k!
ξ.

Let MA be a von Neumann algebra generated by {EA(J) ; J ∈ B(R)}, where
B(R) is the one dimensional Borel σ-field. Since MA is abelian, it is a finite von
Neumann algebra. It is also clear that

Bn :=
n∑

k=0

(itA)k

k!
∈ (MA) ∩ R

and eitA ∈ MA. Since CA is completely dense for MA, Bn converges almost
everywhere to eitA in (MA). As MA is finite, we see that Bn converges to eitA in
the strong resolvent topology. On the other hand, R is SRT-closed and therefore
eitA ∈ R∩B(H) = M, for all t ∈ R. This implies A ∈ M. For a general operator
B ∈ R, using real-imaginary part decomposition B = Re(B) + iIm(B), we have
B ∈ M.

We shall show that M ⊂ R. Let A ∈ M and A = U |A| be its polar
decomposition, then U ∈ M ⊂ R and |A| ∈ M. Let |A| =:

∫∞
0
λdE|A|(λ) be

the spectral decomposition of |A|. Put

xn :=
∫ n

0

λdE|A|(λ) ∈ M ⊂ R,

then xn converges to |A| in the strong resolvent topology. Thus |A| ∈ R.
Therefore A = U |A| ∈ R.

The finiteness of M follows immediately from Theorem 2.21.

Note that for each finite von Neumann algebra M on a Hilbert space H,
(M,H) is an object in fRng.

The main result of this section is the next theorem.

Theorem 5.5. The category fRng is a tensor category. Moreover, fRng and
fvN are isomorphic as a tensor category.

To prove this theorem, we need many lemmata. The proof is divided into
several steps.
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Next, we will define the tensor product R1⊗R2 of objects Ri (i = 1, 2)
in fRng (cf. Definition 5.9). For this purpose, let us review the notion of the
tensor product of closed operators. Let A,B be densely defined closed operators
on Hilbert spaces H, K, respectively. Let A⊗0 B be an operator defined by

dom(A⊗0 B) := dom(A) ⊗alg dom(B),
(A⊗0 B)(ξ ⊗ η) := Aξ ⊗Bη, ξ ∈ dom(A), η ∈ dom(B).

It is easy to see that A⊗0 B is closable and denote its closure by A⊗B.

Lemma 5.6. Let M1, M2 be finite von Neumann algebras acting on Hilbert
spaces H1, H2, respectively. Let A ∈ M1 and B ∈ M2. Then we have A⊗B ∈
M1⊗M2.

Proof . Let xi ∈ M′
i (i = 1, 2). For any ξ ∈ dom(A) and η ∈ dom(B), we have

(x1 ⊗ x2)(ξ ⊗ η) ∈ dom(A⊗0 B) and

{(x1 ⊗ x2)(A⊗0 B)}(ξ ⊗ η) = {(A⊗0 B)(x1 ⊗ x2)}(ξ ⊗ η).

Therefore, by the linearity, we have (x1 ⊗ x2)(A ⊗0 B) ⊂ (A ⊗0 B)(x1 ⊗ x2).
Since (M1⊗M2)′ = M′

1⊗M′
2 is the strong closure of M′

1 ⊗alg M′
2, we have

y(A⊗0 B) ⊂ (A⊗B)y, for all y ∈ (M1⊗M2)′.

Therefore by the limiting argument, we have y(A⊗B) ⊂ (A⊗B)y, which implies
A⊗B is affiliated with M1⊗M2.

Lemma 5.7. Let A,B be densely defined closed operators on Hilbert spaces
H, K with cores DA,DB respectively. Then D := DA ⊗alg DB is a core of
A⊗B.

Proof . From the definition of A ⊗ B, for any ζ ∈ dom(A⊗B) and for any
ε > 0, there exists some ζε =

∑n
i=1 ξi ⊗ ηi ∈ dom(A) ⊗alg dom(B) such that

||ζ − ζε|| < ε, ||(A⊗B)ζ − (A⊗B)ζε|| < ε.

Put
C := max

1≤i≤n
{||ξi||, ||Aξi||} + 1 > 0.

Since DB is a core of B, there exists ηε
i ∈ DB such that

||ηi − ηε
i || <

ε

nC
, ||Bηi −Bηε

i || <
ε

nC
.

Put
C ′ := max

1≤i≤n
{||ηε

i ||, ||Bηε
i ||} + 1 > 0.

Similarly, since DA is a core of A, there exists ξε
i ∈ DA such that

||ξi − ξε
i || <

ε

nC ′ , ||Aξi −Aξε
i || <

ε

nC ′ .
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Define ζε :=
n∑

i=1

ξε
i ⊗ ηε

i ∈ D. Then we have

||ζ − ζε|| ≤ ||ζ − ζε|| + ||ζε − ζε||

≤ ε+
n∑

i=1

||ξi ⊗ ηi − ξε
i ⊗ ηε

i ||

≤ ε+
n∑

i=1

||ξi ⊗ ηi − ξi ⊗ ηε
i || +

n∑
i=1

||ξi ⊗ ηε
i − ξε

i ⊗ ηε
i ||

≤ ε+
n∑

i=1

||ξi||||ηi − ηε
i || +

n∑
i=1

||ξi − ξε
i ||||ηε

i ||

≤ ε+
n∑

i=1

C · ε

nC
+

n∑
i=1

ε

nC ′ · C
′

= 3ε. · · · (∗)

Furthermore,

||(A⊗B)ζ − (A⊗B)ζε||
≤ ||(A⊗B)ζ − (A⊗B)ζε|| + ||(A⊗B)ζε − (A⊗B)ζε||

≤ ε+
n∑

i=1

||Aξi ⊗Bηi −Aξε
i ⊗Bηε

i ||

≤ ε+
n∑

i=1

||Aξi ⊗Bηi −Aξi ⊗Bηε
i || +

n∑
i=1

||Aξi ⊗Bηε
i −Aξε

i ⊗Bηε
i ||

≤ ε+
n∑

i=1

||Aξi||||Bηi −Bηε
i || +

n∑
i=1

||Aξi −Aξε
i ||||Bηε

i ||

≤ ε+
n∑

i=1

C · ε

nC
+

n∑
i=1

ε

nC ′ · C
′

= 3ε · · · (∗∗)

(∗) and (∗∗) implies D is a core of A⊗B.

Next lemma says that the tensor product of algebras of affiliated operators
has a natural *-algebraic structures.

Lemma 5.8. Let M, N be finite von Neumann algebras acting on Hilbert spaces
H, K respectively. Let A,C ∈ M, B,D ∈ N. Then we have

(1) (A⊗B)(C ⊗D) = AC ⊗BD.

(2) (A⊗B)∗ = A∗ ⊗B∗.

(3) A+ C ⊗B +D = A⊗B +A⊗D + C ⊗B + C ⊗D.
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(4) λ(A⊗B) = λA⊗B = A⊗ λB (λ ∈ C).

Proof . (1). From Proposition 2.13, D1 := {ξ ∈ dom(C);Cξ ∈ dom(A)} is a
core of AC and D2 := {η ∈ dom(D);Dη ∈ dom(B)} is a core of BD. Define
D := D1 ⊗alg D2, which is a core of AC ⊗BD. Since

dom((A⊗B)(C ⊗D)) ⊃ dom((A⊗B)(C ⊗D)) ⊃ D,

it holds that for any ζ =
n∑

i=1

ξi ⊗ ηi ∈ D, we have

(A⊗B)(C ⊗D)ζ =
n∑

i=1

ACξi ⊗BDηi = (AC ⊗BD)
n∑

i=1

ξi ⊗ ηi

= (AC ⊗BD)ζ.

Therefore (A⊗B)(C ⊗D) ⊃ (AC ⊗BD)|D. Since D is a core of AC ⊗BD, we
have (by taking the closure)

(A⊗B)(C ⊗D) ⊃ AC ⊗BD.

Since both operators belong to M⊗N by Lemma 5.6, we have

(A⊗B)(C ⊗D) = AC ⊗BD.

by Proposition 2.14(2).
(2). It is easy to see that (A⊗B)∗ ⊃ A∗ ⊗B∗. Since (A⊗B)∗ and A∗ ⊗B∗

are closed operators belonging to M⊗N, we have (A ⊗ B)∗ = A∗ ⊗ B∗ by
Proposition 2.14 (2).

(3) and (4) can be easily shown in a similar manner as in (1).

Now we shall define the tensor product R1⊗R2 of (R1,H1) and (R2,H2)
in Obj(fRng). Let Mi be finite von Neumann algebras on Hi such that Ri =
Mi (i = 1, 2), respectively (cf. Lemma 5.4). From Lemma 5.8, the linear space
R1 ⊗alg R2 spanned by {A1 ⊗ A2 ; Ai ∈ Ri, i = 1, 2} is a *-algebra. Since
R1 ⊗alg R2 is a subset of M1⊗M2, it belongs to RC (H1 ⊗H2). Therefore:

Definition 5.9. Under the above notations, we define R1⊗R2 to be the SRT-
closure (for H1 ⊗H2) of R1 ⊗alg R2.

Lemma 5.10. Let Ri (i = 1, 2) be as above. Then R1⊗R2 is also an object in
fRng. More precisely, if Ri = Mi, where Mi is a finite von Neumann algebra
(i = 1, 2), then M1⊗M2 = M1⊗M2.

Proof . M1⊗M2 ⊂ M1⊗M2: Let Ti ∈ Mi (i = 1, 2). Then we can show that
T1 ⊗ T2 ∈ M1⊗M2 by Lemma 5.6. Therefore by the linearity, we obtain

M1 ⊗alg M2 ⊂ M1⊗M2.
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As the left hand side is SRT-closed in RC (H1 ⊗ H2), we have M1⊗M2 ⊂
M1⊗M2.
M1⊗M2 ⊂ M1⊗M2: It is clear that M1⊗algM2 ⊂ M1⊗M2. By the Kaplansky
density theorem and Lemma 3.5, we have M1⊗M2 ⊂ M1⊗M2. By taking the
SRT-closure, we obtain M1⊗M2 ⊂ M1⊗M2.

The above Lemma says that (R1⊗R2,H1 ⊗H2) is again an object in fRng.
Next, we discuss the extension of morphisms in fvN to ones in fRng. It

requires some steps.

Lemma 5.11. Let (M1,H1), (M2,H2) be finite von Neumann algebras. Then
the mapping

(M1, SRT ) × (M2, SRT ) −→ (M1⊗M2, SRT ),
(A,B) 7−→ A⊗B,

is continuous.

Proof . Let {Aα}α ⊂ M1, {Bα}α ⊂ M2 be SRT-converging nets and A ∈
M1, B ∈ M2 be their limits respectively. We should only show that the net
{Aα ⊗Bα}α converges to A⊗B in the strong resolvent topology.

Step 1. The above claim is true if all Aα, Bα, A and B are self-adjoint.
Indeed, it is easy to see that

eit(Aα⊗1) = eitAα ⊗ 1 → eitA ⊗ 1 = eit(A⊗1),

so that, by the limiting argument and Themrem 3.9, the SRT-convergence of
Aα ⊗ 1 to A ⊗ 1 follows. Similarly 1 ⊗ Bα converges to 1 ⊗ B in the strong
resolvent topology. Therefore, by Lemma 5.8 and the SRT-continuity of the
multiplication, we have

Aα ⊗Bα = (Aα ⊗ 1) (1 ⊗Bα) → (A⊗ 1) (1 ⊗B) = A⊗B.

Step 2. In a general case, by Lemma 5.8, we obtain

Aα ⊗Bα =
(
Re(Aα) + iIm(Aα)

)
⊗
(
Re(Bα) + iIm(Bα)

)
= Re(Aα) ⊗ Re(Bα) + iRe(Aα) ⊗ Im(Bα)

+iIm(Aα) ⊗ Re(Bα) − Im(Aα) ⊗ Im(Bα)

→ Re(A) ⊗ Re(B) + iRe(A) ⊗ Im(B)

+iIm(A) ⊗ Re(B) − Im(A) ⊗ Im(B)
= A⊗B.

Hence the proof of Lemma 5.11 is complete.
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Lemma 5.12. Let M be a finite von Neumann algebra on a Hilbert space H
and e is a projection in M′, then Me is also finite.

Proof . Easy.

Lemma 5.13. Let A be a densely defined closed operator on a Hilbert space
H, K be a closed subspace of K such that PKA ⊂ APK. Then the operator
B := A|dom(A)∩K is a densely defined closed operator on K.

Proof . This is a straightforward verification.

The next proposition guarantees the existence and the uniqueness of the
extension of morphisms in fvN to the morphisms in fRng. Note that the claim
is not trivial, because many σ-weakly continuous linear mappings between finite
von Neumann algebras cannot be extended SRT-continuously to the algebra of
affiliated operators. Indeed, we can not extend any σ-weakly continuous state
on M SRT-continuously on M if M is diffuse.

Proposition 5.14. Let M1,M2 be finite von Neumann algebras on Hilbert
spaces H1, H2 respectively.

(1) For each SRT-continuous unital *-homomorphism Φ : M1 → M2, the
restriction φ of Φ onto M1 is a σ-weakly continuous unital *-homomorphism
from M1 to M2.

(2) Conversely, for each σ-weakly continuous unital *-homomorphism φ :
M1 → M2, there exists a unique SRT-continuous unital *-homomorphism
Φ : M1 → M2 such that Φ|M1 = φ.

Proof . (1). We have to prove that Φ maps all bounded operators to bounded
operators. For any u ∈ U(M1) and ξ ∈ dom(Φ(u)∗Φ(u)), we have

||Φ(u)ξ||2 = ⟨ξ,Φ(u)∗Φ(u)ξ⟩ = ⟨ξ,Φ(u∗u)ξ⟩
= ⟨ξ,Φ(1)ξ⟩ = ||ξ||2.

Since dom(Φ(u)∗Φ(u)) is a (completely) dense subspace, Φ(u) ∈ M2 and Φ(u)
is an isometry. Therefore the finiteness of M2 implies Φ(u) ∈ U(M2). Thus, we
see that Φ(U(M1)) ⊂ U(M2). Since any element in M1 is a linear combination
of U(M1), Φ maps M1 into M2. To show that φ is σ-weakly continuous, it is
sufficient to prove the (σ-) strong continuity on the unit ball, because it is a
homomorphism. Since the strong resolvent topology coincides with the strong
operator topology on the closed unit ball by Lemma 3.5, φ is strongly continuous
on the closed unit ball. Therefore φ is a σ-weakly continuous homomorphism.

(2). Regard φ as a composition of a surjection φ′ : M1 → φ(M1) and the
inclusion map ι : φ(M1) ↪→ M2. Note that the σ-weak continuity of φ implies
φ(M1) is a von Neumann algebra. Since φ′ is surjective, from Theorem IV.5.5
of [21], there exists a Hilbert space K, a projection e′ ∈ P (M′

1⊗B(K)) and a
unitary operator U : e′(H1 ⊗K) ∼→ H2 such that

φ′(x) = U(x⊗ 1K)e′U∗
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for all x ∈ M1. Now we want to define the extension Φ′ of φ′ to M1 → φ(M1).
Then we define Φ′ as follows:

Φ′(X) = U(X ⊗ 1K)e′U∗, X ∈ M1.

M1

·⊗1

��
	

Φ′
//_________ φ(M1)

M1 ⊗ C1K
reduction by e′

// (M1 ⊗ C1K)e′

U ·U∗

OO

More precisely, we define

Z = (X ⊗ 1)e′ := e′(X ⊗ 1)|ran(e′)∩dom(X⊗1), Φ′(X) := UZU∗.

We have Z ∈ (M1 ⊗ C1K)e′ . Indeed, since e′ commutes with M ⊗ C1K, it
reduces the operator X⊗1 and therefore by Lemma 5.13, (X⊗1)e′ is a densely
defined closed operator on ran(e′). Since (Nf )′ = (N′)f for each von Neumann
algebra N and f ∈ P (N′), the affiliation property is manifest. In addition, by
Lemma 5.12, (M ⊗ C1K)e′ is a finite von Neumann algebra. Next, we prove
the map M ∋ X 7→ (X ⊗ 1)e′ ∈ (M1 ⊗ C1K)e′ is a SRT-continuous unital *-
homomorphism. The continuity follows from Lemma 5.11. To prove that it is a
*-homomorphism, we have to show that for X, Y ∈ M,

((X + Y ) ⊗ 1)e′ = (X ⊗ 1)e′ + (Y ⊗ 1)e′ ,

(XY ⊗ 1))e′ = (X ⊗ 1)e′(Y ⊗ 1)e′ ,

((X ⊗ 1)e′)∗ = (X∗ ⊗ 1)e′ .

To prove the first equality, by Lemma 5.8, we see that(
(X + Y ) ⊗ 1

)
e′ =

(
X ⊗ 1 + Y ⊗ 1

)
e′

⊃ (X ⊗ 1)e′ + (Y ⊗ 1)e′ .

Taking the closure, by Lemma 2.14, we have(
(X + Y ) ⊗ 1

)
e′ = (X ⊗ 1)e′ + (Y ⊗ 1)e′ .

The others are proved in a similar manner. Next, by Lemma 3.19, the correspon-
dence M1 ∋ X 7→ U(X ⊗ 1K)e′U∗ ∈ φ(M1) ⊂ M2 defines a SRT-continuous
unital *-homomorphism Φ′ which is clearly an extension of φ′. Therefore by
considering Φ := ι′ ◦ Φ′ : M1 → M2 is the desired extension of φ, where
ι′ : Φ′(M1) ↪→ M2 is a mere inclusion. Finally, we prove the uniqueness of the
extension. Let Ψ be another SRT-continuous unital *-homomorphism such that
Ψ|M1 = φ. Let X ∈ M1. Then from the SRT-density of M1 in M1, there exists
a sequence {xn} ⊂ M1 such that lim

n→∞
xn = X in the strong resolvent topology.

Therefore we have

Ψ(X) = lim
n→∞

Ψ(xn) = lim
n→∞

φ(xn)

= lim
n→∞

Φ(xn) = Φ(X).
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The next lemmata, together with Lemma 5.10, implies that fRng is a tensor
category.

Lemma 5.15. Let Ri, Si (i = 1, 2) be objects in Obj(fRng). If Ψ1 : R1 → S1,
Ψ2 : R2 → S2 are SRT-continuous unital *-homomorphisms, then there exists
a unique SRT-continuous unital *-homomorphism Ψ : R1⊗R2 → S1⊗S2 such
that Ψ(A ⊗ B) = Ψ1(A) ⊗ Ψ2(B), for all A ∈ R1 and B ∈ R2. We define
Ψ1 ⊗ Ψ2 to be the map Ψ.

Proof . Let ψi be the restrictions of Ψi onto Mi (i = 1, 2). Then ψi is a σ-weakly
continuous unital *-homomorphism from Mi to Ni, where Ni = Si. Thus
there exists a σ-weakly continuous unital *-homomorphism ψ from M1⊗M2 to
N1⊗N2 such that

ψ(x⊗ y) = ψ1(x) ⊗ ψ2(y), x ∈ M1, y ∈ M2.

By Proposition 5.14, there exists a SRT-continuous unital *-homomorphism
Ψ from R1⊗R2 to S1⊗S2 whose restriction to M1⊗M2 is equal to ψ. For
all A ∈ R1, B ∈ R2, we can take sequences {xk}∞k=1 ⊂ M1, {yl}∞l=1 ⊂ M2

converging to A, B in the strong resolvent topology, respectively. Therefore, by
Proposition 5.11, we have

Ψ(A⊗B) = lim
k→∞

Ψ(xk ⊗ yk) = lim
k→∞

ψ1(xk) ⊗ ψ2(yk)

= lim
k→∞

Ψ1(xk) ⊗ Ψ2(yk) = Ψ1(A) ⊗ Ψ2(B).

Lemma 5.16. Let (Ri,Hi) (i = 1, 2, 3) be objects in fRng. Then we have a
unique *-isomorphism which is homeomorphic with respect to the strong resol-
vent topology:

(R1⊗R2)⊗R3
∼= R1⊗(R2⊗R3)

(X1 ⊗X2) ⊗X3 7→ X1 ⊗ (X2 ⊗X3), for all Xi ∈ Ri

We denote the map as αR1,R2,R3 .

Proof . Let Mi be a finite von Neumann algebra such that Ri = Mi (i = 1, 2, 3).
Let α0 be the *-isomorphism from (M1⊗M2)⊗M3 onto M1⊗(M2⊗M3) defined
by (x1 ⊗ x2) ⊗ x3 7→ x1 ⊗ (x2 ⊗ x3). By Lemma 5.10, both (M1⊗M2)⊗M3

and M1⊗(M2⊗M3) are generated by (M1⊗M2)⊗M3 and M1⊗(M2⊗M3), re-
spectively. Therefore by Proposition 5.14, α0 can be extended to the desired
*-isomorphism αR1,R2,R3 .

Proposition 5.17. fRng is a tensor category.

Proof . We define the tensor product ⊗ : fRng × fRng → fRng by

(R1,H1) ⊗ (R2,H2) := (R1⊗R2,H1 ⊗H2)
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and for two morphisms Ψi : (Ri,Hi) → (Si,Ki) (i = 1, 2), define Ψ1 ⊗ Ψ2

according to Lemma 5.15. The unit object is I := (C1C,C). The associative
constraint αR1,R2,R3 is the map defined in Lemma 5.16. The naturality of
αR1,R2,R3 follows from Proposition 5.14. The definition of left (resp. right)
constraint λ· (resp. ρ·) might be clear. Now it is a routine task to verify that
the data (fRng,⊗, I, α, λ, ρ) constitutes a tensor category.

Now we will prove that fvN is isomorphic to fRng as a tensor category.
Define two functors E : fvN→ fRng, F : fRng→fvN.

Definition 5.18. Define two correspondences E , F as follows:

(1) For each object (M,H) in fvN,

E(M,H) := (M,H),

which is an object in fRng. For each morphism φ : M1 → M2 in fvN,
E(φ) : M1 → M2 is the unique SRT-continuous extension of φ to M1, so
that E(φ) is a morphism in fRng by Proposition 5.14.

(2) For each object (R,H) in fRng,

F(R,H) := (R ∩ B(H),H).

For each morphism Φ : R1 → R2 in fRng, F(Φ) := Φ|R1∩B(H), which is
a morphism in fvN by Proposition 5.14.

Lemma 5.19. E and F are tensor functors.

Proof . We define the tensor functor (E , h1, h2), where

h1 : (C1C,C) id−→ (C1C,C) = E((C1C,C)),

h2((M1,H1), (M2,H2)) : M1⊗M2
id−→ M1⊗M2,

can be taken to be identity morphisms thanks to Lemma 5.15. It is clear that
E(1M) = 1M, where 1M and 1M are identity map of M and M, respectively.
Let M1

φ1−→ M2
φ2−→ M3 be a sequence of morphisms in fvN. Let x ∈ M1. It

holds that

E(φ2 ◦ φ1)(x) = (φ2 ◦ φ1)(x) = E(φ2)(φ1(x))
= E(φ2)(E(φ1)(x)) = (E(φ2) ◦ E(φ1)) (x).

By Proposition 5.14 (2), we have E(φ2 ◦ φ1) = E(φ2) ◦ E(φ1). Therefore E is a
functor. The conditions for (E , h1, h2) to be a tensor functor are described as
the following three diagrams, the commutativity of which are almost obvious
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by Proposition 5.14 and “∼” symbols are followed from Lemma 5.16.

(M1⊗M2)⊗M3

	

id

��

∼ // M1⊗(M2⊗M3)

id

��
(M1⊗M2)⊗M3

id

��

M1⊗(M2⊗M3)

id

��
(M1⊗M2)⊗M3

∼ // M1⊗(M2⊗M3)

C⊗M

id

��
	

1⊗X 7→X // M M⊗C

id

��
	

X⊗1 7→X // M

C⊗M
id // C⊗M

OO

M⊗C
id // M⊗C

OO

Thus, (E , h1, h2) is a tensor functor. The proof that (F , h′1, h′2) is a tensor
functor, including the definitions of h′1, h

′
2 are easier.

Now we are able to prove the main theorem easily.

Proof of Theorem 5.5. We will show that E and F are the inverse tensor
functor of each other. By Lemma 5.19, they are tensor functors. Let (Mi,Hi)
(i = 1, 2) be in Obj(fvN). Let φ : M1 → M2 be a morphism in fvN. Proposition
5.14 implies φ = (F ◦ E)(φ). By Proposition 5.4, we have

(Mi,Hi) = (Mi ∩ B(Hi),Hi) = (F ◦ E)(Mi,Hi),

therefore F ◦ E = idfvN.
Let (Ri,Hi) (i = 1, 2) be objects in fRng, Φ : (R1,H1) → (R2,H2) be a

morphism in fRng. By Proposition 5.4, we have Ri = Mi for a unique (Mi,Hi)
in Obj(fvN). Similarly, we can prove that

(Ri,Hi) = (E ◦ F)(Ri,Hi), (E ◦ F)(Φ) = Φ,

hence E ◦ F = idfRng.

Finally, we remark the correspondence of factors in fvN and ones in fRng.
Recall that, for a *-algebra A , its center Z(A ) is defined by

Z(A ) := {x ∈ A ; xy = yx, for all y ∈ A } .

Z(A ) is also a *-algebra.

Proposition 5.20. Let M be a finite von Neumann algebra on H. The following
conditions are equivalent.

(1) The center Z(M) of M is trivial. I.e., Z(M) = C1H.
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(2) The center Z(M) of M is trivial.

Proof . (1) ⇒ (2) is evident.
(2) ⇒ (1). Let A ∈ M be a self-adjoint element of the center Z(M). For

any u ∈ U(M′), we have uAu∗ = A. Therefore from the unitary covariance of
the functional calculus, it holds that u(A− i)−1u∗ = (A− i)−1 and (A− i)−1 ∈
M∩M′ = C1. Hence (A−i)−1 = α1 for some α ∈ C. By operating A−i on both
sides, we see that A ∈ C1. For a general closed operator A ∈ Z(M), we know
that there is a canonical decomposition A = Re(A) + i Im(A). Since A belongs
to Z(M), Re(A), Im(A) also belong to Z(M) = C1. Therefore A ∈ C1.

A Direct Sums of Operators

We recall the theory of direct sums of operators and show some facts. We do
not give proofs for well-known facts. See e.g., [2].

Let {Hα}α be a family of Hilbert spaces and H =
⊕

α Hα be the direct sum
Hilbert space of {Hα}α, i.e.,

H :=

{
ξ = {ξ(α)}α ; ξ(α) ∈ Hα,

∑
α

∥ξα∥2 <∞.

}
.

For a subspace Dα of Hα, we set

⊕̂
α
Dα :=

{
ξ = {ξ(α)}α ∈ H ; ξ(α) ∈ Dα, ξ

(α) = 0 except finitely many α.
}
.

It is known that
⊕̂

αDα is dense in H whenever each Dα is dense in Hα.
Next we recall the direct sum of unbounded operators. Let Aα be a (possibly

unbounded) linear operator on Hα. We define the liner operator A = ⊕αAα on
H as follows:

dom(A) :=

{
ξ = {ξ(α)}α ∈ H ; ξ(α) ∈ dom(Aα),

∑
α

∥Aαξ
α∥2 <∞.

}
,

(Aξ)(α) := Aαξ
(α), ξ ∈ dom(A).

A is said to be the direct sum of {Aα}α. It is easy to see that if each Aα is a
densely defined closed operator then so is A. In this case,

A∗ = ⊕αAα
∗

holds. The following lemmata are well-known.

Lemma A.1. Assume the above notations.
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(1) A ∈ B(H) if and only if each Aα is in B(Hα) and supα ∥Aα∥ < ∞.
In this case,

∥A∥ = sup
α

∥Aα∥

holds.

(2) A is unitary if and only if each Aα is unitary.

(3) A is projection if and only if each Aα is projection. In this case,

ran(A) =
⊕

α

ran(Aα)

holds.

Lemma A.2. Assume that each Aα is closed. Let Dα be a core of Aα. Then⊕̂
αDα is a core of A.

Lemma A.3. Assume that each Aα is (possibly unbounded) self-adjpint.

(1) A is self-adjoint.

(2) For any complex valued Borel function f on R,

f(A) = ⊕αf(Aα)

holds.

Finally, we study the direct sum of algebras of operators. Let Sα be a set
of densely defined closed operators on Hα. Put⊕

α

Sα := {⊕αAα ; Aα ∈ Sα} .

Note that each element in
⊕

α Sα is a densely defined closed operator on H =⊕
α Hα. If each Sα consists only of bounded operators, we also define

b⊕
α

Sα :=
{
⊕αxα ; xα ∈ Sα, sup

α
∥xα∥ <∞.

}
.

By Lemma A.1, each element in
⊕b

α Sα is bounded. The following is also
well-known.

Lemma A.4. Let Mα be a von Neumann algebra acting on Hα, and put

M :=
b⊕
α

Mα.
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Then M is von Neumann algebra acting on H =
⊕

α Hα. The sum, the scalar
multiplication, the multiplication and the involution are given by

(⊕αxα) + (⊕αyα) = ⊕α (xα + yα) ,
λ (⊕αxα) = ⊕α (λxα) , for all λ ∈ C,

(⊕αxα) (⊕αyα) = ⊕α (xαyα) ,
(⊕αxα)∗ = ⊕α (xα

∗) .

Furthermore the followings hold.

(1) M′ =
⊕b

α M′
α.

(2) M is a finite von Neumann algebra if and only if each Mα is finite von
Neumann algebra.

We call
⊕b

α Mα the direct sum von Neumann algebra of {Mα}α.

B Fundamental Results of SRT

Let H be a Hilbert space. The following lemmata are well-known [18]:

Lemma B.1. Let {Aλ}λ∈Λ be a net of self-adjoint operators on H, A be a
self-adjoint operator on H, and D be a dense subspace of H which is a core of
A and D ⊂

∩
λ∈Λ dom(Aλ)∩dom(A). Suppose for all ξ ∈ D, limλ∈ΛAλξ = Aξ,

then Aλ converges to A in the strong resolvent topology.

Lemma B.2. Let {An}∞n=1 be a sequence of self-adjoint operators on H, A be
a self-adjoint operator on H. Then An converges to A in the strong resolvent
topology if and only if eitAn converges strongly to eitA for all t ∈ R. In this case,
the strong convergence of eitAn to eitA is uniform on every finite interval of t.

Lemma B.3. Let {An}∞n=1 be a sequence of self-adjoint operators on H, A be
a self-adjoint operator on H. Suppose An converges to A in the strong resolvent
topology, then EAn((a, b)) converges strongly to EA((a, b)) for each a, b ∈ R with
a < b and a, b /∈ σp(A), where σp(A) is the set of point spectra of A.

Lemma B.4. Let {An}∞n=1 be a sequence of self-adjoint operators on H, A be
a self-adjoint operator on H. Suppose An converges to A in the strong resolvent
topology, then for all complex valued bounded continuous function f on R, f(An)
converges strongly to f(A).

Lemma B.5. Let {xλ}λ∈Λ be a net of bounded self-adjoint operators on H, x
be a bounded self-adjoint operator on H. Suppose that

sup
λ∈Λ

∥xλ∥ <∞,

and xλ converges to x in the strong resolvent topology, then xλ converges strongly
to x.
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C Tensor Categories

We briefly review the definition of tensor categories. For more details about
category theory, see MacLane [9] (we follow the style in Kassel [8], Chapter XI).

Definition C.1. Let C ,C ′ be categories, F ,G be functors from C to C ′. A
natural transformation θ : F → G is a function which assigns to each object
A in C a morphism θ(A) : F(A) → G(A) of C ′ in such a way that for every
morphism f : A→ B in C , the following diagram commutes:

F(A)

�F(f)

��

θ(A) // G(A)

G(f)

��
F(B)

θ(B) // G(B)

If θ(A) is an invertible morphism for every A, we call θ a natural isomorphism.

Definition C.2. A tensor category (C ,⊗, I, α, λ, ρ) is a category C equipped
with

(1) a bifunctor ⊗ : C × C → C called a tensor product2,

(2) an object I in C called a unit object,

(3) a natural isomorphism α : ⊗(⊗ × 1C )3→ ⊗(1C × ⊗) called an asso-
ciativity constraint.

(3) means for any objects A,B,C in C , there is an isomorphism αA,B,C : (A⊗
B) ⊗ C → A⊗ (B ⊗ C) such that the diagram

(A⊗B) ⊗ C

�(f⊗g)⊗h

��

αA,B,C // A⊗ (B ⊗ C)

f⊗(g⊗h)

��
(A′ ⊗B′) ⊗ C ′αA′,B′,C′

// A′ ⊗ (B′ ⊗ C ′)

commutes for all morphisms f, g, h in C .

(4) a natural isomorphism λ : ⊗(I×1C )4→ 1C (resp. ρ : ⊗(1C ×I) → 1C )
called a left (resp. right) unit constraint with respect to I.

2This implies (f ′⊗g′)◦(f⊗g) = (f ′◦f)⊗(g′◦g) for all morphisms in C , and 1A⊗1B = 1A⊗B

for all objects in C .
3⊗(⊗ × 1C ) is the composition of the functors ⊗ × 1C : (C × C ) × C → C × C and

⊗ : C × C → C .
4I × 1C is the functor from C to C × C given by A 7→ (I, A) for all objects in C and

f 7→ (1I , f) for all morphisms in C .
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(4) means for any object A in C , there is an isomorphism λA : I⊗A→ A (resp.
ρA : A⊗ I → A) such that the following two diagrams commute:

I ⊗A

�1I⊗f

��

λA // A

f

��

A⊗ I

�f⊗1I

��

ρA / / A

f

��
I ⊗A′ λA′ // A′ A′ ⊗ I

ρA′ // A′

for each morphism f : A→ A′ in C . These functors and natural isomorphisms
satisfy the Pentagon Axiom and the Triangle Axiom. Namely, for all objects
A,B,C and D, the following diagrams commute:

(A⊗ (B ⊗ C)) ⊗D

�

αA,B⊗C,D

))TTTTTTTTTTTTTTT

((A⊗B) ⊗ C) ⊗D

αA⊗B,C,D

��

αA,B,C⊗1D

33hhhhhhhhhhhhhhhhhh
A⊗ ((B ⊗ C) ⊗D)

1A⊗αB,C,D

��
(A⊗B) ⊗ (C ⊗D)

αA,B,C⊗D

// A⊗ (B ⊗ (C ⊗D))

(A⊗ I) ⊗B

ρA⊗1B &&MMMMMMMMMM

�

αA,I,B // A⊗ (I ⊗B)

1A⊗λBxxqqqqqqqqqq

A⊗B

Definition C.3. Let (C ,⊗, I, α, λ, ρ), (C ′,⊗, I ′, α′, λ′, ρ′) be tensor categories.

(1) A triple (F , h1, h2) is called a tensor functor from C to C ′ if F :
C → C ′ is a functor, h1 is an isomorphism I ′

∼→ F(I) and h2 is a natural
isomorphism ⊗(F × F)5 ∼→ F⊗, and they satisfy

(F(A) ⊗F(B)) ⊗F(C)

	

αF(A),F(B),F(C)//

h2(A,B)⊗1F(C)

��

F(A) ⊗ (F(B) ⊗F(C))

1F(A)⊗h2(B,C)

��
F(A⊗B) ⊗F(C)

h2(A⊗B,C)

��

F(A) ⊗F(B ⊗ C)

h2(A,B⊗C)

��
F((A⊗B) ⊗ C)

F(αA,B,C)
// F(A⊗ (B ⊗ C))

5⊗(F × F) is a functor C × C → C which assings F(A) ⊗F(B) for each object (A, B) in
C × C and F(f) ⊗F(g) for each morphism (f, g) in C × C
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I ′ ⊗F(A)

	h1⊗1F(A)

��

λ′
F(A) // F(A) F(A) ⊗ I ′

	1F(A)⊗h1

��

ρ′
F(A) // F(A)

F(I) ⊗F(A)
h2(I,A)

// F(I ⊗A)

F(λA)

OO

F(A) ⊗F(I)
h2(A,I)

// F(A⊗ I)

F(ρA)

OO

for all objects A,B,C in C .

(2) A natural tensor transformation η : (F , h1, h2) → (F ′, h′1, h
′
2) between

tensor functors from C to C ′ is a natural transformation F → F ′ such
that the following diagrams commute:

F(I)

η(I)

��

F(A) ⊗F(B)

	η(A)⊗η(B)

��

h2(A,B) // F(A⊗B)

η(A⊗B)

��

I 	
h1

=={{{{{{{{

h′
1

!!CC
CC

CC
CC

F ′(I) F ′(A) ⊗F ′(B)
h′
2(A,B) // F ′(A⊗B)

for all objects A,B in C . If η is also a natural isomorphism, it is called a
natural tensor isomorphism.

(3) A tensor equivalence between tensor categories C ,C ′ is a tensor functor
F : C → C ′ such that there exists a tensor functor F ′ : C ′ → C and
natural tensor isomorphisms η : 1C ′

∼→ F ◦ F ′ and θ : F ′ ◦ F ∼→ 1C . If
η and θ can be taken to be identity transformations, then F is called a
tensor isomorphism and we say C is isomorphic to C ′ as a tensor category.

Acknowledgement

The authors would like to express their sincere thanks to Professor Asao Arai at
Hokkaido University, Professor Izumi Ojima at Kyoto University for the fruitful
discussions, insightful comments and encouragements. H.A. also thanks to his
colleagues: Mr. Ryo Harada, Mr. Takahiro Hasebe, Mr. Kazuya Okamura
and Mr. Hayato Saigo for their useful comments and discussions during the
seminar. Y.M. also thanks to Mr. Yutaka Shikano for his professional advice
about LaTeX. Finally, the authors thank to Professor Izumi Ojima for his careful
proofreading and suggestions again.

References

[1] S. Albeverio, R. Høegh-Krohn, J. Marion, D. Testard and B. Torresani,
Noncommutative Distributions. Unitary Representation of Gauge Groups
and Algebras, Monogr. Textbooks Pure Appl. Math., 175, Marcel Dekker,
Inc., New York, 1993.

54



[2] A. Arai, Fock Spaces and Quantum Fields, Nippon-Hyouronsha, Tokyo,
2000 (in Japanese).

[3] A. Banyaga, The Structure of Classical Diffeomorphism Groups, Math.
Appl., 400, Kluwer Academic Publishers, Dordrecht, 1997.

[4] T. Fack and H. Kosaki, Generalized s-numbers of τ -measurable operators,
Pacific J. Math., 123 (1986), 260–300.

[5] M. Gordina, Hilbert-Schmidt groups as infinite-dimensional Lie groups and
their Riemannian geometry, J. Funct. Anal. 227 (2005), 245–272.

[6] K. Hofmann and S. Morris, The Lie Theory of Connected Pro-Lie Groups,
Europ. Math. Soc. Publ. House, 2007.

[7] K. Hofmann and K.-H. Neeb, Pro-Lie groups which are infinite-dimensional
Lie groups, Math. Proc. Cambridge Philos. Soc. 146 (2009), 351–378.

[8] C. Kassel, Quantum Groups, Grad. Texts in Math., 155, Springer-Verlag,
New York, 1995.

[9] S. MacLane, Categories for the Working Mathematician, Grad. Texts in
Math., 5, Springer-Verlag, New York, 1998.

[10] J. Milnor, Remarks on infinite-dimensional Lie groups, In: B. DeWitt and
R. Stora (Eds.), Relativity, Groups and Topology II (Les Houches, 1983),
North-Holland, Amsterdam, 1984, 1007–1057.

[11] F. Murray and J. von Neumann, On Rings of Operators, Ann. Math. 37
(1936), 116–229.

[12] K.-H. Neeb, Towards a Lie theory of locally convex groups, Jpn. J. Math,
1 (2006), 291–468.

[13] E. Nelson, Topics in Dynamics I, Princeton University Press, Princeton,
1969.

[14] E. Nelson, Notes on non-commutative integration, J. Funct. Anal. 15
(1974), 103–116.

[15] H. Omori, Infinite-Dimensional Lie Groups, Transl. Math. Monogr., 158,
Amer. Math. Soc., 1997.

[16] H. Omori, On Banach-Lie groups acting on finite dimensional manifolds,
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